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Abstract. In this paper we characterize the equilibrium measure for a family of non-

local and anisotropic energies Iα that describe the interaction of particles confined in
an elliptic subset of the plane. The case α = 0 corresponds to purely Coulomb inter-

actions, while the case α = 1 describes interactions of positive edge dislocations in the

plane. The anisotropy into the energy is tuned by the parameter α and favors the align-
ment of particles. We show that the equilibrium measure is completely unaffected by the

anisotropy and always coincides with the optimal distribution in the case α = 0 of purely

Coulomb interactions, which is given by an explicit measure supported on the boundary
of the elliptic confining domain. Our result seems to be in constrast with the mechani-

cal conjecture that positive edge dislocation at equilibrium tend to arrange themselves

along “wall-like” structures. Moreover, this is one of the very few examples of explicit
characterization of the equilibrium measure for nonlocal interaction energies outside the

radially symmetric case.

1. Introduction

In this paper we consider the interaction energies

Jα(µ) :=

∫∫
R2×R2

Vα(x− y) dµ(x) dµ(y) +

∫
R2

F (x) dµ(x), (1.1)

defined on the class of probability measures µ ∈ P(R2), where

Vα(x) :=

− log |x|+ α
(x · τ)2

|x|2
if x 6= 0,

+∞ if x = 0,

(1.2)

τ = (τ1, τ2) is a given vector in S1 and α ∈ R. Here F denotes a confining potential, that is,
a lower semicontinuous function with the property that

lim
|x|→∞

(F (x)− log |x|) = +∞.

The interaction kernel Vα is an anisotropic perturbation of the classical 2d Coulomb interac-
tion kernel, which corresponds to the case α = 0. The purely Coulomb case has been widely
studied in several contexts, from 2d electrostatic phenomena, to Coulomb gases, random
matrix theory, Ginzburg-Landau vortices, etc. (see, e.g., [11]). The case α = 1 has a physical
motivation in dislocation theory, since V1 corresponds to the interaction kernel of positive
edge dislocations in the plane with Burgers vector τ (see, e.g., [5]). The parameter α has
the role of tuning the anisotropy in the interaction potential: When α 6= 0, the anisotropy
is turned on, favoring alignment in the direction orthogonal to τ (if α > 0; parallel to τ if
α < 0).

In the Coulomb case α = 0 the minimizer of J0 can be characterized explicitly for several
choices of F . For instance, if F (x) = |x|2, it is well-known that the unique minimizer of J0

is the circle law, i.e., the measure µ0 = 1
πχB1(0) (see, e.g., [4]); if F is the indicator function

of the ball Br(0), the unique minimizer is the measure µr = 1
2πrH

1 ∂Br(0) (see, e.g., [11]).
Those explicit characterizations are strongly based on the fact that V0 is the fundamental
solution of the Laplacian and on the radial symmetry of the problem. In the presence of
anisotropy (i.e., for α 6= 0) finding the minimizers explicitly is an extremely hard task and
only very recently some characterizations have been proved in the case of the quadratic
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confinement F (x) = |x|2, see [1, 2, 7, 8, 10]. The main result in these works is that for this
choice of the confinement the values α = ±1 are critical values of the parameter, at which a
sudden drop of dimensionality of the minimizer occurs. Indeed, for α ∈ (−1, 1) and τ = e1

it is proved that the unique minimizer of Jα is the normalized characteristic function of the
region surrounded by an ellipse of semi-axes

√
1− α and

√
1 + α. On the other hand, for

every α ≥ 1 the only minimizer is the semi-circle law

µ1 :=
1

π
δ0 ⊗

√
2− x2

2H1 (−
√

2,
√

2) (1.3)

on the vertical axis, while for α ≤ −1 it is the semi-circle law on the horizontal axis.
In this paper we characterize explicitly the minimizer of Jα in the case of a physical

confinement, that is, we assume the confining potential F to be the indicator function of an
elliptic domain of R2. More precisely, for a, b > 0 we define

Ω(a, b) :=

{
x = (x1, x2) ∈ R2 :

x2
1

a2
+
x2

2

b2
≤ 1

}
,

which is the region surrounded by an ellipse centered at the origin with horizontal semi-axis
a and vertical semi-axis b. We consider F to be the function that is equal to 0 in Ω(a, b) and
+∞ otherwise. The functional Jα in (1.1) can thus be rewritten as

Iα(µ) :=

∫∫
Ω(a,b)×Ω(a,b)

Vα(x− y) dµ(x) dµ(y) (1.4)

for every µ ∈ P(Ω(a, b)), where P(Ω(a, b)) denotes the class of all positive Borel measures
on R2, with support contained in Ω(a, b) and with unitary mass.

We note that, since Ω(a, b) is a compact set, Vα(x−y) is bounded from below for (x, y) ∈
Ω(a, b)×Ω(a, b). Therefore, the energy (1.4) is well defined on P(Ω(a, b)), possibly equal to
+∞.

The main result of the paper is the following.

Theorem 1.1. Let α ∈ [−1, 1]. Then, the measure

µa,b :=
1

2πab

1√
x2
1

a4 +
x2
2

b4

H1 ∂Ω(a, b) (1.5)

is the unique minimizer of Iα on P(Ω(a, b)) and satisfies the Euler-Lagrange condition

(Vα ∗ µa,b)(x) = − log
(a+ b

2

)
+ α

aτ2
1 + bτ2

2

a+ b
for every x ∈ Ω(a, b). (1.6)

The theorem shows, in particular, that for α ∈ [−1, 1] the equilibrium measure is inde-
pendent of α and τ , that is, is completely unaffected by the presence of the anisotropy. This
is a surprising result, when compared with the behavior found in [1, 10] for a quadratic
confinement. Moreover, for α = 1 it seems to contradict the mechanical conjecture that the
optimal configurations of dislocations should align in the orthogonal direction to the Burg-
ers vector τ , producing wall-like structures (see, e.g., [3, 5, 6]). Theorem 1.1 shows that, in
general, this may be not the case in presence of a physical confinement.

The plan of the paper is the following. In Section 2 we prove Theorem 1.1. In the last
section we extend this result to a more general family of even anisotropies.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we need some preliminary results. We first introduce the notion of
capacity. For any compact set K ⊂ Ω(a, b) we define the logarithmic capacity of K as

cap(K) := Φ

(
inf

µ∈P(K)

∫∫
K×K

V0(x− y) dµ(x) dµ(y)

)
, Φ(t) = e−t,

where P(K) is the class of all probability measures with support in K. For any Borel set
B ⊂ Ω(a, b) the capacity of B is defined as the supremum of the capacity of compact sets
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K ⊂ B. Finally, any set (not necessarily Borel) contained in a Borel set of zero capacity, is
considered to have zero capacity.

In the following we say that a property holds quasi everywhere (q.e.) in a set A if the set
of points in A where the property is not satisfied has zero capacity. Note that if B is a Borel
set with zero capacity and µ ∈ P(Ω(a, b)) is a measure with Iα(µ) < +∞ for some α, then
µ(B) = 0. In other words, any measure with finite interaction energy does not charge sets
of zero capacity.

In the following theorem we establish existence and uniqueness of the minimizer of the
energy (1.4) and we characterize it via Euler-Lagrange conditions.

Theorem 2.1. Let α ∈ [−1, 1]. Then the energy Iα is strictly convex on the class of measures
with finite energy and has a unique minimizer µα ∈ P(Ω(a, b)). Moreover, µα is uniquely
characterized by the Euler-Lagrange conditions: there exists cα ∈ R such that

(Vα ∗ µα)(x) = cα for µα-a.e. x ∈ suppµα, (2.1)

(Vα ∗ µα)(x) ≥ cα for q.e. x ∈ Ω(a, b). (2.2)

Proof. The case α = 0 is well-known. For α ∈ [−1, 1], α 6= 0, the proof follows the lines of
[10, Section 2]. Here we just recall that the strict convexity of Iα on the class of measures
with finite energy is equivalent to the condition∫

R2

Vα ∗ (ν1 − ν2) d(ν1 − ν2) > 0

for every ν1, ν2 ∈ P(Ω(a, b)), ν1 6= ν2, with finite energy. This condition is proved by showing
that the Fourier transform of Vα is a positive distribution on test functions vanishing at zero.
Indeed, the heuristic idea is to rewrite the energy of ν1 − ν2 in Fourier space as∫

R2

Vα ∗ (ν1 − ν2) d(ν1 − ν2) =

∫
R2

V̂α(ξ)|ν̂1(ξ)− ν̂2(ξ)|2 dξ

and note that ν̂1 − ν̂2 vanishes at ξ = 0 since ν1 − ν2 is a neutral measure.
Since Vα ∈ L1

loc(R2) and has a logarithmic growth at infinity, it is a tempered distribution,

namely, Vα ∈ S ′, where S is the Schwartz space; hence, V̂α ∈ S ′. We recall that V̂α is defined
as

〈V̂α, ϕ〉 := 〈Vα, ϕ̂〉
for every ϕ ∈ S, where

ϕ̂(ξ) :=

∫
R2

ϕ(x)e−2πiξ·x dx.

By [1, eq. (2.4)], setting τ⊥ := (−τ2, τ1), we have that

〈V̂α, ϕ〉 =
1

2π

∫
R2

(1− α)(ξ · τ)2 + (1 + α)(ξ · τ⊥)2

|ξ|4
ϕ(ξ) dξ (2.3)

for every ϕ ∈ S with ϕ(0) = 0. From this formula we immediately deduce that for α ∈ [−1, 1],

V̂α is a positive tempered distribution on test functions that are vanishing at zero. �

Owing to the last theorem, we are reduced to prove that the probability measure µa,b
defined in (1.5) satisfies the Euler-Lagrange conditions (2.1)–(2.2) for every α ∈ [−1, 1]. Our
strategy consists in showing that the function Vα ∗µa,b is constant on ∂Ω(a, b) and harmonic
in the interior of Ω(a, b), so that by the maximum principle it has to be constant on Ω(a, b).
In the following lemma we first compute the distributional Laplacian of the anisotropic term
of the interaction kernel.

Lemma 2.2. Let W : R2 → [0,+∞] be defined by

W (x) :=
(x · τ)2

|x|2

if x ∈ R2, x 6= 0, and W (0) := 0. Then, the distributional Laplacian of W is given by

∆W = 2D2V0 τ
⊥ · τ⊥ + 2πδ0, (2.4)
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where D2V0 is the distributional Hessian of V0.

Proof. Assume first that τ = e1, the unit vector along the x1-axis. In this case we have that

∆W (x) =
2(x2

2 − x2
1)

|x|4
= 2

∂2V0

∂x2
2

(x) for x 6= 0. (2.5)

Let ϕ ∈ C∞c (R2). For every ε > 0 we can write

〈∆W,ϕ〉 =

∫
Bε(0)

x2
1

|x|2
∆ϕ(x) dx+

∫
R2\Bε(0)

x2
1

|x|2
∆ϕ(x) dx. (2.6)

We note that the first term of (2.6) is infinitesimal as ε → 0. Thus, we focus on the last
term of (2.6). Integrating by parts and using (2.5) yield∫

R2\Bε(0)

x2
1

|x|2
∆ϕ(x) dx

= 2

∫
R2\Bε(0)

∂2V0

∂x2
2

(x)ϕ(x) dx− 1

ε3

∫
∂Bε(0)

x2
1∇ϕ(x) · x dH1(x)

= 2

∫
R2\Bε(0)

V0(x)
∂2ϕ

∂x2
2

(x) dx+
2

ε3

∫
∂Bε(0)

x2
2ϕ(x) dH1(x)

− 2 log ε

ε

∫
∂Bε(0)

x2
∂ϕ

∂x2
(x) dH1(x)− 1

ε3

∫
∂Bε(0)

x2
1∇ϕ(x) · x dH1(x) (2.7)

where we have used that ∇W (x) · x = 0 for x 6= 0. As ε→ 0, we have that

2

ε3

∫
∂Bε(0)

x2
2ϕ(x) dH1(x)→ 2πϕ(0),

whereas the other boundary terms in (2.7) converge to zero. Passing to the limit as ε → 0
in (2.7), we conclude that

∆W = 2
∂2V0

∂x2
2

+ 2πδ0 (2.8)

in the case τ = e1.
Swapping the role of x1 and x2, we immediately see that

∆
( x2

2

|x|2
)

= 2
∂2V0

∂x2
1

+ 2πδ0. (2.9)

Using that

∆
(x1x2

|x|2
)

= −4x1x2

|x|4
= −2

∂2V0

∂x1x2
(x) for x 6= 0,

a similar argument shows that

∆
(x1x2

|x|2
)

= −2
∂2V0

∂x1x2
(2.10)

in the sense of distributions.
Combining (2.8)–(2.10), we obtain the thesis. �

We now state a lemma that will be useful to compute the potential Vα ∗ µa,b on the
boundary of the domain Ω(a, b).

Lemma 2.3. Let b1 > b2 > 0. Then,

1

π

∫ π

0

log(b1 ± b2 cos θ) dθ = log
(
b1 +

√
b21 − b22

)
− log 2,

1

π

∫ π

0

1

b1 ± b2 cos θ
dθ =

1√
b21 − b22

,
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and
1

π

∫ π

0

cos θ

b1 ± b2 cos θ
dθ = ±

√
b21 − b22 − b1
b2
√
b21 − b22

.

Proof. See [11, Lemma IV.1.15]. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. For every α ∈ [−1, 1] we set

Fα(x) := (Vα ∗ µa,b)(x) for x ∈ Ω(a, b).

We first compute F0 on the boundary of Ω(a, b). Let x = (a cosϕ, b sinϕ) ∈ ∂Ω(a, b) with
ϕ ∈ [0, 2π]. By a change of variable we have

F0(x) = − 1

4πab

∫
∂Ω(a,b)

log
(

(a cosϕ− y1)2 + (b sinϕ− y2)2
) 1√

y21
a4 +

y22
b4

dH1(y)

= − 1

4π

∫ 2π

0

log
(
a2(cosϕ− cos θ)2 + b2(sinϕ− sin θ)2

)
dθ.

Using the identities

cosϕ− cos θ = 2 sin
(θ − ϕ

2

)
sin
(θ + ϕ

2

)
, (2.11)

sinϕ− sin θ = −2 sin
(θ − ϕ

2

)
cos
(θ + ϕ

2

)
, (2.12)

we obtain

F0(x) =− 1

4π

∫ 2π

0

log
(
a2 sin2

(θ + ϕ

2

)
+ b2 cos2

(θ + ϕ

2

))
dθ

− 1

4π

∫ 2π

0

log
(

4 sin2
(θ − ϕ

2

))
dθ.

By the identity 4 sin2
(
(θ − ϕ)/2

)
= 2
(
1− cos(θ − ϕ)

)
we deduce that

− 1

4π

∫ 2π

0

log
(

4 sin2
(θ − ϕ

2

))
dθ = − 1

4π

∫ 2π

0

log
(
1− cos θ

)
dθ − 1

2
log 2 = 0,

where the last equality follows from Lemma 2.3. Therefore, we have

F0(x) = − 1

4π

∫ 2π

0

log
(a2 + b2

2
+
a2 − b2

2

(
sin2

(θ + ϕ

2

)
− cos2

(θ + ϕ

2

)))
dθ

= − 1

4π

∫ 2π

0

log
(a2 + b2

2
− a2 − b2

2
cos(θ + ϕ)

)
dθ

= − 1

4π

∫ 2π

0

log
(
a2 + b2 − (a2 − b2) cos θ

)
dθ +

1

2
log 2

= − log
(a+ b

2

)
,

where we used again Lemma 2.3 (if a 6= b; otherwise, the conclusion is trivial). We thus
conclude that F0 is constant on the boundary of Ω(a, b). Since the function F0 is continuous
on Ω(a, b) and harmonic in the interior of Ω(a, b), we deduce by the maximum principle that

F0(x) = − log
(a+ b

2

)
for every x ∈ Ω(a, b). (2.13)

In particular, by Theorem 2.1 the statement is proved for α = 0.
To compute Fα, we introduce the function

G(x) := (W ∗ µa,b)(x) for x ∈ Ω(a, b)
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and we first compute its value on the boundary of Ω(a, b). Let x = (a cosϕ, b sinϕ) ∈ ∂Ω(a, b)
with ϕ ∈ [0, 2π]. By a change of variable we have

G(x) =
1

2πab

∫
∂Ω(a,b)

(
τ1(a cosϕ− y1) + τ2(b sinϕ− y2)

)2
(a cosϕ− y1)2 + (b sinϕ− y2)2

1√
y21
a4 +

y22
b4

dH1(y)

=
1

2π

∫ 2π

0

a2τ2
1 (cosϕ− cos θ)2

a2(cosϕ− cos θ)2 + b2(sinϕ− sin θ)2
dθ

+
1

π

∫ 2π

0

abτ1τ2(cosϕ− cos θ)(sinϕ− sin θ)

a2(cosϕ− cos θ)2 + b2(sinϕ− sin θ)2
dθ

+
1

2π

∫ 2π

0

b2τ2
2 (sinϕ− sin θ)2

a2(cosϕ− cos θ)2 + b2(sinϕ− sin θ)2
dθ.

Using again the identities (2.11)–(2.12) and a change of variable, we obtain

G(x) =
1

2π

∫ 2π

0

a2τ2
1 sin2

(
θ+ϕ

2

)
+ b2τ2

2 cos2
(
θ+ϕ

2

)
a2 sin2

(
θ+ϕ

2

)
+ b2 cos2

(
θ+ϕ

2

) dθ

− 1

π

∫ 2π

0

abτ1τ2 sin
(
θ+ϕ

2

)
cos
(
θ+ϕ

2

)
a2 sin2

(
θ+ϕ

2

)
+ b2 cos2

(
θ+ϕ

2

) dθ
=

1

2π

∫ 2π

0

a2τ2
1 + b2τ2

2 − (a2τ2
1 − b2τ2

2 ) cos θ

a2 + b2 − (a2 − b2) cos θ
dθ

− 1

2π

∫ 2π

0

abτ1τ2 sin θ

a2 + b2 − (a2 − b2) cos θ
dθ. (2.14)

Since the last expression is independent of ϕ, we can already conclude that G is constant
for x ∈ ∂Ω(a, b). We compute the value of G for completeness. If a 6= b, we have that∫ 2π

0

abτ1τ2 sin θ

a2 + b2 − (a2 − b2) cos θ
dθ =

abτ1τ2
a2 − b2

[
log
(
a2 + b2 − (a2 − b2) cos θ

)]2π
0

= 0.

Therefore, by Lemma 2.3 we deduce that

G(x) =
a

a+ b
τ2
1 +

b

a+ b
τ2
2 for every x ∈ ∂Ω(a, b). (2.15)

By a direct integration of (2.14) one can check that the same equality holds true if a = b.
On the other hand, by (2.13) and Lemma 2.2 the function G is harmonic in the interior

of Ω(a, b). Since it is continuous on Ω(a, b), by the maximum principle we conclude that

G(x) =
a

a+ b
τ2
1 +

b

a+ b
τ2
2 for every x ∈ Ω(a, b). (2.16)

This proves (1.6) and, in turn, by Theorem 2.1 the minimality of µa,b for every α ∈ [−1, 1].
�

Remark 2.4. The previous proof shows that the measures µa,b satisfies the Euler-Lagrange
conditions (2.1)–(2.2) for every α ∈ R. However, one cannot conclude that µa,b is a minimizer
of Iα for α 6∈ [−1, 1], since the functional is not convex for this range of parameters. Moreover,
one can show that µa,b is not a minimizer of Iα for |α| large enough. Indeed, let ν ∈ P(Ω(a, b))
be any measure with I0(ν) < +∞ and support contained in a straight line orthogonal to τ .
Then, Iα(ν) = I0(ν) for every α ∈ R. On the other hand, by (1.6)

Iα(µa,b) =

∫
Ω(a,b)

(Vα ∗ µa,b) dµa,b = − log
(a+ b

2

)
+ α

aτ2
1 + bτ2

2

a+ b
.

Therefore, for α� 1 we have Iα(µa,b) > Iα(ν).
A similar argument can be applied to the case α� −1, using that

Vα(x) = V0(x)− α (x · τ⊥)2

|x|2
+ α.
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3. An extension to more general even anisotropies

In this section we discuss the extension of Theorem 1.1 to more general potentials. More
precisely, for k ∈ N we define

Wk(x) :=
x2k

1

|x|2k

if x ∈ R2, x 6= 0, and Wk(0) := 0. Here we are assuming for simplicity that τ ∈ S1 coincides
with e1, the unit vector along the x1-axis. For α ∈ R we consider the interaction kernel

Vk,α(x) := − log |x|+ αWk(x)

if x ∈ R2, x 6= 0, and Vk,α(0) := +∞. For every µ ∈ P(Ω(a, b)) we define the interaction
energy

Ik,α(µ) :=

∫∫
Ω(a,b)×Ω(a,b)

Vk,α(x− y) dµ(x) dµ(y). (3.1)

We are now in a position to prove the following theorem, which is the analog of Theo-
rem 2.1 and Theorem 1.1.

Theorem 3.1. For every k ≥ 2 there exists an interval Jk, containing 0, such that for every
α ∈ Jk the functional Ik,α is strictly convex on the class of measures in P(Ω(a, b)) with finite
energy. The unique minimizer is the measure

µa,b =
1

2πab

1√
x2
1

a4 +
x2
2

b4

H1 ∂Ω(a, b)

and satisfies the Euler-Lagrange condition

(Vk,α ∗ µa,b)(x) = ck,α(a, b) for every x ∈ Ω(a, b), (3.2)

where ck,α(a, b) is a suitable constant (possibly depending on α, k, a, b, but not on x).

Proof. The proof is subdivided into several steps.

Step 1: Computation of the Fourier transform of Vk,α. A direct computation shows that for
k ≥ 2

∆Wk(x) =
k

k − 1

∂2Wk−1

∂x2
2

(x) for x 6= 0. (3.3)

Moreover, arguing as in the proof of (2.8), one can prove that the distributional Laplacian
of Wk for k ≥ 2 is given by the formula

∆Wk =
k

k − 1

∂2Wk−1

∂x2
2

+ 4kπak−1δ0, (3.4)

where

am :=
1

2π

∫ 2π

0

(cos θ)2m(sin θ)2 dθ =
(2m− 1)!!

(2m+ 2)!!
, (3.5)

for m ≥ 1. In the equality above, which can be proved by induction, n!! denotes the double
factorial, that is, the product of all the integers from 1 up to n that have the same parity
(even or odd) as n.

Passing to the Fourier transforms in (3.4), we obtain

Ŵk(ξ) =
k

k − 1

ξ2
2

|ξ|2
Ŵk−1(ξ)− k

π
ak−1

1

|ξ|2

for k ≥ 2.
By induction one can show that

Ŵk(ξ) = k
ξ2k−2
2

|ξ|2k−2
Ŵ1(ξ)− k

π

k−1∑
j=1

aj
ξ2k−2j−2
2

|ξ|2k−2j
(3.6)
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for every k ≥ 2. Combining (2.3) and (3.6), we deduce that

〈V̂k,α, ψ〉 =
1

2π

∫
R2

|ξ|2k + αPk(ξ)

|ξ|2k+2
ψ(ξ) dξ (3.7)

for every ψ ∈ S with ψ(0) = 0, where Pk is the 2k-homogeneous polynomial

Pk(ξ) := kξ2k
2 − kξ2

1ξ
2k−2
2 − 2k

k−1∑
j=1

ajξ
2k−2j−2
2 |ξ|2j+2

for every ξ ∈ R2.

Step 2: Strict convexity of Ik,α. Arguing as in the proof of Theorem 2.1, the strict convexity
of Ik,α on the class of measures with finite energy is equivalent to the condition∫

R2

Vk,α ∗ (ν1 − ν2) d(ν1 − ν2) > 0 (3.8)

for every ν1, ν2 ∈ P(Ω(a, b)), ν1 6= ν2, with finite energy. This condition, in turn, can be

proved by checking the sign of the Fourier transform V̂k,α on test functions vanishing at

zero. More precisely, by continuity for every k ≥ 2 there exists an interval J̃k containing zero
such that for α ∈ J̃k

|ξ|2k + αPk(ξ) > 0 for every ξ 6= 0. (3.9)

By standard properties of the Fourier transform and by (3.7) we have that for α ∈ J̃k∫
R2

(Vk,α ∗ ϕ)ϕdx = 〈V̂k,α, |ϕ̂|2〉 =
1

2π

∫
R2

|ξ|2k + αPk(ξ)

|ξ|2k+2
|ϕ̂(ξ)|2 dξ ≥ 0

for every ϕ ∈ S with
∫
R2 ϕ(x) dx = 0. Here we used that ϕ̂(0) =

∫
R2 ϕ(x) dx = 0. Let now

ν1, ν2 ∈ P(Ω(a, b)), ν1 6= ν2, with finite energy, let ν := ν1 − ν2, and let α ∈ J̃k. Using the
same approximation argument as in [10, Proof of Theorem 1.1], we deduce that∫

R2

(Vk,α ∗ ν) dν ≥ 1

2π

∫
R2

|ξ|2k + αPk(ξ)

|ξ|2k+2
|ν̂(ξ)|2 dξ ≥ 0. (3.10)

Moreover, if the left-handside of (3.10) is equal to zero, then

1

2π

∫
R2

|ξ|2k + αPk(ξ)

|ξ|2k+2
|ν̂(ξ)|2 = 0 for a.e. ξ ∈ R2.

By (3.9) this implies that ν̂ = 0 a.e. on R2. By continuity of ν̂ this implies ν̂(ξ) = 0 for every

ξ ∈ R2. Thus, ν = 0, hence ν1 = ν2. This proves (3.8) for every α ∈ J̃k and k ≥ 2.
For every k ≥ 2 we denote by Jk the maximal interval such that Ik,α is strictly convex

on the class of measures with finite energy for every α ∈ Jk.

Step 3: Characterization of the unique minimizer. Let now k ≥ 2 and α ∈ Jk. We introduce
the function

Gk(x) := (Wk ∗ µa,b)(x) for x ∈ Ω(a, b).

We want to show that Gk is constant on the boundary of Ω(a, b). Let x = (a cosϕ, b sinϕ) ∈
∂Ω(a, b) with ϕ ∈ [0, 2π]. By a change of variable we have

Gk(x) =
1

2πab

∫
∂Ω(a,b)

(
a cosϕ− y1

)2k(
(a cosϕ− y1)2 + (b sinϕ− y2)2

)k 1√
y21
a4 +

y22
b4

dH1(y)

=
1

2π

∫ 2π

0

a2k(cosϕ− cos θ)2k(
a2(cosϕ− cos θ)2 + b2(sinϕ− sin θ)2

)k dθ
Using the identities (2.11)–(2.12) and arguing as in the proof of (2.14), we obtain

Gk(x) =
1

2π

∫ 2π

0

a2k(1− cos θ)k(
a2 + b2 − (a2 − b2) cos θ

)k dθ =: dk(a, b), (3.11)
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that is, Gk is independent of x on the boundary of Ω(a, b).
We now prove that for every k ≥ 2

Gk(x) = dk(a, b) for every x ∈ Ω(a, b). (3.12)

We argue by induction on k. Let k = 2. By (3.4) and (2.16)

∆G2 = 2
∂2G

∂x2
2

(x) + 8πa1µa,b = 0

in the interior of Ω(a, b). Since G2 is continuous on Ω(a, b) and constant on ∂Ω(a, b), by the
maximum principle we obtain (3.12) for k = 2. Assume now by induction that (3.12) holds
for k− 1. By (3.11) we have that Gk is constant on ∂Ω(a, b) and by (3.4) and the inductive
hypothesis that Gk is harmonic in the interior of Ω(a, b). Since Gk is continuous on Ω(a, b),
by the maximum principle we conclude that (3.12) holds.

For completeness we note that the value of the constant dk(a, b) can be computed explic-
itly using the formula

Gk(x) =
a2k−1

2(1− k)

d

da

( 1

a2(k−1)
Gk−1(x)

)
for every x ∈ ∂Ω(a, b) and every k ≥ 2, where we set G1 := G.

Equation (3.12), together with (2.13), proves (3.2) and, in turn, the minimality of µa,b
for every k ≥ 2 and every α ∈ Jk. �
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