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Abstract

We give a new and constructive proof of the existence of global-in-time weak solutions of
the 3-dimensional incompressible semi-geostrophic equations (SG) in geostrophic coordinates,
for arbitrary initial measures with compact support. This new proof, based on semi-discrete
optimal transport techniques, works by characterising discrete solutions of SG in geostrophic co-
ordinates in terms of trajectories satisfying an ordinary differential equation. It is advantageous
in its simplicity and its explicit relation to Eulerian coordinates through the use of Laguerre
tessellations. Using our method, we obtain improved time-regularity for a large class of dis-
crete initial measures, and we compute explicitly two discrete solutions. The method naturally
gives rise to an efficient numerical method, which we illustrate by presenting simulations of a 2-
dimensional semi-geostrophic flow in geostrophic coordinates generated using a numerical solver
for the semi-discrete optimal transport problem coupled with an ordinary differential equation
solver.

1 Introduction

The incompressible semi-geostrophic equations (SG) model the large-scale dynamics of rotational
atmospheric flows. They can be viewed as a low Rossby number limit of the primitive equations,
and are used by meteorologists to diagnose irregularities in simulated Navier-Stokes flows of the at-
mosphere on length scales of the order of tens of kilometres (see Cullen [10] and Visram, Cotter and
Cullen [53]). First proposed by Eliassen [19] in 1949, and subsequently developed by Hoskins [31]
in 1975, the semi-geostrophic equations have attracted significant attention from the mathematical
community over the past twenty years owing partly to their connection with optimal transport
theory (see [1, 2, 4, 9, 11, 12, 13, 20, 21, 22, 23, 39, 40, 41, 47]).

In this paper we consider SG in geostrophic coordinates, associated to flows on an arbitrary
convex bounded (physical) domain Ω ⊂ R3, which we interpret as the active transport equation

∂tαt +W[αt] · ∇αt = 0 (1)

for the time-dependent measure-valued map α, which is known as the potential vorticity. The
connection between SG and optimal transport is contained in the nonlocal divergence-free velocity
field W[α], which is often called the geostrophic velocity. Let B[αt] denote the unique mean-zero
convex function whose gradient is the optimal transport map between the Lebesgue measure on Ω
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and the Borel measure αt with respect to the quadratic cost, and let B[αt]
∗ denote its Legendre-

Fenchel transform on Ω. At each time t, W[α] is given by

W[αt] := J(idR3 −∇B[αt]
∗),

where idR3 denotes the identity on R3 and

J :=

 0 −1 0
1 0 0
0 0 0

 . (2)

Guided by the work of Cullen and Purser [14], this connection was first established rigorously by
Benamou and Brenier. In [4], those authors proved the existence of global-in-time weak solutions
of (1) for initial measures which are absolutely continuous with respect to the Lebesgue measure
and have compactly-supported Lp density for p > 3. This result was extended by Lopes Filho and
Nussenzveig Lopes in [41] to the case where p ≥ 1, and by Loeper [40] and later Feldman and
Tudorascu [22] to the case where the initial measure need only have compact support in R3. In
[21, Proposition 4.14], Feldman and Tudorascu use Ambrosio and Gangbo’s abstract techniques for
Hamiltonian ODEs in Wasserstein space [3] to prove that when the initial measure is an arbitrary
convex combination of Dirac masses there exists a global-in-time solution that maintains the discrete
structure of the initial data. The two known results regarding the uniqueness of solutions of (1)
are the local-in-time uniqueness of Hölder continuous periodic solutions proved in [40], and weak-
strong uniqueness under uniform convexity proved in [23]. Otherwise, the problem of uniqueness
of solutions remains open.

The main contribution of this paper is an alternative proof the existence of global-in-time weak
solutions of (1) for arbitrary compactly-supported initial measures, which uses recently developed
techniques from semi-discrete optimal transport to treat the case where the initial measure is dis-
crete (see Section 3 and, in particular, Theorems 3.5 and 3.6). For a wide class of discrete initial
measures our result recovers [21, Proposition 4.14] with improved time regularity (twice contin-
uously differentiable rather than Lipschitz) and uniqueness. More significantly, our application
of semi-discrete optimal transport to SG illuminates an explicit and intuitive connection between
geostrophic coordinates and corresponding flows in the physical domain Ω. It also gives a construc-
tive way of determining solutions explicitly, and it forms the basis of an effective numerical scheme,
as we illustrate in Section 7.

1.1 SG in geostrophic coordinates and semi-discrete optimal transport

In this section, we describe our approach to studying (1) using semi-discrete optimal transport,
which is the special case of optimal transport in which the source measure is absolutely continuous
with respect to the Lebesgue measure and the target measure is discrete.

In recent years, semi-discrete optimal transport theory has seen significant expansion in its
theoretical foundations (see [5, 28, 16, 30, 32, 36, 38, 42, 43, 44, 45]). It has also been applied to
many diverse problems in the sciences, both within fluid dynamics [27, 37] and elsewhere such as
materials science [6, 7, 33], economics [26, Chapter 5], crowd dynamics [34] and image interpolation
[36]. Inspired by ideas in the original work of Cullen and Purser [14] on piecewise constant solutions
of semi-geostrophic slice models, we use semi-discrete optimal transport to analyse (1) in the special
case where the initial potential vorticity α0 = α is a discrete measure, i.e.,

α =

N∑
i=1

miδzi
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for some mi > 0 and zi ∈ R3. We show (Theorem 3.5) that for well-prepared discrete initial data
(see Definition 3.4) there exists a corresponding discrete solution t 7→ αt of (1) of the form

αt =
N∑
i=1

miδzi(t), (3)

where the trajectories zi are twice continuously differentiable. Denoting by L3 the Lebesgue measure
on R3 and by L3 ¬Ω its restriction to Ω, the optimal transport map between L3 ¬Ω and αt given
by (3) is a piecewise constant function

T =

N∑
i=1

zi1Ci ,

where {Ci}Ni=1 is a tessellation of Ω by convex sets, known as the optimal Laguerre tesselation (see
Definitions 2.4 and 2.5) generated by the seed vector z := (z1, ..., zN ) subject to the mass constraint

L3(Ci) = mi ∀ i ∈ {1, ..., N}.

Letting xi(z) denote the centroid of the Laguerre cell Ci(z), one can show (see Lemma 4.2) that
the time-dependent measure-valued map defined by (3) is a weak solution of (1) if and only if the
trajectories z1, ..., zN satisfy the ODE initial value problem (IVP)

dzi
dt

= J(zi − xi(z)),

zi(0) = zi,
(4)

for i ∈ {1, ..., N}. At each time t, the seeds zi(t) in geostrophic space generate a Laguerre tessellation
of the physical domain Ω (see Figure 1 for a 2D illustration).

We obtain a solution of (1) for an arbitrary compactly-supported initial measure α by generating
a sequence (αN )N∈N of well-prepared discrete measures converging to α in the Wasserstein 2-
distance, evolving each of these discrete measures according to the corresponding ODE-IVP (4),
and using compactness in the space of continuous measure-valued maps to pass to the limit as
N → ∞. As such, our construction method can be thought of as a meshless or particle method.
By comparison with the proof given in [4], and later generalised in [40] and [41], the discretisation
occurs in the spatial domain rather than in the time domain. Note that in [13] Cullen, Gangbo and
Pisante analyse a variant of SG using a spatial discretisation different from the one considered in
this paper. Analytically, the essential benefit of the discretisation of the initial measure α is that
the study of the active transport equation (1), whose velocity field is only in general of class BVloc,
is replaced by the study of the ODE-IVP (4), whose right hand side is continuously differentiable
L3N -almost everywhere. Mollifications of the vector-field and related quantities used in [4], [40]
and [41], as well as the abstract techniques for Hamiltonian ODEs in Wasserstein space used in
[21], are therefore avoided, resulting in a more direct solution procedure.

1.2 Background on the semi-geostrophic equations

In this section, we briefly describe how equation (1) is derived. In their traditional Eulerian
formulation in a fixed spatial domain Ω ⊂ R3, the (non-dimensionalised) semi-geostrophic equations
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Figure 1: Typical snapshot at a time t of a 2D discrete solution α of (1) and the corresponding
tessellation of the physical domain Ω, which is taken here to be a square subset of R2. The
right-hand plot shows a configuration of N = 8 seeds z(t) = (z1(t), ..., z8(t)) in 2D geostrophic
space, on which the measure αt is supported. The left-hand plot shows the (approximate) Laguerre
tessellation of Ω generated by z(t) subject to the constraint that all cells have the same mass. Black
lines represent Laguerre cell boundaries and the circle within each cell Ci represents its centroid
xi(z(t)).

are given by the coupled system 
∂tug + (u · ∇)ug = −Jua,

∂tθ + (u · ∇)θ = 0,

∇ · u = 0,

(5)

where ug := (ug,1, ug,2, 0)T is the geostrophic velocity field, u is the Eulerian velocity field of the
fluid, ua := u− ug is the ageostrophic velocity field, θ is the potential temperature, and the matrix
J , defined by (2), encodes planetary rotation. Importantly, the hydrodynamic and thermodynamic
fields ug and θ are linked through the fluid pressure p by the identity

∇p =

 ug,2
−ug,1
θ

 . (6)

When posed on a suitably smooth bounded domain Ω ⊂ R3, the system (5) is typically supple-
mented with a no-slip boundary condition u · n = 0 on ∂Ω, where n is the outward unit normal
field on the boundary, which is sufficient to ensure that fluid points remain in the domain Ω for all
times. Define the geopotential P pointwise by

P (x, t) := p(x, t) +
1

2
(x2

1 + x2
2)

for x ∈ Ω and t ≥ 0. The system (5) can then be expressed as

∂

∂t
∇P + (U [∇P ] · ∇)∇P = J(∇P − idΩ), (7)
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where idΩ denotes the identity map on Ω, and U : ∇P 7→ u is the formal solution operator associated
to the (time-independent) div-curl boundary-value problem

∇∧ (D2Pu) = ∇∧ J(∇P − idΩ) in Ω,

∇ · u = 0 in Ω,

u · n = 0 on ∂Ω.

(8)

By way of this simple change of dependent variable, SG can be viewed as an inhomogeneous active
transport equation (7) whose unknown ∇P is a time-dependent conservative vector field on Ω. The
Eulerian velocity field is then formally defined through the action of the solution operator U . This
change of dependent variable also highlights a substantial mathematical difficulty one faces when
constructing solutions of (7): for the boundary-value problem (8) to be of elliptic type at each time
t, P (·, t) must be strictly convex.

The state-of-the-art regarding the existence of solutions of SG in Eulerian coordinates is due to
Ambrosio, Colombo, De Philippis and Figalli [1]. Using the W 2,1

loc -regularity of Alexandrov solutions
of a class of Dirichlet boundary-value problems for the Monge-Ampère equation established in
[15], the authors proved the existence of global-in-time distributional solutions of SG in Eulerian
coordinates posed on smooth convex domains Ω ⊂ R3 for a class of initial geopotentials P0 satisfying

supp
(
∇P0#L3 ¬Ω

)
= R3.

However, for such solutions, the support of the pushforward measure ∇P (·, t)#L3 ¬Ω is the whole
space R3 at each time t. The relation (6) then implies that the temperature field θ satisfies
θ(·, t) /∈ L∞(Ω). Interpreted physically, this means that the atmospheric fluid is arbitrarily hot on
sets of positive measure at all times. At the time of writing, the existence of either local-in-time or
global-in-time distributional solutions of (7) for physical initial data P0 satisfying ∇P0(Ω) ⊂⊂ R3

remains open.
Since the pioneering work of Hoskins [31], Cullen and Purser [14], and Benamou and Brenier

[4] on the semi-geostrophic equations, it has become customary to regard ∇P (·, t) formally as
a diffeomorphism between Ω and its image ∇P (Ω, t) for each time t. The system (5) is then
transformed to the time-dependent coordinate system determined by ∇P , known as geostrophic
coordinates. It is a remarkable property of SG that, as shown in [4], this formal change of coordinates
yields a closed equation which is free of the field u. Indeed, under the assumption that ∇P is a
smooth solution of (7) and P (·, t) is strictly convex at each time t, it can be shown that the
time-dependent pushforward measure

αt := ∇P (·, t)#L3 ¬Ω

is a distributional solution of the active transport equation (1).

1.3 Outline of the paper

We begin in Section 2 with a brief introduction to semi-discrete optimal transport theory. Sec-
tion 3 contains the statement of the following existence results whose novel proofs are the main
contribution of this paper:

1. discrete geostrophic solutions with well-prepared discrete initial data exist, are unique, and
are defined by trajectories that are twice continuously differentiable in time (see Definition
3.4 and Theorem 3.5);
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2. Lipschitz-in-time solutions of SG in geostrophic coordinates with arbitrary compactly-supported
initial measure can be constructed as the uniform limit of a sequence of discrete geostrophic
solutions that are twice continuously differentiable in time (Theorem 3.6).

These results are proved in Sections 4 and 5 respectively. Section 6 contains the explicit calculation
of two exact solutions of SG in geostrophic coordinates, as well as a brief discussion on equilibrium
solutions. Finally, in Section 7, we illustrate the theory developed in the paper by simulating
a 2D semi-geostrophic flow in geostrophic coordinates, and we plot the corresponding Laguerre
tessellations of the physical domain Ω.

1.4 Notation

Let d ∈ N. We denote by Rd
> the subset of Rd consisting of all vectors whose components are

positive. For i ∈ {1, ..., d}, the ith canonical basis vector in Rd is denoted by ei. Let A ⊆ Rd be a
Borel set. We denote the identity map on A by idA, and the characteristic function of A by 1A.
We denote the interior of A by Int(A) and the boundary of A by ∂A.

Measures. We denote by Ld the Lebesgue measure on Rd and by Ld ¬A its restriction to A. The
set of Borel probability measures on A is denoted by P(A). Given a Borel map T : A → Rd and
a measure µ ∈ P(A), the pushforward of µ by T is denoted by T#µ and is defined by T#µ(B) =
µ(T−1(B)) for all Borel sets B ⊆ Rd. The set of Borel probability measures on Rd with compact
support is denoted by Pc(Rd). For any p ∈ [1,+∞), Pp(Rd) denotes the set of all Borel probability
measures on Rd with finite moments of order p, equipped with the Wasserstein p-distance Wp. This
is defined for µ, ν ∈ Pp(Rd) by

Wp(µ, ν) := inf

{∫
Rd×Rd

|x− y|p dγ(x, y) : γ ∈ P(Rd × Rd), πx#γ = µ,πy#γ = ν

} 1
p

,

where πx and πy denote the projections onto the first and second variables, respectively. Throughout
this paper spaces of probability measures are understood to be equipped with the Wasserstein 2-
distance unless otherwise stated.

Convex functions. Given a convex function f : A→ R, the subdifferential of f is the set-valued
function, mapping from A into the set of subsets of Rd, defined by

∂f(x) =
{
y ∈ Rd

∣∣∣ y · (z − x) ≤ f(z)− f(x) ∀ z ∈ A
}
.

The Legendre-Fenchel transform of f is the function f∗ : Rd → R defined by

f∗(y) = sup
x∈A
{x · y − f(x)} .

Test functions. We denote by D(Rd) the space of test functions C∞c (Rd) equipped with the
standard semi-norm topology (see, for example, [25]).

Physical domain. Throughout this paper (with the exception of Section 7) Ω is taken to be
an arbitrary convex open bounded subset of R3, and, without loss of generality, we use the nor-
malisation convention that L3(Ω) = 1 so that all measures under consideration are probability
measures.
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2 Semi-discrete optimal transport

In this section we review some basic aspects of semi-discrete optimal transport theory. For further
information on semi-discrete optimal transport see [44, Section 4] and, for more on optimal transport
theory in greater generality, see [48, 51, 52].

Given a target measure ν ∈ P2(R3), a Borel map T : Ω→ R3 is said to be an optimal transport
map between L3 ¬Ω and ν with respect to the quadratic cost c : R3 × R3 → R given by

c(x, y) = |x− y|2

if it minimises the transport cost ∫
Ω
|x− T (x)|2 dx

subject to the constraint that

T#
(
L3 ¬Ω

)
= ν.

The problem of finding an optimal transport map given source and target measures is known as
the Monge problem. For any ν ∈ P2(R3) such a map T exists, is unique, and can be expressed as
the gradient of a convex function Φ belonging to the Sobolev space H1(Ω) (see for example [48,
Theorem 1.22] or [51, Theorem 2.12]).

Definition 2.1. We define the operator B : P2(R3) → H1(Ω) to be that which sends any given
ν ∈ P2(R3) to the unique mean-zero convex function in H1(Ω) whose gradient is the unique optimal
transport map between L3 ¬Ω and ν with respect to the quadratic cost.

The stability of optimal transport, including the continuity of B, has been studied in, for example,
[5, 38, 43] and [52, Theorem 5.20 and Corollary 5.23]. In [43] it is shown that for any bounded set
A ⊂ R3, the restriction of B to P(A) is Hölder continuous.

Theorem 2.2 (c.f. [43, Theorem 3.1]). Let A ⊂ R3 be bounded. There exists a constant C > 0,
which depends only on A and Ω, such that for all µ, ν ∈ P(A),

‖∇B[µ]−∇B[ν]‖L2(Ω;R3) 6 CW2(µ, ν)
2
15 .

Semi-discrete optimal transport (see, for example, [32], [44, Section 4], [48, Section 6.4.2]) refers
to the special case where, for some N ∈ N, the target measure ν belongs to the class

QN
(
R3
)

:=

{
ν =

N∑
i=1

miδzi

∣∣∣ z ∈ D, m = (m1, ...,mN ) ∈ RN
> and

N∑
i=1

mi = 1

}
, (9)

where

D :=
{
z = (z1, ..., zN ) ∈ R3N

∣∣ zi 6= zj whenever i 6= j
}
. (10)

Definition 2.3. We call a vector m = (m1, ...,mN ) ∈ RN
> such that

∑N
i=1mi = 1 a mass vector,

and a vector z ∈ D a seed vector. A measure ν ∈ QN
(
R3
)

given by

ν =
N∑
i=1

miδzi

is said to have mass vector m = (m1, ...,mN ) and seed vector z = (z1, ..., zN ).

7



Let ν ∈ QN
(
R3
)

have mass vector m = (m1, ...,mN ) and seed vector z = (z1, ..., zN ). A map
T : Ω→ R3 satisfies the pushforward constraint

T#
(
L3 ¬Ω

)
= ν

if and only if it has the form

T =
N∑
i=1

zi1Ci ,

where {Ci}Ni=1 is a tesselation of Ω by measurable sets Ci such that

L3(Ci) = mi ∀ i ∈ {1, ..., N}.

Hence the optimal transport problem between L3 ¬Ω and ν ∈ QN (R3) is reduced to an optimal
partitioning problem. Moreover, the unique optimal partition, and corresponding transport map,
can be characterised using the notion of Laguerre tessellations.

Definition 2.4 (Laguerre tessellation). Given a seed vector z = (z1, ..., zN ) ∈ R3N and a weight
vector w = (w1, ..., wn) ∈ RN , the Laguerre tessellation of Ω generated by the pair (z,w) is defined
to be the family

{Ci(z,w)}Ni=1,

where Ci(z,w) are Laguerre cells defined by

Ci(z,w) =
{
x ∈ Ω : |x− zi|2 − wi 6 |x− zj |2 − wj ∀ j ∈ {1, ..., N}

}
. (11)

Note that any Laguerre cell is convex since it is the intersection of finitely many half-spaces with
the convex set Ω. In particular, Laguerre cells that do not intersect ∂Ω are polyhedra. Moreover,
for any seed vector z, weight vector w and indices i 6= j, the intersection Ci(z,w) ∩ Cj(z,w) is
contained in the 2-dimensional plane{

x ∈ R3 : |x− zi|2 − wi = |x− zj |2 − wj

}
.

Using the Kantorovich Duality Theorem (see, for example, [48, Section 1.2]), one can show
that the optimal transport cost between L3 ¬Ω and ν is the supremum over all weight vectors
w = (w1, ..., wN ) ∈ RN of the Kantorovich functional g : RN → R defined by

g(w) =

N∑
i=1

∫
Ci(z,w)

|x− zi|2 dx+
N∑
i=1

(
mi − L3 (Ci(z,w))

)
wi. (12)

The Kantorovich functional g is concave, and maximisers w ∈ RN of g exist and satisfy

L3(Ci(z,w)) = mi ∀ i ∈ {1, ..., N}. (13)

(See, for example, [44, Theorem 40].) We call such w optimal weight vectors. Note that wi = ψ(zi)
where ψ is an optimal Kantorovich potential. Given an optimal weight vector w ∈ RN , the unique
optimal transport map from L3 ¬Ω to ν is given by

T =

N∑
i=1

zi1Ci(z,w).
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In particular, if we define the function Φ : Ω→ R by

Φ(x) =
1

2
|x|2 − 1

2
min
i
{|x− zi|2 − wi}, (14)

then T = ∇Φ and, using the notation introduced in Definition 2.1,

B[ν] = Φ−
∫

Ω
Φ(x) dx. (15)

This follows from the Gangbo-McCann Theorem (see, for example, [48, Theorem 1.17]).
The Monge problem is a non-convex optimisation problem. As outlined above, in the case

of semi-discrete optimal transport this can be replaced by an unconstrained, finite dimensional
optimisation problem (maximising g), which is numerically tractable. As we demonstrate in Section
7, this is one motivation for using semi-discrete optimal transport to construct solutions of SG in
geostrophic coordinates.

2.1 Optimal weight map

Optimal weight vectors are not unique. Indeed, let ν ∈ QN (R3) have mass vector m and seed
vector z, and let e = (1, ..., 1) ∈ RN . Using (11) it is easy to see that for any λ ∈ R,

Ci(z,w) = Ci(z,w + λe) ∀ i ∈ {1, ..., N}.

Hence, by the characterisation of optimal weight vectors (13), w ∈ RN is optimal if and only if
every vector in w + span{e} is optimal. Conversely, if w, w̃ ∈ RN and w − w̃ /∈ span{e}, then
the pairs (z,w) and (z, w̃) define distinct Laguerre tessellations, so at least one of w and w̃ is not
optimal. In particular, it is easy to deduce that there is a unique optimal weight vector whose N th

component is zero. This leads to the following definition, where ei denotes the ith canonical basis
vector in RN .

Definition 2.5. Given a fixed mass vector m ∈ RN , we define the optimal weight map w∗ :
D → RN to be that which sends each seed vector z ∈ D to the unique optimal weight vector
w∗(z) ∈ span{e1, ..., eN−1}. We refer to the family {Ci(z,w∗(z))}Ni=1 as the optimal Laguerre
tessellation of Ω generated by z ∈ RN .

Note that there are many possible definitions of the optimal weight map, which all yield the same
definition of an optimal Laguerre tessellation. For instance, a natural choice of range space would be
span{e}⊥. We choose the range space span{e1, ..., eN−1} so that subsequent arguments concerning
the regularity of w∗ can be carried out using only the canonical basis of Euclidean space.

3 Statement of existence theorems

After stating some preliminary definitions, we state the two existence results (Theorem 3.5 and
Theorem 3.6) for which we give novel proofs. See Definition 2.1 and equation (9) for the definitions
of the operator B and the space QN (R3), respectively.

Definition 3.1 (Geostrophic energy). The geostrophic energy functional E : Pc(R3)→ R is defined
by

E[ν] :=

∫
Ω

(
1

2

(
(∂1B[ν](x)− x1)2 + (∂2B[ν](x)− x2)2

)
− x3∂3B[ν](x)

)
dx.

9



Note that the geostrophic energy is traditionally written in terms of the geostrophic velocity field
ug = (ug,1, ug,2, 0)T and the potential temperature θ as

E(ug, θ) =

∫
Ω

(
1

2

(
u2
g,1 + u2

g,2

)
− x3θ

)
dx.

Remark 3.2. The geostrophic energy functional is continuous on P(K) for any compact set K ⊂
R3. To see this first note that, for any ν ∈ Pc(R3),

E[ν] =
1

2
W 2

2 (L3 ¬Ω, ν)− 1

2
‖∂3B[ν]‖2L2(Ω) −

1

2

∫
Ω
x2

3 dx. (16)

Suppose that (νN )N∈N ⊂ P(K) is a sequence which converges to a measure ν ∈ P(K) as N →∞.
Since W2 is a metric on P(K),

lim
N→∞

W2

(
L3 ¬Ω, νN

)
= W2

(
L3 ¬Ω, ν

)
and, by continuity of B on P(K) (Theorem 2.2),

lim
N→∞

‖∂3B[νN ]‖L2(Ω) = ‖∂3B[ν]‖L2(Ω).

Hence

lim
N→∞

E[νN ] = E[ν].

Definition 3.3 (Geostrophic solution). Let T ∈ (0,∞) and let α ∈ Pc(R3). We say that
α ∈ C([0, T ];Pc(R3)) is a weak solution of the 3D incompressible semi-geostrophic equations in
geostrophic coordinates on [0, T ] with initial measure α if∫ T

0

∫
R3

(∂tϕ(z, t) + Jz · ∇ϕ(z, t)) dαt(z) dt−
∫ T

0

∫
Ω
Jx · ∇ϕ

(
∇B[αt](x), t

)
dx dt

=

∫
R3

ϕ(z, T ) dαT (z)−
∫
R3

ϕ(z, 0) dα(z), (17)

for all ϕ ∈ D(R3 × R), where the matrix J is defined by (2). In what follows, we will refer to such
a map α as a geostrophic solution. In particular, if there exists N ∈ N, a (k-times continuously
differentiable) map z = (z1, ..., zN ) : [0, T ]→ R3N and a mass vector m ∈ RN such that

αt =

N∑
i=1

miδzi(t) ∈ Q
N (R3) (18)

for all t ∈ [0, T ], we will refer to α as a (k-times continuously differentiable) discrete geostrophic
solution. If the corresponding geostrophic energy E[αt] is constant in time, then we say that α is
energy-conserving.

The defintion of a geostrophic solution of SG coincides with Loeper’s definition of a weak measure
solution [40, Definition 2.2]. Moreover, if α is a geostrophic solution and αt � L3 for all t ∈ [0, T ]
then, since

∇B[αt]
∗#αt = L3 ¬Ω,

10



by a change of variables,∫
Ω
Jx · ∇ϕ

(
∇B[αt](x), t

)
dx =

∫
R3

J∇B[αt]
∗(z) · ∇ϕ(z, t) dαt(z) ∀ϕ ∈ D(R3 × R)

for all t ∈ [0, T ]. Hence α is a distributional solution of the active transport equation

∂tα+ J
(
idR3 −∇B[α]∗

)
· ∇α = 0. (19)

This is the setting considered in [4].

Definition 3.4 (Well-preparedness). Let N ∈ N. We say that a discrete probability measure
β ∈ QN (R3) given by

β =
N∑
i=1

miδzi

is well-prepared for SG in geostrophic coordinates if there exists r > 0 such that

|(zi − zj) · e3| > r ∀ i 6= j. (20)

In other words, β is well prepared if the seeds zi lie in distinct horizontal planes.

Well-preparedness of the initial data ensures that the seeds do not collide and therefore do not
enter the set on which the right-hand side of the ODE in (4) is discontinuous. This allows us to
prove the following theorem.

Theorem 3.5 (Existence of discrete geostrophic solutions, c.f. [21, Proposition 4.14]). Let Ω ⊂ R3

be open, bounded and convex, and fix N ∈ N, N ≥ 2. For any T ∈ (0,∞) and any well-prepared
discrete probability measure α ∈ QN (R3), there exists a unique twice continuously differentiable
discrete geostrophic solution α ∈ C([0, T ];Pc(R3)) with initial measure α. Moreover, this solution
is energy-conserving.

In Example 6.1, we show that Theorem 3.5 extends easily to the case N = 1 by deriving an explicit
expression for the solution.

The uniqueness and regularity of solutions attained in Theorem 3.5 are significant in the context
of numerical analysis since these factors determine the convergence of the corresponding numerical
method. As mentioned in the introduction, the result of Theorem 3.5 is analogous to [21, Proposi-
tion 4.14], but with the following differences. In [21, Proposition 4.14], the physical domain Ω need
not be convex, and the initial measure can be any convex combination of Dirac masses. However,
with these slightly weaker hypotheses, the seed trajectories z are only known to be Lipschitz in
time and are not known to be unique.

Theorem 3.6 (Existence of geostrophic solutions). Let Ω ⊂ R3 be open, bounded and convex.
For any T ∈ (0,∞) and any α ∈ Pc(R3), there exists an energy-conserving geostrophic solution
α ∈ C0,1([0, T ];Pc(R3)) with initial measure α and a sequence (αN )N∈N of twice continuously
differentiable discrete geostrophic solutions which converges uniformly in C([0, T ];Pc(R3)) to α:

lim
N→∞

sup
t∈[0,T ]

W2(αN
t , αt) = 0.

11



The existence of geostrophic solutions with arbitrary compactly supported initial measure was first
proved by Loeper [40, Theorem 2.3] and later by Feldman and Tudorascu in the context of weak
Lagrangian solutions (see [22, Theorem 3.2]). Being uniform in time, as opposed to pointwise in
time, the convergence obtained in Theorem 3.6 is stronger than that obtained in these previous
works. Since we work only with compactly supported measures, the spatial convergence obtained in
Theorem 3.6 is equivalent to that obtained in [22]. As in [22], the limit point obtained in Theorem
3.5 is Lipschitz in time. Note that the corresponding theorems in [22] and [40] do not include
the hypothesis that Ω is convex. We include this hypothesis for technical reasons relating to the
regularity of the optimal centroid map (see Definition 4.1 and Remark 4.12).

Remark 3.7 (Conservation of transport cost). From the proof of Lemma 4.14 it is easy to deduce
that each discrete solution αN conserves not only the geostrophic energy but also the transport
cost W2(αN

t ,L3 ¬Ω). Therefore any solution α constructed as the uniform limit of discrete solutions
also conserves the transport cost W2(αt,L3 ¬Ω) by continuity of the Wasserstein distance. This is
essentially due to the Hamiltonian structure of equation (1) (see [3, Example 8.1(c)]) and can be
seen as a special case of [3, Theorem 5.2]. Conservation of the transport cost for weak Lagrangian
solutions is proved in [21, Corollary 5.2]. For clarity, we include an independent proof based on our
semi-discrete solution procedure.

4 Proof of Theorem 3.5

Fix N ∈ N, N > 2. (The case N = 1 is discussed in Example 6.1.) To construct a twice continuously
differentiable discrete geostrophic solution with well-prepared initial measure α ∈ QN (R3), we
substitute the expression (18) into the transport equation (17) and, by appropriate choice of test
functions, derive an ODE-IVP for the paths z = (z1, ..., zN ). We then prove in Proposition 4.4
that this ODE-IVP has a unique C2-solution. Conversely, we show that any C1-solution of the
ODE-IVP gives rise to an energy-conserving discrete geostrophic solution via the formula (18),
from which Theorem 3.5 follows. The most involved part of the proof of Theorem 3.5 is the proof
of the regularity of the optimal centroid map, which we now define.

Definition 4.1. Define the set

D̃ :=
{

(z,w) ∈ R3N × RN
∣∣ z ∈ D, L3(Ci(z,w)) > 0 ∀ i ∈ {1, ..., N}

}
,

where D is the set of seed vectors defined by (10). D̃ is the set of generators of Laguerre tessellations
of Ω with no empty cells. We define the centroid map x : D̃ → ΩN , x = (x1, ..., xN ) by

xi(z,w) =
1

L3 (Ci(z,w))

∫
Ci(z,w)

x dx, i ∈ {1, ..., N}.

Moreover, given a fixed mass vector m, we define the optimal centroid map x = (x1, ..., xN ) : D →
ΩN by

x(z) := x(z,w∗(z)),

where w∗ is the optimal weight map (Definition 2.5).

We now characterise k-times continuously differentiable discrete geostrophic solutions in terms of
solutions of an ODE-IVP involving the optimal centroid map.

12



Lemma 4.2. Let α ∈ QN (R3) be given by

α =

N∑
i=1

miδzi . (21)

A map α : [0, T ]→ QN (R3) given by

αt =
N∑
i=1

miδzi(t) ∀ t ∈ [0, T ] (22)

is a k-times continuously differentiable discrete geostrophic solution with initial measure α, for
k ∈ N, if and only if the map z = (z1, ..., zN ) : [0, T ]→ R3N is a k-times continuously differentiable
solution of the ODE-IVP {

ż = W (z),

z(0) = z,
(23)

where z = (z1, ..., zN ),

W (z) := JN (z− x(z)), (24)

and JN ∈ R3N×3N is the block diagonal matrix

JN := diag(J, ..., J).

Proof. Suppose that z = (z1, ..., zN ) : [0, T ]→ R3N is a k-times continuously differentiable solution
of (23) and let α be given by (22). Since z is continuous, α ∈ C([0, T ];Pc(R3)). We must check
that α satisfies (17). Letting ϕ ∈ D(R3 × R) be arbitrary, we have∫ T

0

∫
R3

(∂tϕ(z, t) + Jz · ∇ϕ(z, t)) dαt(z) dt−
∫ T

0

∫
Ω
Jx · ∇ϕ

(
∇B[αt](x), t

)
dx dt

=

N∑
i=1

mi

∫ T

0

(
∂tϕ(zi(t), t) + J

(
zi(t)− xi(z(t))

)
· ∇ϕ(zi(t), t)

)
dt

=
N∑
i=1

mi

∫ T

0
(∂tϕ(zi(t), t) + żi(t) · ∇ϕ(zi(t), t)) dt

=
N∑
i=1

mi

∫ T

0

d

dt
ϕ(zi(t), t) dt

=

N∑
i=1

miϕ(zi(T ), T )−
N∑
i=1

miϕ(zi(0), 0)

=

∫
R3

ϕ(z, T ) dαT (z)−
∫
R3

ϕ(z, 0) dα(z),

as required.
Conversely, suppose that α : [0, T ] → QN (R3) given by (22) is a k-times continuously differ-

entiable discrete geostrophic solution with initial measure α, in the sense of Definition 3.3. Then
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substitution of (22) into (17) yields

N∑
i=1

mi

∫ T

0

(
∂tϕ(zi(t), t) + J

(
zi(t)− xi(z(t))

)
· ∇ϕ(zi(t), t)

)
dt

=

N∑
i=1

mi

(
ϕ
(
zi(T ), T

)
− ϕ(zi, 0)

)
(25)

for all ϕ ∈ D(R3 × R). We now show that the paths zi can be separated, and deduce that the
ODE-IVP (23) is satisfied by z = (z1, ..., zN ) by choosing test functions which isolate each path.
Since αt ∈ QN (R3) for each t ∈ [0, T ], and z is continuous on [0, T ] by hypothesis, the map

t 7→ d(t) := min
i 6=j
|zi(t)− zj(t)|

is positive and continuous on the compact interval [0, T ] and, therefore, attains a positive minimum
on [0, T ]. In other words, by hypothesis, there exists d∗ > 0 such that

min
t∈[0,T ]

min
i 6=j
|zi(t)− zj(t)| > d∗.

Hence, for fixed t0 ∈ (0, T ) and fixed i ∈ {1, ..., N}, there exists an open interval I ⊂ (0, T )
containing t0 and an open set Ui ⊂ R3 such that

zi(I) ⊂ Ui and
⋃
j 6=i

zj(I) ∩ Ui = ∅.

For a fixed coordinate index k ∈ {1, 2, 3}, consider a test function ϕi,k ∈ D(R3 × R) of the form
φψi,k, where φ ∈ C∞c (I) and ψi,k ∈ C∞c (R3) satisfies

ψi,k(z) = z · ek ∀ z ∈ Ui, and
⋃
j 6=i

zj(I) ∩ supp(ψi,k) = ∅.

By the Chain Rule, for all t ∈ I,

∂tϕi,k(zj(t), t) =


d

dt

(
φ(t)ψi,k(zi(t))

)
− φ(t)żi(t) · ek if j = i,

0 if j 6= i.

Hence, with this particular choice of test function, equation (25) becomes∫
I
mi

d

dt

(
φ(t)ψi,k(zi(t))

)
dt+

∫
I
mi (−żi(t) + J (zi(t)− xi(z(t)))) · ekφ(t) dt = 0.

Since φ ∈ C∞c (I), the first integral is zero. By varying over all k ∈ {1, 2, 3} and all φ ∈ C∞c (I) we
obtain the pointwise statement that

żi(t) = J (zi(t)− xi(z(t)))

for all t ∈ I, in particular for t = t0. In a similar way, it can be shown that the inital condition
zi(0) = zi is satisfied. Repeating this for all t0 ∈ (0, T ), and all i ∈ {1, ..., N}, we deduce that
z = (z1, ..., zN ) satisfies the ODE-IVP (23).
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Remark 4.3. The ODE-IVP (23) is precisely the discrete analogue of the active transport equation
(1). Indeed, let ν ∈ QN (R3) have seed vector z = (z1, ..., zN ) and consider the extension by +∞ of
the convex function B[ν] to R3, which we will again denote by B[ν]. For each i ∈ {1, ..., N}, xi(z)
is the centroid of the subdifferential of B[ν]∗ evaluated at the point zi. To see this, first recall that
for any convex function f : Ω→ R and any constant c ∈ R

∂f∗(z) = ∂(f + c)∗(z) ∀ z ∈ R3.

Therefore, the characterisation of B[ν] given by (14) and (15) implies that, for each i ∈ {1, ..., N},

∂(B[ν])∗(zi) = ∂

(
Φ−

∫
Ω

Φ dx

)∗
(zi) = ∂Φ∗(zi),

where, letting w∗(z) = (w1, ..., wN ),

Φ(x) =


1
2 |x|

2 − 1
2min

j

{
|x− zj |2 − wj

}
if x ∈ Ω,

+∞ if x /∈ Ω.

Note that

Φ∗(zi) =
1

2

(
|zi|2 − wi

)
∀ i ∈ {1, ..., N}.

By the characterisation of the subdifferential of Φ in terms of its Legendre-Fenchel transform (see,
for example, [51, Proposition 2.4]), we have

∂Φ∗(zi) = {x ∈ Ω : Φ(x) + Φ∗(zi) = x · zi}

=

{
x ∈ Ω : |x− zi|2 − wi = min

j

{
|x− zj |2 − wj

}}
= Ci(z,w∗(z)).

Hence

∂ (B[ν])∗ (zi) = Ci(z,w∗(z)),

as required. This is consistent with the ‘geometric interpretation’ of a geostrophic solution described
in [40, p.803].

Having characterised k-times continuously differentiable discrete geostrophic solutions in terms
of solutions of the ODE-IVP (23), we now aim to show that solutions of (23) exist and that the
corresponding geostrophic solutions are energy-conserving. After proving some preliminary results
(Lemma 4.13 and Lemma 4.10), we prove the following Proposition.

Proposition 4.4. For z = (z1, ..., zN ) ∈ R3N satisfying

min
i 6=j
|(zi − zj) · e3| > r (26)

for some r > 0, there exists a unique C2-solution of (23) on the interval [0, T ] for any T ∈ (0,∞).
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By Lemma 4.2, this gives rise to a unique discrete geostrophic solution with initial measure
(21) via the formula (22). As we will see in Section 5, the condition (26) on the initial data is not
restrictive for the purpose of constructing a geostrophic solution with arbitrary initial measure in
Pc(R3). We begin by explaining its relevance.

We show below that the map W , defined by (24), is continuously differentiable, and therefore
locally Lipschitz on D. However, as we demonstrate in Remark 4.11, W does not, in general, admit
continuous extension to R3N . In order to apply the Picard-Lindelöf Existence Theorem to obtain
a unique solution of (23) on a given time interval [0, T ], it is therefore necessary to ensure that
any solution trajectory is bounded away from the boundary of D. This is guaranteed a priori if z
satisfies (26). Indeed, since the third row of the matrix J is zero, if z ∈ R3N satisfies (26) and z is
a solution of the corresponding ODE-IVP (23), then z(t) satisfies (26) for all times t.

We now prove the claimed regularity of the map W in the case where the domain Ω is open,
bounded and convex (see Remark 4.12 for a discussion of the case where Ω is non-convex). To
do so, we use the following results regarding the regularity of the centroid map x (see Definition
4.1) and the volume map V (see Definition 4.8), as well as the structure of the matrix of partial
derivatives of V with respect to w, which can be described using the notions of a Laplacian matrix
and the dual graph of a Laguerre tesselation.

Definition 4.5 (Dual graph). Given a Laguerre tessellation {Ci}Ni=1 of Ω, for each i ∈ {1, ..., N}
the set of neighbours of i is defined to be the set

Ni := {j ∈ {1, ..., N} | j 6= i, Ci ∩ Cj 6= ∅} .

The (undirected) graph (V,E) given by

V = {1, ..., N}, E =
{
{i, j} ⊂ {1, ..., N} : j ∈ Ni

}
,

is referred to as the dual graph of the Laguerre decomposition {Ci}Ni=1.

Definition 4.6 (Laplacian matrix [46]). Given a weighted graph G = (V,E, h), where V =
{1, ..., N} and h : E → R, the adjacency matrix of G, AG ∈ RN×N , is given by

(AG)ij =

{
h({i, j}) if {i, j} ∈ E,
0 otherwise.

The degree matrix of G, DG ∈ RN×N , is the diagonal matrix such that

(DG)ii =

N∑
j=1

(AG)ij .

The Laplacian matrix of G, LG ∈ RN×N , is then given by

LG = DG −AG.

Theorem 4.7 (c.f. [28, Proposition 2 and Lemma 2], [32, Theorem 4.1], [44, Theorem 45]). Let
f ∈ C(Ω) ∩W 1,1(Ω) and define F = (F1, ..., FN ) : D̃ → RN by

Fi(z,w) :=

∫
Ci(z,w)

f(x) dx.
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Then F is continuously differentiable. In particular, for (z,w) ∈ D̃ let G = (V,E) denote the dual
graph of the Laguerre tessellation {Ci(z,w)}Ni=1 and define h : E → R by

h({i, j}) =
1

2|zj − zi|

∫
Ci∩Cj

f(x) dH2(x).

Then the matrix DwF (z,w) of partial derivatives of F with respect to w evaluated at (z,w) is the
Laplacian matrix of the weighted graph G = (V,E, h).

Note that the expressions for the partial derivatives of F with respect to the weights given above
differs by a factor of 2 from those given in [28] due to our choice of quadratic cost function. Note
also that the assumption that the seed locations are generic with respect to the cost, which is used
in the proof of [44, Theorem 45], is not needed for the quadratic cost if the cells are non-empty.

Definition 4.8. We define the volume map V : D × RN → RN , V = (V1, ..., VN ), by

Vi(z,w) = L3 (Ci(z,w)) .

By combining Theorem 4.7 with the quotient rule for derivatives, we immediately obtain the
following corollary.

Corollary 4.9 (c.f. [28, Proposition 2], [32, Theorem 4.1], [8, Lemma 2.4]). The volume map V
and the centroid map x (see Definition 4.1) are continuously differentiable on D̃. In particular, for
(z,w) ∈ D̃, let G = (V,E) denote the dual graph of the Laguerre tessellation {Ci(z,w)}Ni=1 and
define h : E → R by

h({i, j}) =
H2(Ci ∩ Cj)

2|zj − zi|
,

where H2 denotes the 2-dimensional Hausdorff measure on R3. Then the matrix DwV (z,w) of
partial derivatives of F with respect to w evaluated at (z,w) is the Laplacian matrix of the weighted
graph G = (V,E, h).

The optimal centroid map x (see Definition 4.1) is the composition of the centroid map x with
the optimal weight map w∗ (see Definition 2.5). To show that x is continuously differentiable we
now prove that w∗ is continuously differentiable. At the time of writing, we believe this result to
be novel.

Lemma 4.10. Given a fixed mass vector m, the corresponding optimal weight map w∗ : D → RN

is continuously differentiable.

Proof. Let A ∈ RN×(N−1) be the matrix

A =

(
IN−1

0

)
,

where IN−1 denotes the (N−1)×(N−1) identity matrix. Define the residual map r : D×RN−1 →
RN−1 by

r(z,w) = AT (V(z, Aw)−m) .

Observe that AATw∗ = w∗ so for all z ∈ D

r(z, ATw∗(z)) = 0.
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Now fix an arbitrary seed vector z ∈ D. Since mi > 0 for each i ∈ {1, ..., N}, (z,w∗(z)) ∈ D̃. By
Corolloary 4.9, V is therefore continuously differentiable in a neighbourhood of (z,w∗(z)). The
residual map r is therefore continuously differentiable in a neighbourhood of (z, ATw∗(z)) and

Dwr(z, ATw∗(z)) = ATDwV (z,w∗(z))A.

The weighted Laplacian matrix DwV (z,w∗(z)) has positive entries and corresponds to a connected
graph. Hence it is symmetric, positive semi-definite and its kernel is span{e}, where e = (1, ..., 1) ∈
RN (see for example [46, Section 2.4]). The symmetric matrix L = Dwr(z, ATw∗(z)) is therefore
invertible. Indeed, if y ∈ RN−1,

yTLy = 0 ⇐⇒ yTATDwV(z,w∗(z))Ay = 0 ⇐⇒ Ay ∈ span{e} ⇐⇒ y = 0.

By the Implicit Function Theorem (see, for example, [17, Theorem 10.2.1, p.270]) applied to r at
the point (z, ATw∗(z)), the function ATw∗ : D → RN−1 is therefore continuously differentiable in a
neighbourhood of z. Since AATw∗ = w∗, it follows that the optimal weight map w∗ is continuously
differentiable in a neighbourhood of z, as required.

Remark 4.11 (Counterexample 1). Combining Corollary 4.9 with Lemma 4.10 we see that the
optimal centroid map x is continuously differentiable on its domain D̃. However, it does not, in
general, admit continuous extension to R3N . We demonstrate this by means of a simple counter
example in the case N = 2. Let Ω ⊂ R3 be the ball of volume 1 centred at the origin, fix the mass
vector m = (1/2, 1/2), and consider the map z = (z1, z2) : (−1, 1)→ R6 given by

z1(s) = (s, 0, 0), z2(s) = −z1(s) ∀ s ∈ (−1, 1).

Letting x∗ denote the centroid of the spherical cap

C := {x ∈ Ω : x1 > 0},

it can easily be shown that the corresponding optimal centroids are given by

x1(z(s)) =

{
x∗ if s ∈ (0, 1)

−x∗ if s ∈ (−1, 0)

and

x2(z(s)) = −x1(z(s)) ∀ s ∈ (−1, 0) ∪ (0, 1).

Since x∗ 6= 0, the map x ◦ z = (x1 ◦ z, x2 ◦ z) does not admit a continuous extension to the whole
interval (−1, 1). Since z is continuous on (−1, 1), this means that the optimal centroid map x does
not admit a continuous extension at the point (0, 0) ∈ R6, precisely where the two seeds are the
same.

Remark 4.12 (Counterexample 2). Corollary 4.9 does not hold in general if Ω is non-convex.
Indeed, let Ω ⊂ R3 be the domain (0, 1)3 \ [1/2, 1)3, let w = (0, 0) and consider seed vectors given
by the map z = (z1, z2) : (−1/2, 1/2)→ R6 defined by

z1(s) = (0, 0, s), z2(s) = (0, 0, 1 + s).

For s ∈ (−1/2, 1/2), the cell C1(z(s),w) is then given by

C1(z(s),w) =

{
x ∈ Ω : x · e3 ≤

1

2
+ s

}
,
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and has volume

V1(z(s),w) =

{
1
2 + s if s ∈ (−1

2 , 0]
1
2 + 3

4s if s ∈ (0, 1
2).

The map s 7→ V1(z(s),w) is not differentiable at s = 0 which, since z is differentiable, implies that
V1 is not differentiable at the point (z(0),w).

If Ω is open, bounded and convex, we can use Corollary 4.9 to deduce that the optimal centroid
map x is continuously differentiable and, therefore, locally Lipschitz. While it is known that the
volume map V is Lipschitz in w even when the domain Ω is non-convex (see, for example [44,
Proposition 41]), to prove that x is locally Lipschitz for non-convex domains would require a finer
analysis of the regularity of the centroid map x and the volume map V with respect to z.

We now prove that for any finite time horizon T , solutions of the ODE-IVP (23) on the interval
[0, T ] are bounded and have bounded first derivatives. Our immediate application of these a priori
estimates is to prove that such solutions exist (Proposition 4.4). As we show in Section 5, these
estimates also yield the necessary compactness of the corresponding sequence of measure-valued
maps to pass to the limit as N →∞.

Lemma 4.13 (A priori estimates). If z = (z1, ..., zN ) is a C1-solution of (23) on the interval [0, T ]
then, for each i ∈ {1, ..., N},

|zi(t)| 6 |zi|+RT ∀ t ∈ [0, T ], (27)

|żi(t)| 6 |zi|+R(1 + T ) ∀ t ∈ (0, T ), (28)

where R = R(Ω) > 0 is such that Ω ⊂ BR(0) ⊂ R3.

Proof. Since the matrix J is skew symmetric and has operator norm 1, for any i ∈ {1, ..., N} we
have

d

dt
|zi|2 = 2zi · żi = −2zi · Jxi(z) 6 2R|zi|

on [0, T ]. The maximal solution of the ODE-IVP
dy

dt
= 2Ry1/2

y(0) = |zi|2

on the interval [0, T ] is given by

y(t) = (|zi|+Rt)2.

(Note that this is the unique solution unless zi = 0.) Applying a comparison lemma such as [49,
Theorem 13.2] then establishes (27). Hence,

|żi| = |J(zi − xi(z))| 6 |zi|+ |xi(z)| 6 |zi|+RT +R

on [0, T ], which establishes (28).

Using the regularity results and the a priori estimates established above, we now prove Propo-
sition 4.4.
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Proof of Proposition 4.4. Combining Corollary 4.9 with Lemma 4.10 we see that the optimal cen-
troid map x is continuously differentiable on its domain D. The map W is, therefore, locally
Lipschitz on D. Now, let z = (z1, ..., zN ) ∈ D satisfy (26), let M > 0 be such that

max
i
{|zi|} < M

and let T ∈ (0,∞). Then

B r
2
(z) ⊂ D

and, for all z ∈ B r
2
(z),

|W (z)| ≤ |z|+ |x(z)| ≤ r

2
+ |z|+ |x(z)| ≤ r

2
+N

1
2
(
M +R

)
≤ r

2
+N

1
2
(
M +R(1 + T )

)
=: M.

Let

T0 = min
{
T,

r

2M

}
.

By the Picard-Lindelöf Existence Theorem (see, for example, [50, Theorem 2.2]) there exists a
unique C1-solution of (23) on the interval [0, T0].

Since the third row of the matrix J is zero, by (26)

min
i 6=j
|(zi(T0)− zj(T0)) · e3| > r.

Hence

B r
2
(z(T0)) ⊂ D.

By the a priori estimate (27) proved in Lemma 4.13, for all z ∈ B r
2
(z(T0)),

|W (z)| ≤ |z|+ |x(z)| ≤ r

2
+ |z(T0)|+ |x(z)| ≤ r

2
+N

1
2
(
M +R(1 + T0)

)
≤ r

2
+N

1
2
(
M +R(1 + T )

)
= M.

Applying the Picard-Lindelöf Existence Theorem again we conclude that there exists a unique
C1-solution of (23) on the interval [0,min{T, 2T0}]. Repeating this process, we obtain a unique
C1-solution z of (23) on the interval [0, T ]. Since the function W is C1 on z([0, T ]), z is in fact
C2.

To conclude this section we prove Theorem 3.5. We begin by proving that any continuously
differentiable discrete geostrophic solution is energy-conserving.

Lemma 4.14. Any continuously differentiable discrete geostrophic solution is energy-conserving.

Proof. Suppose that α ∈ C([0, T ];Pc(R3)) is a continuously differentiable discrete geostrophic so-
lution with initial measure

α =

N∑
i=1

miδzi ∈ QN (R3).
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By Lemma 4.2, α is then given by

αt =

N∑
i=1

miδzi(t) ∀ t ∈ [0, T ],

where, for each i ∈ {1, ..., N}, {
żi = J(zi − xi(z)),

zi(0) = zi.
(29)

Moreover, letting C̃i(t) = Ci(zi(t),w∗(z(t))) for t ∈ [0, T ], we have

∇B[αt] =
N∑
i=1

zi(t)1C̃i(t)
.

Then, by equation (16),

E[αt] =
1

2

N∑
i=1

∫
C̃i(t)
|x− zi(t)|2 dx− 1

2

N∑
i=1

mi(zi(t) · e3)2 − 1

2

∫
Ω
x2

3 dx. (30)

We now show that the function t 7→ E[αt] is differentiable on the interval (0, T ) and that its
derivative is zero, from which it follows that α is energy-conserving. Trivially, the third term of
(30) is constant in time. By (29), since the third row of the matrix J is zero,

d

dt
(zi(t) · e3) = 0 ∀ i ∈ {1, ..., N}, t ∈ (0, T ).

Therefore the time derivative of the second term of (30) is also zero on (0, T ). Now define the
function ζ : Ω× [0, T ]→ R by

ζ(x, t) :=
1

2

N∑
i=1

1
C̃i(t)

(x)|x− zi(t)|2,

so that the first term of (30) is precisely
∫

Ω ζ(x, t) dx. Observe that for any fixed s ∈ (0, T ), the
function t 7→ ζ(x, t) is continuously differentiable at s for L3-almost every x in Ω. Indeed, since the
set ∂C̃i(s) ∩ ∂C̃j(s) is contained in a 2-dimensional plane for each i 6= j (see Section 2),

L3

(
Ω \

N⋃
i=1

Int
(
C̃i(s)

))
= L3

⋃
i 6=j

(
∂C̃i(s) ∩ ∂C̃j(s)

)
∪ ∂Ω

 = 0.

For x in the interior of the cell C̃i(t)

∂tζ(x, s) = −(x− zi(s)) · żi(s) = −(x− zi(s)) · J(zi(s)− xi(z(s))).

By hypothesis, z(s) ∈ D, so continuity at s of the map t 7→ ∂tζ(x, t) follows from Corollary 4.9
and Lemma 4.10. By Lemma 4.13, ∂tζ(·, s) is uniformly bounded on Ω. Hence, by the Mean Value
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Theorem and the Dominated Convergence Theorem, we may exchange the order of differentiation
and integration and, using (29) and the skew-symmetry of the matrix J , we obtain

d

dt

(∫
Ω
ζ(x, t) dx

) ∣∣∣∣
t=s

=

∫
Ω
∂tζ(x, s) dx = −

N∑
i=1

∫
C̃i(s)

(x− zi(s)) · żi(s) dx

= −
N∑
i=1

mi

(
xi(z(s))− zi(s)

)
· J
(
zi(s)− xi(z(s))

)
dx = 0,

which completes the proof.

Proof of Theorem 3.5. Since α is well-prepared in the sense of Definition 3.4, by Proposition 4.4
the corresponding ODE-IVP (23) has a unique C2-solution. By Lemma 4.2, this gives rise to a
unique twice continuously differentiable discrete geostrophic solution with initial measure α via the
formula (22). This solution is energy-conserving by Lemma 4.14.

5 Proof of Theorem 3.6

We now construct a geostrophic solution with arbitrary initial measure α ∈ Pc(R3). We begin
by proving the existence of a sequence (αN )N∈N of well-prepared discrete probability measures
(see Definition 3.4) converging to α with respect to the Wasserstein 2-distance (Lemma 5.1). The
existence of a sequence of discrete geostrophic solutions αN with initial measures αN , respectively,
is then guaranteed by Theorem 3.5. To obtain a geostrophic solution with initial measure α, we
then apply the Arzelà-Ascoli Compactness Theorem combined with the continuity of B (Theorem
2.2) and pass to the limit as N →∞.

Lemma 5.1. Let β ∈ Pc(R3). There exists a compact set U ⊂ R3, a sequence of discrete probability
measures βN ∈ QN (R3) given by

βN =
N∑
i=1

mN
i δzNi

and a sequence of positive real numbers rN > 0 such that

supp(βN ) ⊂ U ∀N ∈ N, (31)

lim
N→∞

W2(βN , β) = 0, (32)

and

|(zNi − zNj ) · e3| > rN ∀ i 6= j. (33)

Proof. Take a compact set U ⊂ R3 such that supp(β) ⊂ U and a sequence of discrete probability
measures

β̃N =
N∑
i=1

mN
i δz̃Ni

∈ QN (R3),

whose support is contained in U , such that

lim
N→∞

W2(β̃N , β) = 0. (34)
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Such a sequence exists by for example [44, Lemma 10].
For each N ∈ N, let zNi ∈ U , i ∈ {1, . . . , N}, satisfy the following: (zNi − zNj ) · e3 6= 0 for all

i, j ∈ {1, ..., N}, i 6= j; zNi = argminz∈{zN1 ,...,zNN }
|z − z̃Ni | for all i ∈ {1, . . . , N}; |zNi − z̃Ni | < 1/N for

all i ∈ {1, . . . , N}. Define

βN :=
N∑
i=1

mN
i δzNi

.

Then

W 2
2 (βN , β̃N ) =

N∑
i=1

mN
i |zNi − z̃Ni |2 ≤

1

N2
. (35)

Combining (34) and (35) completes the proof.

Now fix T ∈ (0,∞) and α ∈ Pc(R3). By Lemma 5.1 there exists a sequence of well-prepared
discrete probability measures αN ∈ QN (R3), given by

αN :=
N∑
i=1

mN
i δzNi

,

and a positive constant M > 0 such that

lim
N→∞

W2(αN , α) = 0 and
⋃
N∈N

supp(αN ) ⊂ BM (0).

By Theorem 3.5, for each N ∈ N there exists a unique twice continuously differentiable discrete
geostrophic solution αN ∈ C([0, T ];Pc(R3)) with initial measure αN

0 = αN , given by

αN
t =

N∑
i=1

mN
i δzNi (t) ∀ t ∈ [0, T ],

where zN = (zN1 , ..., z
N
N ) : [0, T ]→ R3N is a twice continuously differentiable solution of the ODE-

IVP (23) with initial condition

zN (0) = (zN1 , ..., z
N
N ).

Lemma 5.2 (Compactness, c.f. [40, Lemma 2.5], [21, Theorem 3.2]). The sequence (αN )N∈N
has a uniformly convergent subsequence in C

(
[0, T ];Pc(R3)

)
. In particular, there exists a strictly

increasing function k : N→ N and a Lipschitz map α ∈ C0,1
(
[0, T ];Pc(R3)

)
such that

lim
N→∞

sup
t∈[0,T ]

W2(α
k(N)
t , αt) = 0.

Moreover, there exists R1 > 0 such that for all t ∈ [0, T ] and all N ∈ N

supp(αN
t ), supp(αt) ⊂ K := BR1(0).

Proof. The a priori estimates (27) on the paths zNi mean that the metric space (Pc(R3),W2) can
be replaced by the compact metric space (P(K),W2), where K ⊂ R3 is the closed ball of radius
R1 := M + R(Ω)T centred at the origin. Since K is compact, W1 and W2 are equivalent metrics
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on P(K) (see [48, p.179]), so it is sufficient to prove that (αN )N∈N has a uniformly convergent
subsequence in C ([0, T ]; (P(K),W1)) whose limit point is Lipschitz with respect to the W1 metric.
Moerover, since the arrival space (P(K),W1) is a compact metric space, by the Ascoli-Arzelá
Theorem (see for example [48, p.10, Box 1.7]), such a sequence exists if and only if for every ε > 0,
there exists δ(ε) > 0 such that, whenever s, t ∈ [0, T ] and |t− s| < δ(ε), W1(αN

t , α
N
s ) < ε for all N .

For µ, ν ∈ P(K),

W1(µ, ν) = sup

{∫
K
φ d(µ− ν)

∣∣∣ φ : K → R, φ is 1-Lipschitz

}
. (36)

(See for example [51, Theorem 1.14].) Let φ : K → R be 1-Lipschitz and let t, s ∈ [0, T ]. By the a
priori estimate (28) we have∫

K
φ d(αN

t − αN
s ) =

N∑
i=1

mN
i

(
φ
(
zNi (t)

)
− φ

(
zNi (s)

))
≤

N∑
i=1

mN
i

∣∣zNi (t)− zNi (s)
∣∣

≤
N∑
i=1

mN
i L|t− s|

= L|t− s|,

where L = M + R(1 + T ). Using the characterisation of the Wasserstein 1-distance given by (36)
we obtain

W1(αN
t , α

N
s ) ≤ L|t− s|. (37)

Choosing δ(ε) = ε/L, the Ascoli-Arzelá Theorem guarantees the existence of a uniformly convergent
subsequence (αk(N))N∈N. Denote by α its limit point. Combining the Lipschitz estimate (37) and
using the triangle inequality in (P(K),W1), for all N ∈ N we have

W1(αt, αs) ≤W1(αt, α
k(N)
t ) +W1(αs, α

k(N)
s ) + L|t− s|.

Passing to the limit as N →∞, we see that α is Lipschitz with respect to W1 as required.

We conclude this section with the proof of Theorem 3.6.

Proof of Theorem 3.6. Let α ∈ C0,1([0, T ];Pc(R3)) be the limit point of the sequence (αk(N))N∈N
obtained in Lemma 5.2. First, we prove that α satisfies the transport equation (17). For clarity,
given β ∈ C([0, T ];P(K)) and ϕ ∈ D(R3 × R) we define

F [β, ϕ] :=

∫ T

0

∫
K

(
∂tϕ(z, t) + Jz · ∇ϕ(z, t)

)
dαt(z) dt−

∫ T

0

∫
Ω
Jx · ∇ϕ

(
∇B[αt](x), t

)
dx dt

−
(∫

K
ϕ(z, T ) dαT (z)−

∫
K
ϕ(z, 0) dα0(z)

)
.

Since the space

D̃ := {ϕ = φψ | φ ∈ C∞c (R), ψ ∈ C∞c (R3)}
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is a dense subspace of D(R3×R) (see [25]), to show that α satisfies (17) it is enough to check that

F [α,ϕ] = 0 for any ϕ ∈ D̃. Moreover, for each N ∈ N we have

F [αN , ϕ] = 0 ∀ϕ ∈ D̃.

By the triangle inequality, it is therefore sufficient to show that

lim
N→∞

∣∣F [αk(N), ϕ]−F [α,ϕ]
∣∣ = 0 ∀ϕ ∈ D̃. (38)

SinceK is compact, W1 andW2 are equivalent metrics onK. The sequence (αk(N))N∈N therefore
converges to α uniformly in C([0, T ]; (P(K),W1)). By the characterisation of W1 given by (36),
this implies that for any Lipschitz function η : K → R,

lim
N→∞

sup
t∈[0,T ]

{∫
K
η(z) d(α

k(N)
t − αt)(z)

}
= 0. (39)

For ϕ = φψ ∈ D̃, where φ ∈ C∞c (R) and ψ ∈ C∞c (R3), we have∫ T

0

∫
K
∂tϕ(z, t) d(α

k(N)
t − αt)(z) dt =

∫ T

0
φ′(t)

(∫
K
ψ(z) d(α

k(N)
t − αt)(z)

)
dt

6 T sup
t∈[0,T ]

|φ′(t)| sup
t∈[0,T ]

∣∣∣∣ ∫
K
ψ(z) d(α

k(N)
t − αt)(z)

∣∣∣∣
and∫ T

0

∫
K
Jz · ∇ϕ(z, t) d(α

k(N)
t − αt)(z) dt =

∫ T

0
φ(t)

(∫
K
Jz · ∇ψ(z) d(α

k(N)
t − αt)(z)

)
dt

6 T sup
t∈[0,T ]

|φ(t)| sup
t∈[0,T ]

∣∣∣∣ ∫
K
Jz · ∇ψ(z) d(α

k(N)
t − αt)(z)

∣∣∣∣.
Therefore, by (39),

lim
N→∞

∫ T

0

∫
K

(
∂tϕ(z, t) + Jz · ∇ϕ(z, t)

)
d(α

k(N)
t − αt)(z) dt = 0. (40)

Moreover, since uniform convergence implies pointwise convergence, we have

lim
N→∞

(∫
K
ϕ(z, T ) d(αT − αk(N)

T )(z)−
∫
K
ϕ(z, 0) d(α0 − αk(N)

0 )(z)

)
= 0. (41)

Finally, let

Lϕ = sup
t∈[0,T ]

sup
x∈R3

|D2ϕ(x, t)|

and, again, let R > 0 be such that Ω ⊂ BR(0). By the Cauchy-Schwarz inequality in L2(Ω;R3)
and the Lipschitz continuity of B (Theorem 2.2 and [43, Theorem 3.1]), for some constant C > 0
depending only on Ω and K,∫ T

0

∫
Ω
Jx ·

(
∇ϕ(∇B[αt](x), t)−∇ϕ

(
∇B[α

k(N)
t ](x), t

))
dx dt

6 TRLϕ sup
t∈[0,T ]

‖∇B [αt]−∇B[α
k(N)
t ]‖L2(Ω;R3)

6 TRLϕC

(
sup

t∈[0,T ]
W2(αt, α

k(N)
t )

) 2
15

.
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Hence,

lim
N→∞

∫ T

0

∫
Ω
Jx ·

(
∇ϕ(∇B[αt](x), t)−∇ϕ

(
∇B[α

k(N)
t ](x), t

))
dx dt = 0. (42)

By combining (40), (41) and (42), we see that (38) holds.
To complete the proof we note that each discrete solution αk(N) is energy-conserving so, by

continuity of the geostrophic energy functional E on P(K) (see Remark 3.2), for any t ∈ [0, T ]

E[αt] = lim
N→∞

E[α
k(N)
t ] = lim

N→∞
E[αk(N)] = E[α],

which means that α is also energy-conserving.

6 Explicit solutions

Here we consider two special cases (Examples 6.1 and 6.2) where we can obtain explicit expressions
for discrete geostrophic solutions. In Example 6.3 we show that L3 ¬Ω is an equilibrium solution of
(1) and that its optimal quantisers are equilibrium solutions of the corresponding ODE-IVP (23).

Example 6.1 (A single mass). First we consider the case of a single Dirac mass. This example has
been discussed in both [20, Section 5] and [22, Section 2.2] in the context of the 2-dimensional semi-
geostrophic equations on the physical domain B1(0) ⊂ R2. In contrast with previous approaches,
which use approximations of the Dirac mass by characteristic functions on balls, our solution follows
immediately from the characterisation of discrete geostrophic solutions in terms of the ODE-IVP
(23).

Let Ω ⊂ R3 be open, bounded and convex, denote by xΩ the centroid of Ω, and let z ∈ R3. By
an argument analogous to the proof of Lemma 4.2, a map α ∈ C([0, T ];Pc(R3)) given by

αt = δz(t)

is a k-times continuously differentiable discrete geostrophic solution with initial measure α = δz if
and only if z : [0, T ]→ R3 is a k-times continuously differentiable solution of the ODE

ż = J(z − xΩ) (43)

satisfying the initial condition z(0) = z. Such a map z is unique and is given by

z(t) = etJ (z − xΩ) + xΩ ∀ t ∈ [0, T ].

Moreover,

∇B[αt] = z(t) ∀ t ∈ [0, T ].

Let z3 = z · e3. By equation (16), the corresponding geostrophic energy satisfies

d

dt
(E[αt]) =

d

dt

(
1

2

∫
Ω
|x− z(t)|2 dx− 1

2
z2

3(t)− 1

2

∫
Ω
x2

3 dx

)
= −

∫
Ω

(x− z(t)) · ż(t) dx− z3(t)ż3(t)

= (z(t)− xΩ) · J(z(t)− xΩ) = 0.

Hence αt is energy-conserving.
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Example 6.2 (Two masses in a ball). Let Ω ⊂ R3 be the ball of volume 1 centred at the origin,
and let

α = mδz1 + (1−m)δz2 ,

where z1, z2 ∈ R3 are distinct and m ∈ (0, 1/2]. To construct a geostrophic solution with initial
measure α we make the ansatz

αt = mδz1(t) + (1−m)δz2(t),

where each zi : [0, T ]→ R3 is continuously differentiable. This yields the ODE-IVP{
żi = J(zi − xi(z1, z2)),

zi(0) = zi,
(44)

for i ∈ {1, 2}, where xi(z1, z2) denotes the centre of mass of the ith cell in the optimal Laguerre
tessellation generated by (z1, z2).

Due to its simple shape, Laguerre tessellations of Ω which are generated by two seeds can be
easily characterised. Indeed, for any given (z1, z2) ∈ R6 such that z1 6= z2, the boundary between
the Laguerre cells C1 and C2 generated by (z1, z2) is necessarily the intersection of the ball with
a plane perpendicular to the vector z1 − z2. Hence C1 is the spherical cap of mass m whose base
has outward pointing normal vector (z2 − z1)/|z2 − z1|, and C2 is its complement in Ω. The centre
of mass of the Laguerre cell C1 must therefore lie some positive distance r, depending only on the
mass m, along the axis defined by the vector z1 − z2 about which C1 is rotationally symmetric.
Hence,

x1(z1, z2) = r(m)
z1 − z2

|z1 − z2|
. (45)

Moreover, the centre of mass of the whole ball is the origin so

mx1 + (1−m)x2 = 0 =⇒ x2 =
mr(m)

m− 1

z1 − z2

|z1 − z2|
. (46)

Using these observations, (44) becomes

ż1 = J

(
z1 − r

z1 − z2

|z1 − z2|

)
, (47)

ż2 = J

(
z2 −

mr

m− 1

z1 − z2

|z1 − z2|

)
. (48)

Subtracting (48) from (47) yields the following ODE-IVP for the difference Z := z1 − z2:Ż = J
(
Z − q Z

|Z|

)
,

Z(0) = z1 − z2 =: Z,
(49)

where

q = q(m) =

(
1

1−m

)
r(m)
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is a positive constant determined by m alone. To solve (49), we first note that due to the skew
symmetry of J

d

dt
|Z|2 = 2Z · Ż = 0 =⇒ |Z(t)| = |Z| ∀ t ∈ [0, T ].

Hence, (49) becomes {
Ż(t) =

(
1− q

|Z|

)
JZ(t),

Z(0) = Z.

Its solution is the map Z : [0, T ]→ R3 given by

Z(t) = eωtJZ,

where ω = 1− q/|Z|. That is,

Z(t) =

 cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1

Z.

Hence, equations (47) and (48) decouple and we obtain two linear inhomogeneous ODE-IVPs for
z1 and z2. Noting that ω 6= 1 since q > 0, we use Duhamel’s formula and find that

z1(t) = etJz1 −
r

ω − 1

(
eωtJ − etJ

) z1 − z2

|z1 − z2|
,

z2(t) = etJz2 +
mr

(1−m)(ω − 1)

(
eωtJ − etJ

) z1 − z2

|z1 − z2|
.

To conclude, recalling the expressions for the centroids given by (45) and (46), we note that x1 and
x2 simply rotate anti-clockwise around the vertical coordinate axis with angular frequency ω.

Example 6.3 (Equilibrium solutions). The Lebesgue measure restricted to Ω is an equilibrium
solution of (1). Indeed, let α = L3 ¬Ω. Then ∇B[α] = idΩ, which implies that ∇B[α]∗(x) = x ∀x ∈
Ω, which in turn implies that W[α] = 0 on supp(α). Let

αN =
N∑
i=1

miδzi

be an optimal quantiser of L3 ¬Ω. By, e.g., [18, Proposition 3.1], [29, Corollary 4.3], the seeds
z = (z1, ..., zN ) generate a centroidal Voronoi tessellation of Ω, i.e,

xi(z) = zi ∀ i ∈ {1, ..., N}.

This means that W (z) = 0 so z is an equilibrium solution of the ODE-IVP (23). The behaviour of
L3 ¬Ω under the dynamics of equation (1) therefore agrees exactly with that of its optimal discrete
approximants.
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7 Numerical simulations

One advantage of the constructive existence proof given in this paper is that it naturally leads to a
numerical method (a meshfree method) and moreover it tells us something about the convergence
of this method. To be precise, given an initial measure α ∈ Pc(R3), we can construct a numerical
approximation of a solution of the semi-geostrophic equations (17) as follows:

1. Approximate α by a discrete measure αN =
∑N

i=1miδzi . This leads to the semi-discrete numer-
ical scheme (continuous in time, discrete in space) used in the proof of Theorem 3.6, where an
exact solution αN =

∑N
i=1miδzi(t) of (17) with initial condition αN is constructed by solving

the system of ODEs ż = W (z) given in equation (23). To turn this into a bona fide numerical
method we require a further discretisation:

2. Use a time-stepping scheme to approximately solve the ODE ż = W (z). Every evaluation of the
vector field W requires a further numerical approximation; to evaluate W (z(t)) we must solve
the semi-discrete transport problem W2(L3 ¬Ω, αt) in order to compute the centroids x(z(t)).

We demonstrate the viability of this numerical method by giving an example in two dimensions,
implemented in MATLAB. Due to a lack of space we postpone the three-dimensional implementa-
tion and a more thorough numerical study to a further paper. Before giving the example we briefly
discuss some implementation issues and convergence.

ODE solver. We used the explicit Runge-Kutta scheme RK4 [35, Example 5.13] to solve the
ODE ż = W (z). For larger simulations it may be better to use a linear multistep method [35,
Section 5.9] since each evaluation of the vector field W is expensive (linear multistep methods only
require one new vector field evaluation per time step, whereas RK4 requires four per time step).

Semi-discrete transport solver. The semi-discrete transport problem W2(L3 ¬Ω, αt) can be
solved by maximising the concave function g (see equation (12)) as described in Section 2. We
did this in MATLAB using a quasi-Newton method (the MATLAB function fminunc). Every
evaluation of g and its gradient requires a Laguerre diagram to be computed, which we did using
the MATLAB function power bounded [24]. This simple method, which is described in more detail
in [6, Algorithm 1 and Section 4], was sufficient for our proof of concept simulations here. In
general, however, to maximise g it would be much faster to use the damped Newton method from
[32], especially for large 3D simulations.

Convergence. By Theorem 3.6 the sequence (αN )N∈N generated by the semi-discrete scheme
has a subsequence that converges (uniformly with respect to the Wasserstein metric) to a solution
of the semi-geostrophic equations (17) with initial condition α. In particular, if equation (17) has
a unique weak solution with initial measure α, then the whole sequence of approximations αN

converges to the true solution. Local-in-time uniqueness of Hölder continuous periodic solutions
of (17) was proved in [40], but is not known in general. By the conservation of the transport cost
W2(L3 ¬Ω, αt) (see Remark 3.7) it is easy to see that the whole sequence (αN )N∈N also converges
in the very special case where the initial measure α is the Lebesgue measure on Ω. (Note that
the Lebesgue measure is an equilibrium solution of (17) as discussed in Example 6.3.) In general,
proving convergence of the whole sequence (αN )N∈N is beyond the scope of this paper, as is proving
convergence of the fully discrete scheme. We will study these in a future paper.
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Figure 2: Results of Example 7.1. The seeds zi (black dots) and the corresponding Laguerre cells
(coloured polygons) are illustrated at time steps t = 0, 0.5, 1, 3, 4, 5 for a Gaussian initial measure.
The Laguerre cells are coloured according to their area (small cells in blue, large cells in yellow).
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Example 7.1 (Gaussian initial condition). Let Ω = [−1, 1] × [−1, 1] and let the initial measure
α be absolutely continuous with respect to the Lebesgue measure with density C exp(−|x|2)1Ω,
where C > 0 is the normalisation constant satisfying

α(R2) = L2(Ω) ⇐⇒ C = 4

(∫
Ω

exp(−|x|2) dx

)−1

.

Note that we have dropped the previous normalisation convention that α(R2) = L2(Ω) = 1, which
is not necessary for the analysis; we simply require that α(R2) = L2(Ω). We approximated α by
a discrete measure of the form αN =

∑N
i=1miδzi with N = 2000 seeds using 1000 iterations of

Lloyd’s algorithm [18]. We approximated the solution of the ODE-IVP (23) on the time interval
[0, T ] with T = 5 using the Runge-Kutta method RK4 with uniform time step size h = 0.01. For
the numerical maximisation of g we used the following stopping condition: for all i ∈ {1, . . . , N},∣∣∣∣ ∂g∂wi

∣∣∣∣ < 10−2 εmin
j
mj ⇐⇒ |mi − |Ci|| < 10−2 εmin

j
mj

with ε = 0.1. This ensures that the areas of the Laguerre cells Ci are correct to within 0.1%.
The results are shown in Figure 2 at time steps t = 0, 0.5, 1, 3, 4, 5. The black dots in the first

and third rows are the (approximate) seed locations zi. The polygons in the second and fourth
rows are the (approximate) Laguerre cells Ci. The cells are coloured according to their target areas
mi, where blue corresponds to small cells and yellow corresponds to large cells. Note that all the
seeds start off in Ω but they are not confined there.

As an accuracy check, we repeated these simulations with a smaller time step size of h = 0.005
and a finer optimal transport tolerance of ε = 0.05. We found that the x- and y-coordinates of the
seeds zi at the final time step T = 5 agreed with our previous results to within 10−3. Recall from
Remark 3.7 that the exact dynamics (23) preserves the transport cost:

d

dt
W2(L2 ¬Ω, αt) = 0.

In our simulations (with h = 0.01, ε = 0.1) the transport cost was conserved to within 7.5× 10−7:

max
n

∣∣∣∣∣W 2
2 (L2 ¬Ω, αtn)− 1

501

500∑
m=0

W 2
2 (L2 ¬Ω, αtm)

∣∣∣∣∣ < 7.5× 10−7

where tn = nh, n ∈ {0, 1, . . . , 500}.
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