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Abstract

In this note we investigate geometric properties of those planar do-
mains that are extension for functions with bounded variation. We start
from a characterization of such domains given by Burago–Maz’ya [BM]
and prove that a bounded, simply connected domain is a BV-extension do-
main if and only if its complement is quasiconvex. We further prove that
the extension property is a bi-Lipschitz invariant and give applications to
Sobolev extension domains.

1 Introduction

Let Ω ⊂ R2 be a domain and 1 ≤ p ≤ ∞. Recall that

BV (Ω) = {u ∈ L1(Ω) : |Du|(Ω) < ∞},

where

|Du|(Ω) = sup
{∫

Ω

u div v dx : v = (v1, v2) ∈ C∞
0 (Ω; R2), |v| ≤ 1},

and
W 1,p(Ω) = {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω, R2)}.

Here ∇u is the distributional gradient of u. We employ these spaces with the
norms ‖u‖BV (Ω) = ‖u‖L1(Ω) + |Du|(Ω) and ‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) +‖∇u‖Lp(Ω).
From the discussion in [EG] and [M],

|Du|(Ω) = inf{lim inf
k→∞

∫
Ω

|∇uk|dx : uk ∈ W 1,1
loc (Ω), uk → u in L1(Ω)}, (1)
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where we also may replace W 1,1(Ω) with C∞(Ω).
In this note, we study geometric properties of those bounded, simply con-

nected planar domains Ω that are extension domains for BV or for W 1,1. We
say that a domain Ω ⊂ R2 is a BV -extension domain if there exists a constant
c and an extension operator T : BV (Ω) → BV (R2), not necessarily linear, so
that Tu|Ω = u and ‖Tu‖BV (R2) ≤ c‖u‖BV (Ω) for each u ∈ BV (Ω). Replacing
BV by W 1,p above gives the definition of a W 1,p-extension domain. For p > 1,
W 1,p-extension domains admit a linear extension operator, but it appears to be
unknown if this holds for p = 1 or for BV -extension domains. For other possible
definitions of extension domains see Section 2 below.

The geometry of bounded, simply connected W 1,p-extension domains for
p = 2 is well understood. Indeed, this class of domains coincides with the
thoroughly investigated class of quasidisks (cf. [GLV], [GR], [GV], [J]) that
allows for a number of geometric characterizations. For p > 2, one also has
rather good geometric criteria for the extension property [K]. In the remaining
range 1 ≤ p < 2 for bounded simply connected domains, it is known that Ω has
to be a so-called John domain (cf. [GR], [NV]) but no geometric characterization
is available. Finally, Burago and Maz’ya [BM] have given a characterization for
an extension property related to BV in terms of extendability of sets of finite
perimeter in the domain. In fact, this seminal result by Burago and Maz’ya was
the first characterization for Sobolev-type extensions and should be viewed as
the predecessor of all the results mentioned above.

Our first result that partly relies on the work of Burago and Maz’ya [BM] (see
also [M, Section 6.3.5]) gives a concrete characterization for bounded, simply
connected BV -extension domains.

Theorem 1.1. Let Ω ⊂ R2 be a bounded, simply connected domain. Then Ω is
a BV -extension domain if and only if there exists a constant C > 0 such that
for all x, y ∈ R2 \ Ω there is a rectifiable curve γ ⊂ R2 \ Ω connecting x and y
with length `(γ) ≤ C |x− y|. That is, Ω is a BV -extension domain if and only
if the complement of Ω is quasiconvex.

As a corollary of this Theorem and Lemma 2.4 we obtain a new necessary
condition for a bounded, simply connected domain to be a W 1,1-extension do-
main.

Corollary 1.2. Let Ω ⊂ R2 be a bounded, simply connected domain that is a
W 1,1-extension domain. Then the complement of Ω is quasiconvex.

Simple examples such as a slit disk show that quasiconvexity of the comple-
ment does not characterize W 1,1-exendability. However, it is easy to check that
quasiconvexity of the complement of Ω is a stronger requirement than Ω being
a John domain or the complement of Ω being of bounded turning [GR]. Notice
also that the complement of a quasidisk is quasiconvex. Consequently, the claim
of Corollary 1.2 holds also in the W 1,2-extension setting. We conjecture that it,
in fact, holds for all 1 ≤ p ≤ 2.

Our second corollary deals with the invariance of the extension property un-
der bi-Lipschitz mappings of Ω onto Ω′. This may seem trivial as bi-Lipschitz
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mappings preserve the spaces in question. The novelty here is that our bi-
Lipschitz mapping is a priori only defined in the domain in question and ex-
tendability requires information in the entire plane.

Corollary 1.3. Let Ω ⊂ R2 be a bounded, simply connected domain that is a
BV -extension domain (or a W 1,1-extension domain) and let f : Ω → Ω′ ⊂ Rn

be a bi-Lipschitz mapping. Then Ω′ is also a BV -extension domain (or a W 1,1-
extension domain).

Corollary 1.3 leaves open the case 1 < p ≤ ∞, but the analog holds also in
this case by a recent result from [HKT]. We conjecture that the assumption
that Ω be simply connected in Corollary 1.3 is superfluous.

This note is organized as follows. In Section 2 we give the necessary prelim-
inaries and discuss an alternative definition for an extension domain. Section 3
contains the proofs of the main results stated above. Finally, in Section 4, we
discuss the meaning of Theorem 1.1 in a special case and briefly comment on
possible generalizations of our result.

2 Preliminaries

The notation used in this note is as follows. Given x ∈ R2 and r > 0, the (open)
disk centered at x with radius r will be denoted Br(x), and S(x, r) denotes its
boundary ∂Br(x). The 2-dimensional Lebesgue measure of a measurable set
A ⊂ R2 is denoted |A|.

Burago and Maz’ya, in [BM], consider extension operators for

BVl(Ω) = {u ∈ L1
loc(Ω) : |Du|(Ω) < +∞}.

They provide a necessary and sufficient condition for the existence of an exten-
sion operator Tl : BVl(Ω) → BVl(R2) such that for all u ∈ BVl(Ω),

|DTl(u)|(R2) ≤ c|Du|(Ω). (2)

We call such a domain a BVl-extension domain. If E ⊂ R2 is a measurable
set whose characteristic function χE lies in BVl(Ω), then we say that E has
finite perimeter in Ω, and denote P (E, Ω) := |DχE |(Ω). It follows from the
Burago-Maz’ya characterization and the subadditivity property of the perimeter
measure of a given set that it is necessary and sufficient to know that for every
set E ⊂ Ω of finite perimeter P (E, Ω) in Ω there is a set F ⊂ R2 of finite
perimeter such that F ∩ Ω = E and P (F, R2) ≤ C P (E, Ω).

Let us begin by pointing out that a bounded domain is a BV -extension
domain in our sense if and only if it is a BVl-extension domain. This can be
seen e.g. via a modification of an argument of Herron and Koskela [HerK].

Lemma 2.1. A bounded domain Ω ⊂ R2 is a BV -extension domain if and only
if it is a BVl-extension domain.
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Towards the proof, we record a Poincaré type inequality resulting from com-
pacness of a suitable embedding. It can be obtained by combining some results
in [M] (see 6.1.7, 3.2.3 and 3.5.2). For convenience of the reader we give a simple
proof below. Recall that a normed space X is said to embed compactly into
another normed space Y if there is a bounded embedding map ι : X → Y such
that whenever (ak)k is a norm-bounded sequence in X, the limit limj ι(akj

)
exists in Y, for some subsequence (akj )j . We call this embedding natural, if ι
can be taken to be the identity map.

We continue with a simple observation.

Lemma 2.2. Suppose that Ω ⊂ R2 is a domain such that BV (Ω) embeds nat-
urally compactly in L1(Ω). Then |Ω| < ∞.

Proof. We define a function mΩ : [0,∞) → R by setting

mΩ(r) = |Ω ∩Br(0)|. (3)

Then mΩ ∈ Liploc([0, +∞)) (with mΩ(r) ≤ πr2). Therefore mΩ is differentiable
almost everywhere and, by the coarea formula applied to the function u(x) =
(|x| − r)/h in the annular region Ω ∩Br+h(0) \Br(0), at almost all points r of
differentiability of mΩ we have

m′
Ω(r) = P (Br(0), Ω). (4)

Let I be the set of all r > 0 that are points of differentiability of mΩ and for
which (4) holds true. We claim that

lim inf
I3r→+∞

m′
Ω(r)

mΩ(r)
= 0.

In fact, if there are positive numbers M and rM so that m′
Ω(r)/mΩ(r) ≥ M for

all r ≥ rM , then mΩ(r) ≥ mΩ(rM )eM(r−rM ), contradicting (3).
It follows from the above discussion that there exist C > 0 and a sequence

(rn)n from I with rn →∞ such that P (Brn
(0), Ω) = m′

Ω(rn) ≤ CmΩ(rn). We
define a sequence of functions by setting

un =
1

mΩ(rn)
χΩ∩Brn (0).

Then ‖un‖L1(Ω) = 1 and

|Dun|(Ω) =
1

mΩ(rn)
P (Brn

, Ω) ≤ C.

If the area of Ω were infinite, the sequence (un)n would converge uniformly to the
zero function, and so this would be the only potential L1-limit of a subsequence
of (un)n. Since ‖un‖L1(Ω) = 1, we would conclude that there is no subsequence
that converges in L1(Ω), contradicting our assumption.
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In the next result and in what follows, for sets A with 0 < |A| < +∞ we
write

uA =
∫
A

u dx =
1
|A|

∫
A

u dx

whenever u ∈ L1(A).

Lemma 2.3. If Ω ⊂ R2 is a domain and BV (Ω) embeds naturally compactly
into L1(Ω), then there is a constant C > 0 such that whenever u ∈ BV (Ω),∫

Ω

|u− uΩ| dx ≤ C |Du|(Ω). (5)

Proof. By Lemma 2.2 and the hypothesis of this lemma, the measure of Ω must
necessarily be finite. Suppose that for each positive integer n there is a function
un ∈ BV (Ω) such that ∫

Ω

|un − (un)Ω| dx ≥ n |Dun|(Ω).

By replacing un with
(∫

Ω
|un − (un)Ω| dx

)−1 (un − (un)Ω), we may also assume
that ‖un‖L1(Ω) = 1 and (un)Ω =

∫
Ω

un dx = 0. Then, by the above assumption,
|Dun|(Ω) ≤ n−1, and so the sequence (un) is bounded in BV (Ω), and hence
there exists w ∈ L1(Ω) such that, for some subsequence (unj )j , unj → w in
L1(Ω). Because

lim
n→∞

|Dun|(Ω) = 0,

we have that w ∈ BV (Ω) with |Dw|(Ω) = 0. As Ω is connected, it follows (using
the Poincaré inequality for BV, see [EG],[M]) that w is constant on Ω. On the
other hand,

∫
Ω

w dx = limn

∫
Ω

un dx = 0, but
∫
Ω
|w| dx = limn

∫
Ω
|un| dx = 1,

which is not possible if w is a constant function. This leads to a contradiction.

Proof of Lemma 2.1. First suppose that Ω is a bounded BVl-extension domain,
and let Tl : BVl(Ω) → BVl(R2) be the bounded extension operator. Since
BV (Ω) ⊂ BVl(Ω), for every f ∈ BV (Ω) the function Tlf belongs to BVl(R2),
with |DTlf |(R2) ≤ C|Df |(Ω). Let B be a ball in R2 such that Ω is a relatively
compact subdomain of B. Let c0 = (Tlf)B . By the Poincaré inequality∫

B

|Tlf − c0| dx ≤ Cdiam(B)|DTlf |(B) ≤ Cdiam(B)|Df |(Ω).

Thus

|c0| ≤
∫
Ω

|f − c0| dx +
∫
Ω

|f | dx ≤ 1
|Ω|

∫
B

|Tlf − c0| dx +
∫
Ω

|f | dx

≤ C|Ω|−1diam(B)
(
|Df |(Ω) +

∫
Ω

|f | dx

)
.
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Fix a Lipschitz function η : R2 → [0, 1] with compact support in B such that
η = 1 on Ω. We define our extension operator E : BV (Ω) → BV (R2) by setting
Ef = η Tlf . Now∫

R2
|Ef | dx ≤

∫
B

|Tlf | dx ≤
∫

B

|Tlf − c0| dx + |B| |c0|

≤ C diam(B)

|Df |(Ω) + |B||Ω|−1|Df |(Ω) + |B|
∫
Ω

|f | dx


≤ C0 ‖f‖BV (Ω).

Furthermore,

|DEf |(R2) ≤ |DTlf |(B) +
∫

R2
|Tlf‖∇η| dx

≤ C |Df |(Ω) + C

∫
B

|Tlf − c0| dx + C|B| |c0|

≤ C1 ‖f‖BV (Ω).

This proves that E is bounded, and hence Ω is a BV -extension domain.
Now suppose that Ω is a bounded BV -extension domain. Let T : BV (Ω) →

BV (R2) be an extension operator. Fix a ball B so that Ω ⊂ B. By the Rel-
lich theorem for BV (see [EG],[M]), T (BV (Ω))

∣∣
B

embeds naturally compactly
into L1(B). Especially, BV (Ω) embeds naturally compactly into L1(Ω). Hence,
by Lemma 2.3, we have a constant C > 0 for which inequality (5) is satis-
fied by every u ∈ BV (Ω). For u ∈ BVl(Ω) and each positive integer n, let
un(x) = max{−n, min{n, u(x)}}. Then un ∈ BV (Ω) with |Dun|(Ω) ≤ |Du|(Ω)
and un → u pointwise. Let cn =

∫
Ω

un dx. Then un − cn ∈ BV (Ω), and
by inequality (5), ‖un − cn‖BV (Ω) ≤ C |Dun|(Ω) ≤ C |Du|(Ω). Hence, by
the compactness of the embedding BV (Ω) into L1(Ω), there is a subsequence,
(unk

− cnk
)k, converging in L1(Ω) to a function w ∈ L1(Ω). By passing to a

further subsequence if necessary, we may also assume that unk
−cnk

→ w point-
wise almost everywhere in Ω as well. Since unk

→ u pointwise in Ω, it follows
that the sequence (cnk

)k of real numbers converges to some c0 ∈ R. Therefore
w = u− c0, u ∈ L1(Ω) and hence u ∈ BV (Ω), and unk

− cnk
→ u− c0 in L1(Ω).

Furthermore, c0 =
∫

Ω
u dx

Because u ∈ BV (Ω), we have that Tu ∈ BV (R2), but it is not clear if we
can control the BVl norm of Tu purely in terms of the BVl norm of u. To fix
this, we modify our extension operator by setting by E(u) = T (u − c0) + c0,
where c0 =

∫
Ω

u dx; then E : BVl(Ω) → BVl(R2). Moreover,

|DE(u)|(R2) = |DT (u− c0)|(R2) ≤ C ‖u− c0‖BV (Ω) ≤ C |Du|(Ω),

where we used inequality (5) again to obtain the last inequality. This completes
the proof.

For completeness we include a simple proof for the following connection
between Sobolev- and BV -extension domains.
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Lemma 2.4. A W 1,1-extension domain is necessarily a BV -extension domain.

Proof. Let Ω be a W 1,1-extension domain, with a bounded extension operator
T : W 1,1(Ω) → W 1,1(R2), and let u ∈ BV (Ω). Then there is a sequence (uk)k ⊂
W 1,1(Ω) such that uk → u in L1(Ω),

∫
Ω
|∇uk|dx ≤ 2|Du|(Ω),

∫
Ω
|uk|dx ≤

2
∫
Ω
|u|dx, and limk

∫
Ω
|∇uk|dx = |Du|(Ω). Let vk = Tuk ∈ W 1,1(R2).

Since ‖uk‖W 1,1(Ω) ≤ 2‖u‖BV (Ω), we see that ‖vk‖W 1,1(R2) ≤ C ‖u‖BV (Ω).
Again, fix a ball Bj(0) so that Ω is a relatively compact subdomain of Bj(0). By
the Rellich theorem, there is a subsequence (v(j)

k )k that converges in L1(Bj(0))
and almost everywhere in Bj(0) to some function wj ∈ L1(Bj(0)). We repeat the
argument for this subsequence and Bj+1(0), and continue by induction. Then
the diagonal sequence (v(k)

k )k converges almost everywhere to a function w with
w = wl on Bl(0), l > j, and the convergence holds also with respect to L1(Bl(0)).
It follows that ‖vk‖L1(Bl(0)) ≤ C ‖u‖BV (Ω) for all l ≥ j and consequently, w ∈
L1(R2) with the same bound. Secondly,∫

R2
|∇vk

k | ≤ 2‖u‖BV (Ω),

and it thus easily follows that w ∈ BV (R2) with the desired norm bound. The
claim follows when we set E(u) = w.

w ∈ BV (R2) with the desired norm bound.

In [BM], Burago and Maz’ya gave a characterization of BVl-extension do-
mains. A general Euclidean spaces version of the following result can be found
in Burago–Maz’ya [BM] or page 314 of Maz’ya [M]. A more general metric space
version of this statement has recently been given in [BaMo].

Theorem 2.5 (Burago–Maz’ya). A domain Ω ⊂ R2 is a BVl-extension do-
main if and only if there is a constant C > 0 such that whenever E ⊂ Ω is a
Borel set of finite perimeter in Ω,

τΩ(E) ≤ C P (E, Ω), (6)

where
τΩ(E) = inf{P (F, R2 \ Ω) : F ∩ Ω = E}.

Note that

P (F, R2 \ Ω) = inf{P (F,U) : U open and R2 \ Ω ⊂ U}.

The following lemma of Burago–Maz’ya [BM] gives an analogous character-
ization for a variant of bounded BV -extension domains; see also Section 6.3.5
of [M]. For a self-contained proof of this lemma in a more general setting, also
see [BaMo].

Lemma 2.6. If Ω ⊂ R2 is a bounded domain, then there is a bounded extension
map T : BV (Ω) → BVl(R2) if and only if there exist constants C, δ > 0 such
that for all Borel sets E ⊂ Ω of finite perimeter in Ω with diam(E) ≤ δ,

τΩ(E) ≤ C P (E, Ω).
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The next lemma allows us to approximate sets of finite perimeter by smooth
sets of finite perimeter. The statement and proof of this theorem for domains
in Rn can be found in 6.1.3 of [M]. Recall that given sets F,G, their symmetric
difference is denoted F∆G.

Lemma 2.7. If F ⊂ R2 is a set of finite perimeter, then there exist sets Fk ⊂ R2

such that ∂Fk is smooth, χFk
→ χE in L1

loc(R2), and limk P (Fk, R2) = P (F, R2).
Furthermore, this sequence can be chosen so that

Fk∆F ⊂
⋃

x∈∂F

B1/k(x). (7)

Recall that by the isoperimetric inequality in R2, if F is a set of finite perime-
ter then either |F | or |R2 \F | is finite. If |F | is finite, the expression (7) follows
from the construction in [M] of Fk as certain level sets of smooth convolution
approximations of χF . If |R2 \ F | is finite, then (7) follows from setting Fk to
be the complement of the construction in [M] that approximates R2 \ F .

Suppose that ∂Fk is smooth in R2. If Fk is bounded (or it’s complement is
bounded), then the number of connected components of ∂Fk is finite. If both Fk

and it’s complement are unbounded, then there can be infinitely (but countably)
many components, but only finitely many can intersect any given disc. If ∂Fk

is only assumed to be smooth in a domain Ω, then the corresponding analog is
that the connected components cannot accumulate in any compact part of Ω,
though they could accumulate toward ∂Ω.

We will from now on use the abbreviation ∂F ∩ Ω ∈ C∞ for the statement
that ∂F ∩ Ω be smooth.

Lemma 2.8. Let Ω ⊂ R2 be a bounded domain. Suppose that there is a constant
C > 0 such that for every closed set F ⊂ R2 with ∂F ∩ Ω ∈ C∞ there exists a
set F̂ ⊂ R2 with F̂ ∩ Ω = F ∩ Ω and

|DχF̂ |(R
2) ≤ C|DχF |(Ω).

Then Ω is a BV -extension domain.

Proof. By Lemma 2.1, it suffices to show that Ω is a BVl-extension domain;
that is, Ω satisfies the Burago-Maz’ya condition of Lemma 2.5.

Let E be any set such that χΩ 6= χE ∈ BV (Ω). Then, by 6.1.3 in [M] there
exists a sequence (Fk)k of sets in Ω so that ∂Fk ∩ Ω ∈ C∞ and

χFk
→ χE in L1(Ω), |DχFk

|(Ω) → |DχE |(Ω). (8)

By the regularity of Fk, we may assume that Fk is closed. Now, by hypothesis,
there exist sets F̂k so that F̂k ∩ Ω = Fk ∩ Ω and

|Dχ bFk
|(R2) ≤ C|DχFk

|(Ω). (9)

By (8) and (9), we get that

lim sup
k

|Dχ bFk
|(R2) ≤ C|DχE |(Ω).
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By the Rellich theorem applied to balls containing Ω and an application of a
diagonalization argument, we may assume that there is F∞ such that χ bFk

→
χF∞ in L1

loc(R2). For this set we have by the lower semicontinuity of the BVl

norm that
|DχF∞ |(R2) ≤ lim sup

k
|DχF̂k

|(R2) ≤ C|DχE |(Ω).

Since for every k we have F̂k ∩ Ω = Fk ∩ Ω, we conclude that χF∞∩Ω = χE

almost everywhere. Thus such an extension χF∞ of χE proves that Ω satisfies
the Burago-Maz’ya condition (6).

We will later need a lower bound for the perimeters of certain sets. The
following lemma provides a suitable one.

Lemma 2.9. Let E ⊂ R2 be an open set with finite perimeter and suppose there
exist two curves γ1, γ2 : [0, 1] → R2 with γ1([0, 1]) ⊂ E and γ2([0, 1]) ⊂ R2 \ E
with

min{|γ1(1)− γ1(0)|, |γ2(1)− γ2(0)|} ≥ τ.

Then P (E, R2) ≥ 2τ .

Proof. Let us first assume that E is an open, bounded, connected smooth subset
of R2 and let x, y ∈ E; then P (E) ≥ 2|x− y|. In fact, if we consider

t1 = inf{t ∈ R : x + t(y − x) ∈ E}, t2 = sup{t ∈ R : x + t(y − x) ∈ E},

with our hypothesis on E, the points xi = x + ti(y − x), i = 1, 2, are on the
same connected component β of ∂E and they divide it into two curves β1 and
β2 each with length l(βi) ≥ |x1 − x2|, and then

P (E) ≥ l(β1) + l(β2) ≥ 2|x1 − x2| ≥ 2|x− y|.

If now E is any open set with finite perimeter, then either E or R2 \ E has
finite area; let us assume that |R2 \ E| < +∞. We then consider F = R2 \ E
and the curve γ2 (in case |E| < +∞, we have to consider γ1); by assumption,
δ = dist(γ2, E) > 0. Let Fk be an approximation of F obtained as in Lemma 2.7,
with k > 2/δ; with this choice, the curve γ2 is eventually contained in one of
the connected components F̃ε of Fε. Now by the discussion in the previous
paragraph,

P (E) = P (F ) = lim
k→∞

P (Fk) ≥ lim sup
k→∞

P (F̃k) ≥ 2τ.

Lemma 2.10. Let Ω ⊂ R2 be a BVl-extension domain. Then there exist con-
stants c, c1, c2 ∈ (0, 1) and r0 > 0 such that for any x ∈ ∂Ω and 0 < r < r0 we
have

|Ω ∩Br(x)| ≥ c|Br(x)|. (10)

Moreover, for each connected component E of Ω∩Br(x) that intersects Br/5(x)
we have

|E| ≥ c1|Br(x)| and H1(Ω ∩ ∂E) ≥ c2 r.
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Proof. We choose r0 > 0 such that whenever x ∈ ∂Ω and 0 < r < r0, Ω \Br(x)
contains a connected subset of diameter at least r0.

Suppose that there exists a sequence (xk)k ⊂ ∂Ω, 0 < rk < r0, and a
sequence εk → 0 such that there is a connected component Ek of Ω ∩ Brk

(xk)
intersecting Brk/5(xk) with

|Ek| = εk|Brk
(xk)| = πεkr2

k.

Since
|Ek| =

∫ rk

0

H1(Ek ∩ ∂Bt(xk))dt,

there exists t̄ ∈ [rk/2, rk] such that

P (Bt̄(xk) ∩ Ek, Ω) = H1(Ek ∩ ∂Bt̄(xk)) ≤ 2πεkrk. (11)

Observe that as Ek contains a curve connecting a point in S(xk, rk) to some
point in S(xk, rk/5), it is clear that Ek∩Bt̄(xk) contains a curve connecting some
point in S(xk, t̄) to a point in S(xk, rk/5). Hence the extension Êk of Ek∩Bt̄(xk)
has a connected component of diameter at least 3rk/10. Furthermore, as rk < r0

and Êk ∩ Ω = Ek ∩ Bt̄(xk) ⊂ Br(xk), it follows that R2 \ Êk also contains a
connected set of diameter at least 3rk/10. It therefore follows by Lemma 2.9
that P (Êk, R2) ≥ 3rk/10. This means that

P (Êk, R2)
P (Ek ∩Bt̄(xk), Ω)

=
P (Êk, R2)

H1(Ek ∩ ∂Bt̄(xk))
≥ 3rk

20πεkrk
=

3
20πεk

.

Letting k → ∞ and recalling that εk → 0, gives us a contradiction with the
extension property.

Now, fix a connected component E of Br(x)∩Ω that intersects Br/5(x). Then
by the above argument and the BV -extension property, with Ê an extension of
E given by the BV -extension property,

C ≥ P (Ê, R2)
H1(Ω ∩ ∂E)

=
P (Ê, R2)
P (E, Ω)

≥ 3r

10P (E, Ω)
,

completing the proof.

We end this section by pointing out that the Lemmas 2.1, 2.3, 2.4, 2.5, 2.6,
2.7, and 2.8, as well as their proofs given here, hold true in higher dimensional
Euclidean spaces as well.

3 Proofs of the results

Proof of Theorem 1.1. We first prove quasiconvexity of a bounded, simply con-
nected BVl-extension domain. The same for BV -extension domains then follows
from Lemma 2.1.

10



Suppose that Ω is a bounded, simply connected BVl-extension domain. It
suffices to prove the quasiconvexity estimate for all x, y ∈ ∂Ω such that d(x, y) ≤
r0 for some fixed r0 > 0 (recall that we assume the domain to be bounded). Let
δ0 > 0 be the constant from Lemma 2.6, and let r0 = min{δ0, diam(Ω)}/(2C),
where C is the maximum of all the constants from the previous section. We
denote the line segment joining x and y by Lxy. If Lxy ∩ Ω is empty, then we
can set γ = Lxy. Hence we may assume that Lxy intersects Ω.

Since Ω is an open set, Lxy ∩ Ω is the disjoint union of countably many
line segments Lxiyi , i ∈ I ⊂ N, with end points xi, yi ∈ ∂Ω. Let Lxiyi be
one of them. Because Ω is simply connected, Ω \ Lxiyi has exactly two com-
ponents, say E1, E2. Assume that |E1| ≤ |E2|. Since Ω ∩ ∂E1 = Lxiyi

and
hence P (E1, Ω) = H1(Lxiyi) = |xi − yi|, by Theorem 2.5 and subadditivity
of the perimeter measure, there is a set F ⊂ R2 of finite perimeter such that
F ∩ Ω = E1 and

P (F, R2) ≤ C |xi − yi|. (12)

By Lemma 2.7, there is a sequence of smooth sets Fk with χFk
→ χF both

in L1
loc(R2) and pointwise almost everywhere, P (Fk, R2) → P (F, R2), Fk∆F ⊂⋃

x∈∂F B(x, 1/k), and as vector-valued signed Radon measures, DχFk
converge

weakly to DχF .
Since Fk is smooth, ∂Fk consists of countably many smooth simple loops

βk,1, . . . (these curves are loops because they are of finite length). Recall from the
discussion following the statement of Lemma 2.7 that the sets Fk are certain level
sets of convolution approximations to χF . Hence for sufficiently large k (by pass-
ing to a subsequence if necessary), we may assume that ∂Fk ⊂

⋃
x∈∂F B(x, 1/k)

and that one of the loops βk,1, . . ., say βk,1, has the property that all of the
line segment Lxi,yi except perhaps a 1/k-neighborhood of xi and yi lies in a
1/k-neighborhood of βk,1, that is,

βk,1 ⊂
⋃

x∈∂F

B(x, 1/k) (13)

and
Lxi,yi \ (B(xi, 1/k) ∪B(yi, 1/k)) ⊂

⋃
x∈βk,1

B(x, 1/k). (14)

Furthermore,
`(βk,1) ≤ P (Fk, R2) ≤ 2 P (F, R2),

and so we can use Arzela-Ascoli’s theorem (and pass to a further subsequence
if necessary) to obtain a loop β such that βk,1 → β uniformly and `(β) ≤
2P (F, R2). By (13) and (14) it follows that Lxi,yi ⊂ β, and that β ⊂ ∂F . Hence
β ∩ Ω = Lxi,yi . Furthermore, by inequality (12),

`(β) ≤ 2P (F, R2) ≤ 2C P (E, Ω) = 2C |xi − yi|.

Since β is a loop containing E1 and not containing E2, by [Kur, Theorem 5
of page 513]) there is a simple subloop β0 containing Lxi,yi . The curve γi :=
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β0 \Lxi,yi ⊂ R2 \Ω with `(γi) ≤ (2C−1)|xi−yi| is a curve in R2 \Ω connecting
xi to yi.

The concatenated curve γ = (Lxy \Ω) ∗i∈I βi is a curve in R2 \Ω connecting
x and y, with

`(γ) ≤ `(Lxy) +
∑
i∈I

`(βi) ≤ |x− y|+
∑
i∈I

C |xi − yi| ≤ (1 + C) |x− y|.

Next suppose that R2 \ Ω is quasiconvex. By Lemma 2.8 we only need to
verify the extension property for characteristic functions of sets E ⊂ R2 such
that ∂E ∩ Ω is smooth. Therefore P (E, Ω) = P (E, Ω) = P (int(E), Ω), and so
without loss of generality we may assume that int(E) ∩ Ω = E ∩ Ω is open.
Again, without loss of generality we may assume that E ⊂ Ω and that E is
connected; recall that only a finite number of the components of ∂E ∩ Ω can
intersect a given relatively compact open set U ⊂ Ω and that P (E, Ω) can be
computed as the supremum of the perimeters P (E,U) over all such U. It follows
from the smoothness of E that Ω∩∂E consists of a collection of closed curves in
Ω and a collection of at most a countable union of smooth curves γi, i ∈ I ⊂ N,
with end points xi, yi ∈ ∂Ω (indeed, if ∂E ∩∂Ω is empty, that is, no such points
xi, yi exist, then E or R2 \ E is the extension of E or Ω \ E respectively, and
we need not do anything). Again, without loss of generality, we may assume
that |E| ≤ |Ω \ E|, since otherwise we replace E with Ω \ E. By assumption,
there is a curve βi ⊂ R2 \ Ω connecting xi and yi with `(βi) ≤ C|xi − yi|. The
concatenated curve γi ∗ βi is a simple loop (Jordan curve) in R2; let Fi be the
bounded subset of R2 enclosed by this loop. Since E is connected, if E∩Fi 6= ∅,
then E ⊂ Fi; let J be the collection of all indices i ∈ I for which this holds. If
J is not empty, then we define

F :=
( ⋂

i∈J

Fi

)
\

( ⋃
i∈I\J

Fi

)
\ (all regions bounded by loops lying in Ω).

If J is empty, then we set

F := R2 \
( ⋃

i∈I

Fi

)
\ (all regions bounded by loops lying in Ω).

With the above selection of F , we see that F ∩Ω = E, and by the construction
of the curves βi we have that

P (F, R2) ≤
∑
i∈I

`(γi ∗ βi) =
∑
i∈I

`(γi) +
∑
i∈I

`(βi)

≤
∑
i∈I

`(γi) + C
∑
i∈I

|xi − yi|

≤
∑
i∈I

`(γi) + C
∑
i∈I

`(γi) = (1 + C)P (E, Ω),

concluding the proof.
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Proof of Corollary 1.2. The claim follows from Lemma 2.4 and Theorem 1.1.

We record the following recent result by Väisälä, see 2.8 in [V].

Lemma 3.1 (Väisälä, 2008). If Ω is a bounded simply connected planar
domain whose complement is quasiconvex, and if Ω′ is a planar domain with
f : Ω → Ω′ a bi-Lipschitz mapping, then there are open sets U ⊃ Ω, V ⊃ Ω′,
and a bi-Lipschitz mapping F : U → V such that F = f on Ω.

Proof of Corollary 1.3. By Theorem 1.1 and Corollary 1.2, the complement of
Ω is quasiconvex. Hence, by the above lemma, the bi-Lipschitz map f on Ω can
be extended to a bi-Lipschitz map F on a neighborhood U of the compact set
Ω. Hence if Ω is a BV -extension domain (or W 1,1-extension domain) and u is a
function in BV (Ω′) (or W 1,1(Ω′) respectively), then u ◦ f is in the class BV (Ω)
(or W 1,1(Ω) respectively), and hence can be extended to a function T (u ◦ f)
that lies in the class BV (R2) (or W 1,1(R2) respectively), with norm controlled
by the norm of u. Thus T (u ◦ f) ◦ F−1 lies in the class BV (V ) (or W 1,1(V )
respectively), where V = F (U) is a neighborhood of the compact set Ω′, with
norm controlled by the norm of T (u ◦ f), and hence by the norm of u.

Let η : R2 → [0, 1] be an L-Lipschitz function with compact support in V
such that η = 1 on Ω′. Let E(u) := η T (u ◦ f) ◦ F−1; then E(u) ∈ BV (R2) (or
in W 1,1(R2) respectively). Note that

‖E(u)‖L1(R2) ≤ ‖T (u ◦ f) ◦ F−1‖L1(V ) ≤ C‖u‖X ,

where X = BV (Ω′) (or X = W 1,1(Ω′) respectively). Furthermore,

|DE(u)|(V ) ≤ Lip(η)‖T (u ◦ f) ◦ F−1‖L1(V ) + |DT (u ◦ f) ◦ F−1|(V ) ≤ C‖u‖X ,

where Lipη = sup |η(x) − η(y)|/|x − y|, the supremum taken over all distinct
pairs of points x, y ∈ R2. This completes the proof.

4 Examples

The characterization given by Theorem 1.1 is easy to verify for planar Jordan
domains. We now explore some specific examples of bounded simply connected
planar BV -extension domains by answering the following question: suppose
Ω ⊂ R2 is a bounded BVl-extension domain, and let γ ⊂ Ω be a curve with
Ω\γ also a domain. When is Ω\γ also a BV -extension domain? It follows from
Theorem 1.1 that γ has to be a rectifiable curve. However, the rectifiability of γ
by itself does not guarantee the BV -extension property of Ω\γ, as the following
example demonstrates.

Example 4.1. Let Ω = (−a, a) × (−2, 2) be a rectangular region centered at

the origin where a =
∑∞

j=1

1
j3

. Further, let γ : [0, 1) → Ω with γ(0) = (1, 0) be

defined as follows: for each n ∈ N with n ≥ 2, γ(1 − 1/n) = (
∑n

j=1 1/j3, 0),
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and the open interval (1 − 1/n, 1 − 1/(n + 1)) ⊂ [0, 1] is mapped to the curve
obtained by joining two segments, the line segment joining (

∑n
j=1 1/j3, 0) and

(1/(2n + 2)3 +
∑n

j=1 1/j3, 1/n2), and the line segment joining (1/(2n + 2)3 +∑n
j=1 1/j3, 1/n2) and (

∑n+1
j=1 1/j3, 0). This γ is a saw-tooth curve for which the

height of the n-th tooth, 1/n2, is substantially larger than the width 1/n3 of the
tooth. It can be seen that γ is rectifiable and that Ω \ γ is not a BV -extension
domain.

Example 4.2. Let Ω = (0, 2) × (−2, 2), and let γ be the curve given by γ :
(0, 1] → Ω, γ(t) = (t2, t). Again it can be seen, via the use of sets

Et = {(x, y) ∈ Ω : 0 < y < t, 0 < x < y2},

that Ω \ γ is not a BV -extension domain, even though γ is rectifiable.

The following answer to the above question is a corollary to Theorem 1.1.
Here, δΩ(x) = dist(x, ∂Ω) for x ∈ Ω.

Corollary 4.3. Suppose Ω ⊂ R2 is a simply connected bounded BV -extension
domain and that γ is a curve in Ω so that Ω \ γ is also a simply connected
domain. Then Ω \ γ is a BV -extension domain if and only if the following two
conditions hold for γ.

(i) There is a constant C > 0 such that for all x, y ∈ γ and for all subcurves
γxy of γ with end points x and y, we have `(γxy) ≤ C |x− y| (that is, γ is
quasiconvex).

(ii) There is a constant C > 0 such that for all x, y ∈ γ and a subcurve γxy of
γ with end points x and y, we have |x − y| ≤ C max{δΩ(x), δΩ(y)} (that
is, γ satisfies a double cone condition in Ω).

If γ is not rectifiable then Ω\γ is not a BV -extension domain as R2 \(Ω\γ),
and hence γ, has to be quasiconvex. This is in contrast to the fact that ∂Ω need
not be rectifiable even if Ω is a BV -extension domain; as shown by the von Koch
snowflake domain, which is a uniform domain and hence (see [J]) is a W 1,1- and
further a BV -extension domain. It should be noted that the assumption that
Ω \ γ is a domain ensures that γ does not have loops. The first condition above
ensures that γ is quasiconvex. Observe that the curve in Example 4.1 fails to
satisfy this condition, though it does satisfy the second condition. Note also
that the curve in Example 4.2 fails to satisfy the second condition of the above
corollary, but does satisfy the first condition. Hence both conditions above are
essential in the above result, though if γ does not intersect the boundary of Ω
the second condition will follow from the first condition.

The conclusion of the corollary remains valid if we replace the condition that
Ω \ γ is a simply connected domain with the condition that Ω \ γ is a domain;
however, in this case the result is not a direct consequence of Theorem 1.1.
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Remark 4.4. Lemma 2.1 fails for some unbounded domains; for example, the
domain

Ω = {(x, y) ∈ R2 : |y| > x if x ≥ 0 and |y|+ 1 > −x if x ≤ −1}

is a BV -extension domain because it has uniformly Lipschitz boundary, but
is not a BVl-extension domain as the set E = {(x, y) ∈ Ω : y > 0} has no
extension satisfying the Burago–Mazya characterization. Therefore Theorem 1.1
might fail for unbounded simply connected domains. However, the actual proof
of this theorem demonstrates that the complement of a planar simply connected
domain is quasiconvex if and only if the domain itself is a BVl-extension domain.
The above example also shows that if Ω is an unbounded simply connected
planar domain, the conclusion of Corollary 1.2 may fail. The domain in the
above counterexample has the property that the complement of the domain in
R2 is not connected; however, the example Ω = (0,∞) × (0, 1) ⊂ R2 also is a
BV -extension domain, but is not a BVl-extension domain, even though R2 \ Ω
is indeed connected. If Ω ⊂ R2 is such that R2 \Ω is connected, then the proof
of Theorem 1.1 also shows that R2 \Ω is quasiconvex if and only if Ω is a BVl-
extension domain. We point out here that in this case, there is no reason to
assume that Ω needs to be simply connected.
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