OPTIMAL FREE EXPORT/IMPORT REGIONS

SAMER DWEIK

ABSTRACT. We consider the problem of finding two free export/import sets £ and E~ that
minimize the total cost of some export/import transportation problem (with export/import
taxes gi), between two densities f+ and f~, plus penalization terms on E' and E~. First,
we prove existence of such optimal sets under some assumptions on f* and g*. Then, we
study some properties of these sets such as convexity and regularity. In particular, we show
that the optimal free export (resp. import) region ET (resp. E~) has boundary of class C?
as soon as fT (resp. f7) is continuous and OE™ (resp. OE™) is C*! provided that f* (resp.
f7) is Lipschitz.

1. INTRODUCTION

In this paper we study a shape optimization problem where the functional to be minimized
is given by an export/import transportation problem with free export/import zones. Before
entering the details of this problem, let us introduce the standard export/import transportation
problem. Let f* and f~ be two given masses in some bounded region 2 and assume that
we want to transport fT to f~ paying a transport cost |z — y|, for each unit of mass that
moves from z to y. But, as the total mass of f* can be different than the one for f~, we
are allowed to export or import masses from the boundary 02 paying two additional costs on
the boundary (called ezport/import tazes) g*(x) and g~ (y), for each unit of mass that comes
out/enters at some point of 92. We note that this problem has already been considered in
many papers [8, 3, 4, 5, 2]. In other words, we consider the following problem

i L et [ @amso + [ o @aiene),
where

I(F*,f7) = {y e MA@ x Q) [yl g = /7 ()] g = £}

In [3, 8], the authors proved, using two different approachs, that Problem (1.1) has a dual
formulation which is the following

sup{/ﬂu(j‘dr — f7)dx : u€Lipy(Q), —g- <u<g' on 89}.

Moreover, this problem has an equivalent minimal flow formulation (see [3, 4]):

(1.2) min {/U|dx+/ g+dx++/ g dy " :Veo=f+xin Q}
oEMI(Q),xeM(0Q) [ Jo B19) B19)

Now, assume that we have two regions E* and E~ inside € where the export/import transport
is free of charge, i.e. there are no taxes on these special regions. Then, the problem (1.1)
becomes
W(ET,E™)
1
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(1.3)

= min / !w—y!dwr/ 9" () dfy(w,y)+/ g (z)dy(z,y) ¢
YEII(f,57) | Jaxa (Q\E+)x0Q ANX(Q\E™)

Then, our shape optimization problem consists of minimizing the total cost W(E*, E™) of
this export/import transport problem (1.3) plus some penalties on ET (such as paying a cost
proportional to the perimeter of E¥) among all subsets E* C €, i.e. we minimize

(1.4) min{W(E+,E_)+Per(E+)+Per(E_) . Ef c Q}

We note that the authors of [1] have already considered a shape optimization problem slightly
similar to Problem (1.4); let us give a brief description of their problem. Let f™ and f~ be two
densities (having the same total mass) in some region {2 and assume that the traffic congestion
in Q\F is higher than the one in F, so their aim was to find a set E that minimizes

(1.5) min {j(E) +Per(E) : EC Q}
where

J(E) ::min{/Hl(a)d:U+ Hy(o)dr : V-o=ft—f in Q,0-n=0 onﬁﬁ},
E O\E

where Hi and Hy are two continuous superlinear convex functions such that 0 < Hy < Ho.
They proved that there exists at least an optimal set E for Problem (1.5). On the contrary,
an optimal set E' may fail to exist if we replace Per(E) with |E|, i.e. the problem

(1.6) min{J(E) +|E| : EC Q}

may have no solution. For this reason, they considered instead a relaxed formulation of Prob-
lem (1.6) (i.e. with a function 0 < # <1 instead of E). More precisely, they showed that the
optimal choice for € is to have # = 0 on some region Ej (which represents a high-congestion
area), # = 1 on another region E; (a low-congestion area) and 0 < 6 < 1 on Q\(Ey U E) (an
intermediate congestion area). That is why we consider here a penalization with perimeter,
since otherwise it is not clear how to prove existence and even, a solution may not exist.

Coming back to our shape optimization problem, we can also consider a more general ver-
sion of Problem (1.4): assume that the export/import transport on ET is not free, but in
order to export some mass from ET, we pay a cost gar while outside of ET we pay a higher
cost gf, and to import some mass to £~, we pay a cost g, while to Q\E~ we pay a higher
cost g; . In other words, we minimize

min {W(E*, E7)+ Per(E") + Per(E™) : E* C Q},

where

W(ET,E7)
= min {/ Ix—yldwr/ 95 (y) dv(w,yH/ 91 (y) dy(z,y)
YeIl(f*+,17) LJaxa E+x8Q (Q\E+)xQ

i /89><E— 9o () dy(@,y) + LQX(Q\E_)gf(w)d'y(m,y)}.
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For simplicity of exposition, we will assume that g(jf =0 on 0f). In fact, all the results
about the convexity of the optimal free export/import regions hold true in the general case
under the assumption that ga[ < gli on 0f).

The aim of this paper is to show existence of two optimal export/import sets E. ot and Eg

for Problem (1. 4) and then, to study some properties of these optimal sets. More premsely,
we prove that Ef ot and E,, are unlformly convex under some assumptions on fi and g*

in particular, we will show that EZ, is smooth

Moreover, we will study the regularity of E= opt

opt7
(say C*1) inside spt(fT) as soon as f* is Lipschitz.

2. EXPORT/IMPORT TRANSPORT PROBLEM WITH FREE EXPORT/IMPORT REGIONS

Let fT and f~ be two nonnegative Borel measures on a compact domain £ C R? such that

spt(f*) c Q. Let g% : 9Q — R* be two given functions. Let ET be two subsets of 2, then
we consider the problem
(2.1)

min / Iﬂf—yld'7+/ g*(y)dv(fﬂ,y)Jr/ g~ (z)dy(z,y) ¢
YELI(f*,f7) | Jaxa (Q\E+)x09 OQX(Q\E-)

We have the following:

Proposition 2.1. Assume that f* ¢ LY(Q) and g* € C(0Q). Then, the problem (2.1)
reaches a minimum.

Proof. Let (vn)n C II(fT, f~) be a minimizing sequence. Then, it is clear that we can assume
that

(02 x 0Q) =
In this case, we get
(2 X Q) < (2% Q) + (2 x Q)
= A+ Q).

Hence, up to a subsequence, v,— v for some v € II(fT, f~). We define the three parts of 7,
as follows

i, ib . __ bi .__
Tn = ’Y’rl‘ﬁxﬁa Tn = fyn|§°)><69’ Tn = In |6Q><502'

Yet, we see that 'y“ — oy, i 2 and Y2 — ~3 such that v = v, 4+ 72 + 3. Moreover, we

have spt(’yl) CQx Q spt(y2) C Q x 99 and spt(vy3) C 6Q % €. This implies that v; = 7%,
72 = 7" and 3 = 4*. On the other hand, let us devide 7?* in two parts

V= Lpixon + Yn - L\ p+)xon-

We see that v, - 1g+yoo — 71 with spt(y4) € ET x 9Q and -, - LovE+)xon — 75 with
spt(y5) C (Q\ET) x 99 such that

Y =y + 5.
Yet, f+ € L}(Q) and (IL,) g7 < () 4(y - 1g_) = /7, then y*(9E* x 9Q) = 0. Hence, we
get that

><

T - Lo\ E+yxa = 7 - Lo\E+)xo0-
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Similarly, thanks to the fact that f~ € L(Q) and (IT,)xv" < (II,) 4 (7 - 1
prove that

Qxfz) = f~, one can
T - Loax@\e-) = 7 - Llaax@\E-)-
Consequently,

liminf/ |ﬂcy|d’yn+/ 9" (y) dvn(x,y)+/ g~ (z) dyn(z,y)
n axQ (Q\E+)x09 OOX (Q\E-)

=/ \fﬂ—y!dv+/ 9" () dv(m,y)+/ g~ (x) dvy(z,y).
QxQ (Q\ET)x0Q OOX(Q\E™)

This implies that the transport plan v € II(f*, f7) is in fact a minimizer for the problem
(2.1). O

Let vop¢ be an optimal transport plan for Problem (2.1). We devide 7, into three parts
’Yj)fntv ’Yggt and 'Y%m where

oo b bi
’Yopt = Yopt * 1502><SO)7 Wopt = Yopt * 1§OZ><BQ and ’YOpt = Yopt ° 189><€l'
Set

V(j;)t = (Has)#(’)/g;t) and Vopt = (Hy)#(’Yg;t)-

We consider the three following problems:

(P1) min{/ |z —y|dy : 'yEH(er—yjpt,f_—yO_pt)},
QxQ

(P2)  min {/ |z —yldy + / g (y)dy © (Ie)wy = vy, spt((Ty)47) C 39} :
QxQ (Q\E+)x0Q

(P3)  min {/ [z —y[dy + / g~ () dy : (Iy) 7y = Vopr, spt((Ilz) 47) C 09} :
Qx0 OOX(Q\E™)

Then, we have the following
Proposition 2.2. The plans v, %gt and ’yg;t solve (P1), (P2) and (P3), respectively. In
addition, ’yégt = (Id, TE+)#V;;,75 where T+ is the Borel selector function of the multivalued

map

Ty () P(z) := argmin{|x —y| : y € 0O}, if € BT,
xTr) =
B TH(z) := argmin{|z — y| + g7 (v) : y € 90}, if € Q\ET.

On the other hand, ’ygfgt = (TEf,Id)#Z/O_pt where Tr- is the following Borel selector function

Ty (y) = P(y) := argmin{|x —y| : © € 09}, if ye E7,
B = T~ (y) == argminf{|z — y| + g~ (x) : © € 00}, if y € Q\E~.

Proof. This follows immediately from the fact that 7., ygl;t and 'ygf,t are admissible in (P1), (P2)
and (P3), respectively. Moreover, if 1, 72 and 73 minimize (P1), (P2) and (P3), respectively,

then 1 + 72 + 73 minimizes Problem (2.1) and so, 74, v, and 4%, minimize (P1), (P2) and
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(P3), respectively. On the other hand, if v # (Id, TE+)#U$# is admissible in (P2), then we
have

/ !w—y\dwr/ 9+(y)d’}’=/ \w—y|d7+/ [z —yl+ 9" (v)] dy
Qx9Q (Q\E+) %89 E+x89 (O\E+) x99

> / |z — Tp+(z)|dy + / [l — T+ ()| + g* (Tg+ (2))] dr.
E+x00Q (Q\ET)x00Q

This shows that ’yopt = (Id, TE+)#1/0 ;- Similarly, we also get that ’yopt = (Tg-,Id)yv,, O

opt*

We conclude this section by the following

Proposition 2.3. Assume f* ¢ Ll(Q). Let Yopt be cm optimal transport plan for (2.1) and
consider the transport plans v, v, and A5, Let I/Opt = (IL;)»y2, and Vopt += (IL) w5
Then, there are two sets E* C spt(fT) such that Vopt =f* 1gs.

Proof. Assume that this is not the case for Vopt

< fT on A. This means that on A we split the mass

(of course, the proof will be the same for v, ),

i.e. there is some set A such that 0 < Vopt
fT in two parts: one is going to f~ Vopt 20d the second one is exported to 9). But, this is
a contradiction since |A| > 0 while it is well known that the set of double points (that is the
set of points whose belong to different transport rays) is negligible for the Lebesgue measure

(see [9]). O

3. PROPERTIES OF THE OPTIMAL FREE EXPORT/IMPORT REGIONS

In this section, we prove existence of optimal free export/lmport sets E opt and E,, for

opt
Problem (1.4). Then, we introduce some regularity results on Eopt. Fix A* > 0, then we

consider the following shape optimization problem
(3.1) min {W(ET, E7) + A" Per(E') + A" Per(E™) : E* C Q},

where
W(ET,E7)

= min / \w—ydfw/ 9" () d'y(w,y)+/ g (v)dvy(z,y) o
YEI(f+,.f7) | Jaxa (Q\E+)x8Q AN (Q\E™)

First, we have the following

Proposition 3.1. Assume that f* € LP(Q), for some p > 1, and g* € C(9Q). Then, there

exist two optimal free export/import regions E+t and E,, for Problem (3.1).

Proof. Let (E;", E; ) be a minimizing sequence in Problem (3.1). For each k, let 4 be an
optimal transport plan for W (E,", E, ) (see Proposition 2.1). Recall that 5, € II(fT, f7) and
one can assume that v gives zero mass to 9) x 02, so there is some constant C such that
(2 x Q) < C, for every k. As g € C(99), so we have W(E;", E; ) > —C||g||c, for all k.
Then, we get that

Per(Ef) < C, for every k.

Yet, E,:gIE C Q, for every k, and  is bounded. Hence, up to a subsequence, (E,;",Ek_) —
(E*,E7) in L', where ET and E~ are two subsets of 2. In particular, we have

Per(E*) < limkinf PGT‘(E];k).
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Moreover, we have

WELED = [ Jo-sldu [ SO+ [ g @) dule),
QxQ (Q\E;)x0Q IOX(O\E;)

Set,
v = (Uy)x (k- laxen) and vy := (IIy)% (v - loaxa)-

From Proposition 2.2, we know that

< - laxe, ¢ >= /E+ ¢(z, P(z))dvj + / ¢(z, T (z))dy}t, forall ¢ € C( x ),

O\E}
and
<Yk -+ 18Q><Q7¢ >= w(P(y)ay) dl/k_ + /Q\ w(Ti(y)ay) de_, for all w € C(Q X Q)
Io By

Yet, up to a subsequence, we see that 7, — ~y (in the sense of measures) for some v € II(f*, f~)

and Vki —v* in LP, where
<7v-laxseq, ¢ >= ¢(z, P(x))dv™ + / ¢(z, Tt (z))dvt, forall ¢ € C(Q x Q)
E+ Q\E+
and

<7l >= [ sP@@ + [ ) forall € 0@ x0)
Consequently, we have
wEte) < [ -yl | s @) ) + [ g (2) dy(a.y)
QxQ (Q\E+)x09Q IOX(Q\E)
= liminf W(E!, Ep).
Finally, we infer that
W(ET, E7)+AtPer(ET)4+\" Per(E™) < lim inf (W(E", E;) + AT Per(E)) + A~ Per(Ep)]

which means that the pair (E", £~) minimizes Problem (3.1). O

On the other hand, we have the following monotonicity property.
Proposition 3.2. For A, \T > 0, let (E;,E;_) and (E;F,E;_) be the corresponding op-
1 1 2
timal free export/import regions for Problem (1.4) with A\* = )\f: and \* = )\Qi, respectively.

Let vy, and vy, be two optimal transport plans for W(E;,E/\__) and W(E;:L,E;_), respec-
1 1 2 2

tively. Set vy = (TIz)#(7a, - laxan), vy, = (a)# (M, - Taxea), vy, = ()4 (1, - looxa) and
mingi

+
vy, = (My)% (1, - loaxa). Assume that % < maxgE and spt(ui) C Spt(l/i), then we have
E} CEL.

AT
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Proof. From the optimality of (E;r, E;,) and (E;]r, E;) in Problem (1.4) with A* = A and
1 1 2 2
At = /\ét, respectively, we have the following

W(E;}, E;l_) + )\fPeT(E;T) + A;Per(E;I_)

< W(E;} N E;;, E;l,) + )\fPer(E;\} N E;}) + Al_Per(E;l,)
and

W(ET, ,E_)+ )\;Per(E;) + A5 Per(E
2

AT A_;)

< W(E;} UET EC

A A;) + )\;PCT(E;} U E;&) + Ay Per(E_).

)\2
But,
Per(EUE') + Per(ENE') < Per(E) + Per(E').

Then, we get

1

1 _ _
— (W(ET,,E )—W(E;}HE* E ))gA+
2

NG NERON B (W(E;}uE* E_)-W(EF,E)).
1

1y - 4oLy -
)\2 ’ >\2 )\2 ’ )\2
Yet, we have

AT AT TAT 1

W(ET, ,E_) — W(E;} NEL,E)> —/E+ - g"(P(z)) dvy+ ()

and
W(EJZr UET  E” ) — I/V(E+ E_)<- g*(T*(a:))dV + ().
A + o\ gt A2
EN\ET,

+ - + -
A2 ’ )\2 )‘2 ’ )\2

We infer that

— dz <0.
= )

/ <g+(T+(9€)) vr(@) gt (P(@)) vyt (o)
By \Ej\_+

Similarly, we prove that

[ . <g<T<2> v (@) g(P(g:)l) - <x>> e

1 2
This concludes the proof. [

Remark 3.1. Assume that f~ = 0. For A\, Ay > 0, let Ey, and E), be the corresponding
optimal free export regions for Problem (1.4) with AT = X\ and AT = \o, respectively. Assume

ng+
that i—f < 29 Then, we have Ey, C E),.

max gt *

The aim now is to study some properties of the optimal free export/import regions E;;t
and E

opt*

Definition 3.1. For a subset E C 2, we define the Q—convex hull of E as |J Py, where
keN

First, let us start by introducing the following

P, C Q is a polygone with k—vertices on OFE.

Definition 3.2. Let E be a subset of 2. We say that E is Q—convex if the Q—convex hull
of E is the set E itself.
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Remark 3.2. We note that the QQ—convex hull of a subset E C § is not necessarily convex,
unless € is convex or the convexr hull of E is contained in €.

Proposition 3.3. Assume d = 2. Let Eopt (resp. E,,) be the optimal free export (resp.
import) region. Then, ES, (resp. E,,) is Q—conver.

Proof. Let us prove that the optimal free export region E opt 18 {1—convex. Suppose that this

is not the case and let E;;f be the 2—convex hull of Eopt It is not difficult to see that

Per(E;;[) < Per(EOpt)

Moreover, let 7,,; be an optimal transport plan for W(E} opt Eo_pt)‘ Then, the following holds

W(E;;fr’ Eopt) < / |‘T - y| d'Yopt + / (y) d’YOpt + / _(-T) d'YOpt
QxQ (Q \Eopt )><89 OOX(Q\E

opt)
/ \x—y\d%pt+/
QxQ (O\E

= W(Eopt’Eopt)

IN

g+ (y) d70pt + / g (37) d’Yopt

Om) xXON 00X (QE,,,)

Hence, we get

W(EST Eypy) + A Per(EST) + A" Per(E,,) < W(E],

opt 5 opt )\+Per(E;;t) + )\*Per(Eo_pt),

opt? opt )

which is a contradiction as (E} E,,;) minimizes Problem (3.1). The proof of Q—convexity

opt’
for E,,, is eventually the same. [
More precisely, we have the following

Pr0p051t10n 3.4. Assume d = 2. Let Eopt
let vE pt the mass to be exported/@mported Then, Eopt is convex in the interior of spt(v, Opt)

be the optimal free export/import region and

Moreover, the part of EX ot Which is outside spt(v, Opt) is a part of the Q— convex hull of spt(v, Opt)

Proof. The convexity of E opt i the interior of spt(v, opt) follows immediately from Proposition
3.3. Let C be a part of OF pt\ spt(v, Opt) and z, y be the endpoints of C such that [z,y] C
Q\ spt(v, Opt) Then, it is clear that the segment [z,y] is better than C in E . O

Corollary 3.5. Assume that d = 2 and spt(v Opt) is Q—convex. Then, E= ot S contained in
5pt( opt)
Anyway, we also have the following

Corollary 3.6. Assume that d = 2 and spt(fT) is Q—convex. Then, the optimal free ex-
port/import region E opt 18 contained in spt( ).

Moreover, we have the following

Proposition 3.7. Assume that d = 2 and the convex hull of spt(v, opt) 18 contained in .
Then, the optimal free export/import region E pt 1S COTVET.

Proof. This follows immediately from Proposition 3.4. [

Remark 3.3. Notice that it is not obvious when d > 2 if the optimal free export/import regions

E;;t and E,,, are Q—convex or not, since it is not true in dimensions 3 or greater that the

perimeter of the Q1—convex hull of a set is less than the perimeter of the set itself. However,
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it is possible to prove convexity of E, t under the assumption that E t are smooth. In fact,
from the optimality conditions on Eopt in the problem

min {)\+Per(E) - /E Um — T+(§C)\ + g*(T+($)) — |z — P(x )H dVopt( )}

E

one can prove (see, for instance, [7]) that for any smooth vector field V' such that V -n =0
on 0X), one has

| W) = [l =T @)+ (@) = 2 = P@I] vu(a)] V=0,
opt
where K denotes the mean curvature of 8E;;t and n s the exterior normal vector to 8E;;t
Since V' is arbitrary, we get

K= 5 [lo = T@)|+ g" (@) ~ | — P@)] viu(e) 20 on 0E,

Proposition 3.8. Assume that Q is convex. Then, the optimal free export/import set Eétpt

intersects the boundary of spt(v, Opt) unless g* = ¢ on some arc of 0.

Proof. Assume that Ej;Jt N J[spt(v, Opt)} (. Let R be the union of all the transport rays

between v, - 1E+ and its projection on the boundary Pg[v; opt 1E+z]' Set £ := (RN
op

pt
spt(v Opt))\ ot and C = P(R). As the transport rays cannot intersect at their interiors, then
we see that thls set F is also exported (with a tax g*) to the same arc C with T (z) =
P(z) € C, for all x € E. Yet, this implies that there is some constant ¢ such that g* = ¢ on
c. O

Now, we will study the regularity of Eg;t

Proposition 3.9. Assume d = 2 and f* € LP(Q) with p > 2. Then, the optimal free
export/import region E opt 1S C' in the interior of Q. Moreover, Eopt 18 C’1 provided that 02

is C1.

Proof. Assume that this is not the case at some point z € 8E;;t. After a rotation and
translation of axes, we can assume that z = (0,0) and the z;—axis is below the two tangent
lines to 6E ot ab x. Let ap and ag be the parameterizations of the two parts of BE pt around
xz. Take € > 0 small enough and let 6 > 0 be such that a;(e) = aa(—9). Now, let C be the
part of anpt between (g, a1 (¢)) and (—0, az(—0d)) and let C be the segment joining these two

points. Let E; ¥ be such that OE} T = (0E},\C) U C. Then, we have

Per(ELp) - Per(E;;,t):s+6—/0 \/l—i-o/l(s)st—/a\/l+a’2(s)2ds

Thanks to the convexity of Eopt (see Proposition 3.4), we have that |a/(s)|, |ab(s)] > ¢ > 0,
for s small enough. Hence, we get that

Per(Ej 1) — Per(E},) < (1 — V14 ¢?)(e +9).
On the other hand, let 7, be an optimal transport plan for W (E opt» Eopt)- Then, we have

W(E;;Sranpt) W(Eopt7Eopt) / (y) d'yopt :/ +(P(x))dyopt( )
( )XaQ opt\Eopt )

\E++

opt opt

< lg* o Wl o B \ B 17
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Yet,
0

‘E(Zot\Ejpﬂ = (e+d)ai(e) — /08 aq(s)ds — /5 as(s)ds < C(e + 6)%

Consequently, we get

W(E E

opt » ~opt

)+ At Per(EXT) - W(E!, E

op opt» 0pt> - )\+P67’(E;;t)

2_
< X0 = VI )+ lIg e Wl Cle + )17 | (e 4 9),

which is a contradiction for e, § small enough, as (E} ., E. .) is a minimizer for Problem (2.1)

opt’ ~opt
and p>2. O

Proposition 3.10. Assume d = 2, g& > ¢ > 0 and f* is continuous on spt(fT). Let 1/;;,5
(f;t be the optimal free export/import region. Then,
Eoipt is strictly convex in {vs., > 0}. In particular, if f* is bounded from below, then Eoipt 18

uniformly convez inside spt(uoipt).

the mass to be exported/imported and E

+
opt

Proof. Let vop: be an optimal transport plan for W(E;;,t, E,,;) such that Vjpt = (ILz) 4 (Yopt -

loxaqn)- It is easy to see that the set E;;t minimizes

min { min { / |x—y|d’y+/ gt(y)dy : (Uy)py = V;Zt, (IL) gy C 8Q}+)\+Per(E)}.
E QxQ (Q\E)x 69

vt

opt» Where the

On the other hand, from Proposition 2.2, the transport plan yél;)t = (Id,TE)#
map T is defined as follows

Tu(z) = P(z) := argmin{|z — y| : y € 09}, if xeE,
P TH(x):=argmin{|z —y| + g7 (y) : y € 0N}, if z € Q\E,

is a minimizer for the problem

mind [ Jeglars [ gty s (g = v () € 00,
QxQ (Q\E)x0Q

So, we infer that E(jpt minimizes

min { /Q & — Tp(2)| dvty () + /Q T @)+ A*Per(E)}.

Fix zg € aE;;t. Let C be a part of anpt around xg and x1 := (s1,t1), 2 := (S2,t2) be
the endpoints of C. Assume that C is the graph of a function ayp;. Then, we see that agp
minimizes the following problem

89 o(s) 89
min{ / / u(s,t) u;;,t(s,t) dtds+ AT / V1+a/(s)ids 1 a(sy) =t1, afsy) = tg},
S1 0 S1

where
u(s,t) == |(s,t) — T (s,t)| + g (TT(s,t)) — |(5,t) — P(s,t)|.
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From the optimality conditions on ayp: and thanks to the continuity of v bt on spt(v, Opt) (see
Proposition 2.3), we get that
/!
/
oyt (8) 1
% T+ u(s, aopt(s)) V;;t(s, Qopt (8))-

1 + aopt( )

This implies that
1

K(s0) = )\TU@O, opt(50)) U;;;t(SOa opt (50))

where r(sp) denotes the curvature of JE] ot at o 1= (S0, aopt(S0)). Yet, we have u(s,t) >

g (T(s,t)) > ¢ > 0. This concludes the proof. [

Corollary 3.11. Assume d = 2 and f* is continuous on spt(f*). Then, the optimal free
export /import region E= opt 1S C? in the interior of spt( 3;]5) and CY in the interior of Q.
Moreover, Eit is CY1 provided that 0Q is C11.

Proof. This follows from Propositions 3.4 & 3.9, the continuity of I/Opt (see Proposition 2.3)

and u, and the fact that the curvature x of OE i the interior of (2 satisfies (see Proposition

3.10)
() = 305, () V5 (5. g (5))

Now, assume that zg € OE) opt 102 Similarly to Proposition 3.10, we denote by C the arc
of 8E+t around zg and by 1 := (s1,t1), x2 := (s2,t2) the endpoints of C. Assume that C
(resp. OQ) is the graph of a function agp (resp. ). Then, we have that oy solves

S9 a(s) S9
min{ / u(s,t) V;Zt(s,t) dtds+)\+/ V1+a/(s)?ds: o>, a(s)) = t1, alsy) = tg}.
s1 0 s1

From the optimality conditions on oy, we get

5(5) < 35, () V(5. i (5))

As 09 is C11, then it is clear that » is bounded from below as well. This concludes the
proof. O

Corollary 3.12. Assume that d = 2 and f* is C%* on spt(f*), with o € (0,1). Then, the
optimal free export/import region E opt 1S C?% in the interior of spt( g;t). In particular, E;—Lpt

is C*! inside spt(v. opt) as soon as f* is Lipschitz on spt(f*).

Remark 3.4. We see that if f* is C*® on spt(f*) and gt = c¢* > 0, then the optimal free
export/import set Eopt is C**29 in the interior of spt(v Opt)

Remark 3.5. It is not clear how to adapt Proposition 3.9 to the case d > 2. On the other
hand, we know that any part E C OE} ot 1S @ solution of the variational problem

mn{/ © / 905 5 v) a0+ X° [ . 1+|V04(y)|2dyifd><a|63(5)—8E}.
B(e) Ble

From the optimality conditions on aupe, we get that oy satisfies the following equation

V1 +v ?Vozz(gt)(y)P] N A% (5 Qopt (9)) Vopt (9, opt (1))
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or equivalently,

1 _ _
Z aij O xzxj Qopt = N\ u(Y, copt(Y)) V;;)t(y7 opt(¥)),

where

o 0L IV aop(§)I?) = Oitopt Dy vope
i = 12y 2 ’
(1+ [Vaop(7)?)>

In fact, under some assumptions on a;; (see, for instance, [6]), it is possible to prove a
higher reqularity on cwpi. But, it is not clear if the coefficients a; j here satisfy the required
assumptions or not and even, it is not sure that in hz’gher dimension d > 2 we can arrive
to prove that the optimal free export/import region E pt 1S smooth, as E pt may not be, for
instance, 21— conver when d > 2.

The following example shows that, in general, the optimal free export set £ opt 1S 1Ot C? on
the boundary of spt(f) if f ¢ C().

Example 3.12.1. Let Q = B(0,2) and let f be a nonnegative density such that f = 1 on
[—1,1] x [-1,1]. Assume g = 1 on Q. Fiz X > 0, so the problem (1.4) is equivalent to
minimize

min {)\Per(E) —En(-1,1] x [-1,1))] : EC Q}

Let k be the curvature of 0SY, then we know that k = 5 on |—1,1[ x |=1,1[. If X\ < &, then it

is clear that the optimal set Eqp # 0. Yet, we know that Eqp is C'. This implies that there
is part of Eop inside |—1,1[ x |—1,1[ and the curvature of this part is % However, we can see
easily that Eop NO(]—1,1[ x |=1,1[) # 0. Consequently, dEyy is not C2.
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