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Abstract. We consider the problem of finding two free export/import sets E+ and E− that
minimize the total cost of some export/import transportation problem (with export/import
taxes g±), between two densities f+ and f−, plus penalization terms on E+ and E−. First,
we prove existence of such optimal sets under some assumptions on f± and g±. Then, we
study some properties of these sets such as convexity and regularity. In particular, we show
that the optimal free export (resp. import) region E+ (resp. E−) has boundary of class C2

as soon as f+ (resp. f−) is continuous and ∂E+ (resp. ∂E−) is C2,1 provided that f+ (resp.
f−) is Lipschitz.

1. Introduction

In this paper we study a shape optimization problem where the functional to be minimized
is given by an export/import transportation problem with free export/import zones. Before
entering the details of this problem, let us introduce the standard export/import transportation
problem. Let f+ and f− be two given masses in some bounded region Ω and assume that
we want to transport f+ to f− paying a transport cost |x − y|, for each unit of mass that
moves from x to y. But, as the total mass of f+ can be different than the one for f−, we
are allowed to export or import masses from the boundary ∂Ω paying two additional costs on
the boundary (called export/import taxes) g+(x) and g−(y), for each unit of mass that comes
out/enters at some point of ∂Ω. We note that this problem has already been considered in
many papers [8, 3, 4, 5, 2]. In other words, we consider the following problem

(1.1) min
γ∈Π(f+,f−)

{∫
Ω×Ω
|x− y|dγ +

∫
∂Ω
g+(y) d(Πy)#γ(y) +

∫
∂Ω
g−(x) d(Πx)#γ(x)

}
,

where

Π(f+, f−) :=
{
γ ∈M+(Ω× Ω) : [(Πx)#γ]

|
◦
Ω

= f+, [(Πy)#γ]
|
◦
Ω

= f−
}
.

In [3, 8], the authors proved, using two different approachs, that Problem (1.1) has a dual
formulation which is the following

sup

{∫
Ω
u(f+ − f−) dx : u ∈ Lip1(Ω), −g− ≤ u ≤ g+ on ∂Ω

}
.

Moreover, this problem has an equivalent minimal flow formulation (see [3, 4]):

(1.2) min
σ∈Md(Ω), χ∈M(∂Ω)

{∫
Ω
|σ| dx+

∫
∂Ω
g+ dχ+ +

∫
∂Ω
g− dχ− : ∇ · σ = f + χ in Ω

}
.

Now, assume that we have two regions E+ and E− inside Ω where the export/import transport
is free of charge, i.e. there are no taxes on these special regions. Then, the problem (1.1)
becomes

W (E+, E−)
1
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(1.3)

= min
γ∈Π(f+,f−)

{∫
Ω×Ω
|x− y|dγ +

∫
(Ω\E+)×∂Ω

g+(y) dγ(x, y) +

∫
∂Ω×(Ω\E−)

g−(x) dγ(x, y)

}
.

Then, our shape optimization problem consists of minimizing the total cost W (E+, E−) of
this export/import transport problem (1.3) plus some penalties on E± (such as paying a cost
proportional to the perimeter of E±) among all subsets E± ⊂ Ω, i.e. we minimize

(1.4) min

{
W (E+, E−) + Per(E+) + Per(E−) : E± ⊂ Ω

}
.

We note that the authors of [1] have already considered a shape optimization problem slightly
similar to Problem (1.4); let us give a brief description of their problem. Let f+ and f− be two
densities (having the same total mass) in some region Ω and assume that the traffic congestion
in Ω\E is higher than the one in E, so their aim was to find a set E that minimizes

(1.5) min

{
J (E) + Per(E) : E ⊂ Ω

}
,

where

J (E) := min

{∫
E
H1(σ) dx+

∫
Ω\E

H2(σ) dx : ∇ · σ = f+ − f− in Ω, σ · n = 0 on ∂Ω

}
,

where H1 and H2 are two continuous superlinear convex functions such that 0 ≤ H1 ≤ H2.
They proved that there exists at least an optimal set E for Problem (1.5). On the contrary,
an optimal set E may fail to exist if we replace Per(E) with |E|, i.e. the problem

(1.6) min

{
J (E) + |E| : E ⊂ Ω

}
may have no solution. For this reason, they considered instead a relaxed formulation of Prob-
lem (1.6) (i.e. with a function 0 ≤ θ ≤ 1 instead of E). More precisely, they showed that the
optimal choice for θ is to have θ = 0 on some region E0 (which represents a high-congestion
area), θ = 1 on another region E1 (a low-congestion area) and 0 < θ < 1 on Ω\(E0 ∪ E1) (an
intermediate congestion area). That is why we consider here a penalization with perimeter,
since otherwise it is not clear how to prove existence and even, a solution may not exist.

Coming back to our shape optimization problem, we can also consider a more general ver-
sion of Problem (1.4): assume that the export/import transport on E± is not free, but in
order to export some mass from E+, we pay a cost g+

0 while outside of E+ we pay a higher
cost g+

1 , and to import some mass to E−, we pay a cost g−0 while to Ω\E− we pay a higher
cost g−1 . In other words, we minimize

min

{
W̃ (E+, E−) + Per(E+) + Per(E−) : E± ⊂ Ω

}
,

where

W̃ (E+, E−)

= min
γ∈Π(f+,f−)

{∫
Ω×Ω
|x− y|dγ +

∫
E+×∂Ω

g+
0 (y) dγ(x, y) +

∫
(Ω\E+)×∂Ω

g+
1 (y) dγ(x, y)

+

∫
∂Ω×E−

g−0 (x) dγ(x, y) +

∫
∂Ω×(Ω\E−)

g−1 (x) dγ(x, y)

}
.
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For simplicity of exposition, we will assume that g±0 = 0 on ∂Ω. In fact, all the results
about the convexity of the optimal free export/import regions hold true in the general case
under the assumption that g±0 ≤ g

±
1 on ∂Ω.

The aim of this paper is to show existence of two optimal export/import sets E+
opt and E−opt

for Problem (1.4) and then, to study some properties of these optimal sets. More precisely,
we prove that E+

opt and E−opt are uniformly convex under some assumptions on f± and g±.

Moreover, we will study the regularity of E±opt; in particular, we will show that E±opt is smooth

(say C2,1) inside spt(f±) as soon as f± is Lipschitz.

2. Export/Import transport problem with free export/import regions

Let f+ and f− be two nonnegative Borel measures on a compact domain Ω ⊂ Rd such that

spt(f±) ⊂
◦
Ω. Let g± : ∂Ω 7→ R+ be two given functions. Let E± be two subsets of Ω, then

we consider the problem
(2.1)

min
γ∈Π(f+,f−)

{∫
Ω×Ω
|x− y| dγ +

∫
(Ω\E+)×∂Ω

g+(y) dγ(x, y) +

∫
∂Ω×(Ω\E−)

g−(x) dγ(x, y)

}
.

We have the following:

Proposition 2.1. Assume that f± ∈ L1(Ω) and g± ∈ C(∂Ω). Then, the problem (2.1)
reaches a minimum.

Proof. Let (γn)n ⊂ Π(f+, f−) be a minimizing sequence. Then, it is clear that we can assume
that

γn(∂Ω× ∂Ω) = 0.

In this case, we get

γn(Ω× Ω) ≤ γn(
◦
Ω× Ω) + γn(Ω×

◦
Ω)

= f+(Ω) + f−(Ω).

Hence, up to a subsequence, γn⇀γ for some γ ∈ Π(f+, f−). We define the three parts of γn
as follows

γiin := γn |
◦
Ω×
◦
Ω
, γibn := γn |

◦
Ω×∂Ω

, γbin := γn |∂Ω×
◦
Ω
.

Yet, we see that γiin ⇀ γ1, γibn ⇀ γ2 and γbin ⇀ γ3 such that γ = γ1 + γ2 + γ3. Moreover, we

have spt(γ1) ⊂
◦
Ω ×

◦
Ω, spt(γ2) ⊂

◦
Ω × ∂Ω and spt(γ3) ⊂ ∂Ω ×

◦
Ω. This implies that γ1 = γii,

γ2 = γib and γ3 = γbi. On the other hand, let us devide γibn in two parts

γibn = γn · 1E+×∂Ω + γn · 1(Ω\E+)×∂Ω.

We see that γn · 1E+×∂Ω ⇀ γ4 with spt(γ4) ⊂ E+ × ∂Ω and γn · 1(Ω\E+)×∂Ω ⇀ γ5 with

spt(γ5) ⊂ (Ω\E+)× ∂Ω such that

γib = γ4 + γ5.

Yet, f+ ∈ L1(Ω) and (Πx)#γ
ib ≤ (Πx)#(γ · 1 ◦

Ω×Ω
) = f+, then γib(∂E+ × ∂Ω) = 0. Hence, we

get that

γn · 1(Ω\E+)×∂Ω ⇀ γ · 1(Ω\E+)×∂Ω.
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Similarly, thanks to the fact that f− ∈ L1(Ω) and (Πy)#γ
bi ≤ (Πy)#(γ · 1

Ω×
◦
Ω

) = f−, one can

prove that

γn · 1∂Ω×(Ω\E−) ⇀ γ · 1∂Ω×(Ω\E−).

Consequently,

lim inf
n

∫
Ω×Ω
|x− y|dγn +

∫
(Ω\E+)×∂Ω

g+(y) dγn(x, y) +

∫
∂Ω×(Ω\E−)

g−(x) dγn(x, y)

=

∫
Ω×Ω
|x− y| dγ +

∫
(Ω\E+)×∂Ω

g+(y) dγ(x, y) +

∫
∂Ω×(Ω\E−)

g−(x) dγ(x, y).

This implies that the transport plan γ ∈ Π(f+, f−) is in fact a minimizer for the problem
(2.1). �

Let γopt be an optimal transport plan for Problem (2.1). We devide γopt into three parts

γiiopt, γ
ib
opt and γbiopt, where

γiiopt = γopt · 1 ◦
Ω×
◦
Ω
, γibopt = γopt · 1 ◦

Ω×∂Ω
and γbiopt = γopt · 1

∂Ω×
◦
Ω
.

Set

ν+
opt := (Πx)#(γibopt) and ν−opt := (Πy)#(γbiopt).

We consider the three following problems :

(P1) min

{∫
Ω×Ω
|x− y| dγ : γ ∈ Π(f+ − ν+

opt, f
− − ν−opt)

}
,

(P2) min

{∫
Ω×Ω
|x− y|dγ +

∫
(Ω\E+)×∂Ω

g+(y) dγ : (Πx)#γ = ν+
opt, spt((Πy)#γ) ⊂ ∂Ω

}
,

(P3) min

{∫
Ω×Ω
|x− y|dγ +

∫
∂Ω×(Ω\E−)

g−(x) dγ : (Πy)#γ = ν−opt, spt((Πx)#γ) ⊂ ∂Ω

}
.

Then, we have the following

Proposition 2.2. The plans γiiopt, γ
ib
opt and γbiopt solve (P1), (P2) and (P3), respectively. In

addition, γibopt = (Id, TE+)#ν
+
opt where TE+ is the Borel selector function of the multivalued

map

TE+(x) =

{
P (x) := argmin{|x− y| : y ∈ ∂Ω}, if x ∈ E+,

T+(x) := argmin{|x− y|+ g+(y) : y ∈ ∂Ω}, if x ∈ Ω\E+.

On the other hand, γbiopt = (TE− , Id)#ν
−
opt where TE− is the following Borel selector function

TE−(y) =

{
P (y) := argmin{|x− y| : x ∈ ∂Ω}, if y ∈ E−,
T−(y) := argmin{|x− y|+ g−(x) : x ∈ ∂Ω}, if y ∈ Ω\E−.

Proof. This follows immediately from the fact that γiiopt, γ
ib
opt and γbiopt are admissible in (P1), (P2)

and (P3), respectively. Moreover, if γ1, γ2 and γ3 minimize (P1), (P2) and (P3), respectively,
then γ1 + γ2 + γ3 minimizes Problem (2.1) and so, γiiopt, γ

ib
opt and γbiopt minimize (P1), (P2) and
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(P3), respectively. On the other hand, if γ 6= (Id, TE+)#ν
+
opt is admissible in (P2), then we

have∫
Ω×∂Ω

|x−y| dγ +

∫
(Ω\E+)×∂Ω

g+(y) dγ =

∫
E+×∂Ω

|x−y|dγ +

∫
(Ω\E+)×∂Ω

[
|x− y|+ g+(y)

]
dγ

>

∫
E+×∂Ω

|x− TE+(x)|dγ +

∫
(Ω\E+)×∂Ω

[
|x− TE+(x)|+ g+(TE+(x))

]
dγ.

This shows that γibopt = (Id, TE+)#ν
+
opt. Similarly, we also get that γbiopt = (TE− , Id)#ν

−
opt. �

We conclude this section by the following

Proposition 2.3. Assume f± ∈ L1(Ω). Let γopt be an optimal transport plan for (2.1) and

consider the transport plans γiiopt, γ
ib
opt and γbiopt. Let ν+

opt := (Πx)#γ
ib
opt and ν−opt := (Πy)#γ

bi
opt.

Then, there are two sets E± ⊂ spt(f±) such that ν±opt = f± · 1E±.

Proof. Assume that this is not the case for ν+
opt (of course, the proof will be the same for ν−opt),

i.e. there is some set A such that 0 < ν+
opt < f+ on A. This means that on A we split the mass

f+ in two parts: one is going to f− − ν−opt and the second one is exported to ∂Ω. But, this is
a contradiction since |A| > 0 while it is well known that the set of double points (that is the
set of points whose belong to different transport rays) is negligible for the Lebesgue measure
(see [9]). �

3. Properties of the optimal free export/import regions

In this section, we prove existence of optimal free export/import sets E+
opt and E−opt for

Problem (1.4). Then, we introduce some regularity results on E±opt. Fix λ± > 0, then we
consider the following shape optimization problem

(3.1) min
{
W (E+, E−) + λ+Per(E+) + λ−Per(E−) : E± ⊂ Ω

}
,

where

W (E+, E−)

= min
γ∈Π(f+,f−)

{∫
Ω×Ω
|x− y|dγ +

∫
(Ω\E+)×∂Ω

g+(y) dγ(x, y) +

∫
∂Ω×(Ω\E−)

g−(x) dγ(x, y)

}
.

First, we have the following

Proposition 3.1. Assume that f± ∈ Lp(Ω), for some p > 1, and g± ∈ C(∂Ω). Then, there
exist two optimal free export/import regions E+

opt and E−opt for Problem (3.1).

Proof. Let (E+
k , E

−
k )k be a minimizing sequence in Problem (3.1). For each k, let γk be an

optimal transport plan for W (E+
k , E

−
k ) (see Proposition 2.1). Recall that γk ∈ Π(f+, f−) and

one can assume that γk gives zero mass to ∂Ω × ∂Ω, so there is some constant C such that
γk(Ω × Ω) ≤ C, for every k. As g± ∈ C(∂Ω), so we have W (E+

k , E
−
k ) ≥ −C||g||∞, for all k.

Then, we get that

Per(E±k ) ≤ C, for every k.

Yet, E±k ⊂ Ω, for every k, and Ω is bounded. Hence, up to a subsequence, (E+
k , E

−
k ) →

(E+, E−) in L1, where E+ and E− are two subsets of Ω. In particular, we have

Per(E±) ≤ lim inf
k

Per(E±k ).
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Moreover, we have

W (E+
k , E

−
k ) =

∫
Ω×Ω
|x− y|dγk +

∫
(Ω\E+

k )×∂Ω
g+(y) dγk(x, y) +

∫
∂Ω×(Ω\E−k )

g−(x) dγk(x, y).

Set

ν+
k := (Πx)#(γk · 1Ω×∂Ω) and ν−k := (Πy)#(γk · 1∂Ω×Ω).

From Proposition 2.2, we know that

< γk · 1Ω×∂Ω, φ >=

∫
E+
k

φ(x, P (x)) dν+
k +

∫
Ω\E+

k

φ(x, T+(x)) dν+
k , for all φ ∈ C(Ω× Ω),

and

< γk · 1∂Ω×Ω, ψ >=

∫
E−k

ψ(P (y), y) dν−k +

∫
Ω\E−k

ψ(T−(y), y) dν−k , for all ψ ∈ C(Ω× Ω).

Yet, up to a subsequence, we see that γk ⇀ γ (in the sense of measures) for some γ ∈ Π(f+, f−)
and ν±k ⇀ ν± in Lp, where

< γ · 1Ω×∂Ω, φ >=

∫
E+

φ(x, P (x)) dν+ +

∫
Ω\E+

φ(x, T+(x)) dν+, for all φ ∈ C(Ω× Ω)

and

< γ · 1∂Ω×Ω, ψ >=

∫
E−

ψ(P (y), y) dν− +

∫
Ω\E−

ψ(T−(y), y) dν−, for all ψ ∈ C(Ω× Ω).

Consequently, we have

W (E+, E−) ≤
∫

Ω×Ω
|x− y|dγ +

∫
(Ω\E+)×∂Ω

g+(y) dγ(x, y) +

∫
∂Ω×(Ω\E−)

g−(x) dγ(x, y)

= lim inf
k

W (E+
k , E

−
k ).

Finally, we infer that

W (E+, E−)+λ+Per(E+)+λ−Per(E−) ≤ lim inf
k

[
W (E+

k , E
−
k ) + λ+Per(E+

k ) + λ−Per(E−k )
]
,

which means that the pair (E+, E−) minimizes Problem (3.1). �

On the other hand, we have the following monotonicity property.

Proposition 3.2. For λ±1 , λ
±
2 > 0, let (E+

λ+1
, E−

λ−1
) and (E+

λ+2
, E−

λ−2
) be the corresponding op-

timal free export/import regions for Problem (1.4) with λ± = λ±1 and λ± = λ±2 , respectively.
Let γλ1 and γλ2 be two optimal transport plans for W (E+

λ+1
, E−

λ−1
) and W (E+

λ+2
, E−

λ−2
), respec-

tively. Set ν+
λ1

= (Πx)#(γλ1 · 1Ω×∂Ω), ν+
λ2

= (Πx)#(γλ2 · 1Ω×∂Ω), ν−λ1 = (Πy)#(γλ1 · 1∂Ω×Ω) and

ν−λ2 = (Πy)#(γλ2 · 1∂Ω×Ω). Assume that
λ±2
λ±1

< min g±

max g± and spt(ν±λ1) ⊂ spt(ν±λ2), then we have

E±
λ±1
⊂ E±

λ±2
.
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Proof. From the optimality of (E+

λ+1
, E−

λ−1
) and (E+

λ+2
, E−

λ−2
) in Problem (1.4) with λ± = λ±1 and

λ± = λ±2 , respectively, we have the following

W (E+

λ+1
, E−

λ−1
) + λ+

1 Per(E
+

λ+1
) + λ−1 Per(E

−
λ−1

)

≤W (E+

λ+1
∩ E+

λ+2
, E−

λ−1
) + λ+

1 Per(E
+

λ+1
∩ E+

λ+2
) + λ−1 Per(E

−
λ−1

)

and

W (E+

λ+2
, E−

λ−2
) + λ+

2 Per(E
+

λ+2
) + λ−2 Per(E

−
λ−2

)

≤W (E+

λ+1
∪ E+

λ+2
, E−

λ−2
) + λ+

2 Per(E
+

λ+1
∪ E+

λ+2
) + λ−2 Per(E

−
λ−2

).

But,

Per(E ∪ E′) + Per(E ∩ E′) ≤ Per(E) + Per(E′).

Then, we get

1

λ+
1

(W (E+

λ+1
, E−

λ−1
)−W (E+

λ+1
∩ E+

λ+2
, E−

λ−1
)) ≤ 1

λ+
2

(W (E+

λ+1
∪ E+

λ+2
, E−

λ−2
)−W (E+

λ+2
, E−

λ−2
)).

Yet, we have

W (E+

λ+1
, E−

λ−1
)−W (E+

λ+1
∩ E+

λ+2
, E−

λ−1
) ≥ −

∫
E+

λ+1

\E+

λ+2

g+(P (x)) dνλ+1
(x)

and

W (E+

λ+1
∪ E+

λ+2
, E−

λ−2
)−W (E+

λ+2
, E−

λ−2
) ≤ −

∫
E+

λ+1

\E+

λ+2

g+(T+(x)) dνλ+2
(x).

We infer that ∫
E+

λ+1

\E+

λ+2

(g+(T+(x)) νλ+2
(x)

λ+
2

−
g+(P (x)) νλ+1

(x)

λ+
1

)
dx ≤ 0.

Similarly, we prove that∫
E−
λ−1
\E−

λ−2

(g−(T−(x)) νλ−2
(x)

λ−2
−
g−(P (x)) νλ−1

(x)

λ−1

)
dx ≤ 0.

This concludes the proof. �

Remark 3.1. Assume that f− = 0. For λ1, λ2 > 0, let Eλ1 and Eλ2 be the corresponding
optimal free export regions for Problem (1.4) with λ+ = λ1 and λ+ = λ2, respectively. Assume

that λ2
λ1
< min g+

max g+
. Then, we have Eλ1 ⊂ Eλ2 .

The aim now is to study some properties of the optimal free export/import regions E+
opt

and E−opt. First, let us start by introducing the following

Definition 3.1. For a subset E ⊂ Ω, we define the Ω−convex hull of E as
⋃
k∈N

Pk, where

Pk ⊂ Ω is a polygone with k−vertices on ∂E.

Definition 3.2. Let E be a subset of Ω. We say that E is Ω−convex if the Ω−convex hull
of E is the set E itself.
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Remark 3.2. We note that the Ω−convex hull of a subset E ⊂ Ω is not necessarily convex,
unless Ω is convex or the convex hull of E is contained in Ω.

Proposition 3.3. Assume d = 2. Let E+
opt (resp. E−opt) be the optimal free export (resp.

import) region. Then, E+
opt (resp. E−opt) is Ω−convex.

Proof. Let us prove that the optimal free export region E+
opt is Ω−convex. Suppose that this

is not the case and let E++
opt be the Ω−convex hull of E+

opt. It is not difficult to see that

Per(E++
opt ) < Per(E+

opt).

Moreover, let γopt be an optimal transport plan for W (E+
opt, E

−
opt). Then, the following holds

W (E++
opt , E

−
opt) ≤

∫
Ω×Ω
|x− y| dγopt +

∫
(Ω\E++

opt )×∂Ω
g+(y) dγopt +

∫
∂Ω×(Ω\E−opt)

g−(x) dγopt

≤
∫

Ω×Ω
|x− y|dγopt +

∫
(Ω\E+

opt)×∂Ω
g+(y) dγopt +

∫
∂Ω×(Ω\E−opt)

g−(x) dγopt

= W (E+
opt, E

−
opt).

Hence, we get

W (E++
opt , E

−
opt) + λ+Per(E++

opt ) + λ−Per(E−opt) < W (E+
opt, E

−
opt) + λ+Per(E+

opt) + λ−Per(E−opt),

which is a contradiction as (E+
opt, E

−
opt) minimizes Problem (3.1). The proof of Ω−convexity

for E−opt is eventually the same. �

More precisely, we have the following

Proposition 3.4. Assume d = 2. Let E±opt be the optimal free export/import region and

let ν±opt the mass to be exported/imported. Then, E±opt is convex in the interior of spt(ν±opt).

Moreover, the part of E±opt which is outside spt(ν±opt) is a part of the Ω−convex hull of spt(ν±opt).

Proof. The convexity of E±opt in the interior of spt(ν±opt) follows immediately from Proposition

3.3. Let C be a part of ∂E+
opt\ spt(ν+

opt) and x, y be the endpoints of C such that [x, y] ⊂
Ω\ spt(ν+

opt). Then, it is clear that the segment [x, y] is better than C in E+
opt. �

Corollary 3.5. Assume that d = 2 and spt(ν±opt) is Ω−convex. Then, E±opt is contained in

spt(ν±opt).

Anyway, we also have the following

Corollary 3.6. Assume that d = 2 and spt(f±) is Ω−convex. Then, the optimal free ex-
port/import region E±opt is contained in spt(f±).

Moreover, we have the following

Proposition 3.7. Assume that d = 2 and the convex hull of spt(ν±opt) is contained in Ω.

Then, the optimal free export/import region E±opt is convex.

Proof. This follows immediately from Proposition 3.4. �

Remark 3.3. Notice that it is not obvious when d > 2 if the optimal free export/import regions
E+
opt and E−opt are Ω−convex or not, since it is not true in dimensions 3 or greater that the

perimeter of the Ω−convex hull of a set is less than the perimeter of the set itself. However,
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it is possible to prove convexity of E±opt under the assumption that E±opt are smooth. In fact,

from the optimality conditions on E+
opt in the problem

min
E

{
λ+Per(E)−

∫
E

[
|x− T+(x)|+ g+(T+(x))− |x− P (x)|

]
dν+

opt(x)

}
,

one can prove (see, for instance, [7]) that for any smooth vector field V such that V · n = 0
on ∂Ω, one has∫

∂E+
opt

[
λ+K(x)−

[
|x− T+(x)|+ g+(T+(x))− |x− P (x)|

]
ν+
opt(x)

]
V · n = 0,

where K denotes the mean curvature of ∂E+
opt and n is the exterior normal vector to ∂E+

opt.
Since V is arbitrary, we get

K =
1

λ+

[
|x− T+(x)|+ g+(T+(x))− |x− P (x)|

]
ν+
opt(x) ≥ 0 on ∂E+

opt.

Proposition 3.8. Assume that Ω is convex. Then, the optimal free export/import set E±opt
intersects the boundary of spt(ν±opt), unless g± = c on some arc of ∂Ω.

Proof. Assume that E+
opt ∩ ∂[spt(ν+

opt)] = ∅. Let R be the union of all the transport rays

between ν+
opt · 1E+

opt
and its projection on the boundary P#[ν+

opt · 1E+
opt

]. Set E := (R ∩
spt(ν+

opt))\E
+
opt and C := P (R). As the transport rays cannot intersect at their interiors, then

we see that this set E is also exported (with a tax g+) to the same arc C with T+(x) =
P (x) ∈ C, for all x ∈ E. Yet, this implies that there is some constant c such that g+ = c on
C. �

Now, we will study the regularity of E±opt.

Proposition 3.9. Assume d = 2 and f± ∈ Lp(Ω) with p > 2. Then, the optimal free
export/import region E±opt is C1 in the interior of Ω. Moreover, E±opt is C1 provided that ∂Ω

is C1.

Proof. Assume that this is not the case at some point x ∈ ∂E+
opt. After a rotation and

translation of axes, we can assume that x = (0, 0) and the x1−axis is below the two tangent
lines to ∂E+

opt at x. Let α1 and α2 be the parameterizations of the two parts of ∂E+
opt around

x. Take ε > 0 small enough and let δ > 0 be such that α1(ε) = α2(−δ). Now, let C be the

part of ∂E+
opt between (ε, α1(ε)) and (−δ, α2(−δ)) and let Ĉ be the segment joining these two

points. Let E++
opt be such that ∂E++

opt = (∂E+
opt\C) ∪ Ĉ. Then, we have

Per(E++
opt )− Per(E+

opt) = ε+ δ −
∫ ε

0

√
1 + α′1(s)2 ds−

∫ 0

−δ

√
1 + α′2(s)2 ds.

Thanks to the convexity of E+
opt (see Proposition 3.4), we have that |α′1(s)|, |α′2(s)| ≥ c > 0,

for s small enough. Hence, we get that

Per(E++
opt )− Per(E+

opt) ≤ (1−
√

1 + c2)(ε+ δ).

On the other hand, let γopt be an optimal transport plan for W (E+
opt, E

−
opt). Then, we have

W (E++
opt , E

−
opt)−W (E+

opt, E
−
opt) ≤

∫
(E+
opt\E

++
opt )×∂Ω

g+(y) dγopt =

∫
(E+
opt\E

++
opt )

g+(P (x)) dν+
opt(x)

≤ ||g+||L∞ ||ν+
opt||Lp |E

+
opt\E

++
opt |

1
q .
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Yet,

|E+
opt\E

++
opt | = (ε+ δ)α1(ε)−

∫ ε

0
α1(s) ds−

∫ 0

−δ
α2(s) ds ≤ C(ε+ δ)2.

Consequently, we get

W (E++
opt , E

−
opt) + λ+Per(E++

opt )−W (E+
opt, E

−
opt)− λ+Per(E+

opt)

≤
[
λ+(1−

√
1 + c2) + ||g+||L∞ ||ν+

opt||LpC(ε+ δ)
2
q
−1
]

(ε+ δ),

which is a contradiction for ε, δ small enough, as (E+
opt, E

−
opt) is a minimizer for Problem (2.1)

and p > 2. �

Proposition 3.10. Assume d = 2, g± ≥ c > 0 and f± is continuous on spt(f±). Let ν±opt
the mass to be exported/imported and E±opt be the optimal free export/import region. Then,

E±opt is strictly convex in {ν±opt > 0}. In particular, if f± is bounded from below, then E±opt is

uniformly convex inside spt(ν±opt).

Proof. Let γopt be an optimal transport plan for W (E+
opt, E

−
opt) such that ν+

opt = (Πx)#(γopt ·
1Ω×∂Ω). It is easy to see that the set E+

opt minimizes

min
E

{
min

{∫
Ω×Ω
|x−y|dγ+

∫
(Ω\E)×∂Ω

g+(y)dγ : (Πx)#γ = ν+
opt, (Πy)#γ ⊂ ∂Ω

}
+λ+Per(E)

}
.

On the other hand, from Proposition 2.2, the transport plan γibopt := (Id, TE)#ν
+
opt, where the

map TE is defined as follows

TE(x) =

{
P (x) := argmin{|x− y| : y ∈ ∂Ω}, if x ∈ E,
T+(x) := argmin{|x− y|+ g+(y) : y ∈ ∂Ω}, if x ∈ Ω\E,

is a minimizer for the problem

min

{∫
Ω×Ω
|x− y|dγ +

∫
(Ω\E)×∂Ω

g+(y) dγ : (Πx)#γ = ν+
opt, spt((Πy)#γ) ⊂ ∂Ω

}
.

So, we infer that E+
opt minimizes

min
E

{∫
Ω
|x− TE(x)| dν+

opt(x) +

∫
Ω\E

g+(TE(x)) dν+
opt(x) + λ+Per(E)

}
.

Fix x0 ∈ ∂E+
opt. Let C be a part of ∂E+

opt around x0 and x1 := (s1, t1), x2 := (s2, t2) be
the endpoints of C. Assume that C is the graph of a function αopt. Then, we see that αopt
minimizes the following problem

min

{∫ s2

s1

∫ α(s)

0
u(s, t) ν+

opt(s, t) dt ds+ λ+

∫ s2

s1

√
1 + α′(s)2 ds : α(s1) = t1, α(s2) = t2

}
,

where

u(s, t) := |(s, t)− T+(s, t)|+ g+(T+(s, t))− |(s, t)− P (s, t)|.
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From the optimality conditions on αopt and thanks to the continuity of ν+
opt on spt(ν+

opt) (see
Proposition 2.3), we get that α′opt(s)√

1 + α′opt(s)
2

′ = 1

λ+
u(s, αopt(s)) ν

+
opt(s, αopt(s)).

This implies that

κ(s0) =
1

λ+
u(s0, αopt(s0)) ν+

opt(s0, αopt(s0)),

where κ(s0) denotes the curvature of ∂E+
opt at x0 := (s0, αopt(s0)). Yet, we have u(s, t) ≥

g+(T (s, t)) ≥ c > 0. This concludes the proof. �

Corollary 3.11. Assume d = 2 and f± is continuous on spt(f±). Then, the optimal free
export/import region E±opt is C2 in the interior of spt(ν±opt) and C1,1 in the interior of Ω.

Moreover, E±opt is C1,1 provided that ∂Ω is C1,1.

Proof. This follows from Propositions 3.4 & 3.9, the continuity of ν±opt (see Proposition 2.3)

and u, and the fact that the curvature κ of ∂E+
opt in the interior of Ω satisfies (see Proposition

3.10)

κ(s) =
1

λ+
u(s, αopt(s)) ν

+
opt(s, αopt(s)).

Now, assume that x0 ∈ ∂E+
opt ∩ ∂Ω. Similarly to Proposition 3.10, we denote by C the arc

of ∂E+
opt around x0 and by x1 := (s1, t1), x2 := (s2, t2) the endpoints of C. Assume that C

(resp. ∂Ω) is the graph of a function αopt (resp. ψ). Then, we have that αopt solves

min

{∫ s2

s1

∫ α(s)

0
u(s, t) ν+

opt(s, t) dtds+λ+

∫ s2

s1

√
1 + α′(s)2ds : α ≥ ψ, α(s1) = t1, α(s2) = t2

}
.

From the optimality conditions on αopt, we get

κ(s) ≤ 1

λ+
u(s, αopt(s)) ν

+
opt(s, αopt(s)).

As ∂Ω is C1,1, then it is clear that κ is bounded from below as well. This concludes the
proof. �

Corollary 3.12. Assume that d = 2 and f± is C0,α on spt(f±), with α ∈ (0, 1). Then, the
optimal free export/import region E±opt is C2,α in the interior of spt(ν±opt). In particular, E±opt
is C2,1 inside spt(ν±opt) as soon as f± is Lipschitz on spt(f±).

Remark 3.4. We see that if f± is Ck,α on spt(f±) and g± = c± > 0, then the optimal free
export/import set E±opt is Ck+2,α in the interior of spt(ν±opt).

Remark 3.5. It is not clear how to adapt Proposition 3.9 to the case d > 2. On the other
hand, we know that any part E ⊂ ∂E+

opt is a solution of the variational problem

min

{∫
B(ε)

∫ α(ȳ)

0
u(ȳ, yd)ν

+
opt(ȳ, yd)dyd dȳ + λ+

∫
B(ε)

√
1 + |∇α(ȳ)|2dȳ : Id× α |∂B(ε) = ∂E

}
.

From the optimality conditions on αopt, we get that αopt satisfies the following equation

∇ ·

[
∇αopt(ȳ)√

1 + |∇αopt(ȳ)|2

]
=

1

λ+
u(ȳ, αopt(ȳ)) ν+

opt(ȳ, αopt(ȳ))
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or equivalently, ∑
i,j

ai,j ∂
2
xixjαopt =

1

λ+
u(ȳ, αopt(ȳ)) ν+

opt(ȳ, αopt(ȳ)),

where

ai,j =
δi,j(1 + |∇αopt(ȳ)|2)− ∂xiαopt ∂xjαopt

(1 + |∇αopt(ȳ)|2)
3
2

.

In fact, under some assumptions on ai,j (see, for instance, [6]), it is possible to prove a
higher regularity on αopt. But, it is not clear if the coefficients ai,j here satisfy the required
assumptions or not and even, it is not sure that in higher dimension d > 2 we can arrive
to prove that the optimal free export/import region E±opt is smooth, as E±opt may not be, for
instance, Ω−convex when d > 2.

The following example shows that, in general, the optimal free export set E+
opt is not C2 on

the boundary of spt(f) if f /∈ C(Ω).

Example 3.12.1. Let Ω = B̄(0, 2) and let f be a nonnegative density such that f = 1 on
[−1, 1] × [−1, 1]. Assume g = 1 on ∂Ω. Fix λ > 0, so the problem (1.4) is equivalent to
minimize

min

{
λPer(E)− |E ∩ ([−1, 1]× [−1, 1])| : E ⊂ Ω

}
.

Let κ be the curvature of ∂Ω, then we know that κ = 1
λ on ]−1, 1[× ]−1, 1[. If λ < 1

2 , then it

is clear that the optimal set Eopt 6= ∅. Yet, we know that Eopt is C1. This implies that there
is part of Eopt inside ]−1, 1[× ]−1, 1[ and the curvature of this part is 1

λ . However, we can see

easily that Eopt ∩ ∂(]−1, 1[× ]−1, 1[) 6= ∅. Consequently, ∂Eopt is not C2.
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