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Abstract. Suppose that a countably n-rectifiable set Γ0 is the support of a multiplicity-one
stationary varifold in Rn+1 with a point admitting a flat tangent plane T of density Q ≥ 2.
We prove that, under a suitable assumption on the decay rate of the blow-ups of Γ0 towards
T , there exists a non-constant, genuinely time-dependend Brakke flow starting with Γ0. The
result, which applies, in particular, to a large class of (possibly stable) minimal immersions
with branch singularities, shows non-uniqueness of Brakke flow under these conditions. Fur-
thermore, it suggests that stationary varifolds which are dynamically stable, i.e. stable with
respect to mean curvature flow, may be free from flat singularities.

Keywords: mean curvature flow, varifolds, singularities of minimal surfaces.

AMS Math Subject Classification (2020): 53E10 (primary), 53A10, 49Q05, 49Q15.

Contents

1. Introduction 1
2. Notation and terminology 6
2.1. Basic notation 6
2.2. Varifolds 7
2.3. First variation of a varifold 7
2.4. Brakke flow 9
3. Main results 10
4. Hole nucleation 13
5. Brakke’s expanding holes lemma 16
6. L2 excess estimates 21
7. Proof of Theorem 3.5 25
7.1. Step one: hole nucleation 25
7.2. Iteration: hole expansion 27
7.3. Conclusion 28
References 29

1. Introduction

A family of surfaces is said to move by mean curvature flow (abbreviated hereafter as MCF)
if the velocity of motion is equal to the mean curvature at each point and time. The MCF
is one of the simplest geometric evolution problems, and it has been studied intensively by
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numerous researchers over the last few decades. In the early stages of the development of the
theory of MCF, Brakke introduced in [6] a notion of MCF - which is nowadays referred to as
the Brakke flow - within the framework of geometric measure theory. It is a generalized notion
of MCF where the evolving surfaces are not required to be classical, regular submanifolds, but
rather varifolds, and where the classical parabolic PDE describing the evolution law is replaced
by an ad hoc inequality which is adapted to the language of varifolds while still being able to
capture the geometric features of MCF; see section 2 for a brief introduction to the subject,
and [6, 36] for further references. The advantage of such a seemingly abstract approach is that
it allows one to describe the evolution by mean curvature of singular surfaces (e.g. a moving
network of curves in the plane with multiple junction points or a moving cluster of bubbles
in the three-dimensional space), as well as to continue the evolution of classical surfaces also
after singularities arise. At the same time, a possible drawback is that the solution to Brakke
flow for a given initial datum may not be unique in general.

Recently, the authors of the present paper proved a general theorem concerning the existence
of Brakke flows starting from any given closed countably n-rectifiable set Γ0 in a strictly
convex domain in Rn+1 and with the additional property that the (topological) boundary of
the evolving varifolds is fixed throughout the flow [32]. This existence result gives rise to a
number of questions pertaining to the nature of the Brakke flow. One such question to be
discussed in the present paper is the following:

Does there exist a stationary initial datum Γ0

admitting a non-trivial Brakke flow starting with it? (Q)

Here, “stationary” means that the first variation of the associated multiplicity one varifold
vanishes, and “non-trivial” means that the flow is genuinely time-dependent: note that a
stationary Γ0 itself is a time-independent Brakke flow with no motion. Thus, the question
is equivalent to inquiring about the non-uniqueness of Brakke flow starting from a given
stationary Γ0. To avoid instantaneous vanishing, it is also natural to require the continuity of
the surface measures associated to the Brakke flow at t = 0+. If Γ0 is smooth, then one expects
that all Brakke flows starting with it should be trivial as a consequence of the regularity theory
for Brakke flows, both in the interior and at the boundary (see [17, 35, 33, 10] for the former
and [15] for the latter) and the uniqueness theorem of smooth mean curvature flows, thus it is
interesting to focus on stationary Γ0 with singularities. In fact, this observation leads to the
following refinement of question (Q):

Which types of singularities, if any, of a stationary Γ0 necessarily determine
the existence of a non-trivial Brakke flow starting with Γ0? (Q′)

The main result of the paper answers affirmatively to question (Q), by identifying a type of
singularity with the property described in question (Q′). The result can be roughly stated as
follows (see Theorem 3.5 for the precise statement).

Theorem A. Suppose that a closed countably n-rectifiable set Γ0 is stationary, and that
there exists x0 ∈ Γ0 with the following properties:

(1) one of the tangent cones to Γ0 at x0 is a flat plane T with multiplicity Q ≥ 2, and
(2) the rescalings (Γ0 − {x0})/r locally converge to T at a rate faster than (log(1/r))−1/2

as r → 0+.
Then, there exists a non-trivial Brakke flow starting from Γ0.
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Figure 1. On the left, a surface Γ0 with a flat singularity of multiplicity Q = 3. The
homothetic rescalings (Γ0 − {x0})/r converge to the unique tangent plane with rate
O(r1/3) as r → 0+. On the right, a figure obtained zooming in the picture on the left
at the singularity, thus showing (a portion of) the unique tangent plane T to Γ0 at x0.

We remark that, under a natural assumption to be specified later, the Brakke flow obtained
in Theorem A is continuous at t = 0+. We observe explicitly that the assumption (2) implies,
in particular, that the varifold associated with the plane T and carrying multiplicity Q is the
unique varifold tangent cone to Γ0 at x0. There is a plethora of examples of stationary Γ0
admitting the kind of singularities described in (1) and (2). Consider, for instance, the class
of minimal immersions with a branch point singularity: these are immersed minimal surfaces
Γ0 in R3 which admit a parametrization X : Ω → R3 of the form

X(z) = Re[f(z)] ,
where Ω ⊂ R2 ≃ C is a neighborhood of z0 = 0, and f : Ω → C3 is a holomorphic curve in C3

with f = (f1, f2, f3) ∈ C3 satisfying

(f ′
1)2 + (f ′

2)2 + (f ′
3)2 = 0 in Ω , and f ′(0) = 0 .

In a suitable system of coordinates (x1, x2, x3) of R3, such a surface is represented by

x1(z) + i x2(z) = (x1
0 + i x2

0) + a zQ + O(|z|Q+1) ,
x3(z) = x3

0 + O(|z|Q+1) ,
for some Q ≥ 2, and thus it behaves like the (multivalued) graph of a complex root: set-
ting x0 = (x1

0, x
2
0, x

3
0), the blow-ups r−1 (Γ0 − {x0}) converge to the plane T = {x3 = 0}

with multiplicity Q with a rate O(rα) for some α > 0, and thus much faster than the slow
logarithmic decay required in (2); see [11, Section 3.2] for a more detailed analysis of the
behavior of minimal surfaces near branch points, and Figure 1 for a graphical representation.
More generally, Theorem A applies to the class of those stationary varifolds of arbitrary
dimension n that are graphs of multiple valued solutions to the minimal surfaces equation
(C1,α multiple valued minimal graphs), which have been extensively studied in the literature;
see, e.g. [31, 25, 26, 27, 20, 14].

Subject to the validity of (1) and (2), Theorem A concludes the dynamical instability of Γ0.
We warn the reader that dynamical stability/instability is an independent notion with respect
to the classical notion of stability/instability defined by the spectrum of the second variation
operator on Γ0: as observed for instance in [22], there exist stable (yet, by the discussion above
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and Theorem A, dynamically unstable) branched minimal surfaces of the type of the disk in
R3. We will come back to give further details on the connection between the two notions of
stability after a preliminary discussion concerning the conditions in (1) and (2) and their role
in the regularity theory for stationary varifolds, and a review of the existing literature on the
topic.

Firstly, when Γ0 is stationary, the classical regularity theorem by Allard [2] guarantees
the existence of a closed set S ⊂ Γ0 with n-dimensional Hausdorff measure Hn(S) = 0 such
that Γ0 \ S is an embedded real-analytic minimal hypersurface. With no further assumptions,
presently there are no known properties of the singular set S other than the fact that it
is Hn-negligible (except for n = 1, in which case S is a locally H0-finite set, see [3]). A
crucial missing piece towards a refinement of this result is an estimate on the size of the
set of points x0 ∈ Γ0 which admit tangent cones that are n-dimensional flat planes with
multiplicity Q ≥ 2, that is precisely the points in Γ0 satisfying (1). We shall call these points
the flat singularities of Γ0. If one knew that (2) is satisfied at every flat singularity of Γ0, then
Theorem A would provide a dynamical condition to exclude the presence of flat singularities
altogether: explicitly, one would be able to conclude that if Γ0 is dynamically stable (that
is, if the only Brakke flow starting with Γ0 is the trivial one), then no singular point x0 ∈ S
has a tangent cone which is supported on an n-dimensional plane. In turn, this would imply
that the singular set S of Γ0 has Hausdorff dimension dimH(S) ≤ n− 1, and in fact that S is
countably (n− 1)-rectifiable by the pioneering work of Naber and Valtorta, see [24]. In fact, it
would be interesting to investigate the validity of results analogous to that of Theorem A also
under different assumptions on the geometry of the tangent cones to Γ0 at a singular point x0
(that is, cones which are not supported on a plane), with the goal of providing further insight
into question (Q′) and correspondingly deducing further information on the fine properties of
the singularities of dynamically stable stationary varifolds.

As far as the authors are aware of, there are no known examples of stationary Γ0 with a flat
singularity for which the decay rate (2) fails. On the other hand, proving that (2) always holds
true at flat singularities is arguably a very hard problem, since, as already noticed, it would in
particular imply the uniqueness of the tangent plane, which is still a major unsolved problem
in geometric measure theory, see [1, Problem 5.10]. In fact, one may wonder whether a decay
rate as in (2) holds true at least assuming a-priori that the tangent plane is unique, but even
this result is out of reach of the currently available techniques. Indeed, it is worth mentioning
that presently all available results concerning uniqueness of tangent cones to a stationary Γ0 at
a singular point x0 have been obtained under the further assumption that one of the tangent
cones to the associated multiplicity one varifold V0 at x0 is a (necessarily non-flat) multiplicity
one cone C0: for instance, in this setting Simon concluded uniqueness of C0 whenever C0
is regular in Rn+1 \ {0} in [28], and also when C0 is a cylinder of the form C0 = Ĉ0 × Rn−k

with Ĉ0 regular in Rk+1 \ {0} under additional hypotheses of integrability of the Jacobi fields
of the cross section Ĉ0 ∩ Sk and “absence of holes” in the singular set of Γ0, see [30]. In
these cases, the multiplicity one assumption is crucial in order to locally parametrize Γ0 over
C0 with single-valued functions, for which PDE techniques are available. It is important to
note that both in the cylindrical case treated in [30] and in the non-cylindrical case under
integrability of Jacobi fields of the cross section (see [4]), the homothetic rescalings of the
varifold V0 at x0 converge towards the unique tangent cone C0 with rate rα for some α > 0,
that is, the aforementioned parametrization is of class C1,α. Recently, a uniqueness result
similar to the one of [28] was obtained in the setting of almost area minimizing currents by
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Engelstein, Spolaor, and Velichkov [12], at the price of producing C1,log parametrizations. In
other words, if an almost area minimizing current has a multiplicity one tangent cone C0
with singularity only at the origin, then the homothetic rescalings of the current converge to
C0 at a rate (log(1/r))−α for some α > 0 as r → 0+, see [12, Theorem 1.5]. The similarity
between the decay rate of [12] and our assumption (2) is interesting, and will be object of
further investigation.

Coming back to flat singularities, much more can be said on whether the condition in (1)
implies the decay in (2) if stability of the regular part Reg(Γ0) is assumed. Precisely, very
recently Minter and Wickramasekera proved in [23] the following result: if Reg(Γ0) is stable
(that is, if every two-sided portion of Reg(Γ0) has non-negative second variation with respect to
the mass functional for compactly supported normal deformations), if a point x0 ∈ Γ0 satisfies
(1) for a plane T and an integer Q ≥ 2, and furthermore if in a neighborhood B2r0(x0) there
are no classical singularities of Γ0 of density < Q 1, then T is the unique varifold tangent cone
to Γ0 at x0 and, in the cylinder ((x0 + T ) ∩Br0(x0)) × T⊥, Γ0 coincides with a (generalized)
C1,α Q-valued graph, so that the rescalings r−1 (Γ0 − {x0}) converge to T at a rate O(rα)
for some α ∈ (0, 1) depending only on (n,Q); refer to [5, 9] for the notion of multiple valued
functions used in [23]. Theorem A then immediately implies the dynamical instability of Γ0.
We will record this result in Corollary 3.7.

Notice that, in spite of the fact that the condition on the absence of classical singularities
of density < Q in a neighborhood of x0 is, in principle, difficult to guarantee, we point out
two classical instances when its validity can be easily checked:

• if Γ0 carries the structure of rectifiable current, which we denote JΓ0K, it is stationary
as a varifold, Reg(Γ0) is stable, and x0 is an interior point (that is, x0 /∈ spt∥∂JΓ0K∥)
satisfying (1) for a plane T and Q = 2, then (2) holds as a consequence of [23], and Γ0
is dynamically unstable; see also [21];

• if Γ0 carries the structure of rectifiable current, it is area minimizing mod(p) for
an even integer p = 2Q, and it admits a flat tangent plane T at x0 /∈ spt∥∂pJΓ0K∥,
then the multiplicity of the plane must be Q, (2) holds as a consequence of [23],
and Γ0 is dynamically unstable; see [13, section 4.2.26] and [8] for the definition
of area minimizing currents mod(p) and the corresponding notation, and [7] for a
sharp estimate on the dimension of the set of singularities of area minimizing currents
mod(2Q) for which (1) holds.

We remark that the above points identify classes of stationary varifolds which are stable for the
second variation operator but not dynamically stable, further exploring the striking difference
between the two notions.

The paper is organized as follows. In section 2 we fix the relevant notation and terminology;
in section 3 we discuss the precise assumptions on the set Γ0 and state precisely the main result,
Theorem 3.5; in section 4 we describe how to suitably modify Γ0 in an ε-neighborhood of x0
in order to obtain a new set Γε

0 which has strictly less mass than Γ0 (we shall say, informally,
that Γε

0 has a “hole” at x0), and then we take advantage of [32] to produce a Brakke flow
starting with Γε

0; sections 5 and 6 are the technical core of the paper, as they contain the main

1A point x0 ∈ Γ0 is called a classical singularity if Γ0 is, locally, the union of finitely many, and at least three,
embedded C1 submanifolds-with-boundary Mj having the same (n − 1)-dimensional boundary ∂Mj = L ∋ x0
and with Mi ∩ Mj = L for i ̸= j and with Mi and Mj intersecting transversely at every point in L for at least
one pair of indexes i ̸= j.
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estimates needed to show that, along the Brakke flow evolution, the hole in Γε
0 expands in a

precisely quantifiable way. Performing this operation of hole nucleation / hole expansion along
a suitable sequence εj produces a sequence of Brakke flows which converges, as j → ∞, to a
limiting Brakke flow of surfaces starting with Γ0 and having a definite mass drop (with respect
to Γ0) at a later time, thus completing the proof of Theorem A: this is achieved in section 7.

Acknowledgments: S.S. was partially supported by grant PRIN 2022PJ9EFL “Geometric
Measure Theory: Structure of Singular Measures, Regularity Theory and Applications in the
Calculus of Variations”, funded by the European Union under NextGenerationEU and by the
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per l’Analisi Matematica, la Probabilità e le loro Applicazioni of INdAM; Y.T. was partially
supported by JSPS Grant-in-aid for scientific research 18H03670, 19H00639 and 17H01092.

2. Notation and terminology

2.1. Basic notation. The ambient space we will be working in is Euclidean space Rn+1. We
write R+ for [0,∞). For A ⊂ Rn+1, closA (or A) is the topological closure of A in Rn+1,
intA is the set of interior points of A and convA is the convex hull of A. The standard
Euclidean inner product between vectors in Rn+1 is denoted x · y, and |x| :=

√
x · x. If

L, S ∈ L (Rn+1;Rn+1) are linear operators in Rn+1, their (Hilbert-Schmidt) inner product
is L · S := trace(Lt ◦ S), where Lt is the transpose of L and ◦ denotes composition. The
corresponding (Euclidean) norm in L (Rn+1;Rn+1) is then |L| :=

√
L · L, whereas the operator

norm in L (Rn+1;Rn+1) is ∥L∥ := sup
{
|L(x)| : x ∈ Rn+1 with |x| ≤ 1

}
. If u, v ∈ Rn+1 then

u ⊗ v ∈ L (Rn+1;Rn+1) is defined by (u ⊗ v)(x) := (x · v)u, so that ∥u ⊗ v∥ = |u| |v|. The
symbols Ur(x) and Br(x) denote the open and closed balls in Rn+1 centered at x and with
radius r > 0, respectively. The Lebesgue measure of a set A ⊂ Rn+1 is denoted Ln+1(A)
or |A|. If 1 ≤ k ≤ n + 1 is an integer, Uk

r (x) denotes the open ball with center x and
radius r in Rk. We will set ωk := Lk(Uk

1 (0)). The symbol Hk denotes the k-dimensional
Hausdorff measure in Rn+1, normalized in such a way that Hn+1 and Ln+1 coincide as measures.

We write G(n+1, k) to denote the Grassmannian of (unoriented) k-dimensional linear planes
in Rn+1. Given T ∈ G(n + 1, k), we shall often identify T with the orthogonal projection
operator onto it, and let T⊥ := I − T , with I the identity operator in Rn+1, denote the
projection operator onto the orthogonal complement of T in Rn+1. If x ∈ Rn+1, r > 0, and
T ∈ G(n + 1, k), then C(T, x, r) denotes the cylinder orthogonal to T , centered at x with
radius r, namely the set

C(T, x, r) :=
{
y ∈ Rn+1 : |T (y − x)| < r

}
.

We will simply write C(x, r) in all contexts where the plane T is clear, and C(r) when x = 0.

A Radon measure µ in an open set U ⊂ Rn+1 is always also regarded as a linear functional
on the space Cc(U) of continuous and compactly supported functions on U , with the pairing
denoted µ(ϕ) for ϕ ∈ Cc(U). The restriction of µ to a Borel set A is denoted µ A, so that
(µ A)(E) := µ(A ∩E) for any Borel E ⊂ U . The support of µ is denoted sptµ, and it is the
relatively closed subset of U defined by

sptµ := {x ∈ U : µ(Ur(x)) > 0 for every r > 0} .
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The upper and lower k-dimensional densities of a Radon measure µ at x ∈ U are

Θ∗k(µ, x) := lim sup
r→0+

µ(Ur(x))
ωk rk

, Θk
∗(µ, x) := lim inf

r→0+

µ(Ur(x))
ωk rk

,

respectively. If Θ∗k(µ, x) = Θk
∗(µ, x) then the common value is denoted Θk(µ, x), and is called

the k-dimensional density of µ at x. For 1 ≤ p ≤ ∞, the space of p-integrable (resp. locally
p-integrable) functions with respect to µ is denoted Lp(µ) (resp. Lp

loc(µ)). For a set E ⊂ U ,
χE is the characteristic function of E. If E is a set of finite perimeter in U , then ∇χE is the
associated Gauss-Green measure in U , and its total variation ∥∇χE∥ in U is the perimeter
measure; by De Giorgi’s structure theorem, ∥∇χE∥ = Hn

∂∗E , where ∂∗E is the reduced
boundary of E in U .

2.2. Varifolds. Let U ⊂ Rn+1 be open. The symbol Vk(U) will denote the space of k-
dimensional varifolds in U , namely the space of Radon measures on Gk(U) := U × G(n+ 1, k)
(see [2, 29] for a comprehensive treatment of varifolds). To any given V ∈ Vk(U) one associates
a Radon measure ∥V ∥ on U , called the weight of V , and defined by projecting V onto the first
factor in Gk(U), explicitly:

∥V ∥(ϕ) :=
ˆ

Gk(U)
ϕ(x) dV (x, S) for every ϕ ∈ Cc(U) .

A set Γ ⊂ Rn+1 is countably k-rectifiable if it can be covered by countably many Lipschitz
images of Rk into Rn+1 up to an Hk-negligible set. We say that Γ is (locally) Hk-rectifiable if
it is Hk-measurable, countably k-rectifiable, and Hk(Γ) is (locally) finite. If Γ ⊂ U is locally
Hk-rectifiable, and θ ∈ L1

loc(Hk
Γ) is a positive function on Γ, then there is a k-varifold

canonically associated to the pair (Γ, θ), namely the varifold var(Γ, θ) defined by

var(Γ, θ)(φ) :=
ˆ

Γ
φ(x, TxΓ) θ(x) dHk(x) for every φ ∈ Cc(Gk(U)) , (2.1)

where TxΓ denotes the approximate tangent plane to Γ at x, which exists Hk-a.e. on Γ. Any
varifold V ∈ Vk(U) admitting a representation as in (2.1) is said to be rectifiable, and the
space of rectifiable k-varifolds in U is denoted by RVk(U). If V = var(Γ, θ) is rectifiable and
θ(x) is an integer at Hk-a.e. x ∈ Γ, then we say that V is an integral k-dimensional varifold
in U : the corresponding space is denoted IVk(U).

2.3. First variation of a varifold. If V ∈ Vk(U) and f : U → U ′ is C1 and proper (that is,
f−1(K) is compact for any compact subset K ⊂ U ′), then we let f♯V ∈ Vk(U ′) denote the
push-forward of V through f . Recall that the weight of f♯V is given by

∥f♯V ∥(ϕ) =
ˆ

Gk(U)
ϕ ◦ f(x) |∧k∇f(x) ◦ S| dV (x, S) for every ϕ ∈ Cc(U ′) , (2.2)

where
|∧k∇f(x) ◦S| := |∇f(x) · v1 ∧ . . . ∧ ∇f(x) · vk| for any orthonormal basis {v1, . . . , vk} of S
is the Jacobian of f along S ∈ G(n+ 1, k). Given a varifold V ∈ Vk(U) and a vector field
g ∈ C1

c (U ;Rn+1), the first variation of V in the direction of g is the quantity

δV (g) := d

dt

∣∣∣∣
t=0

∥(Φt)♯V ∥(Ũ) , (2.3)
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where Φt(·) = Φ(t, ·) is any one-parameter family of diffeomorphisms of U defined for sufficiently
small |t| such that Φ0 = idU and ∂tΦ(0, ·) = g(·). The Ũ is chosen so that clos Ũ ⊂ U is
compact and spt g ⊂ Ũ , and the definition of (2.3) does not depend on the choice of Ũ . It is
well known that δV is a linear and continuous functional on C1

c (U ;Rn+1), and in fact that

δV (g) =
ˆ

Gk(U)
∇g(x) · S dV (x, S) for every g ∈ C1

c (U ;Rn+1) , (2.4)

where, after identifying S ∈ G(n+ 1, k) with the orthogonal projection operator Rn+1 → S,

∇g · S = trace(∇gt ◦ S) =
n+1∑
i,j=1

Sij
∂gi

∂xj
=: divSg

is the tangential divergence of g along S. If δV can be extended to a linear and continuous
functional on Cc(U ;Rn+1), we say that V has bounded first variation in U . In this case,
δV is naturally associated with a unique Rn+1-valued measure on U by means of the Riesz
representation theorem. If such a measure is absolutely continuous with respect to the weight
∥V ∥, then there exists a ∥V ∥-measurable and locally ∥V ∥-integrable vector field h(·, V ) such
that

δV (g) = −
ˆ

U
g(x) · h(x, V ) d∥V ∥(x) for every g ∈ Cc(U ;Rn+1) (2.5)

by the Lebesgue-Radon-Nikodým differentiation theorem. The vector field h(·, V ) is called the
generalized mean curvature vector of V . For any V ∈ IVk(U) with generalized mean curvature
h(·, V ), Brakke’s perpendicularity theorem [6, Chapter 5] says that

S⊥(h(x, V )) = h(x, V ) for V -a.e. (x, S) ∈ Gk(U) . (2.6)

This means that the generalized mean curvature vector is perpendicular to the approximate
tangent plane almost everywhere. A special mention is due to integral varifolds V for which
h(·, V ) = 0 ∥V ∥-almost everywhere: such a varifold will be called stationary. If V is stationary
in U and x ∈ spt(∥V ∥), then the function r ∈ (0,dist(x, ∂U)) 7→ (ωkr

k)−1∥V ∥(Ur(x)) is in-
creasing, so that the density ΘV (x) := Θk(∥V ∥, x) exists at every x ∈ spt(∥V ∥). Furthermore,
for every sequence rh → 0+ there are a subsequence rh′ and a stationary integral k-varifold C
in Rn+1 such that, setting ηx,r(y) := r−1 (y − x), the varifolds (ηx,rh′ )♯V converge to C in the
sense of Radon measures on Gk(Rn+1) as h′ → ∞. The varifold C will be called a tangent
cone to V at x, a terminology justified by the homogeneity property (η0,λ)♯C = C for all
λ > 0.

Other than the first variation δV discussed above, we shall also use a weighted first variation,
defined as follows. For given ϕ ∈ C1

c (U ;R+), V ∈ Vk(U), and g ∈ C1
c (U ;Rn+1), we modify

(2.3) to introduce the ϕ-weighted first variation of V in the direction of g, denoted δ(V, ϕ)(g),
by setting

δ(V, ϕ)(g) := d

dt

∣∣∣∣
t=0

∥(Φt)♯V ∥(ϕ) , (2.7)

where Φt denotes the one-parameter family of diffeomorphisms of U induced by g as above.
Proceeding as in the derivation of (2.4), one then obtains the expression

δ(V, ϕ)(g) =
ˆ

Gk(U)
ϕ(x) ∇g(x) · S dV (x, S) +

ˆ
U
g(x) · ∇ϕ(x) d∥V ∥(x) . (2.8)
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Using ϕ∇g = ∇(ϕg) − g ⊗ ∇ϕ in (2.8) and (2.4), we obtain

δ(V, ϕ)(g) = δV (ϕg) +
ˆ

Gk(U)
g(x) · (∇ϕ(x) − S(∇ϕ(x))) dV (x, S)

= δV (ϕg) +
ˆ

Gk(U)
g(x) · S⊥(∇ϕ(x)) dV (x, S) .

(2.9)

If δV has generalized mean curvature h(·, V ), then we may use (2.5) in (2.9) to obtain

δ(V, ϕ)(g) = −
ˆ

U
ϕ(x)g(x) · h(x, V ) d∥V ∥(x) +

ˆ
Gk(U)

g(x) · S⊥(∇ϕ(x)) dV (x, S). (2.10)

The definition of Brakke flow requires considering weighted first variations in the direction of
the mean curvature. Suppose V ∈ IVk(U), δV is locally bounded and absolutely continuous
with respect to ∥V ∥ and h(·, V ) is locally square-integrable with respect to ∥V ∥. In this case,
it is natural from the expression (2.10) to define for ϕ ∈ C1

c (U ;R+)

δ(V, ϕ)(h(·, V )) :=
ˆ

U
{−ϕ(x) |h(x, V )|2 + h(x, V ) · ∇ϕ(x)} d∥V ∥(x). (2.11)

Observe that here we have used (2.6) in order to replace the term h(x, V ) · S⊥(∇ϕ(x)) with
h(x, V ) · ∇ϕ(x).

2.4. Brakke flow. In order to motivate the weak formulation of the MCF introduced by
Brakke in [6], note that a smooth family of k-dimensional surfaces {Γ(t)}t≥0 in U is a MCF if
and only if the following inequality holds true for all ϕ = ϕ(x, t) ∈ C1

c (U × [0,∞);R+):
d

dt

ˆ
Γ(t)

ϕdHk ≤
ˆ

Γ(t)

{
−ϕ |h(·,Γ(t))|2 + ∇ϕ · h(·,Γ(t)) + ∂ϕ

∂t

}
dHk . (2.12)

In fact, the “only if” part holds with equality in place of inequality. For a more comprehensive
treatment of the Brakke flow, see [36, Chapter 2]. Formally, if ∂Γ(t) ⊂ ∂U is fixed in time,
with ϕ = 1, we also obtain

d

dt
Hk(Γ(t)) ≤ −

ˆ
Γ(t)

|h(x,Γ(t))|2 dHk(x) , (2.13)

which states the well-known fact that the L2-norm of the mean curvature represents the
dissipation of area along the MCF. Motivated by (2.12) and (2.13), we have defined in [32]
the following notion of Brakke flow with fixed boundary.

Definition 2.1. Let U ⊂ Rn+1 be an open set. We say that a family of varifolds {Vt}t≥0 in
U is a k-dimensional Brakke flow in U if all of the following hold:

(a) For a.e. t ≥ 0, Vt ∈ IVk(U);
(b) For a.e. t ≥ 0, δVt is bounded and absolutely continuous with respect to ∥Vt∥;
(c) The generalized mean curvature h(x, Vt) (which exists for a.e. t by (b)) satisfies for all

s > 0
∥Vs∥(U) +

ˆ s

0
dt

ˆ
U

|h(x, Vt)|2 d∥Vt∥(x) ≤ ∥V0∥(U); (2.14)

(d) For all 0 ≤ t1 < t2 < ∞ and ϕ ∈ C1
c (U × R+;R+),

∥Vt∥(ϕ(·, t))
∣∣∣t2

t=t1
≤
ˆ t2

t1

δ(Vt, ϕ(·, t))(h(·, Vt)) + ∥Vt∥
(∂ϕ
∂t

(·, t)
)
dt , (2.15)
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having set ∥Vt∥(ϕ(·, t))
∣∣∣t2

t=t1
:= ∥Vt2∥(ϕ(·, t2)) − ∥Vt1∥(ϕ(·, t1)).

Furthermore, if ∂U is not empty and Σ ⊂ ∂U , we say that {Vt}t≥0 has fixed boundary Σ if,
together with conditions (a)-(d) above, it holds

(e) For all t ≥ 0, (clos (spt ∥Vt∥)) \ U = Σ.

Notice that, formally, we obtain the analogue of (2.14) by integrating (2.13) from 0 to s.
By integrating (2.12) from t1 to t2, we also obtain the analogue of (2.15) via the expression
(2.11). We recall that the closure is taken with respect to the topology of Rn+1 while the
support of ∥Vt∥ is in U . Thus (e) geometrically means that “the boundary of Vt (or ∥Vt∥) is
Σ”.

3. Main results

As anticipated in the introduction, as an initial datum we are going to consider a closed
countably n-rectifiable set Γ0 in Rn+1. In order to guarantee the existence of a Brakke
flow starting with Γ0 we are going to require that Γ0 satisfies the same set of assumptions
under which the theory in [32] was developed. For the reader’s convenience, we record those
assumptions here.

Assumption 3.1. Let us fix integers n ≥ 1 and N ≥ 2. We consider U , Γ0, and {E0,i}N
i=1

such that:
(A1) U ⊂ Rn+1 is a strictly convex bounded domain with boundary ∂U of class C2;
(A2) Γ0 ⊂ U is a relatively closed, countably n-rectifiable set with Hn(Γ0) < ∞;
(A3) E0,1, . . . , E0,N are non-empty, open, and mutually disjoint subsets of U such that

U \ Γ0 = ⋃N
i=1E0,i;

(A4) ∂Γ0 := clos(Γ0) \U is not empty, and for each x ∈ ∂Γ0 there exist at least two indexes
i1 ̸= i2 in {1, . . . , N} such that x ∈ clos

(
clos(E0,ij ) \ (U ∪ ∂Γ0)

)
for j = 1, 2;

(A5) Hn(Γ0 \
⋃N

i=1 ∂
∗E0,i) = 0.

Remark 3.2. Under the validity of assumptions (A1)-(A4), there exists a Brakke flow
{Vt}t≥0 with fixed boundary ∂Γ0 and such that ∥V0∥ = Hn

Γ0 , and if also (A5) holds then
the surface measures associated to such Brakke flow are continuous at t = 0+, that is also
limt→0+ ∥Vt∥ = Hn

Γ0 ; see [32, Theorem 2.2]. Moreover, {Vt}t≥0 can be made canonical in the
sense of [34]. As it will become apparent in the sequel, the construction of the present paper
is purely local, and based at a fixed point x0 ∈ Γ0. Hence, the fact that the boundary ∂Γ0 is
kept fixed throughout the evolution is not important here, and we could potentially also work
in the setting of [18], where U is replaced by the whole Euclidean space Rn+1, the finiteness
of the Hn-measure of Γ0 can be assumed to hold locally, and (A4) is dropped. Nonetheless, in
order to fix the ideas we will always work in the “constrained” fixed boundary case, and leave
to the reader the necessary modifications to treat the “unconstrained” case.

Next, we focus on the main assumption of this paper.

Assumption 3.3. Let U , Γ0, and {E0,i}N
i=1 satisfy Assumption 3.1, and let V0 := var(Γ0, 1).

We suppose that
(H0) V0 is a stationary varifold, with spt(∥V0∥) = Γ0,

and that there exists a point x0 ∈ Γ0, without loss of generality x0 = 0, with the following
properties:
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Figure 2. The growth condition required in (H2): the shaded area is the region
{|xn+1| ≤ G(x′)} (α = 0.51) in the cylinder C(T, 0, r0) with r0 = 0.1.

(H1) one of the tangent cones to V0 at x0 = 0 is of the form var(T,Q), for some n-dimensional
plane T ∈ G(n+ 1, n) and an integer Q ≥ 2;

(H2) there exists a radius r0 ∈ (0, 1) such that, writing x = (x′, xn+1) ∈ Rn+1 = T ⊕ T⊥ we
have

Γ0 ∩ C(T, 0, r0) ∩ {|xn+1| < r0} ⊂ {x = (x′, xn+1) ∈ Rn+1 : |xn+1| ≤ G(x′)} , (3.1)

where G is the positive, radial function G(x′) = g(|x′|) defined by

g(s) = s

logα (1/s) for s > 0, with α > 1
2 , (3.2)

see Figure 2.

Some comments on the hypotheses (H0)-(H1)-(H2) are now in order.

Remark 3.4. A fundamental observation stemming directly from the definitions is that, in
general, a stationary varifold may have multiple different tangent cones at a given point. In
particular, (H0) and (H1) alone do not imply that var(T,Q) is the only tangent cone to V0
at x0 (nor that all tangent cones to V0 at x0 are actually flat). As a matter of fact, the only
conclusions that one may draw from (H0) and (H1) are that the density ΘV0(x0) is an integer
Q ≥ 2 and that if C is tangent to V0 at x0 and spt(∥C∥) is contained in an n-plane T ′ then
C = var(T ′, Q) (as a consequence of the constancy lemma for stationary varifolds). The
hypothesis (H2) resolves the ambiguity, so that in our setting var(T,Q) is the unique tangent
cone to V0 at x0.

The following is the main result of this paper.

Theorem 3.5. If Assumption 3.3 holds, then there exists a Brakke flow {Vt}t≥0 with fixed
boundary ∂Γ0 such that:

(i) limt→0+ ∥Vt∥ = ∥V0∥ = Hn
Γ0;

(ii) ∥Vt∥(U) < ∥V0∥(U) for all t > 0.

We observe explicitly that if V0 is stationary then the constant flow Vt = V0 for all t ≥ 0 is
an n-dimensional Brakke flow with fixed boundary ∂Γ0: the only condition to verify is the
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validity of Brakke’s inequality (2.15), which can be readily deduced by

∥Vt∥(ϕ(·, t))
∣∣∣t2

t=t1
= ∥V0∥(ϕ(·, t2) − ϕ(·, t1))

= ∥V0∥
(ˆ t2

t1

∂ϕ

∂t
(·, t) dt

)

≤
ˆ t2

t1

∥V0∥(∂ϕ
∂t

(·, t)) dt .

Hence, for an initial datum as in Assumption 3.3, Theorem 3.5 is a statement of non-
uniqueness of Brakke flow.

Remark 3.6. In the light of the above discussion, one may consider the subset of IVn(U)
consisting of those stationary varifolds V0 such that the assignment Vt = V0 for all t ≥ 0
defines the only Brakke flow starting with V0. We will say that such a stationary varifold is
dynamically stable. A natural question is whether dynamically stable stationary varifolds enjoy
better regularity properties than what stationarity alone is able to guarantee. By Theorem
3.5, if V0 = var(Γ0, 1) with Γ0 as in Assumption 3.1 and if V0 is dynamically stable then the
set of points satisfying (H1) and (H2) is empty. As anticipated in the introduction, it is an
open question whether this implies that the set of points satisfying (H1) alone is empty, too
(in other words, whether (H0) and (H1) imply (H2)), although that appears to be the case in
all known examples. Notice that if V0 is such that the set of points as in (H1) is empty then,
as a consequence of the celebrated regularity theorem by Allard [2] and of the recent results by
Naber and Valtorta [24], Γ0 is an embedded real analytic n-dimensional minimal hypersurface
in U outside of a countably (n− 1)-rectifiable singular set S (hence, in particular, such that
Hn−1+δ(S) = 0 for every δ > 0).

As noted in the Introduction, the following is an immediate corollary of Theorem 3.5 and
the work [23] by Minter and Wickramasekera. We refer to the Introduction and to [23] for the
definitions of stability of Reg(V0) and of classical singularities of V0.

Corollary 3.7. Let U , Γ0, and {E0,i}N
i=1 satisfy Assumption 3.1, and let V0 = var(Γ0, 1).

Suppose that V0 satisfies (H0) and (H1), that the regular part Reg(V0) is stable, and that in a
neighborhood of x0 the set of classical singularities y of V0 with ΘV0(y) < Q is empty. Then,
there exists a non-trivial Brakke flow {Vt}t≥0 starting with V0, and satisfying the conclusions
of Theorem 3.5. In particular, this applies if

(a) Γ0 has the structure of rectifiable current, denoted JΓ0K, x0 ∈ U \ spt∥∂JΓ0K∥, and
Q = 2,

(b) or Γ0 has the structure of rectifiable current, JΓ0K is area minimizing mod(2Q), and
x0 ∈ U \ spt∥∂pJΓ0K∥.

The rest of the paper is devoted to the proof of Theorem 3.5. The proof is constructive, and
it roughly proceeds as follows. First, we modify the set Γ0 in a small ball of radius ε centered
at x0 = 0, so to have a quantifiable drop of its mass: we shall call this modification a “hole
nucleation” in Γ0. Then, we use our existence theorem from [32] to produce a Brakke flow
(with fixed boundary ∂Γ0) starting with this modified set Γε

0. Using an iterative procedure
which hinges upon Brakke’s “expanding hole lemma” [6, Lemma 6.5] (of which we present
a detailed proof for the reader’s convenience), we show that this hole “expands” at future
times: in particular, a hole of size ∼ ε at time t = 0 becomes almost a hole of size ∼ 2j ε at
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time t ∼ 22j ε2. The “almost” above accounts for an error occurring at each iteration which
needs to be estimated in order to make sure that the evolving varifolds never re-gain the
initial mass drop. The growth assumption (H2) is crucial to perform this estimate. The final
product of this iterative process is a Brakke flow (depending on the size ε of the initial hole
nucleation) which, at a time t̄ > 0, has strictly less mass than Γ0, with both t̄ and the mass
loss independent of ε: the Brakke flow in the statement is then obtained in the limit as ε → 0+.

4. Hole nucleation

In this section we show that, given U , Γ0, and {E0,i}N
i=1 as in Assumption 3.3, there exist

Brakke flows starting from a set Γε
0 obtained by modifying Γ0 in a small ball U2ε around

x0 = 0 in a way to obtain a quantifiable drop of its mass, and we discuss the limits of such
Brakke flows as ε → 0+. Informally, we may say that Γε

0 is obtained by “making a hole” of
radius ∼ ε in Γ0. The details of the construction of Γε

0 are contained in the following lemma.

Lemma 4.1. Let U , Γ0, {E0,i}N
i=1, and T be as in Assumption 3.3. There exists ε0 > 0 such

that, for all ε ∈ (0, ε0], there exist a relatively closed and Hn-rectifiable set Γε
0 ⊂ U , a family

{Eε
0,i}N

i=1 of pairwise disjoint non-empty open subsets of U with finite perimeter such that:
(1) Γε

0 \ U2ε = Γ0 \ U2ε and Eε
0,i \ U2ε = E0,i \ U2ε for each i = 1, . . . , N ;

(2) Γε
0 = U \ ∪N

i=1E
ε
0,i;

(3) Γε
0 ∩ U2ε ⊂ {(x′, xn+1) : |xn+1| ≤ G(x′)};

(4) Hn(Γε
0 ∩ U2ε) ≤ (4ε)nωn(Q+ 1);

(5) Hn(C(T, 0, ε) ∩ U2ε ∩ Γε
0) ≤ ωnε

n.

Proof. As usual, we assume without loss of generality that T = Rn × {0}, and thus we
write x = (x′, xn+1) ∈ Rn+1 = T ⊕ T⊥. Furthermore, we let V0 = var(Γ0, 1), so that,
setting ηr(x) = x/r, we have limr→0+(ηr)♯V0 = var(T,Q) as varifolds. Define Γε := ηε(Γ0),
V ε := (ηε)♯V0 and Eε

i := ηε(E0,i) for each i = 1, . . . , N for simplicity. By (H2), there exists a
sufficiently small ε0 > 0 such that for all ε ∈ (0, ε0], we have

U2 ∩ Γε ⊂ {|xn+1| ≤ 1/20}. (4.1)
We may additionally assume that Eε

i \U2 ≠ ∅ for all i. In the following, let δ = 1/5 and define
the following function g : Rn+1 → Rn+1 as in [19, Proof of Lemma 4.7]. For |x′| ≤ 1, we set

g(x′, xn+1) =


(x′, xn+1) if |xn+1| ≥ δ ,

(x′, 0) if |xn+1| ≤ δ
2 ,

(x′, 2xn+1 − δ) if δ
2 ≤ xn+1 ≤ δ ,

(x′, 2xn+1 + δ) if −δ ≤ xn+1 ≤ − δ
2 ,

(4.2)

whereas in the region 1 ≤ |x′| ≤ 1 + δ we set

g(x′, xn+1) =



(x′, xn+1) if |xn+1| ≥ δ or |xn+1| ≤ |x′| − 1 ,
(x′, |x′| − 1) if |x′| − 1 ≤ xn+1 ≤ |x′|−1

2 + δ
2 ,

(x′, 2xn+1 − δ) if |x′|−1
2 + δ

2 ≤ xn+1 ≤ δ ,

(x′, 1 − |x′|) if 1−|x′|
2 − δ

2 ≤ xn+1 ≤ 1 − |x′| ,
(x′, 2xn+1 + δ) if −δ ≤ xn+1 ≤ 1−|x′|

2 − δ
2 .

(4.3)

Finally, we set
g(x′, xn+1) = (x′, xn+1) if |x′| > 1 + δ ; (4.4)
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x′

δ

0 1

xn+1

δ
2

δ

0 1 1 + δ

δ

0 1

δ
2

δ
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δ

0 1

xn+1

δ
2

δ

0 1 1 + δ

δ

0 1

δ
2

δ

0 1 1 + δ

g

Figure 3. The map g.

see Figure 3. One may check that g is a Lipschitz map with Lip(g) ≤ 2. Next, define

Ẽε
i := int(g(Eε

i )) and Eε
0,i := η1/ε(Ẽε

i ) (4.5)

for each i = 1, . . . , N , as well as

Γ̃ε := ηε(U) \ ∪N
i=1Ẽ

ε
i and Γε

0 := η1/ε(Γ̃ε) . (4.6)

Since g is a retraction map, one can check that Ẽε
1, . . . , Ẽ

ε
N are mutually disjoint open sets, and

so are Eε
0,1, . . . , E

ε
0,N . It follows from the definition of g that Eε

i \U2 = Ẽε
i \U2 for i = 1, . . . , N .

Thus (1) is satisfied for Γε
0 and Eε

0,i, and (2) holds by construction. We next check

Γ̃ε ⊂ g(Γε). (4.7)

We only need to prove the inclusion on the set on which the map g is not one-to-one, namely
on {(x′, 1 − |x′|), (x′, |x′| − 1) : 1 ≤ |x′| < 1 + δ} ∪ (T ∩ U1). Note that any point x of this
set has the property that g−1(x) is a closed line segment, say I, perpendicular to T . If
x /∈ g(Γε), that is, I ∩ Γε = I ∩ ∪N

i=1∂E
ε
i = ∅, then there must exist some Eε

i such that
I ⊂ Eε

i . Then one can see that x is an interior point of g(Eε
i ), so that x ∈ Ẽε

i and not in
Γ̃ε. This proves (4.7). The inclusion (4.7) moreover proves that Γ̃ε is countably n-rectifiable.
From the definition of g, we have |T⊥(g(x))| ≤ |T⊥(x)|, and (3) follows from this fact. Since
Lip(g) ≤ 2 and Hn(U2 ∩ Γε) ≤ 2nωn(Q+ 1) for all small ε, the area formula guarantees that
Hn(U2 ∩ Γ̃ε) ≤ 4nωn(Q+ 1). This gives (4) after change of variables. In particular, Γ̃ε has no
interior points and finite Hn measure, it holds Γ̃ε = ∪N

i=1∂Ẽ
ε
i , and the sets Eε

0,1, . . . , E
ε
0,N have

bounded perimeter. Finally, from the definition of g, we have (writing C(r) for C(T, 0, r))
g(C(1) ∩ {δ/2 ≤ xn+1 ≤ δ}) = C(1) ∩ {0 ≤ xn+1 ≤ δ},
g(C(1) ∩ {−δ ≤ xn+1 ≤ −δ/2}) = C(1) ∩ {−δ ≤ xn+1 ≤ 0} .

(4.8)

Since ∪N
i=1∂E

ε
i = Γε in U2 and Eε

1, . . . , E
ε
N are mutually disjoint, (4.1) shows that there exist

i1, i2 ∈ {1, . . . , N} such that

(U2 ∩ {xn+1 ≥ δ/2}) ⊂ Eε
i1 and (U2 ∩ {xn+1 ≤ −δ/2}) ⊂ Eε

i2 . (4.9)

We claim that
C(1) ∩ U2 ∩ Γ̃ε ⊂ T ∩B1. (4.10)

Note that (4.8) and (4.9) imply that C(1) ∩ {0 < xn+1 ≤ δ} ⊂ Ẽε
i1 and C(1) ∩ {−δ ≤ xn+1 <

0} ⊂ Ẽε
i2 . Thus, we have Γ̃ε∩C(1)∩{−δ ≤ xn+1 ≤ δ} ⊂ T∩B1. Since U2∩Γε∩{|xn+1| ≥ δ} = ∅,

this proves (4.10), and consequently we have (5). □

By [32, Theorems 2.2 & 2.3] we have then immediately the following existence of Brakke
flows starting with Γε

0.
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Proposition 4.2. With Γε
0 and {Eε

0,i}N
i=1 given in Lemma 4.1, there exists a Brakke flow

{V ε
t }t≥0 with fixed boundary ∂Γ0 and ∥V ε

0 ∥ = Hn
Γε

0
. For each i = 1, . . . , N , there exists a

one-parameter family {Eε
i (t)}t≥0 of open sets Eε

i (t) ⊂ U with the properties described in [32,
Theorem 2.3].

Proof. To apply [32, Theorem 2.2 & 2.3] we only need to check that (A1)-(A4) in Assumption
3.1 are satisfied with U , Γε

0, and {Eε
0,i}N

i=1 for each ε ∈ (0, ε0]. These follow from Lemma 4.1
(1),(2). □

Proposition 4.3. For any sequence {εj}∞
j=1 ⊂ (0, ε0] converging to 0, there exist a subsequence

(denoted by the same index) and a Brakke flow {Vt}t≥0 with fixed boundary ∂Γ0 such that
limj→∞ ∥V εj

t ∥ = ∥Vt∥ in U for each t ≥ 0 and limt→0+ ∥Vt∥ = ∥V0∥ = Hn
Γ0.

Proof. Since ∥V ε
t ∥(U) ≤ ∥V ε

0 ∥(U) = Hn(Γε
0) = Hn(Γ0) + o(1) as ε → 0+ for all t > 0, we have

a uniform mass bound for the family. Such a family of Brakke flows is known to be compact
(see [16] and [36, Section 3.2]), thus there exists a subsequence (denoted by the same index) and
a limit Brakke flow {Vt}t≥0 such that limj→∞ ∥V εj

t ∥ = ∥Vt∥ as Radon measures on U for all
t ≥ 0. By Lemma 4.1(4), we also have ∥V0∥ = Hn

Γ0 . For each Br(x) × [t1, t2] ⊂⊂ U × (0,∞)
and i ∈ {1, . . . , N}, the argument for the proof of [18, Theorem 3.5(6)] (which is equally
valid for the fixed boundary case away from ∂U) shows that Ln+1(Eε

i (t) ∩Br(x)) is 1
2 -Hölder

continuous as a function of t ∈ [t1, t2], with uniformly bounded Hölder norm independently
of ε. Also, if 0 /∈ Br+2ε(x), the same proof shows that Ln+1(Br(x) ∩ Eε

i (t)) is continuous
at t = 0 with uniform modulus of continuity with respect to ε. Since ∥∂∗Eε

i (t)∥ ≤ ∥V ε
t ∥

for all t ≥ 0 (see [32, Theorem 2.3(8)]), and since the latter is uniformly bounded, by a
suitable diagonal argument and the uniform continuity in t, one can prove that there exists
a further subsequence (denoted by the same index) and a family of sets of finite perimeter
{Ẽi(t)}t≥0 in U for i = 1, . . . , N such that limj→∞ Ln+1(Eεj

i (t) △ Ẽi(t)) = 0 for all t ≥ 0 and
Ln+1(Br(x) ∩ Ẽi(t)) is C1/2((0,∞)) ∩ C([0,∞)) as a function of t for any Br(x) ⊂⊂ U . For
each t ≥ 0, {Ẽi(t)}N

i=1 satisfies Ln+1(Ẽi(t) ∩ Ẽi′(t)) = 0 for i ̸= i′ and Ln+1(U \ ∪N
i=1Ẽi(t)) = 0.

By Lemma 4.1(1), we also have Ẽi(0) = E0,i for each i = 1, . . . , N .
Define the space-time Radon measure dµ := d∥Vt∥dt on U × (0,∞) and (sptµ)t := {x ∈ U :

(x, t) ∈ sptµ} for each t > 0. By the fact that {Vt}t≥0 is a Brakke flow, we have for all t > 0

spt ∥Vt∥ ⊂ (sptµ)t and Hn((sptµ)t ∩ Ũ) < ∞ for all Ũ ⊂⊂ U (4.11)

by [18, Lemma 10.1] and [18, Corollary 10.8], respectively. Since

∥∂∗Ẽi(t)∥ ≤ lim inf
j→∞

∥∂∗E
εj

i (t)∥ ≤ lim
j→∞

∥V εj

t ∥ = ∥Vt∥ (4.12)

for all t ≥ 0, (4.11) shows that spt ∥∂∗Ẽi(t)∥ ⊂ (sptµ)t for all t > 0. In particular, on
each connected component of U \ (sptµ)t, χẼi(t) is constant. Then, it follows using the
continuity property of Ln+1(Br(x) ∩ Ẽi(t)) that the open set (U × (0,∞)) \ sptµ can be
decomposed into mutually disjoint open sets E1, . . . , EN such that ∪N

i=1Ei = (U×(0,∞))\sptµ
and such that Ln+1(Ẽi(t) △ {x ∈ U : (x, t) ∈ Ei}) = 0 for all t > 0. We may redefine
Ei(t) = {x ∈ U : (x, t) ∈ Ei}, which is open and Ln+1(Ẽi(t) △Ei(t)) = 0. By definition,
we have U \ ∪N

i=1Ei(t) = (sptµ)t and (4.11) shows that U \ ∪N
i=1Ei(t) has no interior points,

so that we have ∪N
i=1∂Ei(t) = (sptµ)t for all t > 0. The continuity at t = 0 shows that

limt→0+ Ln+1(Ei(t) △E0,i) = 0 for i = 1, . . . , N .
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By [32, Theorem 2.3(5)(11)], for each j and all t ≥ 0, spt ∥V εj

t ∥ ⊂ conv(Γεj

0 ∪ ∂Γ0). Since
the difference of Γεj

0 and Γ0 lies within U2εj , we may conclude that spt∥Vt∥ ⊂ conv(Γ0 ∪ ∂Γ0)
for all t ≥ 0, and one may deduce that (sptµ)t ⊂ conv(Γ0 ∪ ∂Γ0) for t > 0. We also can see
from the last claim that

Ei(t) \ conv(Γ0 ∪ ∂Γ0) = E0,i \ conv(Γ0 ∪ ∂Γ0) (4.13)
for all t ≥ 0 and i = 1, . . . , N .

Next, we prove that Vt has a fixed boundary ∂Γ0, i.e., (clos (spt∥Vt∥)) \ U = ∂Γ0. The
inclusion ⊂ follows from spt∥Vt∥ ⊂ conv(Γ0 ∪ ∂Γ0), the definition of ∂Γ0 and the strict
convexity of U . For the converse inclusion, assume that we have x ∈ ∂Γ0 and there exists
r > 0 such that spt ∥Vt∥ ∩ Ur(x) = ∅. Then we have ∥Vt∥(Ur(x)) = 0. But then (4.12)
shows ∥∂∗Ei(t)∥(Ur(x) ∩ U) = 0 for i = 1, . . . , N . On the other hand, by (4.13) and (A4) of
Assumption 3.1, we must have some i1 ̸= i2 such that Ur(x) ∩Eik

(t) ̸= ∅ for k = 1, 2. These
are not compatible. Thus we have (clos (spt∥Vt∥)) \ U = ∂Γ0.

Finally, limt→0+ ∥Vt∥ = Hn
Γ0 follows from the argument in [32, Proposition 6.10] under the

condition (A5) of Assumption 3.1 that Hn(Γ0\∪N
i=1∂

∗E0,i) = 0. Indeed, for any ϕ ∈ Cc(U ;R+),
lim sup

t→0+
∥Vt∥(ϕ) ≤ ∥V0∥(ϕ) = Hn

Γ0 (ϕ)

follows from the property of Brakke flow, and

2Hn
(∪N

i=1∂∗E0,i) (ϕ) =
N∑

i=1
∥∇χE0,i∥(ϕ) ≤

N∑
i=1

lim inf
t→0+

∥∇χEi(t)∥(ϕ)

≤ lim inf
t→0+

N∑
i=1

∥∇χEi(t)∥(ϕ) ≤ 2 lim inf
t→0+

∥Vt∥(ϕ).
(4.14)

These show that limt→0+ ∥Vt∥(ϕ) = Hn
Γ0 (ϕ) if Hn(Γ0 \ ∪N

i=1∂
∗E0,i) = 0. □

5. Brakke’s expanding holes lemma

In this section, we discuss Brakke’s expanding holes lemma [6, Lemma 6.5], which is a key
tool towards the proof of Theorem 3.5. Given its importance in the following arguments, and
for the reader’s convenience, we provide a detailed proof. The lemma is valid for Brakke flow
of any codimension, and we will state it and prove it in such generality. Hence, in this section
k will be a fixed integer in {1, . . . , n}, and T will be a plane in G(n+ 1, k). Before stating the
lemma, we will need some preliminary notation.

Definition 5.1. Let χ : Rk → R+ be a smooth cut-off function 0 ≤ χ ≤ 1, such that:
(a) χ(x) is a decreasing function of the radial variable r = |x| ;
(b) spt(χ) ⊂ Uk

1 (0) ;
(c) χ(x) = 1 if 0 ≤ |x| < 1 − ζ for a small positive number ζ .

We will denote
ρ := sup

x∈Rk

{
|∇χ(x)| + 2∥D2χ(x)∥

}
, (5.1)

and we shall often use the fact that |∇χ(x)|2/χ(x) ≤ 2 sup ∥D2χ∥ ≤ ρ.
For a radius R > 0, we set

χT,R(x) := χ(T (x)/R) . (5.2)
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Since the plane T will always be kept fixed, we will drop the subscript T in (5.2) and denote
the cylindrical cut-off at scale R simply by χR. Along the same lines, we also recall that C(R)
denotes the infinite cylinder orthogonal to T centered at the origin and with radius R.

Let us also collect the following well-known facts concerning the orthogonal projection
operators onto planes in G(n+ 1, k). The reader can consult [17, Lemma 11.1] for their proofs.
Lemma 5.2. For S, T ∈ G(n+ 1, k) and v ∈ Rn+1, the following holds.

I · T = k , T t = T , T ◦ T = T , T ◦ T⊥ = 0 . (5.3)
0 ≤ k − S · T = S⊥ · T ≤ k ∥S − T∥2 . (5.4)
0 ≤ ∥S − T∥2 ≤ (S − T ) · (S − T ) = 2T⊥ · S . (5.5)

|T (S⊥(v))| ≤ ∥T − S∥ |v| . (5.6)
|T (S⊥(T (v)))| ≤ ∥T − S∥2 |v| . (5.7)

Finally, the following lemma estimates the tilt of tangent planes to an integral varifold with
respect to a reference plane T in terms of the L2-excess of V with respect to T and the L2

norm of the generalized mean curvature vector. The proof can be found in [17, Lemma 11.2].
Lemma 5.3. Let U ⊂ Rn+1 be open, suppose that V ∈ IVk(U) admits generalized mean
curvature vector h(·, V ), and let T ∈ G(n+ 1, k) and ϕ ∈ C1

c (U ;R+). Thenˆ
Gk(U)

∥S − T∥2 ϕ2(x) dV (x, S)

≤ 4
(ˆ

U
|h(x, V )|2 ϕ2(x) d∥V ∥(x)

) 1
2
(ˆ

U
|T⊥(x)|2 ϕ2(x) d∥V ∥(x)

) 1
2

+ 16
ˆ

U
|T⊥(x)|2 |∇ϕ(x)|2 d∥V ∥(x) .

(5.8)

Remark 5.4. In the following we will need to apply a slightly modified version of the estimate
(5.8). Precisely, if ϕ ∈ C2

c (U ;R+) is such that {ϕ = 0} ⊂ {∇ϕ = 0} thenˆ
Gk(U)

∥S − T∥2 |∇ϕ(x)|2 dV (x, S)

≤ 4
(ˆ

U
|h(x, V )|2 ϕ2(x) d∥V ∥(x)

) 1
2
(ˆ

U
|T⊥(x)|2 |∇ϕ(x)|4 ϕ−2(x) d∥V ∥(x)

) 1
2

+ 16
ˆ

U
|T⊥(x)|2 |∇|∇ϕ(x)||2 d∥V ∥(x) .

(5.9)

The proof can be obtained by repeating verbatim the proof of [17, Lemma 11.2] with ϕ replaced
by |∇ϕ| until the last inequality of formula (11.9): there, first multiply and divide by ϕ (on
the set where ∇ϕ ̸= 0) and then apply the Cauchy-Schwarz inequality to deduce (5.9).
Lemma 5.5 (Brakke’s expanding holes lemma). Let T ∈ G(n + 1, k), 0 ≤ t1 < t2 < ∞,
0 < R1 < R2, 0 < R̂1 < R̂2 and set

σ := R2
2 −R2

1
t2 − t1

, R(t)2 := R2
1 + σ (t− t1) , ϕt(x) := χR(t)(x) = χ(T (x)/R(t)) .

Let {Vt}t∈[t1,t2] be a k-dimensional Brakke flow in C(R2) ∩ {|T⊥(x)| < R̂2} such that

spt ∥Vt∥ ∩ {R̂1 < |T⊥(x)| < R̂2} = ∅ for all t ∈ [t1, t2]. (5.10)
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For a.e. t ∈ [t1, t2], define the functions α(t) and µ(t) by

µ(t)2 :=
ˆ

C(R(t))
|T⊥(x)|2 d∥Vt∥(x) , (5.11)

α(t)2 :=
ˆ

|h(x, Vt)|2 ϕ2
t (x) d∥Vt∥(x) . (5.12)

Then, we have for a.e. t ∈ [t1, t2]

δ(Vt, ϕ
2
t )(h(·, Vt)) < −α(t)2

2 + 320 ρ2R(t)−4µ(t)2 . (5.13)

Furthermore, there is M = M(k, σ, ρ) < ∞ such that if µ ∈ [0,∞) satisfies

µ(t)2 ≤ µ2R(t)k+2 for a.e. t ∈ [t1, t2] , (5.14)

then

R−k
2 ∥Vt2∥(ϕ2

t2) ≤ R−k
1 ∥Vt1∥(ϕ2

t1) +Mµ2 log(R2/R1) . (5.15)

Remark 5.6. The main conclusion of the lemma, equation (5.15), establishes an upper
bound on the gain of mass density ratio for Brakke flow at times t1, t2 in enlarging cylinders
C(R1) ⊂ C(R2). The difference in mass density ratios is bounded above by the supremum, in
the interval [t1, t2], of the (scale invariant) L2-excess of Vt with respect to the plane T , namely
the function R(t)−(k+2)µ(t)2.

Proof. In the following, we use test functions ϕ2
t in (2.15), which do not have compact support

in C(R2). On the other hand, due to (5.10), we may multiply ϕ2
t by a suitable cut-off function

which is identically equal to 1 on {|T⊥(x)| ≤ R̂1} and which vanishes on {|T⊥(x)| ≥ R̂2} and
so that the resulting functions belong to C∞

c (C(R2)). The computation is not affected at all
so that it is understood in the following that we implicitly modify ϕ2

t as such without changing
the notation. First, we show the validity of the dissipation inequality (5.13). Applying (2.11)
with ϕ = ϕ2

t , using that

∇[ϕ2
t ] = 2ϕt∇ϕt , ∇ϕt(x) = R(t)−1T [∇χ(T (x)/R(t))] ∈ T , (5.16)

and exploiting Brakke’s perpendicularity Theorem 2.6 we calculate

δ(Vt, ϕ
2
t )(h(·, Vt)) = −

ˆ
|h(x, Vt)|2 ϕ2

t (x) d∥Vt∥(x) + 2
ˆ
h(x, Vt) · S⊥(∇ϕt(x))ϕt(x) dVt(x, S)

≤ −α(t)2 + 2
ˆ

|h(x, Vt)| ∥S − T∥ |∇ϕt(x)|ϕt(x) dVt(x, S)

≤ −3
4α(t)2 + 4

ˆ
∥S − T∥2 |∇ϕt(x)|2 dVt(x, S) .

(5.17)
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In order to estimate the second term, we apply (5.9) to deduceˆ
∥S − T∥2 |∇ϕt(x)|2 dVt(x, S)

≤ 16
ˆ

|T⊥(x)|2 |∇|∇ϕt(x)||2 d∥Vt∥(x)

+ 4
{(ˆ

|h(x, Vt)|2 ϕ2
t (x) d∥Vt∥(x)

)(ˆ
|T⊥(x)|2 |∇ϕt(x)|4 ϕ−2

t (x)
)}1/2

≤ 16ρ2R(t)−4µ(t)2 + 4ρR(t)−2α(t)µ(t)

≤ α(t)2

16 + 80ρ2R(t)−4µ(t)2 .

(5.18)

Equations (5.17) and (5.18) together prove (5.13).

In order to prove (5.15), we observe that, heuristically,

∂t

[
R(t)−k ∥Vt∥(ϕ2

t )
]

= −kR′(t)R(t)−k−1 ∥Vt∥(ϕ2
t ) +R(t)−k∂t

[
∥Vt∥(ϕ2

t )
]
,

which can be expressed rigorously in terms of the inequality

R(t)−k∥Vt∥(ϕ2
t )
∣∣∣t2

t=t1
≤
ˆ t2

t1

R(t)−kD
[
∥Vt∥(ϕ2

t )
]

− kR′(t)R(t)−k−1 ∥Vt∥(ϕ2
t ) dt , (5.19)

where D
[
∥Vt∥(ϕ2

t )
]

is the distributional derivative of t ∈ [t2, t2] 7→ ∥Vt∥(ϕ2
t ). On the other

hand, since {Vt}t≥0 is a Brakke flow, Brakke’s inequality (2.15) implies that, in the sense of
distributions,

D
[
∥Vt∥(ϕ2

t )
]

≤ δ(Vt, ϕ
2
t )(h(·, Vt)) + ∥Vt∥(∂t[ϕ2

t ]) . (5.20)
Since (5.13) controls the first addendum, we only have to estimate the second one. We first
compute explicitly the time derivative ∂t[ϕ2

t ], namely
∂t[ϕ2

t ] = 2ϕt ∂tϕt = −2ϕtR(t)−2R′(t)T (x) · ∇χ(T (x)/R(t)) =
= −2ϕtR(t)−2R′(t)x · T [∇χ(T (x)/R(t))]
= −2ϕtR(t)−1R′(t)x · ∇ϕt(x) ,

where we have used that T is an orthogonal projection operator and the expression for ∇ϕt in
(5.16). Hence, we have

∥Vt∥(∂t[ϕ2
t ]) = R(t)−1R′(t)

ˆ
{−2ϕt(x)x · ∇ϕt(x)} d∥Vt∥(x)︸ ︷︷ ︸

A

. (5.21)

Now, observe that, by the definition of first variation and generalized mean curvature,

−
ˆ
ϕ2

t (x)T (x) · h(x, Vt) d∥Vt∥(x) = δVt(ϕ2
t T (·))

=
ˆ

∇[ϕ2
t T (x)] · S dVt(x, S)

= k ∥Vt∥(ϕ2
t ) +

ˆ
2ϕt [T (x) ⊗ ∇ϕt] · S dVt(x, S)

+
ˆ
ϕ2

t (T · S − k) dVt(x, S) ,
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and since [u⊗ v] · S = S(v) · u = S(u) · v for a symmetric S, we have thatˆ
{−2ϕt ∇ϕt · S(T (x))} dVt(x, S)

= k ∥Vt∥(ϕ2
t ) +

ˆ
ϕ2

t (x)T (x) · h(x, Vt) d∥Vt∥(x)︸ ︷︷ ︸
I1

+
ˆ
ϕ2

t (T · S − k) dVt(x, S)︸ ︷︷ ︸
I2

.

On the other hand, it also holdsˆ
{−2ϕt ∇ϕt · S(T (x))} dVt(x, S) = A−

ˆ
{−2ϕt(x) ∇ϕt(x) · [x− S(T (x))]} dVt(x, S)︸ ︷︷ ︸

I3

,

so that
A = k ∥Vt∥(ϕ2

t ) + I1 + I2 + I3 , (5.22)
and we can estimate the three pieces one at a time.

In order to estimate the term I1, we use Brakke’s perpendicularity theorem to write

I1 =
ˆ
ϕ2

t (x)S⊥(T (x)) · h(x, Vt) dVt(x, S) ,

so that, using |T (x)| ≤ R(t) on spt(ϕt) together with 2R(t)R′(t) = σ, we get from (5.3) that

|I1| ≤
ˆ
ϕ2

t (x) ∥S − T∥ |T (x)| |h(x, Vt)| dVt(x, S)

≤ R(t)
R′(t)

α(t)2

4 + σ

2

ˆ
ϕ2

t (x) ∥S − T∥2 dVt(x, S) .
(5.23)

Using (5.4), we have, instead:

|I2| ≤ k

ˆ
ϕ2

t (x) ∥S − T∥2 dVt(x, S) . (5.24)

Because ∇ϕt ∈ T and T ◦ T = T , ∇ϕt · [x − S(T (x))] = ∇ϕt · T (S⊥(T (T (x)))), and thus
(5.7) and Young’s inequality give

|I3| ≤ 2
ˆ
ϕt(x) |∇ϕt(x)| ∥S − T∥2 |T (x)| dVt(x, S)

≤
ˆ
ϕ2

t (x) ∥S − T∥2 dVt(x, S) +R(t)2
ˆ

|∇ϕt(x)|2 ∥S − T∥2 dVt(x, S) .
(5.25)

In turn, by (5.8) we can further estimate
ˆ
ϕ2

t (x) ∥S − T∥2 dVt(x, S) ≤ 4α(t)µ(t) + 4ρR(t)−2µ2(t) , (5.26)

so that plugging (5.18) and (5.26) into (5.23), (5.24), and (5.25) yields

|I1| + |I2| + |I3| ≤ R(t)
R′(t)

α(t)2

4 + C (α(t)µ(t) +R(t)−2µ(t)2) , (5.27)

where C is a constant depending only on k, σ and ρ.
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In particular, from (5.22) and the definition of A we conclude the following bound:

∥Vt∥(∂t[ϕ2
t ]) − k R(t)−1R′(t) ∥Vt∥(ϕ2

t )

≤ α(t)2

4 + C R′(t)R(t)−1 (α(t)µ(t) +R(t)−2µ(t)2)

≤ α(t)2

2 + C |R′(t)R(t)−1|2 µ(t)2 + C R′(t)R(t)−3 µ(t)2

≤ α(t)2

2 + CR(t)−4µ(t)2 .

(5.28)

In the last line, we used the identity σ = 2R′(t)R(t): the constants C are different from line
to line throughout the calculation, but they all depend only on k, σ and ρ. Now, we first
use (5.20), (5.13) and (5.28), and then we multiply by R(t)−k in order to gain, thanks to
σ = 2R′(t)R(t) and the definition of µ in (5.14), the estimate

R(t)−kD
[
∥Vt∥(ϕ2

t )
]

− kR′(t)R(t)−k−1 ∥Vt∥(ϕ2
t )

≤ |R′(t)R(t)−1|M µ2 ,
(5.29)

where M is a constant depending only on k, σ an ρ.
The conclusion (5.15) then follows plugging (5.29) into (5.19). □

6. L2 excess estimates

This section contains the technical results which will be needed in the proof of Theorem 3.5
in order to estimate the L2 excess terms in the iterative applications of (5.15), representing
the possible gains of mass density ratio at each iteration. A careful estimate of these terms is
crucial to show that the limiting Brakke flow is not trivial.

We begin with the following result, which is an adaptation of [17, Proposition 6.5]. It states
that the (scale invariant) L2 excess of varifolds evolving according to Brakke flow in a given
ball can be estimated uniformly in time with the L2 excess of the initial datum in a larger
ball, with an error terms which decays to zero exponentially fast as the magnifying factor of
the ball diverges to infinity, provided said varifolds have uniformly bounded mass density ratio
in such larger ball.

Proposition 6.1. Let R > 0, 2 ≤ L < ∞, and let {Vt}0≤t≤R2 be a k-dimensional Brakke flow
in ULR. Then, for every T ∈ G(n+ 1, k), and for all t ∈

[
0, R2] we have

R−(k+2)
ˆ

UR

|T⊥(x)|2 d∥Vt∥ ≤ e1/4R−(k+2)
ˆ

ULR

|T⊥(x)|2 d∥V0∥

+ c(n, k)Lk+2 exp
(
−(L− 1)2/8

)
sup

t∈[0,R2]

∥Vt∥(ULR)
(LR)k

.

(6.1)

Proof. Without loss of generality, we can assume R = 1. Let ψ ∈ C∞
c (UL) be a radially

symmetric cut-off function with 0 ≤ ψ ≤ 1, ψ ≡ 1 in BL−1, and |∇ψ|, ∥D2ψ∥ ≤ c(n). Using
that {Vt}0≤t≤1 is a Brakke flow, we test Brakke’s inequality (2.15) with

ϕ(x, t) := |T⊥(x)|2 ψ(x) ϱ(x, t) , (6.2)
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where ϱ(x, t) := ϱ(0,2)(x, t) is the k-dimensional backward heat kernel

ϱ(y,s)(x, t) := 1
(4π(s− t))k/2 exp

(
−|x− y|2

4(s− t)

)
, (6.3)

with y = 0 and s = 2 and thus we obtain, writing ψ = ψ(x), ϱ = ϱ(x, t), and h = h(x, Vt), and
for any τ ≤ 1,ˆ

|T⊥(x)|2 ψϱ d∥Vt∥
∣∣∣∣τ
t=0

≤
ˆ τ

0

ˆ {
−|h|2 ψϱ |T⊥(x)|2 + h · ∇(ψϱ|T⊥(x)|2)

}
+ ψ |T⊥(x)|2 ∂ϱ

∂t
d∥Vt∥dt . (6.4)

Using the perpendicularity of the mean curvature (2.6), and consequently the fact that

0 ≤
∣∣∣∣∣h− S⊥(∇ϱ)

ϱ

∣∣∣∣∣
2

= |h|2 − 2
ϱ

(h · ∇ϱ) + |S⊥(∇ϱ)|2
ϱ2 for Vt-a.e. (x, S), t ∈ [0, τ ] ,

we can estimate the integrand on the right-hand side of (6.4) by

− |h|2 ψϱ |T⊥(x)|2 + (h · ∇ϱ)ψ |T⊥(x)|2 + ϱ h · ∇(ψ |T⊥(x)|2) + ψ |T⊥(x)|2 ∂ϱ
∂t

≤ −(h · ∇ϱ)ψ |T⊥(x)|2 + |S⊥(∇ϱ)|2
ϱ

ψ |T⊥(x)|2 + ϱ h · ∇(ψ |T⊥(x)|2) + ψ |T⊥(x)|2 ∂ϱ
∂t
.

On the other hand, we have by the definition of generalized mean curvature vector and the
properties of Brakke flow that for a.e. t ∈ (0, τ)ˆ {

−(h · ∇ϱ)ψ |T⊥(x)|2 + ϱ h · ∇(ψ |T⊥(x)|2)
}
d∥Vt∥

=
ˆ {

∇(ψ |T⊥(x)|2 ∇ϱ) · S − ∇(ϱ∇(ψ |T⊥(x)|2)) · S
}
dVt(x, S)

=
ˆ {

(D2ϱ · S)ψ |T⊥(x)|2 − ϱD2(ψ |T⊥(x)|2) · S
}
dVt(x, S) .

It is easy to see by direct calculation that, for any S ∈ G(n+ 1, k)

(D2ϱ · S) + |S⊥(∇ϱ)|2
ϱ

+ ∂ϱ

∂t
≡ 0 . (6.5)

Hence, we conclude from (6.4) thatˆ
|T⊥(x)|2 ψϱ d∥Vt∥

∣∣∣∣τ
t=0

≤ −
ˆ τ

0

ˆ
ϱD2(ψ |T⊥(x)|2) · S dVt(x, S) dt . (6.6)

Now, using that S is symmetric we can directly compute

−D2(ψ |T⊥(x)|2) · S = −(D2ψ · S) |T⊥(x)|2 − 4 (∇ψ ⊗ T⊥(x)) · S − 2ψ (T⊥ · S) . (6.7)

Notice that T⊥ · S ≥ 0 by (5.4), and that (5.5) and (5.6) allow to estimate

4 |(∇ψ ⊗ T⊥(x)) · S| ≤ 4
√

2 |∇ψ| |T⊥(x)|
√
T⊥ · S ≤ 2ψ (T⊥ · S) + 4 |∇ψ|2

ψ
|T⊥(x)|2 , (6.8)

so that, using |∇ψ|2/ψ ≤ c(n), (6.6) yields
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ˆ
|T⊥(x)|2 ψϱ d∥Vt∥

∣∣∣∣τ
t=0

≤ c(n)
ˆ 1

0

ˆ
ϱ ∥D2ψ∥ |T⊥(x)|2 d∥Vt∥dt

≤ c(n, k)L2 exp
(

−(L− 1)2

8

) ˆ τ

0
∥Vt∥(UL) dt ,

(6.9)

where in the last inequality we have used that ∥D2ψ∥ = 0 in the complement of A = UL \BL−1,
that |T⊥(x)| ≤ L for x ∈ UL, and that ϱ(x, t) ≤ c(k) exp(−(L − 1)2/8) for t ∈ [0, 1] and
x ∈ A. Since L ≥ 2, ψ ≡ 1 in B1. Using furthermore that ψ ≤ χUL

, that ϱ(x, 0) ≤ (8π)−k/2

everywhere, and that ϱ(x, τ) ≥ (8π)−k/2 e−1/4 for x ∈ B1 and τ ≤ 1, we obtain (6.1) from
(6.9). □

When {Vt} is the Brakke flow {V ε
t } of Proposition 4.2, the last term of (6.1) can be

controlled by the localized Huisken’s monotonicity formula.

Proposition 6.2. Let {V ε
t }t≥0 be the Brakke flow obtained in Proposition 4.2. Then there

exists a constant E0 depending only on 4R0 := dist(0, ∂U),Γ0, n, and Q such that

sup
ε∈(0,ε0)

 sup
R∈[ε,R0], s∈[0,R2

0]

∥V ε
s ∥(UR)
ωnRn

 ≤ E0 . (6.10)

Proof. Let ψ ∈ Cc(U2R0) be a radially symmetric function such that 0 ≤ ψ ≤ 1, ψ = 1 on BR0
and ∥ψ∥C2 ≤ c(R0). We use ψ(x)ϱ(0,s+R2)(x, t) in (2.15) (with k = n) and proceed as in the
proof of Proposition 6.1. Then we obtain for s ∈ (0, R2

0] and R ∈ [ε,R0]ˆ
ϱ(0,s+R2) ψ d∥V ε

t ∥
∣∣∣∣s
t=0

≤ c(R0) sup
t∈[0,s]

∥V ε
t ∥(UR0) ≤ c(R0)Hn(Γε

0), (6.11)

where c(R0) is an another constant depending only on R0 and the last inequality is due to
(2.14) and ∥V ε

0 ∥ = Hn
Γε

0
. Since Hn(Γε

0) is close to Hn(Γ0) for small ε, the right-hand side of
(6.11) is uniformly bounded. For the left-hand side, the evaluation of t = s gives

ˆ
ϱ(0,s+R2)(x, s)ψ(x) d∥V ε

s ∥(x) ≥
ˆ

UR

ψ(x)
(4πR2)n/2 exp

(
− |x|2

4R2

)
d∥V ε

s ∥(x)

≥ e−1/4

(4π)n/2R
−n∥V ε

s ∥(UR),
(6.12)

where we used ψ = 1 on UR ⊂ BR0 . The evaluation of t = 0 may be estimated using Fubini’s
Theorem as ˆ

ϱ(0,s+R2)ψ d∥V ε
0 ∥ ≤ (4π(s+R2))−n/2

ˆ 1

0
f(λ) dλ (6.13)

with f(λ) := ∥V ε
0 ∥({x ∈ U2R0 : exp

(
− |x|2

4(s+R2)
)

≥ λ}). We next evaluate f(λ) depending on
the value of λ in

(a) (0, exp
(

− 4R2
0/4(s+R2)

)
),

(b) [exp
(

− 4R2
0/4(s+R2)

)
, exp

(
− 4ε2/4(s+R2)

)
) and

(c) [exp
(

− 4ε2/4(s+R2)
)
, 1).
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In the case of (a), one can see that f(λ) = ∥V ε
0 ∥(U2R0). For (b), we use the fact that

Hn(Γε
0 ∩Br) ≤ c(Γ0)rn for r ∈ [2ε, 2R0] (which follows from the monotonicity formula for Γ0

and Lemma 4.1(1)(4)) and obtain
f(λ) = Hn(Γε

0 ∩B√
4(s+R2) log(1/λ))

≤ c(Γ0)(4(s+R2) log(1/λ))n/2.

For (c), the set in question is included in U2ε, so that f(λ) is bounded by (4ε)nωn(Q+ 1) due
to Lemma 4.1(4). Combining these estimates, we haveˆ 1

0
f(λ) dλ ≤ e−R2

0/(s+R2)∥V ε
0 ∥(U2R0) + c(Γ0)(4(s+R2))n/2

ˆ 1

0
log(1/λ)n/2 dλ

+ (4ε)nωn(Q+ 1).
(6.14)

Since (4π(s+R2))−n/2e−R2
0/(s+R2) and ∥V ε

0 ∥(U2R0) are bounded uniformly and R ≥ ε, (6.13)
and (6.14) show that

´
ϱ(0,s+R2)ψ d∥V ε

0 ∥ is bounded depending only on R0,Γ0, n and Q. The
estimates (6.11)-(6.14) now show (6.10). □

With a simple geometric argument, we are allowed to replace balls with cylinders in (6.1) if
the initial datum is sufficiently flat. For the proof, we show that there is an “empty spot” just
above and below the origin for all sufficiently small scale.

Proposition 6.3. Let {V ε
t }t≥0 be the Brakke flow obtained in Proposition 4.2. Then there

exists r1 = r1(n, r0, α) such that, for R ∈ [ε, r1), ε ∈ (0, ε0) and t ∈ [0, 4R2], we have

C(
√

2R) ∩ {
√

2R ≤ |T⊥(x)| ≤ 2R} ∩ spt ∥V ε
t ∥ = ∅ . (6.15)

Moreover, for 2 ≤ L < ∞ with 2LR < r0, we haveˆ
C(

√
2R)∩{|T ⊥(x)|<

√
2R}

|T⊥(x)|2 d∥V ε
t ∥ ≤ e1/4

ˆ
U2LR

|T⊥(x)|2 d∥V ε
0 ∥

+ c(n)(RL)n+2 exp(−(L− 1)2/8)E0 ,

(6.16)

where E0 is as in Proposition 6.2.

Proof. Set δ1 := (8n+ 2)/(
√

2 − 1) and fix a sufficiently small r1 = r1(n, α, r0) > 0 so that
δ1

logα(1/(r1δ1)) < 1 , and (6.17)

(
√

2 + 2δ1)r1 < r0 . (6.18)

Assume R < r1. Let A(t) be the closed ball with center at (x′, xn+1) = (0, R(
√

2 +√
δ2

1 − 8n− 2)) and the radius given by
√

(Rδ1)2 − 2nt. The radius is chosen so that ∂A(t) is
a MCF and

A(0) ⊂ {|T (x)| ≤ Rδ1} ∩ {R < xn+1 < r0}, (6.19)
C(

√
2R) ∩ {

√
2R ≤ xn+1 ≤ 2R} ⊂ A(4R2). (6.20)

Indeed, the minimum of T⊥(A(0)) satisfies

R

(√
2 +

√
δ2

1 − 8n− 2 − δ1

)
= R

√
2 − 8n+ 2

δ1 +
√
δ2

1 − 8n− 2

 > R

(√
2 − 8n+ 2

δ1

)
= R
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by the definition of δ1 and the maximum satisfies

R(
√

2 +
√
δ2

1 − 8n− 2 + δ1) < R(
√

2 + 2δ1) < r0

by (6.18) and R < r1. These show (6.19). One can check by calculation that (6.20) holds as
well. By (6.17), Lemma 4.1(1)(4) and (3.1), one can show that

Γε
0 ∩ {|T (x)| ≤ Rδ1} ∩ {|xn+1| < r0} ⊂ {|xn+1| < R}

and thus, by (6.19), A(0)∩Γε
0 = ∅. By Brakke’s sphere barrier to external varifold lemma, see [6,

§ 3.7] and [18, Lemma 10.12], one can conclude that A(t) ∩ spt ∥V ε
t ∥ = ∅ for t ∈ [0, (Rδ1)2/2n)

and in particular for t ∈ [0, 4R2]. This combined with (6.20) shows (6.15) for the case of
xn+1 > 0, and the case of xn+1 < 0 is symmetric. Finally, we have

C(
√

2R) ∩ {|T⊥(x)| <
√

2R} ⊂ U2R.

We can then deduce (6.16) from (6.1) with R there replaced by 2R and k = n, and thanks to
(6.10). □

7. Proof of Theorem 3.5

We are now in the position of proving Theorem 3.5. We fix U , Γ0, and {E0,i}N
i=1 so that

Assumption 3.3 holds. By choosing a smaller r0 > 0, we may assume that r0 < dist(0, ∂U)/4
(cf. Proposition 6.2), that

Q+ 1 ≥ Hn(Γ0 ∩Br)
ωn rn

≥ Q with Q ≥ 2 for all r ≤ r0 , (7.1)

and that the growth conditions (3.1)-(3.2) hold. We also fix a small ζ > 0 (cf. Definition 5.1
and (5.2)) depending only on Q and n such that

1
ωnrn

ˆ
{|T ⊥(x)|<

√
2r}

χ2
r dHn

Γ0 ≥ 1 + Q− 1
2 (7.2)

for all r ≤ r0 (by choosing an even smaller r0 if necessary).
We shall divide the proof into three steps. Throughout the proof we are going to use the

following notation. Recall that, given λ > 0, ηx,λ denotes the function ηx,λ(y) := λ−1 (y − x).
For the sake of simplicity, we will set ηλ := η0,λ. Furthermore, if V = {Vt}t≥0 is a family of
n-varifolds, we will let W = (ηλ)♯V denote the family {Wτ }τ≥0 of n-varifolds defined by

Wτ := (ηλ)♯Vλ2 τ , (7.3)
where the varifold on the right-hand side is the push-forward of the varifold Vλ2 τ through the
dilation map ηλ. It is easy to check by direct calculation that if V is an n-dimensional Brakke
flow in U then (ηλ)♯V is an n-dimensional Brakke flow in ηλ(U) = λ−1 U ; see [36, Section 3.4].

7.1. Step one: hole nucleation. Let ε0 be given by Lemma 4.1, let ε ∈ (0, ε0], and let
V ε = {V ε

t }t≥0 be the Brakke flow with fixed boundary ∂Γ0 and initial datum Γε
0 as in

Proposition 4.2. Correspondingly, consider the Brakke flow
V̂ ε,1 := (ηε)♯V

ε .

By the conclusion in Proposition 4.2, we have that, denoting V̂ ε,1 = {V̂ ε,1
t }t≥0,

∥V̂ ε,1
0 ∥ = Hn

Γ̂ε,1
0
, (7.4)

where, as a result of Lemma 4.1 and (3.1)-(3.2), Γ̂ε,1
0 := ε−1 Γε

0 satisfies the following properties:
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(1) Hn(C(1) ∩ U2 ∩ Γ̂ε,1
0 ) ≤ ωn.

(2) Γ̂ε,1
0 ∩ C(r0/ε) ∩ {|xn+1| < r0/ε} ⊂ {(x′, xn+1) : |xn+1| ≤ |x′|

logα(1/(ε|x′|))}.
Moreover, (6.15) with R = ε and after rescaling by ηε gives

(3) C(
√

2) ∩ {
√

2 ≤ |xn+1| ≤ 2} ∩ spt ∥V̂ ε,1
t ∥ = ∅ for t ∈ [0, 4].

We apply Lemma 5.5 to the flow {V̂ ε,1
t }t≥0 regarded as a Brakke flow in C(

√
2)∩{|xn+1| ≤ 2}

with R̂1 =
√

2, R̂2 = 2 and
t1 = 0 , t2 = 1 ,
R2

1 = 1 , R2
2 = 2.

We deduce from (5.15) as well as (3) that
2−n/2 ∥V̂ ε,1

1 ∥(χ2√
2 {|xn+1|≤2}) ≤ ∥V̂ ε,1

0 ∥(χ2
1 {|xn+1|≤

√
2}) +M µ2

1

≤ Hn(Γ̂ε,1
0 ∩ C(1) ∩ {|xn+1| ≤

√
2}) +M µ2

1 ,
(7.5)

where in the last inequality we have used (7.4) and the properties of χ, and where

µ2
1 = sup

t∈[0,1]
R(t)−(n+2)

ˆ
C(R(t))∩{|xn+1|≤

√
2}

|T⊥(x)|2 d∥V̂ ε,1
t ∥(x) , R(t)2 = 1 + t .

Observe that, thanks to property (1), (7.5) reads
2−n/2∥V̂ ε,1

1 ∥(χ2√
2 {|xn+1|≤2}) ≤ ωn +M µ2

1 . (7.6)

Now fix a number 2 ≤ L1 < ∞ to be chosen later. We can apply Proposition 6.3 (with
R = ε and rescaling by ηε) in order to estimate

µ2
1 ≤ sup

t∈[0,1]

ˆ
C(

√
2)∩{|xn+1|≤

√
2}

|T⊥(x)|2 d∥V̂ ε,1
t ∥(x)

≤ e1/4
ˆ

U2L1

|T⊥(x)|2 d∥V̂ ε,1
0 ∥(x) + c(n)Ln+2

1 exp
(
−(L1 − 1)2/8

)
E0.

We set the following condition: we will choose L1 in such a way that
2εL1 < r0 . (7.7)

If (7.7) holds, then we can use again property (2) above in order to further estimate

µ2
1 ≤ e1/4 (2L1)2

log2α (1/(2εL1))
Hn(Γ̂ε,1

0 ∩ U2L1) + c(n)Ln+2
1 exp

(
−(L1 − 1)2/8

)
E0

≤ c(n)Ln+2
1

(
1

log2α(1/(2εL1))
Hn(Γε

0 ∩ U2L1ε)
(2L1ε)n

+ exp
(
−(L1 − 1)2/8

)
E0

)

≤ c(n)Ln+2
1 E0

(
1

log2α(1/(2εL1))
+ exp

(
−(L1 − 1)2/8

))
,

where we also used (6.10).
Finally, rescaling (7.6) back we conclude

(
√

2 ε)−n∥V ε
ε2∥(χ2√

2 ε {|xn+1|≤2ε}) ≤ ωn +M µ2
1 , (7.8)

µ2
1 ≤ c(n)Ln+2

1 E0

(
1

log2α(1/(2εL1))
+ exp

(
−(L1 − 1)2/8

))
. (7.9)
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7.2. Iteration: hole expansion. Let h ≥ 2 be an integer, and consider now the Brakke flow

V̂ ε,h := (η2(h−1)/2ε)♯V
ε .

Again by the conclusions of Proposition 4.2, and with V̂ ε,h = {V̂ ε,h
t }t≥0, we have that

∥V̂ ε,h
0 ∥ = Hn

Γ̂ε,h
0
,

where Γ̂ε,h
0 := Γε

0/(2(h−1)/2ε) satisfies

Γ̂ε,h
0 ∩ C

(
r0

2(h−1)/2ε

)
∩
{

|xn+1| < r0
2(h−1)/2ε

}
⊂
{

(x′, xn+1) : |xn+1| ≤ |x′|
logα (1/(2(h−1)/2ε|x′|)

)} .

(7.10)

As long as we have
2(h−1)/2ε < r1 , (7.11)

we have by (6.15)

C(
√

2) ∩ {
√

2 ≤ |xn+1| ≤ 2} ∩ spt ∥V̂ ε,h
t ∥ = ∅ for t ∈ [0, 4]. (7.12)

We apply Lemma 5.5 to the flow {V̂ ε,h
t }t≥0 with R̂1 =

√
2, R̂2 = 2 and

t1 = 1
2 , t2 = 1 ,

R2
1 = 1 , R2

2 = 2

to deduce

2−n/2∥V̂ ε,h
1 ∥(χ2√

2 {|xn+1|≤2}) ≤ ∥V̂ ε,h
1/2 ∥(χ2

1 {|xn+1|≤
√

2}) +M µ2
h , (7.13)

where

µ2
h := sup

t∈[1/2,1]
R(t)−(n+2)

ˆ
C(R(t))∩{|xn+1|≤

√
2}

|T⊥(x)|2 d∥V̂ ε,h
t ∥ , R(t)2 = 1 + 2

(
t− 1

2

)
.

(7.14)
As long as Lh (to be chosen) satisfies

2Lh2(h−1)/2ε < r0, (7.15)

by (6.16), we have

µ2
h ≤ sup

t∈[1/2,1]

ˆ
C(

√
2)∩{|xn+1|≤

√
2}

|T⊥(x)|2 d∥V̂ ε,h
t ∥

≤ e1/4
ˆ

U2Lh

|T⊥(x)|2 d∥V̂ ε,h
0 ∥ + c(n)Ln+2

h exp
(
−(Lh − 1)2/8

)
E0.

By (7.10) and proceeding as in Step one, we further deduce

µ2
h ≤ c(n)Ln+2

h E0

(
1

log2α (1/(2(h+1)/2εLh)
) + exp

(
−(Lh − 1)2/8

))
.
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Now, if we rescale (7.13) back, we have

(2h/2 ε)−n∥V ε
2h−1ε2∥(χ2

2h/2ε {|xn+1|≤2(h+1)/2ε}) (7.16)

≤ (2(h−1)/2ε)−n∥V ε
2h−2ε2∥(χ2

2(h−1)/2ε {|xn+1|≤2h/2ε}) +M µ2
h ,

µ2
h ≤ c(n)Ln+2

h E0

(
1

log2α (1/(2(h+1)/2εLh)
) + exp

(
−(Lh − 1)2/8

))
. (7.17)

7.3. Conclusion. Let j ≥ 1. If we chain the inequalities (7.16) as h varies in {2, . . . , j}
together with (7.8) we conclude that

(2j/2 ε)−n∥V ε
2j−1ε2∥(χ2

2j/2ε {|xn+1|≤2(j+1)/2ε}) ≤ ωn +M
j∑

h=1
µ2

h , (7.18)

where, thanks to (7.9) and (7.17),

µ2
h ≤ c(n)Ln+2

h E0

(
1

log2α (1/(2(h+1)/2εLh)
) + exp

(
−(Lh − 1)2/8

))
, h ≥ 1 , (7.19)

as long as (7.7), (7.11) and (7.15) are satisfied. In order to guarantee this, we will have to
carefully choose ε, j, and Lh. We proceed as follows.

Let K be a large integer, fixed but to be chosen at the end, and for any J ≥ K + 1 apply
(7.18) with j = J −K and ε = εJ := 2−J/2. With these choices, (7.18) reads

(2−K/2)−n ∥V εJ

2−(K+1)∥(χ2
2−K/2 {|xn+1|≤2−(K−1)/2}) ≤ ωn +M

J−K∑
h=1

µ2
h . (7.20)

We can now choose the constants Lh by setting
Lh := log(J − h) , for 1 ≤ h ≤ J −K , (7.21)

so that (7.19) becomes

µ2
h ≤ c(n)E0 logn+2(J − h)

 1
log2α

(
2(J−h−1)/2

log(J−h)

) + exp
(

−(log(J − h) − 1)2

8

) , (7.22)

which is valid assuming that
2(h−J+1)/2 log(J − h) < r0 , (7.23)

2(h−J−1)/2 < r1 (7.24)
for all h ∈ {1, . . . , J −K}, corresponding to (7.7), (7.11), and (7.15).

In order to simplify the notation, it is useful to change variable in the sum from h to
q := J − h, so that (7.20) becomes

(2−K/2)−n ∥V εJ

2−(K+1)∥(χ2
2−K/2 {|xn+1|≤2−(K−1)/2}) ≤ ωn + c(n)E0M

J−1∑
q=K

a2
q , (7.25)

with

a2
q := logn+2(q)

log2α
(

2(q−1)/2

log(q)

) + logn+2(q) exp
(

−(log(q) − 1)2

8

)
, (7.26)
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and the conditions (7.23) and (7.24) read

2(−q+1)/2 log(q) < r0, (7.27)
2(−q−1)/2 < r1 (7.28)

for q ∈ {K, . . . , J − 1}. To check the validity of (7.27), we notice that, for q large, the function
q 7→ 2−(q+1)/2 log(q) is decreasing towards 0. In particular, (7.27) is satisfied if we choose K
large enough depending only on r0. The condition (7.28) is also satisfied as soon as K is large
enough depending on r1 = r1(n, α, r0).

We have then validated the estimate (7.25) with a2
q defined by (7.26). Notice that the

estimate remains valid independently of the choice of J ≥ K+1. Hence, we can now let J → ∞,
so that, for a (not relabeled) subsequence of {εJ} satisfying the conclusion of Proposition 4.3,
and with {Vt}t≥0 the corresponding limit Brakke flow, we have

(2−K/2)−n ∥V2−(K+1)∥(χ2
2−K/2 {|xn+1|<2−(K−1)/2}) ≤ ωn + c(n)E0M

∞∑
q=K

a2
q . (7.29)

Observe that Proposition 4.3 guarantees that {Vt}t≥0 has fixed boundary ∂Γ0 and that
limt→0+ ∥Vt∥ = ∥V0∥ = Hn

Γ0 . This shows that {Vt}t≥0 satisfies the conclusion (i) of Theorem
3.5. Hence, we are only left with proving that t 7→ Vt is not identically equal to V0. To this end,
notice that if α > 1

2 then there exists γ > 1 such that limq→∞ a2
q q

γ = 0, which implies that∑∞
q=K a2

q is a convergent series: therefore, we may choose K so large (depending on c(n)E0M)
that

(2−K/2)−n ∥V2−(K+1)∥(χ2
2−K/2 {|xn+1|<2−(K−1)/2}) ≤ ωn

(
1 + Q− 1

4

)
. (7.30)

Due to (7.2) with r = 2−K/2 and (7.30), we see that
∥Vr2/2∥(χ2

r {|xn+1|<
√

2r}) < ∥V0∥(χ2
r {|xn+1|<

√
2r}), (7.31)

which shows V2−(K+1) ̸= V0. We may similarly argue that (7.31) holds for r = 2−j/2 with
any j > K. Finally, we prove ∥Vt∥(U) < ∥V0∥(U) for all t > 0. First, note that ∥Vt∥(U) ≤
∥V0∥(U) for all t > 0 by (2.14). Assume for a contradiction that there exists t0 > 0 with
∥Vt0∥(U) = ∥V0∥(U). By (2.14), for a.e. t ∈ [0, t0], we have h(·, Vt) = 0. Choose j ≥ K
such that 2−j < t0. By the above argument, we may choose a smooth function ϕ ∈ C∞

c (U)
with 0 ≤ ϕ ≤ 1 such that ∥V2−j ∥(ϕ) < ∥V0∥(ϕ). Then, by (2.15) and h(·, Vt) = 0 for
a.e. t ∈ [0, t0], we also have ∥Vt0∥(ϕ) < ∥V0∥(ϕ). Since ∥Vt0∥(U) = ∥V0∥(U), we should
have ∥Vt0∥(1 − ϕ) > ∥V0∥(1 − ϕ). Then by approximation, we have a non-negative function
ϕ̂ ∈ C∞

c (U) such that ∥Vt0∥(ϕ̂) > ∥V0∥(ϕ̂). Since h(·, Vt) = 0, (2.15) shows ∥Vt0∥(ϕ̂) ≤ ∥V0∥(ϕ̂),
which is a contradiction. This shows ∥Vt∥(U) < ∥V0∥(U) for all t > 0 and completes the proof
of the theorem. □
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