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1. Introduction

This paper deals with the mathematical analysis of the dynamics of elastic damping materials in the
presence of external forces and time-dependent brittle fracture. In this framework, it is important to find
the behavior of the deformation when the crack evolution is known. This is the first step towards the
development of a complete model of dynamic crack growth in viscoelastic materials. From a mathematical
point of view, this means solving the following dynamic system

ü(t)− div(σ(t)) = f(t) in Ω \ Γt, t ∈ (0, T ). (1.1)

In the equation above, Ω ⊂ Rd represents the reference configuration of the material, the set Γt ⊂ Ω models
the crack at time t (which is prescribed), u(t) : Ω \Γt → Rd is the displacement of the deformation, σ(t) the
stress tensor, and f(t) is the forcing term.

In the classical theory of linear viscoelasticity, the constitutive stress-strain relation of the so called
Kelvin-Voigt’s model is given by

σ(t) = Ceu(t) + Beu̇(t) in Ω \ Γt, t ∈ (0, T ), (1.2)

where C and B are two positive tensors acting on the space of symmetric matrices, and ev denotes the
symmetric part of the gradient of a function v (which is defined as ev := 1

2 (∇v +∇vT )). The local model
associated to (1.2) has already been widely studied and we can find several existence results in the literature;
we refer to [2, 3, 6, 7, 17, 24] for existence and uniqueness results in the pure elastodynamics case (B = 0)
and in the classic Kelvin-Voigt’s one.

In recent years, materials whose constitutive equations can be described by non-local models are of
increasing interest. In this context, by non-local we mean that the state of the stress at instant t depends
not only on that instant, but also on the previous ones (long memory). For solid viscoelastic materials, some
experiments are particularly in agreement with models using fractional derivative, see for example [10, 11,
23, 25] and the references therein.

In this paper, we focus on the fractional Kelvin-Voigt’s model, i.e. we consider the following constitutive
stress-strain relation

σ(t) = Ceu(t) + BDα
t eu(t) in Ω \ Γt, t ∈ (0, T ),

where Dα
t denotes a fractional derivative of order α ∈ (0, 1). In the literature we can find several definitions

for the fractional derivative of a function g : (a, b) → R; here we focus on the most used ones which are
Riemann-Liouville’s derivative of order α at starting point a

RL
aD

α
t g(t) :=

1

Γ(1− α)

d

dt

∫ t

a

g(r)

(t− r)α
dr,

1
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and Caputo’s derivative of order α at starting point a

C
aD

α
t g(t) :=

1

Γ(1− α)

∫ t

a

ġ(r)

(t− r)α
dr.

We recall that Γ denotes Euler’s Gamma function; notice that in order to define Caputo’s derivative the
function g must be differentiable, while this is not necessary for Riemann-Liouville’s derivative. Given
g ∈ AC([a, b]), and t ∈ (a, b) we have the following relation between Riemann-Liouville’s and Caputo’s
derivative (see, e.g., [13]):

RL
aD

α
t g(t) = C

aD
α
t g(t) +

1

Γ(1− α)

g(a)

(t− a)α
. (1.3)

In particular, when g(a) = 0, these two notions coincide. For more properties regarding these two fractional
derivatives, we refer for example to [4, 16, 20, 21] and the references therein.

In this paper we use Caputo’s derivative, which means we consider the dynamic system

ü(t)− div
Ä
Ceu(t) + BC

0D
α
t eu(t)

ä
= f(t) in Ω \ Γt, t ∈ (0, T ). (1.4)

One of the qualities of this definition for the fractional derivative is that the initial conditions can be imposed
in the classical sense, see for example [16, 20]. The choice of 0 as a starting point is due to the fact that we
want to couple dynamic system (1.1) with the initial conditions at time t = 0.

Dealing with (1.4) is very difficult, since in the definition of C0D
α
t eu(t) we need that eu is differentiable,

which is a very strong request. Hence, we rephrase Caputo’s derivative in a more suitable way. Thanks
to (1.3) for g ∈ AC([0, T ]) we can write

C
0D

α
t g(t) =

1

Γ(1− α)

d

dt

∫ t

0

1

(t− r)α
(g(r)− g(0)) dr. (1.5)

This formulation of Caputo’s derivative is well-posed in the distributional sense also when the function
g is only integrable. We point out that formula (1.5) can be found in the recent literature on fractional
derivatives, where it is used to define the notion of weak Caputo’s derivative for less regular functions, see
for example [9, 15].

Thanks to formula (1.5), we can write system (1.4) in a weaker form (see Definition 2.2) as

ü(t)− div

Ç
Ceu(t) +

d

dt

∫ t

0

F(t− r)(eu(r)− eu(0)) dr

å
= f(t) in Ω \ Γt, t ∈ (0, T ), (1.6)

where

F(t) := ρ(t)B, ρ(t) :=
1

Γ(1− α)

1

tα
for t ∈ (0,∞). (1.7)

Notice that the scalar function ρ appearing in F is positive, decreasing, and convex on (0,∞). Moreover,
ρ ∈ L1(0, T ) for every T > 0, but it is not bounded on (0, T ). In particular, we can not compute the
derivative in front of the convolution integral in (1.6).

In the literature we can find several existence and uniqueness results for fractional type systems related
to (1.6), but only when Ω is a smooth domain without cracks. For example in [5] the authors studied
an integral version of (1.6) with eu replaced by ∇u, and in [1, 14, 19] other fractional viscoelastic models
are considered and the existence of solutions is obtained via Laplace’s transform. However, in the case of
dynamic fracture, there are no existence results for the problem (1.6), since most of the previous techniques
fail given that the set Ω \ Γt is irregular and time-dependent.

To prove the existence of a solution to (1.6) we proceed into two steps, taking inspiration by [5]. First
we consider a regularized version of (1.6), where we replace the kernel F by a regular kernel G ∈ C2([0, T ]).
Then we prove the existence of a solution to the more regular system

ü(t)− div

Ç
Ceu(t) +

d

dt

∫ t

0

G(t− r)(eu(r)− eu(0)) dr

å
= f(t) in Ω \ Γt, t ∈ (0, T ), (1.8)

and we show that this solution satisfies a uniform bound depending on the L1-norm of G. Finally, we consider
a sequence of regular tensors Gε converging to F in L1 and we take the solutions to (1.8) with G := Gε. By a
compactness argument, we show that the sequence uε converge to a function u∗ which solves (1.6). Moreover,
we prove that this solution satisfies an energy-dissipation inequality. We conclude this paper by showing
that, when the crack is not moving, the fractional Kelvin-Voigt’s system (1.6) admits a unique solution.
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The paper is organized as follows: in Section 2 we fix the notation and the framework of our problem.
Moreover, we give the notion of solution to the fractional Kelvin-Voigt’s system involving Caputo’s deriv-
ative (1.6) and we state our main existence result (see Theorem 2.4). Section 3 deals with the regularized
system (1.8). First, by a time-discretization procedure in Theorem 3.13 we prove the existence of a solution
to (1.8). Then, in Lemma 3.14 we derive the uniform energy estimate which depends on the L1-norm of
G. In Section 4 we consider Kelvin-Voigt’s system (1.6): we prove the existence of a generalized solution
to system (1.6) and in Theorem 4.2 we show that such a solution satisfies an energy-dissipation inequality.
Finally, in Section 5 we prove that, for a not moving crack, the solution to (1.6) is unique.

2. Notation and framework of the problem

The space of m × d matrices with real entries is denoted by Rm×d; in case m = d, the subspace of
symmetric matrices is denoted by Rd×dsym. Given a function u : Rd → Rm, we denote its Jacobian matrix by

∇u, whose components are (∇u)ij := ∂jui for i = 1, . . . ,m and j = 1, . . . , d; when u : Rd → Rd, we use eu to
denote the symmetric part of the gradient, namely eu := 1

2 (∇u+∇uT ). Given a tensor field A : Rd → Rm×d,
by divA we mean its divergence with respect to rows, namely (divA)i :=

∑d
j=1 ∂jAij for i = 1, . . . ,m.

We denote the d-dimensional Lebesgue measure by Ld and the (d− 1)-dimensional Hausdorff measure by
Hd−1; given a bounded open set Ω with Lipschitz boundary, by ν we mean the outer unit normal vector
to ∂Ω, which is defined Hd−1-a.e. on the boundary. The Lebesgue and Sobolev spaces on Ω are defined as
usual; the boundary values of a Sobolev function are always intended in the sense of traces.

The norm of a generic Banach space X is denoted by ‖ · ‖X ; when X is a Hilbert space, we use (·, ·)X
to denote its scalar product. We denote by X ′ the dual of X and by 〈·, ·〉X′ the duality product between
X ′ and X. Given two Banach spaces X1 and X2, the space of linear and continuous maps from X1 to X2

is denoted by L (X1;X2); given A ∈ L (X1;X2) and u ∈ X1, we write Au ∈ X2 to denote the image of u
under A.

Moreover, given an open interval (a, b) ⊂ R and p ∈ [1,∞], we denote by Lp(a, b;X) the space of Lp

functions from (a, b) to X; we use W k,p(a, b;X) and Hk(a, b;X) (for p = 2) to denote the Sobolev space
of functions from (a, b) to X with k derivatives. Given u ∈ W 1,p(a, b;X), we denote by u̇ ∈ Lp(a, b;X) its
derivative in the sense of distributions. When dealing with an element u ∈W 1,p(a, b;X) we always assume u
to be the continuous representative of its class; in particular, it makes sense to consider the pointwise value
u(t) for every t ∈ [a, b]. We use C0

w([a, b];X) to denote the set of weakly continuous functions from [a, b] to
X, namely, the collection of maps u : [a, b]→ X such that t 7→ 〈x′, u(t)〉X′ is continuous from [a, b] to R for
every x′ ∈ X ′.

Let T be a positive real number and let Ω ⊂ Rd be a bounded open set with Lipschitz boundary. Let
∂DΩ be a (possibly empty) Borel subset of ∂Ω and let ∂NΩ be its complement. Throughout the paper we
assume the following hypotheses on the geometry of the cracks:

(H1) Γ ⊂ Ω is a closed set with Ld(Γ) = 0 and Hd−1(Γ ∩ ∂Ω) = 0;
(H2) for every x ∈ Γ there exists an open neighborhood U of x in Rd such that (U ∩ Ω) \ Γ is the union

of two disjoint open sets U+ and U− with Lipschitz boundary;
(H3) {Γt}t∈[0,T ] is an increasing family in time of closed subsets of Γ, i.e. Γs ⊂ Γt for every 0 ≤ s ≤ t ≤ T .

Thanks (H1)–(H3) the space L2(Ω \ Γt;Rm) coincides with L2(Ω;Rm) for every t ∈ [0, T ] and m ∈ N.
In particular, we can extend a function u ∈ L2(Ω \ Γt;Rm) to a function in L2(Ω;Rm) by setting u = 0 on
Γt. To simplify our exposition, for every m ∈ N we define the spaces H := L2(Ω;Rm), HN := L2(∂NΩ;Rm)
and HD := L2(∂DΩ;Rm); we always identify the dual of H by H itself, and L2((0, T )×Ω;Rm) by the space
L2(0, T ;H). We define

Ut := H1(Ω \ Γt;Rd) for every t ∈ [0, T ].

Notice that in the definition of Ut we are considering only the distributional gradient of u in Ω\Γt and not the
one in Ω. By (H2) we can find a finite number of open sets Uj ⊂ Ω\Γ, j = 1, . . .m, with Lipschitz boundary,
such that Ω \ Γ = ∪mj=1Uj . By using second Korn’s inequality in each Uj (see, e.g., [18, Theorem 2.4]) and
taking the sum over j we can find a constant CK , depending only on Ω and Γ, such that

‖∇u‖2H ≤ CK
(
‖u‖2H + ‖eu‖2H

)
for every u ∈ H1(Ω \ Γ;Rd),
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where eu is the symmetric part of ∇u. Therefore, we can use on the space Ut the equivalent norm

‖u‖Ut := (‖u‖2H + ‖eu‖2H)
1
2 for every u ∈ Ut.

Furthermore, the trace of u ∈ H1(Ω \ Γ;Rd) is well defined on ∂Ω. Indeed, we may find a finite number
of open sets with Lipschitz boundary Vk ⊂ Ω \ Γ, k = 1, . . . l, such that ∂Ω \ (Γ ∩ ∂Ω) ⊂ ∪lk=1∂Vk. Since
Hd−1(Γ ∩ ∂Ω) = 0, there exists a constant C, depending only on Ω and Γ, such that

‖u‖L2(∂Ω;Rd) ≤ C‖u‖H1(Ω\Γ;Rd) for every u ∈ H1(Ω \ Γ;Rd).

Hence, we can consider the set

UDt := {u ∈ Ut : u = 0 on ∂DΩ} for every t ∈ [0, T ],

which is a closed subspace of Ut. Moreover, there exists a positive constant Ctr such that

‖u‖HN ≤ Ctr‖u‖UT for every u ∈ UT .

Now, we define the following sets of functions

Cw := {u ∈ C0
w([0, T ];UT ) : u̇ ∈ C0

w([0, T ];H), u(t) ∈ Ut for every t ∈ [0, T ]},
C1
c := {ϕ ∈ C1

c (0, T ;UDT ) : ϕ(t) ∈ UDt for every t ∈ [0, T ]},

in which we develop our theory. Moreover, we consider the Banach space

B := L∞(Ω;Lsym(Rd×dsym,Rd×dsym)),

where Lsym(Rd×dsym,Rd×dsym) represents the space of symmetric tensor fields, i.e. the collections of linear and

continuous maps A : Rd×dsym → Rd×dsym satisfying

Aξ · η = Aη · ξ for every ξ, η ∈ Rd×dsym.

We assume that the Dirichlet datum z, the Neumann datum N , the forcing term f , the initial displacement
u0, and the initial velocity u1 satisfy

z ∈W 2,1(0, T ;U0), (2.1)

N ∈W 1,1(0, T ;HN ), f ∈ L2(0, T ;H), (2.2)

u0 ∈ U0 with u0 − z(0) ∈ UD0 , u1 ∈ H. (2.3)

We consider a coercive tensor C ∈ B, which means that there exists γ > 0 such that

C(x)ξ · ξ ≥ γ|ξ|2 for every ξ ∈ Rd and a.e. x ∈ Ω. (2.4)

Moreover, let us take a time-dependent tensor F : (0, T + δ0)→ B, with δ0 > 0, satisfying

F ∈ C2(0, T + δ0;B) ∩ L1(0, T + δ0;B), (2.5)

F(t, x)ξ · ξ ≥ 0 for every ξ ∈ Rd, t ∈ (0, T + δ0), and a.e. x ∈ Ω, (2.6)

Ḟ(t, x)ξ · ξ ≤ 0 for every ξ ∈ Rd, t ∈ (0, T + δ0), and a.e. x ∈ Ω, (2.7)

F̈(t, x)ξ · ξ ≥ 0 for every ξ ∈ Rd, t ∈ (0, T + δ0), and a.e. x ∈ Ω. (2.8)

Remark 2.1. The tensor F may be not defined at t = 0 and unbounded on (0, T + δ0). In the case
of (1.7), the function F associated to the fractional Kelvin-Voigt’s model involving Caputo’s derivative,
satisfies (2.5)–(2.8) provided that B ∈ B is non-negative, that is

B(x)ξ · ξ ≥ 0 for every ξ ∈ Rd and a.e. x ∈ Ω.

Since in our existence result we first regularize the tensor F by means of translations (see Section 4) we need
that F is defined also on the right of T . This is not a problem, because our standard example for F, which
is (1.7), is defined on the whole (0,∞).
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In this paper we want to study the following problem

ü(t)− div(Ceu(t))− div
Ä

d
dt

∫ t
0
F(t− r)(eu(r)− eu0) dr

ä
= f(t) in Ω \ Γt, t ∈ (0, T ),

u(t) = z(t) on ∂DΩ, t ∈ (0, T ),

Ceu(t)ν +
Ä

d
dt

∫ t
0
F(t− r)(eu(r)− eu0) dr

ä
ν = N(t) on ∂NΩ, t ∈ (0, T ),

Ceu(t)ν +
Ä

d
dt

∫ t
0
F(t− r)(eu(r)− eu0) dr

ä
ν = 0 on Γt, t ∈ (0, T ),

u(0) = u0, u̇(0) = u1 in Ω \ Γ0.

(2.9)

We give the following notion of solution to system (2.9):

Definition 2.2 (Generalized solution). Assume (2.1)–(2.8). A function u ∈ Cw is a generalized solution to
system (2.9) if u(t)− z(t) ∈ UDt for every t ∈ [0, T ], u(0) = u0 in U0, u̇(0) = u1 in H, and for every ϕ ∈ C1

c

the following equality holds

−
∫ T

0

(u̇(t), ϕ̇(t))H dt+

∫ T

0

(Ceu(t), eϕ(t))H dt−
∫ T

0

∫ t

0

(F(t− r)(eu(r)− eu0), eϕ̇(t))H dr dt

=

∫ T

0

(f(t), ϕ(t))H dt+

∫ T

0

(N(t), ϕ(t))HN dt. (2.10)

Remark 2.3. The Neumann conditions appearing in (2.9) are only formal; they are used to pass from the
strong formulation in (2.9) to the weak one (2.10).

The main existence result of this paper is the following theorem:

Theorem 2.4. Assume (2.1)–(2.8). Then there exists a generalized solution u ∈ Cw to system (2.9).

The proof of this theorem requires several preliminary results. First, in the next section, we prove the
existence of a generalized solution when the tensor F is replaced by a tensor G ∈ C2([0, T ];B). Then, we
show that such a solution satisfies an energy estimate, which depends via G only by its L1-norm. In Section 4
we combine these two results to prove Theorem 2.4.

3. The regularized model

In this section we deal with a regularized version of the system (2.9), where the tensor F is replaced by a
tensor G which is bounded at t = 0. More precisely, we consider the following system

ü(t)− div(Ceu(t))− div
Ä

d
dt

∫ t
0
G(t− r)(eu(r)− eu0) dr

ä
= f(t) in Ω \ Γt, t ∈ (0, T ),

u(t) = z(t) on ∂DΩ, t ∈ (0, T ),

Ceu(t)ν +
Ä

d
dt

∫ t
0
G(t− r)(eu(r)− eu0) dr

ä
ν = N(t) on ∂NΩ, t ∈ (0, T ),

Ceu(t)ν +
Ä

d
dt

∫ t
0
G(t− r)(eu(r)− eu0) dr

ä
ν = 0 on Γt, t ∈ (0, T ),

u(0) = u0, u̇(0) = u1 in Ω \ Γ0,

(3.1)

and we assume that G : [0, T ]→ B satisfies

G ∈ C2([0, T ];B), (3.2)

G(t, x)ξ · ξ ≥ 0 for every ξ ∈ Rd, t ∈ [0, T ], and a.e. x ∈ Ω, (3.3)

Ġ(t, x)ξ · ξ ≤ 0 for every ξ ∈ Rd, t ∈ [0, T ], and a.e. x ∈ Ω, (3.4)

G̈(t, x)ξ · ξ ≥ 0 for every ξ ∈ Rd, t ∈ [0, T ], and a.e. x ∈ Ω. (3.5)

As before, on N , u0, u1, and C we assume (2.2)–(2.4), while for the Dirichlet datum z we can require the
weaker assumption

z ∈W 2,1(0, T ;H) ∩W 1,1(0, T ;U0). (3.6)

The notion of generalized solution to (3.1) is the same as before.
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Definition 3.1 (Generalized solution). Assume (2.2)–(2.4) and (3.2)–(3.6). A function u ∈ Cw is a gener-
alized solution to system (3.1) if u(t)− z(t) ∈ UDt for every t ∈ [0, T ], u(0) = u0 in U0, u̇(0) = u1 in H, and
for every ϕ ∈ C1

c the following equality holds

−
∫ T

0

(u̇(t), ϕ̇(t))H dt+

∫ T

0

(Ceu(t), eϕ(t))H dt−
∫ T

0

∫ t

0

(G(t− r)(eu(r)− eu0), eϕ̇(t))H dr dt

=

∫ T

0

(f(t), ϕ(t))H dt+

∫ T

0

(N(t), ϕ(t))HN dt. (3.7)

Since the time-dependent tensor G is well defined in t = 0, we can give another notion of solution. In
particular, the convolution integral is now differentiable, and we can write

d

dt

∫ t

0

G(t− r)(eu(r)− eu0) dr = G(0)(eu(t)− eu0) +

∫ t

0

Ġ(t− r)(eu(r)− eu0) dr.

Definition 3.2 (Weak solution). Assume (2.2)–(2.4) and (3.2)–(3.6). A function u ∈ Cw is a weak solution
to system (3.1) if u(t)− z(t) ∈ UDt for every t ∈ [0, T ], u(0) = u0 in U0, u̇(0) = u1 in H, and for every ϕ ∈ C1

c

the following equality holds

−
∫ T

0

(u̇(t), ϕ̇(t))H dt+

∫ T

0

(Ceu(t), eϕ(t))H dt+

∫ T

0

(G(0)(eu(t)− eu0), eϕ(t))H dt

+

∫ T

0

∫ t

0

(Ġ(t− r)(eu(r)− eu0), eϕ(t))H dr dt =

∫ T

0

(f(t), ϕ(t))H dt+

∫ T

0

(N(t), ϕ(t))HN dt. (3.8)

In this framework the two previous definitions are equivalent.

Proposition 3.3. Assume (2.2)–(2.4) and (3.2)–(3.6). Then u ∈ Cw is a generalized solution to (3.1) if
and only if u is a weak solution.

Proof. We only need to prove that (3.8) is equivalent to (3.7). This is true if and only if the function u ∈ Cw
satisfies for every ϕ ∈ C1

c the following equality∫ T

0

(G(0)(eu(t)− eu0), eϕ(t))H dt+

∫ T

0

∫ t

0

(Ġ(t− r)(eu(r)− eu0), eϕ(t))H dr dt

= −
∫ T

0

∫ t

0

(G(t− r)(eu(r)− eu0), eϕ̇(t))H dr dt. (3.9)

Let us consider for t ∈ [0, T ] the function

p(t) :=

∫ t

0

(G(t− r)(eu(r)− eu0), eϕ(t))H dr.

We claim that p ∈ Lip([0, T ]). Indeed, for every s, t ∈ [0, T ] with s < t we have

|p(s)− p(t)| ≤
∣∣∣∣∣
∫ t

s

(G(t− r)(eu(r)− eu0), eϕ(t))H dr

∣∣∣∣∣+

∣∣∣∣∫ s

0

(G(s− r)(eu(r)− eu0), eϕ(t)− eϕ(s))H dr

∣∣∣∣
+

∣∣∣∣∫ s

0

((G(t− r)−G(s− r))(eu(r)− eu0), eϕ(t))H dr

∣∣∣∣ .
Since∣∣∣∣∣
∫ t

s

(G(t− r)(eu(r)− eu0), eϕ(t))H dr

∣∣∣∣∣ ≤ 2(t− s)‖G‖C0([0,T ];B)‖eϕ‖C0([0,T ];H)‖eu‖L∞(0,T ;H),∣∣∣∣∫ s

0

(G(s− r)(eu(r)− eu0), eϕ(t)− eϕ(s))H dr

∣∣∣∣ ≤ 2(t− s)‖G‖C0([0,T ];B)‖eϕ̇‖C0([0,T ];H)T‖eu‖L∞(0,T ;H),∣∣∣∣∫ s

0

((G(t− r)−G(s− r))(eu(r)− eu0), eϕ(t))H dr

∣∣∣∣ ≤ 2(t− s)‖Ġ‖C0([0,T ];B)‖eϕ‖C0([0,T ];H)T‖eu‖L∞(0,T ;H),
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we deduce that p ∈ Lip([0, T ]). In particular, there exists ṗ(t) for a.e. t ∈ (0, T ). Given t ∈ (0, T ) and h > 0
we can write

p(t+ h)− p(t)
h

=

∫ t

0

(
G(t+ h− r)−G(t− r)

h
(eu(r)− eu0), eϕ(t+ h))H dr

+−
∫ t+h

t

(G(t+ h− r)(eu(r)− eu0), eϕ(t+ h))H dr +

∫ t

0

(G(t− r)(eu(r)− eu0),
eϕ(t+ h)− eϕ(t)

h
)H dr.

Let us compute these three limits separately. We claim that for a.e. t ∈ (0, T ) we have

lim
h→0+

−
∫ t+h

t

(G(t+ h− r)(eu(r)− eu0), eϕ(t+ h))H dr = (G(0)(eu(t)− eu0), eϕ(t))H .

Indeed, by the Lebesgue’s differentiation theorem, for a.e. t ∈ (0, T ) we get∣∣∣∣∣−
∫ t+h

t

(G(t+ h− r)(eu(r)− eu0), eϕ(t+ h))H dr − (G(0)(eu(t)− eu0), eϕ(t))H

∣∣∣∣∣
≤ ‖G(0)‖B‖eϕ(t)‖H−

∫ t+h

t

‖eu(t)− eu(r)‖H dr + ‖G(0)‖B‖eϕ(t+ h)− eϕ(t)‖H−
∫ t+h

t

‖eu(r)− eu0‖H dr

+ ‖eϕ(t+ h)‖H−
∫ t+h

t

‖G(t+ h− r)−G(0)‖B‖eu(r)− eu0‖H dr −−−−→
h→0+

0.

Moreover, for every t ∈ (0, T ) we have

lim
h→0+

∫ t

0

(
G(t+ h− r)−G(t− r)

h
(eu(r)− eu0), eϕ(t+ h))H dr =

∫ t

0

(Ġ(t− r)(eu(r)− eu0), eϕ(t))H dr

since

eϕ(t+ h)
H−−−−→

h→0+
eϕ(t),

G(t+ h− · )−G(t− · )
h

(eu(·)− eu0)
L1(0,t;H)−−−−−−→
h→0+

Ġ(t− · )(eu(·)− eu0).

Finally, for every t ∈ (0, T ) we get

lim
h→0+

∫ t

0

(G(t− r)(eu(r)− eu0),
eϕ(t+ h)− eϕ(t)

h
)H dr =

∫ t

0

(G(t− r)(eu(r)− eu0), eϕ̇(t))H dr

because
eϕ(t+ h)− eϕ(t)

h

H−−−−→
h→0+

eϕ̇(t).

Therefore, by the identity

0 = p(T )− p(0) =

∫ T

0

ṗ(t) dt

and the previous computations we deduce (3.9). �

In the particular case in which the tensor G appearing in (3.1) is the one associated to the Standard
viscoelastic model, i.e.

G(t) =
1

β
e−

t
βB for t ∈ [0, T ]

with β > 0 and B ∈ B non-negative tensor, then the existence of weak solutions (and so generalized solutions)
was proved in [22]. Here we adapt the techniques of [22] to a general tensor G satisfying (3.2)–(3.5).

3.1. Existence and energy-dissipation inequality. In this subsection we prove the existence of a gener-
alized solution to system (3.1), by means of a time discretization scheme in the same spirit of [6]. Moreover,
we show that such a solution satisfies the energy-dissipation inequality (3.40).

We fix n ∈ N and we set

τn :=
T

n
, u0

n := u0, u−1
n := u0 − τnu1, δz0

n := ż(0), δG0
n := 0.

Let us define

U jn := UDjτn , zjn := z(jτn), Gjn := G(jτn) for j = 0, . . . , n,
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δzjn :=
zjn − zj−1

n

τn
, δ2zjn :=

δzjn − δzj−1
n

τn
, δGjn :=

Gjn −Gj−1
n

τn
, δ2Gjn :=

δGjn − δGj−1
n

τn
for j = 1, . . . , n.

Regarding the forcing term and the Neumann datum we pose

N j
n := N(jτn) for j = 0, . . . , n,

f jn := −
∫ jτn

(j−1)τn

f(r) dr, δN j
n :=

N j
n −N j−1

n

τn
for j = 1, . . . , n.

For every j = 1, . . . , n let us consider the unique ujn ∈ UT with ujn − zjn ∈ U jn, which satisfies

(δ2ujn, v)H + (Ceujn, ev)H + (G0
n(eujn − eu0), ev)H +

j∑
k=1

τn(δGj−kn (eukn − eu0), ev)H = (f jn, v)H + (N j
n, v)HN

(3.10)
for every v ∈ U jn, where

δujn :=
ujn − uj−1

n

τn
for j = 0, . . . , n, δ2ujn :=

δujn − δuj−1
n

τn
for j = 1, . . . , n.

The existence and uniqueness of ujn is a consequence of Lax-Milgram’s lemma. Notice that equation (3.10)
is a sort of discrete version of (3.8), which we already know that is equivalent to (3.7).

We now use equation (3.10) to derive an energy estimate for the family {ujn}nj=1, which is uniform with
respect to n ∈ N.

Lemma 3.4. Assume (2.2)–(2.4) and (3.2)–(3.6). Then there exists a constant C, independent of n ∈ N,
such that

max
j=0,...,n

‖δujn‖H + max
j=0,...,n

‖eujn‖H ≤ C. (3.11)

Proof. First, since

Gj−1
n −G0

n =

j−1∑
k=0

τnδGkn =

j∑
k=1

τnδGj−kn for j = 1, . . . , n,

we have

G0
n(eujn − eu0) +

j∑
k=1

τnδGj−kn (eukn − eu0) = Gj−1
n (eujn − eu0) +

j∑
k=1

τnδGj−kn (eukn − eujn) for j = 1, . . . , n.

Therefore, equation (3.10) can be written as

(δ2ujn, v)H + (Ceujn, ev)H + (Gj−1
n (eujn − eu0), ev)H +

j∑
k=1

τn(δGj−kn (eukn − eujn), ev)H = (f jn, v)H + (N j
n, v)H

for every v ∈ U jn. We fix i ∈ {1, . . . , n}. By taking v := τn(δujn − δzjn) ∈ U jn and summing over j = 1, . . . , i,
we get the following identity

i∑
j=1

τn(δ2ujn, δu
j
n)H +

i∑
j=1

τn(Ceujn, eδujn)H +

i∑
j=1

τn(Gj−1
n (eujn − eu0), eδujn)H

+

i∑
j=1

j∑
k=1

τ2
n(δGj−kn (eukn − eujn), eδujn)H =

i∑
j=1

τnL
j
n, (3.12)

where

Ljn := (f jn, δu
j
n − δzjn)H + (N j

n, δu
j
n − δzjn)HN + (δ2ujn, δz

j
n)H

+ (Ceujn, eδzjn)H + (Gj−1
n (eujn − eu0), eδzjn)H +

j∑
k=1

τn(δGj−kn (eukn − eujn), eδzjn)H .

By using the identity

|a|2 − a · b =
1

2
|a|2 − 1

2
|b|2 +

1

2
|a− b|2 for every a, b ∈ Rd
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we deduce

τn(δ2ujn, δu
j
n)H = ‖δujn‖2H − (δujn, δu

j−1
n )H =

1

2
‖δujn‖2H −

1

2
‖δuj−1

n ‖2H +
1

2
τ2
n‖δ2ujn‖2H .

Therefore

i∑
j=1

τn(δ2ujn, δu
j
n)H =

1

2

i∑
j=1

‖δujn‖2H −
1

2

i∑
j=1

‖δuj−1
n ‖2H +

1

2

i∑
j=1

τ2
n‖δ2ujn‖2H

=
1

2
‖δuin‖2H −

1

2
‖u1‖2H +

1

2

i∑
j=1

τ2
n‖δ2ujn‖2H . (3.13)

Similarly, we have

i∑
j=1

τn(Ceujn, eδujn)H =
1

2
(Ceuin, euin)H −

1

2
(Ceu0, eu0)H +

1

2

i∑
j=1

τ2
n(Ceδujn, eδujn)H . (3.14)

Moreover, we can write

τn(Gj−1
n (eujn − eu0), eδujn)H = (Gj−1

n (eujn − eu0), eujn − eu0)H − (Gj−1
n (eujn − eu0), euj−1

n − eu0)H

=
1

2
(Gj−1

n (eujn − eu0), eujn − eu0)H −
1

2
(Gj−1

n (euj−1
n − eu0), euj−1

n − eu0)H +
1

2
τ2
n(Gj−1

n eδujn, eδu
j
n)H

=
1

2
(Gjn(eujn − eu0), eujn − eu0)H −

1

2
(Gj−1

n (euj−1
n − eu0), euj−1

n − eu0)H

− 1

2
τn(δGjn(eujn − eu0), eujn − eu0)H +

1

2
τ2
n(Gj−1

n eδujn, eδu
j
n)H .

As consequence of this we obtain

i∑
j=1

τn(Gj−1
n (eujn − eu0), eδujn)H

=
1

2

i∑
j=1

(Gjn(eujn − eu0), eujn − eu0)H −
1

2

i∑
j=1

(Gj−1
n (euj−1

n − eu0), euj−1
n − eu0)H

− 1

2

i∑
j=1

τn(δGjn(eujn − eu0), eujn − eu0)H +
1

2

i∑
j=1

τ2
n(Gj−1

n eδujn, eδu
j
n)H

=
1

2
(Gin(euin − eu0), euin − eu0)H −

1

2

i∑
j=1

τn(δGjn(eujn − eu0), eujn − eu0)H +
1

2

i∑
j=1

τ2
n(Gj−1

n eδujn, eδu
j
n)H .

(3.15)

Finally, let us consider the term

i∑
j=1

j∑
k=1

τ2
n(δGj−kn (eukn − eujn), eδujn)H =

i∑
k=1

i∑
j=k

τ2
n(δGj−kn (eukn − eujn), eδujn)H .

We can write

i∑
j=k

τ2
n(δGj−kn (eukn − eujn), eδujn)H = −

i∑
j=k

τn(δGj−kn (eujn − eukn), eujn − euj−1
n )H

= −
i∑

j=k

τn(δGj−kn (eujn − eukn), eujn − eukn)H +

i∑
j=k

τn(δGj−kn (eujn − eukn), euj−1
n − eukn)H

= −1

2

i∑
j=k

τn(δGj−kn (eujn − eukn), eujn − eukn)H +
1

2

i∑
j=k

τn(δGj−kn (euj−1
n − eukn), euj−1

n − eukn)H
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− 1

2

i∑
j=k

τ3
n(δGj−kn eδujn, eδu

j
n)H

= −1

2

i∑
j=k

τn(δGj−k+1
n (eujn − eukn), eujn − eukn)H +

1

2

i∑
j=k

τn(δGj−kn (euj−1
n − eukn), euj−1

n − eukn)H

+
1

2

i∑
j=k

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn)H −
1

2

i∑
j=k

τ3
n(δGj−kn eδujn, eδu

j
n)H

=
1

2

i∑
j=k

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn)H −
1

2

i∑
j=k

τ3
n(δGj−kn eδujn, eδu

j
n)H

− 1

2
τn(δGi−k+1

n (euin − eukn), euin − eukn)H

because δG0
n = 0. Therefore, we deduce

i∑
j=1

j∑
k=1

τ2
n(δGj−kn (eukn − eujn), eδujn)H

=
1

2

i∑
k=1

i∑
j=k

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn)H −
1

2

i∑
k=1

i∑
j=k

τ3
n(δGj−kn eδujn, eδu

j
n)H

− 1

2

i∑
k=1

τn(δGi−k+1
n (euin − eukn), euin − eukn)H

=
1

2

i∑
j=1

j∑
k=1

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn)H −
1

2

i∑
j=1

j∑
k=1

τ3
n(δGj−kn eδujn, eδu

j
n)H

− 1

2

i∑
j=1

τn(δGi−j+1
n (euin − eujn), euin − eujn)H . (3.16)

By combining together (3.12)–(3.16), we obtain for i = 1, . . . , n the following discrete energy equality

1

2
‖δuin‖2H +

1

2
(Ceuin, euin)H +

1

2
(Gin(euin − eu0), euin − eu0)H −

1

2

i∑
j=1

τn(δGi−j+1
n (euin − eujn), euin − eujn)H

− 1

2

i∑
j=1

τn(δGjn(eujn − eu0), eujn − eu0)H +
1

2

i∑
j=1

j∑
k=1

τ2
n(δ2Gj−k+1

n (eujn − eukn), eujn − eukn)H

+
τ2
n

2

Ñ
i∑

j=1

‖δ2ujn‖2H +

i∑
j=1

(Ceδujn, eδujn)H +

i∑
j=1

(Gj−1
n eδujn, eδu

j
n)H −

i∑
j=1

j∑
k=1

τn(δGj−keδujn, eδujn)H

é
=

1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H +

i∑
j=1

τnL
j
n. (3.17)

By our assumptions on G we deduce

Gjn(x)ξ · ξ ≥ 0 for a.e. x ∈ Ω and every ξ ∈ Rd and j = 0, . . . , n,

δGjn(x)ξ · ξ = −
∫ jτn

(j−1)τn

Ġ(r, x)ξ · ξ dr ≤ 0 for a.e. x ∈ Ω and every ξ ∈ Rd and j = 1, . . . , n,

δ2Gjn(x)ξ · ξ = −
∫ jτn

(j−1)τn

−
∫ r

r−τn
G̈(s, x)ξ · ξ dsdr ≥ 0 for a.e. x ∈ Ω and every ξ ∈ Rd and j = 2, . . . , n.
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Hence, thanks to (3.17), for every i = 1, . . . , n we can write

1

2
‖δuin‖2H +

1

2
(Ceuin, euin)H ≤

1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H +

i∑
j=1

τnL
j
n. (3.18)

Let us estimate the right-hand side in (3.18) from above. We set

Kn := max
j=0,..,n

‖δujn‖H , En := max
j=0,..,n

‖eujn‖H .

Therefore, we have the following bounds∣∣∣∣∣∣
i∑

j=1

τn(f jn, δu
j
n)H

∣∣∣∣∣∣ ≤ √T‖f‖L2(0,T ;H)Kn, (3.19)

∣∣∣∣∣∣
i∑

j=1

τn(f jn, δz
j
n)H

∣∣∣∣∣∣ ≤ ‖f‖L2(0,T ;H)‖ż‖L2(0,T ;H), (3.20)

∣∣∣∣∣∣
i∑

j=1

τn(Ceujn, eδzjn)H

∣∣∣∣∣∣ ≤ ‖C‖B‖eż‖L1(0,T ;H)En, (3.21)

∣∣∣∣∣∣
i∑

j=1

τn(Gj−1
n (eujn − eu0), eδzjn)H

∣∣∣∣∣∣ ≤ 2‖G‖C0([0,T ];B)‖eż‖L1(0,T ;H)En. (3.22)

Notice that the following discrete integrations by parts hold

i∑
j=1

τn(δ2ujn, δz
j
n)H = (δuin, δz

i
n)H − (δu0

n, δz
0
n)H −

i∑
j=1

τn(δuj−1
n , δ2zjn)H , (3.23)

i∑
j=1

τn(N j
n, δu

j
n)HN = (N i

n, u
i
n)HN − (N0

n, u
0
n)HN −

i∑
j=1

τn(δN j
n, u

j−1
n )HN , (3.24)

i∑
j=1

τn(N j
n, δz

j
n)HN = (N i

n, z
i
n)HN − (N0

n, z
0
n)HN −

i∑
j=1

τn(δN j
n, z

j−1
n )HN . (3.25)

By means of (3.23) we can write∣∣∣∣∣∣
i∑

j=1

(δ2ujn, δz
j
n)H

∣∣∣∣∣∣ ≤ ‖δuin‖H‖δzin‖H + ‖δu0
n‖H‖δz0

n‖H +
i∑

j=1

τn‖δuj−1
n ‖H‖δ2zjn‖H

≤ (2‖ż‖C0([0,T ];H) + ‖z̈‖L1(0,T ;H))Kn. (3.26)

Moreover, thanks to

‖uin‖UT ≤ ‖uin‖H + En ≤
i∑

j=1

τn‖δujn‖H + ‖u0‖H + En ≤ TKn + En + ‖u0‖H for i = 0, . . . , n (3.27)

and to (3.24) we obtain∣∣∣∣∣∣
i∑

j=1

τn(N j
n, δu

j
n)HN

∣∣∣∣∣∣ ≤ ‖N i
n‖HN ‖uin‖HN + ‖N0

n‖HN ‖u0
n‖HN +

i∑
j=1

τn‖δN j
n‖HN ‖uj−1

n ‖HN

≤ Ctr‖N‖C0([0,T ];HN )(‖uin‖UT + ‖u0
n‖UT ) + Ctr

i∑
j=1

τn‖δN j
n‖HN ‖uj−1

n ‖UT

≤ Ctr
Ä
2‖N‖C0([0,T ];HN ) + ‖Ṅ‖L1(0,T ;HN )

ä
(En + TKn + ‖u0‖H). (3.28)
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Similarly, by (3.25) we obtain∣∣∣∣∣∣
i∑

j=1

τn(N j
n, δz

j
n)HN

∣∣∣∣∣∣ ≤ Ctr
Ä
2‖N‖C0([0,T ];HN ) + ‖Ṅ‖L1(0,T ;HN )

ä
‖z‖C0([0,T ];U0). (3.29)

Finally, we have∣∣∣∣∣∣
i∑

j=1

j∑
k=1

τ2
n(δGj−kn (eukn − eujn), eδzjn)H

∣∣∣∣∣∣ ≤
i∑

j=1

j∑
k=1

τ2
n‖δGj−kn ‖B‖eukn − eujn‖H‖eδzjn‖H

≤ 2T‖Ġ‖C0([0,T ];B)‖eż‖L1(0,T ;H)En. (3.30)

By considering (3.18)–(3.30) and using (2.4), we obtain the existence of a constant C1 = C1(z,N, f, u0,C,G)
such that

‖δuin‖2H + γ‖euin‖2H ≤ ‖u1‖2H + ‖C‖B‖eu0‖2H + C1 (1 +Kn + En) for i = 1, . . . , n.

In particular, since the right-hand side is independent of i, u0
n = u0 and δu0

n = u1, there exists another
constant C2 = C2(z,N, f, u0, u1,C,G) for which we have

K2
n + E2

n ≤ C2(1 +Kn + En) for every n ∈ N.
This implies the existence of a constant C = C(z,N, f, u0, u1,C,G) independent of n ∈ N such that

‖δujn‖H + ‖eujn‖H ≤ Kn + En ≤ C for every j = 1, . . . , n and n ∈ N,
which gives (3.11). �

A first consequence of Lemma 3.4 is the following uniform estimate on the family {δ2ujn}nj=1.

Corollary 3.5. Assume (2.2)–(2.4) and (3.2)–(3.6). Then there exists a constant C̃, independent of n ∈ N,
such that

n∑
j=1

τn‖δ2ujn‖2(UD0 )′ ≤ C̃. (3.31)

Proof. Thanks to equation (3.10) and to Lemma 3.4, for every j = 1, . . . , n and v ∈ UD0 ⊂ U jn with ‖v‖U0 ≤ 1
we have

|(δ2ujn, v)H | ≤ C
Ä
‖C‖B + 2‖G‖C0([0,T ];B) + 2T‖Ġ‖C0([0,T ];B)

ä
+ ‖f jn‖H + Ctr‖N‖C0([0,T ];HN ).

By taking the supremum over v ∈ UD0 with ‖v‖U0 ≤ 1 we obtain

‖δ2ujn‖2(UD0 )′ ≤ 3C2
Ä
‖C‖B + 2‖G‖C0([0,T ];B) + 2T‖Ġ‖C0([0,T ];B)

ä2
+ 3‖f jn‖2H + 3C2

tr‖N‖2C0([0,T ];HN ).

We multiply this inequality by τn and we sum over j = 1, . . . , n to get (3.31). �

We now want to pass to the limit into equation (3.10) to obtain a generalized solution to system (3.1).
Let us recall the following result, whose proof can be found for example in [8].

Lemma 3.6. Let X,Y be two reflexive Banach spaces such that X ↪→ Y continuously. Then

L∞(0, T ;X) ∩ C0
w([0, T ];Y ) = C0

w([0, T ];X).

Let us define the following sequences of functions which are an approximation of the generalized solution:

un(t) = uin + (t− iτn)δuin for t ∈ [(i− 1)τn, iτn] and i = 1, . . . , n,

u+
n (t) = uin for t ∈ ((i− 1)τn, iτn] and i = 1, . . . , n, u+

n (0) = u0
n,

u−n (t) = ui−1
n for t ∈ [(i− 1)τn, iτn) and i = 1, . . . , n, u−n (T ) = unn.

Moreover, we consider also the sequences

ũn(t) = δuin + (t− iτn)δ2uin for t ∈ [(i− 1)τn, iτn] and i = 1, . . . , n,

ũ+
n (t) = δuin for t ∈ ((i− 1)τn, iτn] and i = 1, . . . , n, ũ+

n (0) = δu0
n,

ũ−n (t) = δui−1
n for t ∈ [(i− 1)τn, iτn) and i = 1, . . . , n, ũ−n (T ) = δunn,



AN EXISTENCE RESULT FOR THE FRACTIONAL KELVIN-VOIGT’S MODEL 13

which approximate the first time derivative of the generalized solution. In a similar way, we define also f+
n ,

N+
n , Ñ+

n , z±n , z̃n, z̃+
n , G±n , G̃n, G̃+

n . Thanks to the uniform estimates of Lemma 3.4 we derive the following
compactness result:

Lemma 3.7. Assume (2.2)–(2.4) and (3.2)–(3.6). There exists a function u ∈ Cw ∩ H2(0, T ; (UD0 )′) such
that, up to a not relabeled subsequence

un
H1(0,T ;H)−−−−−−−⇀
n→∞

u, u±n
L∞(0,T ;UT ) ∗−−−−−−−−⇀

n→∞
u, ũn

H1(0,T ;(UD0 )′)−−−−−−−−−⇀
n→∞

u̇, ũ±n
L∞(0,T ;H) ∗−−−−−−−⇀
n→∞

u̇, (3.32)

and for every t ∈ [0, T ]

u±n (t)
UT−−−−⇀
n→∞

u(t), ũ±n (t)
H−−−−⇀

n→∞
u̇(t). (3.33)

Proof. Thanks to Lemma 3.4 and the estimate (3.31), the sequences

{un}n ⊂ L∞(0, T ;UT ) ∩H1(0, T ;H), {ũn}n ⊂ L∞(0, T ;H) ∩H1(0, T ; (UD0 )′),

{u±n }n ⊂ L∞(0, T ;UT ), {ũ±n }n ⊂ L∞(0, T ;H),

are uniformly bounded with respect to n ∈ N. By Banach-Alaoglu’s theorem and Lemma 3.6 there exist two
functions u ∈ C0

w([0, T ];UT ) ∩H1(0, T ;H) and v ∈ C0
w([0, T ];H) ∩H1(0, T ; (UD0 )′), such that, up to a not

relabeled subsequence

un
H1(0,T ;H)−−−−−−−⇀
n→∞

u, un
L∞(0,T ;UT ) ∗−−−−−−−−⇀

n→∞
u, ũn

H1(0,T ;(UD0 )′)−−−−−−−−−⇀
n→∞

v, ũn
L∞(0,T ;H) ∗−−−−−−−⇀
n→∞

v. (3.34)

Thanks to (3.31) we get

‖u̇n − ũn‖2L2(0,T ;(UD0 )′) ≤ C̃τ
2
n −−−−→

n→∞
0,

therefore we deduce that v = u̇. Moreover, by using (3.11) and (3.31) we have

‖u±n − un‖L∞(0,T ;H) ≤ Cτn −−−−→
n→∞

0, ‖ũ±n − ũn‖2L2(0,T ;(UD0 )′) ≤ C̃τ
2
n −−−−→

n→∞
0.

We combine the previous convergences with (3.34) to derive

u±n
L∞(0,T ;UT ) ∗−−−−−−−−⇀

n→∞
u, ũ±n

L∞(0,T ;H) ∗−−−−−−−⇀
n→∞

u̇.

By (3.34) for every t ∈ [0, T ] we have

un(t)
UT−−−−⇀
n→∞

u(t), ũn(t)
H−−−−⇀

n→∞
u̇(t).

Again, thanks to (3.11) and (3.31), for every t ∈ [0, T ] we get

‖u±n (t)‖UT ≤ C, ‖u±n (t)− un(t)‖H ≤ Cτn −−−−→
n→∞

0,

‖ũ±n (t)‖H ≤ C, ‖ũ±n (t)− ũn(t)‖2(UD0 )′ ≤ C̃τn −−−−→n→∞
0,

which imply (3.33). Finally, observe that for every t ∈ [0, T ]

u−n (t) ∈ Ut, u−n (t)
UT−−−−⇀
n→∞

u(t).

Therefore, u(t) ∈ Ut for every t ∈ [0, T ] since Ut is a closed subspace of UT . Hence, u ∈ Cw. �

Let us check that the limit function u defined before satisfies the boundary and initial conditions.

Corollary 3.8. Assume (2.2)–(2.4) and (3.2)–(3.6). Then the function u ∈ Cw of Lemma 3.7 satisfies for
every t ∈ [0, T ] the condition u(t) − z(t) ∈ UDt , and it assumes the initial conditions u(0) = u0 in U0 and
u̇(0) = u1 in H.

Proof. By (3.32) we have

u0 = un(0)
UT−−−−⇀
n→∞

u(0), u1 = ũn(0)
H−−−−⇀

n→∞
u̇(0).
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Hence, u ∈ Cw satisfies u(0) = u0 in U0 and u̇(0) = u1 in H. Moreover, since z ∈ C0([0, T ];U0) and thanks
to (3.33), we have for every t ∈ [0, T ]

u−n (t)− z−n (t) ∈ UDt , u−n (t)− z−n (t)
UT−−−−⇀
n→∞

u(t)− z(t).

Thus, u(t)− z(t) ∈ UDt for every t ∈ [0, T ] because UDt is a closed subspace of UT . �

Lemma 3.9. Assume (2.2)–(2.4) and (3.2)–(3.6). Then the function u ∈ Cw of Lemma 3.7 is a generalized
solution to system (3.1).

Proof. We only need to prove that the function u ∈ Cw satisfies (3.7). We fix n ∈ N and a function ϕ ∈ C1
c .

Let us consider

ϕjn := ϕ(jτn) for j = 0, . . . , n, δϕjn :=
ϕjn − ϕj−1

n

τn
for j = 1, . . . , n,

and, as we did before for the family {ujn}nj=1, we define the approximating sequences {ϕ+
n }n and {ϕ̃+

n }n. If

we use τnϕ
j
n ∈ U jn as a test function in (3.10), after summing over j = 1, ..., n, we get

n∑
j=1

τn(δ2ujn, ϕ
j
n)H +

n∑
j=1

τn(Ceujn, eϕjn)H +

n∑
j=1

τn(G0
n(eujn − eu0), eϕjn)H

+

n∑
j=1

j∑
k=1

τ2
n(δGj−kn (eukn − eu0), eϕjn)H =

n∑
j=1

τn(f jn, ϕ
j
n)H +

n∑
j=1

τn(N j
n, ϕ

j
n)HN . (3.35)

By means of a time discrete integration by parts we obtain
n∑
j=1

τn(δ2ujn, ϕ
j
n)H = −

n∑
j=1

τn(δuj−1
n , δϕjn)H = −

∫ T

0

(ũ−n (t), ϕ̃+
n (t))H dt,

and since δG0
n = 0 and ϕ0

n = ϕnn = 0 we get

n∑
j=1

τn(G0
n(eujn − eu0), eϕjn)H +

n∑
j=1

j∑
k=1

τ2
n(δGj−kn (eukn − eu0), eϕjn)H

= −
n−1∑
j=1

j∑
k=1

τ2
n(Gj−kn (eukn − eu0), eδϕj+1

n )H = −
∫ T−τn

0

∫ tn

0

(G−n (tn − r)(eu+
n (r)− eu0), eϕ̃+

n (t+ τn))H dr dt,

where tn :=
†
t
τn

£
τn for t ∈ (0, T ) and dxe is the superior integer part of the number x. Thanks to (3.35) we

deduce

−
∫ T

0

(ũ−n (t), ϕ̃+
n (t))H dt−

∫ T−τn

0

∫ tn

0

(G−n (tn − r)(eu+
n (r)− eu0), eϕ̃+

n (t+ τn))H dr dt

+

∫ T

0

(Ceu+
n (t), eϕ+

n (t))H dt =

∫ T

0

(f+
n (t), ϕ+

n (t))H dt+

∫ T

0

(N+
n (t), ϕ+

n (t))HN dt. (3.36)

We use (3.32) and the following convergences

ϕ+
n

L2(0,T ;UT )−−−−−−−→
n→∞

ϕ, ϕ̃+
n

L2(0,T ;H)−−−−−−−→
n→∞

ϕ̇, f+
n

L2(0,T ;H)−−−−−−−→
n→∞

f, N+
n

L2(0,T ;HN )−−−−−−−−→
n→∞

N,

to derive ∫ T

0

(ũ−n (t), ϕ̃+
n (t))H dt −−−−→

n→∞

∫ T

0

(u̇(t), ϕ̇(t))H dt,∫ T

0

(Ceu+
n (t), eϕ+

n (t))H dt −−−−→
n→∞

∫ T

0

(Ceu(t), eϕ(t))H dt,∫ T

0

(f+
n (t), ϕ+

n (t))H dt −−−−→
n→∞

∫ T

0

(f(t), ϕ(t))H dt,∫ T

0

(N+
n (t), ϕ+

n (t))HN dt −−−−→
n→∞

∫ T

0

(N(t), ϕ(t))HN dt.
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Moreover, for every fixed t ∈ (0, T )

χ[0,T−τn](t)χ[0,tn]( · )G−n (tn − · )eϕ̃+
n (t+ τn)

L2(0,T ;H)−−−−−−−→
n→∞

χ[0,T ](t)χ[0,t]( · )G(t− · )eϕ̇(t), (3.37)

which together with (3.32) gives

χ[0,T−τn](t)

∫ tn

0

(G−n (tn − r)(eu+
n (r)− eu0), eϕ̃+

n (t+ τn))H dr

−−−−→
n→∞

χ[0,T ](t)

∫ t

0

(G(t− r)(eu(r)− eu0), eϕ̇(t))H dr. (3.38)

By (3.11) for every t ∈ (0, T ) we deduce∣∣∣∣∣χ[0,T−τn](t)

∫ tn

0

(G−n (tn − r)(eu+
n (r)− eu0), eϕ̃+

n (t+ τn))H dr

∣∣∣∣∣ ≤ 2T‖G‖C0([0,T ];B)C‖eϕ̇‖C0([0,T ];H). (3.39)

Therefore, we can use the dominated convergence theorem to pass to the limit in the double integral of (3.36),
and we obtain that u satisfies (3.7) for every function ϕ ∈ C1

c . �

Now we want to deduce an energy-dissipation inequality for the generalized solution u ∈ Cw of Lemma 3.7.
Let us define for every t ∈ [0, T ] the total energy E(t) and the dissipation D(t) as

E(t) :=
1

2
‖u̇(t)‖2H +

1

2
(Ceu(t), eu(t))H +

1

2
(G(t)(eu(t)− eu0), eu(t)− eu0)H

− 1

2

∫ t

0

(Ġ(t− r)(eu(t)− eu(r)), eu(t)− eu(r))H dr,

D(t) := −1

2

∫ t

0

(Ġ(r)(eu(r)− eu0), eu(r)− eu0)H dr

+
1

2

∫ t

0

∫ r

0

(G̈(r − s)(eu(r)− eu(s)), eu(r)− eu(s))H dsdr.

Notice that E(t) is well defined for every time t ∈ [0, T ] since u ∈ C0
w([0, T ];UT ) and u̇ ∈ C0

w([0, T ];H).
Moreover, by the initial conditions we have

E(0) =
1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H .

Proposition 3.10. Assume (2.2)–(2.4) and (3.2)–(3.6). Then the generalized solution u ∈ Cw to sys-
tem (3.1) of Lemma 3.7 satisfies for every t ∈ [0, T ] the following energy-dissipation inequality

E(t) +D(t) ≤ E(0) +Wtot(t), (3.40)

where the total work is defined as

Wtot(t) :=

∫ t

0

[(f(r), u̇(r)− ż(r))H − (Ṅ(r), u(r)− z(r))HN − (u̇(r), z̈(r))H + (Ceu(r), eż(r))H ] dr

+ (N(t), u(t)− z(t))HN − (N(0), u0 − z(0))HN + (u̇(t), ż(t))H − (u1, ż(0))H

+

∫ t

0

(G(r)(eu(r)− eu0), eż(r))H dr +

∫ t

0

∫ r

0

(Ġ(r − s)(eu(s)− eu(r)), eż(r))H dsdr. (3.41)

Proof. Fixed t ∈ (0, T ] and n ∈ N there exists a unique i = i(n) ∈ {1, . . . , n} such that t ∈ ((i − 1)τn, iτn].

In particular, i(n) =
†
t
τn

£
. After setting tn := iτn and using that δG0

n = 0, we rewrite (3.17) as

1

2
‖ũ+

n (t)‖2H +
1

2
(Ceu+

n (t), eu+
n (t))H +

1

2
(G+

n (t)(eu+
n (t)− eu0), eu+

n (t)− eu0)H

− 1

2

∫ tn

0

(G̃+
n (tn − r)(eu+

n (t)− eu+
n (r)), eu+

n (t)− eu+
n (r))H dr

+
1

2

∫ tn

τn

∫ rn−τn

0

( ˙̃Gn(rn − s)(eu+
n (r)− eu+

n (s)), eu+
n (r)− eu+

n (s))H dsdr
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− 1

2

∫ tn

0

(G̃+
n (r)(eu+

n (r)− eu0), eu+
n (r)− eu0)H dr ≤ 1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H +W+

n (t), (3.42)

where rn :=
†
r
τn

£
τn for r ∈ (τn, tn), and the approximate total work W+

n (t) is given by

W+
n (t) :=

∫ tn

0

[(f+
n (r), ũ+

n (r)− z̃+
n (r))H + (N+

n (r), ũ+
n (r)− z̃+

n (r))HN + ( ˙̃un(r), z̃+
n (r))H ] dr

+

∫ tn

0

[(Ceu+
n (r), ez̃+

n (r))H + (G−n (r)(eu+
n (r)− eu0), ez̃+

n (r))H ] dr

+

∫ tn

τn

∫ rn−τn

0

(G̃−n (rn − s)(eu+
n (s)− eu+

n (r)), ez̃+
n (r))H dsdr.

By (2.4), (3.3), and (3.33) we derive

‖u̇(t)‖2H ≤ lim inf
n→∞

‖ũ+
n (t)‖2H , (3.43)

(Ceu(t), eu(t))H ≤ lim inf
n→∞

(Ceu+
n (t), eu+

n (t))H , (3.44)

(G(t)(eu(t)− eu0), eu(t)− eu0)H ≤ lim inf
n→∞

(G(t)(eu+
n (t)− eu0), eu+

n (t)− eu0)H . (3.45)

Moreover, the estimate (3.11) imply∣∣((G(t)−G+
n (t))(eu+

n (t)− eu0), eu+
n (t)− eu0)H

∣∣ ≤ 4C2‖Ġ‖C0([0,T ];B)τn −−−−→
n→∞

0,

which together with inequality (3.45) gives

(G(t)(eu(t)− eu0), eu(t)− eu0)H ≤ lim inf
n→∞

(G+
n (t)(eu+

n (t)− eu0), eu+
n (t)− eu0)H . (3.46)

By (3.4) and (3.33), for every r ∈ (0, t) we have

(−Ġ(t− r)(eu(t)− eu(r)), eu(t)− eu(r))H ≤ lim inf
n→∞

(−Ġ(t− r)(eu+
n (t)− eu+

n (r)), eu+
n (t)− eu+

n (r))H .

Moreover

‖G̃+
n (tn − r)− Ġ(t− r)‖B ≤ −

∫ tn−rn+τn

tn−rn
‖Ġ(s)− Ġ(t− r)‖B ds −−−−→

n→∞
0

because tn − rn → t− r. Hence, we can argue as before to deduce

(−Ġ(t− r)(eu(t)− eu(r)), eu(t)− eu(r))H

≤ lim inf
n→∞

(−G̃+
n (tn − r)(eu+

n (t)− eu+
n (r)), eu+

n (t)− eu+
n (r))H .

In particular, we can use Fatou’s lemma and the fact that t ≤ tn to obtain∫ t

0

(−Ġ(t− r)(eu(t)− eu(r)), eu(t)− eu(r))H dr

≤ lim inf
n→∞

∫ tn

0

(−G̃+
n (tn − r)(eu+

n (t)− eu+
n (r)), eu+

n (t)− eu+
n (r))H dr.

By arguing in a similar way, we can derive∫ t

0

(−Ġ(r)(eu(r)− eu0), eu(r)− eu0)H dr ≤ lim inf
n→∞

∫ tn

0

(−G̃+
n (r)(eu+

n (r)− eu0), eu+
n (r)− eu0)H dr.

Let us consider the double integral in the left-hand side. We fix r ∈ (0, t) and by (3.5) for every s ∈ (0, r)
we have

(G̈(r − s)(eu(r)− eu(s)), eu(r)− eu(s))H

≤ lim inf
n→∞

(G̈(r − s)(eu+
n (r)− eu+

n (s)), eu+
n (r)− eu+

n (s))H .

Moreover, for a.e. s ∈ (0, rn − τn) by defining sn :=
†
s
τn

£
τn we deduce

‖ ˙̃Gn(rn − s)− G̈(r − s)‖B ≤ −
∫ rn−sn+τn

rn−sn
−
∫ λ

λ−τn
‖G̈(θ)− G̈(r − s)‖B dθ dλ −−−−→

n→∞
0.
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Therefore, for a.e. s ∈ (0, r) we get

(G̈(r − s)(eu(r)− eu(s)), eu(r)− eu(s))H

≤ lim inf
n→∞

( ˙̃Gn(rn − s)(eu+
n (r)− eu+

n (s)), eu+
n (r)− eu+

n (s))H ,

since s ∈ (0, rn − τn) for n large enough. If we apply again Fatou’s lemma we conclude∫ r

0

(G̈(r − s)(eu(r)− eu(s)), eu(r)− eu(s))H ds

≤ lim inf
n→∞

∫ r

0

( ˙̃Gn(rn − s)(eu+
n (r)− eu+

n (s)), eu+
n (r)− eu+

n (s))H ds.

By (3.11) we get∣∣∣∣∫ r

rn−τn
( ˙̃Gn(rn − s)(eu+

n (r)− eu+
n (s)), eu+

n (r)− eu+
n (s))H ds

∣∣∣∣ ≤ 4C2‖G̈‖C0([0,T ];B)(r − rn + τn) −−−−→
n→∞

0,

from which we derive∫ r

0

(G̈(r − s)(eu(r)− eu(s)), eu(r)− eu(s))H ds

≤ lim inf
n→∞

∫ rn−τn

0

( ˙̃Gn(rn − s)(eu+
n (r)− eu+

n (s)), eu+
n (r)− eu+

n (s))H ds.

Since this is true for every r ∈ (0, t), arguing as before we obtain∫ t

0

∫ r

0

(G̈(r − s)(eu(r)− eu(s)), eu(r)− eu(s))H dsdr

≤ lim inf
n→∞

∫ tn

τn

∫ rn−τn

0

( ˙̃Gn(rn − s)(eu+
n (r)− eu+

n (s)), eu+
n (r)− eu+

n (s))H dsdr.

Let us study the right-hand side of (3.42). Given that

χ[0,tn]f
+
n

L2(0,T ;H)−−−−−−−→
n→∞

χ[0,t]f, ũ+
n − z̃+

n

L2(0,T ;H)−−−−−−−⇀
n→∞

u̇− ż,

χ[0,tn]G−n ez̃+
n

L1(0,T ;H)−−−−−−−→
n→∞

χ[0,t]Geż, u+
n

L∞(0,T ;UT ) ∗−−−−−−−−⇀
n→∞

u,

we can deduce ∫ tn

0

(f+
n (r), ũ+

n (r)− z̃+
n (r))H dr −−−−→

n→∞

∫ t

0

(f(r), u̇(r)− ż(r))H dr, (3.47)∫ tn

0

(Ceu+
n (r), ez̃+

n (r))H dr −−−−→
n→∞

∫ t

0

(Ceu(r), eż(r))H dr, (3.48)∫ tn

0

(G−n (r)(eu+
n (r)− eu0), ez̃+

n (r))H dr −−−−→
n→∞

∫ t

0

(G(r)(eu(r)− eu0), eż(r))H dr. (3.49)

By using the same argumentations of (3.37)–(3.39), together with the dominate convergence theorem, we
can write∫ tn

τn

∫ rn−τn

0

(G̃−n (rn − s)(eu+
n (s)− eu+

n (r)), ez̃+
n (r))H dsdr

−−−−→
n→∞

∫ t

0

∫ r

0

(Ġ(r − s)(eu(s)− eu(r)), eż(r))H dsdr. (3.50)

Thanks to the discrete integration by parts formulas (3.23)–(3.25) we have∫ tn

0

( ˙̃un(r), z̃+
n (r))H dr = (ũ+

n (t), z̃+
n (t))H − (u1, ż(0))H −

∫ tn

0

(ũ−n (r), ˙̃zn(r))H dr,∫ tn

0

(N+
n (r), ũ+

n (r)− z̃+
n (r))HN dr = (N+

n (t), u+
n (t)− z+

n (t))HN − (N(0), u0 − z(0))HN
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−
∫ tn

0

(Ñ+
n (r), u−n (r)− z−n (r))HN dr.

By arguing as before we deduce∫ tn

0

( ˙̃un(r), z̃+
n (r))H dr −−−−→

n→∞
(u̇(t), ż(t))H − (u1, ż(0))H −

∫ t

0

(u̇(r), z̈(r))H dr, (3.51)∫ tn

0

(N+
n (r), ũ+

n (r)− z̃+
n (r))HN dr

−−−−→
n→∞

(N(t), u(t)− z(t))HN − (N(0), u0 − z(0))HN −
∫ t

0

(Ṅ(r), u(r)− z(r))HN dr, (3.52)

thanks to Lemma 3.7 and to the following convergences:

‖z̃+
n (t)− ż(t)‖H ≤ −

∫ tn

tn−τn
‖ż(r)− ż(t)‖H dr −−−−→

n→∞
0,

‖z+
n (t)− z(t)‖HN ≤ Ctr

√
τn‖ż‖L2(0,T ;U0) −−−−→

n→∞
0,

‖N+
n (t)−N(t)‖HN ≤

∫ tn

t

‖Ṅ(s)‖HN ds −−−−→
n→∞

0,

and

χ[0,tn]
˙̃zn

L1(0,T ;H)−−−−−−−→
n→∞

χ[0,t]z̈, ũ−n
L∞(0,T ;H) ∗−−−−−−−⇀
n→∞

u̇,

χ[0,tn]Ñ
+
n

L1(0,T ;HN )−−−−−−−−→
n→∞

χ[0,t]Ṅ , u−n − z−n
L∞(0,T ;UT ) ∗−−−−−−−−⇀

n→∞
u− z.

By combining (3.42) with (3.43)–(3.52) we deduce the energy-dissipation inequality (3.40) for every t ∈ (0, T ].
Finally, for t = 0 the inequality trivially holds since u(0) = u0 in U0 and u̇(0) = u1 in H. �

Remark 3.11. From the classical point of view, the total work on the solution u at time t ∈ [0, T ] is given
by

WC
tot(t) :=Wload(t) +Wbdry(t), (3.53)

where Wload(t) is the work on the solution u at time t ∈ [0, T ] due to the loading term, which is defined as

Wload(t) :=

∫ t

0

(f(r), u̇(r))H dr,

and Wbdry(t) is the work on the solution u at time t ∈ [0, T ] due to the varying boundary conditions, which
one expects to be equal to

Wbdry(t) :=

∫ t

0

(N(r), u̇(r))HN dr +

∫ t

0

(Ceu(r)ν +

Å
d

dr

∫ r

0

G(r − s)(eu(s)− eu0)ds

ã
ν, ż(r))HD dr.

Unfortunately,Wbdry(t) is not well defined under our assumptions on u. In particular, the term involving the

Dirichlet datum z is difficult to handle since the trace of the function Ceu(r)ν + d
dr

(∫ r
0
G(r − s)eu(s)ds

)
ν

on ∂DΩ is not well defined. If we assume that u ∈ L2(0, T ;H2(Ω \Γ;Rd))∩H2(0, T ;L2(Ω \Γ;Rd)) and that
Γ is a smooth manifold, then the first term of Wbdry(t) makes sense and satisfies∫ t

0

(N(r), u̇(r))HN dr = (N(t), u(t))HN − (N(0), u(0))HN −
∫ t

0

(Ṅ(r), u(r))HN dr.

Moreover, we have

d

dr

∫ r

0

G(r − s)(eu(s)− eu0) ds = G(0)(eu(r)− eu0) +

∫ r

0

Ġ(r − s)(eu(s)− eu0) ds

= G(r)(eu(r)− eu0) +

∫ r

0

Ġ(r − s)(eu(s)− eu(r)) ds, (3.54)
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therefore
(

d
dr

∫ r
0
G(r − s)(eu(s)− eu0)ds

)
ν ∈ L2(0, T ;HD). By using (3.1), together with the divergence

theorem and the integration by parts formula, we derive∫ t

0

(Ceu(r)ν +

Å
d

dr

∫ r

0

G(r − s)(eu(s)− eu0) ds

ã
ν, ż(r))HD dr

=

∫ t

0

(Ceu(r) +
d

dr

∫ r

0

G(r − s)(eu(s)− eu0) ds, eż(r))Hdr

+

∫ t

0

ï
(div

Å
Ceu(r) +

d

dr

∫ r

0

G(r − s)(eu(s)− eu0) ds

ã
, ż(r))H − (N(r), ż(r))HN

ò
dr

=

∫ t

0

ï
(Ceu(r) +

d

dr

∫ r

0

G(r − s)(eu(s)− eu0) ds, eż(r))H + (ü(r)− f(r), ż(r))H − (N(r), ż(r))HN

ò
dr

=

∫ t

0

ï
(Ceu(r) +

d

dr

∫ r

0

G(r − s)(eu(s)− eu0) ds, eż(r))H − (f(r), ż(r))H

ò
dr

+

∫ t

0

î
(Ṅ(r), z(r))HN − (u̇(r), z̈(r))H

ó
dr + (u̇(t), ż(t))H − (u1, ż(0))H − (N(t), z(t))HN + (N(0), z(0))HN .

(3.55)

Therefore, by (3.54) and (3.55) we deduce the definition of total work given in (3.41) is coherent with the
classical one (3.53).

We conclude this subsection by showing that the generalized solution of Lemma 3.7 satisfies the initial
conditions in a stronger sense than the ones stated in Definition 2.2.

Lemma 3.12. Assume (2.2)–(2.4) and (3.2)–(3.6). Then the generalized solution u ∈ Cw to system (3.1)
of Lemma 3.7 satisfies

lim
t→0+

‖u(t)− u0‖UT = 0, lim
t→0+

‖u̇(t)− u1‖H = 0. (3.56)

In particular, the functions u : [0, T ]→ UT and u̇ : [0, T ]→ H are continuous at t = 0.

Proof. By sending t → 0+ into the energy-dissipation inequality (3.40) and using that u ∈ C0
w([0, T ];UT ),

u̇ ∈ C0
w([0, T ];H), and the lower semicontinuity of the real functions

t 7→ ‖u̇(t)‖2H , t 7→ (Ceu(t), eu(t))H ,

we deduce

E(0) ≤ 1

2
lim inf
t→0+

‖u̇(t)‖2H +
1

2
lim inf
t→0+

(Ceu(t), eu(t))H

≤ 1

2
lim sup
t→0+

‖u̇(t)‖2H +
1

2
lim inf
t→0+

(Ceu(t), eu(t))H ≤ lim sup
t→0+

ï
1

2
‖u̇(t)‖2H +

1

2
(Ceu(t), eu(t))H

ò
≤ E(0),

because the right-hand side of (3.40) is continuous in t, u(0) = u0 in U0 and u̇(0) = u1 in H. This gives

lim
t→0+

‖u̇(t)‖2H = ‖u1‖2H ,

and in a similar way, we can also obtain

lim
t→0+

(Ceu(t), eu(t))H = (Ceu0, eu0)H .

Since
u̇(t)

H−−−−⇀
t→0+

u1, eu(t)
H−−−−⇀

t→0+
eu0,

and u ∈ C0([0, T ];H), we deduce (3.56). �

By combining the previous results together we obtain the following existence result for the system (3.1).

Theorem 3.13. Assume (2.2)–(2.4) and (3.2)–(3.6). Then there exists a generalized solution u ∈ Cw to
system (3.1). Moreover, we have u ∈ H2(0, T ; (UD0 )′) and it satisfies the energy-dissipation inequality (3.40)
and

lim
t→0+

‖u(t)− u0‖UT = 0, lim
t→0+

‖u̇(t)− u1‖H = 0.

Proof. It is enough to combine Lemma 3.7, Corollary 3.8, Lemma 3.9, Proposition 3.10, and Lemma 3.12. �
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3.2. Uniform energy estimates. In this subsection we show that, under the stronger assumption (2.1) on
z, the generalized solution to (3.1) of Theorem 3.13 satisfies some uniform estimates which depends on G
only via ‖G‖L1(0,T ;B).

Lemma 3.14. Assume (2.1)–(2.4) and (3.2)–(3.5). Let u be the generalized solution to system (3.1) of
Theorem 3.13. Then there exists a constant M = M(z,N, f, u0, u1,C, ‖G‖L1(0,T ;B)) such that

‖u̇(t)‖H + ‖eu(t)‖H ≤M for every t ∈ [0, T ]. (3.57)

Proof. We define

K := sup
t∈[0,T ]

‖u̇(t)‖H = ‖u̇‖L∞(0,T ;H), E := sup
t∈[0,T ]

‖eu(t)‖H = ‖eu‖L∞(0,T ;H).

Notice that K and E are well-posed since u ∈ C0
w([0, T ];UT ) and u̇ ∈ C0

w([0, T ];H). Let us estimate the
total work Wtot(t) in (3.40) by means of K and E. Since

‖u(t)‖UT ≤ ‖u0‖H + TK + E for every t ∈ [0, T ],

we have ∣∣∣∣∣
∫ t

0

(f(r), u̇(r))H dr

∣∣∣∣∣ ≤ √T‖f‖L2(0,T ;H)K,∣∣∣∣∣
∫ t

0

(Ṅ(r), u(r))HN dr

∣∣∣∣∣ ≤ Ctr‖Ṅ‖L2(0,T ;HN )

(
‖u0‖H + TK + E

)
,

|(N(t), u(t))HN | ≤ Ctr‖N‖C0([0,T ];HN )

(
‖u0‖H + TK + E

)
,

|(N(0), u0)HN | ≤ Ctr‖N‖C0([0,T ];HN )

(
‖u0‖H + TK + E

)
,∣∣∣∣∣

∫ t

0

(f(r), ż(r))H dr

∣∣∣∣∣ ≤ √T‖f‖L2(0,T ;H)‖ż‖C0([0,T ];H),∣∣∣∣∣
∫ t

0

(N(r), ż(r))HN dr

∣∣∣∣∣ ≤ Ctr‖N‖C0([0,T ];HN )‖ż‖L1(0,T ;U0),∣∣∣∣∣
∫ t

0

(Ceu(r), eż(r))H dr

∣∣∣∣∣ ≤ ‖C‖B‖eż‖L1(0,T ;H)E,∣∣∣∣∣
∫ t

0

(u̇(r), z̈(r))H dr

∣∣∣∣∣ ≤ ‖z̈‖L1(0,T ;H)K,

|(u̇(t), ż(t))H | ≤ ‖ż‖C0([0,T ];H)K,

|(u1, ż(0))H | ≤ ‖ż‖C0([0,T ];H)K.

It remains to study the last two terms, which are∫ t

0

(G(r)(eu(r)− eu0), eż(r))H dr +

∫ t

0

∫ r

0

(Ġ(r − s)(eu(s)− eu(r)), eż(r))H dsdr

=

∫ t

0

(G(0)(eu(r)− eu0), eż(r))H dr +

∫ t

0

∫ r

0

(Ġ(r − s)(eu(s)− eu0), eż(r))H dsdr.

Since z ∈W 2,1(0, T ;U0), arguing as in Proposition 3.3 we can deduce that the function

p(t) :=

∫ t

0

(G(t− r)(eu(r)− eu0), eż(t))H dr

is absolutely continuous on [0, T ]. In particular

p(t)− p(0) =

∫ t

0

ṗ(r) dr,

which gives∫ t

0

(G(r)(eu(r)− eu0), eż(r))H dr +

∫ t

0

∫ r

0

(Ġ(r − s)(eu(s)− eu(r)), eż(r))H dsdr
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=

∫ t

0

(G(t− r)(eu(r)− eu0), eż(t))H dr −
∫ t

0

∫ r

0

(G(r − s)(eu(s)− eu0), ez̈(r))H dsdr. (3.58)

Hence, we deduce∣∣∣∣∣
∫ t

0

(G(r)(eu(r)− eu0), eż(r))H dr +

∫ t

0

∫ r

0

(Ġ(r − s)(eu(s)− eu(r)), eż(r))H dsdr

∣∣∣∣∣
≤ 2(‖eż‖C0([0,T ];H) + ‖ez̈‖L1(0,T ;H))‖G‖L1(0,T ;B)E.

Therefore, since

E(0) ≤ 1

2
‖u1‖2H +

1

2
‖C‖B‖eu0‖2H ,

by (3.40) we deduce the following estimate

‖u̇(t)‖2H + γ‖eu(t)‖2H ≤ C0 + C1K + C2E for every t ∈ [0, T ],

where
C0 = C0(z,N, f, u0, u1,C), C1 = C1(f, z,N), C2 = C2(z,N,C, ‖G‖L1(0,T ;B)).

In particular, being the right-hand side independent of t ∈ [0, T ], we conclude

K2 + γE2 ≤ 2C0 + 2C1K + 2C2E for every t ∈ [0, T ].

This implies the existence of a constant M = M(C0, C1, C2) for which (3.57) is satisfied. �

Remark 3.15. By the previous estimate, we can easily derive a uniform bound also for u̇ in H1(0, T ; (UD0 )′),
which unfortunately depends on G via ‖G(0)‖B . Indeed, let us assume that z, N , f , u0, u1, C, and G
satisfy (2.1)–(2.4) and (3.2)–(3.5) and let u be the generalized solution of Theorem 3.13. Thanks to (3.40)
and (3.57) there exists a constant M = M(z,N, f, u0, u1,C, ‖G‖L1(0;T ;B)) such that for every t ∈ [0, T ]

‖eu(t)‖2H + (G(t)(eu(t)− eu0), eu(t)− eu0)H +

∫ t

0

(−Ġ(t− r)(eu(t)− eu(r)), eu(t)− eu(r))H dr ≤M.

By equation (3.7) it is easy to see that u̇ ∈ H1(0, T ; (UD0 )′) and that ü satisfies for a.e. t ∈ (0, T ) and for
every v ∈ UD0

|〈ü(t), v〉(UD0 )′ | ≤ ‖C‖B‖eu(t)‖H‖ev‖H +
»

(G(t)(eu(t)− eu0), eu(t)− eu0)H
»

(G(t)ev, ev)H

+

 ∫ t

0

(−Ġ(t− r)(eu(t)− eu(r)), eu(t)− eu(r))H dr

 ∫ t

0

(−Ġ(t− r)ev, ev)H dr

+ ‖f(t)‖H‖v‖H + ‖N(t)‖HN ‖v‖HN .
Hence, we derive

|〈ü(t), v〉(UD0 )′ |2 ≤ 5‖C‖2BM‖ev‖2H + 5M(G(t)ev, ev)H + 5M

∫ t

0

(−Ġ(t− r)ev, ev)H dr

+ 5‖f(t)‖2H‖v‖2H + 5C2
tr‖N(t)‖2HN ‖v‖

2
U0

= 5M‖C‖2B‖ev‖2H + 5M(G(0)ev, ev)H + 5‖f(t)‖2H‖v‖2H + 5C2
tr‖N(t)‖2HN ‖v‖

2
U0
,

which gives

‖ü‖2L2(0,T ;(UD0 )′) ≤ 5M‖C‖2BT + 5MT‖G(0)‖B + 5‖f‖2L2(0,T ;H) + 5C2
tr‖N‖2L2(0,T ;HN ).

Therefore the bounds on ü depends on ‖G(0)‖B even when z ∈W 2,1(0, T ;U0).

As explained in the previous remark, we can not deduce a uniform bound for u̇ in H1(0, T ; (UD0 )′) depend-
ing on G only via its L1-norm. On the other hand, the bound on u̇ in H1(0, T ; (UD0 )′) is useful if we want
to prove the existence of a generalized solution u∗ to the fractional Kelvin-Voigt system (2.9), especially to
show that u̇∗ ∈ C0

w([0, T ];H). To overcome this problem, we introduce another function that is related to u̇
and for which is possible to derive a uniform bound. Let us consider the auxiliary function α : [0, T ]→ (UD0 )′

defined as

〈α(t), v〉(UD0 )′ := (u̇(t), v)H +

∫ t

0

(G(t− r)(eu(r)− eu0), ev)H dr for every v ∈ UD0 and t ∈ [0, T ].
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Notice that α ∈ C0
w([0, T ]; (UD0 )′). Indeed, given t∗ ∈ [0, T ] and

{tk}k ⊂ [0, T ] such that tk −−−−→
k→∞

t∗,

we have for every v ∈ UD0 the following convergence

〈α(tk), v〉(UD0 )′ = (u̇(tk), v)H +

∫ tk

0

(G(tk − r)(eu(r)− eu0), ev)H dr

−−−−→
k→∞

(u̇(t∗), v)H +

∫ t∗

0

(G(t∗ − r)(eu(r)− eu0), ev)H dr = 〈α(t∗), v〉(UD0 )′ ,

since

u̇(tk)
H−−−−⇀

k→∞
u̇(t∗),

∫ tk

0

(G(tk − r)(eu(r)− eu0), ev)H dr −−−−→
k→∞

∫ t∗

0

(G(t∗ − r)(eu(r)− eu0), ev)H dr.

The second convergence is true because∫ tk

0

(G(tk − r)(eu(r)− eu0), ev)H dr

=

∫ t∗

0

(eu(r)− eu0,G(tk − r)ev)H dr −
∫ t∗

tk

(eu(r)− eu0,G(tk − r)ev)H dr.

Clearly

G(tk − · )ev
L1(0,t∗;H)−−−−−−−→
k→∞

G(t∗ − · )ev

while eu ∈ L∞(0, t∗;H). Therefore∫ t∗

0

(eu(r)− eu0,G(tk − r)ev)H dr −−−−→
k→∞

∫ t∗

0

(eu(r)− eu0,G(t∗ − r)ev)H dr

=

∫ t∗

0

(G(t∗ − r)(eu(r)− eu0), ev)Hdr.

Moreover ∣∣∣∣∣
∫ t∗

tk

(eu(r)− eu0,G(tk − r)ev)H dr

∣∣∣∣∣ ≤ 2M‖ev‖H

∣∣∣∣∣
∫ tk−t∗

0

‖G(r)‖B dr

∣∣∣∣∣ −−−−→k→∞
0.

For this function α is possible to find a uniform bound in H1(0, T ; (UD0 )′) which depends on ‖G‖L1(0,T ;B).

Corollary 3.16. Assume (2.1)–(2.4) and (3.2)–(3.5). Then the function α ∈ H1(0, T ; (UD0 )′) and there

exists a constant M̃ = M̃(z,N, f, u0, u1,C, ‖G‖L1(0,T ;B)) such that

‖α‖H1(0,T ;(UD0 )′) ≤ M̃. (3.59)

Proof. First, by Lemma 3.14 we have

‖α(t)‖(UD0 )′ ≤M(1 + 2‖G‖L1(0,T ;B)) for every t ∈ [0, T ].

Moreover, by the definition of generalized solution, we deduce that for every ψ ∈ C1
c (0, T ) and v ∈ UD0 it

holds

−
∫ T

0

〈α(t), v〉(UD0 )′ ψ̇(t) dt = −
∫ T

0

(Ceu(t), ev)Hψ(t) dt+

∫ T

0

(f(t), v)Hψ(t) dt+

∫ T

0

(N(t), v)HNψ(t) dt.

This gives that there exists α̇ ∈ L2(0, T ; (UD0 )′) and

〈α̇(t), v〉(UD0 )′ = −(Ceu(t), ev)H + (f(t), v)H + (N(t), v)HN for every v ∈ UD0 and for a.e. t ∈ (0, T ).

In particular, α ∈ C0([0, T ]; (UD0 )′) and

‖α̇‖2L2(0,T ;(UD0 )′) ≤ 3M2T‖C‖2B + 3‖f‖2L2(0,T ;H) + 3C2
tr‖N‖2L2(0,T ;HN ),

which gives (3.59). �
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4. The fractional Kelvin-Voigt’s model

In this section we prove the existence of a generalized solution to (2.9) for a tensor F which is not necessary
bounded at t = 0, as it happens in (1.7). Here, we assume that our data z,N, f, u0, u1,C, and F satisfy the
conditions (2.1)–(2.8). To prove the existence of a generalized solution to (2.9) under these assumptions, we
first regularize F by a parameter ε > 0 and we consider system (3.1) associated to this regularization. Then,
we take the solution uε given by Theorem 3.13 and thanks to Lemma 3.14 and Corollary 3.16 we obtain a
generalized solution to (2.9).

Let us regularize F by defining

Gε(t) := F (t+ ε) for t ∈ [0, T ] and ε ∈ (0, δ0).

Clearly Gε satisfies (3.2)–(3.5). Moreover, we have Gε → F in L1(0, T ;B) since F ∈ L1(0, T + δ0;B). For
every fixed ε ∈ (0, δ0) we can consider the generalized solution uε to system (3.1) with G replaced by Gε of
Theorem 3.13. By Lemma 3.14 and Corollary 3.16 we deduce the following compactness result:

Lemma 4.1. Assume (2.1)–(2.8). For every ε ∈ (0, δ0) let uε be the generalized solution associated to
system (3.1) with G replaced by Gε given by Theorem 3.13. Then there exists a function u∗ ∈ Cw and a
subsequence of ε, not relabeled, such that

uε
L2(0,T ;UT )−−−−−−−⇀
ε→0+

u∗, u̇ε
L2(0,T ;H)−−−−−−−⇀
ε→0+

u̇∗, (4.1)

and for every t ∈ [0, T ]

uε(t)
UT−−−−⇀
ε→0+

u∗(t), u̇ε(t)
H−−−−⇀

ε→0+
u̇∗(t). (4.2)

Moreover, u∗(0) = u0 in U0, u̇∗(0) = u1 in H, and u∗(t)− z(t) ∈ UDt for every t ∈ [0, T ].

Proof. Thanks to Lemma 3.14 we deduce

‖u̇ε(t)‖H + ‖euε(t)‖H ≤M for every t ∈ [0, T ] and ε ∈ (0, δ0),

with a constant M independent of ε since ‖Gε‖L1(0,T ;B) ≤ ‖F‖L1(0,T+δ0;B). Hence, by Banach-Alaoglu’s
theorem and Lemma 3.6 there exists

u∗ ∈ C0
w([0, T ];UT ) ∩W 1,∞(0, T ;H)

and a not relabeled subsequence of ε such that

uε
L2(0,T ;UT )−−−−−−−⇀
ε→0+

u∗, u̇ε
L2(0,T ;H)−−−−−−−⇀
ε→0+

u̇∗, uε(t)
UT−−−−⇀
ε→0+

u∗(t) for every t ∈ [0, T ]. (4.3)

In particular, we deduce that u∗(0) = u0 in U0, u∗(t) ∈ Ut and u∗(t)− z(t) ∈ UDt for every t ∈ [0, T ].
It remains to show that u̇∗ ∈ C0

w([0, T ];H), u̇∗(0) = u1 in H, and that for every t ∈ [0, T ]

u̇ε(t)
H−−−−⇀

ε→0+
u̇∗(t).

To this aim we consider the auxiliary function defined at the end of the previous section. More precisely, for
every ε ∈ (0, δ0) let αε : [0, T ]→ (UD0 )′ be defined as

〈αε(t), v〉(UD0 )′ := (u̇ε(t), v)H +

∫ t

0

(Gε(t− r)(euε(r)− eu0), ev)H dr for every v ∈ UD0 and t ∈ [0, T ].

In view of Corollary 3.16, we have

‖αε‖H1(0,T ;(UD0 )′) ≤ M̃ for every ε ∈ (0, δ0),

with M̃ independent of ε > 0 being ‖Gε‖L1(0,T ;B) ≤ ‖F‖L1(0,T+δ0;B). Hence, up to extract a further

subsequence, there exists α∗ ∈ H1(0, T ; (UD0 )′) such that

αε
H1(0,T ;(UD0 )′)−−−−−−−−−⇀

ε→0+
α∗, αε(t)

(UD0 )′−−−−⇀
ε→0+

α∗(t) for every t ∈ [0, T ]. (4.4)

In particular, since αε(0) = u1 in (UD0 )′ we conclude that α∗(0) = u1 in (UD0 )′. We claim

〈α∗(t), v〉(UD0 )′ = (u̇∗(t), v)H +

∫ t

0

(F(t− r)(eu∗(r)− eu0), ev)H dr for every v ∈ UD0 and for a.e. t ∈ (0, T ).
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Indeed, for every ϕ ∈ C∞c (0, T ;UD0 ) we have∫ T

0

〈αε(t), ϕ(t)〉(UD0 )′ dt =

∫ T

0

(u̇ε(t), ϕ(t))H dt+

∫ T

0

∫ t

0

(Gε(t− r)(euε(r)− eu0), eϕ(t))H dr dt

−−−−→
ε→0+

∫ T

0

(u̇∗(t), ϕ(t))H dt+

∫ T

0

∫ t

0

(F(t− r)(eu∗(r)− eu0), eϕ(t))H dr dt.

Notice that this convergence is true thanks to (4.3) and

Gε(t− · ) L1(0,t;B)−−−−−−→
ε→0+

F(t− · ),

which gives ∫ T

0

(u̇ε(t), ϕ(t))H dt −−−−→
ε→0+

∫ T

0

(u̇∗(t), ϕ(t))H dt,∫ t

0

(Gε(t− r)(euε(r)− eu0), eϕ(t))H dr −−−−→
ε→0+

∫ t

0

(F(t− r)(eu∗(r)− eu0), eϕ(t))H dr.

Hence by the dominated convergence theorem we have∫ T

0

∫ t

0

(Gε(t− r)(euε(r)− eu0), eϕ(t))H dr dt −−−−→
ε→0+

∫ T

0

∫ t

0

(F(t− r)(eu∗(r)− eu0), eϕ(t))H dr dt.

Therefore, for a.e. t ∈ (0, T ) we deduce

〈u̇∗(t), v〉(UD0 )′ = (u̇∗(t), v)H = 〈α∗(t), v〉(UD0 )′ −
∫ t

0

(F(t− r)(eu∗(r)− eu0), ev)H dr for every v ∈ UD0 .

Notice the function on the right-hand side is well defined in (UD0 )′ for every t ∈ [0, T ]. Therefore, we can
extend u̇∗ to a function defined in the whole interval [0, T ] with values in (UD0 )′. In particular, we deduce
u̇∗ ∈ C0

w([0, T ]; (UD0 )′), arguing in a similar way as we did in the previous section for α, and thanks to the
fact that u̇∗(0) = α∗(0) = u1 in (UD0 )′. Therefore, since u̇∗ ∈ C0

w([0, T ]; (UD0 )′)∩L∞(0, T ;H) we derive that
u̇∗ ∈ C0

w([0, T ];H) (thanks to Lemma 3.6), and that u̇∗(0) = u1 in H. Finally, we have

u̇ε(t)
(UD0 )′−−−−⇀
ε→0+

u̇∗(t) for every t ∈ [0, T ] (4.5)

by definition of u̇∗ and by (4.3) and (4.4). The convergence (4.5) combined with

‖u̇ε(t)‖H ≤M for every t ∈ [0, T ],

give us the last convergence required. �

We can now prove the main existence result of Theorem 2.4 for the fractional Kelvin-Voigt’s system
involving Caputo’s derivative.

Proof of Theorem 2.4. It is enough to show that the function u∗ given by Lemma 4.1 is a generalized solution
to (2.9). To this aim, it remains to prove that u∗ satisfies (2.10). For every ϕ ∈ C1

c we know that the function
uε ∈ Cw satisfy for every ε ∈ (0, δ0) the following equality

−
∫ T

0

(u̇ε(t), ϕ̇(t))H dt+

∫ T

0

(Ceuε(t), eϕ(t))H dt−
∫ T

0

∫ t

0

(Gε(t− r)(euε(r)− eu0), eϕ̇(t))H dr dt

=

∫ T

0

(f(t), ϕ(t))H dt+

∫ T

0

(N(t), ϕ(t))HN dt.

Let us pass to the limit as ε→ 0+. Clearly, by (4.1) we have∫ T

0

(u̇ε(t), ϕ̇(t))H dt −−−−→
ε→0+

∫ T

0

(u̇∗(t), ϕ̇(t))H dt,∫ T

0

(Ceuε(t), eϕ(t))H dt −−−−→
ε→0+

∫ T

0

(Ceu∗(t), eϕ(t))H dt.
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It remains to study the behaviour as ε→ 0+ of∫ T

0

∫ t

0

(Gε(t− r)(euε(r)− eu0), eϕ̇(t))H dr dt.

We define for every ε ∈ (0, δ0) the function

vε(t) :=

∫ t

0

(Gε(t− r)− F(t− r))(euε(r)− eu0) dr for t ∈ [0, T ].

By (3.57) for every t ∈ [0, T ] it holds

‖vε(t)‖H ≤ ‖Gε − F‖L1(0,T ;B)‖euε − eu0‖L∞(0,T ;H) ≤ 2M‖Gε − F‖L1(0,T ;B), (4.6)

with M independent of ε being ‖Gε‖L1(0,T ;B) ≤ ‖F‖L1(0,T+δ0;B). Notice that∫ T

0

∫ t

0

(Gε(t− r)(euε(r)− eu0), eϕ̇(t))H dr dt

=

∫ T

0

(vε(t), eϕ̇(t))H dt+

∫ T

0

∫ t

0

(F(t− r)(euε(r)− eu0), eϕ̇(t))H dr dt,

and thanks to (4.6) and to the fact that Gε → F in L1(0, T ;B) as ε→ 0+, we get∣∣∣∣∣
∫ T

0

(vε(t), eϕ̇(t))H dt

∣∣∣∣∣ ≤
∫ T

0

‖vε(t)‖H‖eϕ̇(t)‖H dt ≤ 2M‖Gε − F‖L1(0,T ;B)‖eϕ̇‖L1(0,T ;H) −−−−→
ε→0+

0.

On the other hand, since r 7→
∫ T
r
F(t− r)eϕ̇(t) dt belongs to L∞(0, T ;H), we can write∫ T

0

∫ t

0

(F(t− r)(euε(r)− eu0), eϕ̇(t))H dr dt =

∫ T

0

(euε(r)− eu0,

∫ T

r

F(t− r)eϕ̇(t) dt)H dr

−−−−→
ε→0+

∫ T

0

(eu∗(r)− eu0,

∫ T

r

F(t− r)eϕ̇(t) dt)H dr =

∫ T

0

∫ t

0

(F(t− r)(eu∗(r)− eu0), eϕ̇(t))H dr dt.

As a consequence, u∗ is a generalized solution to system (2.9). �

We conclude this section by showing that for the fractional Kelvin-Voigt’s model, the generalized solution
u∗ ∈ Cw to (2.9) found before satisfies an energy-dissipation inequality. As before, for t ∈ (0, T ] we define
the functions E∗(t) and D∗(t) as

E∗(t) :=
1

2
‖u̇∗(t)‖2H +

1

2
(Ceu∗(t), eu∗(t))H dt+

1

2
(F(t)(eu∗(t)− eu0), eu∗(t)− eu0)H

− 1

2

∫ t

0

(Ḟ(t− r)(eu∗(t)− eu∗(r)), eu∗(t)− eu∗(r))H dr,

D∗(t) := −1

2

∫ t

0

(Ḟ(r)(eu∗(r)− eu0), eu∗(r)− eu0)H dr

+
1

2

∫ t

0

∫ r

0

(F̈(r − s)(eu∗(r)− eu∗(s)), eu∗(r)− eu∗(s))H dsdr.

Notice that the integrals in E∗ and D∗ are well-posed, eventually with values∞. Furthermore, we define the
total work W∗tot(t) for t ∈ [0, T ] as

W∗tot(t) : =

∫ t

0

[(f(r), u̇∗(r)− ż(r))H − (Ṅ(r), u∗(r)− z(r))HN − (u̇∗(r), z̈(r))H + (Ceu∗(t), eż(t))H ] dr

+ (N(t), u∗(t)− z(t))HN − (N(0), u0 − z(0))HN + (u̇∗(t), ż(t))H − (u1, ż(0))H

+

∫ t

0

(F(t− r)(eu∗(r)− eu0), eż(t))H dr −
∫ t

0

∫ r

0

(F(r − s)(eu∗(s)− eu0), ez̈(r))H dsdr. (4.7)

We point out the total work W∗tot is continuous in [0, T ] and that the definition given in (4.7) is coherent
with the one of (3.41) thanks to identity (3.58).
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Theorem 4.2. Assume (2.1)–(2.8). Then the generalized solution u∗ ∈ Cw to system (2.9) of Theorem 2.4
satisfies for every t ∈ (0, T ] the following energy-dissipation inequality

E∗(t) +D∗(t) ≤ 1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H +W∗tot(t). (4.8)

In particular, E∗(t) and D∗(t) are finite for every t ∈ (0, T ].

Proof. Let us fix t ∈ (0, T ]. For every ε ∈ (0, δ0) let uε ∈ Cw be the generalized solution to system (3.1)
with G replaced by Gε given by Lemma 4.1. Thanks to Proposition 3.10 we know that the function uε

satisfies the energy-dissipation inequality (3.40) and we can rewrite the total work (3.41) as in (4.7) since
z ∈ W 2,1(0, T ;U0) (as suggested by formula (3.58)). The convergences (4.2) of Lemma 4.1, and the lower
semicontinuous property of the maps v 7→ ‖v‖2H , w 7→ (Cw,w)H (by (2.4)), and w 7→ (F(t)w,w)H (by (2.6)),
imply

‖u̇∗(t)‖2H ≤ lim inf
ε→0+

‖u̇ε(t)‖2H , (4.9)

(Ceu∗(t), eu∗(t))H ≤ lim inf
ε→0+

(Ceuε(t), euε(t))H , (4.10)

(F(t)(eu∗(t)− eu0), eu∗(t)− eu0)H ≤ lim inf
ε→0+

(F(t)(euε(t)− eu0), euε(t)− eu0)H . (4.11)

Moreover, by (2.5) we have

|((F(t)−Gε(t))(euε(t)− eu0), euε(t)− eu0)H | ≤ ‖F(t)−Gε(t)‖B‖euε(t)− eu0‖2H
≤ 4M2‖F(t)− F(t+ ε)‖B −−−−→

ε→0+
0,

being M independent of ε. Hence (4.11) reads as

(F(t)(eu∗(t)− eu0), eu∗(t)− eu0)H ≤ lim inf
ε→0+

(Gε(t)(euε(t)− eu0), euε(t)− eu0)H . (4.12)

Similarly, by (2.5), (2.7), and (4.2), for every r ∈ (0, t) we have

(−Ḟ(t− r)(eu∗(t)− eu∗(r)), eu∗(t)− eu∗(r))H
≤ lim inf

ε→0+
(−Ġε(t− r)(euε(t)− euε(r)), euε(t)− euε(r))H .

In particular, we can use Fatou’s lemma to obtain∫ t

0

(−Ḟ(t− r)(eu∗(t)− eu∗(r)), eu∗(t)− eu∗(r))H dr

≤ lim inf
ε→0+

∫ t

0

(−Ḟ(t− r)(euε(t)− euε(r)), euε(t)− euε(r))H dr.

By arguing in a similar way, we can derive∫ t

0

(−Ḟ(r)(eu∗(r)− eu0), eu∗(r)− eu0)H dr ≤ lim inf
ε→0+

∫ t

0

(−Ġε(r)(euε(r)− eu0), euε(r)− eu0)H dr.

For the term involving F̈, we argue as we already did for Ḟ and by using two times Fatou’s lemma we get∫ t

0

∫ r

0

(F̈(r − s)(eu∗(r)− eu∗(s)), eu∗(r)− eu∗(s))H dsdr

≤ lim inf
ε→0+

∫ t

0

∫ r

0

(G̈ε(r − s)(euε(r)− euε(s)), euε(r)− euε(s))H dsdr.

It remains to study the right-hand side of (3.40) with the formulation of the total work as in (4.7). Thanks
to Lemma 4.1 and the fact that Gε → F in L1(0, T ;B) we deduce∫ t

0

(f(r), u̇ε(r))H dr −−−−→
ε→0+

∫ t

0

(f(r), u̇∗(r))H dr, (4.13)∫ t

0

(Ceuε(r), eż(r))H dr −−−−→
ε→0+

∫ t

0

(Ceu∗(r), eż(r))H dr, (4.14)
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0

(Gε(t− r)(euε(r)− eu0), eż(r))H dr −−−−→
ε→0+

∫ t

0

(F(t− r)(eu∗(r)− eu0), eż(r))H dr, (4.15)

(u̇ε(t), ż(t))H −
∫ t

0

(u̇ε(r), z̈(r))H dr −−−−→
ε→0+

(u̇∗(t), ż(t))H −
∫ t

0

(u̇∗(r), z̈(r))H dr, (4.16)

(N(t), uε(t))HN −
∫ t

0

(N(r), u̇ε(r))HN dr −−−−→
ε→0+

(N(t), u∗(t))HN −
∫ t

0

(Ṅ(r), u∗(r))HN dr. (4.17)

It remains to study the term ∫ t

0

∫ r

0

(Gε(r − s)(euε(s)− eu0), ez̈(r))H dsdr.

For a.e. r ∈ (0, t) we have∫ r

0

(Gε(r − s)(euε(s)− eu0), ez̈(r))H ds −−−−→
ε→0+

∫ r

0

(F(r − s)(eu∗(s)− eu0), ez̈(r))H ds∣∣∣∣∫ r

0

(Gε(r − s)(euε(s)− eu0), ez̈(r))H ds

∣∣∣∣ ≤ 2M‖F‖L1(0,T+δ0;B)‖ez̈(r)‖H ∈ L1(0, t),

with M independent of ε. By the dominated convergence theorem we conclude∫ t

0

∫ r

0

(Gε(r − s)(euε(s)− eu0), ez̈(r))H dsdr −−−−→
ε→0+

∫ t

0

∫ r

0

(F(r − s)(eu∗(s)− eu0), ez̈(r))H dsdr. (4.18)

By combining (4.9)–(4.18) we deduce the energy-dissipation inequality (4.8) for every t ∈ (0, T ]. �

Remark 4.3. Although we do not have any information about L1-integrability of Ḟ and F̈ in t = 0, for the
generalized solution u∗ of Theorem 2.4 we obtain that the energy terms E∗ and D∗ are finite.

Corollary 4.4. Assume (2.1)–(2.8). Then the generalized solution u∗ ∈ Cw to system (2.9) of Theorem 2.4
satisfies

lim
t→0+

E∗(t) =
1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H . (4.19)

In particular, (4.8) holds true also in t = 0 and

lim
t→0+

‖u∗(t)− u0‖UT = 0, lim
t→0+

‖u̇∗(t)− u1‖H = 0.

Proof. By (4.8) for every t ∈ (0, T ] we have

1

2
‖u̇∗(t)‖2H +

1

2
(Ceu0, eu0)H ≤ E∗(t) ≤

1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H +W∗tot(t).

Since u∗ ∈ C0
w([0, T ];UT ) and u̇∗ ∈ C0

w([0, T ];H) we get

1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H ≤ lim inf

t→0+
E∗(t) ≤ lim sup

t→0+

E∗(t) ≤ 1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H .

Therefore, we get (4.19). As consequence of this, we derive

lim
t→0+

‖u̇∗(t)‖2H = ‖u1‖2H , lim
t→0+

(Ceu∗(t), eu∗(t))H = (Ceu0, eu0)H ,

and this conclude the proof. �

For the fractional Kelvin-Voigt’s model (2.9) we expect to have uniqueness of the solution, as it happens
in [6, 24] for the classic Kelvin-Voigt’s one. Unfortunately, the technique used in the cited papers can not be
applied here, and we are able to prove it only when the crack is not moving (see Section 5). We point out
that the uniqueness of the solution is still an open problem even for the pure elastic case (B = 0), unless the
family of cracks is sufficiently regular (see [2, 7]).

Moreover, according the theory of dynamic fracture, we do not expect to have the equality in (4.8).
Indeed, we should add also the energy used to the increasing crack, which is postulated to be proportional
to the area increment of the crack itself, in line with Griffith’s criterion [12]. More precisely, we would like
to have

E∗(t) +D∗(t) +Hd−1(Γt \ Γ0) =
1

2
‖u1‖2H +

1

2
(Ceu0, eu0)H +W∗tot(t) for t ∈ [0, T ]. (4.20)
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However, with our approach we are not able to show the previous identity, which again is unknown even in
the pure elastic case. We underline that there are no results regarding the validity of (4.20) for the fractional
Kelvin-Voigt’s model (2.9) even when the crack is not moving.

5. Uniqueness for a not moving crack

Let us consider the case of a domain with a fixed crack, i.e. ΓT = Γ0 (possibly ΓT = ∅). In this case we
can show that the generalized solution to (2.9) is unique. As we explained in the introduction, uniqueness
results for fractional type systems can be found in the literature, but they are proved only for regular sets
Ω (without cracks) and in particular cases (for F given by (1.7) or when eu is replaced by ∇u).

The proof of the uniqueness is based on a particular energy estimate which holds for the primitive of a
generalized solution. To this aim, we need to estimate∫ t

0

∫ r

0

(F(r − s)eu(s), eu(r))H dsdr

and we start with the following identity which is true for a regular tensor K (see also [26, Lemma 2.1]).

Lemma 5.1. Let K ∈ C1([0, T ];B) and v ∈ L2(0, T ;U0). Then, for every t ∈ [0, T ]∫ t

0

(
d

dr

∫ r

0

K(r − s)ev(s) ds, ev(r))H dr =
1

2

∫ t

0

(K(t− r)ev(r), ev(r))H dr

+
1

2

∫ t

0

(K(r)ev(r), ev(r))H dr − 1

2

∫ t

0

∫ r

0

(K̇(r − s)(ev(r)− ev(s)), ev(r)− ev(s))H dsdr.

(5.1)

Proof. Let us fix t ∈ [0, T ] and let us analyze the right hand-side of (5.1). We have

−1

2

∫ t

0

∫ r

0

(K̇(r − s)(ev(r)− ev(s)), ev(r)− ev(s))H dsdr =

∫ t

0

∫ r

0

(K̇(r − s)ev(s), ev(r))H dsdr

− 1

2

∫ t

0

∫ r

0

(K̇(r − s)ev(s), ev(s))H dsdr − 1

2

∫ t

0

∫ r

0

(K̇(r − s)ev(r), ev(r))H dsdr. (5.2)

Notice that

−1

2

∫ t

0

∫ r

0

(K̇(r − s)ev(r), ev(r))H dsdr = −1

2

∫ t

0

(

Å∫ r

0

K̇(r − s)ds
ã
ev(r), ev(r))H dsdr

= −1

2

∫ t

0

(K(r)ev(r), ev(r))H dr +
1

2

∫ t

0

(K(0)ev(r), ev(r))H dr,

(5.3)

and that for a.e. r ∈ (0, t)

d

dr

∫ r

0

(K(r − s)ev(s), ev(s))H ds = (K(0)ev(r), ev(r))H +

∫ r

0

(K̇(r − s)ev(s), ev(s))H ds,

from which we deduce

−1

2

∫ t

0

(K(t− r)ev(r), ev(r))H dr = −1

2

∫ t

0

d

dr

∫ r

0

(K(r − s)ev(s), ev(s))H dsdr

= −1

2

∫ t

0

(K(0)ev(r), ev(r))H dr − 1

2

∫ t

0

∫ r

0

(K̇(r − s)ev(s), ev(s))H dsdr.

(5.4)

By (5.2)–(5.4) we can say

−1

2

∫ t

0

∫ r

0

(K̇(r − s)(ev(r)− ev(s)), ev(r)− ev(s))H dsdr

=

∫ t

0

∫ r

0

(K̇(r − s)ev(s), ev(r))H dsdr +

∫ t

0

(K(0)ev(r), ev(r))H dr

− 1

2

∫ t

0

(K(r)ev(r), ev(r))H dr − 1

2

∫ t

0

(K(t− r)ev(r), ev(r))H dr,
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and thanks to the following relation

d

dr

∫ r

0

K(r − s)ev(s) ds = K(0)ev(r) +

∫ r

0

K̇(r − s)ev(s)ds for a.e. r ∈ (0, t),

we can conclude the proof. �

Lemma 5.2. Let F be satisfying (2.5)–(2.8) and u ∈ C0
w([0, T ];U0). Then for every t ∈ [0, T ] it holds∫ t

0

∫ r

0

(F(r − s)eu(s), eu(r))H dsdr ≥ 0. (5.5)

Proof. First, we fix ε ∈ (0, δ0) and we consider for every t ∈ [0, T ] the following regularized kernel

Gε(t) := F(t+ ε).

Moreover, we fix t ∈ [0, T ] and we define for every r ∈ [0, t] a primitive of u in the following way

v(r) := −
∫ t

r

u(s) ds.

Clearly Gε ∈ C2([0, T ];B) and after an integration by parts, since ev(t) = 0, we obtain∫ t

0

∫ r

0

(Gε(r − s)eu(s), eu(r))H dsdr =

∫ t

0

∫ r

0

(Gε(r − s)eu(s), ev̇(r))H dsdr

= −
∫ t

0

(Gε(0)ev̇(r), ev(r))H dr −
∫ t

0

∫ r

0

(Ġε(r − s)eu(s), ev(r))H dsdr

=
1

2
(Gε(0)ev(0), ev(0))H −

∫ t

0

∫ r

0

(Ġε(r − s)eu(s), ev(r))H dsdr.

Moreover, we have ∫ r

0

Ġε(r − s)eu(s) ds =
d

dr

∫ r

0

Ġε(r − s)ev(s) ds− Ġε(r)ev(0).

Therefore, by (5.1) we can write∫ t

0

∫ r

0

(Ġε(r − s)eu(s), ev(r))H dsdr =

∫ t

0

(
d

dr

∫ r

0

Ġε(r − s)ev(s) ds− Ġε(r)ev(0), ev(r))H dr

=
1

2

∫ t

0

(Ġε(t− r)ev(r), ev(r))H dr +
1

2

∫ t

0

(Ġε(r)ev(r), ev(r))H dr

− 1

2

∫ t

0

∫ r

0

G̈ε(r − s)(ev(r)− ev(s)), ev(r)− ev(s))H dsdr

−
∫ t

0

(Ġε(r)ev(0), ev(r))H dr,

which implies∫ t

0

∫ r

0

(Gε(r − s)eu(s), eu(r))H dsdr =
1

2
(Gε(0)ev(0), ev(0))H +

∫ t

0

(Ġε(r)ev(0), ev(r))H dr

− 1

2

∫ t

0

(Ġε(t− r)ev(r), ev(r))H dr − 1

2

∫ t

0

(Ġε(r)ev(r), ev(r))H dr

+
1

2

∫ t

0

∫ r

0

(G̈ε(r − s)(ev(r)− ev(s)), ev(r)− ev(s))H dsdr

≥ 1

2
(Gε(0)ev(0), ev(0))H +

1

2

∫ t

0

(Ġε(r)ev(0), ev(0))H dr

− 1

2

∫ t

0

(Ġε(t− r)ev(r), ev(r))H dr

+
1

2

∫ t

0

∫ r

0

(G̈ε(r − s)(ev(r)− ev(s)), ev(r)− ev(s))H dsdr
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=
1

2
(Gε(t)ev(0), ev(0))H −

1

2

∫ t

0

(Ġε(t− r)ev(r), ev(r))H dr

+
1

2

∫ t

0

∫ r

0

G̈ε(r − s)(ev(r)− ev(s)), ev(r)− ev(s))H dsdr ≥ 0.

By sending ε→ 0+ we conclude. �

We can now state our uniqueness result.

Theorem 5.3. Assume (2.1)–(2.8) and ΓT = Γ0. Then there exists at most one generalized solution to
system (2.9).

Proof. Let u1, u2 ∈ Cw be two generalized solutions to (2.9). Then u := u1−u2 satisfies equality (2.10) with
z = N = f = u0 = u1 = 0. Consider the function β : [0, T ]→ (UD0 )′ defined for every r ∈ [0, T ] as

〈β(r), v〉(UD0 )′ := (u̇(r), v)H +

∫ r

0

(Ceu(s), ev)H ds+

∫ r

0

(F(r − s)eu(s), ev)H ds

for every v ∈ UD0 . Clearly β ∈ C0
w([0, T ]; (UD0 )′), β(0) = 0 since u̇(0) = 0 in (UD0 )′, and by (2.10) we derive∫ T

0

〈β(r), v〉(UD0 )′ ψ̇(r) dr = 0 for every v ∈ UD0 and ψ ∈ C1
c (0, T ).

Therefore β is constant in [0, T ], which gives β(t) = 0 in (UD0 )′ for every t ∈ [0, T ], namely

(u̇(r), v)H +

∫ r

0

(Ceu(s), ev)H ds+

∫ r

0

(F(r − s)eu(s), ev)H ds = 0 for every v ∈ UD0 and r ∈ [0, T ].

In particular, for every t ∈ [0, T ] we deduce∫ t

0

(u̇(r), u(r))H dr +

∫ t

0

∫ r

0

(Ceu(s), eu(r))H dsdr +

∫ t

0

∫ r

0

(F(r − s)eu(s), eu(r))H dsdr = 0.

Hence, by (5.5) we conclude

1

2
‖u(t)‖2H +

1

2
(C
Ç∫ t

0

eu(r) dr

å
,

∫ t

0

eu(r) dr)H ≤ 0 for every t ∈ [0, T ].

Therefore, since both terms are non-negative, we get that u(t) = 0 for every t ∈ [0, T ]. �
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