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Abstract. Inspired by the recent theory of Entropy-Transport problems and by the D-
distance of Sturm on normalised metric measure spaces, we de�ne a new class of complete
and separable distances between metric measure spaces of possibly di�erent total mass.
We provide several explicit examples of such distances, where a prominent role is played by
a geodesic metric based on the Hellinger-Kantorovich distance. Moreover, we discuss some
limiting cases of the theory, recovering the �pure transport� D-distance and introducing a
new class of �pure entropic� distances.
We also study in detail the topology induced by such Entropy-Transport metrics, showing
some compactness and stability results for metric measure spaces satisfying Ricci curvature
lower bounds in a synthetic sense.
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Introduction

With motivations from pure Mathematics as well as from applied sciences, over the last
decades a growing attention has been paid to the problem of �comparing objects�, which
come naturally endowed with a distance/metric and a weight/volume form/measure. From
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the mathematical point of view, such objects are formalised as metric measure spaces (m.m.s.
for short) (X, d, µ), where the metric structure (X, d) describes the geometry and the mutual
distance of points, and the measure µ �weights� the relative importance of di�erent parts of
the object.
The �exibility of such a framework allows to unify the treatment of a series of problems
stemming from various �elds of science and technology, e.g. chemistry [24], data science [33],
multi-omics data alignment [13], computer vision [40], language processing [1], graph [46] and
shape [42, 49] matching, barycenters & shape analysis [34], Generative Adversarial Networks
[6], machine learning [47]. The theory of metric measure spaces has been �ourishing in pure
Mathematics as well, providing a uni�ed setting to investigate concentration of measure
phenomena [26, 41], the theory of Ricci limit spaces [19, 8] and, more generally, synthetic
notions of Ricci curvature lower bounds [43, 44, 30, 4].

In order to �quantify the similarities and di�erences between two such objects�, it is thus
natural to investigate appropriate notions of distance between metric measure spaces. This
idea has its roots in the work of Gromov [23, Chapter 31

2 ]), who �rst recognized the im-
portance of studying the �space of spaces� X as a metric space in its own right. Formally,
X denotes the set of equivalence classes of metric measure spaces (X, d, µ), where (X, d)
is a complete and separable metric space, and µ is a �nite, nonnegative, Borel measure;
we are naturally identifying two m.m.s. (X1, d1, µ1), (X2, d2, µ2) if there exists an isometry
ψ : supp(µ1) → supp(µ2) such that ψ] µ1 = µ2. Here by supp(µ) we denote the support of
the measure µ (see the preliminary section for more details).
In the recent years, the theory has been pushed forward by the works of Sturm [43, 45]
and Memoli [32] who realized that ideas from mass transportation can be used to produce
new relevant distances between metric measure spaces. Such distances have been success-
fully applied in di�erent �elds, but su�er from a major restriction which is intrinsic of the
Wasserstein distances coming from optimal transport: they can be used to compare only
spaces with the same total mass.

The goal of the present paper is to overcome this limitation by taking advantage of the
theory of optimal Entropy-Transport problems [29]. In contrast with the classical transport
setting, these problems allow the description of phenomena where the conservation of mass
may not hold; for this reason they are also known in the literature as �unbalanced optimal
transport problems�. The corresponding theory is fairly recent and is becoming increasingly
popular in applications, e.g. gradient �ows to train neural networks [9, 37], supervised learn-
ing [18], medical imaging [17] and video [27] registration. Indeed, the Entropy-Transport
relaxation seems to outperform classical optimal transport in all the problems where the
input data is noisy or a normalization procedure is not appropriate. We refer to [38] and
references therein for more applications of unbalanced optimal transport.

As we are going to explain in detail below, inspired by the construction of theD-distance of
Sturm [43], we are able to produce a new class of complete and separable distances between
metric measure spaces by replacing the Wasserstein distance with an Entropy-Transport
distance. Such metric structures on X also turn out to be geodesic (resp. length) when the
underlying Entropy-Transport distance is geodesic (resp. length).

Optimal transport and Sturm distances. Let (X, d) be a metric space and c :
X×X → [0,+∞] be a lower semi-continuous cost function. The optimal transport problem
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between two probability measures µ1, µ2 consists in the minimization problem:

T(µ1, µ2) := inf
γ∈Π(µ1,µ2)

∫
X×X

c(x1, x2) dγ(x1, x2). (1)

Here Π(µ1, µ2) denotes the set of measures γ in the product space X ×X whose marginals
satisfy the constraint πi]γ = µi, where πi denotes the projection map πi(x1, x2) = xi.
A typical choice for the cost function is c(x1, x2) = dp(x1, x2), p ≥ 1. In this situation, the
transport cost T is the p-power of the celebrated p-Wasserstein distanceWp, a metric on the
set Pp(X) of probability measures over X with �nite p-moment. Starting from the seminal
work of Kantorovich, the metric space (Pp(X),Wp) has been thoroughly studied: it inherits
many geometric properties of the underlying space (X, d) (such as completeness, separability,
geodesic property) and induces the weak topology (with p-moments) of probability measures.
We refer to the monograph [48] for a detailed overview of the topic.

As observed by Sturm [43], one can lift the metric Wp to a distance between metric
measure spaces by de�ning:

Dp

(
(X1, d1, µ1), (X2, d2, µ2)

)
:= infWp(ψ

1
]µ1, ψ

2
]µ2), (2)

where the in�mum is taken over all complete and separable metric spaces (X̂, d̂), and all
isometric embeddings ψi : supp(µi) → X̂. It is proved in [43, Theorem 3.6] that Dp is a
complete, separable and geodesic distance on the set

X1,p := {(X, d, µ) ∈ X : µ ∈Pp(X, d)}.

Entropy-Transport problems and Sturm-Entropy-Transport distances. The
idea at the core of Entropy-Transport problems is to relax the marginal constraints typical
of the classical Kantorovich formulation (1) by adding some suitable penalizing functionals
which keep track of the deviation of the marginals γi := πi]γ from the data µi, i = 1, 2.
Following the approach of Liero, Mielke and Savaré [29], given a superlinear, convex func-
tion F : [0,+∞) → [0,+∞] such that F (1) = 0 (for simplicity here we assume F to be
superlinear, see de�nition (21) for the general case), one considers the entropy functional
(also called Csiszár F -divergence [12])

DF : M (X)×M (X)→ [0,+∞], DF (γ||µ) :=

{∫
X F

(dγ
dµ

)
dµ if γ � µ,

+∞ otherwise.
(3)

Here M (X) denotes the set of �nite, nonnegative, Borel measures over X. A classical
example is given by the choice F = U1(s) := s ln(s) − s + 1, that corresponds to the
celebrated Kullback-Leibler divergence (note that when γ and µ are probability measures,
DU1 coincides with the celebrated Boltzmann-Shannon entropy Ent(ρµ|µ) =

∫
ρ log ρ dµ).

Given µ1, µ2 ∈M (X), the Entropy-Transport problem induced by the entropy function
F and the cost function c is then de�ned as

ET(µ1, µ2) := inf
γ∈M (X×X)

{ 2∑
i=1

DF (γi||µi) +

∫
X×X

c(x1, x2)dγ(x1, x2)

}
. (4)

We emphasize that the problem (4) makes perfect sense even when µ1(X) 6= µ2(X).
As in the case of optimal transport problems, it is natural to consider cost functions of

the form c(x1, x2) = `(d(x1, x2)), where d is a distance on X and ` := [0,∞) → [0,∞] is a
general function. With a careful choice of the functions F and ` (see [14] for a discussion on
the metric properties of Entropy-Transport problems), one is able to produce a distance DET
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on the space M (X) by taking a suitable power of the Entropy-Transport cost ET, namely
DET = ETa for a certain a ∈ (0, 1].
In the paper we introduce the class of regular Entropy-Transport distances. The formal
de�nition of this class of distances is given in De�nition 2, here we just mention than any
regular Entropy-Transport distance DET is a complete and separable metric on M (X) of the
form DET = ETa, for an Entropy-Transport cost induced by su�ciently regular functions F
and `.

For any regular Entropy-Transport distance, the Sturm-Entropy-Transport distance DET

between the (equivalence classes of) m.m.s. (X1, d1, µ1), (X2, d2, µ2) is then de�ned as

DET

(
(X1, d1, µ1), (X2, d2, µ2)

)
:= inf DET(ψ1

]µ1, ψ
2
]µ2) (5)

where the in�mum is taken over all complete and separable metric spaces (X̂, d̂), and all
isometric embeddings ψ1 : supp(µ1)→ X̂ and ψ2 : supp(µ2)→ X̂.

The main result of the paper (Theorem 2) is that every Sturm-Entropy-Transport distance
de�nes a complete and separable metric structure on X. Moreover it satis�es the geodesic
(resp. length) property if the distance DET satis�es the geodesic (resp. length) property on
the space of measures.

We also study in detail the notion of convergence induced by such distances, showing
that it corresponds to the weak measured-Gromov convergence introduced in [21]. As a
consequence, we obtain a compactness result for the class of m.m.s. (X, d, µ) satisfying the
CD(K,N) condition, having bounded diameter and satisfying 0 < v ≤ µ(X) ≤ V . We refer
to Theorem 4 for the precise statement and to the preliminaries for the de�nition of the
curvature-dimension condition CD(K,N).

At a technical level, the proofs of our results are inspired by the corresponding ones given
by Sturm in [43], but they require new ideas in order to deal with general cost functions and
with the entropic part of the problem. Two key results of independent interest are contained
in Proposition 2 and Lemma 6, where we show that the in�mum in the right hand side of (5)
is actually a minimum, and we give an explicit formulation of the Sturm-Entropy-Transport
distance, namely

D
1/a
ET ((X1, d1, µ1), (X2, d2, µ2)) =

2∑
i=1

DF (γi||µi) +

∫
X1×X2

`
(
d̂(x, y)

)
dγ, (6)

for some optimal measure γ ∈M (X1 ×X2) and optimal pseudo-metric coupling d̂ between
d1 and d2 (see the preliminaries for the de�nition of pseudo-metric coupling). Also the proof
of one of the main results, Theorem 2, despite being inspired by [43], departs from it and
needs some new ideas:

• in order to show that Dp de�nes a non-degenerate distance function (i.e.

Dp

(
(X1, d1, µ1), (X2, d2, µ2)

)
= 0

implies that (X1, d1, µ1) and (X2, d2, µ2) are isomorphic as metric measure spaces),
Sturm [43] establishes a comparison result with Gromov's �1 distance, of indepen-
dent interest; this permits to inherit the non-degeneracy of Dp by the one of �1.
Instead, we argue directly: thanks to the aforementioned Proposition 2 and Lemma
6, we can exploit the existence of an optimal coupling both at the level of space and
measure and infer the non-degeneracy of DET directly;
• in order to show that the Dp distance is length, Sturm [43] argues by approximation
via �nite metric spaces, taking advantage of the �pure transport� behaviour of Dp.
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Due to the entropy contribution in the DET distance, we argue di�erently: the main
point is to embed everything in a complete, separable and geodesic ambient space,
obtained by a slight modi�cation of Kuratowski embedding.

The class of regular Entropy-Transport distances includes some of the main examples of
Entropy-Transport distances known in the literature, including:

• The Hellinger-Kantorovich geodesic distance [29, 28, 10, 25] induced by the choices

a = 1/2 , F (s) = U1(s) , `(d) =

{
− log

(
cos2(d)

)
if d < π

2 ,

+∞ otherwise.

• The so-called Gaussian Hellinger-Kantorovich distance [29] that corresponds to the
choices

a = 1/2 , F (s) = U1(s) , `(d) = d2.

• The quadratic power-like distances studied in [14] corresponding to

a = 1/2 , F (s) = Up(s) :=
sp − p(s− 1)− 1

p(p− 1)
, `(d) = d2, 1 < p ≤ 3.

Moreover, our analysis is not restricted to regular Entropy-Transport distances. By a
limit procedure we also discuss some singular cases covering:

• The �pure entropy� setting that corresponds to the choice

c(x1, x2) =

{
0 if x1 = x2,

+∞ otherwise.

In this situation we construct a family of distances between metric measure spaces
inducing a notion of strong convergence (see Theorems 5 and 6 for the details).

• The �pure transport� setting, corresponding to

a = 1/p , F (s) =

{
0 if s = 1,

+∞ otherwise,
`(d) = dp,

where we recover the Dp-distances introduced by Sturm.

• The Piccoli-Rossi distance BL [35, 36] (also known as bounded-Lipschitz distance),
induced by the choices

a = 1 , F (s) = |s− 1| , `(d) = d.

By an analogous procedure to the one described in (5), in Theorem 8 we show that
the distance BL can be lifted to a complete distance BL on the set X.

Note on the preparation. Some of the results of the paper (often under additional
assumptions) have been presented at di�erent seminars and included in the Phd thesis of the
�rst named author [15, Chapter 5], where the construction of the Sturm-Entropy-Transport
distances induced by the Hellinger-Kantorovich and the quadratic power-like distances is
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developed.
Only during the �nal stage of preparation of the present manuscript (September 2020), we
became aware of the independent work [39], which de�nes a class of distances (denoted by
CGW, for �conic Gromow-Wasserstein�) between unbalanced metric measure spaces start-
ing from the construction of the Gromov-Wasserstein distance introduced in [32] and the
conical formulation of the Entropy-Transport problems (see [29, 10, 14] and Remark 1 for
a discussion on the �cone geometry� of Entropy-Transport problems). The paper [39] also
provides some interesting numerical discussions on the topic, while it is not present a study
on the analytic and geometric properties of this class of distances (such as completeness,
separability, the length and geodesic property, compactness). An expert reader will no-
tice that our DET distance is an unbalanced counterpart of Sturm's Dp distance [43] for
probability metric measure spaces, while Séjourné-Vialard-Peyré CGW distance [39] is an
unbalanced counterpart of Memoli's [32] Gromov-Wasserstein distance. A major di�erence
between the two approaches is that while our DET distance is complete (see Theorem 2),
the Gromov-Wasserstein distance of [32] is not complete, and the same is expected for the
CGW distance of [39]. The relation between DET and CGW is analysed in Section 5, where
we prove an upper bound of the latter in terms of the former.
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1. Preliminaries and notation

1.1. Metric and measure setting. A function d : X ×X → [0,∞] is a pseudo-metric on
the set X if d is symmetric, satis�es the triangle inequality and d(x, x) = 0 for every x ∈ X.
We say that d is a metric possibly attaining the value +∞ if it is a pseudo-metric such that
d(x, y) = 0 implies x = y. When d is also �nite-valued, we simply say that d is a metric. A
pseudo-metric space (resp. metric space) will be a couple (X, d), where d is a pseudo-metric
(resp. metric) on the set X.

On a pseudo-metric space we will always consider the topology induced by the open
balls Br(x) := {y ∈ X : d(x, y) < r}. A Polish space is a separable completely metrizable
topological space. We will denote by diam(X) the diameter of a metric space X.

An isometry between two metric spaces (X1, d1), (X2, d2) is a map ψ : X1 → X2 such
that for every x, y ∈ X1 we have

d1(x, y) = d2(ψ(x), ψ(y)). (7)
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Let {(Xα, dα)|α ∈ A} be an indexed family of metric spaces, we de�ne its disjoint union
as ⊔

α

Xα :=
⋃{

Xα × {α}|α ∈ A
}
,

endowed with a pseudo-metric d̂, called pseudo-metric coupling between {dα}, such that
d̂((x, α), (y, α)) = dα(x, y) for every x, y ∈ Xα. The inclusion map

ια : Xα →
⊔
α

Xα, ια(x) := (x, α),

is thus an isometry with image Xα × {α}. We will often identify, with a slight abuse of
notation, the space Xα with Xα × {α}.

Lemma 1. Let (X1, d1), (X2, d2) be two complete and separable metric spaces. Let d̂ be a
�nite valued pseudo-metric coupling between d1 and d2. Then the space

X̃ := (X1 tX2)/ ∼ where x1 ∼ x2 ⇐⇒ d̂(x1, x2) = 0 (8)

endowed with the distance

d̃([x1], [x2]) := d̂(x1, x2)

is a complete and separable metric space. Here [x] ∈ X̃ denotes the equivalence class of the
point x ∈ X1 tX2.

Proof. We �rstly notice that d̃ is well de�ned on X̃. Indeed, if x1 ∼ x̃1 and x2 ∼ x̃2 we have

d̃(x1, x2) = d̂(x1, x2) ≤ d̂(x1, x̃1) + d̂(x̃1, x̃2) + d̂(x̃2, x2) = d̃(x̃1, x̃2)

d̃(x̃1, x̃2) = d̂(x̃1, x̃2) ≤ d̂(x̃1, x1) + d̂(x1, x2) + d̂(x2, x̃2) = d̃(x1, x2)

which implies d̃(x1, x2) = d̃(x̃1, x̃2).
It is clear that d̃ is a metric on (X1 tX2)/ ∼.
The separability is a consequence of the fact that (X1 tX2, d̂) is separable, being the union
of two separable space (recall that d̂ = di on Xi, i = 1, 2).
To prove the completeness, let us consider a Cauchy sequence {yj} ∈ X̃. It is su�cient
to show that a subsequence is converging with respect to d̃. Let p : X1 t X2 → X̃ be
the quotient map and, recalling that X1 t X2 = X1 × {0} ∪ X2 × {1}, we can suppose
without loss of generality that there exists a subsequence {p−1(yjk)} ∈ X1 × {0} (the case
{p−1(yjk)} ∈ X2 × {1} being analogous). Up to identifying (X1 × {0}, d̂) with (X1, d1), we
can infer that {p−1(yjk)} is a Cauchy sequence in the complete space (X1, d1) and thus it
converges. It is immediate to check that {yjk} is converging in X̃ with respect to d̃ and the
proof is complete. �

Starting from a metric space (X, d), we de�ne the cone over X as the space

C(X) := (X×[0,+∞))/∼ where (x1, r1) ∼ (x2, r2) ⇐⇒ r1 = r2 = 0 or r1 = r2, x1 = x2.

If (X, d) is a pseudo-metric space, we denote by M (X) the space of �nite, nonnegative
measures on the Borel σ-algebra B(X), and by P(X) ⊂ M (X) the space of probability
measures. We endow M (X) with the weak topology, inducing the following notion of
convergence:

µn ⇀ µ ⇐⇒
∫
X
fdµn →

∫
X
fdµ for any f ∈ Cb(X), (9)

where Cb(X) denotes the set of real, continuous and bounded functions de�ned on X.
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A subset K ⊂M (X) is bounded if supµ∈K µ(X) <∞ and it is equally tight if

∀ε > 0 ∃Kε ⊂ X compact : ∀µ ∈ K , µ(X \Kε) ≤ ε. (10)

Compactness properties with respect to the weak topology on M (X) are guaranteed by
the following version of Prokhorov's Theorem:

Theorem 1. Let X be a Polish space. A subset K ⊂M (X) is bounded and equally tight
if and only if it is relatively compact with respect to the weak topology.

We recall that the set of measures of the form

µ = M

N∑
n=1

δxn , (11)

where M ∈ R+, N ∈ N and xn ∈ X, is dense in M (X). Moreover, if X is separable, the
measures of the form (11), with M ∈ Q+ and xn in a countable dense subset of X, form a
countable dense subset of M (X), proving that also the latter is a separable space.

A metric measure space will be a triple (X, d, µ) where (X, d) is a complete, separable
metric space and µ ∈M (X). If there exists a point x0 ∈ X such that∫

X
dp(x0, x)dµ(x) <∞, (12)

we will say that the measure µ ∈ P(X) has �nite p-moment. We denote by Pp(X) the
space of measures ν ∈P(X) with �nite p-moment.

The support of the measure µ is the smallest closed set X0 := supp(µ) such that µ(X \
X0) = 0. We notice that the set supp(µ) has a natural structure of metric measure space
with the induced distance, σ-algebra and measure (which will be denoted in the same way).

We say that ϕ is a curve connecting x, y ∈ X, if ϕ : [a, b]→ X is a continuous map such
that ϕ(a) = x and ϕ(b) = y. The length of a curve is de�ned as

Length(ϕ) := sup
n∑
i=1

d
(
ϕ(ti−1), ϕ(ti)

)
, (13)

where the supremum is taken over all the partitions a = t0 < t1 < ... < tn = b.
We will always assume that a curve of �nite length is parametrized by constant speed,

i.e.
Length(ϕ �[s,t]) =

t− s
b− a

Length(ϕ). (14)

A metric space (X, d) is called length space if for all x, y ∈ X

d(x, y) = inf
{
Length(ϕ) : ϕ curve connecting x and y

}
. (15)

A geodesic is a curve ϕ : [a, b]→ X such that

d(ϕ(a), ϕ(t)) = (t− a) d(ϕ(a), ϕ(b)), for all t ∈ [a, b].

Notice in particular that if ϕ is a geodesic then

Length(ϕ) = d(ϕ(a), ϕ(b)).

A metric space (X, d) is geodesic if any pair of points x, y ∈ X is connected by a geodesic.
For a metric space (X, d), the Kantorovich-Wasserstein distance Wp of order p, p ≥ 1, is

de�ned as follows: for µ0, µ1 ∈M (X) we set

Wp
p (µ0, µ1) := inf

γ

∫
X×X

dp(x, y) dγ, (16)
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where the in�mum is taken over all γ ∈ M (X × X) with µ0 and µ1 as the �rst and the
second marginal, i.e. (πi)]γ = µi where πi : X × X → X denotes the projection map
πi(x1, x2) = xi, i = 1, 2. A measure γ ∈ M (X ×X) achieving the minimum in (16) with
given marginals is said aWp-optimal coupling for (µ0, µ1). It is clear thatWp(µ1, µ2) = +∞
when µ1(X) 6= µ2(X).

If (X, d) is complete and separable, (Pp(X),Wp) is a complete and separable metric
space. It is geodesic when (X, d) is geodesic. Moreover, for any sequence µn ∈ Pp(X) we
have

lim
n→∞

Wp(µn, µ) = 0 ⇐⇒

{
µn weakly converges to µ,

µn has uniformly p-integrable moments,
(17)

where the latter means that for some (thus any) x0

lim
R→∞

lim sup
n

∫
X\BR(x0)

dp(x0, x)dµn(x) = 0. (18)

For a proof of these last facts, see [48, Theorem 6.18].

1.2. Curvature-Dimension condition. It is out of the scopes of this brief section to
give a full account of the curvature-dimension condition and its properties; we will limit to
schematically recalling the basic de�nitions involved. The interested reader is referred to
the original papers [30, 43, 44, 4, 3, 20, 21, 16, 5, 7], the survey [2] and the monograph [48].

• For any K ∈ R, N ∈ (1,∞), θ > 0 and t ∈ [0, 1], de�ne the distortion coe�cients by

τ
(t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)

N−1
N ,

where

σ
(t)
K,N (θ) :=



∞ if Kθ2 ≥ Nπ2

sin(tθ
√
K/N)

sin(θ
√
K/N)

if 0 < Kθ2 < Nπ2

t if Kθ2 = 0
sinh(tθ

√
K/N)

sinh(θ
√
K/N)

if Kθ2 < 0

.

• For every N ∈ (1,∞), de�ne the N -Rényi entropy functional relative to µ, UN (· |µ) :
P(X)→ [−∞, 0] as

UN (ν|µ) := −
∫
X
ρ1− 1

N dµ, where ν = ρµ+ νs and νs ⊥ µ.

• De�ne also the Boltzmann-Shannon entropy functional relative to µ, Ent(· |µ) :
P(X)→ (−∞,+∞] as

Ent(ν|µ) :=

∫
X
ρ log(ρ) dµ, if ν = ρµ� µ and ρ log ρ ∈ L1(X,µ),

and +∞ otherwise.
• CD(K,∞) condition: given K ∈ R, we say that (X, d, µ) veri�es the CD(K,∞)
condition if for any pair of probability measures ν0, ν1 ∈P2(X) with

Ent(ν0|µ),Ent(ν1|µ) < +∞,
there exists a W2-geodesic (νt)t∈[0,1] from ν0 to ν1 such that

Ent(νt|µ) ≤ (1− t) Ent(ν0|µ) + tEnt(ν1|µ)− K

2
t(1− t)W2

2 (µ0, µ1),
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for any t ∈ [0, 1].
• CD(K,N) condition: given K ∈ R, N ∈ (1,∞) we say that (X, d, µ) veri�es the
CD(K,N) condition if for any pair of probability measures ν0, ν1 ∈ P2(X) with
bounded support and with ν0, ν1 � µ, there exists a W2-geodesic (νt)t∈[0,1] from ν0

to ν1 with νt � µ, and a W2-optimal coupling γ ∈P(X ×X) such that

UN ′(νt|µ) ≤ −
∫ [

τ
(1−t)
K,N ′ (d(x, y))ρ

− 1
N′

0 + τ
(t)
K,N ′(d(x, y))ρ

− 1
N′

1

]
dγ(x, y),

for any N ′ ≥ N , t ∈ [0, 1].
• Consistency property: A smooth Riemannian manifold (resp. weighted Riemannian
manifold) M satis�es the CD(K,N) condition for some K ∈ R, N ∈ (1,∞) if and
only if dim(M) ≤ N and the Ricci curvature is bounded below by K (resp. if and
only if the N -Bakry-Émery-Ricci tensor is bounded below by K).
• De�ne the slope of a real valued function u : X → R at the point x ∈ X as

|∇u|(x) :=

{
lim supy→x

|u(x)−u(y)|
d(x,y) if x is not isolated

0 otherwise.

We denote with LIP(X) the space of Lipschitz functions on (X, d).
• Let f ∈ L2(X,µ). The Cheeger energy of f is de�ned as

Ch(f) := inf

{
lim inf
n→∞

1

2

∫
|∇fn|2dµ | fn ∈ LIP(X) ∩ L2(X,µ), ‖fn − f‖L2 → 0

}
.

One can check that the Cheeger energy Ch : L2(X,µ)→ [0,∞] is convex and lower
semi-continuous. Thus it admits an L2-gradient �ow, called heat �ow.
• The metric measure space (X, d, µ) is said in�nitesimally Hilbertian if Ch is a qua-
dratic form, i.e. it satis�es the parallelogram identity.
One can check that (X, d, µ) is in�nitesimally Hilbertian if and only if the heat �ow
for every positive time is a linear map from L2(X,µ) to L2(X,µ).
If (X, d, µ) is the metric measure space associated to a smooth Finsler manifold, one
can check that (X, d, µ) is in�nitesimally Hilbertian if and only if the manifold is
actually Riemannian.
• Given K ∈ R and N ∈ (1,∞], we say that (X, d, µ) veri�es the RCD(K,N) condition
if it satis�es the CD(K,N) condition and it is in�nitesimally Hilbertian.
• Pointed measured Gromov-Hausdor� convergence: Let (Xn, dn, µn), n ∈ N ∪ {∞},
be a sequence of metric measure spaces and let x̄n ∈ Xn for every n ∈ N ∪ {∞} be
a sequence of reference points. We say that (Xn, dn, µn, x̄n)→ (X∞, d∞, µ∞, x̄∞) in
the pointed measured Gromov Hausdor� (pmGH) sense, provided for any ε,R > 0
there exists N(ε,R) ∈ N such that for all n ≥ N(ε,R) there exists a Borel map
fR,εn : BR(x̄n)→ X∞ such that
� fR,εn (x̄n) = x̄∞,
� supx,y∈BR(x̄n) |dn(x, y)− d∞(fR,εn (x), fR,εn (y))| ≤ ε,
� the ε-neighbourhood of fR,εn (BR(x̄n)) contains BR−ε(x̄∞),
� (fR,εn )](µnxBR(x̄n)) weakly converges to µ∞xBR(x∞) as n→∞, for a.e. R > 0.

If in addition there exists R̄ > 0 such that diam(Xn) ≤ R̄ for every n ∈ N ∪ {∞},
then we say that (Xn, dn, µn) → (X∞, d∞, µ∞) in the measured Gromov Hausdor�
(mGH for short) sense. In this case it is enough to consider only R = R̄ in the above
requirements.
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• Stability : Let K ∈ R and N ∈ (1,∞] be given. Assume that (Xn, dn, µn) sat-
is�es CD(K,N) (resp. RCD(K,N)), for every n ∈ N, and that (Xn, dn, µn, x̄n) →
(X∞, d∞, µ∞, x̄∞) in the pmGH sense. Then (X∞, d∞, µ∞) satis�es CD(K,N) (resp.
RCD(K,N)) as well.

1.3. Entropy functionals. In this section we assume that X is a Polish space.
A function F : [0,+∞)→ [0,+∞] belongs to the class Γ0(R+) of the admissible entropy

functions if F is convex, lower semicontinuous and F (1) = 0. We de�ne the recession
constant as

F ′∞ = lim
s→∞

F (s)

s
,

and we say that F is superlinear if F ′∞ = +∞.
We also de�ne the perspective function induced by F ∈ Γ0(R+) as the function F̂ :

[0,+∞)× [0,+∞)→ [0,+∞], given by

F̂ (r, t) :=

{
F
(
r
t

)
t if t > 0,

F ′∞r if t = 0.
(19)

The function
R : [0,+∞)→ [0,+∞], R(t) := F̂ (1, t) (20)

is called reverse entropy.
Let F ∈ Γ0(R+) be an admissible entropy function. The F -divergence (also called

Csiszár's divergence or relative entropy) is the functional DF :M(X) ×M(X) → [0,+∞]
de�ned by

DF (γ||µ) :=

∫
X
F (σ)dµ+ F ′∞γ

⊥(X), γ = σµ+ γ⊥, (21)

where γ = σµ + γ⊥ is the Lebesgue's decomposition of the measure γ with respect to µ.
When F is superlinear DF (γ||µ) = +∞ if γ has a singular part with respect to µ. Moreover,
it is clear that DF (µ||µ) = 0.

We now collect some useful properties of the relative entropies. For the proof see [29,
Section 2.4].

Lemma 2. The functional DF is jointly convex and lower semicontinuous in M (X) ×
M (X). More generally, if F ∈ Γ0(R+) is the pointwise limit of an increasing sequence
(Fn) ⊂ Γ0(R+) and γ, µ ∈M (X) are the weak limit of a sequence (γn, µn) ⊂M (X)×M (X)
then we have

lim inf DFn(γn||µn) ≥ DF (γ||µ).

Lemma 3. If K ⊂M (X) is bounded and F ′∞ > 0 then the set

KC := {γ ∈M (X) : DF (γ||µ) ≤ C, for some µ ∈ K} (22)

is bounded for every C ≥ 0. Moreover, if K is also equally tight and F is superlinear, then
KC is equally tight for every C ≥ 0.

The last lemma of this section shows an invariance result for the F -divergences.

Lemma 4. Let F ∈ Γ0(R+) be an admissible entropy function, X,Y be two Polish spaces
and f : X → Y be a Borel injective map. Then, for any γ, µ ∈M (X) it holds

DF (γ||µ) = DF (f]γ||f]µ). (23)
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Proof. Let us consider the Lebesgue's decompositions

γ = σµ+ γ⊥ and f]γ = σ̃f]µ+ γ̃⊥.

Since f]γ and f]µ have support contained in f(X), we can suppose without loss of generality
that f is bijective.
For any Borel set A ⊂ X we have∫

A
σ dµ+ γ⊥(A) = γ(A) = γ(f−1(f(A))) = f]γ(f(A))

=

∫
f(A)

σ̃ df]µ+ γ̃⊥(f(A)) =

∫
A
σ̃ ◦ f dµ+ γ̃⊥(f(A)). (24)

By the uniqueness of the Lebesgue's decomposition (see [29, Lemma 2.3]) it follows that
σ = σ̃ ◦ f up to (µ+ γ)-negligible sets and γ⊥(X) = γ̃⊥(f(X)) = γ̃⊥(Y ). In particular

DF (f]γ||f]µ) :=

∫
Y
F (σ̃)df]µ+ F ′∞γ̃

⊥(Y ) =

∫
X
F (σ̃ ◦ f)dµ+ F ′∞γ

⊥(X) = DF (γ||µ).

�

2. Entropy-Transport problem and distances

Let γ ∈M (X ×X). In the sequel we denote by γi := (πi)]γ the marginals of γ.
We are now ready to de�ne the Entropy-Transport problem.

De�nition 1. Let F ∈ Γ0(R+) and let c : X × X → [0,+∞] be a lower semicontinuous
function. The Entropy-Transport functional between the measures µ1, µ2 ∈ M (X) is the
functional

ET ( · ||µ1, µ2) : M (X ×X)→ [0,+∞],

ET (γ||µ1, µ2) := DF (γ1||µ1) +DF (γ2||µ2) +

∫
X×X

c(x1, x2)dγ(x1, x2).
(25)

We de�ne the Entropy-Transport problem between µ1 and µ2 as the minimization problem

ET(µ1, µ2) := inf
γ∈M (X×X)

ET (γ||µ1, µ2). (26)

To highlight the role of the entropy function F and the cost function c, we also say that ET
is the cost of the Entropy-Transport problem induced by (F, c).

We are particularly interested in cost functions of the form c(x1, x2) = `(d(x1, x2)) for a
certain function ` : [0,∞)→ [0,∞].

In the next Proposition we recall some properties of Entropy-Transport problems (for a
proof see [29]).

Proposition 1. Let us suppose that the Entropy-Transport problem between the measures
µ1, µ2 ∈ M (X) is feasible, i.e. there exists γ ∈ M (X ×X) such that ET (γ||µ1, µ2) < ∞,
and that F is superlinear. Then the in�mum in (26) can be replaced by a minimum and the
set of minimizers is a compact convex subset of M (X ×X). Moreover, the functional ET is
convex and positively 1-homogeneous (thus subadditive).

Remark 1. An important role in the theory of Entropy-Transport problems is played by the
marginal perspective cost H, that we are going to de�ne.
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Given a number c ∈ [0,+∞) and an admissible entropy function F , we �rst introduce the
marginal perspective function Hc : [0,+∞)×[0,+∞)→ [0,+∞] as the lower semicontinuous
envelope of the function

H̃c(r1, r2) := inf
θ>0

R
(r1

θ

)
θ +R

(r1

θ

)
θ + θc,

where R is the reverse entropy de�ned in (20). If c = +∞, we set

H∞(r1, r2) = F (0)r1 + F (0)r2.

When c : X1 ×X2 → [0,+∞] is a lower semicontinuous cost function on two metric spaces
X1, X2, the induced marginal perspective cost

H : X1 × [0,+∞)×X2 × [0,+∞)→ [0,+∞]

is de�ned as
H(x1, r;x2, t) := Hc(x1,x2)(r, t). (27)

One can give some equivalent formulations of the problem (26) in terms of the marginal
perspective cost (see for instance [29, Theorem 5.8]). Moreover, the metric properties of
the entropy-transport cost ET de�ned in (26) can be read in terms of the properties of H,
studied as a function on the space C(X)×C(X). This point of view, which links the Entropy-
Transport structure with the conical geometry of the problem, has been deeply investigated
by Liero, Mielke and Savaré for the Hellinger-Kantorovich distance [29, Section 7] (see also
[10, 14] and [15, Chapters 3,4] for general marginal perspective functions).

For brevity, we do not enter into the details of all these formulations (but see Section 5
for some details on the conical construction performed in [39]). Here we only remark that
for any complete and separable metric space (X, d) the cost ETa induces a distance on the
space of measures M (X) if and only if Ha is a distance on the cone C(X), a ∈ (0, 1]. In
general, it is not di�cult to identify conditions on F and c for which the induced function
H is nonnegative, symmetric and H(x1, r;x2, t) = 0 if and only if (x1, r) = (x2, t) as points
on the cone (see [14, Proposition 4]); on the contrary, proving the triangle inequality for (a
power of) H is a much more challenging problem.

2.1. Regular Entropy-Transport distances. In the next de�nition we introduced the
class of regular Entropy-Transport distances.

De�nition 2. We say that DET is a regular Entropy-Transport distance if

• There exist a ∈ (0, 1], F ∈ Γ0(R+) and a function ` : [0,∞) → [0,∞] such that for
every complete and separable metric space (X, d), setting c(x1, x2) := `(d(x1, x2)),
the function DET coincides with the power a of the Entropy-Transport cost ET induced
by (F, c), namely

DET(µ1, µ2) = ETa(µ1, µ2) for every µ1, µ2 ∈M (X). (28)

• The function ` is continuous, convex and `(s) = 0 if and only if s = 0.
• F is superlinear and �nite valued.
• For every complete and separable metric space (X, d), the related Entropy-Transport
distance DET is a complete and separable metric on M (X) inducing the weak topol-
ogy.

We also write that the distance DET is induced by (a, F, `) with obvious meaning.

We notice that if DET is a regular Entropy-Transport distance induced by (a, F, `) then `
is an increasing function and limd→+∞ `(d) = +∞.

We conclude the section with a list of examples of regular Entropy-Transport distances.
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Examples. (1) Hellinger-Kantorovich: Let F (s) = U1(s) := s log s− s+ 1 and

`HK(d) :=

{
− log

(
cos2(d)

)
if d < π

2 ,

+∞ otherwise.

It is proved in [29, Section 7] that (1/2, U1, `HK) induces a regular Entropy-Transport
distance, called Hellinger-Kantorovich distance. We refer also to [28] for a discussion
on �weighted versions� of the Hellinger-Kantorovich distance.

(2) Gaussian Hellinger-Kantorovich: Let F (s) = U1(s) = s log s−s+1 and `2(d) :=
d2.
The triple (1/2, U1, `2) induces a regular Entropy-Transport distance, as discussed in
[29, Section 7.8]. It is called Gaussian Hellinger-Kantorovich distance.

(3) Quadratic power-like distances: Let

F (s) = Up(s) :=
sp − p(s− 1)− 1

p(p− 1)
, p > 1

and `2(d) = d2.
Then, for every 1 < p ≤ 3 the triple (1/2, Up, `2) induces a regular Entropy-Transport
distance, as proved in [14, Theorem 6 and Corollary 1].
We notice that the class of entropy functions {Up} satis�es limp→1 Up(s) = U1(s),
justifying the notation we have used (see also [29, Example 2.5]).

(4) Linear power-like distances: Let

F (s) = Up(s) :=
sp − p(s− 1)− 1

p(p− 1)
, p > 1

and `1(d) := d.
For every p > 1, (1/2, Up, `1) induces a regular Entropy-Transport distance (see again
[14, Theorem 6 and Corollary 1]).

3. Sturm-Entropy-Transport distance

We say that two metric measure spaces (X1, d1, µ1) and (X2, d2, µ2) are isomorphic if
there exists an isometry ψ : supp(µ1) → supp(µ2) such that ψ] µ1 = µ2, where ψ] denotes
the push-forward through the map ψ. A necessary condition in order to be isomorphic is
that µ1(X1) = µ2(X2).
The family of all isomorphism classes of metric measure spaces will be denoted by X. From
now on, we will identify a metric measure space with its class.
We recall now the de�nition of the Dp-distance due to Sturm.

De�nition 3 ([43]). Fix p ≥ 1. Let (X1, d1, µ1) and (X2, d2, µ2) be two metric measure
spaces, the Sturm Dp-distance is de�ned as

Dp

(
(X1, d1, µ1), (X2, d2, µ2)

)
:= infWp(ψ

1
]µ1, ψ

2
]µ2), (29)

where the in�mum is taken over all complete and separable metric spaces (X̂, d̂) with iso-

metric embeddings ψ1 : supp(µ1)→ X̂ and ψ2 : supp(µ2)→ X̂.

It is proved in [43, Theorem 3.6] that Dp is a complete, separable and geodesic metric on
the set

X1,p := {(X, d, µ) ∈ X : µ ∈Pp(X, d)}.
We are now going to de�ne the Sturm-Entropy-Transport distance in a similar way.
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De�nition 4. Let (X1, d1, µ1) and (X2, d2, µ2) be two metric measure spaces, we de�ne the
Sturm-Entropy-Transport distance induced by the regular Entropy-Transport distance DET as

DET

(
(X1, d1, µ1), (X2, d2, µ2)

)
:= inf DET(ψ1

]µ1, ψ
2
]µ2), (30)

where the in�mum is taken over all complete and separable metric spaces (X̂, d̂) with iso-

metric embeddings ψ1 : supp(µ1)→ X̂ and ψ2 : supp(µ2)→ X̂.

It is not di�cult to prove that the de�nition is well-posed. Indeed, let us suppose
(X ′i, d

′
i, µ
′
i) is isomorphic to (Xi, di, µi) through the map ϕi, i = 1, 2. Then, for every

metric space X̂ and every isometric embedding ψi : supp(µi)→ X̂, i = 1, 2, we have that

DET

(
(ψ1 ◦ ϕ1)]µ1, (ψ

2 ◦ ϕ2)]µ2

)
= DET(ψ1

]µ1, ψ
2
]µ2).

It is often convenient to work with explicit realisations of the ambient space (X̂, d̂), a
particularly useful one is given by the disjoint union that we now discuss.
Given two metric spaces (X1, d1, µ1) and (X2, d2, µ2), let X1tX2 be their disjoint union. We
say that a (resp. pseudo-)metric d̂ on X1 tX2 is a (resp. pseudo-)metric coupling between
d1 and d2 if d̂(x, y) = d1(x, y) when x, y ∈ X1 and d̂(x, y) = d2(x, y) when x, y ∈ X2.
A �nite valued metric coupling d̂ between d1 and d2 always exists: to construct it, �x two
points x̄1 ∈ X1, x̄2 ∈ X2, a number c ∈ R+, and de�ne d̂ as:

d̂(x, y) :=


d1(x, y) if x, y ∈ X1

d2(x, y) if x, y ∈ X2

d1(x, x̄1) + c+ d2(x̄2, y) if x ∈ X1, y ∈ X2

d1(y, x̄1) + c+ d2(x̄2, x) if y ∈ X1, x ∈ X2.

(31)

Moreover, from any �nite valued pseudo-metric coupling d̂ of d1 and d2 and any δ > 0 we
can obtain a complete, separable metric d̂δ which is again a coupling of d1 and d2 in the
following way:

d̂δ :=

{
d̂ on (X1 ×X1) t (X2 ×X2)

d̂ + δ on (X1 ×X2) t (X2 ×X1).
(32)

We say that a measure γ ∈M (X1 ×X2) is a measure coupling between µ1 and µ2 if

γ(A×X2) = µ1(A) and γ(X1 ×B) = µ2(B), (33)

for all Borel sets A ⊂ X1 and B ⊂ X2. We keep the notation γi for the marginals of the
measure γ ∈M (X1 ×X2), i = 1, 2.

A more explicit formulation of the function DET is given in the following Proposition.

Proposition 2. Let (X1, d1, µ1) and (X2, d2, µ2) be two metric measure spaces and DET a
regular Entropy-Transport distance induced by (a, F, `).

(i) In De�nition 4 we can suppose without loss of generality that X̂ = X1tX2, ψ
1 = ι1,

ψ2 = ι2 be respectively the inclusion of X1 and X2 in X1 tX2 and the in�mum is

taken over all the pseudo-metric couplings d̂ between d1 and d2.
(ii) In the situation of (i) we will identify µk with (ιk)] µk, k = 1, 2, and it holds

D
1/a
ET ((X1, d1, µ1), (X2, d2, µ2)) = inf

C

{
2∑
i=1

DF (γi||µi) +

∫
X1×X2

`
(
d̂(x, y)

)
dγ

}
, (34)
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where

C := {(γ, d̂) : γ ∈M (X1 ×X2), d̂ �nite valued pseudo-metric coupling for d1, d2} (35)

Proof. (i) We �rst show that the in�mum as in (i) is less or equal to the in�mum as in
De�nition 4. Let (X̂, d̂) be a complete and separable metric space with isometric embeddings
ψ1 : supp(µ1) → X̂, ψ2 : supp(µ2) → X̂, and let γ̂ ∈M (X̂ × X̂). It is immediate to check
that

d̃(x1, x2) :=



d1(x1, x2) if (x1, x2) ∈ X1 ×X1

d2(x1, x2) if (x1, x2) ∈ X2 ×X2

inf
y1∈supp(µ1)
y2∈supp(µ2)

d1(x1, y1) + d̂(ψ1(y1), ψ2(y2)) + d2(y2, x2) if (x1, x2) ∈ X1 ×X2

inf
y1∈supp(µ1)
y2∈supp(µ2)

d1(x2, y1) + d̂(ψ1(y1), ψ2(y2)) + d2(y2, x1) if (x1, x2) ∈ X2 ×X1

(36)
de�nes a pseudo-metric on X1 tX2, coupling between d1 and d2.
Moreover, setting the Borel injective functions Ψi : ψ1(supp(µ1)) ∪ ψ2(supp(µ2)) ⊂ X̂ →
X1 tX2, i = 1, 2, de�ned as

Ψ1(x̂) :=

{
ι1((ψ1)−1(x̂)) if x̂ ∈ ψ1(supp(µ1))

ι2((ψ2)−1(x̂)) if x̂ ∈ ψ2(supp(µ2)), x̂ /∈ ψ1(supp(µ1)),

Ψ2(x̂) :=

{
ι1((ψ1)−1(x̂)) if x̂ ∈ ψ1(supp(µ2)), x̂ /∈ ψ2(supp(µ1))

ι2((ψ2)−1(x̂)) if x̂ ∈ ψ2(supp(µ2)),

and using Lemma 4 it is immediate to check that γ̃ := (Ψ1,Ψ2)]γ̂ ∈M ((X1tX2)×(X1tX2))
satis�es

2∑
i=1

DF (γ̃i||(ιi)]µi) +

∫
ι1(X1)×ι2(X2)

`
(
d̃(x, y)

)
dγ̃(x, y)

≤
2∑
i=1

DF (γ̂i||(ψi)]µi) +

∫
ψ1(supp(µ1))×ψ2(supp(µ2))

`
(
d̂(x, y)

)
dγ̂(x, y)

≤
2∑
i=1

DF (γ̂i||(ψi)]µi) +

∫
X̂×X̂

`
(
d̂(x, y)

)
dγ̂(x, y), (37)

where we have used the fact that d̃(Ψ1(x),Ψ2(y)) ≤ d̂(x, y) whenever x ∈ ψ1(supp(µ1)) and
y ∈ ψ2(supp(µ2)).

This yields that the in�mum as in (i) is less or equal to the in�mum as in De�nition 4.
To show that the in�mum as in De�nition 4 is less or equal to the in�mum as in (i),

it is su�cient to notice that for every pseudo-metric coupling d̂, for every measure γ ∈
M (X1×X2) and for every ε > 0 there is δ > 0 such that the complete and separable metric
d̂δ de�ned in (32) is a coupling between d1 and d2 satisfying∫

X1×X2

`
(
d̂δ(x, y)

)
dγ ≤

∫
X1×X2

`
(
d̂(x, y)

)
dγ + ε, (38)

as a consequence of the �niteness of the measure γ and the continuity of `.
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(ii) In case the in�mum runs over the couples (γ, d̂) ∈ C such that d̂ is a complete
and separable metric, the inequality �≤� in (34) is a simple consequence of the explicit
formulation of the Entropy-Transport problem together with the fact that the superlinearity
of F allows to consider measures γ ∈M ((X1 tX2)× (X1 tX2)) with support contained in
X1 ×X2. The fact that �≤� holds in (34) even if the in�mum is taken over the larger set C
is a consequence of (38).

The proof of the inequality �≥� in (34) is analogous to the �rst part of the proof of (i),
see in particular (37). �

In the next Lemma we collect some of the basic properties of the function DET.

Lemma 5. Let DET be a regular Entropy-Transport distance induced by (a, F, `).

(i) For any M ≥ 0 it holds

DET((X1, d1,Mµ1), (X2, d2,Mµ2)) = MaDET((X1, d1, µ1), (X2, d2, µ2)). (39)

(ii) If (X1, d1) = (X2, d2) then

DET((X1, d1, µ1), (X2, d2, µ2)) ≤ DET(µ1, µ2). (40)

(iii) The set

X∗ :=
{

(X, d, µ) ∈ X, supp(µ) = {x1, ..., xn}, n ∈ N, µ = M

n∑
i=1

δxi , M ∈ R+

}
(41)

is dense in (X,DET).
(iv) If

µ = M

n∑
i=1

δxi and µ
′ = M

n∑
i=1

δx′i , (42)

then

D
1/a
ET ((X, d, µ), (X ′, d′, µ′)) ≤Mn`

(
sup
i,j
|dij − d′ij |

)
, (43)

where we put dij = d(xi, xj) and d′ij = d(x′i, x
′
j).

(v) For any N > 1 there exists a constant C such that for every M , 1/N < M < N , we
have

D
1/a
ET ((X, d, µ), (X, d,Mµ)) ≤ Cµ(X)|M − 1|. (44)

Proof. (i) This is a consequence of the 1-homogeneity of the cost ET (Proposition 1) and
of the push-forward map together with the de�nitions of DET and DET.

(ii) The result follows from the de�nition ofDET, since (X̂, d̂) = (X1, d1) with ψ1 = ψ2 = Id
is an admissible competitor for the in�mum.

(iii) The result follows by the point (ii) of the present Lemma, the fact that DET metrizes the
weak convergence and the density in M (X) of the measures µ of the form M

∑n
i=1 δxi

with respect to weak convergence.

(iv) Let assume without loss of generality that X = {x1, ..., xn} and X ′ = {x′1, ..., x′n}. We
put δ = supi,j |dij−d′ij |. We construct the following pseudo-metric coupling: on X×X
we de�ne d̂ = d, on X ′ ×X ′ we put d̂ = d′, on X ×X ′ we de�ne

d̂(xi, x
′
j) := inf

k∈{1,...,n}
d(xi, xk) + d′(x′k, x

′
j) + δ,
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�nally on X ′ ×X we put

d̂(x′i, xj) := inf
k∈{1,...,n}

d(xj , xk) + d′(x′k, x
′
i) + δ,

so that d̂(xi, x
′
i) = d̂(x′i, xi) = δ.

We then de�ne the measure coupling

γ = M
n∑
i=1

δ(xi,x′i)
.

It is straightforward to see that d̂ and γ are actually couplings between d, d′ and µ, µ′,
respectively. Then, using Proposition 2 and recalling that ` is an increasing function
we have that

D
1/a
ET ((X, d, µ), (X ′, d′, µ′)) ≤

∫
X×X′

`(δ)dγ = Mn`(δ),

and the thesis follows.

(v) We can take d itself as metric coupling. Then, by the point (ii) of the present Lemma,
we have

D
1/a
ET ((X, d, µ), (X, d,Mµ)) ≤ D

1/a
ET (µ,Mµ) = ET(µ,Mµ).

By replacing the cost c with the cost

c∞(x1, x2) :=

{
0 if x1 = x2

+∞ otherwise,

we obtain that
ET(µ,Mµ) ≤ ET∞(µ,Mµ),

where we have denoted by ET∞ the Entropy-Transport problem induced by the entropy
function F and the cost c∞. Observe that every admissible entropy function satis�es

F (s) ≤ C|s− 1|, for every 1/N < s < N, (45)

where

C := max

{
F (1/N)

1/N − 1
,
F (N)

N − 1

}
.

The conclusion now follows from an explicit computation of ET∞ together with the
bound (45). Indeed, we have (see [29, Example E.5])

ET∞(µ,Mµ) ≤ min
θ∈[1,M ]

∫
X
C|θ − 1|+ CM |θ/M − 1|dµ = Cµ(X)|M − 1|. (46)

�

The next Lemma shows the existence of the optimal couplings.

Lemma 6. Let DET be a regular Entropy-Transport distance induced by (a, F, `). Let
(X1, d1, µ1) and (X2, d2, µ2) be two metric measure spaces. Then:

(i) There exist a measure γ ∈ M (X1 × X2) and a pseudo-metric coupling d̂ between d1

and d2 such that

D
1/a
ET ((X1, d1, µ1), (X2, d2, µ2)) =

2∑
i=1

DF (γi||µi) +

∫
X1×X2

`
(
d̂(x, y)

)
dγ. (47)
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(ii) There exist a complete and separable metric space (X̃, d̃) and isometric embeddings

ψ1 : supp(µ1)→ X̃, ψ2 : supp(µ2)→ X̃ such that

DET

(
(X1, d1, µ1), (X2, d2, µ2)

)
= (DET)d̃(ψ1

]µ1, ψ
2
]µ2), (48)

where we have denoted by (DET)d̃ the Entropy-Transport distance computed in the space

(X̃, d̃).

Proof. (i) Step1: tightness of the plans.
By Proposition 2 there exist a sequence γn ∈ M (X1 × X2) and d̂n pseudo-metric
couplings of d1, d2 such that

2∑
i=1

DF ((γn)i||µi) +

∫
X1×X2

`
(
d̂n(x, y)

)
dγn < D

1/a
ET ((X1, d1, µ1), (X2, d2, µ2)) +

1

n
. (49)

Since the entropy functionals with respect to the �xed measures µ1 and µ2 are bounded,
we can apply Theorems 1 and Lemma 3 in order to obtain the existence of subsequences
(from now on we will not relabel them) such that (γn)i converges weakly to some
γi ∈ M (Xi), i = 1, 2. Since (γn)i are marginals of the measure γn, the tightness of
(γn)i implies the tightness of γn, so that the sequence γn ∈M (X1×X2) is converging
to some γ. Moreover, by the continuity of the operator πi] with respect to the weak
topology, the marginals of γ coincide with γi, i = 1, 2. We notice that if γ is the null
measure the proof is concluded by taking any pseudo-metric coupling d̂ between d1

and d2.

Step2: pre-compactness of the pseudo-metric couplings.
Regarding the sequence d̂n, by the triangle inequality we have that

|d̂n(x1, y1)− d̂n(x2, y2)| ≤ |d1(x1, x2) + d2(y1, y2)|.

In particular, d̂n is uniformly 1-Lipschitz with respect to the complete and separable
metric d1 + d2 on X1 ×X2. We claim it is also uniformly bounded in a point. To see
this, take (x̄, ȳ) ∈ supp(γ): since γn weakly converges to γ for every r, ε > 0 and for
all n su�ciently large we have

γn (Br(x̄)×Br(ȳ)) ≥ γ (Br(x̄)×Br(ȳ))− ε.

Fix r > 0 and suppose by contradiction that there exists a subsequence (not relabeled)
such that 2r ≤ d̂n(x̄, ȳ) → +∞. For ε = ε(r) small enough, from (49), the fact that
(x̄, ȳ) ∈ supp(γ) and ` is increasing we infer the existence of some positive constants
C, c such that for all n su�ciently large

C >

∫
X1×X2

`
(
d̂n(x, y)

)
dγn(x, y) ≥

∫
Br(x̄)×Br(ȳ)

`
(
d̂n(x̄, ȳ)− 2r

)
dγn(x, y)

≥ `
(
d̂n(x̄, ȳ)− 2r

)
[γ(Br(x̄)×Br(ȳ))− ε] ≥ c`

(
d̂n(x̄, ȳ)− 2r

)
.

Since ` has bounded sublevels, this implies that there exists a constant K such that
d̂n(x̄, ȳ) < K for every n that leads to a contradiction.
We can thus apply Ascoli-Arzelà's theorem to infer the existence of a limit function
d : X1 ×X2 → [0,∞) such that dn converges (up to subsequence) pointwise to d and
the convergence is uniform on compact sets. We can extend d to (X1tX2)× (X1tX2)
in order to get a limit pseudo-metric coupling, that we denote in the same way.
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Step3: passing to the limit.
Next, we pass to the limit in the following expression

2∑
i=1

DF ((γn)i||µi) +

∫
X1×X2

`
(
d̂n(x, y)

)
dγn.

By Lemma 2, the entropy is jointly lower semicontinuous and thus

lim inf
n

DF ((γn)i||µi) ≥ DF (γi||µi).

So, it is su�cient to prove that

lim inf
n

∫
X1×X2

`
(
d̂n(x, y)

)
dγn ≥

∫
X1×X2

`
(
d̂(x, y)

)
dγ. (50)

Using the equi-tightness of {γk} we can �nd a sequence of compact sets K1,n ⊂ X1

and K2,n ⊂ X2 such that

γk
(
X1 ×X2 \ (K1,n ×K2,n)

)
≤ 1

n

for every k. We de�ne `m(r) := min(`(r),m), so that the sequence of functions (x, y) 7→
`m(dn(x, y)) converges uniformly on compact subsets of X1×X2, as n→∞. Possibly
by taking a further subsequence via a diagonal argument, we can infer that ‖`m(d)−
`m(dn)‖∞;n → 0 when n→∞, where we denote by ‖ · ‖∞;n the supremum norm in the
set K1,n ×K2,n. Let M be a positive constant such that γn(X1 ×X2) ≤ M for every
n. We can bound the integral on the left hand side of (50) in the following way:∫

X1×X2

`(d̂n)dγn ≥
∫
X1×X2

`m(d̂n)dγn ≥
∫
K1

n×K2
n

`m(d̂n)dγn

≥
∫
K1

n×K2
n

`m(d̂)dγn −M‖`m(d̂)− `m(d̂n)‖∞;n

≥
∫
X1×X2

`m(d̂)dγn −M‖`m(d̂)− `m(d̂n)‖∞;n −m/n.

Now we can pass to the limit with respect to n using the weak convergence of {γn},
and we obtain

lim inf
n

∫
X1×X2

`(d̂n)dγn ≥
∫
X1×X2

`m(d̂)dγ

and then we conclude using the Beppo Levi's monotone convergence theorem with
respect to m.

(ii) Without loss of generality we assume supp(µi) = Xi. By the previous point we know
the existence of an optimal measure γ ∈M (X1 ×X2) and an optimal pseudo-metric
coupling d̂ between d1 and d2. We consider the complete and separable metric space
(X̃, d̃) constructed as in Lemma 1. Denoting by p : X1 t X2 → X̃ the projection to
the quotient and using the identi�cation

X1 tX2 = X1 × {0} ∪X2 × {1},

we notice that X1 ×X2 ↪→ X̃ × X̃ via the injective Borel map

ψ(x1, x2) = (ψ1(x1), ψ2(x2)) := (p(x1, 0), p(x2, 1)).



ENTROPY-TRANSPORT DISTANCES BETWEEN UNBALANCED METRIC MEASURE SPACES 21

Moreover, we also have that ψi is an isometry of (Xi, di) onto its image in (X̃, d̃),
i = 1, 2. Thus, denoting by γi the marginals of γ, we can consider the measures ψ]γ
whose projections are (ψ1)]γ1 and (ψ2)]γ2. Using Lemma 4 we know that

DF (γi||µi) = DF ((ψi)]γi || (ψi)]µi), i = 1, 2. (51)

By recalling the de�nition of d̃, we also have∫
X1×X2

`
(
d̂(x, y)

)
dγ =

∫
X̃×X̃

`
(
d̃(x, y)

)
d(ψ]γ). (52)

Thus, as a consequence of (51), (52) and the optimality of γ and d̂, the equality (48)
holds on (X̃, d̃) (with optimal measure ψ]γ).

�

Remark 2. It is clear that the optimal coupling d̂ whose existence is proven in the previous
Lemma is in general only a pseudo-metric and not a metric on X1 tX2. To see this, it is
su�cient to consider two isomorphic metric measure spaces (X1, d1, µ1), (X2, d2, µ2). If we

denote by ψ : X1 → X2 the isometry between (X1, d1) and (X2, d2), the optimal coupling d̂

satis�es d̂(x1, ψ(x1)) = 0 for µ1-a.e x1.

The next theorem is the main result of the paper.

Theorem 2. Let DET be a regular Entropy-Transport distance induced by (a, F, `). Then
(X,DET) is a complete and separable metric space. It is also a length (resp. geodesic) space
if DET is a length (resp. geodesic) metric.

Proof. Step1: DET de�nes a metric.
It is clear that DET is symmetric, �nite valued, nonnegative and

DET

(
(X1, d1, µ1), (X2, d2, µ2)

)
= 0 if (X1, d1, µ1) = (X2, d2, µ2).

We claim that DET

(
(X1, d1, µ1), (X2, d2, µ2)

)
= 0 implies that the metric measure spaces

(X1, d1, µ1) and (X2, d2, µ2) are isomorphic. By Lemma 6 there exist a measure γ ∈M (X1×
X2) and a pseudo-metric coupling d̂ such that

0 =
2∑
i=1

DF

(
γi||µi

)
+

∫
X1×X2

`
(
d̂(x, y)

)
dγ.

All the terms are nonnegative, so that DF

(
γi||µi

)
= 0 and thus γi = µi, i = 1, 2. Moreover,

since `(d) = 0 if and only if d = 0, it follows that d̂(x, y) = 0 for γ-a.e (x, y). We also have

d̂(x, y) = 0 for all (x, y) ∈ supp(γ). (53)

To see this, let (x̄, ȳ) ∈ supp(γ) so that for every r > 0 we have γ(Br(x̄, ȳ)) > 0 where

Br((x̄, ȳ)) = {(x, y) ∈ X1 ×X2 | d1(x̄, x) + d2(ȳ, y) < r}.

We consider a sequence of balls of radius rn := 1/n, n ∈ N, and use the fact that d̂(x, y) = 0
for γ-a.e (x, y) to infer the existence of a sequence of points (xn, yn) ∈ Brn((x̄, ȳ)) such that
d̂(xn, yn) = 0. Thus

d̂(x̄, ȳ) ≤ d1(x̄, xn) + d̂(xn, yn) + d2(ȳ, yn) < 1/n.

Sending n→ +∞ and using the arbitrariness of (x̄, ȳ), the claim (53) follows.
Since d1 and d2 are metrics, we infer that for every x1 ∈ supp(µ1) there exists a unique
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x2 ∈ supp(µ2) such that (x1, x2) ∈ supp(γ). Indeed, for any x2, x̃2 ∈ supp(µ2) such that
(x1, x2), (x1, x̃2) ∈ supp(γ) we have

d2(x2, x̃2) = d̂(x2, x̃2) ≤ d̂(x2, x1) + d̂(x̃2, x1) = 0

and thus x2 = x̃2. Switching the role of X1 and X2 in the argument above, we obtain the
existence of a bijection ψ : supp(µ1) → supp(µ2) such that γ = (Id, ψ)]µ1 and (in virtue of
(53))

d̂(x, ψ(x)) = 0 for all x ∈ supp(µ1). (54)

Let x, y ∈ supp(µ1), from (54) and the triangle inequality it follows

d1(x, y) = d̂(x, y) ≤ d̂(x, ψ(x)) + d̂(ψ(x), ψ(y)) + d̂(y, ψ(y)) = d2(ψ(x), ψ(y)),

d2(ψ(x), ψ(y)) = d̂(ψ(x), ψ(y)) ≤ d̂(x, ψ(x)) + d̂(x, y) + d̂(y, ψ(y)) = d1(x, y),

which implies that ψ : supp(µ1)→ supp(µ2) is an isometry.
Hence (X1, d1, µ1) and (X2, d2, µ2) are isomorphic, as claimed.

Regarding the triangle inequality, let (Xi, di, µi), i = 1, 2, 3, be three metric measure
spaces. From the de�nition of DET and Proposition 2, for every ε > 0 we �nd a pseudo-
metric coupling d12 between d1 and d2, and a pseudo-metric coupling d23 between d2 and
d3 such that

DET

(
(X1, d1, µ1), (X2, d2, µ2)

)
≥ (DET)d12(µ1, µ2)− ε,

DET

(
(X2, d2, µ2), (X3, d3, µ3)

)
≥ (DET)d23(µ2, µ3)− ε,

where we have denoted by (DET)d the Entropy-Transport distance induced by the pseudo-
metric d. Set X := X1 t X2 t X3 and de�ne a pseudo-metric d on X in the following
way

d(x, y) :=


d12(x, y) if x, y ∈ X1 tX2

d23(x, y) if x, y ∈ X2 tX3

infz∈X2 [d12(x, z) + d23(z, y)] if x ∈ X1 and y ∈ X3

infz∈X2 [d23(x, z) + d12(z, y)] if x ∈ X3 and y ∈ X1.

We notice that d coincides with di when restricted to Xi. By applying Proposition 2, the
point (ii) of Lemma 5 and the triangle inequality of (DET)d we obtain

DET

(
(X1, d1, µ1), (X3, d3, µ3)

)
≤ (DET)d(µ1, µ3) ≤ (DET)d(µ1, µ2) + (DET)d(µ2, µ3)

= (DET)d12(µ1, µ2) + (DET)d23(µ2, µ3)

≤ DET

(
(X1, d1, µ1), (X2, d2, µ2)

)
+ DET

(
(X2, d2, µ2), (X3, d3, µ3)

)
+ 2ε.

The conclusion follows since ε > 0 is arbitrary.

Step2: Completeness of DET.
In order to prove completeness, let {(Xn, dn, µn)}n∈N be a Cauchy sequence in the space
(X,DET). In order to have convergence of the full sequence, it is enough to prove that there
exists a converging subsequence. Let us consider a subsequence such that

D
1/a
ET

(
(Xnk

, dnk
, µnk

), (Xnk+1
, dnk+1

, µnk+1
)
)
< 2−(k+1).
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By de�nition of DET and Proposition 2, we can �nd a measure γk+1 ∈ M (Xnk
× Xnk+1

)

and a complete and separable metric coupling d̂k+1 between dXnk
and dXnk+1

such that∫
Xnk

F (σnk
)dµnk

+

∫
Xnk+1

F (σnk+1
)dµnk+1

+

∫
Xnk
×Xnk+1

`
(
d̂k+1

)
dγk+1 < 2−k, (55)

where σnk
(resp. σnk+1

) is the Radon-Nykodim derivative of the �rst (resp. second) marginal
of γk+1 with respect to µnk

(resp. µnk+1
).

Now we want to de�ne a sequence
{

(X ′k, d
′
k)
}∞
k=1

of metric spaces such that Xnk
⊂ X ′k

and X ′k ⊂ X ′k+1. We proceed in the following way: we set(
X ′1, d

′
1

)
:=
(
Xn1 , dXn1

)
,

X ′k+1 := X ′k tXnk+1

/
∼,

where x ∼ y if d′k+1(x, y) = 0 and the latter is de�ned as

d′k+1(x, y) :=


d′k(x, y) if x, y ∈ X ′k
d̂k+1(x, y) if x, y ∈ Xnk

tXnk+1

infz∈Xnk
d′k(x, z) + d̂k+1(z, y) if x ∈ X ′k, y ∈ Xnk+1

infz∈Xnk
d′k(y, z) + d̂k+1(z, x) if y ∈ X ′k, x ∈ Xnk+1

.

From the de�nition of d′k, it is clear that we can endow the space X ′ :=
⋃∞
k=1X

′
k with a limit

metric d′. Now we consider the completion (X, d) of (X ′, d′) and we notice that (Xnk
, dXnk

)
is isometrically embedded in this space for every k. Using the embedding, we can also de�ne
a measure µ̄nk

as the push-forward of the measure µnk
. Combining the construction above

with (55) gives

(DET)
1/a
d (µ̄nk

, µ̄nk+1
)

≤
∫
Xnk

F (σnk
)dµnk

+

∫
Xnk+1

F (σnk+1
)dµnk+1

+

∫
Xnk
×Xnk+1

`
(
d̂k+1

)
dγk+1 < 2−k,

(56)

where (DET)d is the regular Entropy-Transport distance computed in the space (X, d). In
particular, (56) implies that (µ̄nk

)k∈N is a Cauchy sequence in (M (X), (DET)d). Since (DET)d

is complete, there exists µ ∈M (X) such that (DET)
1/a
d (µ̄nk

, µ)→ 0.
Using again that (Xnk

, dXnk
) is isometrically embedded in (X, d) and the point (ii) of

Lemma 5, we can conlude that

DET

(
(Xnk

, dnk
, µnk

), (X, d, µ)
)
≤ (DET)d(µ̄nk

, µ)→ 0. (57)

Step3: Separability of DET.
Thanks to (iii) of Lemma 5 it is enough to show that the set X∗, de�ned in (41), is

separable. To this aim, we notice that X∗ can be written as
⊔
n∈N K̃n where

K̃n := {(X, d, µ) ∈ X∗ : supp(µ) has n points}.
Since the set of all (D,M) = (Dij ,M) ∈ Rn×n+ × R+ such that

Dij = Dji , Dij = 0 ⇐⇒ i = j , Dij ≤ Dik +Dkj (58)

is separable (as a subset of the Euclidean space), using (iv) of Lemma 5 we get that

K̃n,M := {(X, d, µ) ∈ X∗ : supp(µ) has n points and µ(X) = nM}
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is separable for every �xed n ∈ N,M > 0. The separability of K̃n follows by the separability
of K̃n,M combined with (v) of Lemma 5.

Step4: Length/geodesic property of DET.
Let us start by proving the length property. Let (X1, d1, µ1), (X2, d2, µ2) ∈ X. By de�nition
of DET, for every ε > 0 we can �nd a complete and separable metric space (X, d) and
isometric embeddings ψi : supp(µi)→ X, i = 1, 2, such that

DET((X1, d1, µ1), (X2, d2, µ2)) ≥ (DET)d(µ1, µ2)− ε, (59)

where, as before, we identify supp(µi) with its isometric image ψi(supp(µi)), and correspond-
ingly µi with ψi]µi, i = 1, 2, in order to keep notation short.
Recall that, by slightly modifying the classical Kuratowski embedding, one can show that
every complete and separable metric space can be isometrically embedded in a complete,
separable and geodesic metric space (see for instance [23, Exercise 1c. Ch. 31

2 .1] or [22,
Proposition 1.2.12]). Thus, recalling also Lemma 4, without loss of generality we can as-
sume that the complete and separable metric space (X, d) above is also geodesic.
By assumption (DET)d is a length distance on M (X) since (X, d) is a length space, so that
we can �nd a curve (µt)t∈[1,2] ⊂ (M (X), (DET)d) from µ1 to µ2 satisfying

Length(DET)d
((µt)t∈[1,2]) ≤ (DET)d(µ1, µ2) + ε. (60)

Now, it is easy to check that the DET-length of the curve of m.m.s. ((X, d, µt))t∈[1,2] ⊂ X
satis�es

LengthDET
(((X, d, µt))t∈[1,2]) ≤ Length(DET)d

((µt)t∈[1,2]). (61)

Indeed the length of a curve is by de�nition the supremum of the sums of mutual distances
over �nite partitions (13), and for every partition (ti) of [1, 2] it holds∑

i

DET((X, d, µti+1), (X, d, µti)) ≤
∑
i

(DET)d(µti+1 , µti) ≤ Length(DET)d
((µt)t∈[1,2]).

The combination of (59), (60) and (61) gives

LengthDET
(((X, d, µt))t∈[1,2]) ≤ Length(DET)d

((µt)t∈[1,2]) ≤ (DET)d(µ1, µ2) + ε

≤ DET((X1, d1, µ1), (X2, d2, µ2)) + 2ε,

as desired.
To prove the geodesic property in the case DET is a geodesic distance, we notice that we

can follow verbatim the argument given above with ε = 0. Here one has to notice that the
existence of an optimal complete and separable metric space on which (59) holds with ε = 0
follows from (ii) of Lemma 6. �

Remark 3. It is proved in [29, Proposition 8.3] that (M (X),HK) is a geodesic space when
the underlying space (X, d) is geodesic. In particular, the last claim of Theorem 2 can be
applied to the Hellinger-Kantorovich distance.
To the best of our knowledge, up to now this is the only known example of regular Entropy-
Transport geodesic distance (with the trivial exception of weighted variants of HK [28]).

3.1. Topology. Let us introduce a notion of convergence for sequences of (equivalence
classes of) metric measure spaces (see [21, De�nition 3.9] for the corresponding notion in
the context of pointed metric measure spaces).

De�nition 5. We say that a sequence (Xn, dn, µn)n∈N weakly measured-Gromov converges
to (X∞, d∞, µ∞) if there exist a complete and separable metric space (X, d) and isometric
embeddings ιn : Xn → X, n ∈ N̄, such that (ιn)]µn → (ι∞)]µ∞ weakly in M (X).
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In the next Theorem we see that this notion of convergence actually coincides with the
convergence induced by any Sturm-Entropy-Transport distance.

Theorem 3. Let DET be a regular Entropy-Transport distance induced by (a, F, `). A se-
quence (Xn, dn, µn)n∈N weakly measured Gromov converges to (X∞, d∞, µ∞) if and only if

DET ((Xn, dn, µn), (X∞, d∞, µ∞))→ 0 as n→∞. (62)

Proof. Let us suppose the validity of (62). By de�nition of DET we know that there exist a
complete and separable metric space (Yn, dYn) and isometric embeddings ψn, ψ∞n of (Xn, dn),
(X∞, d∞) respectively, in Yn such that

DET((ψn)]µn, (ψ
∞
n )]µ∞) <

1

n
, (63)

where DET is computed in the space Yn. We now de�ne Y := tnXn, n ∈ N̄ endowed with
the pseudo-metric dY

dY (y, y′) :=


dn(y, y′) if y, y′ ∈ Xn, n ∈ N̄
dYn(ψn(y), ψ∞n (y′)) if y ∈ Xn, y

′ ∈ X∞
dYn(ψ∞n (y), ψn(y′)) if y ∈ X∞, y′ ∈ Xn

infx∈X∞ dYn(ψn(y), ψ∞n (x)) + dYm(ψm(y′), ψ∞m (x)) if y ∈ Xn, y
′ ∈ Xm.

We now consider the space Y/ ∼ de�ned as the quotient of Y with respect to the equivalence
relation

y ∼ y′ ⇔ dY (y, y′) = 0 , (64)

and we then de�ne the completion of this space, that we still denote by (Y, dY ). It is easy
to see that Y is separable. By construction we notice that the set

ψn(Xn) ∪ ψ∞n (X∞) ⊂ Yn
endowed with the distance dYn is canonically isometrically embedded in (Y, dY ), so that every
space Xn, n ∈ N̄, is canonically isometrically embedded into Y by a map ψ′n. We claim now
that Y and ψ′n provide a realization of the weakly measured Gromov convergence. To see
this, it is enough to notice that (ψ′n)]µn → (ψ′∞)]µ∞ weakly in M (Y ) which is a consequence
of the construction of ψ′n, (63) and the fact that DET induces the weak topology.
For the converse, let us suppose that (Xn, dn, µn)n∈N weakly measured Gromov converges
to (X∞, d∞, µ∞). By de�nition we know that there exist a complete and separable metric
space (X, d) and isometric embeddings ιn : Xn → X, n ∈ N̄, such that (ιn)]µn → (ι∞)]µ∞
weakly in M (X). Since DET metrizes the weak convergence on M (X) we know that

DET((ιn)]µn, (ι∞)]µ∞)→ 0 as n→∞,
and the result follows by the very de�nition of DET, noticing that (X, d) is a possible
competitor. �

Let us denote by X(K,N,L, v, V ) the family of isomorphism classes of metric measure
spaces (X, d, µ) ∈ CD(K,N) such that

diam(X) ≤ L and 0 < v ≤ µ(X) ≤ V.

Let X̃(K,N,L, v, V ) be the family of isomorphism classes of spaces

(X, d, µ) ∈ X(K,N,L, v, V )

such that µ has full support.
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Theorem 4. Fix K ∈ R, N ∈ (1,∞), L ∈ (0,∞) and 0 < v ≤ V < ∞. Let DET be a
regular Entropy-Transport distance. Then

• X(K,N,L, v, V ) is compact with respect to DET.

• X̃(K,N,L, v, V ) is compact with respect to mGH. Moreover on such family the DET-
topology and the mGH-topology coincide.

Proof. By [21, Corollary 3.22] we have precompactness of X(K,N,L, v, V ) with respect to
the weakly measured Gromov convergence and thus precompactness with respect also to the
DET-convergence by Theorem 3. From [44, Theorem 3.1] (see also [21, Theorem 4.9]) we
know that the condition CD(K,N) is stable with respect to the weakly measured Gromov
convergence and thus the �rst statement follows. For the second statement we observe that
the spaces in X̃(K,N,L, v, V ) are uniformly doubling and thus the weakly measured Gromov
convergence is equivalent to the mGH-convergence (see [21, Theorem 3.30 and 3.33]). �

Corollary 1. It follows:

(i) The stability of CD(K,N) with N ∈ (1,∞] under DET-convergence.
(ii) The convergence of heat �ows under DET-convergence of CD(K,∞) spaces.
(iii) The stability of RCD(K,N) with N ∈ (1,∞] under DET-convergence.
(iv) The stability of the spectrum of the Laplacian under DET-convergence of CD(K,∞)

spaces.

Proof. The proof is a direct consequence of Theorem 3 and the results contained in [21], to
which we refer for the precise statements. In particular, for (i) we use [21, Theorem I and
pp. 29-30], (ii) follows from [21, Theorem 5.7], for (iii) we take advantage of [21, Theorem
IV], and (iv) is a consequence of [21, Theorem V]. �

4. Limiting cases

4.1. Pure entropy distances. In the setting of Entropy-Transport problems, we call pure
entropy problems the ones induced by the choices

F ∈ Γ(R+), c(x1, x2) =

{
0 if x1 = x2,

+∞ otherwise.

In this situation one can prove (see [29, Example E.5]) that for any µ1, µ2 ∈ M (X) we
have

ET(µ1, µ2) = inf
γ∈M (X)

DF (γ||µ1) +DF (γ||µ2) =

∫
X
H0

(
dµ1

dλ
,
dµ2

dλ

)
dλ, (65)

where λ ∈ M (X) is any dominating measure of µ1 and µ2 and H0 is de�ned as the lower
semicontinuous envelope of the function

H̃0(r, t) := inf
θ>0

F̂ (θ, r) + F̂ (θ, t). (66)

In particular, the functional ET corresponds in this situation to the Csiszár's divergence
induced by the function s 7→ H0(1, s) ∈ Γ0(R+) (see [14, Lemma 3]), justifying the name of
pure entropy problem.

For some entropy functions F one can prove that a power a of the induced pure entropy
cost ET is a distance. For instance, when a = 1 and F (s) = |s− 1| we obtain the celebrated
total variation (denoted by TV in the sequel), a distance in the space of measures inducing
a strong topology. Actually, thanks to the result proved in [14, Lemma 8] and the explicit
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bounds contained in [31, Theorem 2.5], we know that every pure entropy distance induces
the same topology of the total variation.

As shown in [14, Propositions 2, 3], we obtain another class of pure entropy distances by
choosing a = 1/2 and the power-like entropy F = Up, p ≥ 1, de�ned in example 3. In this
situation we have

H0(r, t) =
1

p

[
r + t− 2

p
p−1 (r1−p + t1−p)

1
1−p

]
if p > 1, (67)

H0(r, t) = (
√
r −
√
t)2, p = 1, (68)

and we recognize some well-known functionals like the 2-Hellinger distance (case p = 1) and
the triangular discrimination (case p = 2). We will denote these distances by PLp.

We start with a useful lemma, valid for any pure entropy problem.

Lemma 7. Fix a ∈ (0, 1] and let us consider the functions

F ∈ Γ(R+) such that F ′∞ = +∞, c(x1, x2) =

{
0 if x1 = x2,

+∞ otherwise.

Let us denote by PE the power a of the Entropy-Transport cost induced by F and c.
For any (X1, d1, µ1), (X2, d2, µ2) ∈ X let us de�ne

PE ((X1, d1, µ1), (X2, d2, µ2)) := inf PE(ψ1
]µ1, ψ

2
]µ2), (69)

where the in�mum in the right hand side is taken over all complete and separable metric

spaces (X̂, d̂) with isometric embeddings ψ1 : supp(µ1)→ X̂ and ψ2 : supp(µ2)→ X̂.
Then

PE1/a ((X1, d1, µ1), (X2, d2, µ2)) = inf
C
{DF (γ1||µ1) +DF (γ2||µ2)} , (70)

where

C :=
{

(γ, d̂) : γ ∈M (X1 ×X2), d̂ pseudo-metric coupling for d1, d2, supp(γ) ⊂ {d̂ = 0}
}
.

Proof. Setting

`(d) :=

{
0 if d = 0

+∞ otherwise,

we can prove that the in�mum of{
DF (γ1||µ1) +DF (γ2||µ2) +

∫
X1×X2

`
(
d̂(x, y)

)
dγ

}a
over the set

C̃ := {(γ, d̂) : γ ∈M (X1 ×X2), d̂ pseudo-metric coupling for d1, d2}
is less or equal to the in�mum in the right hand side of (69) by reasoning as in the �rst part
of the proof of Proposition 2. The fact that the power a of the right hand side of (70) is
less or equal to the in�mum as in (69) follows by noticing that∫

X1×X2

`
(
d̂(x, y)

)
dγ =

{
+∞ if supp(γ) 6⊂ {d̂ = 0}
0 otherwise.

(71)

For the converse inequality, we reason in a similar way as in the proof of the point (ii)
of Lemma 6. For any pseudo-metric coupling d̂ of d1 and d2 let us consider the space
((X1 tX2)/ ∼, d̂), where x1 ∼ x2 ⇐⇒ d̂(x1, x2) = 0. It is a complete and separable metric
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space as proved in Lemma 1. Denoting by q : X1 tX2 → (X1 tX2)/ ∼ the projection to
the quotient and using the identi�cation

X1 tX2 = X1 × {0} ∪X2 × {1},

we notice that
X1 ×X2 ↪→

(
(X1 tX2)/ ∼

)
×
(
(X1 tX2)/ ∼

)
via the injective map

ψ(x1, x2) = (ψ1(x1), ψ2(x2)) := (q(x1, 0), q(x2, 1)).

Moreover, we also have that ψi is an isomorphism of (Xi, di) into its image in ((X1tX2)/ ∼
, d̂), i = 1, 2. Thus, for any measure γ ∈ M (X1 × X2) such that supp(γ) ⊂ {d̂ = 0},
denoting by γi the marginals of γ, we can consider the measures ψ]γ whose projections are
(ψ1)]γ1 and (ψ2)]γ2. Using Lemma 4 we know that

DF (γi||µi) = DF ((ψi)]γi||(ψi)]µi), i = 1, 2

and the proof is completed by noticing that supp(ψ]γ) is contained in the diagonal of the

metric space ((X1 tX2)/ ∼, d̂). �

In the next theorem we prove that some pure entropy problems, speci�cally the ones
generated by power-like entropies Up, p ≥ 1, can be recovered as a limiting case of regular
Entropy-Transport problems.

Theorem 5. Fix p ≥ 1 and let us consider the sequence of cost functions cn = nd and the
entropy function F := Up. Let us denote by Dp,n the Entropy-Transport distance induced by
a = 1/2, cn = nd and F := Up.

Then, for every metric measure spaces (X1, d1, µ1), (X2, d2, µ2) ∈ X the limit

PLp ((X1, d1, µ1), (X2, d2, µ2)) := lim
n→∞

Dp,n ((X1, d1, µ1), (X2, d2, µ2)) is well de�ned,

(72)
where Dp,n denotes the function de�ned as in De�nition 4 upon replacing DET by Dp,n.

Moreover, Dp,n is a regular Entropy-Transport distance and PLp de�nes a metric on X
such that

PLp ((X1, d1, µ1), (X2, d2, µ2)) = inf PLp(ψ
1
]µ1, ψ

2
]µ2), (73)

where the in�mum in the right hand side is taken over all complete and separable metric

spaces (X̂, d̂) with isometric embeddings ψ1 : supp(µ1)→ X̂ and ψ2 : supp(µ2)→ X̂.

Proof. The �rst assertion follows by noticing that for any metric d we have

nd(x1, x2) ↑ c(x1, x2) =

{
0 if x1 = x2

+∞ otherwise
as n→∞ for every x1, x2 ∈ X. (74)

The fact that Dp,n is a regular Entropy-Transport distance is a consequence of [14, Theorem
6], noticing the obvious fact that nd is a complete and separable metric for any �xed n.

In particular, since for every �xed n we know that Dp,n is a metric on X by Theorem 2,
we have that PLp is nonnegative, symmetric, it satis�es the triangle inequality and

PLp ((X1, d1, µ1), (X2, d2, µ2)) = 0 if (X1, d1, µ1) = (X2, d2, µ2).

We claim that
PLp ((X1, d1, µ1), (X2, d2, µ2)) = 0
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only if (X1, d1, µ1) = (X2, d2, µ2) (as equivalence classes). Indeed, since Dp,n is nonnegative
and nondecreasing, the fact that

lim
n→∞

Dp,n ((X1, d1, µ1), (X2, d2, µ2)) = 0

implies

Dp,n ((X1, d1, µ1), (X2, d2, µ2)) = 0 for every n,

and the result follows because Dp,n is a distance on X.
At this level we do not know that PLp is �nite valued, which is a consequence of (73)

together with the fact that PLp is a (�nite valued) distance on the space of measures as
recalled above.

In order to prove (73), we �rst notice that the monotonicity (74) easily implies that

PLp ((X1, d1, µ1), (X2, d2, µ2)) ≤ inf PLp(ψ
1
]µ1, ψ

2
]µ2),

giving the �niteness of PLp ((X1, d1, µ1), (X2, d2, µ2)).
For the converse inequality, thanks to Lemma 6 we know that for every (X1, d1, µ1),

(X2, d2, µ2) and for every n ∈ N there exist a measure γn ∈ M (X1 × X2) and a pseudo-
metric coupling d̂n between d1 and d2 such that:

∞ > PL2
p ((X1, d1, µ1), (X2, d2, µ2)) ≥ D2

p,n((X1, d1, µ1), (X2, d2, µ2))

=
2∑
i=1

DUp(γn,i||µi) +

∫
X1×X2

nd̂n(x, y) dγn for every n ∈ N. (75)

By the superlinearity of the entropy functionals we can infer the existence (up to subse-
quence) of a weak limit γ ∈M (X1 ×X2) of the sequence {γn}n∈N. We also know that

lim inf
n→∞

2∑
i=1

DUp(γn,i||µi) ≥
2∑
i=1

DUp(γi||µi), (76)

where we have used the usual notation for the marginal measures. If γ is the null measure
the result follows trivially. Otherwise, since the integral∫

X1×X2

d̂n(x, y) dγn

is bounded from above we can argue as in the step 2 of the proof of Lemma 6 and we deduce
the existence of a pseudo-metric coupling d̂ between d1 and d2 such that d̂n converges (up
to subsequence) pointwise to d̂ and the convergence is uniform on compact sets.
By recalling the explicit formulation of the right hand side of (73) given in Lemma 7, the
proof is completed if we show that supp(γ) ⊂ {d̂ = 0}. Let us suppose by contradiction the
existence of a point (x̄, ȳ) ∈ supp(γ) such that d̂(x̄, ȳ) = k > 0. Fix k/2 > r > 0: for every
ε > 0 su�ciently small we know that there exist m ∈ N such that for every n > m we have

γn (Br(x̄)×Br(ȳ)) ≥ γ (Br(x̄)×Br(ȳ))− ε > 0,

d̂n(x̄, ȳ)− 2r > d̂(x̄, ȳ)− 2r − ε > 0.
(77)
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Starting from the bound in (75) we have

∞ > PL2
p ((X1, d1, µ1), (X2, d2, µ2)) ≥ n

∫
X1×X2

d̂n(x, y) dγn

≥ n
∫
Br(x̄)×Br(ȳ)

d̂n(x, y) dγn ≥ n
(
d̂n(x̄, ȳ)− 2r

)
γn(Br(x̄)×Br(ȳ))

≥ n
(
d̂(x̄, ȳ)− 2r − ε

)
[γ(Br(x̄)×Br(ȳ))− ε]

that leads to a contradiction for n su�ciently large thanks to (77). �

De�nition 6. We say that a sequence of metric measure spaces (Xn, dn, µn)n∈N strongly
measured-Gromov converges to the metric measure space (X∞, d∞, µ∞) if there exist a com-
plete and separable metric space (X, d) and isometric embeddings ιn : Xn → X, n ∈ N̄, such
that (ιn)]µn → (ι∞)]µ∞ in M (X) with respect to the total variation topology.

In the next Theorem we see that this notion of convergence coincides with the convergence
induced by the distance PLp for every p ≥ 1.

Theorem 6. Let p ≥ 1. A sequence (Xn, dn, µn)n∈N strongly measured-Gromov converges
to (X∞, d∞, µ∞) if and only if

PLp ((Xn, dn, µn), (X∞, d∞, µ∞))→ 0 as n→∞. (78)

Proof. The proof is analogous to the one of Theorem 3. Let us suppose the validity of
(78). By de�nition of PLp we know that there exist a complete and separable metric space
(Yn, dYn) and isometric embeddings ψn, ψ∞n of (Xn, dn) and (X∞, d∞) in Yn such that

PLp((ψn)]µn, (ψ∞)]µ∞) <
1

n
, (79)

where PLp is computed in the space Yn. We now de�ne Y := tn∈N̄Xn endowed with the
pseudo-metric dY

dY (y, y′) :=


dn(y, y′) if y, y′ ∈ Xn, n ∈ N̄
dYn(ψn(y), ψ∞n (y′)) if y ∈ Xn, y

′ ∈ X∞
dYn(ψ∞n (y), ψn(y′)) if y ∈ X∞, y′ ∈ Xn

infx∈X∞ dYn(ψn(y), ψ∞n (x)) + dYm(ψm(y′), ψ∞m (x)) if y ∈ Xn, y
′ ∈ Xm.

We consider the space Y/ ∼ de�ned as the quotient of Y with respect to the equivalence
relation

y ∼ y′ ⇔ dY (y, y′) = 0 , (80)

and we then de�ne the completion of this space, that we still denote by (Y, dY ). It is easy
to see that Y is separable. By construction we notice that the set

ψn(Xn) ∪ ψ∞n (X∞) ⊂ Yn
endowed with the distance dYn is canonically isometrically embedded in (Y, dY ), so that
every space Xn, n ∈ N̄, is canonically isometrically embedded into Y by a map ψ′n. We
claim now that Y and ψ′n provide a realization of the strong measured-Gromov convergence.
To see this, it is enough to notice that (ψ′n)]µn → (ψ′∞)]µ∞ in M (Y ) with respect to the
topology induced by the total variation, which is a consequence of the construction of ψ′n,
(79) and the fact that PLp induces the topology of the total variation.
For the converse, let us suppose that (Xn, dn, µn)n∈N strongly measured-Gromov converges
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to the metric measure space (X∞, d∞, µ∞). By de�nition we know that there exist a com-
plete and separable metric space (X, d) and isometric embeddings ιn : Xn → X, n ∈ N̄,
such that (ιn)]µn → (ι∞)]µ∞ in M (X) with respect to the topology of the total variation.
Since PLp metrizes this topology on M (X) we know that

PLp((ιn)]µn, (ι∞)]µ∞)→ 0 as n→∞

and the result follows noticing that (X, d) is a possible competitor in the characterization
of PLp given in Theorem 5. �

In the next easy proposition we show that the strong measured-Gromov convergence
implies the weak measured-Gromov convergence.

Proposition 3. Let (Xn, dn, µn)n∈N be a sequence of metric measure spaces strong measured-
Gromov converging to (X∞, d∞, µ∞). Then (Xn, dn, µn)n∈N weakly measured-Gromov con-
verges to (X∞, d∞, µ∞).

Proof. By de�nition there exist a complete and separable metric space (X, d) and isometric
embeddings ιn : Xn → X, n ∈ N̄, such that (ιn)]µn → (ι∞)]µ∞ in M (X) with respect
to the total variation topology, which implies that (ιn)]µn → (ι∞)]µ∞ with respect to the
weak convergence. The result follows by the very de�nition of weak measured-Gromov
convergence. �

We conclude the section with a list of examples of convergences.

Examples. (1) Let us consider the metric measure space (X∞, d∞, µ∞) de�ned as the
unit interval X∞ = [0, 1] endowed with the Euclidean distance and the Lebesgue mea-
sure. We know that (X∞, d∞, µ∞) can be approximated in the weak measured-Gromov
convergence by a sequence of discrete spaces: take for instance Xn = {m/n}n−1

m=0 en-
dowed with the distance dn inherited from the ambient 1-dimensional Euclidean space
and the measure µn such that µn(m/n) = 1/n for every m = 0, ..., n− 1.

We next claim that (Xn, dn, µn) does not converge to (X∞, d∞, µ∞) in the strong
measured-Gromov convergence. Indeed, for any metric space (X, d) such that Xn is
isometrically embedded in X via ιn, n ∈ N̄, we have

TV((ιn)]µn, (ι∞)]µ∞) = sup
A∈B(X)

|(ι∞)]µ∞(A)− (ιn)]µn(A)|

≥ µ∞

(
[0, 1] \

{
n−1⋃
m=0

m/n

})
= 1 for any n ∈ N.

(2) Let us consider the metric measure space (X∞, d∞, µ∞) de�ned as the unit interval
X∞ = [0, 1] endowed with the Euclidean distance and the measure µ∞ = fdL[0,1],
where L[0,1] is the Lebesgue measure on [0, 1]. Let us de�ne the sequence of metric
measure spaces (Xn, dn, µn) where Xn = [0, 1 − 1/n], dn is the Euclidean distance

and µn = fndL[0,1−1/n]. Let us suppose that f̃n → f in L1([0, 1]), where

f̃n(x) =

{
fn(x) if 0 ≤ x ≤ 1− 1/n

0 if 1− 1/n < x ≤ 1.

Then, (Xn, dn, µn) → (X∞, d∞, µ∞) in the strong measured-Gromov convergence.
To see this, it is enough to notice that for every n ∈ N̄ the maps ιn : Xn → X∞
de�ned as ιn(x) = x provides an isometric embedding such that the convergence
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(ιn)]µn → (ι∞)]µ∞ with respect the total variation distance is exactly equivalent to

f̃n → f in L1([0, 1]).
(3) Let (Xn, dn, µn) be the sequence of collapsing �at tori S1 × 1

nS
1 ⊂ R4 endowed

with the normalized measures µn := n/(4π2) dvolS1× 1
n

S1 . It is a standard fact that

(Xn, dn, µn) converges to (X∞, d∞, µ∞) = (S1, dS1 , (2π)−1L1) in the weak measured-
Gromov sense (this a standard example of a collapsing sequence).
We claim that the convergence cannot be improved to strong measured-Gromov. In-
deed, for any metric space (X, d) such that Xn is isometrically embedded in X via
ιn, n ∈ N̄, we have

TV((ιn)]µn, (ι∞)]µ∞) = sup
A∈B(X)

|(ι∞)]µ∞(A)− (ιn)]µn(A)|

≥ µn
((

S1 × 1

n
S1
)
\ γn

(
S1
))

= 1 for any n ∈ N,

where γn : S1 → S1 × 1
nS

1 is an arbitrary isometric immersion.

4.2. Sturm's distances. We notice that the classical p-Wasserstein distance Wp, p ≥ 1,
can be recovered as a particular case of Entropy-Transport problem with the choices

F (s) = I1(s) :=

{
0 if s = 1

+∞ otherwise
c(x1, x2) = dp(x1, x2). (81)

It is clear that Wp is not a regular Entropy-Transport distance, however we show now
that we can recover the Dp-distance of Sturm (de�ned in De�nition 3) as a limiting case of
our framework.

Theorem 7. Fix p ≥ 1 and let us consider the cost function `(d) := dp, the entropy
function F := U1, and the power a := 1/p. Let us denote by DET,n the power a of the
Entropy-Transport cost induced by Fn := nU1 and c = `(d). Then, for every metric measure
spaces (X1, d1, µ1), (X2, d2, µ2) ∈ X

Dp ((X1, d1, µ1), (X2, d2, µ2)) := lim
n→∞

DET,n ((X1, d1, µ1), (X2, d2, µ2)) is well de�ned,

(82)
where DET,n denotes the function de�ned as in De�nition 4 upon replacing DET by DET,n.
Moreover, for every metric measure spaces (X1, d1, µ1), (X2, d2, µ2) ∈ X1,p we have

Dp ((X1, d1, µ1), (X2, d2, µ2)) = Dp ((X1, d1, µ1), (X2, d2, µ2)) p ≥ 1. (83)

Proof. We start by proving that the limit (82) exists on the set X. To see this, we notice
that nF (s) ↑ I1(s) for every s ∈ [0,∞). In particular, using the explicit formulation ofDET,n

proved in Proposition 2 (we remark that we have not used the fact that D is a distance in
the proof of the proposition), we can infer that DET,n is nondecreasing so that the limit
exists.

It remains to prove that for every p ≥ 1 we have Dp = Dp on the set X1,p. Since for every
n ∈ N, for every complete and separable metric space (X, d) and for every µ, γ ∈M (X) we
have

DFn(γ||µ) ≤ DI1(γ||µ),
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it is clear that Dp ≤ Dp. For the converse inequality, we know that for every (X1, d1, µ1),
(X2, d2, µ2) ∈ X1,p we have

Dp
p ((X1, d1, µ1), (X2, d2, µ2)) ≥ Dpp ((X1, d1, µ1), (X2, d2, µ2))

≥ Dp
ET,n((X1, d1, µ1), (X2, d2, µ2)) =

2∑
i=1

DFn(γn,i||µi) +

∫
X1×X2

d̂pn(x, y) dγn, (84)

for some γn ∈ M (X1 × X2) and metric coupling d̂n of d1 and d2, whose existence is a
consequence of Lemma 6 (notice that we have only used the properties of the cost and the
entropy in the proof of the lemma, while the fact that DET is a metric plays no role). Since
DFn is bounded from above by the superlinear entropy DI1 , by using Lemma 2 and Lemma
3 we can infer that γn is weakly converging (up to subsequence) to a limit γ ∈M (X1×X2)
and

lim inf

2∑
i=1

DFn(γn,i||µi) ≥
2∑
i=1

DI1(γi||µi).

By reasoning as in step 2 and step 3 of Lemma 6, we know that there exists a pseudo-metric
coupling d̂ of d1 and d2 such that d̂n converges (up to subsequence) pointwise to d̂ and the
convergence is uniform on compact sets. Moreover, we have that

lim inf
n

∫
X1×X2

d̂pn(x, y) dγn ≥
∫
X1×X2

d̂p(x, y)dγ, (85)

and the result follows since d̂ and γ are competitors in the explicit formulation of Dp (see
[43, Lemma 3.3]) as a consequence of the fact that

DI1(γi||µi) <∞⇐⇒ γi = µi, i = 1, 2.

�

Remark 4. We point out that we are not claiming that the sequence DET,n de�ned in The-
orem 7 is a sequence of regular Entropy-Transport distances. Actually, this is the case for
p = 2 as a conseguence of [29, Theorem 7.25], noticing that the cost of the Entropy-Transport
problem induced by (nU1, d

2) is n times the cost of the Entropy-Transport problem induced
by (U1, (d/

√
n)2) and d/

√
n is trivially a complete and separable distance.

In this situation, one can show that D2 de�nes a metric possibly attaining the value +∞ on
the whole set X, by reasoning as in the proof of Theorem 5.

4.3. Piccoli-Rossi distance. A natural extension of the W1-metric in the context of
Entropy-Transport problem is the Piccoli-Rossi generalized Wasserstein distance BL [35, 36],
induced by the choices

F (s) = |s− 1|, c(x1, x2) = d(x1, x2). (86)

We notice that the entropy function is not superlinear.
It is proved in [35] that BL is a complete distance on M (X) for every Polish space (X, d)

([35] is in the Euclidean setting, however the proof for a Polish space can be performed
verbatim).

By exploiting the dual formulation of this distance, we know that BL corresponds to the
so-called �at metric or bounded Lipschitz distance (see [36, Theorem 2]), namely

BL(µ1, µ2) = sup

{∫
X
f d(µ1 − µ2) : ‖f‖∞ ≤ 1, ‖f‖Lip ≤ 1

}
for any µ1, µ2 ∈M (X).

(87)
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We also recall this useful lemma, which is proved in [35, Proposition 1].

Lemma 8. Given µ1, µ2 ∈ M (X), let us consider the Entropy-Transport problem induced
by (F, c) de�ned in (86). Then the in�mum of the problem (26) is attained by a measure
γ ∈M (X ×X) such that γi := (πi)]γ ≤ µi, i = 1, 2.

We have the following:

Theorem 8. Fix a = 1, `(d) := d and let us consider the sequence (Fn)n≥2 de�ned by

Fn(s) :=

{
|s− 1| if 0 ≤ s ≤ n
(s−1)2

n−1 if s > n.

Let us denote by DET,n the Entropy-Transport cost induced by a, Fn and c = `(d).
Then, for every metric measure spaces (X1, d1, µ1), (X2, d2, µ2) ∈ X the quantity

BL ((X1, d1, µ1), (X2, d2, µ2)) := DET,n ((X1, d1, µ1), (X2, d2, µ2)) is well de�ned, (88)

where DET,n denotes the function de�ned as in De�nition 4 upon replacing DET by DET,n.
Moreover, BL de�nes a complete metric on X such that

BL ((X1, d1, µ1), (X2, d2, µ2)) = inf BL(ψ1
]µ1, ψ

2
]µ2), (89)

where the in�mum in the right hand side is taken over all complete and separable metric

spaces (X̂, d̂) with isometric embeddings ψ1 : supp(µ1)→ X̂ and ψ2 : supp(µ2)→ X̂.

Proof. We notice that (Fn)n≥2 is a sequence of continuous superlinear entropy functions.
We also know that Fn(s) = |s − 1| in [0, 1] and Fn(s) ≥ |s − 1| in [0,∞) for every n ≥ 2,
which implies that DET,n coincide with BL thanks to Lemma 8. In particular we see that
DET,n does not depend on n and also the identity (89) follows.

The fact that BL is a complete distance on X is a consequence of the completeness of BL
(and thus DET,n) on the set of measures M (X), and can be proved along the lines of Step
2 in the proof Theorem 2. �

Remark 5. We observe that the sequence DET,n de�ned in Theorem 8 is not a sequence of
regular Entropy-Transport distances. The problem here is that the topology induced by the
distance BL does not coincide with the weak topology, but it requires an additional tightness
condition (see [35, Theorem 3] for all the details).

4.4. Bounds between distances. The aim of this last short section is to give some explicit
bounds between the distances discussed in the paper.

Proposition 4. Let us denote by HK, GHK, QPLp (for 1 < p ≤ 3) and LPLp (for p > 1)
the regular Entropy-Transport distances de�ned in examples (1), (2), (3) and (4) respec-
tively. Accordingly, we denote by DHK, DGHK, DQPLp and DLPLp the induced Sturm-Entropy-
Transport distances. The following inequalities hold:

(1) DGHK ≤ DHK.
(2) DQPLp ≤ DGHK ≤

√
pDQPLp 1 < p ≤ 3.

(3) DLPLp ≤ PLp p > 1.

Moreover, for every regular entropy transport distance DET induced by (1/p, F, `)
where p ≥ 1, F ∈ Γ0(R+), `(d) = dp we have:

(4) DET ≤ Dp p ≥ 1.

Proof. (1) is a consequence of the bound proved in [29, Section 7.8].
(2) follows by the corresponding inequality proved in [14, Proposition 7].
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(3) has been shown along the lines of the proof of Theorem 5 (notice that DLPLp equals
Dp,1 in the notation of that Theorem).

(4) is a consequence of the explicit formulations of Dp and DET, by noticing that for
any F ∈ Γ0(R+) we have F ≤ I1 where I1 has been de�ned in (81).

�

5. Comparison with conic Gromov-Wasserstein

Let DET be a regular entropy transport distance induced by (a, F, `). Recalling the con-
struction introduced in Remark 1, given F and a number c ≥ 0 we can associate to the
Entropy-Transport problem a function Hc : [0,+∞) × [0,+∞) → [0,+∞] called marginal
perspective function. Moreover, for any complete and separable metric space (X, d) the
function

H : C(X)× C(X)→ [0,+∞], H([x, r]; [y, s]) := H`(d(x,y))(r, s) ,

is such that Ha is a distance on C(X). In particular, we have

Ha
`(w3)(r, t) ≤ H

a
`(w1)(r, s) +Ha

`(w2)(s, t) , for any r, s, t ∈ [0,∞), (90)

and for any w1, w2, w3 ∈ [0,∞) such that there exists a complete and separable metric space
(X, d) with w1 = d(x1, x2), w2 = d(x2, x3), w3 = d(x1, x3), x1, x2, x3 ∈ X.

We also recall that H is positively 1-homogeneous in the scalar variables, i.e.

Hc(λr, λs) = λHc(r, s) for any λ ≥ 0, c ≥ 0, r, s ∈ [0,∞).

Let X be a metric space and �x x̄ ∈ X. We de�ne the canonical projection p : X ×
[0,∞)→ C(X) as p(x, r) = [x, r]. We also introduce the maps

r : C(X)→ [0,+∞), r[x, r] := r, (91)

x : C(X)→ X, x[x, r] :=

{
x if r > 0,

x̄ if r = 0.
(92)

We denote by y = (y1, y2) = ([x1, r1], [x2, r2]) a point on C(X1) × C(X2), and we set
ri(y) := r(yi), xi(y) := x(yi).

Given p ≥ 1, the p-homogeneous marginals of a measure α ∈ M (C(X1) × C(X2)) are
de�ned as

hpi (α) := (xi)](r
p
iα), i = 1, 2.

Following the approach of [39], we de�ne the conic Gromov-Wasserstein distance CGWa

between two metric measure spaces (X1, d1, µ1), (X2, d2, µ2), as the power a of

CGW
(
(X1, d1, µ1), (X2, d2, µ2)

)
:= inf

α∈Up(µ1,µ2)
H(α) (93)

where

H(α) :=

∫ ∫
H`(|d1(x,x′)−d2(y,y′)|)

(
(rr′)p, (ss′)p

)
dα([x, r], [y, s]) dα([x′, r′], [y′, s′]), (94)

and
Up(µ1, µ2) :=

{
α ∈M (C(X1)× C(X2)) : hpi (α) = µi, i = 1, 2

}
. (95)

In [39], the following main result has been obtained:

Theorem 9 ([39, Theorem 1]). If Ha is a distance on the cone then the conic Gromov-
Wasserstein distance CGWa is a metric on X.
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As we will see, it is possible to prove an inequality between the conic Gromov-Wasserstein
distance and the Sturm-Entropy-Transport distance. We start with a lemma.

Lemma 9. Let DET be a regular entropy transport distance induced by (a, F, `) and let

p ≥ 1. Let (X1, d1), (X2, d2) be two complete and separable metric spaces and let d̂ be a
pseudo-metric coupling between d1 and d2. For any µ1 ∈M (X1) and µ2 ∈M (X2) we have

min
α∈Up(µ1,µ2)

∫
C(X1)×C(X2)

H`(d̂(x,y))(r
p, sp) dα([x, r], [y, s])

= min
γ∈M (X1×X2)

2∑
i=1

DF (γi||µi) +

∫
X1×X2

`
(
d̂(x, y)

)
dγ.

(96)

In particular, for any pair of metric measure spaces (X1, d1, µ1), (X2, d2, µ2) there exists
α ∈ Up(µ1, µ2) such that∫

C(X1)×C(X2))
H`(d̂(x,y))(r

p, sp) dα([x, r], [y, s]) = D
1/a
ET ((X1, d1, µ1), (X2, d2, µ2)) , (97)

where d̂ is an optimal pseudo-metric coupling for DET((X1, d1, µ1), (X2, d2, µ2)).

Proof. Notice that under our assumptions we are in the basic coercive setting described in
[29, Section 3.1]. The equality stated in (96), corresponding to the equivalence between
the homogeneous formulation based on the function H and the primal Entropy-Transport
formulation, is thus a consequence of [29, Theorem 5.8 (iii)] and the use of the projection
map

p : X1×R+×X2×R+ → C(X1)×C(X2), p(x, r, y, s) := (p⊗p)
(
(x, r), (y, s)

)
= ([x, r], [y, s])

for passing to the cone (see [29, Section 7] for all the details in the case of the Hellinger-
Kantorovich distance, the general case follows straightforwardly).

Once (96) has been proved, (97) can be deduced by recalling the characterization of DET

given in the point (i) of Lemma 6. �

We can now state the main result of this section. It should be compared with [32, Theorem
5.1], [45, Proposition 2.6].

Proposition 5. Let DET be a regular entropy transport distance induced by (a, F, `) and
let CGWa be the associated conic Gromov-Wasserstein distance. For any pair of metric
measure spaces (X1, d1, µ1), (X2, d2, µ2), it holds

CGWa
(
(X1, d1, µ1), (X2, d2, µ2)

)
≤
(
µ1(X1)a + µ2(X2)a

)
DET

(
(X1, d1, µ1), (X2, d2, µ2)

)
.

(98)

Proof. By taking advantage of Lemma 6, let us consider an optimal pseudo-metric coupling d̂
for DET

(
(X1, d1, µ1), (X2, d2, µ2)

)
. Thanks to Lemma 9, let us also consider α ∈ Up(µ1, µ2)

satisfying ∫
H`(d̂(x,y))(r

p, sp) dα([x, r], [y, s]) = D
1/a
ET ((X1, d1, µ1), (X2, d2, µ2)). (99)

To shorten the notation, let us set y := ([x, r], [y, s]) and y′ := ([x′, r′], [y′, s′]). By the
triangle inequality for d̂, and the fact that `(·) and H·(r, t) are increasing for any r, t, we
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have

CGWa
(
(X1, d1, µ1), (X2, d2, µ2)

)
≤
(∫ ∫

H`(d̂(x,y)+d̂(x′,y′))

(
(rr′)p, (ss′)p

)
dα(y) dα(y′)

)a
≤
(∫ ∫ [

Ha
`(d̂(x,y))

(
(rr′)p, (r′s)p

)
+Ha

`(d̂(x′,y′))

(
(r′s)p, (ss′)p

)] 1
a
dα(y) dα(y′)

)a
≤
(∫ ∫

H`(d̂(x,y))(r
p, sp)(r′)p dα(y) dα(y′)

)a
+(∫ ∫

H`(d̂(x′,y′))

(
(r′)p, (s′)p

)
sp dα(y) dα(y′)

)a
(100)

where we have also used the Minkowski inequality and the homogeneity of H in the last
passage, and we have taken advantage of (90) with w3 = d̂(x, y) + d̂(x′, y′), w1 = d̂(x, y)

and w2 = d̂(x′, y′). To justify the use of (90) we can argue as follows: if d̂(x, y) = 0 or
d̂(x′, y′) = 0 there is nothing to prove, otherwise we notice that the three points metric space
({A,B,C}, d̃) with mutual distances between di�erent points de�ned as d̃(A,B) := d̂(x, y),
d̃(B,C) := d̂(x′, y′), d̃(A,C) := d̂(x, y) + d̂(x′, y′) is indeed a complete and separable metric
space for any x, x′ ∈ X1, y, y′ ∈ X2.
Using the de�nition of α ∈ Up(µ1, µ2), we can now perform the integrals in (100) obtaining∫ ∫

H`(d̂(x,y))(r
p, sp)(r′)p dα([x, r], [y, s]) dα([x′, r′], [y′, s′])

= µ1(X)

∫
H`(d̂(x,y))(r

p, sp) dα([x, r], [y, s])

= µ1(X1)D
1/a
ET ((X1, d1, µ1), (X2, d2, µ2)) ,

and similarly ∫ ∫
H`(d̂(x′,y′))

(
(r′)p, (s′)p

)
sp dα([x, r], [y, s]) dα([x′, r′], [y′, s′])

= µ2(X2)D
1/a
ET ((X1, d1, µ1), (X2, d2, µ2)) .

We thus reach the desired conclusion. �
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