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Abstract We study the exact boundary controllability of a class of nonlocal
conservation laws modeling traffic flow. The velocity of the macroscopic dy-
namics depends on a weighted average of the traffic density ahead and the
averaging kernel is of exponential type. Under specific assumptions, we show
that the boundary controls can be used to steer the system towards a target
final state or out-flux. The regularizing effect of the nonlocal term which leads
to the uniqueness of weak solutions enables us to prove that the exact control-
lability is equivalent to the existence of weak solutions to the backwards-in-
time problem. We also study steady states and the long-time behavior of the
solution under specific boundary conditions.
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1 Introduction

Conservation laws with nonlocal fluxes arise in many areas of applications
and have thus attracted much attention in recent years: e.g., traffic flow [46,
24,22,23,21,57], crowd dynamics [2,33,31,32], sedimentation phenomena [13],
slow erosion of granular matter [4,29,28], materials with fading memory effects
[18], biological and industrial models [34]. However, there are few papers deal-
ing with the controllability and long-time behaviour of solutions of nonlocal
conservation laws. For a very specific nonlocal model describing manufactur-
ing systems, where the velocity is strictly positive and the nonlocal term is
independent of the spatial domain, some results on state and out-flux control-
lability and asymptotic exponential stabilization have been obtained in [41,
35]. In [57] for nonlocal dynamics with also backwards looking nonlocal term
the authors study the well-posedness and stability of classical solutions on
a ring road, i.e., with periodic boundary datum by using a finite difference
approximation of solutions. They also succeed in showing the exponential sta-
bility of the solution to the steady state (constant) solution and give a counter
example that for constant nonlocal kernel stability cannot be expected. This
is due to the existence of traveling wave solutions and heavily depends on the
used kernel (compare also [54]). Indeed, in [54] again for periodic solutions the
author succeed in showing the exponential stability for every monotone kernel
and a linear velocity function to the steady state solution.

In this contribution, we investigate the controllability of a class of nonlo-
cal conservation laws with explicit space-dependent nonlocal term (on a one-
dimensional bounded domain) modeling traffic flow: the velocity of the density
at a given space-time point depends on a weighted average of the traffic density
ahead (see Fig. 1.1). We are motivated by the question whether it is possible
to steer the traffic state on a road towards a target end-state or as to reach a
given out-flux.

The model is quite similar to the problems considered in [57,54], however,
we do not consider periodic solutions but instead a control at the entrance
point of the road in terms of the density and at the exit point of the road
in terms of the velocity (realized by an appropriate definition of the nonlocal
term). This precise model had been introduced in [60] and been studied for
its analytical properties like existence and uniqueness of weak solutions and
maximum principle.

It is described by the following initial-boundary value problem.
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Fig. 1.1 The nonlocal impact (in gold) in traffic flow modeling. The red car looks ahead
within the golden region and, taking into account the presence of a high car density far
away, adjusts its velocity. Inflow and the speed of the cars leaving the road segment are
located at x = 0 and x = 1, respectively. The green areae at the left and right side of the
road segment visualize the respective boundary datum, u` and ur .

Definition 1.1 (The nonlocal dynamics) We consider the following
initial-boundary value problem:

∂tρ(t, x) + ∂x(V (W[ρ](t, x))ρ(t, x)) = 0, (t, x) ∈ ΩT ,(1.1)

ρ(0, x) = ρ0(x), x ∈ (0, 1),(1.2)

V (W[ρ](t, 0))ρ(t, 0) = V (W[ρ](t, 0))u
`
(t), t ∈ (0, T )(1.3)

with ΩT := (0, T )× (0, 1), supplemented by the nonlocal operator

W[ρ](t, x) := 1
η

∫ ∞
x

e−
y−x
η

({
ρ(t, y) if y < 1

ur (t) if y ≥ 1

)
dy,(1.4)

for (t, x) ∈ ΩT and ρ : Ω̄T → [0, 1]. Here, ρ0 : (0, 1) → [0, 1] is the initial
datum, u

`
: (0, T ) → [0, 1] is the (entering) boundary datum at x = 0; u

r
:

(0, T ) → [0, 1] is the right hand side nonlocal impact; V : [0, 1] → R≥0 is
the velocity; η ∈ R>0 is the nonlocal average parameter; and the exponential
function in the nonlocal operator is the weight of the nonlocal term.

At the left-hand side of the road, the entry point, we prescribe an in-flux
boundary condition which can be interpreted as an on-ramp of a road and can
be used to control the dynamics as an on-ramp metering. The function u

r
in

the nonlocal operator W in Eq. (1.4) can be interpreted as a parameter which
influences the velocity with which the right hand side boundary datum leaves
at x = 1. Due to the nonlocal term, it also influences the velocity on the entire
link. The need for u

r
being defined outside of the considered domain ΩT stems

from the fact that the nonlocal term – dependent on the nonlocal weight –
requires input from (1,∞). It can be used to model traffic lights: if u

r
= 1,

no density leaves (red light); if u
r

= 0, the adjacent road is fully evacuated
and density can leave as fast as possible (green light). Thus, for any control
purpose, both the left-hand side boundary datum u

`
as well as the right-hand

term u
r

can be used (compare [9] for the corresponding local dynamics on
bounded domains).

The choice of an averaging kernel of exponential type is motivated by the
analysis in [16], where it has been shown that – under specific additional as-
sumptions on input datum and velocity V – the solution of the Cauchy problem
converges to the entropy solution of the corresponding conservation law as the
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nonlocal impact η approaches zero. In traffic models however, the exponential
kernel is not really standard: indeed, one would consider a kernel with compact
support as cars look ahead within a finite space horizon. However, this kind
of behavior is nicely approximated by an exponentially decaying kernel. The
claimed results should hold true for more general kernels (compare [59]); we
will not detail this in the present contribution.

Moreover, due to the choice of an exponential kernel, the boundary condi-
tion which is prescribed on the flux in Eq. (1.3) can be given directly in terms
of density, i.e. as

ρ(t, 0) = u
`
(t), t ∈ [0, T ],

as long as min{‖ρ0‖L1((0,1)), ur (t)} < 1 for all t ∈ [0, T ]. Indeed, in this case,
the velocity V is never null at the boundary (and also nowhere else) so that
the boundary datum always enters the domain and is thus always attained.

1.1 Literature on the control of conservation laws

The previous boundary control results on nonlocal conservation laws are only
focused on a simpler version of the equation presented in Definition 1.1 that
was introduced in [8] to model semiconductor manufacturing systems:

∂tρ(t, x) + ∂x(ρ(t, x)V (W [ρ](t))) = 0, (t, x) ∈ ΩT ,
ρ(0, x) = ρ0(x), x ∈ (0, 1),(1.5)

V (W (t))ρ(t, 0) = u(t), t ∈ (0, T ),

with a strictly positive velocity function V ∈ C1(R;R>0), namely

V (s) = 1
1+s , s ≥ 0, and W [ρ](t) =

∫ 1

0

ρ(t, x) dx.

The difficulties in comparison to the latter model are due to the fact that,
for the nonlocal conservation law we consider in Definition 1.1, the nonlocal
term depends also on the spatial component, i.e. the spatial dependency is not
integrated out as in Eq. (1.5). In [40,72,35,41,42,20], for the open-loop sys-
tem, the authors study an optimal control problem, state controllability and
out-flux controllability; and for the closed-loop system, they use a Lyapunov
function approach to prove some exponential stabilization results. These re-
sults were generalized in [25], where (local) state controllability and out-flux
controllability results were established for a space-dependent velocity (but still
space-independent nonlocal term) V (x,W [ρ](t)). In [57,54] the authors con-
sider indeed the dynamics in Definition 1.1, however on a ring road which
makes boundary datum in Eq. (1.3) and u

r
as part of the nonlocal operator

in Eq. (1.4) unnecessary. They show that for specific kernels stability cannot
be expected and for monotonically decreasing kernel and linear velocity func-
tion exponential stability to the constant steady state solution holds (see also
Section 1).
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The optimal control problem for an analogous system of scalar nonlo-
cal conservation laws on networks that models a highly re-entrant multi-
commodity manufacturing system was analyzed in [50].

A more general conservation law with explicitly space dependent nonlocal
flow describing a supply chain model and the description of pedestrian flows
was considered in [30].

On the other hand, questions related to the control of local scalar conser-
vation laws and systems have received much attention throughout the past
several decades and, consequently, the literature is vast. We refer the reader
to [37,51,61] and references therein for an overview of controllability results
for hyperbolic conservation laws, in the case of solutions without shocks; and
to [1,7,6,5,65] in the case of solutions developing shocks. For asymptotic sta-
bilization of hyperbolic systems, see [64,69,36,38,39,74,75]. The nodal profile
controllability for quasi-linear hyperbolic systems has been considered in [49,
48,62,63].

1.2 Outline of the paper

This paper is organized as follows. In Section 2, we recall some preliminary
results on the well-posedness for the class of nonlocal conservation laws intro-
duced in Definition 1.1.

In Section 3 we prove that any end state can be reached from accordingly
defined initial and boundary datum on a sufficiently small time horizon. This
phenomenon is exclusively “nonlocal”: for local conservation laws, the reach-
able targets are characterized by the Oleinik entropy condition [67,3]. We also
provide some numerical examples to illustrate the result.

In Section 4, we discuss the exact controllability to a given end-state or
out-flux of the nonlocal model with boundary controls on the left (in-flux)
and on the right (out-flux) of the domain. We prove that it is equivalent
to the existence of a solution of the corresponding backwards-in-time nonlocal
conservation law. This is related to the fact that weak solutions of the nonlocal
conservation law are unique so that we have no loss of information over time.

We study the long-time behavior of solutions in Section 5, when constant
boundary conditions are prescribed and the initial condition is suitably cho-
sen. We show that the solution converges to the corresponding constant steady
state. Some numerical simulations verify the results and suggest that the re-
sults should hold for every initial datum.

In Section 6, we state existence and uniqueness of steady state solutions
for constant but not necessarily identical constant boundary datum u

`
6= u

r
.

Finally, in Section 7, we conclude this contribution and present some open
problems.
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2 Preliminaries and basic results

We first recall some well-known results on the existence and uniqueness of
solutions to the initial-boundary value problem described in Definition 1.1. To
this end, we introduced the following (regularity) assumptions.

Assumption 1 (Assumption on the data of Definition 1.1) For T ∈
R>0 we assume

Nonlocal parameter: η ∈ R>0

Initial datum: ρ0 ∈ L∞((0, 1); [0, 1]);
Velocity: V ∈W 1,∞((0, 1);R≥0) : V ′ 5 0, V ′ 6≡ 0,

(
V (s) = 0 ⇐⇒ s = 1

)
;

Boundary: (u
`
, ur ) ∈ L∞((0, T ); [0, 1])2.

Following [60, Definition 2.4], we give the following definition of solutions:

Definition 2.1 (Weak solutions) We say that ρ ∈ C([0, T ];L1((0, 1))) ∩
L∞((0, T );L∞((0, 1))) is a weak solution to the initial-boundary value problem
introduced in Definition 1.1 if for every ϕ ∈W 1,∞((0, T )×(0, 1)) with ϕ(T, ·) =
0 and ϕ(·, 1) = 0, we have that

0 =

∫∫
ΩT

(
∂tϕ(t, x) + V (W[ρ])(t, x)∂xϕ(t, x)

)
ρ(t, x) dxdt

+

∫ 1

0

ρ0(x)ϕ(0, x) dx+

∫ T

0

ϕ(t, 0)V (W[ρ])(t, 0)u
`
(t) dt.

(2.1)

Existence and uniqueness of weak solutions have been investigated in [60].
We recall the main well-posedness result in the following theorem.

Theorem 2.1 (Existence, uniqueness, maximum principle) Given
Assumption 1, the nonlocal initial-boundary value problem introduced in
Definition 1.1 admits a unique weak solution ρ ∈ C([0, T ];L1((0, 1))) ∩
L∞((0, T );L∞((0, 1))) in the sense of Definition 2.1. Moreover, the solution
can be stated in terms of characteristics for (t, x) ∈ ΩT as

(2.2) ρ(t, x)=

{
ρ0(ξw∗(t, x; 0)) ∂2ξw∗(t, x; 0), x ≥ ξw∗(0, 0; t)

u(ξw∗ [t, x]−1
max(0)) ∂2ξw∗(t, x; ξw∗ [t, x]−1

max(0)) x ≤ ξw∗(0, 0; t)

where ξ : [0, T ]× [0, 1]× [0, T ]→ R≥0 is the characteristic curve that satisfies

ξw∗(t, x; τ) = x+

∫ τ

t

V (w∗(s, ξw∗(t, x; s))) ds, (t, x, τ) ∈ ΩT × [0, T ],(2.3)

ξ−1
max[t, x] denotes the time-inverted characteristics tracing back the points

(t, x) ∈ {(t, x) ∈ ΩT : x ≤ ξw̃(0, 0; t)} to the boundary ([60, Definition 2.5,
Equation (2.3)]) and w∗ ∈ L∞((0, T );W 1,∞((0, 1))) is the unique solution of
a fixed-point equation on (t, x) ∈ ΩT given in [60, Theorem 3.1, Eq. (3.2)]. In
addition, the following maximum principle holds for a.e. (t, x) ∈ ΩT

0 ≤ ρ(t, x) ≤ max{‖ρ0‖L∞((0,1)), ‖u`‖L∞((0,t)), ‖ur‖L∞((0,t))}.(2.4)
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Proof The proof can be found in [60, Theorem 3.1, Theorem 4.2, Corollary
5.9] for a compactly supported nonlocal kernel being monotonically decreasing.
However, the exponential kernel considered in Definition 1.1 actually simplifies
the analysis and the results can be obtained analogously. We omit the details.

ut

We remark that, in contrast to local conservation laws (see [44,15,53]),
nonlocal models of this kind do not require an entropy condition to select a
unique solution. Having stated these fundamental results, we study the con-
trollability properties of the nonlocal weak solutions.

3 Reachability for sufficiently small times

In this section, we show that, for any given function in L∞((0, 1); [0, 1]), we
can find suitable boundary and initial datum so that the solution of the corre-
sponding nonlocal conservation law reaches the target at a (sufficiently small)
time T > 0. The key idea for the proof is to consider the backward-in-time
problem, which solvability is equivalent to the controllability of the given for-
ward problem. Thanks to the results in [58], the backward problem is solvable
for any terminal data for sufficiently small time horizon. This is due to the
fact that the nonlocal velocity function is for small time Lipschitz-continuous
(independently of the specific nonlocal weight and area of integration as long
as the initial datum is essentially bounded).

This result is in contrast to local conservation laws where the attainable
set necessarily needs to satisfy an Oleinik inequality [3,67] also for arbitrary
small time preventing the dynamics to have jumps downwards (in the case
where the flux function is strictly concave) and thus postulating a rarefaction
wave getting less steep over time.

Theorem 3.1 (Exact controllability on small time horizon) For every
ρdes ∈ L∞((0, 1); [0, 1)) with ‖ρdes‖L∞((0,1)) < 1 there exist a time T ∈ R>0,
admissible controls u

`
, u

r
∈ L∞((0, T ); [0, 1)) and admissible initial datum ρ0 ∈

L∞((0, 1); [0, 1)) such that the corresponding weak solution

ρ ∈ C
(
[0, T ];L1((0, 1))

)
∩ L∞ ((0, T );L∞((0, 1)))

to the conservation law in Definition 1.1 satisfies

ρ(T, ·) ≡ ρdes.

Proof For u
r
≡ c with c ∈ [0, 1) there exists – as shown in [58, Theorem 2.20]

– a sufficiently small time-horizon T ∈ R>0 such that the following auxiliary
end-value problem

∂tp(t, x) + ∂x
(
V (W[p](t, x))p(t, x)

)
= 0, (t, x) ∈ (0, T )× R,

p(T, x) = ρdes(x), x ∈ (0, 1),(3.1)

p(T, x) = c, x ∈ R \ (0, 1),
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ρ0(x) 1(0, 0)−1 2

p(T ∗, x) = ρdes(x) p(T ∗, x) = cp(T ∗, x) = c

x

u` (t)

(1, T ∗)(0, T ∗)

Fig. 3.1 Transformation of the end boundary value problem into a backward in time Cauchy
problem on R. In gold the given desired state and the “boundary” data, in red the corre-
sponding datum ρ0 and u` which gives – forward in time – the desired state ρdes.

with

W[p](t, x) := 1
η

∫ ∞
x

exp
(
x−y
η

)
p(t, y) dy,(3.2)

admits a unique solution p ∈ C([0, T ];L1
loc(R)). Moreover, by [58, Lemma 2.6,

Item 2] there exists d ∈ R≥0 (depending on η, ρdes, c and V ) such that

‖p(t, ·)‖L∞(R) ≤ max{‖ρdes‖L∞((0,1)) , c}ed(T−t).

The key idea of interpreting the control problem as a Cauchy problem on R
backwards in time is illustrated in Fig. 3.1. Thus, for

T ≤ 1
d log

(
max{‖ρdes‖L∞((0,1)) , c}−1

)
,

we obtain ‖p(t, ·)‖L∞(R) ≤ 1 for all t ∈ [0, T ]. Consequently, by choosing

u
`
(t) = p(t, 0), t ∈ (0, T ),(3.3)

u
r
(t) = c, t ∈ (0, T ),(3.4)

ρ0(x) = p(0, x), x ∈ (0, 1),(3.5)

the boundary and initial data are admissible and the solution to the corre-
sponding IVP (1.1) satisfies ρ(T, ·) ≡ ρdes on (0, 1). Note that u

`
is given by

p(·, 0) which can be evaluated as an L1 function at x = 0 as the backwards
“velocity” is not zero. ut

Remark 3.1 (Surjectivity of state to control map over small times) We remark
that the statement in Theorem 3.1 amounts to⋃

t∈(0,T ]

⋃
u
`
∈L∞((0,T );[0,1))

ur∈L
∞((0,T );[0,1))

ρ0∈L∞((0,1);[0,1))

ρ[ρ0, u` , ur ](t, ·) = L∞((0, 1); [0, 1)),

where ρ[ρ0, u` , ur ] ∈ C([0, T ];L1((0, 1))) ∩ L∞((0, T );L∞((0, 1))) denotes the
weak solution of the nonlocal conservation law in Definition 1.1 with initial
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datum ρ0, left hand side boundary datum u
`

and nonlocal right hand side ur .
It thus states the surjectivity of the control to state map when uniting over
sufficiently small times. Note that this is in contrast to the local dynamics as
pointed out before, where for strictly concave flux – due to Oleinik’s entropy
condition [67,3] – the jumps downwards are “smoothed” over time.

Example 3.1 (Numerical example for exact controllability on a sufficiently
small time horizon) We consider a target function

ρdes :≡ 1
2 + 1

4χ
(

1
4 ,

1
2

) − 1
4χ

(
1
2 ,

3
4

)
We verify numerically that we can find suitable initial ρ0 and boundary data
mu

`
, u

r
such that ρ(T, ·) ≡ ρdes for this sufficiently small time horizon T = 0.6

(see Fig. 3.2). We remark that, for local conservation laws, Oleinik’s entropy
condition would prevent the reachability of this state. It can also be observed
the important role of the nonlocal parameter η ∈ R>0. The smaller the η
(here η ∈ {1, 0.9, 0.8} in the given example the more the solution increases
backwards over time. This is illustrated in the first three rows of Fig. 3.2 and
in particular the boundary datum so that for η = 0.8, the backward solution
has already exceeded 1 and is thus not admissible for T = 0.6. The fourth
row in Fig. 3.2 represents the solution and control for a sufficiently smaller
η = 0.1. Here, the final time needs to be chosen much smaller, T = 0.05 and
even then the backwards solution already reaches the bound 1 and would cease
to exist if we would consider it on a sufficiently larger time horizon. Due to
the short time horizon in the fourth row, the significant changes in the desired
datum ρdes are tackled mainly by the initial datum and the boundary datum
is almost constant. Due to the short time it can also be seen in the middle
pictures the relation between desired state and initial state where the initial
state is moved slightly before the desired state but also needs to compensate
for the nonlocal term, necessitating the peaks at the jump discontinuities.

4 Exact boundary controllability and time-inverted dynamics

In this section, we consider two control problems:

– steering a given initial state towards a prescribed target state,
– achieve a prescribed out-flux on the right-hand side of the road.

In both cases, we show that exact controllability holds if and only if the cor-
responding backwards-in-time dynamics admits a weak solution and satisfies
some bounds. This result is essentially due to the fact that, for nonlocal conser-
vation laws, there is no loss of information (with regard to initial and boundary
data), i.e. initial and left side boundary data can be uniquely identified from a
given final state, right boundary datum and right side nonlocal impact. This
is also related to the key result that weak solutions of nonlocal conservation
laws are per se unique and no entropy condition is required (see [58,60]).
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Fig. 3.2 Illustration of Example 3.1 for different η ∈ {0.8, 0.9, 1, 0.1}. Left: The so-
lution with the proper boundary and initial datum to reach the desired state ρdes ≡
1
2

+ 1
4
χ(0.25,0.5) − 1

4
χ(0.5,0.75) for T = 0.6. Middle: Desired state ρdes and the corre-

sponding initial state ρ0 to steer the system to ρdes. Right: Boundary data, i.e. u` , ur , to
steer the system to ρdes. Colorbar: 0 1

Our approach is reminiscent of the one used to obtain an exact controlla-
bility result for the linear transport equation (see [38, Section 2.1])

∂tρ(t, x) + ∂xρ(t, x) = 0, (t, x) ∈ (0, T )× (0, 1),

ρ(0, x) = ρ0(x), x ∈ (0, 1),

ρ(t, 0) = u(t), t ∈ (0, T ),
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namely, given ρ0 ∈ Lp((0, 1)) with p ∈ R≥1 ∪ {∞} and a target profile ρdes ∈
Lp((0, 1)), a control u ∈ Lp((0, 1)) exists so that ρ(T, ·) = ρdes if and only
if T ≥ 1. The key of the proof is observing that the solution of the initial-
boundary value problem is given explicitly by

ρ(t, x) :=

{
ρ0(x− t), (t, x) ∈ (0, 1)× (0, T ), t ≤ x,
u(t− x), (t, x) ∈ (0, 1)× (0, T ), t > x;

therefore, if T ≥ 1, we can choose

u(t) :=

{
ρdes(T − t), t ∈ (T − 1, T ),

0, t ∈ (0, T − 1),

and then the solution satisfies for (t, x) ∈ (0, T ) × (0, 1) ρ(t, x) = u(T − x) =
ρdes(x). In other words, after the initial data (which moves along characteris-
tics) has left the domain, we can inject the solution of the backward-in-time
problem having ρdes as initial data in the left-hand boundary.

Since the waves of hyperbolic equations have finite speed of propagation
and the control is applied at the boundary, an exact controllability result
requires that the time T horizon must be sufficiently large. Similarly, in our
nonlocal model, the first crucial step is to know that the initial state leaves the
domain in finite time. This seems very natural when prescribing as right-hand
side boundary term a density ur ∈ [0, 1), which then necessarily pulls out the
initial data and for non-zero velocities. However, contrary to the linear case, for
the nonlocal conservation law considered here the initial datum – even after
leaving the domain – has still an impact on the solution as it has changed
the shape of the solution stemming from the boundary datum through the
nonlocal term.

The result about initial datum leaving the domain is detailed in the fol-
lowing Lemma and is illustrated in Fig. 4.1.

Lemma 4.1 (Initial datum leaving domain in finite time) Given As-
sumption 1 and a large enough T ∈ R>0, assume that ‖u

r
‖L∞((0,T )) < 1. Then,

the initial datum – evolving with the dynamics in Definition 1.1 – leaves the
domain in finite time, i.e. the corresponding characteristics ξ as in Eq. (2.3)
emanating from (0, 0) satisfies

(4.1) ∃!T ∗ ∈ (0, T ] : ξw̃(0, 0;T ∗) = 1 with T ∗ ≤ V
(

1− 1−‖ur‖L∞((0,T ))

e

)−1

.

Proof We show that the zero characteristics moves with positive speed which
is bounded away from zero. To this end, we use the maximum principle in
Theorem 2.1 and estimate the nonlocal operator in Eq. (1.4) as follows for
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(t, x) ∈ ΩT :

W[q](t, x) = 1
η

∫ ∞
x

e−
y−x
η

({
ρ(t, y) if y < 1

u
r
(t) if y ≥ 1

)
dy

≤ 1
η

∫ ∞
0

e−
y
η

({
1 if y < 1

ur (t) if y ≥ 1

)
dy

= 1
η

∫ 1

0

e−
y
η dy +

u
`
(t)

η

∫ ∞
1

e−
y
η dy

= 1− e−1 + u
r
(t)e−1 = 1− 1−ur (t)

e ≤ 1− 1−‖ur‖L∞((0,T ))

e .

Using this estimate, which is uniform in (t, x) ∈ ΩT , and the monotonicity of
V in Assumption 1, we can bound the zero characteristics in Eq. (2.3) from
below:

ξw∗(0, 0; t) =

∫ t

0

V (W[q](s, ξ[0, 0](s))) ds(4.2)

≥
∫ t

0

V
(

1− 1−‖ur‖L∞((0,T ))

e

)
ds = tV

(
1− 1−‖ur‖L∞((0,T ))

e

)
.(4.3)

As V is non-zero at 1 − 1−‖ur‖L∞((0,T ))

e (again by Assumption 1), we end up
with the upper bound

(4.4) T̃ = V
(

1− 1−‖ur‖L∞((0,T ))

e

)−1

when the initial datum has necessarily left the domain ΩT . This also ex-
plains the assumption of T being sufficiently large, as we require T ≥ T̃ . As
ξw∗(0, 0; ·) ∈ C([0, T ]), i.e. is continuous a T ∗ ∈ (0, T ] satisfying ξw̃(0, 0;T ∗) =
1 indeed exists. As t 7→ ξw∗(0, 0; t) is also strictly monotone, such a T ∗ is
unique. ut

Remark 4.1 (Improved upper bounds on T ∗ for affine linear velocities) In
particular, in the case of an affine linear Greenshields velocity function (see
[47]), i.e. V (s) ≡ 1 − s, we obtain an improved estimate on the bound in
Eq. (4.4). We make the same ansatz as in Eq. (4.3) and write for the time
derivative of the zero characteristics

d
dtξw∗(0, 0; t)

= V
(
W[ρ, u

r
](t, ξw∗(0, 0; t))

)
= 1−W[ρ, u

r
](t, ξw∗(0, 0; t))

= 1− 1
η

∫ ∞
ξw∗ (0,0;t)

e
ξw∗ (0,0;t)−y

η

({
ρ(t, y) if y ≤ 1

u
r
(t) if y ≥ 1

)
dy
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taking advantage of the maximum principle (2.4) in Theorem 2.1

≥ 1− 1
η

∫ ∞
ξw∗ (0,0;t)

e
ξw∗ (0,0;t)−y

η

({
max{‖ρ0‖L∞((0,1)), ur (t)} if y ≤ 1

u
r
(t) if y ≥ 1

)
dy

= 1− max{‖ρ0‖L∞((0,1)),ur (t)}
η

∫ 1

ξw∗ (0,0;t)

e
ξw∗ (0,0;t)−y

η dy − ur (t)
η

∫ ∞
1

e
ξw∗ (0,0;t)−y

η dy

= 1 + max{‖ρ0‖L∞((0,1)), ur (t)}
(

e
ξw∗ (0,0;t)−1

η − 1
)
− u

r
(t)e

ξw∗ (0,0;t)−1

η

= e
ξw∗ (0,0;t)−1

η
(

max{‖ρ0‖L∞((0,1)), ur (t)} − ur (t)
)

+ 1−max{‖ρ0‖L∞((0,1)), ur (t)}

≥ e
ξw∗ (0,0;t)−1

η max{‖ρ0‖L∞((0,1)) − ‖ur‖L∞((0,T )), 0}
+ 1−max{‖ρ0‖L∞((0,1)), ‖ur‖L∞((0,T ))}.

Recalling that ξ(0, 0; 0) = 0 and solving the previous differential inequality in
the case of equality, we obtain as solution y the following expression

yη(t) = 1 + bt− η ln
(
a
(
1− e

bt
η
)

+ be
1
η

)
+ η ln(b),

a := max{‖ρ0‖L∞((0,1)) − ‖ur‖L∞((0,T )), 0},
b := 1−max{‖ρ0‖L∞((0,1)), ‖ur‖L∞((0,T ))}.

Solving for T ∗ ∈ R>0 such that y(T ∗) = 1 gives the upper bound on T ∗

T ∗improved(η) = η
b ln

(
a+b exp( 1

η )

a+b

)
.(4.5)

Let us compare the results in Lemma 4.1 with the improved estimate in this
remark. The velocity function is required to satisfy V (x) = 1 − x, x ∈ [0, 1]
and we assume that ρ0 ≡ 1

2 and ur ≡ 0. Then, we obtain for the estimate in
Eq. (4.1) the upper bound on T ∗( which we call T ∗1 and which is given by

T ∗1 = 1

1−(1− 1
e )

= e.

Applying in comparison Eq. (4.5), we obtain for η ∈ R>0

T ∗improved(η) ≤ 2η ln
(

1
2 (1 + e

1
η )
)
.

which is illustrated for η ∈ (0, 2) in Fig. 4.1. Clearly the improved estimate on
T ∗, i.e. T ∗improved(η), η ∈ R>0 is sharper. Particularly, it also depends on the
nonlocal reach η ∈ R>0. As the right hand side datum is minimal here, it is
expected that with rising η the nonlocal term W (t, ξ[0, 0](t)) becomes smaller
as more and more the nonlocal right hand side ur influences the nonlocal term.
Thus, the velocity is higher and the upper bound on the time when the initial
datum has left becomes smaller.
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0 0.5 1
0

1

2

e

x

t

y2
y1
y0.5
y0.1

Eq. (4.4)

0.5 1 1.5 2 2.5 3
0

1

2

e

η

T ∗improved(η)

T ∗1

Fig. 4.1 Illustration of the different upper bounds for the initial datum leaving the domain.
We chose ur = 0 and ρ0 ≡ 1

2
. Left: The different upper bounds for the zero characteristics

t 7→ ξ(0, 0; t). The dashed red line is the – rather coarse – estimate uniform in η given in
Lemma 4.1. The solid lines, which represent the improved upper bounds on T ∗ for affine
linear velocity functions, are with higher accuracy. Right: The improved bounds on T ∗ for
different values of the nonlocal reach η. As η becomes larger, the upper bound becomes
smaller as we have initialized the right hand side ur as being zero so that for larger η this
zero becomes more and more dominant and leads to a increased velocity approaching 1 in
the limit and consequently limη→∞ T ∗(η) = 1.

Remark 4.2 (Remark 4.1 for η → 0, i.e. local conservation laws) The upper
bound T ∗improved(η) Eq. (4.5) on T ∗ as in Eq. (4.1) (the time, when the initial
datum has left the domain) is a function of η ∈ R>0. For η → 0 we formally
obtain the local conservation law. For specific cases, i.e. for the Cauchy problem
on R, affine velocities and initial datum bounded away from zero it has been
proved that the solution of the Cauchy problem associated to the nonlocal
conservation law converges to the entropy solution of the corresponding local
conservation law [16] (see also [27] for the nonlocal-to-local limit of the same
equation with additional (vanishing) viscosity effects). Although this cannot
easily be extended to the initial boundary value problem considered in this
work, it is still interesting to compute the limit for η → 0 of the upper bound
T ∗improved(η), η ∈ R>0. We obtain

lim
η→0

T ∗improved(η) = lim
η→0

η
b ln

(
a+b exp( 1

η )

a+b

)
= 1

b ,

(compare also Fig. 4.1 for b = 1
2 ). Indeed, this is then an upper bound for

the time the local conservation law needs to transport the mass of the initial
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datum, i.e.,
∫ 1

0
ρ0(x) dx, out of the domain. For constant initial datum and

constant right hand side this estimate is actually sharp.

Having shown that for a reasonable nonlocal right hand side u
r

the initial
datum leaves the domain in finite time we can state our main result in this
section:

Theorem 4.1 (Equivalence controllability/time-inverted dynamics)
Let Assumption 1 and the following hold:

– ρ0 ∈ L∞((0, 1); [0, 1])
– ur ∈ L∞(R>0; [0, c]), c ∈ [0, 1)

– ρdes ∈ L∞((0, 1); [0, 1))
– ρr ∈ L∞((0,∞); [0, 1])

Define

T ∗ := T ∗ρ0,ur
:= arg- min

t∈R≥0

{
ξ[ρ0, ur ](0, 0; t) = 1

}
,(4.6)

Ξρ0,ur := {(t, x) ∈ ΩT∗ : ξ[ρ0, ur ](0, 0; t) < x < 1},(4.7)

v[ρ, ur ](t, x) :=


ρ(t, x) if (t, x) ∈ Ξρ0,ur ,
ur (t) if x > 1,

0 otherwise,

(t, x) ∈ Ξ ∪ [0, T ∗]× R>1,(4.8)

W̃[p, v](t, x) := 1
η

∫ ∞
x

e
x−y
η

({
p(t, y) (t, y) ∈ ΩT∗\Ξρ0,ur
v[ρ, ur ](t, y) otherwise

)
dy, (t, x) ∈ΩT∗ .(4.9)

Then, the following two results hold:

1. There exists u
`
∈ L∞((0, T ∗); [0, 1]) such that ρ(T ∗, ·) ≡ ρdes if and only if

the backward nonlocal balance law

∂tp(t, x) = −∂x
(
V (W̃[p, v[ρ, ur ]](t, x)p(t, x)

)
, (t, x) ∈ ΩT∗ \ Ξρ0,ur ,(4.10)

p(T ∗, x) = ρdes(x), x ∈ (0, 1)(4.11)

with v[ρ, u
r
] as in Eq. (4.8) and W̃ as in Eq. (4.9) admits a solution

satisfying ‖p‖L∞((0,T∗);L∞((0,1))) ≤ 1.
2. There exist T ∈ [T ∗,∞), and u

`
∈ L∞((0, T ); [0, 1]) such that ρ(t, 1) ≡

ρr(t) for a.e. t ∈ (T ∗, T ) if and only if the backward nonlocal balance law

∂tp(t, x) = −∂x
(
V (W̃[p, v[ρ, ur ]](t, x)p(t, x)

)
(4.12)

p(t, 1) = ρr(t), t ∈ (T ∗, T ),(4.13)

p(T, x) = 0, x ∈ [0, 1],(4.14)

admits a solution, satisfying ‖p‖L∞((0,T );L∞((0,1))) ≤ 1.

Proof First, we mention that T ∗ as in Eq. (4.6) exists and is unique according
to Lemma 4.1. We prove only the result in Item 1, since the other can be
obtained analogously.

Let us assume that we can control the system to the desired end
state/boundary state. Then, we can time-invert the dynamics; the solution
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to the corresponding backwards-in-time system exists and satisfies Eqs. (4.10)
to (4.11).

Conversely, let us assume that the backward system admits a weak solution.
Then, we can evaluate the solution at x = 0 to obtain the proper boundary
data which serves indeed as control to steer the system towards the desired
state. The regularity needed for this to hold is C([0, 1];L1((0, T ))). Although
such regularity generally does not hold (compare also [60, Remark 5.6]), we
have it as long as the corresponding velocity is bounded away from zero which
is true in the underlying case as also illustrated in Lemma 4.1 as longs as
‖ur‖L∞((0,T )) < 1. ut

Remark 4.3 (Explanation of Theorem 4.1) The backwards in time nonlocal
conservation laws and the suitable domain on which they need to be solved
are illustrated in Fig. 4.2. The red lines indicate the data which needs to be

1
ρ0(x)

T ∗

(0, 0)

ur (t)

u` (t)

p(T ∗, x) = ρdes(x)

ρ

v[ρ, ur ]

(1, T ∗)

x

t

ρ0(x)

u` (t)

t

1

T ∗

(0, 0)

T

ur (t)

p(T ∗, x) = 0

p(t, 1) = ρr(t)

ρ

v[ρ, ur ]

(1, T )

(1, T ∗)

x

Fig. 4.2 Left: Illustration of the statement in Theorem 4.1, Item 1. The desired end value
(in red) we want to control the system to and the known quantities in blue. The green colors
indicate functions that we want to control to reach the desired state ρ(T ∗; ·). The backward
in time equation is considered on the grey area. Right: Illustration of the statement in
Theorem 4.1, Item 2. Red again indicates (here) the boundary value we would like to control
the system to, in blue we have the quantities which are given (In particular, the end value
can be chosen arbitrarily, and in green the quantity we can use to control the system, i.e.
left hand side boundary datum and right hand side nonlocal impact. The backward system
is considered on the grey area with explicit boundary conditions from (1, T ∗) to (1, T ).

fit, the blue areae illustrate datum which is given by prescribed initial datum
and right hand side nonlocal impact. The backwards problem is – for both
cases – considered on the grey area/domain.
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Remark 4.4 (Controlling to target state and out-flux simultaneously) The pre-
vious result can in a straightforward way be generalized to the case where we
seek left hand side boundary datum u

`
and nonlocal right hand side u

r
so that

on a significantly large time T ∈ R>T∗ the end state satisfies

ρ(T, ·) ≡ ρdes

and the boundary state
ρ(·, 1) ≡ ρr.

We do not go into details.

As the previous result is not explicit in the way that we cannot “a priori”
tell to which final states we can control the system to we show in the following
that a constant state can always be reached in a sufficiently large time when
also controlling ur .

Lemma 4.2 (Controllability to constant state) Let ρ0 ∈
L∞((0, 1); [0, 1]) and ρdes ≡ c ∈ [0, 1) be given. Then,

∃T ∈ R>0 (u
`
, ur ) ∈ L∞((0, T ); [0, 1])2 : ρ(T, ·) ≡ ρdes

where ρ denotes the solution of the Definition 1.1 for boundary datum u
`
, right

hand side nonlocal term ur and initial datum ρ0.

Proof We prove this result by introducing different steps in which we control
the solution to specific datum.

First, following Lemma 4.1 there exists T ∗ ∈ R>0 so that for u
`
(t) =

ur (t) = 0 the initial datum has left the domain and we thus have

ρ(T ∗, ·) ≡ 0,

i.e. the road is fully evacuated. Second, we show that the initial state zero can
be controlled in finite time to the steady state ε ∈ R>0 for ε sufficiently small
and continue this process until we have reached the constant state. We take
advantage of Theorem 4.1 and consider the following sequences of surrogate
problems for n ∈ N≥1 backwards in time and (t, x) ∈ ΩT∗n \Ξε(n−1),ε(n−1)

(4.15)
∂tpn(t, x) = −∂x

(
V (W̃[pn, v[ε · (n− 1), ε · (n− 1)]](t, x)pn(t, x)

)
,

pn(T ∗n , x) = nε,

and T ∗n :=
∑n
k=1 T

∗
(k−1)ε,(k−1)ε as in Eq. (4.6). As we will stop when we have

found n∗ ∈ N≥1 : nε = c (we can always chose ε so that this holds), we can
immediately give an uniform upper bound on T ∗n by invoking Lemma 4.1

T ∗(n−1)ε,(n−1)ε ≤ 1

V
(

1− 1−c
e

) and T ∗n ≤ n

V
(

1− 1−c
e

) ∀n ∈ N≥1(4.16)

thanks to the monotonicity of V in Assumption 1. Now, we show that for
sufficiently small ε the system in Eq. (4.15) admits a solution on the entire
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time horizon 1

V (1− 1−c
e )

. To this end, we study how at a given space time

point (t, x) ∈ (T ∗n−1, T
∗
n) \ Ξε(n−1),ε(n−1) a maximum evolves backwards in

time. So assume that at such a (t, x) the solution is maximal, parametrized
on the characteristics, i.e., pn(t, ξ(T ∗, x; t)) = ‖pn(t, ·)‖L∞(R) (and thus also
∂2pn(t, ξ(∗, x; t)) = 0) we estimate

− d
dtpn(t, ξ(T ∗n , x; t))

= V ′(W̃[pn, v[ε(n− 1), ε(n− 1)]](t, ξ(T ∗n , x; t))

· ∂2W̃[p, v[ε(n− 1), ε)n− 1)](t, ξ(T ∗n , x; t))

= V ′(W̃[pn, v[ε(n− 1), ε(n− 1)]](t, ξ(T ∗n , x; t))

· 1
η (W̃[pn, v[ε(n− 1), ε)n− 1)](t, ξ(T ∗n , x; t))− pn(t, ξ(T ∗n , x; t)))

≤ 1
η‖V

′‖L∞((0,1))pn(t, ξ(T ∗n , x; t))2.

Integrating the previous differential inequality from backwards from T ∗n to t
gives as upper bound

‖pn(t, ·)‖L∞((0,1)) ≤
1

n
ε −

1
η‖V ′‖L∞((0,1))(T ∗n − t)

!
≤ 1.(4.17)

For admissibility we need to make sure that the previous ‖pn(t, ·)‖L∞((0,1)) is
less or equal one, which is satisfied if

t ≥ T ∗n − η
1− nε

ε‖V ′‖L∞((0,1))
≥ T ∗n − η

1− κ
ε‖V ′‖L∞((0,1))

(4.18)

However, for ε ∈ R>0 sufficiently small we obtain the well-posedness of the
backwards system Eq. (4.15) on every time horizon and thus, particularly on
the time horizon required for the initial datum to leave, i.e. Eq. (4.16). As
the estimates are uniform in n ∈ N≥ we can then pick as many sequences as
needed to control iteratively the zero initial datum to ε, 2ε,. . . until we have
reached the constant state c. This concludes the proof.

Remark 4.5 (Extensions of Lemma 4.2) The previous Lemma 4.2 can be gen-
eralized. For instance, the solution can also be steered to monotonically in-
creasing ρdes by first controlling it as is possible to the sufficiently large con-
stant state R 3 c ≥ ‖ρdes‖L∞((0,1)) and then showing that the backward in time
system does not blow up. However, due to the monotonicity this cannot hap-
pen. Another extension might consist of disturbing the constant ρdes slightly
with regard to the L∞ norm and to still achieve controllability (compare also
Remark 3.1). We do not go into details.

Example 4.1 (Controllability and lack of controllability in minimal time) We
present some examples related to the state controllability result in Theo-
rem 4.1. In Fig. 4.3, we consider three cases: ρdes(x) = 1

2 (1−x), ρdes(x) = 1
2x,

and ρdes ≡ 1
2 , with initial and right boundary data given by ρ0(x) = 1

2 (1 + x)
and u

r
= 1

2 . In Fig. 4.4, the left hand side boundary datum u
`

for achieving
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the desired final state ρdes in minimal time are also shown. As can be observed
is that on the left three pictures in Fig. 4.3 the initial datum leaves faster. This
is due to the fact that η is larger so that the nonlocal right hand side u

r
= 1

2
has a higher impact on the velocity of the entire road. Another remarkable fact
is that for smaller η and end-datum ρdes = 1

2x, x ∈ [0, 1] (see the fifth pictures
in Fig. 4.3 or the maxmimum of the yellow dotted curve in Fig. 4.4) actually
becomes larger than the desired state and then smaller again to compensate
for the later velocity of the system. This clearly indicates that generally not
every end state can be tracked as the corresponding control could exceed 1
and would thus not be admissible.

Finally, all pictures indicate what is also described in Theorem 4.1 and
which is apparent from the dynamics that the solution below the characteristics
emanating from (0, 0), i.e. the solution which only depends on initial datum
and the right hand side nonlocal impact u

r
stays the same independent of the

boundary datum. Clearly, the time where the initial datum has left is thus the
same.

Fig. 4.3 The left three images correspond to η = 1, the right three to η = 0.1. In the left
images of both triples, ρdes(x) = 1

2
(1 − x), in the middle ρdes(x) = 1

2
x and in the right

images ρdes ≡ 1
2

. In all images, the initial datum is given by ρ0(x) = 1
2

(1 + x) and the right

boundary ur = 1
2

. Colorbar: 0 1

5 Long-time behavior

In this section, we are concerned with the long-time behavior of the solution
to Definition 1.1 when prescribing constant (u

`
, u

r
) ∈ [0, 1)2. Under the as-

sumption that the initial datum is uniformly less or equal or greater or equal
u
`

= ur , we can show that the solution converges to a given constant. We
detail this in the following Theorem.
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Fig. 4.4 Corresponding to Fig. 4.3 in Example 4.1 the left hand side boundary datum u`
for achieving the desired final state ρdes in minimal time. Solid lines represent the boundary
datum for η = 1, dashed lines for η = 0.1. The colors represent the related desired state
ρdes which we want to achieve: We have for x ∈ [0, 1] in red ρdes(x) = 1

2
x, in blue ρdes(x) =

1
2

(1− x) and in yellow ρdes(x) = 1
2

.

Theorem 5.1 (Long-time behavior) Suppose that κ ∈ (0, 1) is given, let
Assumption 1 hold and assume u

r
≡ κ, u

`
≡ κ and the derivative of V may

satisfy V ′(s) < 0 ∀s ∈ [0, 1). In addition, let

(5.1)
(
ρ0 = κ on (0, 1)

)
or

(
ρ0 5 κ on (0, 1)

)
.

Then, the corresponding solution ρ converges exponentially in time to κ

‖ρ(t, ·)− κ‖L1((0,1)) ≤ η
(

exp
(‖ρ0−κ‖L1((0,1))

η

)
− 1
)

e
K(η)
η t ∀t ∈ R≥0

with

κ̄ := (1− κ)(1− exp(−η−1))

K(η) := (1− κ)κ sup
s∈〈κ,κ̄〉

V ′(s) exp
(
− η−1

)
< 0

〈a, b〉 :=
(

min{a, b},max{a, b}
)
, (a, b) ∈ R2.

Proof Let us define the difference between ρ(t, ·) and κ in the integral sense
for t ∈ [0, T ]

M(t) :=

∫ 1

0

(ρ(t, x)− κ) dx.

As we want to compute the time-derivative of M(t) we first need to show that
t 7→M(t) is differentiable. However, this can be achieved by taking advantage
of the solution formula in terms of characteristics Eq. (2.2). Assuming that
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T ∗ ∈ R>0 is so that ξ(0, 0;T ∗) = 1 and we can write for t ∈ [0, T ∗]

M(t) =

∫ ξ(0,0;t)

0

u(ξw∗ [t, x]−1
max(0)) ∂2ξw∗(t, x; ξw∗ [t, x]−1

max(0)) dx

+

∫ 1

ξ(0,0;t)

ρ0(ξ(t, x; 0))∂2ξ(t, x; 0) dx− κ

=

∫ t

0

u(z)V (W[ρ](z, 0)) dz +

∫ ξ(t,1;0)

0

ρ0(z) dz − κ

which is clearly differentiable with regard to t sufficiently small. Taking the
time derivative we obtain

M ′(t) = u(t)V (W[ρ](t, 0)) + ρ0(ξ(t, 1; 0))∂1ξ(t, 1; 0)

= κV (W[ρ](t, 0))− ρ(t, 1)V (W[ρ](t, 1)).(5.2)

As the previous result does not depend explicitly on the initial datum (we have
replaced the part of the initial datum by the general expression of the solution
ρ), this result holds for every time t ∈ R>0. Assume for now that ρ0 ≥ κ so
that we know thanks to the maximum principle in Eq. (2.4) in Theorem 2.1

(5.3) ρ(t, x) ≥ κ ∀(t, x) ∈ [0, T ]× (0, 1) a.e.

it follows directly

(5.4) 1 ≥M(t) ≥ 0 ∀t ∈ [0, T ].

The upper bound 1 is a consequence of the maximum principle and the fact
that also κ ∈ [0, 1] by assumption. Then, we estimate the nonlocal term as
follows

W[ρ](t, 0) := 1
η

∫ ∞
0

exp
(
− s
η

)({ρ(t, s) s < 1

κ s ≥ 1

)
ds,

(5.3)

≥ κ
η

∫ 1−M(t)

0

exp
(
− s
η

)
ds+ 1

η

∫ 1

1−M(t)

exp
(
− s
η

)
ds+ κ

η

∫ ∞
1

exp
(
− s
η

)
ds

= κ
η

∫ ∞
0

exp
(
− s
η

)
ds+ 1−κ

η

∫ 1

1−M(t)

exp
(
− s
η

)
ds

= κ+ (1− κ)
(

exp
(
− 1−M(t)

η

)
− exp

(
− 1

η

))
= κ+ exp

(
− 1

η

)
(1− κ)

(
exp

(M(t)
η

)
− 1
)
,

from which we can continue the estimate on M(t) in Eq. (5.2) and obtain –
again recalling that ρ(t, 1) ≥ κ ∀t ∈ [0, T ] –

M ′(t)
V ′50

≤ V
(
κ+ exp

(
− 1

η

)
(1− κ)

(
exp

(M(t)
η

)
− 1
))
κ− V (κ)ρ(t, 1)︸ ︷︷ ︸

≥V (κ)κ
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using the mean value theorem and defining κ̄ := (1− κ)(1− exp(−η−1)) < 1

≤ sup
s∈(κ,κ̄)

V ′(s)
(

exp
(
− 1

η

)
(1− κ)

(
exp

(M(t)
η

)
− 1
))
κ

≤ (1− κ)κ sup
s∈(κ,κ̄)

V ′(s) exp
(
− 1

η

)(
exp

(M(t)
η

)
− 1
)
.

We solve the previous differential inequality for equality, call the solution
M=(t) and obtain for it

M=(t) = −η ln
((

e−
M(0)
η − 1

)
e
K(η)t
η + 1

)
K(η) := (1− κ)κ sup

s∈(κ,κ̄)

V ′(s) exp
(
− 1

η

)
< 0

(5.5)

From this, we obtain

(5.6) 0 ≤M(t) ≤M=(t) ∀t ∈ R≥0

For proving the rate of convergence, we use ln(x) ≤ x− 1 ∀x ∈ R>0 and have

M=(t) = η ln
((

1−
(
1− e−

M(0)
η
)
e
K(η)t
η

)−1)
(5.7)

≤ η ·
(

1−e
−M(0)

η

)
e
K(η)t
η

1−
(

1−e
−M(0)

η

)
e
K(η)t
η

≤ η
(
e
M(0)
η − 1

)
e
K(η)
η t.(5.8)

For initial datum ρo(x) ≤ κ for a.e. x ∈ (0, 1), the results follow by performing
similar estimates with opposite sign. ut

Remark 5.1 (Theorem 5.1 for κ = 0 and κ = 1) The previous result with
the given constants does not give exponential stability for κ = 0 ∨ 1 as then
K(η) = 0 for η ∈ R>0.

However, for κ = 0, the boundary contribution to the solution is zero and,
by Lemma 4.1, we know that the initial data leaves the domain in finite time
T ∗ ∈ R>0. Afterwards, the solution remains identically zero so that we have
stability to the zero solution in finite time and particularly exponentially.

For κ = 1, the situation is slightly more delicate. We look at the change of
the L1 norm of the solution in time,

∂t‖ρ(t, ·)‖L1((0,1) = −
∫ 1

0

∂x
(
ρ(t, y)V (W[ρ, ur ](t, y))

)
dy(5.9)

= ρ(t, 0)V (W[ρ, u
r
](t, 0))− ρ(t, 1)V (W[ρ, u

r
](t, 1))(5.10)

= V (W[ρ, u
r
](t, 0))(5.11)

≥ V
(

1
η

∫ ‖ρ(t,·)‖L1((0,1))

0

1 · exp
(−y
η

)
dy + exp(− 1

η )

)
(5.12)

= V

(
1− exp

(−‖ρ(t,·)‖L1((0,1))

η

)
+ exp

(
− 1

η

))
(5.13)
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and using the mean value theorem, ∃ζ ∈ (0, 1) s.t.

= V (1)− V ′(ζ) ·
(
e

−‖ρ(t,·)‖L1((0,1))

η − e−
1
η

)
(5.14)

≥ − sup
s∈(0,1)

V ′(s) ·
(
e

−‖ρ(t,·)‖L1((0,1))

η − e−
1
η

)
,(5.15)

and consequently

‖ρ(t, ·)‖L1((0,1) ≥ 1 + η log

((
e

‖ρ0‖L1((0,1)−1

η − 1

)
exp

(
t sup
s∈(0,1)

V ′(s) e
−

1
η

η

)
+ 1

)
.

As ln(x+ 1) ≥ x(x+ 1)−1 ∀x > R>−1 we can continue our estimate

≥ 1 + η

(
e

‖ρ0‖L1((0,1)−1

η −1

)
exp

(
t sups∈(0,1) V

′(s)
e
−

1
η

η

)
(
e

‖ρ0‖L1((0,1)−1

η −1

)
exp

(
t sups∈(0,1) V

′(s)
e
−

1
η

η

)
+1

≥ 1 + η
2

(
e

‖ρ0‖L1((0,1)−1

η − 1

)
exp

(
t sup
s∈(0,1)

V ′(s) e
−

1
η

η

)
.

This is the exponential convergence to the steady state solution in the case
that κ = 1, i.e., that the road is blocked at the right hand side and u

`
≡ 1.

For the statement to hold we require

sup
s∈(0,1)

V ′(s) < 0.

In the case that this assumption does not hold but only Assumption 1
we can still show that the solution converges to the 1 solution for t → ∞,
however without any order of convergence. The convergence is then due to
the fact that the mapping t 7→ ‖ρ(t, ·)‖L1((0,1)) is monotonically increasing in
t and bounded from above by 1. Then, we know that a limit point for this
sequence exists, i.e., ∃A ∈ (0, 1] : limt→∞ ‖ρ(t, ·)‖L1((0,1)) = A. Thanks to
Eq. (5.13), the time derivative of ‖ρ(t, ·)‖L1((0,1)) is nonnegative and only zero
for ‖ρ(t, ·)‖L1((0,1)) = 1 which implies A = 1.

Example 5.1 (Long-time behavior and comparison to steady-state solutions) In
Fig. 5.1, we present some numerical simulations related to Theorem 5.1. We
assume that

(5.16) V ≡ 1− ·, u
r
≡ 1

2 , u` ∈
{

1
4 ,

1
2 ,

3
4

}
, η ∈ {0.1, 1} , ρ0 ≡ 1

2χ( 1
3 ,

2
3 ).

One remarkable feature which can be seen in all pictures is that after the
initial datum has left, the solution does not change a lot anymore and seems to
become stationary. Although we are not able to show this in the general case it
seems like all solutions converge to the corresponding steady state, anticipating
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the existence and uniqueness of steady state solutions in Theorem 6.1. Indeed,
this is also illustrated in Fig. 5.2, where – in the left hand side picture – the
solutions are plotted at t ∈ {2, 4, 8} and in the right picture the steady state
solution in comparison with the corresponding solution at time t = 8.

Worth mentioning is also the impact of the size of the nonlocal parameter
η ∈ R>0. As the initial datum’s L1 mass is smaller than ur = 1

2 in the present
case the initial datum leaves faster when η is larger. The different η also affects
how the solution later on will evolve which can be seen in particular at the
two rightmost pictures. Larger η decreases the spatial derivative of the solution
which is clear from the fact that for larger η there is more averaging of the
velocity.

Fig. 5.1 The pictures are ordered from left to right. First: u` = 1
4

, ur = 1
2

, η = 1, Second:

u` = 1
4
, ur = 1

2
, η = 0.1, Third: u` = 1

2
, ur = 1

2
, η = 1, Fourth: u` = 1

2
, ur = 1

2
, η = 0.1,

Fifth: u` = 3
4

, ur = 1
2

, η = 1, Sixth: u` = 3
4

, ur = 1
2

, η = 0.1 with ρ0 ≡ 1
2
χ( 1

3
, 2
3
) in every

case. Colorbar: 0 1

6 Steady states and long-time behavior of the linearized system

In the literature, steady state solutions for nonlocal conservation laws on a
bounded domain have not been studied yet. On the real axis, traveling wave
solutions have been discussed in [70].

On the other hand, for local conservation laws, this topic has been largely
discussed over the past few decades. In [43], Dafermos (inspired by the previ-
ous analysis and numerical experiment of [71]) used the method of generalized
characteristics to study the long-time behavior of solutions for the initial-
boundary value problem for conservation law with spatial inhomogeneity. The
analysis of entropic steady states of the initial-boundary value problem for a
conservation law with a source term was later carried out in [66]. In [26], the
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Fig. 5.2 Left: Illustrations of the evolution of solutions at different time snippets t ∈
{2, 4, 8} (dotted t = 2, dash-dotted t = 4 and dashed t = 8). The different colors represent
the six different cases in Fig. 5.1 for different u` , η as described in the legend of the right
picture and fixed ur = 0.5. Right: Comparison of the different solutions at t = 8 and the
corresponding steady state solutions as in Theorem 6.1.

existence of stationary solutions for a scalar conservation law was obtained in
the case of a nonlocal source term. In [45], the authors considered stationary
scalar conservation laws with a damping term and showed the existence and
uniqueness of entropy solutions as time-asymptotic limits of solutions of the
corresponding (evolutionary) hyperbolic conservation laws. In the case of pe-
riodic data (and boundary conditions), the time-asymptotic decay properties
of entropy solutions were showed in [73,68,19]. For the asymptotic behavior
of the closely related equations of Hamilton-Jacobi type, we refer the reader
to [11,56,55,10,10] and references therein. For nonlinear hyperbolic systems
of balance laws, there is a large body of literature dealing with the existence
of global (classical) solutions around an equilibrium (see, e.g., [52,76,14,12]).

In the following theorem, we prove the existence and uniqueness of steady
state solutions on a bounded domain when prescribing constant left hand side
boundary datum and constant nonlocal right hand side datum.

Theorem 6.1 (Steady state solutions on bounded domains) In
the setting of Definition 1.1, we have that, for every u

`
≡ const ∈

[0, 1], u
r
≡ const ∈ [0, 1], there exists a unique and monotone ρ̄ ∈

W 1,∞((0, 1); [min{u
`
, u

r
},max{u

`
, u

r
}]) satisfying

d
dx

(
ρ̄(x)V (W[ρ̄, ur ](x))

)
= 0, x ∈ [0, 1](6.1)

ρ̄(0) = u
`
,(6.2)

W[ρ̄, ur ](t, x) = 1
η

∫ ∞
x

e−
y−x
η

({
ρ̄(y) if y < 1

u
r

if y ≥ 1

)
dy, x ∈ [0, 1].(6.3)

In addition, if V ∈ C∞([0, 1]), then ρ̄ ∈ C∞([0, 1]).
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We remark that, for u
`

= ur , a solution is given by ρ̄ ≡ ur , which can
be checked by just plugging it into Eqs. (6.1) to (6.2). However, even in this
simplear case we need to prove that this is the only solution and that one and
only one solution exists in case u

r
6= u

`
, which is carried out in the following

proof.

Proof As a first step, we show the existence of solutions by a Schauder fixed-
point argument.

A solution of Equations (6.1) to (6.2) can be interpreted as the solution of
the following fixed-point problem with the fixed-point mapping

F :

{
Ω → Ω

ρ̄ 7→
(
x 7→ u

`

V (W[ρ̄,ur ](0))
V (W[ρ̄,ur ](x))

)(6.4)

with a proper Ω ⊂ C([0, 1]) yet to be defined. We distinguish two different
cases: ur ≤ u` and ur ≤ u` .

If ur ≤ u` , we define

Ω :=
{
ρ̄ ∈W 1,∞((0, 1)) :

(
ur ≤ ρ̄(x) ≤ u`

)
∧
(
A ≤ ρ̄′(x) ≤ 0

)
∀x ∈ [0, 1]

}
A := −u`

V (ur )‖V
′‖L∞((ur ,u`

))(u`−ur )

ηV (u
`
)2

(6.5)

and show that F is a self-mapping on Ω, i.e. F [Ω] ⊆ Ω. To this end, we take
ρ̄ ∈ Ω and compute for x ∈ [0, 1]

d
dxF [ρ̄](x) = −u

`

V (W[ρ̄,ur ](0))
V (W[ρ̄,ur ](x))2V

′(W[ρ̄, u
r
](x))∂xW[ρ̄, u

r
](x).(6.6)

Since V ′ 5 0, we need to show that ∂xW[ρ̄, u
r
] 5 0, which we do with the

following manipulations for x ∈ [0, 1]:

∂xW[ρ̄, u
r
](x) = ∂x

(
1
η

∫ 1

x

e
x−y
η ρ̄(y) dy

)
+ ∂x

(
1
ηur

∫ ∞
1

e
x−y
η dy

)
(6.7)

= − 1
η ρ̄(x) + 1

η2

∫ 1

x

e
x−y
η ρ̄(y) dy + 1

η2ur

∫ ∞
1

e
x−y
η dy(6.8)

= 1
η (W[ρ̄, u

r
](x)− ρ̄(x)).(6.9)

As ρ̄ is monotonically decreasing and ρ̄ = ur , we obtain that ∂xW[ρ̄, ur ] 5 0
and thus ∂xF [ρ̄] 5 0. From the monotonicity it also follows that F [ρ̄] 5 u

`
.

It remains to be checked that F [ρ̄] ≥ u
r
. To this end, let us assume, for the

sake of finding a contradiction, that ∃x∗ ∈ (0, 1) : F [ρ̄](x∗) < u
r
. As F [ρ̄] is

monotonically decreasing, we know that F [ρ̄](x) < u
r
∀x ∈ (x∗, 1]. Similarly

to the computations above, we also obtain that W[F [ρ̄], ur ] is monotonically
decreasing if F [ρ̄, ur ] is monotonically decreasing (which we have proven).
However, for x = 1, we obtain W[F [ρ̄], u

r
](1) = u

r
but W[F [ρ̄, u

r
]](x) <

u
r
∀x ∈ [x∗, 1), a contradiction to the monotonicity of W[ρ̄, u

r
]. Thus, we

conclude that

F [ρ̄](x) ≥ u
r
∀x ∈ [0, 1].
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Next, we prove the lower bound on d
dxF [ρ̄]. Recalling Eq. (6.6), estimate

d
dxF [ρ̄](x) ≥ −u

`

V (W[ur ,ur ](0))‖V ′‖L∞((ur ,u`
))(u`−W[ur ,ur ](0))

ηV (W[u
`
,ur ](0))2

= −u
`

V (ur )‖V ′‖L∞((ur ,u`
))(u`−ur )

ηV (u
`
)2 = A.

Altogether, we have shown that F [Ω] ⊂ Ω. To show the existence of solu-
tions, we apply Schauder’s fixed-point theorem, which requires the following
assumptions to be satisfied:

– F : Ω → Ω is continuous in a proper topology. Indeed, by choosing C([0, 1])
with the natural maximum norm, F is continuous.

– The set Ω is closed in C([0, 1]) and it is convex. The closedness is due to
the fact that we have uniform constraints on ρ̄ in the definition of Ω and
the convexity is obvious.

– Ω is compact in C([0, 1]). This is due to the fact that the derivatives of
the sets in Ω have as upper bound 0 and as lower bound A which is
uniform. Therefore, the functions in Ω are uniform Lipschitz-continuous
with Lipschitz-constant A. Thus, they are also equi-continuous and we
can apply Ascoli-Arzelà [17, Theorem 4.25] which guarantees the claimed

compactness, i.e. Ω
c
⇀ C([0, 1]).

Using Schauder’s fixed-point theorem in the version in [77, Corollary 2.13], we
conclude that there exists a solution of (6.4) lying in Ω as defined in (6.5).

If u
r
≤ u

`
, the proof of existence is almost identical to the case u

r
≥ u

`

when exchanging the monotonicity in Ω from decreasing to increasing. We do
not go into details.

For the uniqueness, we rewrite the steady state equation in (6.1) as a system
of ODEs by introducing g(x) = W[ρ̄, u

r
](x), x ∈ [0, 1]. Then, we obtain on

x ∈ [0, 1] and

(6.10)
ρ̄′(x) = − ρ̄(x)V ′(g(x)) 1

η (g(x)−ρ̄(x))

V (g(x)) , ρ̄(0) = u
`

g′(x) = 1
η (g(x)− ρ̄(x)), g(1) = ur .

As this is a system of ODEs with initial datum for one equation and end
datum for the other equation, the uniqueness can not directly been addressed
by a Picard-Lindelöf type of argument. For this reason, we rewrite (6.10) as
the following initial-value problem

(6.11)
ρ̄′(x) = − ρ̄(x)V ′(g(x)) 1

η (g(x)−ρ̄(x))

V (g(x)) , ρ̄(0) = u
`

g′(x) = 1
η (g(x)− ρ̄(x)), g(0) = c

`

for u
`
≤ u

r
, where c

`
∈ [c∗

`
, u

r
] such that c∗

`
=W[ρ̃, u

r
](0) and ρ̃ is a solution

to the fixed-point equation in (6.4). Then, the right-hand side of the system
of ODEs in (6.11) is locally Lipschitz-continuous, the solution is thus locally
unique and satisfies per constructionem the proposed bounds as instantiated
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in Ω in Eq. (6.5). It is thus globally Lipschitz-continuous on [0, 1] and admits
a unique solution.

A similar proof can be made for u
`
≥ u

r
by changing the initial boundary

value problem to the corresponding end value problem and using again the
existence of solutions as obtained by the previous Schauder argument.

To establish the higher regularity of solutions, we recall the fixed-point
problem in Eq. (6.4) which has a unique solution by the argument above.
Differentiating gives for

(6.12) ρ̄′(x) = −u
`

V (W[ρ̄,ur ](0))
V (W[ρ̄,ur ](x))2V

′(W[ρ̄, u
r
](x))∂xW[ρ̄, u

r
](x), x ∈ [0, 1].

We know that ρ̄ ∈ W 1,∞((0, 1)) and as ∂xW[ρ̄, ur ] is by Eqs. (6.7) to (6.9)
again Lipschitz-continuous, the entire right hand side of Eq. (6.12) is again
Lipschitz-continuous and thus also ρ̄′. This can be iterated arbitrarily, and we
obtain the claimed regularity. ut

7 Conclusions and future work

In this contribution, we have obtained the first results on the controllability
of nonlocal conservation laws on bounded domains when the nonlocal term is
explicitly space-dependent and a maximum principle holds. We have also stud-
ied the long-time behavior of the solutions and established their convergence
towards steady states under suitable assumptions.

There are many problems left open in this line of research. Amongst them,
we mention the following ones.

1. Proving the main theorems for a general monotonically decreasing kernel
and not as in this work only for the exponential kernel. In this case, ac-
cording to [60, Corollary 5.9], the solution to the corresponding nonlocal
balance law still exists and is unique and satisfies a maximum principle;
however, the proofs of some of our results seem to present many more
technical difficulties.

2. Studying in detail the relationship between the controllability of nonlocal
conservation laws and the controllability of the corresponding local equa-
tions. A first attempt in this direction is made in Remark 4.2.

3. Extending the results in Theorem 5.1 to the case when initial datum does
not satisfy the lower/upper bounds in Eq. (5.1). As pointed out before,
numerical simulations suggest that these results should hold for general
initial datum.

4. Extending the results in Theorem 5.1 when considering constant boundary
data such that u

`
6= ur . In this case, we expect the dynamics then to

converge to the steady state solutions of Eq. (1.1) with the corresponding
initial and boundary data (see Theorem 6.1). This is also again suggested
by the corresponding numerical simulations Fig. 5.2.
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11 (2003). DOI 10.1016/S0294-1449(02)00004-5. URL https://doi.org/10.1016/

S0294-1449(02)00004-5
52. Hanouzet, B., Natalini, R.: Global existence of smooth solutions for partially dissipa-

tive hyperbolic systems with a convex entropy. Arch. Ration. Mech. Anal. 169(2),
89–117 (2003). DOI 10.1007/s00205-003-0257-6. URL https://doi.org/10.1007/

s00205-003-0257-6
53. Holden, H., Risebro, N.H.: Front tracking for hyperbolic conservation laws, Applied

Mathematical Sciences, vol. 152, second edn. Springer, Heidelberg (2015). DOI 10.
1007/978-3-662-47507-2. URL https://doi.org/10.1007/978-3-662-47507-2

https://doi.org/10.1137/S036301299834140X
https://doi.org/10.1137/S036301299834140X
https://doi.org/10.1051/cocv:2002050
https://doi.org/10.1137/070706847
https://doi.org/10.1090/qam/895101
https://doi.org/10.1090/qam/895101
https://doi.org/10.1007/978-3-662-49451-6
https://doi.org/10.1016/j.jde.2013.01.041
https://doi.org/10.3934/nhm.2018024
https://doi.org/10.1002/mma.1394
https://doi.org/10.1002/mma.3122
https://doi.org/10.1016/S0294-1449(02)00004-5
https://doi.org/10.1016/S0294-1449(02)00004-5
https://doi.org/10.1007/s00205-003-0257-6
https://doi.org/10.1007/s00205-003-0257-6
https://doi.org/10.1007/978-3-662-47507-2


32 A. Bayen, J.-M. Coron, N. De Nitti, A. Keimer, L. Pflug

54. Huang, K., Du, Q.: Stability of a nonlocal traffic flow model for connected vehicles
(2020)

55. Ichihara, N., Ishii, H.: The large-time behavior of solutions of Hamilton-Jacobi equations
on the real line. Methods Appl. Anal. 15(2), 223–242 (2008). DOI 10.4310/MAA.2008.
v15.n2.a8. URL https://doi.org/10.4310/MAA.2008.v15.n2.a8

56. Ishii, H.: A short introduction to viscosity solutions and the large time behavior of
solutions of Hamilton-Jacobi equations. In: Hamilton-Jacobi equations: approximations,
numerical analysis and applications, Lecture Notes in Math., vol. 2074, pp. 111–249.
Springer, Heidelberg (2013). DOI 10.1007/978-3-642-36433-4 3. URL https://doi.

org/10.1007/978-3-642-36433-4_3

57. Karafyllis, I., Theodosis, D., Papageorgiou, M.: Analysis and control of a non-local pde
traffic flow model (2020)

58. Keimer, A., Pflug, L.: Existence, uniqueness and regularity results on nonlocal balance
laws. Journal of Differential Equations 263, 4023–4069 (2017)

59. Keimer, A., Pflug, L.: On approximation of local conservation laws by nonlocal conser-
vation laws. Journal of Mathematical Analysis and Applications 475(2), 1927 – 1955
(2019)

60. Keimer, A., Pflug, L., Spinola, M.: Nonlocal scalar conservation laws on bounded do-
mains and applications in traffic flow. SIAM SIMA 50(6), 6271–6306 (2018)

61. Li, T.: Controllability and observability for quasilinear hyperbolic systems, AIMS Series
on Applied Mathematics, vol. 3. American Institute of Mathematical Sciences (AIMS),
Springfield, MO; Higher Education Press, Beijing (2010)

62. Li, T.: Exact boundary controllability of nodal profile for quasilinear hyperbolic systems.
Math. Methods Appl. Sci. 33(17), 2101–2106 (2010). DOI 10.1002/mma.1321. URL
https://doi.org/10.1002/mma.1321

63. Li, T., Wang, K., Gu, Q.: Exact boundary controllability of nodal profile for quasilinear
hyperbolic systems. SpringerBriefs in Mathematics. Springer, Singapore (2016). DOI
10.1007/978-981-10-2842-7. URL https://doi.org/10.1007/978-981-10-2842-7

64. Li, T.T.: Global classical solutions for quasilinear hyperbolic systems, RAM: Research
in Applied Mathematics, vol. 32. Masson, Paris; John Wiley & Sons, Ltd., Chichester
(1994)

65. Marbach, F.: Small time global null controllability for a viscous Burgers’ equation de-
spite the presence of a boundary layer. J. Math. Pures Appl. (9) 102(2), 364–384 (2014).
DOI 10.1016/j.matpur.2013.11.013. URL https://doi.org/10.1016/j.matpur.2013.

11.013

66. Mascia, C., Terracina, A.: Large-time behavior for conservation laws with source in a
bounded domain. J. Differential Equations 159(2), 485–514 (1999). DOI 10.1006/jdeq.
1999.3669. URL https://doi.org/10.1006/jdeq.1999.3669

67. Oleinik, O.: Discontinuous solutions of non-linear differential equations. Uspekhi Mat.
Nauk 12, 3–73 (1957)

68. Panov, E.Y.: On decay of entropy solutions to multidimensional conservation laws.
SIAM J. Math. Anal. 52(2), 1310–1317 (2020). DOI 10.1137/19M1256385. URL https:

//doi.org/10.1137/19M1256385

69. Prieur, C., Winkin, J., Bastin, G.: Robust boundary control of systems of conser-
vation laws. Math. Control Signals Systems 20(2), 173–197 (2008). DOI 10.1007/
s00498-008-0028-x. URL https://doi.org/10.1007/s00498-008-0028-x

70. Ridder, J., Shen, W.: Traveling waves for nonlocal models of traffic flow. Discrete &
Continuous Dynamical Systems - A 39, 4001 (2019)

71. Salas, M.D., Abarbanel, S., Gottlieb, D.: Multiple steady states for characteristic ini-
tial value problems. Appl. Numer. Math. 2(3-5), 193–210 (1986). DOI 10.1016/
0168-9274(86)90028-0. URL https://doi.org/10.1016/0168-9274(86)90028-0

72. Shang, P., Wang, Z.: Analysis and control of a scalar conservation law modeling a highly
re-entrant manufacturing system. Journal of Differential Equations 250(2), 949–982
(2011). DOI 10.1016/j.jde.2010.09.003

73. Sinestrari, C.: Large time behaviour of solutions of balance laws with periodic initial
data. NoDEA Nonlinear Differential Equations Appl. 2(1), 111–131 (1995). DOI
10.1007/BF01194015. URL https://doi.org/10.1007/BF01194015

https://doi.org/10.4310/MAA.2008.v15.n2.a8
https://doi.org/10.1007/978-3-642-36433-4_3
https://doi.org/10.1007/978-3-642-36433-4_3
https://doi.org/10.1002/mma.1321
https://doi.org/10.1007/978-981-10-2842-7
https://doi.org/10.1016/j.matpur.2013.11.013
https://doi.org/10.1016/j.matpur.2013.11.013
https://doi.org/10.1006/jdeq.1999.3669
https://doi.org/10.1137/19M1256385
https://doi.org/10.1137/19M1256385
https://doi.org/10.1007/s00498-008-0028-x
https://doi.org/10.1016/0168-9274(86)90028-0
https://doi.org/10.1007/BF01194015


Controllability for nonlocal conservation laws 33

74. Tchousso, A., Besson, T., Xu, C.Z.: Exponential stability of distributed parameter sys-
tems governed by symmetric hyperbolic partial differential equations using Lyapunov’s
second method. ESAIM Control Optim. Calc. Var. 15(2), 403–425 (2009). DOI
10.1051/cocv:2008033. URL https://doi.org/10.1051/cocv:2008033

75. Xu, C.Z., Sallet, G.: Exponential stability and transfer functions of processes governed
by symmetric hyperbolic systems. ESAIM Control Optim. Calc. Var. 7, 421–442 (2002).
DOI 10.1051/cocv:2002062. URL https://doi.org/10.1051/cocv:2002062

76. Yong, W.A.: Entropy and global existence for hyperbolic balance laws. Arch. Ration.
Mech. Anal. 172(2), 247–266 (2004). DOI 10.1007/s00205-003-0304-3. URL https:

//doi.org/10.1007/s00205-003-0304-3

77. Zeidler, E.: Nonlinear functional analysis and its applications I. Fixed-point theorems.
Springer-Verlag, New York (1986). DOI 10.1007/978-1-4612-4838-5. URL https://doi.

org/10.1007/978-1-4612-4838-5. Translated from the German by Peter R. Wadsack

https://doi.org/10.1051/cocv:2008033
https://doi.org/10.1051/cocv:2002062
https://doi.org/10.1007/s00205-003-0304-3
https://doi.org/10.1007/s00205-003-0304-3
https://doi.org/10.1007/978-1-4612-4838-5
https://doi.org/10.1007/978-1-4612-4838-5

	Introduction
	Preliminaries and basic results
	Reachability for sufficiently small times
	Exact boundary controllability and time-inverted dynamics
	Long-time behavior
	Steady states and long-time behavior of the linearized system
	Conclusions and future work

