OPTIMAL FREE EXPORT/IMPORT REGIONS

SAMER DWEIK

ABSTRACT. We consider the problem of finding two free export/import sets E^+ and E^- that minimize the total cost of some export/import transportation problem (with export/import taxes g^{\pm}), between two densities f^+ and f^- , plus penalization terms on E^+ and E^- . First, we prove existence of such optimal sets under some assumptions on f^{\pm} and g^{\pm} . Then, we study some properties of these sets such as convexity and regularity. In particular, we show that the optimal free export (resp. import) region E^+ (resp. E^-) has boundary of class C^2 as soon as f^+ (resp. f^-) is continuous and ∂E^+ (resp. ∂E^-) is $C^{2,1}$ provided that f^+ (resp. f^-) is Lipschitz.

1. INTRODUCTION

In this paper we study a shape optimization problem where the functional to be minimized is given by an export/import transportation problem with free export/import zones. Before entering the details of this problem, let us introduce the standard export/import transportation problem. Let f^+ and f^- be two given masses in some bounded region Ω and assume that we want to transport f^+ to f^- paying a transport cost |x - y|, for each unit of mass that moves from x to y. But, as the total mass of f^+ can be different than the one for f^- , we are allowed to export or import masses from the boundary $\partial\Omega$ paying two additional costs on the boundary (called *export/import taxes*) $g^+(x)$ and $g^-(y)$, for each unit of mass that comes out/enters at some point of $\partial\Omega$. We note that this problem has already been considered in many papers [8, 3, 4, 5, 2]. In other words, we consider the following problem

(1.1)
$$\min_{\gamma \in \Pi(f^+, f^-)} \left\{ \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma + \int_{\partial \Omega} g^+(y) \, \mathrm{d}(\Pi_y)_{\#} \gamma(y) + \int_{\partial \Omega} g^-(x) \, \mathrm{d}(\Pi_x)_{\#} \gamma(x) \right\},$$

where

$$\Pi(f^+, f^-) := \left\{ \gamma \in \mathcal{M}^+(\Omega \times \Omega) : \left[(\Pi_x)_{\#} \gamma \right]_{|\overset{\circ}{\Omega}} = f^+, \left[(\Pi_y)_{\#} \gamma \right]_{|\overset{\circ}{\Omega}} = f^- \right\}.$$

In [3, 8], the authors proved, using two different approaches, that Problem (1.1) has a dual formulation which is the following

$$\sup\left\{\int_{\Omega} u(f^+ - f^-) \,\mathrm{d}x \, : \, u \in \mathrm{Lip}_1(\Omega), \, -g^- \le u \le g^+ \text{ on } \partial\Omega\right\}.$$

Moreover, this problem has an equivalent minimal flow formulation (see [3, 4]):

(1.2)
$$\min_{\sigma \in \mathcal{M}^d(\Omega), \, \chi \in \mathcal{M}(\partial\Omega)} \bigg\{ \int_{\Omega} |\sigma| \, \mathrm{d}x + \int_{\partial\Omega} g^+ \, \mathrm{d}\chi^+ + \int_{\partial\Omega} g^- \, \mathrm{d}\chi^- : \nabla \cdot \sigma = f + \chi \text{ in } \Omega \bigg\}.$$

Now, assume that we have two regions E^+ and E^- inside Ω where the export/import transport is free of charge, i.e. there are no taxes on these special regions. Then, the problem (1.1) becomes

$$W(E^+, E^-)$$

 2 (1.3)

$$= \min_{\gamma \in \Pi(f^+, f^-)} \left\{ \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma + \int_{(\Omega \setminus E^+) \times \partial \Omega} g^+(y) \, \mathrm{d}\gamma(x, y) + \int_{\partial \Omega \times (\Omega \setminus E^-)} g^-(x) \, \mathrm{d}\gamma(x, y) \right\}.$$

Then, our shape optimization problem consists of minimizing the total cost $W(E^+, E^-)$ of this export/import transport problem (1.3) plus some penalties on E^{\pm} (such as paying a cost proportional to the perimeter of E^{\pm}) among all subsets $E^{\pm} \subset \Omega$, i.e. we minimize

(1.4)
$$\min \left\{ W(E^+, E^-) + Per(E^+) + Per(E^-) : E^{\pm} \subset \Omega \right\}.$$

We note that the authors of [1] have already considered a shape optimization problem slightly similar to Problem (1.4); let us give a brief description of their problem. Let f^+ and f^- be two densities (having the same total mass) in some region Ω and assume that the traffic congestion in $\Omega \setminus E$ is higher than the one in E, so their aim was to find a set E that minimizes

(1.5)
$$\min\left\{\mathcal{J}(E) + Per(E) : E \subset \Omega\right\},\$$

where

$$\mathcal{J}(E) := \min\bigg\{\int_E H_1(\sigma)\,\mathrm{d}x + \int_{\Omega\setminus E} H_2(\sigma)\,\mathrm{d}x : \nabla\cdot\sigma = f^+ - f^- \text{ in }\Omega, \,\sigma\cdot n = 0 \text{ on }\partial\Omega\bigg\},\$$

where H_1 and H_2 are two continuous superlinear convex functions such that $0 \le H_1 \le H_2$. They proved that there exists at least an optimal set E for Problem (1.5). On the contrary, an optimal set E may fail to exist if we replace Per(E) with |E|, i.e. the problem

(1.6)
$$\min\left\{\mathcal{J}(E) + |E| : E \subset \Omega\right\}$$

may have no solution. For this reason, they considered instead a relaxed formulation of Problem (1.6) (i.e. with a function $0 \le \theta \le 1$ instead of E). More precisely, they showed that the optimal choice for θ is to have $\theta = 0$ on some region E_0 (which represents a high-congestion area), $\theta = 1$ on another region E_1 (a low-congestion area) and $0 < \theta < 1$ on $\Omega \setminus (E_0 \cup E_1)$ (an intermediate congestion area). That is why we consider here a penalization with perimeter, since otherwise it is not clear how to prove existence and even, a solution may not exist.

Coming back to our shape optimization problem, we can also consider a more general version of Problem (1.4): assume that the export/import transport on E^{\pm} is not free, but in order to export some mass from E^+ , we pay a cost g_0^+ while outside of E^+ we pay a higher cost g_1^+ , and to import some mass to E^- , we pay a cost g_0^- while to $\Omega \setminus E^-$ we pay a higher cost g_1^- . In other words, we minimize

$$\min\left\{\tilde{W}(E^+, E^-) + Per(E^+) + Per(E^-) : E^{\pm} \subset \Omega\right\},\$$

where

$$\begin{split} \tilde{W}(E^+,E^-) \\ = \min_{\gamma \in \Pi(f^+,f^-)} \bigg\{ \int_{\Omega \times \Omega} |x-y| \, \mathrm{d}\gamma + \int_{E^+ \times \partial \Omega} g_0^+(y) \, \mathrm{d}\gamma(x,y) + \int_{(\Omega \setminus E^+) \times \partial \Omega} g_1^+(y) \, \mathrm{d}\gamma(x,y) \\ &+ \int_{\partial \Omega \times E^-} g_0^-(x) \, \mathrm{d}\gamma(x,y) + \int_{\partial \Omega \times (\Omega \setminus E^-)} g_1^-(x) \, \mathrm{d}\gamma(x,y) \bigg\}. \end{split}$$

For simplicity of exposition, we will assume that $g_0^{\pm} = 0$ on $\partial \Omega$. In fact, all the results about the convexity of the optimal free export/import regions hold true in the general case under the assumption that $g_0^{\pm} \leq g_1^{\pm}$ on $\partial \Omega$.

The aim of this paper is to show existence of two optimal export/import sets E_{opt}^+ and $E_{opt}^$ for Problem (1.4) and then, to study some properties of these optimal sets. More precisely, we prove that E_{opt}^+ and E_{opt}^- are uniformly convex under some assumptions on f^{\pm} and g^{\pm} . Moreover, we will study the regularity of E_{opt}^{\pm} ; in particular, we will show that E_{opt}^{\pm} is smooth (say $C^{2,1}$) inside $\operatorname{spt}(f^{\pm})$ as soon as f^{\pm} is Lipschitz.

2. EXPORT/IMPORT TRANSPORT PROBLEM WITH FREE EXPORT/IMPORT REGIONS

Let f^+ and f^- be two nonnegative Borel measures on a compact domain $\Omega \subset \mathbb{R}^d$ such that $\operatorname{spt}(f^{\pm}) \subset \mathring{\Omega}$. Let $g^{\pm} : \partial \Omega \mapsto \mathbb{R}^+$ be two given functions. Let E^{\pm} be two subsets of Ω , then we consider the problem (2.1)

$$\min_{\gamma \in \Pi(f^+, f^-)} \left\{ \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma + \int_{(\Omega \setminus E^+) \times \partial\Omega} g^+(y) \, \mathrm{d}\gamma(x, y) + \int_{\partial\Omega \times (\Omega \setminus E^-)} g^-(x) \, \mathrm{d}\gamma(x, y) \right\}.$$

We have the following:

Proposition 2.1. Assume that $f^{\pm} \in L^{1}(\Omega)$ and $g^{\pm} \in C(\partial\Omega)$. Then, the problem (2.1) reaches a minimum.

Proof. Let $(\gamma_n)_n \subset \Pi(f^+, f^-)$ be a minimizing sequence. Then, it is clear that we can assume that

$$\gamma_n(\partial\Omega\times\partial\Omega)=0$$

In this case, we get

$$\gamma_n(\Omega \times \Omega) \leq \gamma_n(\mathring{\Omega} \times \Omega) + \gamma_n(\Omega \times \mathring{\Omega})$$

= $f^+(\Omega) + f^-(\Omega).$

Hence, up to a subsequence, $\gamma_n \rightarrow \gamma$ for some $\gamma \in \Pi(f^+, f^-)$. We define the three parts of γ_n as follows

$$\gamma_n^{ii} := \gamma_n \mathop{|}_{\mathring{\Omega} \times \mathring{\Omega}}^{\circ}, \, \gamma_n^{ib} := \gamma_n \mathop{|}_{\mathring{\Omega} \times \partial \Omega}^{\circ}, \, \gamma_n^{bi} := \gamma_n \mathop{|}_{\partial \Omega \times \mathring{\Omega}}^{\circ}$$

Yet, we see that $\gamma_n^{ii} \rightarrow \gamma_1$, $\gamma_n^{ib} \rightarrow \gamma_2$ and $\gamma_n^{bi} \rightarrow \gamma_3$ such that $\gamma = \gamma_1 + \gamma_2 + \gamma_3$. Moreover, we have $\operatorname{spt}(\gamma_1) \subset \mathring{\Omega} \times \mathring{\Omega}$, $\operatorname{spt}(\gamma_2) \subset \mathring{\Omega} \times \partial \Omega$ and $\operatorname{spt}(\gamma_3) \subset \partial \Omega \times \mathring{\Omega}$. This implies that $\gamma_1 = \gamma^{ii}$, $\gamma_2 = \gamma^{ib}$ and $\gamma_3 = \gamma^{bi}$. On the other hand, let us devide γ_n^{ib} in two parts

$$\gamma_n^{ib} = \gamma_n \cdot \mathbf{1}_{E^+ \times \partial \Omega} + \gamma_n \cdot \mathbf{1}_{(\Omega \setminus E^+) \times \partial \Omega}.$$

We see that $\gamma_n \cdot 1_{E^+ \times \partial \Omega} \rightharpoonup \gamma_4$ with $\operatorname{spt}(\gamma_4) \subset \overline{E^+} \times \partial \Omega$ and $\gamma_n \cdot 1_{(\Omega \setminus E^+) \times \partial \Omega} \rightharpoonup \gamma_5$ with $\operatorname{spt}(\gamma_5) \subset (\overline{\Omega \setminus E^+}) \times \partial \Omega$ such that

$$\gamma^{ib} = \gamma_4 + \gamma_5$$

Yet, $f^+ \in L^1(\Omega)$ and $(\Pi_x)_{\#}\gamma^{ib} \leq (\Pi_x)_{\#}(\gamma \cdot 1_{\mathring{\Omega} \times \Omega}) = f^+$, then $\gamma^{ib}(\partial E^+ \times \partial \Omega) = 0$. Hence, we get that

$$\gamma_n \cdot 1_{(\Omega \setminus E^+) \times \partial \Omega} \rightharpoonup \gamma \cdot 1_{(\Omega \setminus E^+) \times \partial \Omega}.$$

Similarly, thanks to the fact that $f^- \in L^1(\Omega)$ and $(\Pi_y)_{\#}\gamma^{bi} \leq (\Pi_y)_{\#}(\gamma \cdot 1_{\Omega \times \mathring{\Omega}}) = f^-$, one can prove that

$$\gamma_n \cdot 1_{\partial \Omega \times (\Omega \setminus E^-)} \rightharpoonup \gamma \cdot 1_{\partial \Omega \times (\Omega \setminus E^-)}$$

Consequently,

$$\liminf_{n} \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma_n + \int_{(\Omega \setminus E^+) \times \partial\Omega} g^+(y) \, \mathrm{d}\gamma_n(x, y) + \int_{\partial\Omega \times (\Omega \setminus E^-)} g^-(x) \, \mathrm{d}\gamma_n(x, y)$$
$$= \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma + \int_{(\Omega \setminus E^+) \times \partial\Omega} g^+(y) \, \mathrm{d}\gamma(x, y) + \int_{\partial\Omega \times (\Omega \setminus E^-)} g^-(x) \, \mathrm{d}\gamma(x, y).$$

This implies that the transport plan $\gamma \in \Pi(f^+, f^-)$ is in fact a minimizer for the problem (2.1). \Box

Let γ_{opt} be an optimal transport plan for Problem (2.1). We devide γ_{opt} into three parts γ_{opt}^{ii} , γ_{opt}^{ib} and γ_{opt}^{bi} , where

$$\gamma_{opt}^{ii} = \gamma_{opt} \cdot 1_{\Omega \times \Omega}^{\circ}, \ \gamma_{opt}^{ib} = \gamma_{opt} \cdot 1_{\Omega \times \partial \Omega}^{\circ} \text{ and } \gamma_{opt}^{bi} = \gamma_{opt} \cdot 1_{\partial \Omega \times \Omega}^{\circ}$$

Set

$$\nu_{opt}^+ := (\Pi_x)_{\#}(\gamma_{opt}^{ib}) \text{ and } \nu_{opt}^- := (\Pi_y)_{\#}(\gamma_{opt}^{bi}).$$

We consider the three following problems:

(P1)
$$\min\left\{\int_{\Omega\times\Omega} |x-y| \,\mathrm{d}\gamma \,:\, \gamma \in \Pi(f^+ - \nu_{opt}^+, f^- - \nu_{opt}^-)\right\},$$

(P2)
$$\min\left\{\int_{\Omega\times\Omega} |x-y| \,\mathrm{d}\gamma \,+\, \int_{\Omega} q^+(y) \,\mathrm{d}\gamma \,:\, (\Pi_x)_{\#}\gamma = \nu_{opt}^+,\, \operatorname{spt}((\Pi_y)_{\#}\gamma) \subset \partial\Omega\right\}$$

(P2)
$$\min\left\{\int_{\Omega\times\Omega} |x-y|\,\mathrm{d}\gamma + \int_{(\Omega\setminus E^+)\times\partial\Omega} g^+(y)\,\mathrm{d}\gamma : (\Pi_x)_{\#}\gamma = \nu_{opt}^-, \operatorname{spt}((\Pi_y)_{\#}\gamma) \subset \partial\Omega\right\},$$

(P3)
$$\min\left\{\int_{\Omega\times\Omega} |x-y|\,\mathrm{d}\gamma + \int_{\partial\Omega\times(\Omega\setminus E^-)} g^-(x)\,\mathrm{d}\gamma : (\Pi_y)_{\#}\gamma = \nu_{opt}^-, \operatorname{spt}((\Pi_x)_{\#}\gamma) \subset \partial\Omega\right\}.$$

Then, we have the following

Proposition 2.2. The plans γ_{opt}^{ii} , γ_{opt}^{ib} and γ_{opt}^{bi} solve (P1), (P2) and (P3), respectively. In addition, $\gamma_{opt}^{ib} = (Id, T_{E^+})_{\#} \nu_{opt}^+$ where T_{E^+} is the Borel selector function of the multivalued map

$$T_{E^+}(x) = \begin{cases} P(x) := \operatorname{argmin}\{|x - y| : y \in \partial\Omega\}, & \text{if } x \in E^+, \\ T^+(x) := \operatorname{argmin}\{|x - y| + g^+(y) : y \in \partial\Omega\}, & \text{if } x \in \Omega \setminus E^+. \end{cases}$$

On the other hand, $\gamma_{opt}^{bi} = (T_{E^-}, Id)_{\#} \nu_{opt}^-$ where T_{E^-} is the following Borel selector function

$$T_{E^-}(y) = \begin{cases} P(y) := \operatorname{argmin}\{|x-y| : x \in \partial\Omega\}, & \text{if } y \in E^-, \\ T^-(y) := \operatorname{argmin}\{|x-y| + g^-(x) : x \in \partial\Omega\}, & \text{if } y \in \Omega \backslash E^- \end{cases}$$

Proof. This follows immediately from the fact that γ_{opt}^{ii} , γ_{opt}^{ib} and γ_{opt}^{bi} are admissible in (P1), (P2) and (P3), respectively. Moreover, if γ_1 , γ_2 and γ_3 minimize (P1), (P2) and (P3), respectively, then $\gamma_1 + \gamma_2 + \gamma_3$ minimizes Problem (2.1) and so, γ_{opt}^{ii} , γ_{opt}^{ib} and γ_{opt}^{bi} minimize (P1), (P2) and

(P3), respectively. On the other hand, if $\gamma \neq (Id, T_{E^+})_{\#}\nu_{opt}^+$ is admissible in (P2), then we have

$$\begin{split} \int_{\Omega \times \partial \Omega} |x - y| \, \mathrm{d}\gamma + \int_{(\Omega \setminus E^+) \times \partial \Omega} g^+(y) \, \mathrm{d}\gamma &= \int_{E^+ \times \partial \Omega} |x - y| \, \mathrm{d}\gamma + \int_{(\Omega \setminus E^+) \times \partial \Omega} \left[|x - y| + g^+(y) \right] \, \mathrm{d}\gamma \\ &> \int_{E^+ \times \partial \Omega} |x - T_{E^+}(x)| \, \mathrm{d}\gamma + \int_{(\Omega \setminus E^+) \times \partial \Omega} \left[|x - T_{E^+}(x)| + g^+(T_{E^+}(x)) \right] \, \mathrm{d}\gamma. \end{split}$$

This shows that $\gamma_{opt}^{ib} = (Id, T_{E^+})_{\#} \nu_{opt}^+$. Similarly, we also get that $\gamma_{opt}^{bi} = (T_{E^-}, Id)_{\#} \nu_{opt}^-$. \Box

We conclude this section by the following

Proposition 2.3. Assume $f^{\pm} \in L^{1}(\Omega)$. Let γ_{opt} be an optimal transport plan for (2.1) and consider the transport plans γ_{opt}^{ii} , γ_{opt}^{ib} and γ_{opt}^{bi} . Let $\nu_{opt}^{+} := (\Pi_{x})_{\#}\gamma_{opt}^{ib}$ and $\nu_{opt}^{-} := (\Pi_{y})_{\#}\gamma_{opt}^{bi}$. Then, there are two sets $E^{\pm} \subset \operatorname{spt}(f^{\pm})$ such that $\nu_{opt}^{\pm} = f^{\pm} \cdot 1_{E^{\pm}}$.

Proof. Assume that this is not the case for ν_{opt}^+ (of course, the proof will be the same for ν_{opt}^-), i.e. there is some set A such that $0 < \nu_{opt}^+ < f^+$ on A. This means that on A we split the mass f^+ in two parts: one is going to $f^- - \nu_{opt}^-$ and the second one is exported to $\partial\Omega$. But, this is a contradiction since |A| > 0 while it is well known that the set of double points (that is the set of points whose belong to different transport rays) is negligible for the Lebesgue measure (see [9]). \Box

3. PROPERTIES OF THE OPTIMAL FREE EXPORT/IMPORT REGIONS

In this section, we prove existence of optimal free export/import sets E_{opt}^+ and E_{opt}^- for Problem (1.4). Then, we introduce some regularity results on E_{opt}^{\pm} . Fix $\lambda^{\pm} > 0$, then we consider the following shape optimization problem

(3.1)
$$\min \left\{ W(E^+, E^-) + \lambda^+ Per(E^+) + \lambda^- Per(E^-) : E^{\pm} \subset \Omega \right\},$$

where

$$W(E^+, E^-) = \min_{\gamma \in \Pi(f^+, f^-)} \left\{ \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma + \int_{(\Omega \setminus E^+) \times \partial \Omega} g^+(y) \, \mathrm{d}\gamma(x, y) + \int_{\partial \Omega \times (\Omega \setminus E^-)} g^-(x) \, \mathrm{d}\gamma(x, y) \right\}.$$

First, we have the following

Proposition 3.1. Assume that $f^{\pm} \in L^{p}(\Omega)$, for some p > 1, and $g^{\pm} \in C(\partial\Omega)$. Then, there exist two optimal free export/import regions E_{opt}^{+} and E_{opt}^{-} for Problem (3.1).

Proof. Let $(E_k^+, E_k^-)_k$ be a minimizing sequence in Problem (3.1). For each k, let γ_k be an optimal transport plan for $W(E_k^+, E_k^-)$ (see Proposition 2.1). Recall that $\gamma_k \in \Pi(f^+, f^-)$ and one can assume that γ_k gives zero mass to $\partial\Omega \times \partial\Omega$, so there is some constant C such that $\gamma_k(\Omega \times \Omega) \leq C$, for every k. As $g^{\pm} \in C(\partial\Omega)$, so we have $W(E_k^+, E_k^-) \geq -C||g||_{\infty}$, for all k. Then, we get that

$$Per(E_k^{\pm}) \le C$$
, for every k .

Yet, $E_k^{\pm} \subset \Omega$, for every k, and Ω is bounded. Hence, up to a subsequence, $(E_k^+, E_k^-) \to (E^+, E^-)$ in L^1 , where E^+ and E^- are two subsets of Ω . In particular, we have

$$Per(E^{\pm}) \le \liminf_{k} Per(E_k^{\pm}).$$

Moreover, we have

$$W(E_k^+, E_k^-) = \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma_k + \int_{(\Omega \setminus E_k^+) \times \partial\Omega} g^+(y) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-)} g^-(x) \, \mathrm{d}\gamma_k(x, y) + \int_{\partial\Omega \times (\Omega \setminus E_k^-$$

Set

$$\nu_k^+ := (\Pi_x)_{\#}(\gamma_k \cdot 1_{\Omega \times \partial \Omega}) \text{ and } \nu_k^- := (\Pi_y)_{\#}(\gamma_k \cdot 1_{\partial \Omega \times \Omega})$$

From Proposition 2.2, we know that

$$<\gamma_k\cdot 1_{\Omega\times\partial\Omega}, \phi>=\int_{E_k^+}\phi(x,P(x))\,\mathrm{d}\nu_k^++\int_{\Omega\setminus E_k^+}\phi(x,T^+(x))\,\mathrm{d}\nu_k^+, \text{ for all } \phi\in C(\Omega\times\Omega),$$

and

$$<\gamma_k\cdot 1_{\partial\Omega\times\Omega}, \psi>=\int_{E_k^-}\psi(P(y),y)\,\mathrm{d}\nu_k^-+\int_{\Omega\setminus E_k^-}\psi(T^-(y),y)\,\mathrm{d}\nu_k^-, \text{ for all } \psi\in C(\Omega\times\Omega).$$

Yet, up to a subsequence, we see that $\gamma_k \rightharpoonup \gamma$ (in the sense of measures) for some $\gamma \in \Pi(f^+, f^-)$ and $\nu_k^{\pm} \rightharpoonup \nu^{\pm}$ in L^p , where

$$\langle \gamma \cdot 1_{\Omega \times \partial \Omega}, \phi \rangle = \int_{E^+} \phi(x, P(x)) \, \mathrm{d}\nu^+ + \int_{\Omega \setminus E^+} \phi(x, T^+(x)) \, \mathrm{d}\nu^+, \text{ for all } \phi \in C(\Omega \times \Omega)$$

and

$$<\gamma\cdot 1_{\partial\Omega\times\Omega}, \psi>=\int_{E^-}\psi(P(y),y)\,\mathrm{d}\nu^-\,+\,\int_{\Omega\setminus E^-}\psi(T^-(y),y)\,\mathrm{d}\nu^-, \text{ for all }\psi\in C(\Omega\times\Omega).$$

Consequently, we have

$$\begin{split} W(E^+, E^-) &\leq \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma + \int_{(\Omega \setminus E^+) \times \partial \Omega} g^+(y) \, \mathrm{d}\gamma(x, y) + \int_{\partial \Omega \times (\Omega \setminus E^-)} g^-(x) \, \mathrm{d}\gamma(x, y) \\ &= \liminf_k W(E_k^+, E_k^-). \end{split}$$

Finally, we infer that

$$W(E^{+}, E^{-}) + \lambda^{+} Per(E^{+}) + \lambda^{-} Per(E^{-}) \leq \liminf_{k} \left[W(E_{k}^{+}, E_{k}^{-}) + \lambda^{+} Per(E_{k}^{+}) + \lambda^{-} Per(E_{k}^{-}) \right],$$

which means that the pair (E^+, E^-) minimizes Problem (3.1).

On the other hand, we have the following monotonicity property.

Proposition 3.2. For λ_1^{\pm} , $\lambda_2^{\pm} > 0$, let $(E_{\lambda_1^+}^+, E_{\lambda_1^-}^-)$ and $(E_{\lambda_2^+}^+, E_{\lambda_2^-}^-)$ be the corresponding optimal free export/import regions for Problem (1.4) with $\lambda^{\pm} = \lambda_1^{\pm}$ and $\lambda^{\pm} = \lambda_2^{\pm}$, respectively. Let γ_{λ_1} and γ_{λ_2} be two optimal transport plans for $W(E_{\lambda_1^+}^+, E_{\lambda_1^-}^-)$ and $W(E_{\lambda_2^+}^+, E_{\lambda_2^-}^-)$, respectively. Set $\nu_{\lambda_1}^+ = (\Pi_x)_{\#}(\gamma_{\lambda_1} \cdot \mathbf{1}_{\Omega \times \partial\Omega}), \nu_{\lambda_2}^+ = (\Pi_x)_{\#}(\gamma_{\lambda_2} \cdot \mathbf{1}_{\Omega \times \partial\Omega}), \nu_{\lambda_1}^- = (\Pi_y)_{\#}(\gamma_{\lambda_1} \cdot \mathbf{1}_{\partial\Omega \times \Omega})$ and $\nu_{\lambda_2}^- = (\Pi_y)_{\#}(\gamma_{\lambda_2} \cdot \mathbf{1}_{\partial\Omega \times \Omega})$. Assume that $\frac{\lambda_2^{\pm}}{\lambda_1^{\pm}} < \frac{\min g^{\pm}}{\max g^{\pm}}$ and $\operatorname{spt}(\nu_{\lambda_1}^{\pm}) \subset \operatorname{spt}(\nu_{\lambda_2}^{\pm})$, then we have $E_{\lambda_1^{\pm}}^{\pm} \subset E_{\lambda_2^{\pm}}^{\pm}$.

Proof. From the optimality of $(E_{\lambda_1^+}^+, E_{\lambda_1^-}^-)$ and $(E_{\lambda_2^+}^+, E_{\lambda_2^-}^-)$ in Problem (1.4) with $\lambda^{\pm} = \lambda_1^{\pm}$ and $\lambda^{\pm} = \lambda_2^{\pm}$, respectively, we have the following

$$\begin{split} & W(E_{\lambda_{1}^{+}}^{+}, E_{\lambda_{1}^{-}}^{-}) + \lambda_{1}^{+} Per(E_{\lambda_{1}^{+}}^{+}) + \lambda_{1}^{-} Per(E_{\lambda_{1}^{-}}^{-}) \\ & \leq W(E_{\lambda_{1}^{+}}^{+} \cap E_{\lambda_{2}^{+}}^{+}, E_{\lambda_{1}^{-}}^{-}) + \lambda_{1}^{+} Per(E_{\lambda_{1}^{+}}^{+} \cap E_{\lambda_{2}^{+}}^{+}) + \lambda_{1}^{-} Per(E_{\lambda_{1}^{-}}^{-}) \end{split}$$

and

$$\begin{split} W(E_{\lambda_{2}^{+}}^{+}, E_{\lambda_{2}^{-}}^{-}) + \lambda_{2}^{+} Per(E_{\lambda_{2}^{+}}^{+}) + \lambda_{2}^{-} Per(E_{\lambda_{2}^{-}}^{-}) \\ \leq W(E_{\lambda_{1}^{+}}^{+} \cup E_{\lambda_{2}^{+}}^{+}, E_{\lambda_{2}^{-}}^{-}) + \lambda_{2}^{+} Per(E_{\lambda_{1}^{+}}^{+} \cup E_{\lambda_{2}^{+}}^{+}) + \lambda_{2}^{-} Per(E_{\lambda_{2}^{-}}^{-}). \end{split}$$

But,

$$Per(E \cup E') + Per(E \cap E') \le Per(E) + Per(E')$$

Then, we get

$$\frac{1}{\lambda_1^+}(W(E_{\lambda_1^+}^+, E_{\lambda_1^-}^-) - W(E_{\lambda_1^+}^+ \cap E_{\lambda_2^+}^+, E_{\lambda_1^-}^-)) \le \frac{1}{\lambda_2^+}(W(E_{\lambda_1^+}^+ \cup E_{\lambda_2^+}^+, E_{\lambda_2^-}^-) - W(E_{\lambda_2^+}^+, E_{\lambda_2^-}^-)).$$

Yet, we have

$$W(E_{\lambda_1^+}^+, E_{\lambda_1^-}^-) - W(E_{\lambda_1^+}^+ \cap E_{\lambda_2^+}^+, E_{\lambda_1^-}^-) \ge -\int_{E_{\lambda_1^+}^+ \setminus E_{\lambda_2^+}^+} g^+(P(x)) \,\mathrm{d}\nu_{\lambda_1^+}(x)$$

and

$$W(E_{\lambda_1^+}^+ \cup E_{\lambda_2^+}^+, E_{\lambda_2^-}^-) - W(E_{\lambda_2^+}^+, E_{\lambda_2^-}^-) \le -\int_{E_{\lambda_1^+}^+ \setminus E_{\lambda_2^+}^+} g^+(T^+(x)) \,\mathrm{d}\nu_{\lambda_2^+}(x).$$

We infer that

$$\int_{E_{\lambda_1^+}^+ \setminus E_{\lambda_2^+}^+} \left(\frac{g^+(T^+(x))\,\nu_{\lambda_2^+}(x)}{\lambda_2^+} - \frac{g^+(P(x))\,\nu_{\lambda_1^+}(x)}{\lambda_1^+} \right) \mathrm{d}x \le 0.$$

Similarly, we prove that

$$\int_{E_{\lambda_1^-}^- \setminus E_{\lambda_2^-}^-} \left(\frac{g^-(T^-(x))\,\nu_{\lambda_2^-}(x)}{\lambda_2^-} - \frac{g^-(P(x))\,\nu_{\lambda_1^-}(x)}{\lambda_1^-} \right) \mathrm{d}x \le 0.$$

This concludes the proof. \Box

Remark 3.1. Assume that $f^- = 0$. For λ_1 , $\lambda_2 > 0$, let E_{λ_1} and E_{λ_2} be the corresponding optimal free export regions for Problem (1.4) with $\lambda^+ = \lambda_1$ and $\lambda^+ = \lambda_2$, respectively. Assume that $\frac{\lambda_2}{\lambda_1} < \frac{\min g^+}{\max g^+}$. Then, we have $E_{\lambda_1} \subset E_{\lambda_2}$.

The aim now is to study some properties of the optimal free export/import regions E_{opt}^+ and E_{opt}^- . First, let us start by introducing the following

Definition 3.1. For a subset $E \subset \Omega$, we define the Ω -convex hull of E as $\bigcup_{k \in \mathbb{N}} P_k$, where $P_k \subset \Omega$ is a polygone with k-vertices on ∂E .

Definition 3.2. Let E be a subset of Ω . We say that E is Ω -convex if the Ω -convex hull of E is the set E itself.

Remark 3.2. We note that the Ω -convex hull of a subset $E \subset \Omega$ is not necessarily convex, unless Ω is convex or the convex hull of E is contained in Ω .

Proposition 3.3. Assume d = 2. Let E_{opt}^+ (resp. E_{opt}^-) be the optimal free export (resp. import) region. Then, E_{opt}^+ (resp. E_{opt}^-) is Ω -convex.

Proof. Let us prove that the optimal free export region E_{opt}^+ is Ω -convex. Suppose that this is not the case and let E_{opt}^{++} be the Ω -convex hull of E_{opt}^+ . It is not difficult to see that

$$Per(E_{opt}^{++}) < Per(E_{opt}^{+})$$

Moreover, let γ_{opt} be an optimal transport plan for $W(E_{opt}^+, E_{opt}^-)$. Then, the following holds

$$W(E_{opt}^{++}, E_{opt}^{-}) \leq \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma_{opt} + \int_{(\Omega \setminus E_{opt}^{++}) \times \partial\Omega} g^{+}(y) \, \mathrm{d}\gamma_{opt} + \int_{\partial\Omega \times (\Omega \setminus E_{opt}^{-})} g^{-}(x) \, \mathrm{d}\gamma_{opt}$$

$$\leq \int_{\Omega \times \Omega} |x - y| \, \mathrm{d}\gamma_{opt} + \int_{(\Omega \setminus E_{opt}^{+}) \times \partial\Omega} g^{+}(y) \, \mathrm{d}\gamma_{opt} + \int_{\partial\Omega \times (\Omega \setminus E_{opt}^{-})} g^{-}(x) \, \mathrm{d}\gamma_{opt}$$

$$= W(E_{opt}^{+}, E_{opt}^{-}).$$

Hence, we get

$$W(E_{opt}^{++}, E_{opt}^{-}) + \lambda^{+} Per(E_{opt}^{++}) + \lambda^{-} Per(E_{opt}^{-}) < W(E_{opt}^{+}, E_{opt}^{-}) + \lambda^{+} Per(E_{opt}^{+}) + \lambda^{-} Per(E_{opt}^{-}),$$

which is a contradiction as (E_{opt}^+, E_{opt}^-) minimizes Problem (3.1). The proof of Ω -convexity for E_{opt}^- is eventually the same. \Box

More precisely, we have the following

Proposition 3.4. Assume d = 2. Let E_{opt}^{\pm} be the optimal free export/import region and let ν_{opt}^{\pm} the mass to be exported/imported. Then, E_{opt}^{\pm} is convex in the interior of $\operatorname{spt}(\nu_{opt}^{\pm})$. Moreover, the part of E_{opt}^{\pm} which is outside $\operatorname{spt}(\nu_{opt}^{\pm})$ is a part of the Ω -convex hull of $\operatorname{spt}(\nu_{opt}^{\pm})$.

Proof. The convexity of E_{opt}^{\pm} in the interior of $\operatorname{spt}(\nu_{opt}^{\pm})$ follows immediately from Proposition 3.3. Let \mathcal{C} be a part of $\partial E_{opt}^+ \setminus \operatorname{spt}(\nu_{opt}^+)$ and x, y be the endpoints of \mathcal{C} such that $[x, y] \subset \Omega \setminus \operatorname{spt}(\nu_{opt}^+)$. Then, it is clear that the segment [x, y] is better than \mathcal{C} in E_{opt}^+ . \Box

Corollary 3.5. Assume that d = 2 and $\operatorname{spt}(\nu_{opt}^{\pm})$ is Ω -convex. Then, E_{opt}^{\pm} is contained in $\operatorname{spt}(\nu_{opt}^{\pm})$.

Anyway, we also have the following

Corollary 3.6. Assume that d = 2 and $\operatorname{spt}(f^{\pm})$ is Ω -convex. Then, the optimal free export/import region E_{opt}^{\pm} is contained in $\operatorname{spt}(f^{\pm})$.

Moreover, we have the following

Proposition 3.7. Assume that d = 2 and the convex hull of $\operatorname{spt}(\nu_{opt}^{\pm})$ is contained in Ω . Then, the optimal free export/import region E_{opt}^{\pm} is convex.

Proof. This follows immediately from Proposition 3.4. \Box

Remark 3.3. Notice that it is not obvious when d > 2 if the optimal free export/import regions E_{opt}^+ and E_{opt}^- are Ω -convex or not, since it is not true in dimensions 3 or greater that the perimeter of the Ω -convex hull of a set is less than the perimeter of the set itself. However,

it is possible to prove convexity of E_{opt}^{\pm} under the assumption that E_{opt}^{\pm} are smooth. In fact, from the optimality conditions on E_{opt}^{\pm} in the problem

$$\min_{E} \left\{ \lambda^{+} Per(E) - \int_{E} \left[|x - T^{+}(x)| + g^{+}(T^{+}(x)) - |x - P(x)| \right] d\nu_{opt}^{+}(x) \right\},\$$

one can prove (see, for instance, [7]) that for any smooth vector field V such that $V \cdot n = 0$ on $\partial\Omega$, one has

$$\int_{\partial E_{opt}^+} \left[\lambda^+ \mathcal{K}(x) - \left[|x - T^+(x)| + g^+(T^+(x)) - |x - P(x)| \right] \nu_{opt}^+(x) \right] V \cdot n = 0,$$

where \mathcal{K} denotes the mean curvature of ∂E_{opt}^+ and n is the exterior normal vector to ∂E_{opt}^+ . Since V is arbitrary, we get

$$\mathcal{K} = \frac{1}{\lambda^+} \left[|x - T^+(x)| + g^+(T^+(x)) - |x - P(x)| \right] \nu_{opt}^+(x) \ge 0 \quad on \quad \partial E_{opt}^+.$$

Proposition 3.8. Assume that Ω is convex. Then, the optimal free export/import set E_{opt}^{\pm} intersects the boundary of $\operatorname{spt}(\nu_{opt}^{\pm})$, unless $g^{\pm} = c$ on some arc of $\partial\Omega$.

Proof. Assume that $E_{opt}^+ \cap \partial [\operatorname{spt}(\nu_{opt}^+)] = \emptyset$. Let R be the union of all the transport rays between $\nu_{opt}^+ \cdot 1_{E_{opt}^+}$ and its projection on the boundary $P_{\#}[\nu_{opt}^+ \cdot 1_{E_{opt}^+}]$. Set $E := (R \cap \operatorname{spt}(\nu_{opt}^+)) \setminus E_{opt}^+$ and $\mathcal{C} := P(R)$. As the transport rays cannot intersect at their interiors, then we see that this set E is also exported (with a tax g^+) to the same arc \mathcal{C} with $T^+(x) = P(x) \in \mathcal{C}$, for all $x \in E$. Yet, this implies that there is some constant c such that $g^+ = c$ on \mathcal{C} . \Box

Now, we will study the regularity of E_{opt}^{\pm} .

Proposition 3.9. Assume d = 2 and $f^{\pm} \in L^p(\Omega)$ with p > 2. Then, the optimal free export/import region E_{opt}^{\pm} is C^1 in the interior of Ω . Moreover, E_{opt}^{\pm} is C^1 provided that $\partial \Omega$ is C^1 .

Proof. Assume that this is not the case at some point $x \in \partial E_{opt}^+$. After a rotation and translation of axes, we can assume that x = (0,0) and the x_1 -axis is below the two tangent lines to ∂E_{opt}^+ at x. Let α_1 and α_2 be the parameterizations of the two parts of ∂E_{opt}^+ around x. Take $\varepsilon > 0$ small enough and let $\delta > 0$ be such that $\alpha_1(\varepsilon) = \alpha_2(-\delta)$. Now, let \mathcal{C} be the part of ∂E_{opt}^+ between $(\varepsilon, \alpha_1(\varepsilon))$ and $(-\delta, \alpha_2(-\delta))$ and let $\hat{\mathcal{C}}$ be the segment joining these two points. Let E_{opt}^{++} be such that $\partial E_{opt}^{++} = (\partial E_{opt}^+ \setminus \mathcal{C}) \cup \hat{\mathcal{C}}$. Then, we have

$$Per(E_{opt}^{++}) - Per(E_{opt}^{+}) = \varepsilon + \delta - \int_0^{\varepsilon} \sqrt{1 + \alpha_1'(s)^2} \, \mathrm{d}s - \int_{-\delta}^0 \sqrt{1 + \alpha_2'(s)^2} \, \mathrm{d}s.$$

Thanks to the convexity of E_{opt}^+ (see Proposition 3.4), we have that $|\alpha'_1(s)|, |\alpha'_2(s)| \ge c > 0$, for s small enough. Hence, we get that

$$Per(E_{opt}^{++}) - Per(E_{opt}^{+}) \le (1 - \sqrt{1 + c^2})(\varepsilon + \delta).$$

On the other hand, let γ_{opt} be an optimal transport plan for $W(E_{opt}^+, E_{opt}^-)$. Then, we have

$$W(E_{opt}^{++}, E_{opt}^{-}) - W(E_{opt}^{+}, E_{opt}^{-}) \le \int_{(E_{opt}^{+} \setminus E_{opt}^{++}) \times \partial \Omega} g^{+}(y) \, \mathrm{d}\gamma_{opt} = \int_{(E_{opt}^{+} \setminus E_{opt}^{++})} g^{+}(P(x)) \, \mathrm{d}\nu_{opt}^{+}(x) \\ \le ||g^{+}||_{L^{\infty}} ||\nu_{opt}^{+}||_{L^{p}} |E_{opt}^{+} \setminus E_{opt}^{++}|^{\frac{1}{q}}.$$

Yet,

$$|E_{opt}^+ \setminus E_{opt}^{++}| = (\varepsilon + \delta)\alpha_1(\varepsilon) - \int_0^\varepsilon \alpha_1(s) \,\mathrm{d}s - \int_{-\delta}^0 \alpha_2(s) \,\mathrm{d}s \le C(\varepsilon + \delta)^2.$$

Consequently, we get

$$W(E_{opt}^{++}, E_{opt}^{-}) + \lambda^{+} Per(E_{opt}^{++}) - W(E_{opt}^{+}, E_{opt}^{-}) - \lambda^{+} Per(E_{opt}^{+})$$
$$\leq \left[\lambda^{+}(1 - \sqrt{1 + c^{2}}) + ||g^{+}||_{L^{\infty}} ||\nu_{opt}^{+}||_{L^{p}} C(\varepsilon + \delta)^{\frac{2}{q} - 1}\right] (\varepsilon + \delta),$$

which is a contradiction for ε , δ small enough, as (E_{opt}^+, E_{opt}^-) is a minimizer for Problem (2.1) and p > 2. \Box

Proposition 3.10. Assume d = 2, $g^{\pm} \ge c > 0$ and f^{\pm} is continuous on $\operatorname{spt}(f^{\pm})$. Let ν_{opt}^{\pm} the mass to be exported/imported and E_{opt}^{\pm} be the optimal free export/import region. Then, E_{opt}^{\pm} is strictly convex in $\{\nu_{opt}^{\pm} > 0\}$. In particular, if f^{\pm} is bounded from below, then E_{opt}^{\pm} is uniformly convex inside $\operatorname{spt}(\nu_{opt}^{\pm})$.

Proof. Let γ_{opt} be an optimal transport plan for $W(E_{opt}^+, E_{opt}^-)$ such that $\nu_{opt}^+ = (\Pi_x)_{\#}(\gamma_{opt} \cdot 1_{\Omega \times \partial \Omega})$. It is easy to see that the set E_{opt}^+ minimizes

$$\min_{E} \left\{ \min\left\{ \int_{\Omega \times \Omega} |x - y| \mathrm{d}\gamma + \int_{(\Omega \setminus E) \times \partial\Omega} g^{+}(y) \mathrm{d}\gamma : (\Pi_{x})_{\#} \gamma = \nu_{opt}^{+}, (\Pi_{y})_{\#} \gamma \subset \partial\Omega \right\} + \lambda^{+} Per(E) \right\}$$

On the other hand, from Proposition 2.2, the transport plan $\gamma_{opt}^{ib} := (Id, T_E)_{\#} \nu_{opt}^+$, where the map T_E is defined as follows

$$T_E(x) = \begin{cases} P(x) := \operatorname{argmin}\{|x - y| : y \in \partial\Omega\}, & \text{if } x \in E, \\ T^+(x) := \operatorname{argmin}\{|x - y| + g^+(y) : y \in \partial\Omega\}, & \text{if } x \in \Omega \setminus E \end{cases}$$

is a minimizer for the problem

$$\min\bigg\{\int_{\Omega\times\Omega}|x-y|\,\mathrm{d}\gamma+\int_{(\Omega\setminus E)\times\partial\Omega}g^+(y)\,\mathrm{d}\gamma\,:\,(\Pi_x)_{\#}\gamma=\nu_{opt}^+,\,\mathrm{spt}((\Pi_y)_{\#}\gamma)\subset\partial\Omega\bigg\}.$$

So, we infer that E_{opt}^+ minimizes

$$\min_{E} \bigg\{ \int_{\Omega} |x - T_E(x)| \,\mathrm{d}\nu_{opt}^+(x) + \int_{\Omega \setminus E} g^+(T_E(x)) \,\mathrm{d}\nu_{opt}^+(x) + \lambda^+ Per(E) \bigg\}.$$

Fix $x_0 \in \partial E_{opt}^+$. Let \mathcal{C} be a part of ∂E_{opt}^+ around x_0 and $x_1 := (s_1, t_1), x_2 := (s_2, t_2)$ be the endpoints of \mathcal{C} . Assume that \mathcal{C} is the graph of a function α_{opt} . Then, we see that α_{opt} minimizes the following problem

$$\min\left\{\int_{s_1}^{s_2}\int_0^{\alpha(s)} u(s,t)\,\nu_{opt}^+(s,t)\,\mathrm{d}t\,\mathrm{d}s + \lambda^+\int_{s_1}^{s_2}\sqrt{1+\alpha'(s)^2}\,\mathrm{d}s\,:\,\alpha(s_1) = t_1,\,\alpha(s_2) = t_2\right\},$$

where

$$u(s,t) := |(s,t) - T^+(s,t)| + g^+(T^+(s,t)) - |(s,t) - P(s,t)|.$$

10

From the optimality conditions on α_{opt} and thanks to the continuity of ν_{opt}^+ on $\operatorname{spt}(\nu_{opt}^+)$ (see Proposition 2.3), we get that

$$\left[\frac{\alpha'_{opt}(s)}{\sqrt{1+\alpha'_{opt}(s)^2}}\right]' = \frac{1}{\lambda^+} u(s, \alpha_{opt}(s)) \nu^+_{opt}(s, \alpha_{opt}(s))$$

This implies that

$$\kappa(s_0) = \frac{1}{\lambda^+} u(s_0, \alpha_{opt}(s_0)) \nu_{opt}^+(s_0, \alpha_{opt}(s_0)).$$

where $\kappa(s_0)$ denotes the curvature of ∂E_{opt}^+ at $x_0 := (s_0, \alpha_{opt}(s_0))$. Yet, we have $u(s,t) \ge g^+(T(s,t)) \ge c > 0$. This concludes the proof. \Box

Corollary 3.11. Assume d = 2 and f^{\pm} is continuous on $\operatorname{spt}(f^{\pm})$. Then, the optimal free export/import region E_{opt}^{\pm} is C^2 in the interior of $\operatorname{spt}(\nu_{opt}^{\pm})$ and $C^{1,1}$ in the interior of Ω . Moreover, E_{opt}^{\pm} is $C^{1,1}$ provided that $\partial\Omega$ is $C^{1,1}$.

Proof. This follows from Propositions 3.4 & 3.9, the continuity of ν_{opt}^{\pm} (see Proposition 2.3) and u, and the fact that the curvature κ of ∂E_{opt}^{+} in the interior of Ω satisfies (see Proposition 3.10)

$$\kappa(s) = \frac{1}{\lambda^+} u(s, \alpha_{opt}(s)) \nu_{opt}^+(s, \alpha_{opt}(s))$$

Now, assume that $x_0 \in \partial E_{opt}^+ \cap \partial \Omega$. Similarly to Proposition 3.10, we denote by \mathcal{C} the arc of ∂E_{opt}^+ around x_0 and by $x_1 := (s_1, t_1), x_2 := (s_2, t_2)$ the endpoints of \mathcal{C} . Assume that \mathcal{C} (resp. $\partial \Omega$) is the graph of a function α_{opt} (resp. ψ). Then, we have that α_{opt} solves

$$\min\left\{\int_{s_1}^{s_2} \int_0^{\alpha(s)} u(s,t) \,\nu_{opt}^+(s,t) \,\mathrm{d}t \mathrm{d}s + \lambda^+ \int_{s_1}^{s_2} \sqrt{1 + \alpha'(s)^2} \mathrm{d}s : \alpha \ge \psi, \,\alpha(s_1) = t_1, \,\alpha(s_2) = t_2\right\}.$$

From the optimality conditions on α_{opt} , we get

$$\kappa(s) \le \frac{1}{\lambda^+} u(s, \alpha_{opt}(s)) \nu_{opt}^+(s, \alpha_{opt}(s)).$$

As $\partial \Omega$ is $C^{1,1}$, then it is clear that κ is bounded from below as well. This concludes the proof.

Corollary 3.12. Assume that d = 2 and f^{\pm} is $C^{0,\alpha}$ on $\operatorname{spt}(f^{\pm})$, with $\alpha \in (0,1)$. Then, the optimal free export/import region E_{opt}^{\pm} is $C^{2,\alpha}$ in the interior of $\operatorname{spt}(\nu_{opt}^{\pm})$. In particular, E_{opt}^{\pm} is $C^{2,1}$ inside $\operatorname{spt}(\nu_{opt}^{\pm})$ as soon as f^{\pm} is Lipschitz on $\operatorname{spt}(f^{\pm})$.

Remark 3.4. We see that if f^{\pm} is $C^{k,\alpha}$ on $\operatorname{spt}(f^{\pm})$ and $g^{\pm} = c^{\pm} > 0$, then the optimal free export/import set E_{opt}^{\pm} is $C^{k+2,\alpha}$ in the interior of $\operatorname{spt}(\nu_{opt}^{\pm})$.

Remark 3.5. It is not clear how to adapt Proposition 3.9 to the case d > 2. On the other hand, we know that any part $E \subset \partial E_{opt}^+$ is a solution of the variational problem

$$\min\bigg\{\int_{B(\varepsilon)}\int_{0}^{\alpha(\bar{y})}u(\bar{y},y_d)\nu_{opt}^{+}(\bar{y},y_d)\mathrm{d}y_d\,\mathrm{d}\bar{y}+\lambda^{+}\int_{B(\varepsilon)}\sqrt{1+|\nabla\alpha(\bar{y})|^2}\mathrm{d}\bar{y}:Id\times\alpha_{|\partial B(\varepsilon)}=\partial E\bigg\}.$$

From the optimality conditions on α_{opt} , we get that α_{opt} satisfies the following equation

$$\nabla \cdot \left[\frac{\nabla \alpha_{opt}(\bar{y})}{\sqrt{1 + |\nabla \alpha_{opt}(\bar{y})|^2}} \right] = \frac{1}{\lambda^+} u(\bar{y}, \alpha_{opt}(\bar{y})) \nu_{opt}^+(\bar{y}, \alpha_{opt}(\bar{y}))$$

or equivalently,

$$\sum_{i,j} a_{i,j} \ \partial^2_{x_i x_j} \alpha_{opt} = \frac{1}{\lambda^+} u(\bar{y}, \alpha_{opt}(\bar{y})) \nu^+_{opt}(\bar{y}, \alpha_{opt}(\bar{y})),$$

where

$$a_{i,j} = \frac{\delta_{i,j}(1 + |\nabla\alpha_{opt}(\bar{y})|^2) - \partial_{x_i}\alpha_{opt}\,\partial_{x_j}\alpha_{opt}}{(1 + |\nabla\alpha_{opt}(\bar{y})|^2)^{\frac{3}{2}}}$$

In fact, under some assumptions on $a_{i,j}$ (see, for instance, [6]), it is possible to prove a higher regularity on α_{opt} . But, it is not clear if the coefficients $a_{i,j}$ here satisfy the required assumptions or not and even, it is not sure that in higher dimension d > 2 we can arrive to prove that the optimal free export/import region E_{opt}^{\pm} is smooth, as E_{opt}^{\pm} may not be, for instance, Ω -convex when d > 2.

The following example shows that, in general, the optimal free export set E_{opt}^+ is not C^2 on the boundary of $\operatorname{spt}(f)$ if $f \notin C(\Omega)$.

Example 3.12.1. Let $\Omega = \overline{B}(0,2)$ and let f be a nonnegative density such that f = 1 on $[-1,1] \times [-1,1]$. Assume g = 1 on $\partial\Omega$. Fix $\lambda > 0$, so the problem (1.4) is equivalent to minimize

$$\min\left\{\lambda \operatorname{Per}(E) - |E \cap ([-1,1] \times [-1,1])| : E \subset \Omega\right\}.$$

Let κ be the curvature of $\partial\Omega$, then we know that $\kappa = \frac{1}{\lambda}$ on $]-1, 1[\times]-1, 1[$. If $\lambda < \frac{1}{2}$, then it is clear that the optimal set $E_{opt} \neq \emptyset$. Yet, we know that E_{opt} is C^1 . This implies that there is part of E_{opt} inside $]-1, 1[\times]-1, 1[$ and the curvature of this part is $\frac{1}{\lambda}$. However, we can see easily that $E_{opt} \cap \partial(]-1, 1[\times]-1, 1[) \neq \emptyset$. Consequently, ∂E_{opt} is not C^2 .

References

- G. BUTTAZZO, G. CARLIER AND S. GUARINO LO BIANCO, Optimal Regions for Congested Transport, Math. Model. Numer. Anal., 2014.
- [2] S. DWEIK AND F. SANTAMBROGIO, Summability estimates on transport densities with Dirichlet regions on the boundary via symmetrization techniques, *Control, Optimisation and Calculus of Variations*, 2016.
- [3] S. DWEIK, Optimal transportation with boundary costs and summability estimates on the transport density, Journal of Convex Analysis, 2017.
- [4] S. DWEIK, Weighted Beckmann problem with boundary costs, Quarterly of applied mathematics, 2018.
- [5] S. DWEIK, N. GHOUSSOUB AND A. Z. PALMER, Optimal controlled transports with free end times subject to import/export tariffs, *Journal of Dynamical and Control Systems*, 2019.
- [6] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, New York/Berlin, 1983.
- [7] A. HENROT AND M. PIERRE, Variation et Optimisation de Formes, Une Analyse Géométrique, Mathématiques & Applications 48, Springer-Verlag, Berlin (2005).
- [8] J.M.MAZON, J.ROSSI AND J.TOLEDO, An optimal transportation problem with a cost given by the euclidean distance plus import/export taxes on the boundary, *Rev. Mat. Iberoam.* 30 (2014), no. 1, 1-33.
- [9] F. SANTAMBROGIO, Optimal Transport for Applied Mathematicians, in Progress in Nonlinear Differential Equations and Their Applications, 87, Birkhäuser Basel (2015).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER BC CANADA V6T 1Z2 *Email address*: dweik@math.ubc.ca