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Abstract. We study a variational problem involving material shapes,
modeled as Radon measures on a given ambient space, in a force vector
field. We prove some properties of absolutely continuity of the optimal
shapes in dependence on the distributions of the zeros of the force field.
More regularity properties of the optimal shapes, as well as simple ge-
ometrical characterizations, are established in the case of central force
fields, in dependence on the regularity of the field and on the choice of
the ambient space.

Introduction

Many problems arising in materials science and structural optimiza-
tion ask for the determination of geometries, representing material regions,
which minimize certain energy functionals. In this area, a classical problem
is the equilibrium shape of a crystal in presence of an external field and
it relies in minimizing a functional involving bulk and interfacial energies.
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If one considers sufficiently small grains of crystal, the bulk contribution
is negligible and then the problem reduces to minimize a surface energy
functional for a given volume of material whose solution is known as Wulff
shape. Then the shape of the crystal is obtained as an equilibrium config-
uration of minimum energy. Typically, the surface energy to be minimized
takes the form

F(E) =

∫
∂E

Γ(νE(x)) dHN−1, (0.1)

where νE is the outward unit normal to the boundary of the set E ⊂ RN with
given volume, and Γ denotes the anisotropic free energy density per unit
area. When Γ is constant we reduce to the classical isovolumetric problem
(see [1]). There is a wide literature on the subject and we refer the reader
to the works [5], [10], [13], [14], [17], [19], [20] and to the references therein
contained. We just observe that a standard assumption in the Wulff problem
is Γ continuous and bounded away from zero, i.e. for every ν ∈ SN−1

Γ(ν) > α > 0.

On the other hand, these assumptions ensure compactness among the sets
of finite perimeter.

Though the Wulff problem is largely studied, less is known for the
problem involving both the energetic contributions, under the assumption
of non-uniform external fields. Indeed, in presence of an external field ∇g
we have in addition a bulk contribution, so that we have to consider a total
energy as

F(E) =

∫
E

g(x) dHN +

∫
∂E

Γ(νE(x)) dHN−1 (0.2)

and thus the shape of the crystal is obtained by minimizing F among the sets
E ⊂ RN with fixed volume contained in a bounded region. The interaction
between surface and bulk energies makes this variational problem more
complicated than the Wulff problem. Moreover, in this case, the regularity
properties of the minimizers are more involved (see [3, 4] and the references
therein).

In the perspective of structural optimization (see, for instance, the
works [6], [7], [8], [9], [11]), the problem of optimal geometries consists in de-
signing the shape of a material body to the aim of optimizing its mechanical
efficiency which is generally represented by an integral functional. In this
context, usually, the material body is assumed to enjoy some constitutive
properties and to be in equilibrium under given loads. In such a case the
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designing process can be carried on determining the best arrangement of
two different materials, or on the global shape of the body.

In this paper we study a variational problem which seems to fit the
above physical questions at a very general level. Indeed, we deal with a
minimization problem for a material region in which the functional to mini-
mize becomes like (0.2) or, in particular, like (0.1), under certain regularity
conditions. More precisely, given a force field F : RN → RN , we model
material regions as Radon measures σ in a given ambient space Ω ⊂ RN

and we relate σ and F through the notion of one-dimensional current or,
equivalently, with the vector measure Fσ, which represents the idea of a
force acting on a matter distribution. The energy functional is given by the
mass of the boundary of the current or, in terms of measures, by the total
variation of the measure div(Fσ). Therefore, the energy to be minimized is
given by

E(σ) = sup

{∫
Ω

〈df, F 〉dσ | ‖f‖∞ ≤ 1

}
. (0.3)

We observe that arguing in terms of currents emphasizes the duality struc-
ture connecting forces and matter and the geometric aspects of the problem.
Finally, in our opinion this formulation of the problem of optimal geome-
tries could help to get insights in the regularity properties of the minimizers
of more particular choices (dictated by specific physical problems) of the
energies.

Now we are going to outline the plan of the paper. In Section 1, after
establishing some notation and terminology, we state the main variational
problem and give the proof of the existence of minimizers. Moreover, in this
section, we show how the problem reduces to that of the equilibrium shapes
of crystals and that this reduction is a matter of regularity. Of course, in
this formulation, the bulk and surface energies are not independent but they
come from the same force field (see Section 1.1). Actually, these regularity
questions are not immediate. Indeed, by the expression of the energy E(σ)
in (0.3) we see that a priori the measure σ cannot be controlled in the
orthogonal direction to the force field F (see Example 2.4). In particular,
through a one-dimensional reduction, we can find minimizers which have
the form σ = a(x)LN Ω with a ∈ BV (Ω). Moreover, in some special
cases, this kind of regularity allows to produce explicit computations. In
Section 2 we prove some properties of absolute continuity of the optimal
shapes in dependence of the distributions of the zeros of the force field



4 L. GRANIERI, F. MADDALENA

(see Theorem 2.7). Section 3 is devoted to the study of the minimizers
under the assumption of a central force field. This kind of force, apart
its physical relevance, deserves attention since several regularity properties
of the optimal shapes, as well as simple geometrical characterizations, are
established in dependence of the regularity of the field and of the choice of
the ambient space.

1. Formulation of the variational problem and existence of
optimal shapes

Let Ω ⊂ RN be any given bounded open subset, in the following we
shall refer to Ω, as ambient space. We shall consider a field of forces as a
given vector field

F : RN → RN

for which we also use the notation F = (F1, . . . , FN), where Fi, i = 1, . . . , N
are the components of F with respect to the canonical basis of RN . Roughly
speaking, we say that the essential aim of the problem we are going to
formulate relies in determining a material shape, inside the ambient space Ω,
which turns out to be optimal in some sense to be specified below, among the
material shapes carried by F . To this aim we first proceed in giving precise
definitions of the italicized terms. By material shape in Ω we mean any
positive Radon measure σ with finite total mass on Ω (i.e., by normalization,
probability measures). We shall denote by P(Ω) the set of all probability
measures on Ω, thus a material shape is any σ ∈ P(Ω). In order to relate
material shapes and force fields we use the natural duality of Geometric
Measure Theory which relies on the concept of current. Thus, for any σ ∈
P(Ω), let

T F
σ := σ ∧ F

be the one-dimensional current defined by

T F
σ (ω) =

∫
RN

〈ω, F 〉dσ ∀ω ∈ D1(RN),

whereD1(RN) denotes the space of all infinitely differentiable and compactly
supported 1−forms and 〈 , 〉 denotes the pairing for vectors and covectors.
The space of linear and continuous functionals on D1(RN) is the space of
1-dimensional currents (1-currents) in RN , which is denoted by D1(RN).
Then any material shape σ carried by F in RN determines the 1-current
T F

σ just defined. Since, in the sequel, we shall consider the force field F
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as prescribed, we use the symbol Tσ, in place of T F
σ . The boundary of a

1-current T ∈ D1(RN) is defined through the formula

∂T (f) = T (df) ∀f ∈ C∞0 (RN).

The mass of T ∈ D1(RN) is defined by

M(T ) = sup{T (ω) | ω ∈ D1(RN), ‖ω‖∞ ≤ 1},
where ‖ω‖∞ := sup{|ω(x)| | x ∈ RN}.

Then, with the above notation, we have

M(∂Tσ) = sup{Tσ(df) | f ∈ C∞0 (RN), ‖f‖∞ ≤ 1} =

= sup

{∫
RN

〈df, F 〉dσ | f ∈ C∞0 (RN), ‖f‖∞ ≤ 1

}
.

Notice that M(Tσ) =
∫

Ω
|F (x)|dσ and M(Tσ) < +∞ for any σ ∈ P(Ω).

We recall (see p.127 of [16]) that 1-currents of finite mass can be uniquely
extended to forms with bounded Borel coefficients, moreover, since

Tσ(ω) =

∫
RN

〈ω, F 〉dσ =

∫
Ω

〈ω, F 〉dσ

for every ω ∈ D1(RN), we can regard Tσ acting on infinitely differentiable
forms, or forms with Borel bounded coefficients, defined on Ω.

For every σ ∈ P(Ω) we set E(σ) = M(∂Tσ). We shall call optimal shape
carried by F inside Ω any solution of the following variational problem:

P(F, Ω) Minimize
{
E(σ) | σ ∈ P(Ω)

}
.

In the sequel we will refer to E(σ) as to the energy of the shape σ and
we set m(F, Ω) := infσ E(σ).

1.1. Prescribed curvature and Wulff problems. In this section we see
how problem P(F, Ω) is related with some classical problems such as pre-
scribed curvature and Wulff problems (see [1]). To this aim, suppose that
the force field F is regular, say C1, and let E ⊂ Ω be a set of finite perimeter
with νE denoting the outward normal unit vector, and take σE = 1

|E|H
N E.

By Gauss-Green Theorem we have:

E(σE) = sup
‖f‖∞≤1

1

|E|

∫
E

〈df, F 〉dx = (1.1)
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= sup
‖f‖∞≤1

1

|E|

(
−
∫

E

fdivFdx +

∫
∂E

fF · νE dHN−1

)
=

=
1

|E|

(∫
E

|divF |dx +

∫
∂E

|F · νE| dHN−1

)
.

Therefore, P(F, Ω) can be viewed as a relaxation of a normalized pre-
scribed curvature type problem, or a general equilibrium shape problem for
crystals as treated in [19]. Observe that in our case the surface and bulk en-
ergies depend both on the vector field F . Furthermore, there is no convexity
assumption here.

Finally, we observe that equation (1.1) always ensures that there exists
a measure σE ∈ P(Ω) such that E(σE) < +∞.

If F is a solenoidal field, that is divF = 0, the energy takes the form

E(σE) =
1

|E|

∫
∂E

|F · νE| dHN−1,

which corresponds to a Wulff energy. Obviously, if F = ∇u for a smooth
potential u : RN → R, the energy of σE can be written as

E(σE) =
1

|E|

(∫
E

|∆u| dx +

∫
∂E

|∇u · νE| dHN−1

)
. (1.2)

In this framework, due to the generality of the force field F , we do not
have compactness among sets of finite perimeter. This constitutes a moti-
vation for defining the problem P(F, Ω) on probability measures. Further-
more, more regularity properties of optimal shapes, such as measures whose
densities are characteristic functions of sets of finite perimeter, could be
useful in the study of these classical problems. In this perspective, in the
next sections, we will focus our attention on some regularity properties of
the optimal shapes.

The next existence result guarantees that P(F, Ω) has solutions.

Proposition 1.1. Let F be a given continuous force field. Then P(F, Ω)
always admits minimizers.

Proof. Let (σn)n∈N ⊂ P(Ω) be any energy minimizing sequence. By weak*

compactness we can suppose that σn
∗
⇀ σ ∈ P(Ω) for a subsequence not

relabelled. For every f ∈ C∞0 (RN) with ‖f‖∞ ≤ 1, by continuity of F we
have ∫

Ω

〈df, F 〉dσ = lim
n→+∞

∫
Ω

〈df, F 〉dσn ≤ lim inf
n→+∞

E(σn).
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Finally, taking the supremum with respect to f ∈ C∞0 (RN) such that ‖f‖∞ ≤
1 in the last inequality, we infer

E(σ) ≤ lim inf
n→+∞

E(σn).

�

2. General properties of the minimizers

In order to have a non trivial problem, we have to characterize the
measures σ such that E(σ) < +∞. Then we are going to state some gen-
eral properties regarding such measures, which are defined as shapes with
bounded energy. In this direction we have the following result.

Lemma 2.1. Let F : RN → RN be a continuous vector field. Let x̄ ∈ Ω be
given. If F (x̄) 6= 0 then

E(σ) < +∞⇒ σ({x̄}) = 0.

Proof. Let us suppose for instance that F1(x̄) > 0. By continuity we can
assume that F1(x) > 0 on Br := B(x̄, r) ∩ Ω for some r > 0 small enough.
Consider the function

fr(x) =
1

r
χBr(x)(x1 − x̄1),

where χA denotes the characteristic function of the set A. Observe that
|fr(x)| ≤ 1

r
|x1 − x̄1| ≤ 1

r
|x − x̄| ≤ 1 for every x ∈ Br, whence ‖f‖∞ ≤ 1.

Therefore, since E(σ) < +∞, we get the following estimate

1

r

∫
Br

F1(x)dσ =

∫
Br

〈dfr, F 〉dσ ≤ E(σ) ≤ C, (2.1)

for some constant C < +∞. By (2.1) we obtain

F1(x̄)σ({x̄}) = lim
r→0+

∫
Br

F1(x)dσ = 0

and this implies σ({x̄}) = 0. �

By Lemma 2.1 we can trivially deduce the following regularity property
enjoyed by the optimal shapes.

Corollary 2.2. If F (x) 6= 0 for every x ∈ Ω, then every minimizer of
P(F, Ω) is a nonatomic measure.
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Although the following considerations are not strictly required for the
results of this paper, we think it is useful to point out some link with the
notion of tangent space to a measure, as developed in [6, 8, 9, 15]. Indeed,
we have the following

E(σ) < +∞⇔ F (x) ∈ Tσ(x) σ − a.e.

where Tσ(x) is the tangent space to the measure σ at the point x. For
convenience we recall here the definition of tangent space to a measure
given in [15]. If σ is a positive Borel regular measure one can consider the
following set of tangent fields

Xσ := {Φ ∈ (L1
σ)N | div(Φσ) ∈M},

where (L1
σ)N := L1

σ(RN , RN), the divergence operator is intended in the
distributional sense and M denotes the set of signed Borel measures with
finite total variation on RN . Then, for σ-a.e. x ∈ RN , the tangent space to
σ is defined as

Tσ(x) := σ − ess
⋃
{Φ(x) | Φ ∈ Xσ}. (2.2)

The above equation (2.2) means that Tσ(x) is the unique σ-measurable,
closed valued multifunction on RN characterized by:

(1) Φ ∈ Xσ ⇒ Φ(x) ∈ Tσ(x) for σ-a.e. x ∈ RN ;
(2) Tσ is the minimal σ-measurable multifunction satisfying (1), namely

for every σ-measurable closed valued multifunction Σ on RN such
that Φ ∈ Xσ ⇒ Φ(x) ∈ Σ(x) for σ-a.e. x ∈ RN , it results Tσ(x) ⊂
Σ(x).

One can check that Tσ(x) individuates a linear subspace of RN whose di-
mension may depend on x.

The following nice property of tangent spaces was proved in [15] for
N = 1.

Lemma 2.3. (Fragalá, Mantegazza) Let σ be a positive Radon measure
on R, and let σs be the singular part of σ with respect to the Lebesgue
measure. Then

Tσ(x) = {0} σs − a.e.

Actually, the basic idea is that E(σ) < +∞ implies that the distri-
butional derivative of Fσ is a measure, i.e. Fσ is a function of bounded
variation. Therefore, the restriction of σ to the set of x ∈ Ω such that
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H1 [0, 1]⊗ δx̄2

-

-

-

Q
Q

QQ
�

1

H2 [0, 1]2
F

0

x̄2

1

Figure 2.1. Two optimal measures

F (x) 6= 0 is absolutely continuous. In fact, we will use this argument in
Section 3 where we deal with radial energies.

Therefore, by Lemma 2.3, in dimension one, if E(σ) < +∞, the optimal
shapes are absolutely continuous measures where the field is non-vanishing.
This is not the case in higher dimension, as we are going to see in the next
example.

Example 2.4. Let Ω = [0, 1]2, we consider the constant vector field F (x) =
e1 = (1, 0). Let us fix x̄ ∈ Ω, x̄ = (0, x̄2), then the measure σ̃ = H1 [0, 1]⊗
δx̄2 is of bounded energy since, for every f , we have∫

Ω

〈df, e1〉dσ̃ =

∫
Ω

∂f

∂x1

(x1, x2) d
(
H1 [0, 1]⊗ δx̄2

)
(x1, x2) =

=

∫ 1

0

∂f

∂x1

(x1, x̄2) dx = f(1, x̄2)− f(0, x̄2) ≤ 2.

In particular, we find that E(σ̃) = 2. Now, let us introduce the 1-dimensional
energy E1, which is the energy obtained by considering test functions de-
pending on the first coordinate only. Therefore E1 ≤ E. For any measure
µ ∈ P(Ω), we take σ = (π1)#µ ⊗ H1 [0, 1], where π1 : R2 → R is the
projection on the first axis and (π1)#µ is the image measure of µ through
π1, i.e. (π1)#µ(A) = µ(π−1

1 (A)) for every Borel set A ⊂ R. If f = f(x1) is a
test function for E1, we have∫

Ω

〈df, e1〉dσ =

∫
Ω

f ′(x1)dµ(x1, x2),

which implies E1(σ) = E1(µ).
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Therefore, without loss of generality, in computing E1 we can restrict our-
selves to consider measures having the form σ = ν ⊗H1 [0, 1], where ν is
a probability measure on [0, 1]. Observe that

E1(σ) = sup
‖f‖∞≤1

∫ 1

0

f ′(x1)dν(x1). (2.3)

By virtue of Lemma 2.3 we infer that if E1(σ) < +∞ then ν � H1 [0, 1].
Moreover, if a ∈ L1([0, 1]) is the density of ν, by (2.3) we get a ∈ BV ((0, 1))
and, after choosing a good representative of a (see [2, Theorem 3.28]) and
integrating by parts, we deduce the following formula:

E1(σ) = sup
‖f‖∞≤1

{
−
∫ 1

0

fd(Da) + f(1)a(1+)− f(0)a(0−)

}
= (2.4)

= ‖Da‖(0, 1) + a(1+) + a(0−).

If we take a(x) = 1, then by the above expression of the energy we see that
σ̄ = H2 [0, 1]2 is an optimal shape for E1. Observe that

E1(σ̄) = 2. (2.5)

In order to relate E1 with E we have to check that if

µ = a(x1)H1 [0, 1]⊗H1 [0, 1],

then E1(µ) = E(µ). To this aim let f(x1, x2) be any test function, we set

f∗(x1) =

∫ 1

0

f(x1, x2)dx2

and so we have∫ 1

0

f ′∗(x1)a(x1)dx1 =

∫ 1

0

a(x1)

(∫ 1

0

∂x1f(x1, x2)dx2

)
dx1 =

=

∫
Ω

∂x1f(x1, x2)a(x1)dx1dx2 =

∫
Ω

∂x1f(x1, x2)dµ.

Hence we deduce
E(µ) ≤ E1(µ),

and then the claim follows. Thus, for every σ ∈ P(Ω) we obtain

E(σ̄) = E1(σ̄) ≤ E1(σ) ≤ E(σ)

and therefore σ̄ is an optimal shape for E. By summarizing, we can say
that, in general, the optimal shapes can exhibit very different regularity
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properties, indeed we have seen that σ̃ and σ̄ are both optimal shapes for
P(e1, [0, 1]2). We point out that σ̄ has been obtained through a dimensional
reduction argument and in Section 3 we will see how a similar 1-dimensional
reduction for central force fields works in order to find regular minimizers.

We emphasize that by (2.4) we have that any optimal shape σ for
P(e1, [0, 1]2) has to satisfy the condition

(π1)#σ = H1 [0, 1]. (2.6)

Indeed, let a ∈ BV ((0, 1)) be a good representative of the density of

σ1 := (π1)#σ, we suppose for instance that a(0−) < 1. Since
∫ 1

0
a(x)dx = 1,

we find a point t ∈ [0, 1] such that a(t) = 2 − a(0−). In order to compute
the total variation of a we can equivalently consider the pointwise variation

pV (a, (0, 1)) := sup

{
n−1∑
i=1

|a(ti+1)− a(ti)| : n ≥ 2, 0 < t1 < · · · < tn < 1

}
.

Therefore we obtain

pV (a, (0, t]) ≥ 2− 2a(0−).

Now, if a(1+) ≥ 1 we have

E1(σ) = E1(σ1 ⊗H1 [0, 1]) ≥ pV (a, (0, t]) + a(1+) + a(0−) ≥

≥ 2− a(0−) + a(1+) > 2.

If a(1+) < 1, we find as above a point s ∈ [0, 1], t < s, such that a(s) =
2− 2a(1+). Hence

E1(σ) = pV (a, (0, 1)) + a(1+) + a(0−) ≥ 2− a(0−) + 2− a(1+) > 2.

Therefore, the best choice is a(x) ≡ 1. Since E1(σ) ≤ E(σ), (2.6) holds.
We remark that if F (x̄) = 0 at some point x̄ ∈ Ω, then the Dirac

measure δx̄ is an optimal shape for P(F, Ω) and E(δx̄) = 0. Nevertheless,
the non-vanishing of the vector field F is strictly related to the absolute
continuity of the optimal shapes with respect toH1 as stated in the following
statement.

Lemma 2.5. Let F : RN → RN be a continuous force field such that F (x) 6=
0 for every x ∈ Ω. If σ ∈ P(Ω) has bounded energy, i.e. E(σ) < +∞, then
σ � H1 Ω.
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Proof. As in the proof of Lemma 2.1, assume F1 > 0 in Br = B(x̄, r) ∩ Ω
for some r > 0 small enough and consider the estimate (2.1)

1

r

∫
Br

F1(x)dσ ≤ E(σ) ≤ C.

Hence we infer

σ(Br) ≤
Cr

minBr F1(x)
.

By the above inequality we can estimate the upper 1-dimensional density
of σ at x̄, that is

θ∗1(σ, x̄) := lim sup
r→0+

σ(Ω ∩B(x̄, r))

2r
≤ C

2F1(x̄)
, (2.7)

For every n ≥ 1, by taking the compact sets

Cn =

{
x ∈ Ω : ∃i = 1, . . . , N s.t.

1

n
≤ |Fi(x)|

}
,

by virtue of (2.7), we obtain that for every x̄ ∈ Cn the following estimate
holds true

θ∗1(σ, x̄) ≤ 1

2
nC. (2.8)

Therefore the upper density θ∗1(σ, x̄) is uniformly bounded on Cn and this
implies (see for instance Theorem 2.56 in [2]) that, for every n ≥ 1, σ Cn �
H1 Cn.

Finally, if A ⊂ Ω is a Borel subset such that H1(A) = 0, we obtain

σ(A) = σ

(⋃
n≥1

A ∩ Cn

)
≤

+∞∑
n=1

σ(A ∩ Cn) = 0.

�

The discussion in Example 2.4 suggests to introduce a non-vanishing
assumption on the force field F in all directions in order to obtain the
absolute continuity of the measures of finite energy with respect to HN .

Lemma 2.6. Let F : RN → RN be a given continuous force field. Let us
suppose that for every x ∈ Ω and for every i = 1, . . . , N it results:

Fi(x) 6= 0. (2.9)

If σ ∈ P(Ω) has bounded energy, i.e. E(σ) < +∞, then σ � HN Ω.
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Proof. Consider the case N = 2. Let π1 : R2 → R be the projection on the
first factor, that is π1 : (x, y) 7→ x, and take σ1 := (π1)#σ. By the Disin-
tegration Theorem (see Theorem 2.28 in [2]) we find probability measures
σx ∈ P(R) such that σ = σ1 ⊗ σx, which means that for every Borel set
A ⊂ R2 we have

σ(A) = σ1 ⊗ σx(A) =

∫
R

(∫
R

χA(x, y)dσx(y)

)
dσ1(x). (2.10)

If we consider test functions f depending on the first coordinate only we
get∫

Ω

〈df, F 〉dσ =

∫
Ω

f ′(x)F1(x, y)dσ =

∫
R

(∫
R

f ′(x)F1(x, y)dσx(y)

)
dσ1(x).

Since E(σ) ≤ C and recalling that σx ∈ P(R), we infer∫
R

f ′(x)

(
min

Ω
F1(x, y)

)
dσ1(x) ≤ C, (2.11)

for every f ∈ C∞0 (R) such that ‖f‖∞ ≤ 1 and f ′ ≥ 0. Let F1 := minΩ F1(x, y)
(here we assume F1(x, y) > 0, otherwise we take F1 := −maxΩ F1(x, y)) and
let I1 be the support of the measure σ1. By (2.11) we deduce that the mea-
sure σ1 is of finite energy for the problem P(F1, I1). Therefore Lemma 2.5
yields σ1 � H1 I1.

Now, choosing test functions g depending on the second coordinate
only, we get∫

Ω

〈dg, F 〉dσ =

∫
R

(∫
R

g′(y)F2(x, y)dσx(y)

)
dσ1(x). (2.12)

For every x, let Ix be the support of σx and let F2(x) = F (x, ·). Since σ is
of finite energy, (2.12) implies that for H1 − a.e. x ∈ I1 the measure σx is
of finite energy for the problem P(F2(x), Ix). Therefore, by applying again
Lemma 2.5, for H1 − a.e. x ∈ I1 we get σx � H1 Ix.

Finally, let A ⊂ Ω be any Borel set such that H2(A) = 0. By the
definition of product measures, for H1 − a.e. x ∈ R it results H1(Ax) =
0, where Ax := {y ∈ R : (x, y) ∈ A}. By using the absolute continuity
properties of σ1 and σx, we get

σ(A) =

∫
R

(∫
R

χA(x, y)dσx(y)

)
dσ1(x) =

∫
R

(∫
R

χAx(y)dσx(y)

)
dσ1(x) = 0.
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By iterating the previous disintegration argument, we get the thesis for
every N . �

By the previous Lemma we infer the following regularity property of
the optimal shapes.

Theorem 2.7. Let F : RN → RN be a given continuous force field. Let us
suppose that for every x ∈ Ω and for every i = 1, . . . , N it results

Fi(x) 6= 0. (2.13)

Then every optimal shape σ is absolutely continuous.

Let us observe that if F (x) = 0, then the optimal shape is δx. We
remark that Theorem 2.7 applies, for instance, to constant vector fields
F = v with vi 6= 0 for every i = 1, . . . , N , ensuring that the optimal shapes
are absolutely continuous measures.

Example 2.8. Let v = (1/
√

2, 1/
√

2), F (x) = v and let Ω ⊂ R2 be a unit
square oriented with one edge direction equal to v. Let Q ∈ SO2(R) be
a rotation such that Qv = e1. By Theorem 2.7 we know that the optimal
shapes of P(F, Ω) are absolutely continuous. In order to get an estimate on
the minimum energy, let us begin by noticing that, if a ∈ L1(Ω), we have∫

Ω

〈d(f ◦Q), v〉a(x)dx =

∫
Ω

〈QT df(Qx), v〉a(x)dx = (2.14)

=

∫
Ω

〈df(Qx), e1〉a(x)dx =

∫
Q(Ω)

〈df(y), e1〉a(QT y)dy.

We put σ̄ = H2 Ω and, for any a ∈ L1(Ω) with
∫

Ω
a(x)dx = 1, we put

σQ = a◦QTH2 Ω, σ = a(x)H2 Ω. Taking into account (2.14) and Example
2.4 we can state the following relations

E(σ̄) = 2 = m(e1, [0, 1]2) ≤ E(σQ) ≤ E(σ)

and so we have that σ̄ is an optimal shape for P(F, Ω).

Now we address the question of changing the ambient space Ω. Con-
sider for example Ω = [0, 1]2. As before, the optimal shapes are absolutely
continuous measures σ with density a ∈ L1(Ω). Since we can inscribe Ω in
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Figure 2.2

a square Σ with edge of length
√

2 and parallel to v, see Figure 2.2, by the
previous discussion we have

E(σ) ≥
√

2.

In fact we have that m(F, Ω) =
√

2 by taking rectangles with one edge
parallel to v which shrink to the diagonal of [0, 1]2. We claim that for every
set E of finite perimeter in Ω, by setting σE = H2 E and σQE = χE◦QTH2,
it results

E(σE) >
√

2

and then the optimal shapes are not reached by sets of finite perimeter.
Indeed, otherwise we would have E(σE) = m(F, Σ), and by (2.14) we obtain

E(σQE) = m(e1, Q(Σ)).

Therefore, by condition (2.6) we infer

(π1)#(σQE) =
1√
2
H2 Σ.

However, the above condition yields∫ √
2

0

χE(QT (x, y))dy =
1√
2

∀x ∈ [0,
√

2],
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but this is a contradiction since, for example,∫ √
2

0

χE(QT (0, y))dy = 0.

The Examples 2.4 and 2.8 show that the geometry of the force field
influences the geometry of the optimal shapes. Moreover, a right choice
of the ambient space in correspondence of the force field can simplify the
description of the optimal shapes.

2.1. Invariance properties.

Definition 2.9 (Invariance). We say that the vector field F : RN → RN is
invariant with respect to Q ∈ GLN(R) if

F (Qx) = QF (x).

Proposition 2.10. Let F be an invariant vector field with respect to Q ∈
GLN(R) and suppose that QT (Ω) = Ω. If σ is an optimal shape for P(F, Ω)
then Q#σ is an optimal shape too.

Proof. Let ‖f‖∞ ≤ 1. We have

∂TQ#σ(f) =

∫
Ω

〈df, F 〉d(Q#σ) =

∫
Ω

〈df(Qx), F (Qx)〉dσ =∫
Ω

〈df(Qx), QF (x)〉dσ =

∫
Ω

〈QT df(Qx), F (x)〉dσ = (2.15)

=

∫
Ω

〈d(f ◦Q), F 〉dσ = ∂Tσ(f ◦Q) ≤ E(σ).

Taking the supremum with respect to ‖f‖∞ ≤ 1 we obtain

E(Q#σ) ≤ E(σ).

Since σ is optimal the statement follows. �

Proposition 2.11. Let F be an invariant vector field with respect to Q ∈
SON(R) and suppose that σ = a(|x|)HN Ω, with QT (Ω) = Ω. Then

Q#(∂Tσ) = ∂Tσ = ∂TQ#σ.

Proof. We have

Q#(∂Tσ)(f) = ∂Tσ(f ◦Q) =

∫
Ω

〈d(f ◦Q), F 〉a(|x|)dx =
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=

∫
Ω

〈QT df(Qx), F (x)〉a(|x|)dx =

∫
Ω

〈df(Qx), F (Qx)〉a(|Qx|)dx =

=

∫
Ω

〈df(y), F (y)〉a(|y|)dy = ∂Tσ(f).

Comparing to (2.15) we obtain the other equality. �

Proposition 2.10 and Proposition 2.11 suggest the natural question: If
the vector field F is invariant with respect to Q ∈ SON(R) is it true that
the optimal shapes are radially symmetric? We address this question in the
next section.

3. Central fields

Let Ω = B̄(0, R) and let x 7→ ϕ(|x|) be a continuous map defined on
Ω \ {0} with ϕ(|x|) > 0 for x 6= 0. We define the central force vector field as

F (x) = ϕ(|x|) x
|x| x 6= 0, (3.1)

3.1. Radial minimizers. In order to investigate existence and regularity
properties of minimizers, we are going to use a dimensional reduction, as
made in Example 2.4, and to this aim we introduce the radial energy Er(σ),
obtained by considering radially symmetric test functions only. Let a ∈
L1(Ω), with

∫
Ω

a(x) = 1, we define the function

a∗(r) := −
∫

∂B(0,r)

a(x) dHN−1 for H1 − a.e. r, (3.2)

which is well defined because of Coarea Formula (see Sec. 3.4.3 of [12]). By
using polar coordinates, we have∫

Ω

a(x)dx =

∫ R

0

(∫
∂B(0,r)

a(x) dHN−1

)
dr =

= NωN

∫ R

0

a∗(r)rN−1dr =

∫
Ω

a∗(|x|)dx,

where ωN is the Lebesgue measure of the unit ball of RN . Hence, if σ =
a(x)HN Ω ∈ P(Ω), then σ∗ = a∗(|x|)Hn Ω ∈ P(Ω) and so it is admissible
for P(F, Ω). By keeping this notation for σ and σ∗, in the next proposition
we prove some properties regarding radial energies and radial minimizers.

Proposition 3.1. Let a ∈ L1(Ω) be such that σ = a(x)HN Ω ∈ P(Ω).
Then the following statements hold true:
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(1) Er(σ) ≤ E(σ);
(2) Er(σ

∗) = Er(σ);
(3) If a is radially symmetric then Er(σ) = E(σ);
(4) If σ minimizes Er then σ∗ minimizes E;
(5) If σ minimizes E then σ also minimizes Er;
(6) If σ minimizes E then σ∗ minimizes E.

Proof. The first claim is trivial. To prove (2), let f(|x|) be a test function
for the energy Er, we have∫

Ω

〈df, F 〉a(x)dx =

∫ R

0

(∫
∂B(0,r)

f ′(|x|)ϕ(|x|)a(x) dHN−1

)
dr =

=

∫ R

0

f ′(r)ϕ(r)

(∫
∂B(0,r)

a(x) dHN−1

)
dr = NωN

∫ R

0

f ′(r)ϕ(r)rN−1a∗(r)dr.

On the other hand∫
Ω

〈df, F 〉a∗(|x|)dx =

∫
Ω

f ′(|x|)ϕ(|x|)a∗(|x|)dx =

= NωN

∫ R

0

f ′(r)ϕ(r)rN−1a∗(r)dr.

By taking the supremum with respect to f(|x|) we find that σ and σ∗ have
the same radial energy and so the claim is proved.

To prove (3) let a be radially symmetric and let f be a test function
for the energy Er, we define

f∗(r) =
1

NωN

∫
SN−1

f(r, θ)dθ.

By using polar coordinates, we get∫
Ω

〈df, F 〉a(x)dx =

∫ R

0

(∫
SN−1

∂rf(r, θ)ϕ(r)a(r)rN−1dθ

)
dr =

=

∫ R

0

ϕ(r)a(r)rN−1

(∫
SN−1

∂rf(r, θ)dθ

)
dr.

On the other hand we evaluate∫
Ω

〈df∗, F 〉a(x)dx = NωN

∫ R

0

f ′∗(r)ϕ(r)a(r)rN−1dr =
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=

∫ R

0

ϕ(r)a(r)rN−1

(∫
SN−1

∂rf(r, θ)dθ

)
dr.

Therefore we have∫
Ω

〈df, F 〉a(x)dx =

∫
Ω

〈df∗, F 〉a(x)dx ≤ Er(σ).

By taking the supremum with respect to f it follows that E(σ) ≤ Er(σ)
and so the statement is proved.

To prove (4), let us suppose that σ minimizes the radial energy. For
every ν = b(x)HN Ω, b ∈ L1(Ω),

∫
Ω

b(x)dx = 1, we have

E(σ∗) = Er(σ
∗) = Er(σ) ≤ Er(ν) ≤ E(ν).

To prove (5), let us suppose now that σ minimizes the energy E . We
have

Er(σ) ≤ E(σ) ≤ E(ν∗) = Er(ν
∗) = Er(ν).

Finally, (6) follows by (4) and (5).
�

Although the force field F is in general not regular at the origin, we
have the following

Theorem 3.2. Let F be the vector field defined by (3.1) and assume that

1

rN−1ϕ(r)
∈ L1(0, R). (3.3)

Then the problem P(F, Ω) admits minimizers among absolutely continuous
measures.

Proof. Let σn = an(|x|)HN Ω be a minimizing sequence for the radial
energy Er . We can assume that, by passing to a subsequence, there exists
a constant C such that, for every n, Er(σn) ≤ C. Fix x̄ ∈ B(0, R), x̄ 6= 0.
For δ > 0 small enough let us take the test functions

fδ(x) =
1

δ
χCδ

(|x| − |x̄|) ,

where Cδ = {x ∈ Ω : |x̄| − δ ≤ |x| ≤ |x̄|+ δ}. Since Er(σn) ≤ C, for every n
we have

1

δ

∫
Cδ

ϕ(|x|)an(|x|)dx =

∫
Cδ

〈dfδ, F 〉dσn ≤ C. (3.4)
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Let t = |x̄|, by (3.4) we deduce:

1

2δ

∫ t+δ

t−δ

ϕ(r)an(r)rN−1dr ≤ C

2NωN

. (3.5)

By applying Lebesgue Differentiation Theorem we get

an(t) ≤ C

2NωN tN−1ϕ(t)
H1 − a.e. t. (3.6)

Thanks to the condition (3.3), the inequality (3.6) is actually an equiinte-
grability condition for the sequence an(r). Therefore there exists a function
a ∈ L1(0, R) such that an ⇀ a in L1. Let σ = a(|x|)HN Ω ∈ P(Ω), we

observe that σn
∗
⇀ σ in the sense of measures. Fix a radial test function f

such that ‖f‖∞ ≤ 1. By standard properties of the weak* convergence of
measures (see for instance Proposition 1.62 of [2]), we get∫

Ω

〈df, F 〉dσ ≤
∫

Ω

|〈df, F 〉|a(|x|)dx ≤

≤ lim inf
n→+∞

∫
Ω

|〈df, F 〉|an(|x|)dx ≤ lim inf
n→+∞

Er(σn).

Taking the supremum with respect to f we find that σ is an optimal
shape for the radial energy. The result follows by Proposition 3.1. �

Observe that in the case ϕ(|x|) = |x|p it may happen that F (0) = 0.
In such a case of course the measure δ0 is the only optimal shape. However
the equiintegrability condition (3.6) ensures that there are also cases with
minimizers among absolutely continuous measures. This is the case for ex-
ample of ϕ(|x|) = |x|p with p < 3 − N . Under the hypotheses of Theorem
3.2, the problem P(F, Ω) has at least one radially symmetric solution, since
we have used merely radially symmetric test functions in proving it. Fur-
thermore, since F has only the radial component, we can certainly conclude
that ϕ(|x|)a(|x|) ∈ BV (Ω). Therefore, if 0 < C < ϕ(|x|) or the function 1

ϕ

is Lipschitz we have that a(|x|) ∈ BV (Ω).
However, the radial solution is not the only one. Indeed, one can take

a function b(θ) ∈ L1(Ω) such that∫
SN−1

b(θ)dθ = 1,
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and consider the function c(r, θ) = NωNa∗(r)b(θ). Let f(|x|) be any radially
symmetric test function, by using polar coordinates we have∫

Ω

〈df, F 〉c(x)dx = NωN

∫ R

0

f ′(r)ϕ(r)a∗(r)rN−1

(∫
SN−1

b(θ)dθ

)
dr =

= NωN

∫ R

0

f ′(r)ϕ(r)a∗(r)rN−1dr =

∫
Ω

〈df, F 〉a∗(|x|)dx.

Therefore σ = c(x)HN Ω is also a minimizer for the radial energy Er.
Now, we can observe that if the energy E admits only radial minimizers,
then problem P(F, Ω) is equivalent to minimize the radial energy Er, but
does the energy E admit non radially symmetric minimizers?

Finally, we also notice that the radial behavior is crucial. Indeed, if a
does not depend on the radial coordinate, then the function

a∗(r) = −
∫

SN−1

a(θ)dθ

is in fact constant.

3.2. p-growth fields. In this section we deal with vector fields of the type
F = ∇u, with u(x) = |x|p. In such a case the condition (3.3) implies p <
3 − N and with this choice there exists a minimum for P(F, Ω) among all
absolutely continuous measures. We have

F (x) = p|x|p−2x, divF (x) = p(p + N − 2)|x|p−2.

For p > 2−N and for every r > 0, let us consider the measures

σr =
1

|B(0, r)|
HN B(0, r).

By (1.1) we infer

E(σr) =
|p|(p + N − 2)

ωNrN

∫
B(0,r)

|x|p−2dx+
|p|

ωNrN

∫
∂B(0,r)

|x|p−2|x·ν| dHN−1 =

=
|p|(p + N − 2)

ωNrN
NωN

∫ r

0

ρp−2ρN−1dρ +
|p|

ωNrN
ωNNrp−1rN−1 = (3.7)

=
N |p|rp+N−2

rN
+ N |p|rp−2 = 2N |p|rp−2.

Therefore, if p > 2 > 2−N we have that m(F, Ω) = 0 and then there is no
absolutely continuous minimizing measure. In particular, this circumstance
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justifies the integrability assumption (3.3). On the other hand, we observe
that if p < 2−N then E(σr) = +∞. Nevertheless, in this case, Theorem 3.2
ensures that there exists at least one absolutely continuous minimum. Notice
that for p = 2 the energy of the ball does not depend on the radius and we
are going to study the details of such a situation in the next subsection.

3.3. The case p = 2. Let us take p = 2, then F (x) = 2x, while divF (x) =
2N . Of course, the measure δ0 is an optimal shape. By putting a disconti-
nuity at the origin, by Lemma 2.6 we know that the optimal shapes, if they
exist, are absolutely continuous measures in Ω \ {0}. Therefore we need to
check that, by defining F (0) = v, v 6= 0, it results σ({0}) = 0. Indeed, let
E(σ) ≤ C, and suppose for instance that v1 > 0. If Br = B(0, r)∩{x1 ≥ 0},
by taking the test functions

fr(x) =
1

r
χBr(x)x1,

we can evaluate:

1

r
v1σ({0}) +

2

r

∫
B(0,r)∩{x1>0}

x1dσ =

∫
B(0,r)∩{x1≥0}

〈dfr, F 〉dσ ≤ E(σ) ≤ C.

Hence we infer that

v1σ({0}) ≤ Cr.

Letting r → 0+ we conclude that σ({0}) = 0 and therefore σ is absolutely
continuous and so P(F, Ω) has absolutely continuous solutions.

For measures concentrated on sets of finite perimeter by (1.1) we have:

E(σ) =
1

|E|

(∫
E

|divF (x)| dx +

∫
∂E

|F · νE| dHN−1

)
=

= 2N +
2

|E|

∫
∂E

|x · νE| dHN−1.

Hence, if we put the volume constraint |E| = 1, the problem of determining
the optimal shapes carried by F inside Ω becomes the following one:

m|E|=1(F, Ω) := min
|E|=1

∫
∂E

|x · νE| dHN−1, (3.8)

which is a Wulff problem for the energy density Γ(x, νE(x)) = |x · νE(x)|.
Let us remark that the energy Γ does not satisfy the usual assumptions
asked for the classical Wulff problem as in [10, 13, 20]. However, in the
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present situation, one can make a direct computation. Indeed, by using the
Gauss-Green formula we obtain:∫

∂E

|x · νE| dHN−1 ≥
∫

∂E

x · νE dHN−1 =

∫
E

div(x) dx = N.

Now, let B1 := B(0, r) be the ball of volume 1. Then∫
∂B1

|x · νB1| dHN−1 =

∫
∂B1

|x| dHN−1 = rNωNrN−1 = N.

Therefore the ball B1 solves problem P|E|=1(F, Ω). Moreover, since the en-
ergy of the ball does not depend on the radius, any other measure like
σ = 1

|B(0,r)|H
N B(0, r) minimizes P|E|=1(F, Ω) as well. However, we claim

that
m(F, Ω) < m|E|=1(F, Ω). (3.9)

To prove (3.9) let us consider the radial function a(|x|) = C
|x| and the measure

σ = a(|x|)HN Ω. By Proposition 3.1, taking radial test functions f and
since F (x) = 2x we have

E(σ) = sup
‖f‖∞≤1

2NωN

∫ R

0

f ′(r)a(r)rNdr = sup
‖f‖∞≤1

2NCωN

∫ R

0

f ′(r)rN−1dr =

sup
‖f‖∞≤1

2NCωN

{
f(R)RN−1 −

∫ R

0

f(r)(N − 1)rN−2dr

}
.

Taking the supremum we obtain

E(σ) = 2NCωNRN−1 + 2NCωN(N − 1)

∫ R

0

rN−2dr =

= 2NCωNRN−1 + 2NCωNRN−1 = 4CNωNRN−1.

Let us now choose the constant C in order to have a probability measure,
then we get∫

Ω

a(|x|)dx = 1 ⇒ CNωN

∫ R

0

rN−2dr = 1 ⇒ C =
N − 1

NωNRN−1
.

Therefore
E(σ) = 4(N − 1) < 4N = E(σR),

where

σR =
1

|B(0, R)|
HN B(0, R).
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Finally, we observe that if one restricts to consider BV functions and
requires the following generalized flow condition∫

∂Ω

aF · ν dHN−1 = 2N, (3.10)

recalling that
∫

Ω
a dx = 1 and that divF = 2N , then condition (3.10)

implies∫
Ω

∇a · F dx +

∫
Ω

F · d(Dsa) = −
∫

Ω

a divF dx +

∫
∂Ω

aF · ν dHN−1 = 0.

Hence, for every σ = a(x)HN Ω we have the estimate

E(σ) =

∫
Ω

|a divF +∇a · F | dx + ‖F ·Dsa‖+

∫
∂Ω

a|F · ν| dHN−1 ≥

≥ 2N +

∫
∂Ω

aF · ν dHN−1 = 4N.

Therefore we can conclude that the ball is optimal among all BV functions
with the same fixed flow through Ω.

Let us remark that σR is not in general an optimal measure. To see this
let us consider the case

N − 2 < p ≤ 1.

By taking the radial function a(|x|) = C|x|α, with α = −(p+N−2), for σ =
a(|x|)HN Ω and radial test functions f , recalling that F (x) = p|x|p−2x, we
obtain

E(σ) = sup
‖f‖∞≤1

NωNCp

∫ R

0

f ′(r)rp−1rαrN−1dr =

= sup
‖f‖∞≤1

NωNCp

∫ R

0

f ′(r)dr = sup
‖f‖∞≤1

NωNCp (f(R)− f(0)) .

Taking the supremum we get

E(σ) = 2NωNC|p|.
Let us now choose the constant C in order to have a probability measure.∫

Ω

a(|x|)dx = 1 ⇒ CNωN

∫ R

0

r−(p+N−2)+N−1dr = 1 ⇒ C =
2− p

NωN

Rp−2.

Finally, by taking into account (3.7), we can conclude that

E(σ) = 2|p|(2− p)Rp−2 < 2|p|NRp−2 = E(σR).
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3.4. The solenoidal case. Let us now come to consider here the case of
energies with only the surface term. According to (1.1), this is obtained, in
this framework, by assuming that the vector field F is solenoidal, that is
divF = 0. Let u(x) = log |x| when N = 2, u(x) = 1

|x|N−2 when N ≥ 3, so

that divF = ∆u = 0. Among the sets of finite perimeter, the problem of
optimal shapes takes the form:

Minimize

{
1

|E|

∫
∂E

ϕ(|x|)
|x|

|x · νE| dHN−1 | E ⊂ Ω, E of finite perimeter

}
.

Since we have no bulk term, by (3.7) we get

E(σR) = 2N |p|Rp−2 =
2N(N − 2)

RN
. (3.11)

In the case N = 2 we have

E(σR) =
2

R2
.

By virtue of the arguments discussed in Section 3, we have a radial solution
which turns out to be a BV function. If a ∈ BV (Ω) is a radial function and
σ = aHN Ω, taking a radial test function f , since ϕ(r) = (2−N)r1−N , we
have ∫

Ω

〈df, F 〉a(x)dx = N(2−N)ωN

∫ R

0

f ′(r)ϕ(r)rN−1a(r)dr =

= N(2−N)ωN

∫ R

0

f ′(r)a(r)dr.

Finally, integrating by parts, we obtain

Er(σ) = sup
‖f‖∞≤1

N(2−N)ωN

{
−
∫ R

0

fd(Da) + f(R)a(R+)− f(0)a(0−)

}
=

= N(N − 2)ωN {‖Da‖(0, R) + a(R+) + a(0−)} .

Therefore, by the above expression of the energy and taking into ac-
count Proposition 3.1, we can conclude that σR is an optimal shape.
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