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Abstract. We consider functionals given by the sum of the perimeter and the double integral

of some kernel g : RN×RN → R+, multiplied by a “mass parameter” ε. We show that, whenever

g is admissible, radial and decreasing, the unique minimizer of this functional among sets of

given volume is the ball as soon as ε� 1.

1. Introduction

The celebrated “liquid drop model” for the atomic nucleus, introduced in the ’30s by Gamow,

consists in the minimization of the functional

P (E) +

∫∫
E×E

1

|y − x|N−α
dy dx

among sets of given volume in RN , N ≥ 2, where 0 < α < N is a given parameter. Even though

the physically relevant case is N = 3, α = 2, when the second term is the Coulombic energy,

this more general functional has been deeply investigated since then, both by physicists and

mathematicians. There is a clear competition between the two terms in the energy, since the

ball at the same time minimizes the perimeter, by the isoperimetric inequality, and maximizes

the second term, by the Riesz inequality. More in general, the first term favours concentration of

mass, while the second one favours disgregation. An important peculiarity of the model is that

the two terms scale differently, in particular the perimeter is the leading term for sets of small

volume, while the Riesz energy (i.e., the second term) is the leading term for large volumes.

By rescaling, instead of considering different masses, it is equivalent but mathematically more

convenient to consider only sets of given volume, say ωN , the measure of the unit ball, and

consider the modified functional

P (E) + ε

∫∫
E×E

1

|y − x|N−α
dy dx

for some positive ε. As said above, it is then clear that minimizers become closer to the ball

when ε↘ 0, while they tend to disperse completely when ε↗ +∞.

In fact, physicists always took for granted that minimizers are exactly balls if ε is sufficiently

small. This property has been investigated by several mathematicians and proved in a series

of recent papers. More precisely, Knüpfer and Muratov [6, 7] proved that balls are the only

minimizers for ε � 1 when N = 2, and when 3 ≤ N ≤ 7 if 1 < α < N , see also the proof

given by Julin in [5] in the case α = 2 . One should point out that there are big differences

between the case 0 < α ≤ 1, the so-called near-field dominated regime, and the case 1 < α < N ,

the so-called far-field dominated regime. Roughly speaking, things are much more complicated
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in the near-field dominated regime since in the Riesz energy the contribution of pairs of points

which are very close to each other is fairly strong (the mathematical consequence is that several

objects which are controlled in the far-field dominated regime become ill-defined due to some

integrals which do not converge). Later on, Bonacini and Cristoferi [1] proved the same result

for every N , still with 1 < α < N . And finally, Figalli, Fusco, Maggi, Millot and Morini [3]

proved the result in any dimension N ≥ 2 and for every 0 < α < N , even replacing the perimeter

P (E) by the fractional perimeter Ps(E), 0 < s ≤ 1.

Countless papers in the last few years investigated the properties of the Riesz energy if one

replaces the kernel |y − x|α−N with g(y − x) for a more general g : RN \ {0} → R+, hence

considering the “Riesz-type energy”

R(E) = R(E,E) , where R(F,G) =

∫∫
F×G

g(z − w) dz dw .

As soon as g is radial and decreasing, the Riesz inequality still implies that, among sets of given

volume, R(E) is maximized by the ball. The corresponding “Gamow-type functional” is then

Fε(E) = P (E) + εR(E) .

A natural question is whether it is possible to show that Fε is minimized by balls when ε� 1 for

more general functions g than the negative powers. Observe that this question is reasonable only

if g is radial, hence we will always make this assumption and write, with a small abuse of notation,

g(t) = g(x) for any x ∈ RN with |x| = t. We say that a radial function g : RN \ {0} → R+ is

admissible if and only if ∫ 1

0
g(t)tN−1 dt < +∞ . (1.1)

The meaning of this property is clear. Indeed, without this assumption R(E) = +∞ for every

non-empty set E, hence the whole problem makes no sense, but with this assumption all sets of

finite volume have finite energy. In the recent paper [9] it was proved that, among sets of given

volume, balls are the unique minimizers of Fε for ε small enough in the 2-dimensional case if g

is radial, decreasing and positive definite, which means∫∫
RN×RN

g(y − x)f(x)f(y) dy dx ≥ 0 ∀f ∈ Cc(RN ).

In particular, in case g(v) = |v|α−N , the positive definiteness is equivalent to the assumption

1 < α < N .

In this paper, we are able to give a simple proof of the minimality of balls for every radial

and decreasing function g and in any dimension N ≥ 2. Despite considering a much more

general function than in the above-mentioned papers, our proof is considerably shorter than

those available in the literature.

Theorem A (Balls are unique minimizers for small ε). Let g : RN \ {0} → R+ be a radially

decreasing, admissible function. Then, there exists ε̄ > 0 such that, for every 0 < ε < ε̄, the

unique minimizer (up to translations) of Fε among sets of volume ωN is the unit ball.
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The fact that minimizers of Fε actually exist, for ε small enough, has been proved in wider

generality in [9, Proposition 1.2 and Lemma 4.1]

2. Proof of the main result

In the following we denote by B(z, r) the ball centered at z with radius r. When r = 1 we

simply write B(z) (or B if the center is the origin). Moreover, in order to ease the notation, if

no confusion arises, to indicate integration with respect to H N−1 measure we shall often write

dx instead of dH N−1(x).

This section is devoted to the proof of our result. The first step is to observe that the

minimizers of the functional Fε converge in C1,γ to the ball, up to translations. This is a fairly

standard fact, see for instance [2, Proposition 2.2 and Lemma 3.6]. More precisely, we have the

following result.

Lemma 2.1 (Regularity of minimizers). There exists ε1 > 0, only depending on N and g, such

that for every 0 < ε < ε1 and every minimizer E of Fε under the volume constraint |E| = ωN ,

there exists a function u ∈W 1,2(SN−1) such that, up to a translation,

E = E(u) =
{
z ∈ RN : z = ρx, x ∈ SN−1, 0 ≤ ρ < 1 + u(x)

}
. (2.1)

The function u actually belongs to C1,γ for every 0 < γ < 1/2, and its norm can be taken

arbitrarily small, up to decrease the value of ε1. Moreover,

P (E) ≥ P (B) + CN‖u‖2W 1,2 (2.2)

for a geometric constant CN , only depending on N .

Proof. Recall that, given two constants Λ, r0 > 0, a set of finite perimeter E ⊆ RN is said to

be a (Λ, r0)-perimeter minimizer if for every ball B(z, r) with r < r0 and every set F such that

F∆E ⊂⊂ B(z, r) one has

P (E) ≤ P (F ) + Λ|E∆F | .

It is easily checked that if Eε is a minimizer of Fε under the volume constraint |Eε| = ωN , then

Eε is a (Λ, r0)-perimeter minimizer for every small ε, with Λ and r0 not depending on ε. A

proof of this fact in a more general setting can be found in [9, Proposition 3.6]. Moreover, as

already noticed, , the sets Eε converge up to translations in L1 to B as ε goes to 0. Thus [8,

Theorem 21.14] implies that they also converge in the Kuratowski sense, hence their boundaries

are contained in an arbitrarily small neighborhood of ∂B, provided ε is small enough. Since one

can cover ∂B with finitely many cylinders with arbitrarily small excess (see [8, Chapter 22] for

the definition of the excess), by [8, Proposition 22.6] also Eε has arbitrarily small excess in the

same cylinders if ε is small enough. As a consequence, [8, Theorem 26.3] ensures that ∂Eε is

C1,γ for every 0 < γ < 1/2, with uniform bounds. Again, since Eε converges in the L1 sense to

B as ε goes to 0, by interpolation the convergence holds also in C1,γ . Thus, for ε small enough

∂Eε is a graph over SN−1, hence there exists a function uε such that (2.1) holds.

Finally, the estimate (2.2) is a result by Fuglede, proved in [4] (see also [2]). �
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The second observation is that the W 1,2 norm of a function u controls the double integral

of (u(y)− u(x))2 with weight g. In other words, we have the following result.

Lemma 2.2. For every Sobolev function u ∈W 1,2
(
SN−1

)
, we have∫∫

SN−1×SN−1

g(y − x)
(
u(y)− u(x)

)2
dy dx ≤ C‖∇τu‖2L2(SN−1) ,

where C is a constant, only depending on N and g, and ∇τ stands for the tangential gradient.

Proof. For x ∈ SN−1, set Ex = {ω ∈ SN−1 : ω ⊥ x}. Observe that any y ∈ SN−1 \ {x,−x} can

be written in a unique way as y = x cos θ+ω sin θ for some ω ∈ Ex and θ ∈ (0, π). Moreover for

any f ∈ L1(SN−1)∫
SN−1

f dH N−1 =

∫
Ex

∫ π

0
f(x cos θ + ω sin θ)(sin θ)N−2 dθ dH N−2(ω) . (2.3)

We can then write, for every fixed x ∈ SN−1,∫
SN−1

g(y − x)
(
u(y)− u(x)

)2
dH N−1(y)

=

∫
Ex

∫ π

0
g(x cos θ + ω sin θ − x)

(
u(x cos θ + ω sin θ)− u(x)

)2
(sin θ)N−2 dθ dH N−2(ω) .

Now, for any ω ∈ Ex and any 0 < θ < π, recalling that ω · x = 0 we evaluate

(
u(x cos θ + ω sin θ)− u(x)

)2
=

(∫ 1

0
θ〈∇τu(x cos(sθ) + ω sin(sθ)),−x sin(sθ) + ω cos(sθ)〉 ds

)2

≤ θ2
∫ 1

0
|∇τu(x cos(sθ) + ω sin(sθ))|2ds = θ

∫ θ

0
|∇τu(x cosϕ+ ω sinϕ)|2dϕ

≤ θ
∫ π

0
|∇τu(x cosϕ+ ω sinϕ)|2dϕ ,

and since g is radial and decreasing we have

g(x cos θ + ω sin θ − x) = g(
√

2− 2 cos θ) ≤ g(θ/2) .

Summarizing, we have∫
SN−1

g(y − x)
(
u(y)− u(x)

)2
dH N−1(y)

≤
∫
Ex

∫ π

0
g(θ/2)(sin θ)N−2θ

∫ π

0
|∇τu(x cosϕ+ ω sinϕ)|2 dϕ dθ dH N−2(ω)

= C(g)

∫
Ex

∫ π

0
|∇τu(x cosϕ+ ω sinϕ)|2 dϕ dH N−2(ω) ,

where C(g) is a constant which only depends on g, whose existence is ensured by (1.1). Therefore,

using again (2.3) and the fact that if y = x cosϕ+ ω sinϕ with ω ∈ Ex, then

sin2 ϕ = 1− cos2 ϕ = 1− |x · y|2 ≥ 1− |x · y| ,
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we calculate∫∫
SN−1×SN−1

g(y − x)
(
u(y)− u(x)

)2
dy dx

≤ C(g)

∫
SN−1

∫
Ex

∫ π

0
|∇τu(x cosϕ+ ω sinϕ)|2 dϕ dH N−2(ω) dH N−1(x)

≤ C(g)

∫
SN−1

∫
Ex

∫ π

0

|∇τu(x cosϕ+ ω sinϕ)|2(sinϕ)N−2(
1− |x · y|

)N−2
2

dϕ dH N−2(ω) dH N−1(x)

= C(g)

∫
SN−1

∫
SN−1

|∇τu(y)|2(
1− |x · y|

)N−2
2

dH N−1(y) dH N−1(x)

= C(g)

∫
SN−1

|∇τu(y)|2dH N−1(y)

∫
SN−1

1[
1− |x · e1|]

N−2
2

dH N−1(x)

= C(g)C(N)

∫
SN−1

|∇τu(y)|2dH N−1
y ,

where e1 is an arbitrary vector in SN−1. The proof is then concluded. �

For a given function u ∈W 1,2(SN−1) with u > −1 everywhere, denoting by E the set given

by (2.1), we define now

E+ = E \B , E− = B \ E , (2.4)

so that

E+ =
{
ρx, x ∈ SN−1, 1 ≤ ρ < 1 + u+(x)

}
, E− =

{
ρx, x ∈ SN−1, 1− u−(x) < ρ < 1

}
,

calling as usual u+ = u∨0 and u− = −u∨0. Thanks to the above result, we deduce the following

estimate.

Lemma 2.3 (R(E+, E−) is “negligible”). Let u ∈W 1,2(SN−1), with |u| < 1/2. Then

R(E+, E−) ≤ C‖u‖2W 1,2 ,

where C is a constant, only depending on N and on g.

Proof. For every z ∈ E+ and every w ∈ E−, we write x = z/|z| and y = w/|w|. Notice that

|z − w| ≥ |y − x|/2, thus since g is radial and decreasing we have

g(z − w) ≤ g̃(y − x) ,

where we write for brevity, for every v ∈ RN , g̃(v) = g(v/2). Observe that of course∫ 1

0
g̃(t)tN−1 dt ≤ 2N

∫ 1

0
g(s)sN−1 ds < +∞ (2.5)
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by (1.1). Calling π : RN \ {0} → SN−1 the projection on the unit sphere, we can then evaluate

R(E+, E−) =

∫∫
E+×E−

g(z − w) dz dw

≤
∫∫

π(E+)×π(E−)

∫ 1+u+(x)

ρ=1

∫ 1

σ=1−u−(y)
g̃(y − x)ρN−1σN−1 dρ dσ dy dx

≤ 2N−1
∫∫

π(E+)×π(E−)
u+(x)u−(y)g̃(y − x) dy dx .

Notice that, for every x ∈ π(E+) and y ∈ π(E−), we have u+(x) > 0 and u−(y) > 0, hence

u+(x)u−(y) ≤
(
u+(x) + u−(y)

)2
= (u(x)− u(y))2 .

Thus the above estimate can be continued as

R(E+, E−) ≤ 2N−1
∫∫

π(E+)×π(E−)
(u(y)− u(x))2g̃(y − x) dy dx

≤ 2N−1
∫∫

SN−1×SN−1

(u(y)− u(x))2g̃(y − x) dy dx ≤ C‖u‖2W 1,2(SN−1) ,

where in the last inequality we have used Lemma 2.2 with g̃ in place of g, which is possible

by (2.5). Notice that the constant C depends on N and on g̃, then in turn on N and on g. �

Since we will need to calculate integrals of g over translated balls, it is useful to set ψ :

R+ × R+ → R+ and J : (−1/2, 1/2)→ R as

ψ(a, b) =

∫
B(a)

g(|y − x|) dy with |x| = b , J(σ) = ψ(1 + σ, 1)− ψ(1, 1) . (2.6)

It is simple to observe that ψ is locally Lipschitz continuous outside the diagonal, but this is not

helpful since we will need to use ψ(a, b) with a ≈ b ≈ 1. However, the following weaker property

will play a crucial role in our construction.

Lemma 2.4. There exists a constant C = C(N, g) such that, for every 3/4 ≤ ρ ≤ 5/4 and every

−1/4 ≤ τ ≤ 1/4 one has ∣∣ψ(ρ+ τ, ρ)− ψ(ρ, ρ)− J(τ)
∣∣ ≤ C|ρ− 1| ,∣∣ψ(1, 1 + τ)− ψ(1, 1) + J(τ)
∣∣ ≤ C|τ | ,

|J(τ) + J(−τ)| ≤ C|τ | .
(2.7)

Proof. The thesis will follow from three main estimates. To start, we take 1/2 ≤ r, r′ ≤ 3/2,

and we show that |r − r′| controls |ψ(r, r) − ψ(r′, r′)|. Without loss of generality we assume

that r > r′. Notice that ψ(r, r) − ψ(r′, r′), by definition, is the integral of g on the set A(r, r′)

given by the difference of two balls, a bigger one with radius r and a smaller one with radius

r′, being the smaller one contained in the bigger one and internally tangent. Figure 1 shows

the set A(r, r′), coloured, close to the point of tangency, that we consider to be the origin O.

We also consider the exterior normal to the two balls in the tangency point to be horizontal

(i.e., parallel to the first vector of a given orthonormal basis). Let us assume for a moment that

N = 2, just for simplicity in the figure. As shown in the figure, we fix 0 < t < 1/4, and we call

R the point having distance t from O in the horizontal direction. We consider then the circle
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O

r′

r

σ

t

S

R

P

Q

θ

Figure 1. The (coloured) set A(r, r′) and the angle θ in the proof of (2.9) and (2.10).

S2(t) with radius t centered at O, we call P one of the two points of intersection of S2(t) with

the larger ball, and we denote by θ the angle RÔP . In the very same way, we call Q a point of

intersection between S2(t) and the smaller ball, and we call θ′ the angle RÔQ. One readily has

that cos θ = −t/2r, and similarly cos θ′ = −t/2r′. Since by geometric reasons π
2 < θ < θ′ < 3

4 π

because we are considering 0 < t < 1/4, we get

θ′ − θ ≤ 2(cos θ − cos θ′) =
t(r − r′)
rr′

≤ 4t(r − r′) .

Therefore, in the 2-dimensional case, we can estimate for every 0 < t < 1/4

H 1
(
A(r, r′) ∩ S2(t)

)
= 2t(θ′ − θ) ≤ 8t2(r − r′) .

Let us pass to the general N -dimensional case. Calling A2(r, r
′) the 2-dimensional set already

studied, we have in general

A(r, r′) =
{

(z1, z
′) ∈ R× RN−1 : (z1, |z′|) ∈ A2(r, r

′)
}
.

Calling then SN (t) the sphere with radius t centered at 0, an immediate integration in cylindrical

coordinates gives, for every 0 < t < 1/4,

H N−1(A(r, r′) ∩ SN (t)
)
≤ (N − 1)ωN−1t

N−2H 1
(
A2(r, r

′) ∩ S2(t)
)
≤ 8(N − 1)ωN−1t

N (r− r′) .

We have then

ψ(r, r)− ψ(r′, r′) =

∫
A(r,r′)

g(w) dw =

∫ 3

t=0
g(t)H N−1(A(r, r′) ∩ SN (t)

)
dt

≤
∫ 1/4

0
g(t)H N−1(A(r, r′) ∩ SN (t)

)
dt+ g(1/4)

∫ 3

1/4
H N−1(A(r, r′) ∩ SN (t)

)
dt

≤ 8(N − 1)ωN−1(r − r′)
∫ 1/4

0
g(t)tN dt+ g(1/4)

∣∣A(r, r′)
∣∣ ≤ C(r − r′) ,

(2.8)

where C is a constant only depending on N and on g. For every 1/2 ≤ r, r′ ≤ 3/2 we have then∣∣ψ(r, r)− ψ(r′, r′)
∣∣ ≤ C|r − r′| . (2.9)

We pass now to the second main estimate. Let us take −1/4 ≤ σ ≤ 1/4 and let us show that

|r − r′| controls also |ψ(r, r − σ) − ψ(r′, r′ − σ)|. As before, without loss of generality we can

assume that r > r′. The value of the difference ψ(r, r−σ)−ψ(r′, r′−σ) is then exactly as before
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given by an integral over the set A(r, r′). The only difference is that this time the function

to integrate is not g(w), but g(w − S), where S is the point having distance σ from O in the

horizontal, negative direction. Figure 1 shows the point S in the case when σ > 0. Notice that

the points of A(r, r′) close to O are much closer to O than to S. More in general, a trivial

geometric argument ensures that for every w ∈ A(r, r′) one has

|w| = |w −O| ≤ 2|w − S| ,

the constant 2 is actually not needed if σ < 0. As a consequence, we have

ψ(r, r − σ)− ψ(r′, r′ − σ) =

∫
A(r,r′)

g(w − S) dw ≤
∫
A(r,r′)

g̃(w) dw ,

where as in the proof of Lemma 2.3 we write g̃(w) = g(w/2). The same calculation as in (2.8),

keeping in mind (2.5), gives then that for every 1/2 ≤ r, r′ ≤ 3/2 and every −1/4 ≤ σ ≤ 1/4∣∣ψ(r, r − σ)− ψ(r′, r′ − σ)
∣∣ ≤ C|r − r′| . (2.10)

Let us finally pass to the third and last main estimate, which consists in taking again −1/4 ≤ σ ≤
1/4, and showing that |σ| controls |J(σ)+J(−σ)|. Without loss of generality let us assume that

σ > 0. Observe that J(σ) = ψ(1 + σ, 1)− ψ(1, 1) is the integral of g over an annulus A(σ) with

O

σ σ

t

A(σ)A(−σ)

P−

P P+

O

σσ

t≈ t2/2

A(σ)A(−σ)

Figure 2. The (coloured) sets A(σ) and A(−σ) and the situation in the proof of (2.18).

radii 1 and 1+σ, the origin being at the internal boundary, while −J(−σ) = ψ(1, 1)−ψ(1−σ, 1)

is the integral of g over an annulus A(−σ) with radii 1 and 1−σ, the origin being at the external

boundary. Figure 2 shows the annuli A(σ) and A(−σ) near O with two different magnifications.

Let us start near the origin O, noticing that A(σ) and A(−σ) are close to the slabs

C+ =
{

(z1, z
′) ∈ R× RN−1 : 0 < z1 < σ

}
, C− =

{
(z1, z

′) ∈ R× RN−1 : −σ < z1 < 0
}
.

More precisely, fix any 0 < t < 2σ, and set S(t) = B(2σ) ∩ {(z1, z′) : |z′| = t}. Since of course∫
C+∩S(t)

g(w) dH N−1(w) =

∫
C−∩S(t)

g(w) dH N−1(w) ,
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keeping in mind that g is decreasing and by an immediate geometric argument (see Figure 2

left) we can estimate∣∣∣∣ ∫
A(σ)∩S(t)

g(w) dH N−1(w)−
∫
A(−σ)∩S(t)

g(w) dH N−1(w)

∣∣∣∣
≤ g(t)

(
H N−1((A(σ)∆C+

)
∩ S(t)

)
+ H N−1((A(−σ)∆C−

)
∩ S(t)

))
≤ 4(N − 1)ωN−1t

Ng(t) .

By integrating in t, then, we have∣∣∣∣ ∫
A(σ)∩B(2σ)

g(w) dw −
∫
A(−σ)∩B(2σ)

g(w) dw

∣∣∣∣ ≤ ∫ 2σ

t=0
4(N − 1)ωN−1t

Ng(t) dt

≤ 8(N − 1)ωN−1σ

∫ 2σ

0
g(t)tN−1 dt ≤ Cσ .

(2.11)

Let us now pass to consider the situation outside the ball B(2σ). As in the proof of (2.9), we

call SN (t) the sphere with radius t centered at 0, and we start considering the situation in the

2-dimensional case, with circle S2(t) and annuli A2(±σ). Let us fix any 2σ < t < 1/4. As

depicted in Figure 2, right, the circle S2(t) intersects A2(σ) in two symmetric arcs, and the same

is true for the intersection with A2(−σ). Let us call P, P+ and P− three intersection points, as

in the figure, and let us call θ, θ+ and θ− the directions of the segments OP, OP+ and OP−.

Notice that θ+ < θ < θ−, and the three directions are close to π/2 when σ � t � 1. A very

simple trigonometric calculation ensures that

cos θ = − t
2
, cos θ+ =

−t2 + 2σ + σ2

2t
, cos θ− =

−t2 − 2σ + σ2

2t
, (2.12)

and since 2σ < t < 1/4 this implies

θ < θ− <
3

4
π ,

π

2
< θ <

7

12
π ,

π

3
< θ+ < θ ,

in particular θ− − θ and θ − θ+ are both smaller than π/4, so that∣∣θ+ + θ− − 2θ
∣∣ =

∣∣(θ− − θ)− (θ − θ+)
∣∣ ≤ √2

∣∣ sin(θ− − θ)− sin(θ − θ+)
∣∣

≤ 2 sin θ
∣∣ sin(θ− − θ)− sin(θ − θ+)

∣∣
= 2
∣∣∣ cos θ+ + cos θ− − 2 cos θ − cos θ

(
cos(θ− − θ) + cos(θ − θ+)− 2

)∣∣∣
≤ 2

σ2

t
+ t
∣∣∣( cos(θ− − θ) + cos(θ − θ+)− 2

)∣∣∣
≤ 2

σ2

t
+
t

2

(
(θ− − θ)2 + (θ − θ+)2

)
≤ 2

σ2

t
+ t
(

(cos θ− − cos θ)2 + (cos θ − cos θ+)2
)
≤ 5

σ2

t
≤ 3σ .

(2.13)
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We can now calculate

H N−1(A(σ) ∩ SN (t)
)

=

∫ θ

α=θ+
(N − 1)ωN−1(t sinα)N−2t dα

= (N − 1)ωN−1t
N−1

∫ θ

α=θ+
(sinα)N−2 dα

= (N − 1)ωN−1t
N−1

(
(sin θ)N−2(θ − θ+) +

∫ θ

α=θ+
(sinα)N−2 − (sin θ)N−2 dα

)
,

and similarly

H N−1(A(−σ) ∩ SN (t)
)

(N − 1)ωN−1
= tN−1

(
(sin θ)N−2(θ− − θ) +

∫ θ−

α=θ
(sinα)N−2 − (sin θ)N−2 dα

)
,

so that∣∣∣H N−1(A(σ) ∩ SN (t)
)
−H N−1(A(−σ) ∩ SN (t)

)∣∣∣
(N − 1)ωN−1

≤ tN−1
(∣∣θ+ + θ− − 2θ

∣∣+K
)
, (2.14)

where

K =

∣∣∣∣ ∫ θ

θ+
(sinα)N−2 − (sin θ)N−2 dα−

∫ θ−

θ
(sinα)N−2 − (sin θ)N−2 dα

∣∣∣∣ .
We claim that

K ≤ 9(N − 2)σ . (2.15)

To show this inequality, we first observe that by (2.12) we have

|θ+ − θ| ≤
√

2| cos θ+ − cos θ| ≤ 2
σ

t
, |θ− − θ| ≤

√
2| cos θ− − cos θ| ≤ 2

σ

t
. (2.16)

We distinguish then two cases. If t ≥
√
σ, then again by (2.12) we have | cos θ+|, | cos θ−| ≤ 2t,

thus for every θ+ < α < θ− by (2.16) one has

|(sinα)N−2 − (sin θ)N−2| ≤ (N − 2)| sinα− sin θ| ≤ 2(N − 2)t|α− θ| ≤ 4(N − 2)σ ,

so that

K ≤ 16(N − 2)
σ2

t
≤ 8(N − 2)σ ,

and then (2.15) is proved in the case t ≥
√
σ. Suppose insted that 2σ < t <

√
σ. In this case,

for every θ+ < α < θ− by (2.16) we have that

|(sinα)N−2 − (sin θ)N−2| ≤ (N − 2)| sinα− sin θ| ≤ (N − 2)|α− θ| ≤ 2(N − 2)
σ

t
. (2.17)

Let us now call θ̂ and θ̂+ the directions obtained by a vertical mirror symmetry of θ and θ+,

that is, θ̂ = π − θ and θ̂+ = π − θ+. Observe that, again by (2.12) and since t <
√
σ, we have

θ+ < θ̂ < π/2 < θ < θ̂+ < θ−. Since by symmetry we have∫ θ̂

θ+
(sinα)N−2 − (sin θ)N−2 dα =

∫ θ̂+

θ
(sinα)N−2 − (sin θ)N−2 dα ,

by (2.17) and (2.13) we have

K ≤ 2(N − 2)
σ

t

(
(θ − θ̂) + (θ− − θ̂+)

)
= 2(N − 2)

σ

t

(
2(θ − θ̂) + (θ+ + θ− − 2θ)

)
≤ 2(N − 2)

σ

t

(
2
√

2(cos θ̂ − cos θ) + 3σ
)

= 2(N − 2)
σ

t

(
2
√

2t+ 3σ
)
≤ 9(N − 2)σ ,
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thus (2.15) is proved also in the case t <
√
σ. Inserting (2.15) into (2.14) and keeping in

mind (2.13), we have then for every 2σ < t < 1/4∣∣∣H N−1(A(σ) ∩ SN (t)
)
−H N−1(A(−σ) ∩ SN (t)

)∣∣∣ ≤ CtN−1σ .
Putting together this inequality and (2.11), we obtain the third main estimate, that is,

∣∣J(σ) + J(−σ)
∣∣ =

∣∣∣∣ ∫
A(σ)

g(w) dw −
∫
A(−σ)

g(w) dw

∣∣∣∣
≤ Cσ +

∫ 3

t=2σ
g(t)

∣∣∣H N−1(A(σ) ∩ SN (t)
)
−H N−1(A(−σ) ∩ SN (t)

)∣∣∣ dt
≤ Cσ + C

∫ 1/4

t=2σ
g(t)tN−1σ dt+ g(1/4)

(∣∣A(σ)
∣∣+
∣∣A(−σ)

∣∣) ≤ Cσ .
(2.18)

Thanks to the main estimates (2.9), (2.10) and (2.18), it is immediate to prove (2.7). The third

estimate in (2.7) is simply (2.18) with σ = |τ |. The first estimate in (2.7) comes by putting

together (2.10) with r = ρ+ τ , r′ = 1 + τ and σ = τ , and (2.9) with r = ρ and r′ = 1, getting∣∣ψ(ρ+ τ, ρ)− ψ(ρ, ρ)− J(τ)
∣∣ =

∣∣ψ(ρ+ τ, ρ)− ψ(ρ, ρ)− ψ(1 + τ, 1) + ψ(1, 1)
∣∣

≤
∣∣ψ(ρ+ τ, ρ)− ψ(1 + τ, 1)

∣∣+ |ψ(ρ, ρ)− ψ(1, 1)| ≤ C|ρ− 1| .

Finally, the second estimate in (2.7) comes by putting together (2.10) with r = 1, r′ = 1 − τ
and σ = −τ , and (2.18) with σ = |τ |, obtaining∣∣ψ(1, 1 + τ)− ψ(1, 1) + J(τ)

∣∣ ≤ ∣∣ψ(1, 1 + τ)− ψ(1− τ, 1)
∣∣+
∣∣J(−τ) + J(τ)

∣∣ ≤ C|τ | .
The proof is then concluded. �

We are now ready to give the proof of our main result.

Proof of Theorem A. Let ε > 0 be given, and let E be a minimizer of Fε among sets of volume

ωN . We already know by Lemma 2.1 that, if ε is small enough, then up to a translation E is

of the form E(u) given by (2.1) for a uniformly small function u ∈ W 1,2(SN−1). Let E+ and

E− be defined as in (2.4), and notice that the sets E+ ⊆ RN \ B and E− ⊆ B have the same

volume, and are done by points uniformly close to the sphere SN−1. We can write

R(E)−R(B) = 2R(B,E+)− 2R(B,E−) + R(E+) + R(E−)− 2R(E+, E−) . (2.19)

Using then the notation introduced in (2.6), we can also calculate

R(B,E+)−R(B,E−) =

∫∫
B×E+

g(z − w) dz dw −
∫∫

B×E−
g(z − w) dz dw

=

∫
E+

ψ(1, |z|) dz −
∫
E−

ψ(1, |z|) dz

=

∫
E+

ψ(1, |z|)− ψ(1, 1) dz −
∫
E−

ψ(1, |z|)− ψ(1, 1) dz .

(2.20)
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Let us now observe that, also by Lemma 2.4,∫
E+

ψ(1, |z|)− ψ(1, 1) dz =

∫
x∈∂B

∫ u+(x)

t=0
(1 + t)N−1

(
ψ(1, 1 + t)− ψ(1, 1)

)
dt dx

=

∫
∂B

∫ u+(x)

0
ψ(1, 1 + t)− ψ(1, 1) dt dx+O(‖u‖2L2)

= −
∫
∂B

∫ u+(x)

0
J(t) dt dx+O(‖u‖2L2) ,

and in the very same way∫
E−

ψ(1, |z|)− ψ(1, 1) dz = −
∫
∂B

∫ u−(x)

0
J(−t) dt dx+O(‖u‖2L2) .

The equality (2.20) becomes then

R(B,E+)−R(B,E−) = −
∫
∂B

∫ u+(x)

0
J(t) dt dx+

∫
∂B

∫ u−(x)

0
J(−t) dt dx+O(‖u‖2L2) ,

which inserted in (2.19) and recalling Lemma 2.3 gives

R(E)−R(B) = R(E+)− 2

∫
∂B

∫ u+(x)

0
J(t) dt dx

+ R(E−) + 2

∫
∂B

∫ u−(x)

0
J(−t) dt dx+O(‖u‖2W 1,2) .

(2.21)

In order to evaluate R(E+) and R(E−), we call for brevity

ϕ(x, y, s, t) = (1 + t)N−1(1 + s)N−1g
(
(1 + t)x− (1 + s)y

)
,

so that by definition

R(E+) =

∫
x∈∂B

∫ u+(x)

t=0

∫
y∈∂B

∫ u+(y)

s=0
ϕ(x, y, s, t) ds dy dt dx

=

∫
∂B

∫ u+(x)

0

∫
∂B

∫ u+(x)

0
ϕ(x, y, s, t) ds dy dt dx

+

∫
∂B

∫ u+(x)

0

∫
∂B

∫ u+(y)

u+(x)
ϕ(x, y, s, t) ds dy dt dx = K1 +K2 ,

where K1 and K2 denote the two terms of the last equality.

Let us start working on K2. As in the proof of Lemma 2.3, we can define g̃(v) = g(v/2) for

every v ∈ RN , and observe that for every x, y ∈ ∂B and s, t ∈ (−1/2, 1/2) one has

g
(
(1 + t)x− (1 + s)y

)
≤ g̃(y − x) .

As a consequence, for every pair x, y ∈ ∂B, we can estimate∫ u+(x)

0

∫ u+(y)

u+(x)
ϕ(x, y, s, t) ds dt+

∫ u+(y)

0

∫ u+(x)

u+(y)
ϕ(x, y, s, t) ds dt

= −
∫ u+(y)

u+(x)

∫ u+(y)

u+(x)
ϕ(x, y, s, t) ds dt ≥ −

(
3

2

)2N−2 ∫ u+(y)

u+(x)

∫ u+(y)

u+(x)
g̃(y − x) ds dt .
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Inserting this estimate in the definition of K2, and applying again Lemma 2.2 with g̃ in place

of g, which is admissible by (2.5), we have

K2 ≥ −
32N−2

22N−1

∫
∂B

∫
∂B

(
u+(y)− u+(x)

)2
g̃(y − x) ≥ −C‖u‖2W 1,2 , (2.22)

where as usual C is a constant depending only on N and g.

Let us now pass to evaluate K1, which can be rewritten as

K1 =

∫
∂B

∫ u+(x)

0
(1 + t)N−1

∫
B(1+u+(x))\B(1)

g
(
(1 + t)x− w

)
dw dt dx

=

∫
∂B

∫ u+(x)

0
(1 + t)N−1

(
ψ(1 + u+(x), 1 + t)− ψ(1, 1 + t)

)
dt dx

=

∫
∂B

∫ u+(x)

0
ψ(1 + u+(x), 1 + t)− ψ(1, 1 + t) dt dx+O(‖u‖2L2) .

Rewriting ψ(1 + u+(x), 1 + t)− ψ(1, 1 + t) as

ψ(1 + u+(x), 1 + t)− ψ(1 + t, 1 + t) + ψ(1 + t, 1 + t)− ψ(1, 1 + t)

and keeping in mind Lemma 2.4, we obtain

K1 ≥
∫
∂B

∫ u+(x)

0
J(u+(x)− t) + J(t)− 3Cu+(x) dt dx+O(‖u‖2L2)

=

∫
∂B

∫ u+(x)

0
J(u+(x)− t) + J(t) dt dx+O(‖u‖2L2) = 2

∫
∂B

∫ u+(x)

0
J(t) dt dx+O(‖u‖2L2) .

Since R(E+) = K1 +K2, this equality and (2.22) give

R(E+) ≥ 2

∫
∂B

∫ u+(x)

0
J(t) dt dx− C‖u‖2W 1,2 .

The very same calculations with E− in place of E+ give

R(E−) ≥ −2

∫
∂B

∫ u−(x)

0
J(−t) dt dx− C‖u‖2W 1,2 .

Putting these last two estimates into (2.21), we have then R(E)−R(B) ≥ −C‖u‖2W 1,2 . By (2.2),

we have then

Fε(E) ≥ Fε(B) +
(
CN − εC

)
‖u‖2W 1,2 ,

hence of course the unique minimizer of the energy Fε is the ball B as soon as ε� 1. �
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