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Abstract. In this paper we prove a new extremal property of the Reuleaux triangle: it

maximizes the Cheeger constant among all bodies of (same) constant width. The proof relies
on a fine analysis of the optimality conditions satisfied by an optimal Reuleaux polygon

together with an explicit upper bound for the inradius of the optimal domain. As a possible

perspective, we conjecture that this maximal property of the Reuleaux triangle holds for the
first eigenvalue of the p-Laplacian for any p ∈ (1,+∞) (the current paper covers the case

p = 1 whereas the case p = +∞ was already known).
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1. Introduction

Bodies of constant width (also named after L. Euler orbiforms) have attracted much attention
in the mathematical community along the last centuries. Several surveys have been devoted to
these objects, and contain an abundant literature. We refer notably to a chapter in Bonnesen-
Fenchel’s famous book [4], a survey by Chakerian-Groemer in the book “Convexity and its
applications” [7], and the recent book by Martini-Montejano-Oliveros [20]. In the plane, two
bodies of constant width play a particular role: the disk, of course, and the Reuleaux triangle
(obtained by drawing arcs of circle from each vertex of an equilateral triangle between the other
two vertices). If all plane bodies of constant width have the same perimeter (this is Barbier’s
Theorem), they do not have the same area and the two extreme sets are precisely the disk (with
maximal area by the isoperimetric inequality) and the Reuleaux triangle (with minimal area).
This last result is the famous Blaschke-Lebesgue Theorem, see [3] for the proof of W. Blaschke or
[17] for a more modern exposition, [19] for the original proof of H. Lebesgue, and [4], where this
proof is reproduced. Let us mention that many other proofs with very different flavours (more
geometric or more analytic) appeared later, for example in [2], [6], [9], [10], and [11]. The disk
and the Reuleaux triangle share these extremal properties for other geometric functionals like
the inradius and the circumradius, in particular the Reuleaux triangle minimizes the inradius
among all bodies of constant width, see e.g. [4] or [7].

We believe that these extremal properties of the disk and the Reuleaux triangle hold for more
complicated functionals. In particular in Section 5, we explain why we think that the Reuleaux
triangle maximizes the first eigenvalue of the p-Laplacian (with Dirichlet boundary condition)
for any p, 1 ≤ p ≤ +∞. Note that it is well known that the disk (or the ball in any dimension)
minimizes this eigenvalue, for any p and the proof is done by spherical rearrangement.

The aim of this paper is to make a first step in this direction by proving that the Reuleaux
triangle maximizes the Cheeger constant among all bodies of constant width. Indeed, the Cheeger
constant (defined below) can also be seen as the first eigenvalue of the 1-Laplacian, see [14].

The Cheeger constant of a bounded plane domain Ω is defined as

h(Ω) = min
E⊂Ω

P (E)

|E|
(1.1)

where P (E) is the perimeter of E (defined as the perimeter in the sense of De Giorgi for mea-
surable sets) and |E| is the area of E. In (1.1), the minimum is achieved as soon as Ω has a
Lipschitz boundary. A set E which realizes this minimum is called a Cheeger set of Ω and we
denote it by CΩ. This notion, introduced by Jeff Cheeger in [8] (to obtain a geometric lower
bound for the first eigenvalue of the Laplacian), has extensively received attention in the last
decades. For an introductory survey on the Cheeger problem we refer for example to [21]. In
general the Cheeger set is not unique, but it is unique if Ω is convex, see [1]. Moreover, for
convex planar domains, there is a nice characterization of the Cheeger constant and the Cheeger
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set, see e.g. Lachand-Robert and Kawohl [15]: the Cheeger constant reads

h(Ω) =
1

R(Ω)
, where R(Ω) satisfies |Ω−R| = πR2, (1.2)

where ∂Ω−R is the inner parallel set to ∂Ω at distance R, and the Cheeger set is CΩ = Ω−R(Ω)+
BR(Ω) (the Minkowski sum of Ω−R(Ω) and the disk of radius R(Ω)).

Therefore, the main result of this paper is

Theorem 1.1. The Reuleaux triangle maximizes the Cheeger constant in the class of plane
bodies of constant width. In other words, for any body Ω of constant width

h(Ω) ≤ h(T)

where T is the Reuleaux triangle of same width.

Our strategy of the proof is as follows. Without loss of generality, we work with bodies of
width 1. First of all, we look at this maximization problem in the restricted class of Reuleaux
polygons (with a number of sides less than 2N+1). We will then generalize the result, exploiting
the density of the Reuleaux polygons in the class of bodies with constant width (see e.g. [4], [5]
or the recent [16]). We begin with a simple observation on the inradius of the optimal domain: it
must be small, more precisely, smaller than r0 ≃ 0.4302. Note that the minimal value, obtained
by the Reuleaux triangle, is rmin = 1 − 1/

√
3 ≃ 0.4226. The key point to get such a precise

estimate is the explicit computation of the minimal area of a body of constant width enclosed
in a given annulus, that we obtained in a recent paper, see Appendix A and reference [12].

Now, in the class of Reuleaux polygons, after having proved existence of a maximizer, we
obtain optimality conditions, thanks to the so-called shape derivative. For that purpose, we
consider only a particular kind of perturbations allowing us to stay in the same class. These
perturbations may be defined for any Reuleaux polygon (except the Reuleaux triangle) and have
been used by W. Blaschke in his proof of the Blaschke-Lebesgue Theorem. They consist in
sliding one vertex on its arc, moving that way three corresponding arcs of the polygon in order
to respect the constant width condition and letting all the other arcs unchanged. The optimality
condition we get is rather complicated, but it allows us to prove, through a precise analysis of
the functions involved, that the optimal domain has arcs with very similar lengths: in Theorem
3.6 we give an estimate of the ratio of the lengths of two consecutive arcs that happens to be
close to 1. To conclude, we are able to use this property of the lengths to prove that the inradius
of such Reuleaux polygon must be larger than r0, first with a general proof in the case N ≥ 7,
then for all the remaining values of N = 2, 3, 4, 5, 6 by a simple analysis. This proves that the
optimal Reuleaux polygon cannot have more than 3 sides.

In this paper, we define B1 as the class of plane bodies of constant width 1 and B1
N as the

subclass of Reuleaux polygons with (at most) 2N+1 sides. Throughout the paper we will always
take the origin at the center of the incircle.

2. Existence and a first optimality condition

2.1. Existence. First of all, we show that the functional h is bounded above in B1 by explicit
bounds.

A first upper bound comes from two classical theorems: the Barbier Theorem (see, e.g. [7])
and the Blaschke-Lebesgue Theorem (see, e.g. [3]). The former states that the perimeter of any
plane body of constant width 1 is π, the latter asserts that the Reuleaux triangle minimizes the
area among plane bodies of constant width. By definition of h, we immediately get

h(Ω) ≤ π

|Ω|
≤ π

|T|
=

2π

π −
√
3
∼ 4.4576. (2.1)

Another possible strategy to get the boundedness is to exploit the monotonicity of h with
respect to the inclusion, together with the fact that T minimizes the inradius r(Ω) in B1 (see,
e.g. [4]):

h(Ω) ≤ h(B(0, r(Ω))) =
2

r(Ω)
≤ 2

r(T)
=

2

1− 1/
√
3
∼ 4.732. (2.2)

Proposition 2.1. The functional h admits a maximizer in B1.
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Proof. In (2.1) (or (2.2)) we have shown that h is bounded above in the class. Therefore, its
supremum is finite. Let Ωn be a maximizing sequence. Since the elements of B1 are convex
bodies with prescribed constant width, we infer that they can all be enclosed into a compact set.
Therefore, by Blaschke selection theorem, up to a subsequence (not relabeled), Ωn → Ω∗ with
respect to the Hausdorff metric, for some convex body Ω∗. Now it is classical that the class B1 is
closed for the Hausdorff metric (Hausdorff convergence is equivalent to uniform convergence of
the support functions), thus Ω∗ ∈ B1. To conclude, we exploit the continuity of h with respect
to the Hausdorff metric. This is proved, e.g., in [22, Proposition 3.1]. □

Actually, the same existence result can be proved in the subclass B1
N of Reuleaux polygons

with at most 2N + 1 sides.

Proposition 2.2. For every N ∈ N, the functional h admits a maximizer in B1
N .

Proof. Arguing as in the proof of Proposition 2.1, the statement follows by combining the bound-
edness of h from above, the compactness of B1

N with respect to the Hausdorff metric (see [17,
Proposition 2.2]), and the continuity of h with respect to the Hausdorff metric. □

2.2. The Cheeger constant of a Reuleaux triangle. In this paragraph we compute h(T)
using the implicit formula (1.2). We recall that the boundary of the Reuleaux triangle is formed
by three arcs of circle of radius 1 and arc length π/3, centered at three boundary points P1, P2,
and P3. Without loss of generality, we choose the orientation in such a way that

P1 =
1√
3
ei11π/6, P2 =

1√
3
eiπ/2, P3 =

1√
3
ei7π/6. (2.3)

Given an arbitrary 0 < R < 1, the boundary of the inner parallel set Ω−R is made of three arcs
of circle, centered at the Pi, with radius 1−R. They meet at three points Qi, i = 1, 2, 3, which,
by symmetry, lie on the segments PiO, being O the origin.

O

P1P3

P2

Q1

Q3

Q2

α
j

y
∂Ω−R

R

Figure 1. Left: the Reuleaux triangle and an inner parallel set. Right: the
Cheeger set of the Reuleaux triangle and the inner parallel set.

In order to determine the area of the inner parallel set, we need to compute the following
objects: the angle α such that Q2 = P1 + (1 − R)eiα, the distance y := |OQ2|, and the angle

j := Q̂2P1Q3 (see also Fig. 1). Recalling formulas (2.3) and imposing that the horizontal
coordinate of Q2 is zero, we get

α = arccos

(
− 1

2(1−R)

)
.

Similarly, evaluating the vertical component of Q2, we obtain

y = (1−R) sinα− 1

2
√
3
.

Finally, it is immediate to check that j = 2(5π/6− α). Note that the angle ÔP1Q3 could have
been computed using the law of sines. Let us now compute the area. Connecting each Qi with
the origin, the inner parallel set Ω−R is divided into three parts of equal area, and we have

|Ω−R| =
3

2

[√
3

2
y2 + (1−R)2(j − sin j)

]
.



4 ANTOINE HENROT, ILARIA LUCARDESI

Imposing (1.2), namely that |Ω−R| = πR2, we find

0.22802 ≤ R = R(T) ≤ 0.22803, (2.4)

implying

h(T) ≥ 4.3853.

2.3. A first optimality condition. The knowledge of r(T) and the computation of h(T) and
R(T) allow us to get some necessary conditions on the values of the functionals r and R for
maximizers.

Proposition 2.3. Let Ω∗ be a maximizer for h in B1. Then

0.21132 ≤ r(T)
2

≤ R(Ω∗) ≤ R(T) ≤ 0.22803, (2.5)

0.4226 ≤ r(T) ≤ r(Ω∗) ≤ r0 := 0.4302.

Proof. Let us start with R. By definition, R(Ω∗) = 1/h(Ω∗) ≤ 1/h(T) = R(T). On the other

hand, exploiting (2.2), we get R(Ω∗) ≥ r(T)/2 = (1 − 1/
√
3)/2. These inequalities, together

with (2.4), prove (2.5).
As already mentioned, the proof of the minimality of T for the inradius can be found in [4], in

particular r(T) ≤ r(Ω∗). In order to prove the upper bound for r(Ω∗), we introduce the auxiliary
function

A : [1− 1/
√
3; 1/2] −→ R+

r 7→ A(r) := min
{
|Ω| : Ω ∈ B1, r(Ω) = r

}
.

(2.6)

In other words, A associates to r the minimal area of a shape in B1 with prescribed inradius.
Note that the endpoints of the domain of A are the minimal and maximal inradius of shapes in
B1. The properties of A and of the optimal shapes are investigated in [12]. For the benefit of
the reader, the main facts are gathered in the Appendix A, at the end of the paper.

In view of definition (2.6) of A, for every shape Ω in the class, we have |Ω| ≥ A(r(Ω)), so
that, arguing as in (2.1),

h(Ω) ≤ π

A(r(Ω))
. (2.7)

On the other hand, for Ω∗ maximizer, there holds h(Ω∗) ≥ h(T). This fact, combined with (2.7),
gives

A(r(Ω∗)) ≤ π

h(T)
.

Since A is strictly increasing, we infer that

r(Ω∗) ≤ A−1

(
π

h(T)

)
< r0 := 0.4302,

concluding the proof. □

3. Optimality conditions in the class of Reuleaux polygons

In this section we write a family of optimality conditions in the class of Reuleaux polygons,
namely for the study of the maximization of h in B1

N . To this aim, we need to fix some definitions.

3.1. Reuleaux polygons. The boundary of a Reuleaux polygon Ω of width 1 is made of an
odd number of arcs of radius 1, centered at boundary points Pk, k = 1, . . . , 2N + 1, for some
N ∈ N. Notice that in this case Ω ∈ B1

M for every M ≥ N . The boundary arc centered at Pk is
denoted by γk and is parametrized by

γk := {Pk + eis : s ∈ [αk, βk]}, (3.1)

for some pair of angles αk, βk. We identify here the complex number eis with the point
(cos s, sin s) ∈ R2. For brevity, we set

jk := H1(γk) (the length of γk). (3.2)

The vertexes are ordered as follows: the subsequent and previous points of Pk are

Pk+1 = Pk + eiαk and Pk−1 = Pk + eiβk ,
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respectively. Accordingly, the angles satisfy

βk+1 = αk + π mod 2π.

Here k varies in {1, . . . , 2N + 1} and it is intended modulo 2N + 1. The concatenation of the
parametrizations of the arcs provides a parametrization of the boundary of the Reuleaux polygon
in counter clockwise sense: the order is γ2N+1, γ2N−1, . . ., γ1, γ2N , γ2N−2, . . ., γ2, namely first
the arcs with odd label followed by the arcs with even label, see e.g., Fig. 2.

P7

P6

P2

P3

P1

P4

P5

γ1

α1β1

Figure 2. Notation of vertexes, arcs, and angles for the parametrization of a
Reuleaux heptagon.

3.2. The Cheeger set of a Reuleaux polygon. Let Ω be a Reuleaux polygon. According to
[15], the boundary of the Cheeger set CΩ is the union of a (non empty) portion of ∂Ω and arcs
of circle of radius R := R(Ω). Moreover, the arcs of circle meet ∂Ω tangentially.

In view of the geometry of Ω, we infer that the intersection ∂CΩ ∩ ∂Ω is the union of arcs of
circle of radius 1 of the form γ′

ℓ := ∂CΩ ∩ γℓ. We parametrize them as follows:

γ′
ℓ = {Pℓ + eis : s ∈ [α′

ℓ, β
′
ℓ]}, (3.3)

for suitable ℓs and αℓ ≤ α′
ℓ ≤ β′

ℓ ≤ βℓ.
Notice that, a priori, there might be an index for which γ′

ℓ = ∅.
We now show that the fact that the “free part” of the boundary of CΩ meets ∂Ω tangentially

entails a relation among the contact angles, the lengths of the arcs, and R. More precisely, let
us assume that ∂CΩ intersects two consecutive arcs: γℓ and γℓ−2. In a neighborhood of their
common point Pℓ−1, the boundary of the Cheeger set is the concatenation of γ′

ℓ, the arc of circle

{Q+Reis : s ∈ [β′
ℓ, α

′
ℓ−2]},

and γ′
ℓ−2. The point Q is the intersection of the segments joining Pℓ with the contact point

Pℓ + eiβ
′
ℓ and Pℓ−2 with Pℓ−2 + eiα

′
ℓ−2 . Let M denote the midpoint of the segment PℓPℓ−2. This

structure is summarized in Fig. 3.

Pℓ−1

Pℓ

Pℓ−2

γ′
ℓ−2

γ′
ℓ

Q

M
α′
ℓ−2

β′
ℓ

Figure 3. The boundary of the Cheeger set in a neighborhood of Pℓ−1.
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Note that the angle ̂PℓPℓ−1Pℓ−2 is equal to αℓ−2−βℓ = jℓ−1. Let us write the point Q in two
different ways: {

Q = Pℓ + (1−R)eiβ
′
ℓ

Q = Pℓ + eiβℓ + |QPℓ−1|ei(βℓ+π+jℓ−1/2).
(3.4)

In order to compute |QPℓ−1|, let us introduce the auxiliary function

U(x) := arcsin(sin(x)/
√
a), (3.5)

being a := (1 − R)2. According to this notation, we infer that the angle P̂ℓQM = M̂QPℓ−2 is
nothing but U(jℓ−1/2). Therefore, we may write

|QPℓ−1| = |MPℓ−1| − |MQ| = cos(jℓ−1/2)−
√
a cos(U(jℓ−1/2)).

By combining the previous expression with (3.4), we conclude that{
(1−R) cos(β′

ℓ) = cos(βℓ)− [cos(jℓ−1/2)−
√
a cos(U(jℓ−1/2))] cos(βℓ + jℓ−1/2)

(1−R) sin(β′
ℓ) = sin(βℓ)− [cos(jℓ−1/2)−

√
a cos(U(jℓ−1/2))] sin(βℓ + jℓ−1/2).

(3.6)

Similarly, exploiting the fact that{
Q = Pℓ−2 + (1−R)eiα

′
ℓ−2

Q = Pℓ−2 + eiαℓ−2 + |QPℓ−1|ei(αℓ−2+π−jℓ−1/2)

we get{
(1−R) cos(α′

ℓ−2) = cos(αℓ−2)− [cos(jℓ−1/2)−
√
a cos(U(jℓ−1/2))] cos(αℓ−2 − jℓ−1/2)

(1−R) sin(α′
ℓ−2) = sin(αℓ−2)− [cos(jℓ−1/2)−

√
a cos(U(jℓ−1/2))] sin(αℓ−2 − jℓ−1/2).

(3.7)

3.3. Blaschke deformations. We now introduce a family of deformations in the class of
Reuleaux polygons of width 1, which allow to connect any pair of elements in a continuous
way (with respect to the complementary Hausdorff distance), staying in the class. This defini-
tion has been introduced by W. Blaschke in [3] and analysed by Kupitz-Martini in [17].

Definition 3.1. Let Ω be a Reuleaux polygon with 2N +1 sides. Let k be one of the indexes in
{1, . . . , 2N + 1}. A Blaschke deformation acts moving the point Pk on the arc γk−1 increasing
or decreasing the arc length. Consequently, the point Pk+1 moves and the arcs γk, γk+1, and
γk+2 are deformed, as in Fig. 4. We say that a Blaschke deformation is small if the arc length
of γk−1 has changed of ε ∈ R, small in modulus.

P ε
k

Pk−1

Pk−2

P ε
k+1

Pk+2

γε
k−1

γε
k+1

γε
k

γε
k+2

Figure 4. A Blaschke deformation of a Reuleaux heptagon which moves Pk on
γk−1 changing αk−1 into αε

k−1 := αk−1 + ε, with ε > 0 small.

Let Ωε denote the Reuleaux polygon obtained by Ω after a small Blaschke deformation of
parameter ε, moving Pk. When ε is infinitesimal, Ωε can be written as the image of a small
perturbation of the identity:

Ωε = ϕε(Ω), ϕε(x) = x+ εV (x) + o(|ε|),
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for a suitable vector field V . The behavior of V on the boundary is described in [12, §2.1,
formulas (2.5) and (2.6)], in particular, adopting the parametrization (3.1) of the boundary arcs,
there holds:

V · n =


sin(s− αk−1) on γk

− sin jk
sin jk+1

sin(s− αk+1) on γk+1

0 else,

(3.8)

where, according to (3.2), jk and jk+1 are the lengths of γk and γk+1, respectively.

3.4. The first order shape derivative of h with respect to Blaschke deformations. In
order to derive optimality conditions, a classical idea is to impose that the first order shape de-
rivative of h at a critical Reuleaux polygon vanishes for every small deformation which preserves
the constraints of B1

N .
For a generic convex set Ω, denoting by CΩ its (unique, see [1]) Cheeger set, the first order

shape derivative of h at Ω in direction V ∈ C1(R2;R2) reads (see [23])

dh

dV
(Ω) := lim

ε→0

h((I + εV )(Ω))− h(Ω)

ε
=

1

|CΩ|

∫
∂CΩ∩∂Ω

(CΩ − h(Ω))V · ndH1, (3.9)

where I is the identity map and CΩ is the curvature.
A consequence of this formula is that the Cheeger set of a maximizer in B1

N intersects all the
boundary arcs.

Proposition 3.2. Let Ω be a maximizer for h in B1
N . Then H1(∂CΩ ∩ γℓ) > 0 for every ℓ.

Proof. Let us consider an infinitesimal Blaschke deformation which moves the vertex Pk (see
Definition 3.1). Since Ω is a critical shape, the first order shape derivative of h at Ω with respect
to this deformation is zero. In formulas, exploiting (3.9), (3.8), and the fact that the curvature
CΩ is equal to 1 on ∂Ω ∩ ∂CΩ, we derive the following optimality condition:

0 =

∫
∂CΩ∩γk

sin(s− αk−1) ds−
sin jk

sin jk+1

∫
∂CΩ∩γk+1

sin(s− αk+1) ds. (3.10)

Looking at (3.10), we see that if ∂CΩ ∩ γk is negligible, then the corresponding integral is zero,
therefore the other integral has to be zero, meaning that either the Cheeger set does not meet
γk+1 or the intersection is a single point. Repeating this argument, we obtain that ∂CΩ ∩ γℓ is
either empty or a singleton, for any arc γℓ on the boundary.

Let us prove that it is impossible (this is a common fact for any Cheeger set). Since the free
parts of CΩ are arcs of circle of radius R(Ω) and since the Cheeger set of a convex body is of class
C1,1 (cf. [1, Theorem 1]), if the Cheeger set touches the boundary of Ω only at singletons, we
would have that CΩ is a disk of radius R(Ω). This would imply h(Ω) = 2/R(Ω), in contradiction
with (1.2). □

Taking Ω a Reuleaux polygon and V inducing an arbitrary Blaschke deformation, we obtain
a family of optimality conditions. In order to state the result, let us introduce the following
auxiliary functions:

G(x) := sin2(x) +
√
a cos(x) cos(U(x)) = sin2(x) + cos(x)

√
a− sin2(x), (3.11)

F (x, y) :=
√
a cos(2x+ y − U(y)), (3.12)

H(x, y, z) := sin(2z)[G(x)− F (y, z)], (3.13)

where a is a constant depending on Ω, a := (1−R(Ω))2, and U is the function defined in (3.5).

Proposition 3.3. Let Ω be a critical shape for h in the class of Reuleaux polygons. Then, for
every k,

H

(
jk−1

2
,
jk
2
,
jk+1

2

)
= H

(
jk+2

2
,
jk+1

2
,
jk
2

)
. (3.14)

Proof. In the following, for brevity, the functional R(Ω) will be denoted by R.
We use again Formula (3.10). In view of the parametrization (3.3) of ∂CΩ ∩ ∂Ω, we get

0 =

∫ β′
k

α′
k

sin(s− αk−1) ds−
sin jk

sin jk+1

∫ β′
k+1

α′
k+1

sin(s− αk+1) ds
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= − cos(β′
k − αk−1) + cos(α′

k − αk−1) +
sin jk

sin jk+1

[
cos(β′

k+1 − αk+1)− cos(α′
k+1 − αk+1)

]
= cos(β′

k − βk)− cos(α′
k − βk) +

sin jk
sin jk+1

[
cos(β′

k+1 − αk+1)− cos(α′
k+1 − αk+1)

]
,

where in the last equality we have used αk−1 ≡ βk + π, modulo 2π. Rearranging the terms, we
rewrite the optimality condition as:

sin(jk+1)[cos(βk − β′
k)− cos(βk − α′

k)] = sin(jk)[cos(α
′
k+1 − αk+1)− cos(β′

k+1 − αk+1)]. (3.15)

Exploiting (3.6) with ℓ = k, we obtain

cos(βk − β′
k) = cos(βk) cos(β

′
k) + sin(βk) sin(β

′
k)

=
[
sin2(jk−1/2) +

√
a cos(jk−1/2) cos(U(jk−1/2))

]
/
√
a

= G

(
jk−1

2

)
/
√
a, (3.16)

where G is the function defined in (3.11) and a := (1−R)2. Similarly, taking ℓ = k+2 in (3.7),
we get

cos(βk − α′
k) =

[
cos(jk)−

(
cos(jk+1/2)−

√
a cos(U(jk+1/2))

)
cos(jk + jk+1/2)

]
/
√
a

=
[
sin(jk) sin(jk + jk+1/2) +

√
a cos(U(jk+1/2)) cos(jk + jk+1/2)

]
/
√
a

= F

(
jk
2
,
jk+1

2

)
/
√
a, (3.17)

where F is the function introduced in (3.12). Here, for the last equality, we have used
cos(x) cos(y) = cos(x − y) − sin(x) sin(y), together with the fact

√
a sin(U(x)) = sin(x). By

combining (3.16) with (3.17), we may rewrite the left-hand side of (3.15) as

H

(
jk−1

2
,
jk
2
,
jk+1

2

)
/
√
a.

The same strategy adopted for the left-hand side of (3.15) also applies for the right-hand side, giv-

ing sin(jk)
[
G
(

jk+2

2

)
/
√
a− F

(
jk+1

2 , jk
2

)
/
√
a
]
= H

(
jk+2

2 , jk+1

2 , jk
2

)
/
√
a. By multiplying both

sides by
√
a, we get (3.14). □

Remark 3.4. The optimality condition (3.14) is obviously satisfied by all the regular Reuleaux
polygons. Actually, we believe that only the regular Reuleaux polygons are critical points for
the Cheeger constant, and we give some support to this claim in Remark 3.7. If we were able
to prove that fact, the proof of our main theorem would be much simpler as we could make
the explicit computation of the Cheeger constant of any regular Reuleaux polygon. Let us also
refer to the recent paper [24] where is done a similar comparison between the first Dirichlet
eigenvalue or the torsion among every regular Reuleaux polygon, showing that the Reuleaux
triangle is always the optimal domain in this restricted class.

3.5. Analysis of the optimality conditions. Throughout the subsection Ω will denote a
maximizer for h in B1

M for some M , with 2N + 1 boundary arcs j1, . . . , j2N+1. We will use
the optimality conditions stated in Propositions 3.2 and 3.3 to obtain some information on the
lengths of consecutive intervals.

A first rough estimate can be deduced from Propositions 3.2:

Lemma 3.5. Two consecutive lengths jk and jk+1 satisfy

0.1339jk+1 ≤ jk ≤ 1

0.1339
jk+1.

Proof. In subsection 3.2, we have highlighted the relation between the lengths of the arcs γ′
ℓ ⊂

∂Ω ∩ ∂CΩ and the arcs γℓ. This relation, valid for every ℓ thanks to Proposition 3.2, can be
stated as follows: using the notation introduced in subsection 3.2, taking ℓ = k+2 (see also Fig.
3), we have that

α′
k − αk = ̂QPkPk+1 = π −

(
̂PkQPk+1 + ̂QPk+1Pk

)
= M̂QPk − ̂MPk+1Pk = arcsin

(
sin jk+1/2

1−R

)
− jk+1

2
.
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Now jk ≥ α′
k − αk, thus using the positivity of the function

(0, π/6) ∋ x 7→ arcsin(C sin(x))− Cx

with 1 < C < 2, we obtain

jk ≥ arcsin

(
1

1−R
sin

(
jk+1

2

))
− jk+1

2
≥ R

2(1−R)
jk+1 ≥ 0.1339jk+1.

For the last inequality, we have used R ≥ 0.21132, see (2.5). The other bound in the statement
can be obtained in a similar way, by considering the difference of βk+1 − β′

k+1. □

The optimality condition (3.14) in Proposition 3.3 allows us to obtain a refined estimate.

Theorem 3.6. Two consecutive lengths jk and jk+1 satisfy

τjk+1 ≤ jk ≤ 1

τ
jk+1 with τ ≥ 0.99− 0.07h2

where h denotes the largest length (among all arcs of the Reuleaux polygon).

Before showing the proof of this result, let us make some comments about its consequences.

Remark 3.7. Since the maximal length of any arc is less than π/3 (a maximal arc joins two
points on the outercircle being tangent to the incircle: this computation is done for example in
[12]), we deduce from the theorem that τ ≥ 0.91 and the smaller is h, the better will be the
estimate. For example, for h ≤ 0.45, we get τ ≥ 0.97. In some sense, the optimal domain is
close to a regular Reuleaux polygon. Note that if the polygon has 2N +1 sides, the smallest one
has a length that is at least τNh (because there is at most N − 1 arcs between the largest and
the smallest if we turn in the good direction).

We can deduce from Theorem 3.6 a bound for the maximal length of an arc of a 2N + 1
optimal Reuleaux polygon.

Proposition 3.8. Let hN be the maximal length of an arc of a 2N+1 Reuleaux polygon satisfying
the optimality conditions. Let us denote by τN the rate between two consecutive lengths as defined
in Theorem 3.6. Then

hN ≤ (1− τN )π

1 + τN − 2τN+1
N

. (3.18)

Remark 3.9. Thanks to this proposition, we obtain for example the following bounds for a
2N+1 Reuleaux polygon satisfying the optimality conditions: using the fact that the right-hand
side of (3.18) is decreasing in τ and iterating three times Theorem 3.6 to get better rates, we
infer that the maximal length of one side hmax

N and the minimal length of one side hmin
N (that

is computed as τNN hmax
N ) satisfy:

N 2N + 1 τN hmax
N hmin

N

2 5 0.9594 0.6600 0.6075
3 7 0.9746 0.4689 0.4340
4 9 0.9806 0.3644 0.3370
5 11 0.9837 0.2986 0.2750
6 13 0.9855 0.2533 0.2319
7 15 0.9866 0.2202 0.2003
8 17 0.9873 0.1950 0.1760
9 19 0.9878 0.1752 0.1568

Table 1. Table of rates, maximal and minimal lengths for Reuleaux polygons

confirming that optimizers are not far from regular Reuleaux polygons.

Proof of Proposition 3.8. We start from the arc of length hN . Its two neighbours have a length
at least τNhN , the next neighbours have a length at least τ2NhN ... up to the farthest arcs (in the
enumeration) which have a length at least τNN hN . Therefore, since the sum of all the lengths is
equal to the perimeter π, we have the inequality

π ≥ hN

(
1 + 2

N∑
k=1

τkN

)
= hN

1 + τN − 2τN+1
N

1− τN
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therefore

hN ≤ π(1− τN )

1 + τN − 2τN+1
N

.

□

The remaining part of the subsection is devoted to the proof of Theorem 3.6. We start with
some inequalities for the functions U,G, F,H defined above, see (3.5) and (3.11)-(3.13). In the
following, we work under the following assumptions:

x, y, z ∈
[
0,

π

6

]
, 2y ≥ U(z)− z.

We will also use everywhere, for the higher order terms the estimate (2.5), namely R ∈
[0.21132, 0.22803].

Let us first provede upper and lower bounds for U defined in (3.5). By differentiating and by
elementary calculus, one can show that for x ∈ [0, π/6] there holds:

x

1−R
+ 0.1284x3 ≤ U(x) ≤ x

1−R
+ 0.18315x3. (3.19)

For the inequality on the left, it is enough to see that the function x 7→ U(x)−x/(1−R)−0.1284x3

is zero at 0 and increasing and in [0, π/6]. For the inequality on the right, we use that the function
x 7→ U(x) − x/(1 − R) − 0.18315x3 is first decreasing and then increasing in [0, π/6], it is zero
at 0 and negative at π/6.

Let us now pass to the function G defined in (3.11). We use here the previous bounds on
U(x) together with the classical inequalities for the cosine and for the sine:

1− v2/2 ≤ cos v ≤ 1− v2/2 + v4/24, x− x3/6 ≤ sinx ≤ x− x3/5 + x5/120,

taking in the former v = x and then v = U(x). These inequalities lead to:

1−R− R2x2

2(1−R)
− 0.05x4 ≤ G(x) ≤ 1−R− R2x2

2(1−R)
− 0.02x4.

Now, we work in a similar way to get bounds for the functions F and H defined in (3.12) and
(3.13), respectively. For the benefit of the reader, all the computations are postponed to the
Appendix B. For F we obtain

F (y, z) ≤ 1−R− 2(1−R)y2 − R2z2

2(1−R)
+ 2Ryz + S1(y, z),

F (y, z) ≥ 1−R− 2(1−R)y2 − R2z2

2(1−R)
+ 2Ryz + S2(y, z),

where the remainders S1 and S2 are two polynomials of degree 4 (see (5.1) and (5.2)). Putting
together these different estimates yields for H the following estimates:

H(x, y, z) ≤ 4(1−R)y2z +
R2

1−R
(z3 − zx2)− 4Ryz2 + T1(x, y, z), (3.20)

H(x, y, z) ≥ 4(1−R)y2z +
R2

1−R
(z3 − zx2)− 4Ryz2 + T2(x, y, z), (3.21)

where the remainders T1 and T2 are two polynomials of degree 5 (see (5.3) and (5.4)).

Now writing the optimality condition H
(

jk−1

2 , jk
2 ,

jk+1

2

)
−H

(
jk+2

2 , jk+1

2 , jk
2

)
= 0 and using

estimates (3.20), (3.21) yields the two following inequalities

0 ≤ jkjk+1(jk − jk+1) +
R2

4(1−R)

(
j3k+1 − jk+1j

2
k−1 + jkj

2
k+2 − j3k

)
+ E1(jk−1, jk, jk+1, jk+2)/16

(3.22)
and

0 ≥ jkjk+1(jk − jk+1) +
R2

4(1−R)

(
j3k+1 − jk+1j

2
k−1 + jkj

2
k+2 − j3k

)
+E2(jk−1, jk, jk+1, jk+2)/16,

(3.23)
with E1(x, y, z, w) := T1(x, y, z)−T2(w, z, y) and E2(x, y, z, w) := T2(x, y, z)−T1(w, z, y). These
two polynomials are explicit (see the end of Appendix B) and their coefficients depend (only)
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on R. To obtain universal estimates, we optimize the coefficients in R ∈ [0.21132, 0.22803], and
we get

E1(jk−1, jk, jk+1, jk+2) ≤ −0.04j4k−1jk+1 + 0.00732j3k−1j
2
k+1 + 0.04491j2k−1j

3
k+1

−0.02240j5k − 0.95840j4kjk+1 + 2.80139j3kj
2
k+1 − 0.03774j3kj

2
k+2

−2.29866j2kj
3
k+1 + 1.29089jkj

4
k+1 + 0.1jkj

4
k+2 + 0.02339j5k+1

and

E2(jk−1, jk, jk+1, jk+2) ≥ −0.1j4k−1jk+1 + 0.03774j2k−1j
3
k+1 − 0.02339j5k

−1.29089j4kjk+1 + 2.29866j3kj
2
k+1 − 0.04491j3kj

2
k+2 − 2.80139j2kj

3
k+1

−0.00732j2kj
3
k+2 + 0.95840jkj

4
k+1 + 0.04jkj

4
k+2 + 0.02240j5k+1.

In the following, with a slight abuse of notation, we will denote by E1 and E2 the right-hand
sides of these inequalities.

We are going to make the proof of Theorem 3.6 in the case jk ≤ jk+1 by using inequality
(3.22) which leads to a simple inequality for a polynomial of degree 3 easy to analyze. In the
case jk ≥ jk+1 we can proceed exactly in the same way, but using inequality (3.23) instead.

In the sequel we use the following notations: jk+1 = j and jk−1 = uj, jk = tj, jk+2 = vj.
The three numbers t, u, v are positive and t ≤ 1 by assumption. First, we need an estimate of
the remainder E1, that can be written as

E1(uj, tj, j, vj) = j5 (F1(t, v) + F2(u))

with

F1(t, v) = −0.02240t5−0.95840t4+2.80139t3−0.03774t3v2−2.29866t2+1.29089t+0.1tv4+0.02339

and

F2(u) = −0.04u4 + 0.00732u3 + 0.04491u2.

Lemma 3.10. For v ≤ 1, we have E1(uj, tj, j, vj) ≤ 0.91461873j5 (for every t ∈ [0, 1] and every
u).
For v ≥ 1, we have E1(uj, tj, j, vj) ≤ (0.1v4 − 0.03774v2 + 0.85235873)j5 (for every t ∈ [0, 1]
and every u).

Proof. The expression containing u, namely F2, is a polynomial of degree 4, thus it is straight-
forward to prove that its maximum on R+ is attained for u ∈ [0.8210107, 0.8210108] and its
value is less than 0.01614873. For F1(t, v), computing the derivative with respect to v, we see

that this derivative is negative when v ≤
√

0.07548/0.4 t (note that this threshold is below 1)
and positive after. Since it is easy to check that, for all t ∈ [0, 1], F1(t, 0) < F1(t, 1) we see that,
to maximize F1, we must choose v = 1 when v ≤ 1, or keep v when v ≥ 1. Now, the derivative
of F1 with respect to t is

∂F1

∂t
= −0.112t4 − 3.8336t3 + 8.40417t2 − 4.59732t+ 1.29089− 0.11322t2v2 + 0.1v4.

The two last terms satisfy

0.1v4 − 0.11322t2v2 ≥ 0.1v4 − 0.11322v2 ≥ −0.0033,

thus, for ∂F1/∂t, we are led to study a polynomial of degree 4 in t and it is immediate to check
that this polynomial is positive for any t ∈ [0, 1]. Therefore, to maximize F1 we must choose
t = 1. The conclusion follows. □

We are now in a position to prove the theorem.

Proof of Theorem 3.6. We make the proof in two steps. In the first step, we prove that τ ≥ 0.9
and then, using this estimate we get the conclusion.
Assuming jk ≤ jk+1, we have to consider four different cases:

• Case 1: jk−1 ≥ jk and jk+1 ≥ jk+2

• Case 2: jk−1 ≤ jk and jk+1 ≥ jk+2

• Case 3: jk−1 ≤ jk and jk+1 ≤ jk+2

• Case 4: jk−1 ≥ jk and jk+1 ≤ jk+2
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We start from the inequality established in (3.22): using the upper bound

R2

4(1−R)
≤ 0.01684

we obtain

0 ≤ t(t− 1) + 0.01684(1− u2 + tv2 − t3) +
E1(uj, tj, j, vj)

16j3
. (3.24)

The idea is to bound it from above in each of the four cases with a polynomial q(t) of degree 3
in t which satisfies the following properties:

q(0) > 0, q(1) > 0, q decreasing and then increasing in [0, 1] , q < 0 in [0.1, 0.9]. (3.25)

The positivity of the polynomial, together with the estimate t > 0.1339 provided in Lemma
3.5, give t > 0.9. In each case, we will have to consider a polynomial q, depending on three
coefficients A,B,C given by q(t) = t(t− 1) + 0.01684(1 +At−Bt2 − t3) + C. If we are able to
find a polynomial q(t) bounding from above the right-hand side of (3.24) with

0.015 ≤ B ≤ A ≤ 1.25 and 0.05 < C ≤ 0.066 (3.26)

then we are done. Let us show that (3.26) is enough to guarantee (3.25). The monotonicity of
q can be deduced simply by computing its first derivative:

q′(t) = 2t− 1 + 0.01684(A− 2Bt− 3t2).

Noticing that q′ is a polynomial of degree 2, with limt→±∞ q′(t) = −∞, satisfying q′(0) < 0,
and q′(1) > 0, we infer that q′ has only one zero, say t0, in ]0, 1[, it is negative for t ∈ [0, t0[
and it is positive for t ∈]t0, 1]. This implies that q is decreasing and then increasing in [0, 1]. In
particular, since using (3.26) we have

q(0) > 0, q(0.1) < 0, q(0.9) < 0, q(1) > 0,

we infer that q is negative in the whole interval [0.1, 0.9]. We have then proved all the desired
properties stated in (3.25).

Case 1: Here u ≥ t and v ≤ 1, thus (3.24), Lemma 3.10, and the fact that j ≤ π/3, give

0 ≤ t(t− 1) + 0.01684(1− t2 + t− t3) + 0.06268.

This polynomial satisfies (3.26) and then (3.25).

Case 2: Here by assumption u ≤ t and v ≤ 1. Moreover, using Lemma 3.5, we get u ≥ 0.1339t.
These estimates, together with Lemma 3.10, imply that

0 ≤ t(t− 1) + 0.01684(1− 0.13392t2 + t− t3) + 0.06268.

This polynomial satisfies (3.26) and then (3.25).

Case 3: In this case, the four lengths are increasing and may belong to a sequence of increasing
numbers jk−1 ≤ jk ≤ jk+1 ≤ jk+2 . . . ≤ jm with jm ≥ jm+1. We proceed by a descent induction.
From the case 2., we see that jm−1 ≥ 0.9jm. Assume by induction that jk+1 ≥ 0.9jk+2. Then
v ≤ 1/0.9. To estimate jk in terms of jk+1 we use the same technique as above with

1− u2 + tv2 − t3 ≤ 1− 0.13392t2 + t/0.92 − t3.

We have also to change the estimate for the remainder E1: according to Lemma 3.10 and since
1 ≤ v ≤ 1/0.9 we have here

E1(uj, tj, j, vj)

16j3
≤ (0.1/0.94 − 0.03774/0.92 + 0.85235873)

j2

16
≤ 0.06568.

All in all, (3.24) gives

0 ≤ t(t− 1) + 0.01684(1− 0.13392t2 + t/0.92 − t3) + 0.06568.

This polynomial satisfies (3.26) and then (3.25).

Case 4: We proceed as in the third case, by induction starting at the last number jm of the
increasing sequence jk ≤ jk+1 ≤ jk+2 . . . ≤ jm. Here the upper bound of (3.24) is

t(t− 1) + 0.01684(1− t2 + t/0.92 − t3) + 0.06568.

and satisfies (3.26) and (3.25).
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We now get a better estimate by using this number 0.9, without replacing j by its upper
bound π/3. Since the statement is valid for any pair of consecutive lengths, coming back to
t, u, v, we have: t ≤ 1, u ≥ 0.9t, 0.9 ≤ v ≤ 1/0.9. Using these stronger estimates in (3.24), we get

0 ≤ q(t) := t(t− 1) + 0.01684(1− 0.92t2 + t/0.92 − t3) + 0.059887j2.

Here the constant term is the same as in Cases 3 and 4. The polynomial satisfies (3.25). There-
fore, if we show that its larger root is at least 0.99 − 0.07j2 we are done. In other words, we
shall prove that q(0.99− 0.07j2) ≤ 0. Developing the computation, we obtain

q(0.99− 0.07j2) ≤ 10−3(−2.18656−4.81172j2 + 4.58809j4 + 0.00578j6)

and since the right–hand side is negative for j ≤ π/3 the thesis follows. □

3.6. Inradius of a Reuleaux polygon. In this paragraph we give a general formula for the
inradius of a Reuleaux polygon.

Definition 3.11. We say that M ∈ ∂Ω is a contact point if it belongs to the incircle.

In the particular case in which there exist three contact points, two belonging to consecutive
arcs, and the third belonging to the opposite arc, the inradius can be easily computed.

Lemma 3.12. Let Ω be a Reuleaux polygon with 2N + 1 sides. Assume that the arcs γ1, γ2,
and γ2N+1 are tangent to the incircle. Then

r(Ω) = 1− 1

2 cos(j1/2)
. (3.27)

Proof. The standing assumptions are summarized in Fig. 5.

P1

O

P2 P2N+1M1

M2M3

Figure 5. The configuration under study: two contact points on two consecu-
tive arcs γ2, γ2N+1, and one on the opposite arc γ1.

Since the arcs γ1,γ2, and γ2N+1 are tangent to the incircle, denoting by M1, M2, and M3 the
three contact points, respectively, we infer that the length of OM1, OM2, and OM3 are equal
to r(Ω), so that the lengths of OP1, OP2, and OP2N+1 are equal to 1− r(Ω). In particular, the
two triangles P1OP2 and P1OP2N+1 are congruent. Let us consider one of the two triangles:
it is isosceles, with base of length 1, legs of length 1 − r(Ω), and base angle of amplitude j1/2.
Therefore, we conclude that (

1− r(Ω)
)
cos(j1/2) =

1

2
.

This concludes the proof. □

Remark 3.13. The described situation in Lemma 3.12 always occurs for regular Reuleaux
polygons (actually, in this case all the boundary arcs are tangent to the incircle) and for all the
Reuleaux pentagons.

The previous situation is a particular case: what remains true in general is the existence of
three contact points which do not lie in the same half-plane (limited by a line going through
the origin); what changes is the number of boundary points between pairs of contact points. In
order to clarify this fact, we need to introduce the notion of sector.
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Definition 3.14. Let M1,M2,M3 be three contact points (labeled in the direct sense) with
polar angles t1, t2, t3, and not lying in the same half-plane (limited by a line going through the
origin). The segments joining these contact points with their opposite boundary points (with
polar angles ti + π) pass through the origin and identify a partition of the interval [0, 2π] in six
parts, that we call sectors:

[t2, t1 + π], [t1 + π, t3], [t3, t2 + π], [t2 + π, t1], [t1, t3 + π], [t3 + π, t2].

Here the angles are intended modulo 2π. The length of the sector [ti, ti−1+π], i ∈ Z3, is denoted
by ui or, when no ambiguity may arise, simply by u.

Remark 3.15. Note that each sector [ti, ti−1 + π], i ∈ Z3, is coupled with the opposite sector
[ti + π, ti−1] (again, angles intended modulo 2π) which has the same length.

Beside the length, we associate to each sector another characteristic parameter. To fix the
ideas, let us consider the first sector [t2, t1 + π]. Up to relabeling the indexes, we may assume
that M1 belongs to the boundary arc γ1 centered at P1. Accordingly, M2 lies on the boundary
arc γ2m centered at P2m, for some m. Going along the boundary in the direct sense, namely in
counter-clockwise sense, between M2 and P1, we find P2m−1, P2m−3, . . . , P3, P1; whereas between
P2m and M1 we find the vertexes P2m, P2m−2, . . . , P4, P2 (see also Fig. 6).

t2
u2

O

P1

P2m

P2m−1

P2 M1

M2

t2
u2

P1

P2
M1

M2

O

Figure 6. Left: the families P1, . . . , P2m and P2, . . . , P2m associated to two
contact points M1 and M2. Right: an example with m = 1.

This leads us to define inside the sector [t2, t1 + π] the sequence of numbers t2 < x1 < x2 <
. . . < x2m−2 < x2m−1 < t1 + π where

x1 = β2m, x2 = α2m−2, x3 = β2m−2, . . . x2m−2 = α2, x2m−1 = β2.

As a function of the parameters m and u, the inradius is given by the following.

Lemma 3.16. Let Ω be a Reuleaux polygon. Let u and m be the two parameters of a sector, as
in Definition 3.14. Then

r(Ω) = 1−
∑2m

k=2 cosβk

sinu
= 1−

∑2m−1
k=1 (−1)k−1 cosxk

sinu
. (3.28)

Proof. Throughout the proof, for brevity we set r = r(Ω). Without loss of generality, we may
assume to work with the first sector, delimited byM2 and P1. Up to a rigid motion,M1 = (0,−r).
Accordingly, t1 = 3π/2, and the sector under study is [t2, π/2]. The statement simply follows by
writing P1 in two different ways: by construction, P1 = (0, 1− r); on the other hand, exploiting
the rule Pj = Pj+1 + eiβj and P2m = −(1− r)eit2 , we get

P1 = −(1− r)eit2 +

2m∑
k=2

eiβk .

Taking the projections on the horizontal and vertical components, we conclude that
0 = −(1− r) cos t2 +

∑2m
k=2 cosβk

(1− r) = −(1− r) sin t2 +
∑2m

k=2 sinβk.

(3.29)
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The first line of the system, recalling that the length of the sector here is π/2 − t2, gives
the first statement. The second one comes from the definition of the x′

ks and the relation
αk = βk+1 − π. □

Remark 3.17. Notice that we do not require M2 to be the “first” contact point met in the
path. Moreover, notice that m and u do not depend on the orientation chosen.

We conclude the paragraph with some estimates for the length of a sector, which will be
crucial in the next section.

Lemma 3.18. The length u of any sector satisfies

u ≥ 2

(√
1− 2r + r(2 arctan(

√
4(1− r)2 − 1)− arccos

(
r

1− r

))
(3.30)

where r in the inradius of the Reuleaux polygon.
In particular, for a Reuleaux polygon with an inradius r ≤ r0 (for example an optimal Reuleaux
polygon), we have

0.9926 ≤ u ≤ 1.1563. (3.31)

Proof. We work with the first sector, delimited by M2 and P1. Up to a rigid motion, we may
assume that M1 = (0,−r), so that P1 = (0, 1− r). In particular, t1 = 3π/2 and the sector under
study is [t2, π/2] with length u := u2 = π/2− t2. The length of the boundary of Ω between M2

and P1 is

L(M2P1) = x1 − t2 + x3 − x2 + x5 − x4 + . . .+ x2m−1 − x2m−2.

In the same way, the length of the opposite boundary from P2 to M1 is

L(P2M1) = x2 − x1 + x4 − x3 + . . .+
π

2
− x2m−1.

Therefore, by addition L(M2P1) + L(P2M1) =
π
2 − t2 = u. Now let us introduce the point P0

defined as the intersection of the arc of circle of radius 1, centered at P2 with the outercircle (of
radius 1− r), see Figure 7. By convexity, the point P1 is after the point P0 (in the direct sense)

O

P1

P2

M2

P0

H

ℓ

ℓ/2

Figure 7. Computation of the length of a sector by comparison with a geodesic.

on the outercircle. We are going to make comparisons with the geodesics inside the annulus
{r ≤ |X| ≤ 1− r}. We denote by geod(A,B) the length of the geodesic between two points A,B
in the annulus. We have

L(M2P1) ≥ geod(M2, P1) ≥ geod(M2, P0).

The same inequality holds for L(P2M1). Thus, u ≥ 2geod(M2, P0).
Now, let us compute geod(M2, P0). This geodesic is made of

• a segment P0H joining P0 to the point H defining the tangent to the incircle which goes
through P0 (see Figure 7),

• the arc of the incircle M2H.
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By Pythagoras’ theorem, |P0H| =
√
1− 2r.

Now we set ℓ(r) = 2 arctan(
√
4(1− r)2 − 1). A simple trigonometric computation shows that

the angle M̂2P2P0 is ℓ(r)/2. Relations between the intercepting angles in a circle show that the

angle P̂0OM2 is ℓ(r). Now the angle P̂0OH is arccos(r/(1 − r)), therefore the arc M2H has
length which is r(ℓ(r)− arccos(r/(1− r)) and the inequality (3.30) follows.

For the inequality (3.31), we remark that the function in the right-hand side of (3.30) is
decreasing and we compute its value for r = r0 getting the estimate from below. The estimate
from above follows since the lengths of the three sectors satisfy u1 + u2 + u3 = π. □

Remark 3.19. The number of points xk we can have in a sector is odd but variable. Never-
theless, we can bound this number for low values of N . For example, for a Reuleaux heptagon
(N = 3), there is necessarily at least one sector (two if we consider its corresponding sector)
with only one point inside. For a Reuleaux nonagon (N = 4), either there is one sector with
only one point, or all sectors have three points. For N = 5 or N = 6 there is at least one sector
with either one or three points (because if any sector has more than 5 points, we have a number
of sides at least equal to 6 (number of sectors) times 5 (number of points) divided by 2 = 15).

4. Proof of the main theorem

The key results of this section concern the maximization of h in the subclass of Reuleaux
polygons with a prescribed maximal number of sides, namely in B1

N , for N ∈ N. They are:

Proposition 4.1. A 2N + 1-Reuleaux polygon with N ≥ 7 cannot be the maximizer.

Proposition 4.2. A 2N + 1-Reuleaux polygon with 2 ≤ N ≤ 6 cannot be the maximizer.

Once proved the propositions (see the next two paragraphs), we are done:

Proof of Theorem 1.1. Let N ∈ N be fixed. In view of Proposition 2.2, h admits a maximizer
ΩN in the class B1

N . Thanks to Propositions 4.1 and 4.2, ΩN is necessarily the Reuleaux triangle,
in particular maxB1

N
h = h(T).

Let us now consider the maximization problem in the whole class B1. As already shown
in Proposition 2.1, the problem admits a solution. Exploiting the density with respect to the
Hausdorff metric of the Reuleaux polygons (cf. [4], [5], [16]), the continuity of h with respect to
the Hausdorff metric (see again [22, Proposition 3.1]), and the fact that {B1

N}N is an increasing
family with N , we infer that

max
B1

h = sup
N

max
B1

N

h = lim
N→∞

max
B1

N

h.

As shown at the beginning of the proof, the sequence {maxB1
N
h}N is stationary, equal to h(T).

This concludes the proof. □

The next two paragraphs are devoted to the proof of Proposition 4.1 and 4.2, respectively.

4.1. Reduction to Reuleaux polygons with less than 15 sides. We start by proving that
an optimal Reuleaux polygon has less than 15 sides.

Theorem 4.3. Let Ω be a 2N + 1-Reuleaux polygon satisfying the optimality condition (3.14).
Then its inradius satisfies

r ≥ 1

2
− hN

4 sinu
− 1− τN

4τN

(
1 +

h2
N

6

u

sinu

)
− h2

N

24

u

sinu
(4.1)

where hN is the maximal length of an arc (given in Proposition 3.8) and τN is the rate between
two consecutive lengths (given in Theorem 3.6) and u is the length of a sector, as in Lemma
3.18.

Proof. Following the notations of Section 3.6 we consider a sector [t2, π/2] with 2m − 1 points
t1 < x1 < x2 < . . . < x2m−1 < π

2 . For convenience, we will denote x0 = t2 and x2m = π/2.
According to Formula (3.28), in order to bound from below the inradius, we need to estimate
from above

C := cosx1 − cosx2 + . . .− cosx2m−2 + cosx2m−1
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that can also be written C =
∑m

k=1

∫ x2k

x2k−1
sin tdt. We also introduce C ′ =

∑m−1
k=0

∫ x2k+1

x2k
sin tdt

so that C + C ′ =
∫ π/2

t2
sin t dt = cos t2 = sinu since u = π

2 − t2.

The idea of the proof is to use the trapezoidal rule to estimate both integrals C and C ′

taking advantage on the information we have on the lengths of each interval. Let us denote
hk = xk+1 − xk and we recall that, in view of Theorem 3.6, for any k:

τNhk−1 ≤ hk ≤ hk−1

τN
. (4.2)

Let us introduce the approximations of C and C ′ obtained by the trapezoidal rule:

Ch =

m∑
k=1

h2k−1

2
(sinx2k−1 + sinx2k)

C ′
h =

m−1∑
k=0

h2k

2
(sinx2k + sinx2k+1).

The classical error formulae in numerical integration provide

−h2
N

12

m∑
k=1

h2k−1 ≤ C − Ch ≤ h2
N

12

m∑
k=1

h2k−1

−h2
N

12

m−1∑
k=0

h2k ≤ C ′
h − C ′ ≤ h2

N

12

m−1∑
k=0

h2k

that yields by adding the two inequalities and using u = x2m − x0

−uh2
N

12
+ Ch − C ′

h ≤ C − C ′ ≤ +
uh2

N

12
+ Ch − C ′

h . (4.3)

We write

Ch − C ′
h = −h0

2
sinx0 +

2m−1∑
k=1

(−1)k−1hk − hk−1

2
sinxk +

h2m−1

2
.

Now, using (4.2)

|hk − hk−1| sinxk ≤
(

1

τN
− 1

)
min(hk−1, hk) sinxk ≤

(
1

τN
− 1

)
hk−1 + hk

2
sinxk.

Thus

Ch − C ′
h ≤ −h0

2
sinx0 +

1

2

(
1

τN
− 1

) 2m−1∑
k=1

hk−1 + hk

2
sinxk +

hN

2
.

We use now the middle-point integration rule to estimate the term
∑2m−1

k=1
hk−1+hk

2 sinxk. First
with the odd points x2k−1 on intervals of length less than 2hN :∣∣∣∣∣

∫ x2m

x0

sin tdt−
m∑

k=1

(h2k−1 + h2k−2) sinx2k−1

∣∣∣∣∣ ≤ u(2hN )2

24

then with the even points x2k:∣∣∣∣∣
∫ x2m−1

x1

sin tdt−
m−1∑
k=1

(h2k−1 + h2k) sinx2k

∣∣∣∣∣ ≤ u(2hN )2

24
.

Therefore by addition

2m−1∑
k=1

hk−1 + hk

2
sinxk ≤ 1

2
(cosx0 + cosx1 − cosx2m−1) +

uh2
N

6
≤ cosx0 +

uh2
N

6

and we infer

Ch − C ′
h ≤ 1

2

(
1

τN
− 1

)
(cosx0 +

uh2
N

6
) +

hN

2
.

Finally, using (4.3) together with C + C ′ = sinu, we obtain

C ≤ sinu

2
+

hN

4
+

1

4

(
1

τN
− 1

)
(sinu+

uh2
N

6
) +

uh2
N

24
,
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which, combined with 1− r = C/ sinu, gives (4.1). □

As a corollary, we can give the

Proof of Proposition 4.1. When N increases, according to Theorem 3.6 and Proposition 3.8, the
maximal length hN decreases while the rate τN increases. Therefore, the right-hand side of
inequality (4.1) is increasing with N . In other words, if we prove that the inradius of a 15-
Reuleaux polygon (satisfying the optimality conditions) is greater than r0, it will also be true
for any 2N + 1-Reuleaux polygon (satisfying the optimality conditions) with N ≥ 7. Now,
according to Proposition 2.3, this shows that these Reuleaux polygons cannot be optimal.

We have seen in Lemma 3.18, Formula (3.31), that for an optimal domain (thus with an
inradius less than r0), we can choose the largest sector whose length satisfies π

3 ≤ u ≤ 1.1563.

This implies in particular u/ sinu ≤ 1.2633 and 1/ sinu ≤ 2/
√
3. Plugging these bounds in (4.1)

together with h7 = 0.2202 and τ7 = 0.9866 (see Table 1) provides an inradius r > 0.4304 > r0
that gives the thesis. □

4.2. The case of polygons with a number of sides between 5 and 13. In this paragraph
we rule out the intermediate cases, corresponding to Reuleaux polygons satisfying the optimality
conditions and having a number of sides between 5 and 13.

Proof of Proposition 4.2. Throughout the proof, we consider a Reuleaux polygon satisfying the
optimality conditions. Its inradius, for brevity, will be simply denoted by r. In view of Proposi-
tion 2.3, it is enough to show that r > r0. The proof is organized as follows: first, we treat the
case of Reuleaux pentagons (N = 2); then we analyze the Reuleaux polygons with N = 3, 4, 5, 6,
distinguishing the cases in which there is a sector of 1 point or not. Note that the former is
always satisfied for heptagons (N = 3); moreover, in the latter, there is always a sector with 3
points (see also Remark 3.19).

Step 1. The case of pentagons, N = 2. As already noticed in Remark 3.13, for pentagons the
inradius is given by formula (3.27). Since H1(γ1) ≤ hmax

2 , we get, thanks to Table 1:

r ≥ 1− 1

2 cos(hmax
2 /2)

> 0.47 > r0.

This concludes the proof for pentagons.

Step 2. The case of a sector with 1 point, for N = 3, 4, 5, 6. Without loss of generality, up to
a rotation, we may assume that such a sector is the segment [t, π/2] with length u = π/2 − t.
According to this notation, we rewrite system (3.29) as follows:{

(1− r) sinu = cosx1

(1− r)(1 + cosu) = sinx1,

so that, taking the quotient, we get

tan(u/2) =
1

tanx1
.

Therefore

1− r =
cosx1

sinu
=

cosx1(1 + tan2(u/2))

2 tan(u/2)

=
cosx1(1 + 1/ tan2(x1)) tanx1

2

=
1

2 sinx1
.

The value of x1 is unknown, however, its distance from π/2 is at most the maximal length of
one of the arcs: x1 ≥ π/2− hmax

N . Since hmax
N is decreasing with respect to N , we get

1− r ≤ 1

2 sin(π/2− hmax
N )

=
1

2 cos(hmax
N )

≤ 1

2 cos(hmax
3 )

,

so that, using Table 1:

r ≥ 1− 1

2 cos(hmax
3 )

> 0.439 > r0.

This concludes the proof of the step.
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Step 3. The case of a sector with 3 points, for N = 4, 5, 6. Let N be fixed. As in Step 2, without
loss of generality, up to a rotation, we may assume that such a sector is [t, π/2] with length
u = π/2− t. By assumption, there exists a sector with 3 points x1, x2, x3. By Lemma 3.16, we
have

r = 1− (cosx1 − cosx2 + cosx3)

cos t
.

We claim that

t ∈ [t0, t1] ⊂ [π/11, 4π/11]. (4.4)

Let us assume the claim true (it will be shown at the end of the proof). In order to have a
lower bound for r, we look for an upper bound for C := cosx1 − cosx2 + cosx3, in [t0, t1]. Let
h1 := x2 − x1 and h2 := x3 − x2. Set h := (h1 + h2)/2 and δ := (h1 − h2)/2. Therefore

C = cos(x2 − h− δ)− cosx2 + cos(x2 + h− δ)

=
1

2
(cos(x2 − h− δ)− cosx2) +

1

2
(cos(x2 + h− δ)− cosx2)

+
1

2
(cos(x2 − h− δ) + cos(x2 + h− δ))

= cos(x2 − δ)(1− 4 sin2(h/2)) + 2 sin(x2 − δ/2) sin(δ/2).

Without loss of generality, up to consider the opposite sector, we may assume that

x2 ≥ t+ π/2

2
.

Moreover, there holds

|δ| ≤ (1− τN )
hmax
N

2
.

These two bounds give

x2 − δ ≥ t
2 + π

4 − (1− τN )hmax
N /2 ⇒ cos(x2 − δ) ≤ cos(t/2 + π/4− (1− τN )hmax

N /2);

1− 4 sin2(h/2) ≤ 1− 4 sin2(hmin
N /2);

2 sin(x2 − δ/2) sin(δ/2) ≤ 2 sin(δ/2) ≤ 2 sin((1− τN )hmax
N /4).

Using these bounds in the expression of C, we obtain the following upper bound for C/ cos t:

C

cos t
≤ cos(t/2 + π/4− (1− τN )hmax

N /2)(1− 4 sin2(hmin
N /2)) + 2 sin((1− τN )hmax

N /4)

cos t

≤ cos(t/2 + π/4− (1− τN )hmax
N /2)

cos t
(1− 4 sin2(hmin

N /2)) + 2
sin((1− τN )hmax

N /4)

cos t1
.

Let us consider the first term. We want to show that this is decreasing, namely we claim that

∀t ∈ [t0, t1] f(t) :=
cos(t/2 + αN )

cos t
≤ f(t0),

with αN := π/4− (1− τN )hmax
N /2. To this aim, we prove that f ′ < 0 in [t0, t1]:

cos2(t)f ′(t) = = −1

2
sin(t/2 + αN ) cos t+ sin t cos(t/2 + αN )

= sin(t/2) cos(t/2) cos(t/2 + αN ) +
1

2
sin(t/2− αN )

= sin(t/2) cos(αN )

(
1

2
+ cos2(t/2)

)
− cos(t/2) sin(αN )

(
1

2
+ sin2(t/2)

)
.

To prove that

sin(t/2) cos(αN )

(
1

2
+ cos2(t/2)

)
< cos(t/2) sin(αN )

(
1

2
+ sin2(t/2)

)
we square both sides and set x = cos2(t/2). This leads to consider the polynomial

P (x) = x3 − 3 sin2(αN )x2 +

(
9

4
sin2(αN )− 3

4
cos2(αN )

)
x− cos2(αN )

4
,

and look when it is positive. Now, for the three values (α4, α5, α6) ≃ (0.7818, 0.7829, 0.7835)
obtained from Table 1, we see that the polynomial P (x) has only one real root which is less than
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0.65. Therefore, as soon as cos(t/2) ≥
√
0.65 we have f ′ < 0 and this is the case for t ∈ [t0, t1].

Therefore, we have

r ≥ 1− cos(t0/2 + π/4− (1− τN )hmax
N /2)

cos t0
(1− 4 sin2(hmin

N /2))− 2
sin((1− τN )hmax

N /4)

cos t1
. (4.5)

Let us now prove the claim (4.4):

• for N = 4 the presence of a sector with 3 points and the absence of a sector with 1 point,
occurs only when all the sectors have 3 points. If we choose the sector with maximal
length, in view of Lemma 3.18, Formula (3.31), we infer that

t ∈ [t0, t1] := [π/2− 1.1563, π/6] ⊂ [π/11, 4π/11];

• for N = 5 the presence of a sector with 3 points and the absence of a sector with 1 point,
occurs only when two sectors have 3 points and one sector has 5 points. In particular,
there exists a sector with 3 points which attain either the maximal or the minimal length.
In the first case, in view of Lemma 3.18, Formula (3.31), we may take (as for N = 4)

[t0, t1] := [π/2− 1.1538, π/6] ⊂ [π/11, 4π/11];

in the second case, in view of Lemma 3.18, Formula (3.31), we may take

[t0, t1] := [1.1563/2, π/2− 2hmin
5 ] = [0.57815, 1.0207] ⊂ [π/11, 4π/11];

• for N = 6, we obtain the bounds for t in a different way: since between t2 and π/2 by
assumption we have 3 points, we infer that

t ∈ [t0, t1] := [π/2− 4hmax
6 , π/2− 2hmin

6 ] = [0.5575, 1.107] ⊂ [π/11, 4π/11].

Using these t0 and t1 in (4.5), we get r > 0.46 for N = 4, r > 0.44 for N = 5, and r > 0.45, for
N = 6. These lower bounds are all greater than r0. This concludes the proof. □

5. Conclusion and perspectives

The Cheeger constant is known to be the first eigenvalue of the 1-Laplacian, see [14]. On the
other side, according to [13], the first eigenvalue of the ∞-Laplacian is nothing else than 1/r the
inverse of the inradius. Since the Reuleaux triangle maximizes 1/r(Ω) in the class B1 and we
have proved in this paper that it also maximizes the Cheeger constant, a very natural question
and conjecture is:

Conjecture : (Blaschke-Lebesgue Theorem for all eigenvalues) Prove that the Reuleaux
triangle maximizes the first eigenvalue of the p-Laplacian in the class B1 for all p, 1 ≤ p ≤ +∞.

Another natural problem is to consider the maximization of h in a wider family of shapes:
the reduced bodies with thickness 1 (see, e.g., [18]). This class contains B1 and comes out in a
natural way by maximizing h among convex bodies with prescribed thickness (or minimal width),
taken equal to 1. Here we conjecture the maximizer to be the equilateral triangle T of height 1,
which has Cheeger constant strictly greater than the Reuleaux triangle T, as it can be checked
with a direct computation: on the one hand, using the known formula for triangles (see, e.g.

[15]), we have h(T ) =
(
P (T ) +

√
4π|T |

)
/(2|T |) > 5.3326; on the other hand, using (1.2) and

(2.4), we obtain h(T) = 1/R(T) < 4.3856.

Appendix A

For the benefit of the reader, we gather here the main properties of the function A, studied
in [12]. As already mentioned, the function A associates to r the minimal area of a body with
constant width (=1) and inradius r. The domain of definition of the function is the interval

[1 − 1/
√
3, 1/2], which spans all the possible inradii of the bodies of constant width 1. Among

them, we highlight the inradii of regular Reuleaux polygons, by labelling them as r
2N+1

, being

2N + 1 the number of sides. The sequence {r
2N+1

}N∈N is increasing and runs from 1− 1/
√
3 to

1/2 (not attained).
The optimizer is unique and is always a Reuleaux polygon (the regular one for a “good”

inradius) with a precise structure, that we write here below. The characterization of the optimizer
allows one to compute the area quite easily, providing an explicit formula for A(r).

In [12, Theorem 1.2] we have proved the following:
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• If r = r
2N+1

for some N ∈ N, then the optimal set of A(r) is the regular Reuleaux
(2N + 1)-gon.

• If instead r
2N−1

< r < r
2N+1

for some N ∈ N, N ≥ 2, setting

ℓ(r) := 2 arctan
(√

4(1− r)2 − 1
)
, x(r) :=

π

2
− 2N − 1

2
ℓ(r),

the optimal set of A(r) is unique (up to rigid motions) and has the following structure:
i) it is a Reuleaux polygon with 2N + 1 sides, all but one tangent to the incircle;
ii) the non tangent side has both endpoints on the outercircle and has length

a(r) := 2 arcsin
(
(1− r) sin(x(r))

)
,

its two opposite sides have one endpoint on the outercircle and meet at a point in
the interior of the annulus; moreover, they both have length

b(r) := x(r) +
ℓ(r)− a(r)

2
;

iii) the other 2N − 2 sides are tangent to the incircle, have both endpoints on the
outercircle, and have length ℓ(r).

• Setting

A(r, x, a, b) :=(1− r)2 sinx cosx+
a− sin a

2
+ b− sin b

+ (1− r)
(
cos(a/2)− (1− r) cosx

)
sin(x+ ℓ(r)),

the least area reads

A(r) =

{
(2N + 1)A

(
r
2N+1

, 0, 0, ℓ(r
2N+1

)/2
)

if r = r
2N+1

,
(2N − 2)A

(
r, 0, 0, ℓ(r)/2

)
+A

(
r, x(r), a(r), b(r)

)
if r

2N−1
< r < r

2N+1
.

• The function r 7→ A(r) is continuous and increasing.

Appendix B

This section is devoted to the computations of upper and lower bounds for the functions F
and H introduced in (3.12) and (3.13), respectively. Let us start by recalling the definition of
F :

F (y, z) = (1−R) cos(2y + z − U(z)),

where U is the function defined in (3.5). We recall that we assume here that y, z ∈ [0, π/6] and
are related by the inequality 2y ≥ U(z)− z. In the following, we will denote the threshold π/6
by η.

In order to bound F , we recall the estimates for U , found in (3.19):

γz + αz3 ≤ U(z)− z ≤ γz + βz3,

with

γ =
R

1−R
, α = 0.1284, β = 0.18315.

Here R belongs to [Rmin, Rmax], Rmin = 0.21132, Rmax = 0.22803.
This allows us to deduce that

2y − γz − βz3 ≤ 2y + z − U ≤ 2y − γz − αz3

thus
F ≤ (1−R) cos(2y − γz − βz3), F ≥ (1−R) cos(2y − γz − αz3).

In the following we investigate separately these two bounds.

Upper bound for F : standard estimates on the cosine give

F ≤ (1−R)

[
1− 1

2

(
γz + βz3 − 2y

)2
+

1

24

(
γz + βz3 − 2y

)4]
= (1−R)

[
1− 2y2 − γ2

2
z2 + 2γyz

]
+R(y, z)

= (1−R)− 2(1−R)y2 − R2

2(1−R)
z2 + 2Ryz +R(y, z).



22 ANTOINE HENROT, ILARIA LUCARDESI

The remainder R(y, z) has the following structure:

R = R4 +Rz +Ryz,

with R4 containing the 4th order terms, Rz containing the terms in z of order at least 6, and
Ryz containing the mixed terms (in y and z) of order at least 6. They are defined as follows:

R4(y, z) :=(1−R)[(2/3)y4 − (4γ/3)y3z + γ2y2z2 + (2β − γ3/3)yz3 + (γ4/24− βγ)z4]

Rz(z) :=(1−R)[(βγ3/6− β2/2)z6 + (β2γ2/4)z8 + (β3γ/6)z10 + (β4/24)z12]

Ry,z(y, z) :=(1−R)[−βγ2yz5 − β2γyz7 − β3/3yz9 + 2βγy2z4 + β2y2z6 − (4β/3)y3z3].

The remainder Rz is negative, thus it can be neglected:

Rz(z) ≤ (1−R)[(βγ3/6− β2/2) + (β2γ2/4)η2 + (β3γ/6)η4 + (β4/24)η6]z6

≤ (1−R)[(αγ3/6− α2/2) + (β2γ2/4)η2 + (β3γ/6)η4 + (β4/24)η6]z6 < 0.

Let us analyze the remainder Ry,z. We neglect the negative terms in yz7 and in yz9. We notice
that

−βγ2yz5 + 2βγy2z4 − (4β/3)y3z3 = yz3(−βγ2z2 + 2βγyz − (4β/3)y2) < 0

since the eigenvalues of the quadratic form on the right are negative. More precisely, computing
the eigenvalues, we obtain

−βγ2z2 + 2βγyz − (4β/3)y2 ≤ −λ(y2 + z2) ≤ −2λyz,

with

λ :=
β

2

(
4

3
+ γ2 − 1

3

√
9γ4 + 12γ2 + 16

)
> 0.

All in all, we obtain

Ry,z(y, z) ≤ (1−R)
(
β2z2 − 2λ

)
y2z4 ≤ (1−R)

(
β2η2 − 2λ

)
η2z4.

All in all, the remainder R can be bounded above as follows:

R(y, z) ≤ S1(y, z) := c4,0y
4 − c3,1y

3z + c2,2y
2z2 + c1,3yz

3 − c0,4z
4, (5.1)

with cij the following coefficients, dependent on R:

c4,0 :=
2

3
(1−R), c3,1 :=

4

3
R, c2,2 :=

R2

(1−R)
, c1,3 := 2(1−R)β − R3

3(1−R)2
,

c0,4 :=− R4

24(1−R)3
+ βR−(1−R)

(
β2η2 − 2λ(R)

)
η2.

Lower bound for F : standard estimates on the cosine give

F ≥ (1−R)

[
1− 1

2

(
γz + αz3 − 2y

)2
+

1

24

(
γz + αz3 − 2y

)4 − 1

720

(
γz + αz3 − 2y

)6]
= (1−R)− 2(1−R)y2 − R2

2(1−R)
z2 + 2Ryz + S(y, z).

The remainder is S = S4 + S6 + S8 + S10 + Shigher, where each Si gathers the terms of order i.
In the following we write their expressions and we give lower bounds. Let us start with S4:

S4(y, z) := (1−R)[(2/3)y4 − (4γ/3)y3z + γ2y2z2 + (2α− γ3/3)yz3 + (γ4/24− αγ)z4].

The following term, S6, reads

S6 := (1−R)[−(−αγ3/6 + α2/2 + γ6/720)z6 − (−γ5/60 + αγ2)yz5 + (2αγ − γ4/12)y2z4

− (−2γ3/9 + 4α/3)y3z3 − (γ2/3)y4z2 + (4γ/15)y5z − (4/45)y6]

= (1−R)

[
−(−αγ3/6 + α2/2 + γ6/720)z2 − (−γ5/60 + αγ2)yz +

1

2
(2αγ − γ4/12)y2

]
z4

+ (1−R)

[
1

2
(2αγ − γ4/12)z2 − (−2γ3/9 + 4α/3)yz − 1

2
(γ2/3)y2

]
y2z2

+ (1−R)

[
−1

2
(γ2/3)z2 + (4γ/15)yz − (4/45)y2

]
y4

≥ r0,4(R)z4 + r2,2(R)y2z2 + r4,0(R)y4
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where, denoting by λmin(·) the least eigenvalue of a matrix,

r0,4(R) := 2(1−R)η2λmin

(
−(−αγ3/6 + α2/2 + γ6/720) − 1

2 (−γ5/60 + αγ2)
− 1

2 (−γ5/60 + αγ2) 1
2 (2αγ − γ4/12)

)
< 0;

r2,2(R) := 2(1−R)η2λmin

(
1
2 (2αγ − γ4/12) − 1

2 (−2γ3/9 + 4α/3)
− 1

2 (−2γ3/9 + 4α/3) − 1
2 (γ

2/3)

)
< 0;

r4,0(R) := 2(1−R)η2λmin

(
− 1

2γ
2/3 1

24γ/15
1
24γ/15 −4/45

)
< 0.

We treat S8 and S10 in the very same way:

S8 := (1−R)[(α2γ2/4− αγ5/120)z2 + (αγ4/12− α2γ)yz + (α2 − αγ3/3)y2]z6

+ (1−R)[(2αγ2/3)z2 − (2αγ/3)yz + (4α/15)y2 − (α2/3)yz3]y3z3

≥ r̃0,4(R)z4,

with

r̃0,4(R) := 2(1−R)η4λmin

(
α2γ2/4− αγ5/120 1

2 (αγ
4/12− α2γ)

1
2 (αγ

4/12− α2γ) α2 − αγ3/3

)
< 0,

and

S10 := (1−R)[(α2γ3/6− α3/3)z2 − (α2γ2/2)yz + (2α2γ/3)y2]yz7

+ (1−R)(α3γ/6− α2γ4/48)z10

≥ r1,3(R)yz3,

with

r1,3(R) := 2(1−R)η6λmin

(
α2γ3/6− α3/3 − 1

2 (α
2γ2/2)

− 1
2 (α

2γ2/2) 2α2γ/3

)
< 0.

The last remainder is non negative, therefore it will be neglected in the lower bound of F :

Shigher := (1−R)[(α4/24− α3γ3/36)− (α4γ2/48)z2 − (α5γ/120)z4 − (α6/720)z6

+ (α4γ/12)yz + (α5/60)yz3 − (α4/12)y2]z12

+ (1−R)[(α3γ2/6)z2 − (α3γ/3)yz + (2α3/9)y2]yz9 ≥ 0.

All in all, the remainder S can be bounded below by

S(y, z) ≥ S2(y, z) := d4,0y
4 − d3,1y

3z + d2,2y
2z2 + d1,3yz

3 − d0,4z
4, (5.2)

with dij the following coefficients, dependent on R:

d4,0 =
2

3
(1−R) + r4,0(R), d3,1 =

4

3
R, d2,2 =

R2

(1−R)
+ r2,2(R),

d1,3 = 2(1−R)α− R3

3(1−R)2
+ r1,3(R), d0,4 = − R4

24(1−R)3
+ αR− r0,4(R)− r̃0,4(R).

Upper bound of H: using the upper bound found for G, the lower bound found for F , and the
standard upper bound for the sine, we obtain

H(x, y, z) = sin(2z)[G(x)− F (y, z)]

≤
(
2z − 4z3

3
+

4z5

15

)(
2(1−R)y2 +

R2

2(1−R)
(z2 − x2)− 2Ryz − [ξx4 + S2(y, z)]

)
= 4(1−R)y2z +

R2

(1−R)
(z3 − zx2)− 4Ryz2 + T (x, y, z)

with ξ = 0.02. The remainder has the following structure: T = T5 + Tx + T7 + T9, with
T5(x, y, z) :=− 2ξx4z + (2/3)R2/(1−R)x2z3 − 2d4,0y

4z + 2d3,1y
3z2

[−(8/3)(1−R)− 2d2,2]y
2z3 + [(8/3)R− 2d1,3]yz

4 + [−(2/3)R2/(1−R) + 2d0,4]z
5;

Tx :=(4/3)ξx4z3 − (2/15)R2/(1−R)x2z5 − (4/15)ξx4z5;

T7 :=− [(2/15)R2/(R− 1) + (4/3)d0,4]z
7 + [(4/3)d1,3 − (8/15)R]yz6

+ [(8/15)(1−R) + (4/3)d2,2]y
2z5 − (4/3)d3,1y

3z4 + (4/3)d4,0y
4z3;

T9 :=(4/15)d0,4z
9 + (4/15)[−d2,2z

2 + d3,1yz − d4,0y
2]y2z5 − (4/15)d1,3yz

8.
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Neglecting the negative terms, we obtain

Tx ≤4

3
ξx4z3 ≤ 4

3
ξη2x3z2;

T7 ≤s14(R)yz4 + s23(R)y2z3.

Here we have set

s1,4(R) :=

(
4

3
d1,3(R)− 8

15
R

)
η2;

s2,3(R) :=2η2λmax

(
8
15 (1−R) + 4

3d2,2(R) − 1
2
4
3d3,1(R)

− 1
2
4
3d3,1(R) 4

3d4,0(R)

)
.

In the same way, there holds

T9 ≤(4/15)d0,4η
2z7 + s̃23(R)y2z3,

with

s̃2,3(R) := 2η4
4

15
λmax

(
−d2,2(R) 1

2d3,1(R)
1
2d31(R) −d4,0(R)

)
.

Note that the term in z7 in T9 is negligible with respect to the (negative) term in z7 in T7. All
in all, we obtain

T (x, y, z) ≤ T1(x, y, z) := −ax4z + bx3z2 + cx2z3 − dy4z + ey3z2 − fy2z3 + gyz4 + hz5. (5.3)

with the following coefficients, functions of R:

a :=2ξ, b :=
4

3
ξη2, c :=

2R2

3(1−R)
, d := 2d4,0(R), e := 2d3,1(R),

f :=
8

3
(1−R) + 2d2,2(R)− s2,3(R)− s̃2,3(R),

g :=
8

3
R− 2d1,3(R) + s1,4(R), h := − 2R2

3(1−R)
+ 2d0,4(R).

Lower bound of H: using the lower bound for G, the upper bound for F , and a standard lower
bound on the sine, we obtain

H(x, y, z) = sin(2z)[G(x)− F (y, z)]

≥
(
2z − 4z3

3

)(
2(1−R)y2 +

R2

2(1−R)
(z2 − x2)− 2Ryz − [ζx4 + S1(y, z)]

)
= 4(1−R)y2z +

R2

(1−R)
(z3 − zx2)− 4Ryz2 + U(x, y, z)

with ζ := 0.05. The reaminder has the following structure: it is the sum U = U5 + U7 with U5 a
polynomial of degree 5 and U7 a polynomial of degree 7. Let us bound from below U7:

U7 :=(4/3)x4ζz3 − (4/3)c0,4z
7 + (4/3)c1,3yz

6 + (4/3)c2,2y
2z5 − (4/3)c3,1y

3z4 + (4/3)c4,0y
4z3

≥ −4

3
c0,4z

7 +
4

3

[
c2,2z

2 − c3,1yz + c4,0y
2
]
y2z3 ≥ −4

3
c0,4η

2z5.

This allows us to conclude that

U(x, y, z) ≥ T2(x, y, z) := −âx4z + ĉx2z3 − d̂y4z + êy3z2 − f̂y2z3 + ĝyz4 − ĥz5, (5.4)

with the following coefficients, functions of R:

â :=2ζ, ĉ :=
2R2

3(1−R)
, d̂ := 2c4,0(R), ê := 2c3,1(R),

f̂ :=
8

3
(1−R) + 2c2,2(R), ĝ :=

8

3
R− 2c1,3(R), ĥ :=

2R2

3(1−R)
− 2c0,4(R) +

4

3
c0,4(R)η2.

The functions E1 and E2: we conclude this section, by writing the two polynomials
E1(x, y, z, w) := T1(x, y, z) − T2(w, z, y) and E2(x, y, z, w) := T2(x, y, z) − T1(w, z, y). Using
the expressions above of Ti, we get:

E1(x, y, z, w) = −ax4z + bx3z2 + cx2z3 + ĥy5

+ (−d− ĝ)y4z + (e+ f̂)y3z2 − ĉy3w2 + (−f − ê)y2z3 + (g + d̂)yz4 + âyw4 + hz5
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and

E2(x, y, z, w) = −âx4z + ĉx2z3 − hy5

+ (−d̂− g)y4z + (ê+ f)y3z2 − cy3w2 + (−f̂ − e)y2z3 − bj2kw
3 + (ĝ + d)yz4 + ayw4 − ĥz5.

Note that the coefficients of the polynomials depend on R.
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