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A superposition principle for the inhomogeneous
continuity equation with Hellinger–Kantorovich-regular
coefficients

Kristian Brediesa, Marcello Carionib, and Silvio Fanzona

aInstitute of Mathematics and Scientific Computing, University of Graz, Graz, Austria; bDepartment of
Applied Mathematics, University of Twente, Enschede, The Netherlands

ABSTRACT
We study measure-valued solutions of the inhomogeneous continuity
equation @tqt þ div ðvqtÞ ¼ gqt where the coefficients v and g are of
low regularity. A new superposition principle is proven for positive
measure solutions and coefficients for which the recently-introduced
dynamic Hellinger–Kantorovich energy is finite. This principle gives a
decomposition of the solution into curves t 7! hðtÞdcðtÞ that satisfy the
characteristic system _cðtÞ ¼ vðt, cðtÞÞ, _hðtÞ ¼ gðt, cðtÞÞhðtÞ in an appro-
priate sense. In particular, it provides a generalization of existing
superposition principles to the low-regularity case of g where charac-
teristics are not unique with respect to h. Two applications of this prin-
ciple are presented. First, uniqueness of minimal total-variation
solutions for the inhomogeneous continuity equation is obtained if
characteristics are unique up to their possible vanishing time. Second,
the extremal points of dynamic Hellinger–Kantorovich-type regular-
izers are characterized. Such regularizers arise, for example, in the con-
text of dynamic inverse problems and dynamic optimal transport.
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1. Introduction

The main objective of this article is to present a new superposition principle for positive
measure solutions to the linear inhomogeneous continuity equation, assuming natural
regularity on the velocity field and on the source term. Such assumptions are substan-
tially weaker than what is currently available in the literature, as we will discuss below.

To be more precise, given X � Rd the closure of an open bounded domain, we consider
narrowly continuous curves of positive measures t 7!qt in MþðXÞ solving

@tqt þ divðvqtÞ ¼ gqt in ð0, 1Þ � X (1)

in the sense of distributions, where v : ð0, 1Þ � X ! Rd is a velocity field satisfying no
flux boundary conditions on @X and g : ð0, 1Þ � X ! R is a source term encoding the
inhomogeneity of the equation. We assume that the coefficients v and g are
Hellinger–Kantorovich-regular, namely, they are Borel measurable and satisfy the bound
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ð1
0

ð
X
jvðt, xÞj2 þ jgðt, xÞj2 dqtðxÞ dt < 1: (2)

In the following we will clarify the role of (2) in connection to recent advancements
in the theory of Unbalanced Optimal Transport. Our task is to provide a superposition
principle for (1) that allows to represent any positive solution t 7!qt as a superposition
of elementary solutions, that is, curves of measures of the form t 7! hðtÞdcðtÞ, where the
trajectories c : ½0, 1� ! X and the weights h : ½0, 1� ! ½0,1Þ solve, in an appropriate
sense, the system of characteristics for (1):

ðiÞ _cðtÞ ¼ vðt, cðtÞÞ ðiiÞ _hðtÞ ¼ gðt, cðtÞÞhðtÞ in ð0, 1Þ: (3)

Notice that (i) describes all possible elementary trajectories which follow the flow
given by v, while (ii) encodes the lack of mass preservation for solutions to (1), due to
the inhomogeneity. The precise statement of such superposition principle is given in
Theorem 1.1 below. Subsequently we provide two applications of the superposition
principle for (1). First we prove uniqueness for minimal norm solutions to (1) under
the assumption of uniqueness for solutions to (3) up to their possible vanishing time
(see Theorem 1.2); Second, we characterize extremal points of regularizers closely
related to the energy at (2), and apply such result to sparsity for dynamic inverse prob-
lems regularized via unbalanced optimal transport (see Theorem 1.3).
Concerning relevant literature, we mention that the superposition principle for nar-

rowly continuous curves of probability measures t 7! qt solving the homogeneous con-
tinuity equation

@tqt þ divðvqtÞ ¼ 0 in ð0, 1Þ � X (4)

is by now classical. It was first introduced in the Euclidean setting by Ambrosio in [1],
where it was employed to investigate uniqueness and stability of Lagrangian flows in
the context of DiPerna-Lions Theory [2]. Since then it has been applied to different
tasks [3–7] and extended to various settings [8–11]. In [12] the velocity field v is
assumed to satisfy ð1

0

ð
X
jvðt, xÞj2 dqtðxÞ dt < 1: (5)

An elementary solution to (4) is of the form t 7! dcðtÞ where c : ½0, 1� ! X is an abso-
lutely continuous curve solving the characteristic equation (i) in (3). Due to the lack of
regularity of v, solutions to the initial value problem associated to (i) are not unique.
Such non-uniqueness is reflected in the superposition formula, which in this case is
achieved by constructing a probability measure r on the set C :¼ Cð½0, 1�;XÞ: To be
more precise, it can be shown that if qt 2 MþðXÞ is a narrowly continuous solution to
(4) and v satisfies (5), then there exists a measure r 2 MþðCÞ concentrated on abso-
lutely continuous curves satisfying (i), with the property that qt can be represented by
the pushforward of r via the evaluation map etðcÞ :¼ cðtÞ, that is,ð

X
uðxÞ dqtðxÞ ¼

ð
C
uðcðtÞÞ drðcÞ for all u 2 CðXÞ, t 2 0, 1½ �: (6)
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We refer the reader to [12, Theorem 8.2.1] for a proof of (6) with X ¼ Rd and to
[13, Theorem 7] for the case of X being the closure of a bounded domain.
A generalization of (14) for positive measure solutions to the inhomogeneous con-

tinuity Equation (1) in X ¼ Rd is presented in [10]. Specifically, the following is proven
in [10, Theorem 4.1]: suppose that qt 2 MþðXÞ is a narrowly continuous solution to
(1), that v satisfies (5) and g is bounded; then there exists a representing measure r 2
MþðC� XÞ, concentrated on pairs ðc, xÞ with c absolutely continuous curve solving (i)
in (3) with the initial condition cð0Þ ¼ x, and such that qt is represented via the impli-
cit formulað

X
uðxÞ dqtðxÞ ¼

ð
C�X

uðcðtÞÞ drðc, xÞ þ
ðt
0

ð
X

ð
C
uðcðtÞÞ drxs ðcÞgðs, xÞ dqsðxÞ

� �
ds,

(7)

for all u 2 CðXÞ, where for fixed t, the family frxt gx2X is the disintegration of r with
respect to ð~etÞ#r 2 MþðXÞ, with ~etðc, xÞ :¼ cðtÞ: There are two main drawbacks with
the superposition principle from [10]: First, the representation formula (7) is implicit;
Second, the source term g is required to be bounded. Such assumption on g is substan-
tial, as it implies uniqueness of solutions to (ii) in (3) along any trajectory. This fact
essentially allows the author of [10] to construct the measure r in (7) in the same way
as the one in (6). Another limitation of [10] is that it is not possible to provide a repre-
sentation via (7) for solutions with mass that is vanishing or generating from zero dur-
ing the evolution (for an example, see Remark 4.6).
The main focus of this article is to obtain a superposition principle for (1) which

overcomes the above mentioned limitations of [10]. Indeed we obtain an explicit repre-
sentation formula for (1) that resembles (6). In addition, we remove the boundedness
assumption on g, and we replace it by the growth condition (2). Removing such
assumption on g is far from straightforward, as it requires a new functional analytic
framework for constructing a representation measure r. In fact, the low regularity of g
implies non-uniqueness for the initial value problem associated with (ii) in (3). This
suggests that a measure r representing a solution t 7! qt to (15) has to account for non-
uniqueness both for the trajectories c and the weights h. Therefore, r cannot just be a
measure on C, but rather on a space of pairs ðc, hÞ, as discussed in Theorem 1.1 below.
We now discuss the coupling of the continuity equation at (1) with the energy at (2),

which is at the center of recent important developments in the theory of Unbalanced
Optimal Transport. The classical theory of Optimal Transport, in its Monge-
Kantorovich formulation [16–18], concerns the problem of transporting mass from a
probability measure into a target one, while minimizing a given cost. Benamou and
Brenier [19] made the crucial observation that the classical formulation of optimal
transport has a dynamic counterpart, which links the continuity Equation (4) with the
energy at (5). More precisely they observed that it is possible to compute the optimal
transport between two probability measures q0 and q1 by minimizing the dissipation at
(5) among all the curves of probability measures t 7! qt and velocity fields v solving the
continuity Equation (4) with initial and final conditions given by q0 and q1 respectively.
Such dynamic formulation makes possible to endow the space of probability measures
with a differentiable structure [12], bringing to light deep connections between optimal
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transport and functional analytic issues, such as the characterization of differential equa-
tions as gradient flows in spaces of measures [12, 20–25] or the derivation of sharp
inequalities [15, 26–30]. Particularly in connection to applications, the assumption of
mass preservation during the evolution is quite restrictive. Overcoming this limitation is
at the core of the so-called unbalanced optimal transport theory. Among the various
formulations, we highlight the one introduced in [31–33]. There, transporting a positive
measure q0 into a target one q1 corresponds to minimize a weighted version of (2)
among all curves of positive measures t 7!qt and fields v, g satisfying the inhomogen-
eous continuity Equation (1) with initial and final conditions given by q0 and q1,
respectively. The quantity at (2) takes the name of Wasserstein–Fisher–Rao or
Hellinger–Kantorovich energy in the literature. Such an approach has been successfully
employed in applications where mass preservation is violated [34–37]. In particular in
[33] it is shown that the above minimization procedure induces a distance which is
compatible with a differentiable structure on the space MþðXÞ: This distance can also
be derived from the dynamic formulation of the Logarithmic-Entropy Optimal
Transport problem [33] or can be regarded as dissipation energy for a certain class of
scalar reaction-diffusion equations [36].
We conclude this introduction by discussing in more details the superposition prin-

ciple we propose for (1), as well as the applications provided in this article. The rest of
the manuscript is organized as follows. In Section 2 we introduce basic notations, as
well as presenting some results on continuity equations and optimal transport energies.
In Section 3 we set the functional analytic framework needed in order to prove our
superposition principle. In particular we investigate properties of the
Hellinger–Kantorovich energy (2) when restricted to elementary solutions to (1). In
Section 4 we provide a proof for the main result of this article, that is, the superposition
principle in Theorem 1.1 below. Finally, in Sections 5, 6 we detail applications of the
superposition principle to uniqueness for solutions to (1) and to sparsity for dynamic
inverse problems with Hellinger–Kantorovich-type regularizers.

1.1. Main result

To obtain a superposition principle for (1) under the energy bound (2) we construct a
positive measure r on the set SX of narrowly continuous curves t 7!qt with values in
CX :¼ fhdc 2 MðXÞ : h � 0, c 2 Xg: We endow CX with the flat distance of meas-
ures and SX with the respective supremum distance. In this way SX becomes a separ-
able metric space. Notice that SX plays the role of the set of continuous curves C in
(6). As we will see, c.f. Remark 3.2, the construction of CX closely resembles the cone
space introduced in [33, 36] to study absolutely continuous curves with respect to the
Hellinger–Kantorovich distance. It is immediate to check that elements of SX can be
represented by qt ¼ hðtÞdcðtÞ, for some non-negative weight h 2 C½0, 1� and curve c 2
Cðfh > 0g;XÞ, where we set fh > 0g :¼ ft 2 ½0, 1� : hðtÞ > 0g: Thus, the mass of the
elements of SX is varying continuously in time and is allowed to vanish, reflecting the
behavior of solutions to (1). The measure r we construct is concentrated on elements
qt ¼ hðtÞdcðtÞ 2 SX, with h and c solving the system of ODEs:
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ðiÞ _cðtÞ ¼ vðt, cðtÞÞ a:e: in fh > 0g ðiiÞ _hðtÞ ¼ gðt, cðtÞÞhðtÞ a:e: in ð0, 1Þ:
(8)

Notice that, in comparison to the system of characteristics at (3), we are restricting
the first ODE to the set fh > 0g: Indeed, if h(t) ¼ 0, then qt ¼ 0 and thus we lose any
information on the trajectories for that time instant. The above observations are formal-
ized in the following theorem, which is the main result of our article (c.f. Theorem 4.3).

Theorem 1.1. Let X � Rd be the closure of an open bounded domain. Let qt : ½0, 1� !
MþðXÞ be a narrowly continuous solution to (1) for some Borel measurable v :

ð0, 1Þ � X ! Rd, g : ð0, 1Þ � X ! R satisfying (2) and such that v has no flux on @X.
Then there exists a measure r 2 MþðSXÞ concentrated on curves of measures qt ¼
hðtÞdcðtÞ with h, c solving (8) and such thatð

X
uðxÞ dqtðxÞ ¼

ð
SX

hðtÞuðcðtÞÞ drðc, hÞ for all u 2 CðXÞ, t 2 0, 1½ �: (9)

Conversely, assume that r 2 MþðSXÞ is concentrated on solutions to (8) and satisfiesð1
0

ð
SX

hðtÞ 1þ jvðt, cðtÞÞj þ jgðt, cðtÞÞj� �
drðc, hÞ dt < 1: (10)

Then (9) defines a narrowly continuous curve of positive measures solving (1).
Notice that the growth condition (10) is natural, in the sense that if a measure r rep-

resents qt and (2) holds, then automatically r satisfies (10). We refer the reader to
Remark 4.4 below for more details. We also remark that the set X in Theorem 1.1 is
required to be bounded. Indeed it would be interesting to extend our result to

unbounded domains, in the spirit of [10, 12] where X ¼ Rd is considered. However, it
seems that a different proof strategy or stronger assumptions are required, see Remark
4.7 below for details. Moreover, similarly to [10, 12], it should be possible to prove a
version of Theorem 1.1 in which (2) is replaced by an Lp bound for 1 � p � 1: Such
analysis falls outside the scope of our article.
The proof of Theorem 1.1 is presented in Section 4. It is based on a similar smooth-

ing strategy as the one employed in [1] to prove (6). However in this case there are two
main differences: first one needs to establish compactness properties for a coercive ver-
sion of the Hellinger–Kantorovich energy when restricted to elements of CX, see
Proposition 3.10; second the smoothing needs to take into account the possibility of the
measure qt vanishing at some time instance, as detailed in Remark 4.6 below.

1.2. Uniqueness of solutions to the continuity equation

In Section 5 we present the first application of the superposition principle of
Theorem 1.1. Our aim is to show that uniqueness of solutions for the system of
ODEs at (3), up to their possible vanishing time, implies uniqueness for measure sol-
utions to the inhomogeneous continuity equation (1) satisfying the bound (2) and
with minimal total variation. The key ingredient of the proof is formula (9), which
allows to decompose any solution of (1) satisfying the bound (2) into a superposition
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of elementary curves t 7! hðtÞdcðtÞ such that ðc, hÞ are solutions to (8). Such represen-
tation allows to link uniqueness for (3) with the one for (1). The main difference
between our result and the classical one for the homogeneous continuity equation
[14, Theorem 9] lies in the fact that elementary solutions qt ¼ hðtÞdcðtÞ are allowed to
vanish in time. In this case uniqueness for (3) is not enough to ensure uniqueness of
solutions to the inhomogeneous continuity equation. Indeed, when the mass of a solu-
tion vanishes at a given time instant �t 2 ð0, 1Þ, the uniqueness assumption for (3) is
not providing any information on the behavior of the solutions for t > �t : this is
because the measure r is concentrated on solutions to (8) where iÞ is only valid in
the set fh > 0g: Therefore, in order to recover uniqueness for (1), we impose an extra
constraint on the total variation of its solutions. More precisely, we show that solu-
tions to (1) with minimal mass can be represented, invoking Theorem 1.1, by a meas-
ure r concentrated on curves t 7! hðtÞdcðtÞ such that ðc, hÞ solves (8) and h is strictly
positive in an interval ½0, sÞ \ ½0, 1� for some s 2 R: Such observation allows to employ
uniqueness for the system of characteristics at (3), up to their possible vanishing time,
to infer uniqueness for measure solutions to (1) with minimal total variation. We
obtain the following theorem, c.f. Theorem 5.1.

Theorem 1.2. Let v : ð0, 1Þ � X ! Rd, g : ð0, 1Þ � X ! R be Borel measurable functions
and A � X be a Borel measurable set. Suppose that:
(Hyp) For each x 2 A the solution of the system of ODEs (8) with initial value ðx, 1Þ is

unique in ½0, sÞ for every s 2 ð0, 1Þ such that ½0, sÞ � fh > 0g:
Then, for any initial datum q0 2 MþðXÞ concentrated on A, the inhomogeneous con-

tinuity equation (1) admits at most one positive narrowly continuous solution t 7! qt sat-
isfying (2), with initial datum q0, and such that jjqjjM � jj~qjjM for every t 7! ~qt positive
narrowly continuous solution to (1) satisfying (2), and such that ~q0 ¼ q0:

1.3. Extremal points of the Hellinger–Kantorovich energy

In the context of inverse problems, the knowledge of the structure of extremal points of
the regularizer allows to numerically reconstruct sparse solutions, that is, solutions given
by the superposition of finitely many extremal points [38,39]. It has been recently pro-
posed [34] to regularize dynamic inverse problems via an energy related to the one at
(2). To be more specific, the energy at (2) can be recast into a convex functional Bd

over the space M :¼ Mðð0, 1Þ � XÞdþ2 defined by

Bdðq,m, lÞ :¼ 1
2

ð1
0

ð
X

dm
dq

����
����
2

þ d2
dl
dq

����
����
2

dq (11)

if q � 0, m, l � q, and set to 1 otherwise, where d > 0 is a parameter (c.f. Section
2.2). The regularizer studied in [34] consists in the energy at (11) to which the total
variation of q is added, while enforcing the continuity equation constraint @tqþ
div m ¼ l: An analysis of the extremal points of such energy is currently missing in
the literature: Therefore, in this article, we employ the superposition principle of
Theorem 1.1 to characterize the extremal points of the set

B ¼ fðq,m, lÞ : @tqþ div m ¼ l, bBdðq,m, lÞ þ ajjqjjM � 1g, (12)
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where a, b > 0 are parameters. Notice that we do not impose boundary conditions in
the continuity equation at (12). Moreover the total variation of q is added to the func-
tional Bd, in order to enforce coercivity, and thus compactness of B: We prove the fol-
lowing result (c.f. Theorem 6.3).

Theorem 1.3. The extremal points of the set defined in (12) are exactly given by the zero

measure (0, 0, 0) and the triples of measures ðq,m, lÞ such that q ¼ hðtÞ dt � dcðtÞ, m ¼
_cðtÞq, l ¼ _hðtÞ dt � dcðtÞ with the following properties:

(a) h,
ffiffiffi
h

p 2 AC2½0, 1�, c 2 Cðfh > 0g;XÞ and ffiffiffi
h

p
c 2 AC2ð½0, 1�;RdÞ,

(b) the set fh > 0g is connected,
(c) the energy satisfies bBdðq,m, lÞ þ ajjqjjM ¼ 1:

In the above we denote by AC2 the set of absolutely continuous functions with a.e.
derivative in L2 (see [12, Section 1.1] for a precise definition).
Theorem 1.3 is a generalization of the results obtained in [13], where the Benamou-

Brenier energy with homogeneous continuity equation constraint is considered. In
Section 6.2 we apply Theorem 1.3 to understand the structure of sparse solutions for
dynamic inverse problems with unbalanced optimal transport regularization. In particu-
lar, we consider the inverse problem proposed in [34], where the minimization of the
energy at (12) is coupled with a fidelity term penalizing the distance between q and
some fixed observation. Applying recent results on sparsity [40,41] we show that the
minimization problem in [34] admits a solution which is a finite linear combination of
extremal points of B, that is, of curves as described in Theorem 1.3.

2. Preliminaries

For measure theory notations and definitions we follow [42]. Given a metric space Y we

denote by MðYÞ, MðY;RdÞ, MþðYÞ the spaces of bounded Borel measures, bounded
vector Borel measures, bounded positive Borel measures on Y, respectively. Throughout
the article, whenever we say that a set or a function is measurable, we always intend
Borel measurable, that is, measurability with respect to the Borel r-algebra. For a meas-
ure l we denote its total variation measure by jlj: We say that a sequence of measures
flngn on Y converges narrowly to l if

Ð
YuðyÞ dlnðyÞ !

Ð
YuðyÞ dlðyÞ for all u 2

CbðYÞ, where CbðYÞ denotes the set of real valued continuous and bounded functions
on Y.

Let X � Rd be the closure of a bounded domain, with d 2 N, d � 1, and define the
time-space domain XX :¼ ð0, 1Þ � X: We say that q 2 MðXXÞ disintegrates with respect
to time if there exists a Borel family of measures fqtgt2½0, 1� � MðXÞ such thatÐ
XX
u dq ¼ Ð 10 ÐXuðt, xÞ dqtðxÞ dt for all u 2 L1qðXXÞ: The disintegration is denoted by

q ¼ dt � qt: Further, a curve of measures t 2 ½0, 1� 7!qt 2 MðXÞ is narrowly continu-
ous if the map t 7! Ð

XuðxÞ dqtðxÞ is continuous for each fixed u 2 CðXÞ: The family of
narrowly continuous curves is denoted by Cwð½0, 1�;MðXÞÞ: Notice that if t 7! qt is nar-
rowly continuous, by the principle of uniform boundedness, it follows that q :¼ dt � qt
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belongs to MðXXÞ: We also introduce Cwð½0, 1�;MþðXÞÞ as the family of narrowly con-
tinuous curves with values into MþðXÞ: The above definitions extend verbatim to the

case X ¼ Rd:

2.1. Continuity equation

Set MX :¼ MðXXÞ �MðXX;R
dÞ �MðXXÞ: We say that the triple ðq,m, lÞ 2 MX sol-

ves the continuity equation

@tqþ div m ¼ l in XX, (13)

whenever (13) holds in the sense of distributions, that is,ð
XX

@tu dqþ
ð
XX

ru 	 dmþ
ð
XX

u dl ¼ 0 for all u 2 C1
c ðXXÞ: (14)

Here, q represents a density, m a momentum field advecting q, while l is a source
term accounting for mass change. The above definition also holds for unbounded spatial

domains, for example., X ¼ Rd: Moreover the time interval (0, 1) can be replaced by
ð0,TÞ with T> 0. We remark that (14) includes no flux boundary conditions for m on
@X, and no initial conditions for q are prescribed. Moreover (14) can be equivalently
tested with maps in C1

c ðXXÞ [12, Remark 8.1.1]. The following lemma provides some
properties of solutions to (14) which will be needed in the coming analysis. The state-

ment holds both in bounded domains as well as in Rd: For a proof in bounded domains

see, for example, Propositions 2.2, 2.4 in [34], which can be easily generalized to Rd:

Lemma 2.1. Assume that ðq,m, lÞ 2 MX satisfies (14) with q 2 MþðXXÞ. Then
q ¼ dt � qt , where qt 2 MþðXÞ for a.e. t in (0, 1). Moreover the map t 7! qtðXÞ belongs
to BV(0, 1), with distributional derivative given by p#l, where p : XX ! ð0, 1Þ is the pro-
jection on the time coordinate. If in addition m ¼ vq, l ¼ gq for some measurable v :

XX ! Rd, g : XX ! R withð1
0

ð
X
jvðt, xÞj þ jgðt, xÞj dqtðxÞ dt < 1,

then there exists a unique curve t 7! ~qt in Cwð½0, 1�;MþðXÞÞ such that qt ¼ ~qt a.e. in
(0, 1).
In the rest of the article we will identify qt with its narrowly continuous representa-

tive ~qt, whenever the assumptions of Lemma 2.1 hold.

2.2. Optimal transport energy

We now introduce the Wasserstein–Fisher-Rao energy, also known as the
Hellinger–Kantorovich energy, as originally done in [31–33]. To this end, let d > 0 be a
fixed parameter. Define the convex, one-homogeneous and lower semi-continuous map

Wd : R� Rd � R ! ½0,1� by setting
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Wdðt, x, yÞ :¼
jxj2 þ d2y2

2t
if t > 0,

0 if t ¼ jxj ¼ y ¼ 0,
1 otherwise,

8>><
>>: (15)

where 1y2 ¼ 1 for y 6¼ 0 and 1y2 ¼ 0 for y¼ 0. The Wasserstein–Fisher–Rao energy
is given by the map Bd : MX ! ½0,1� defined by

Bdðq,m, lÞ :¼
ð
XX

Wd
dq
dk

,
dm
dk

,
dl
dk

� �
dk, (16)

where k 2 MþðXXÞ is an arbitrary measure such that q,m, l � k: Definition (16) does
not depend on the choice of k, as Wd is one-homogeneous. Properties of the energy Bd

which are relevant in the following analysis are summarized in Lemma A.4 (for a proof
see [34, Proposition 2.6]). We now introduce a coercive version of Bd : Set

DX :¼ ðq,m, lÞ 2 MX : @tqþ div m ¼ l in the sense of ð14Þ� 	
,

and define the functional Ja,b, d : MX ! ½0,1� as

Ja,b, dðq,m, lÞ :¼ bBdðq,m, lÞ þ akqkMðXXÞ if ðq,m, lÞ 2 DX,
1 otherwise,



(17)

where a > 0 and b > 0 are fixed constants. We remark that adding the total variation
of q to Bd enforces the balls of Ja,b, d to be compact in the weak
 topology of MX: Such
property, together with others, is the object of Lemma A.5. The content of Lemma A.5
is based on results proven in [34, Lemmas 4.5, 4.6].

2.3. Characteristics theory for the continuity equation

We start by recalling a classical result on the theory of ordinary differential equations in

Rd [12, Lemma 8.1.4].

Proposition 2.2. Let v : ½0, 1� � Rd ! Rd be measurable and such thatð1
0
sup
x2Rd

vðt, xÞj þ Lipðvðt, 	Þ,RdÞ dt < 1:
�� (18)

Then for each x 2 Rd the ODE

_XxðtÞ ¼ vðt,XxðtÞÞ for a:e: t 2 ð0, 1Þ, Xxð0Þ ¼ x, (19)

admits a unique absolutely continuous solution t 7!XxðtÞ defined for all t 2 ½0, 1�:
Next we provide a representation formula for measure solutions of the continuity

equation (13). This is the analogue of [12, Lemma 8.1.6] for the inhomogeneous con-
tinuity equation, and a generalization of [10, Proposition 3.6] to the case of
g unbounded.

Proposition 2.3. Let v : ½0, 1� � Rd ! Rd, g : ½0, 1� � Rd ! R be measurable. Assume
that
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ð1
0
sup
x2Rd

gðt, xÞj þ Lipðgðt, 	Þ,RdÞ dt < 1�� (20)

and (18) hold. Let q0 2 MþðRdÞ and denote by t 7!XxðtÞ the unique solution to (19)

defined for all t 2 ½0, 1� and x 2 Rd. Then, the map

t 7!qt :¼ ðXð	ÞðtÞÞ# q0 e
Ð t
0
gðs,Xð	ÞðsÞÞds

� �
(21)

is a narrowly continuous solution to the continuity equation @tqt þ div ðvqtÞ ¼ gqt in

ð0, 1Þ � Rd in the sense of (14), where the push-forward in (21) is with respect to the
space variable.

Proof. Narrow continuity of t 7!qt follows immediately from (20), dominated conver-

gence and the continuity of t 7!XxðtÞ for each x. Let now u 2 C1
c ðð0, 1Þ � RdÞ: Then

for q0-a.e. x in Rd, the map t 7!uðt,XxðtÞÞ is absolutely continuous in (0, 1), with a.e.
derivative given by

d
dt

uðt,XxðtÞÞ ¼ @tuðt,XxðtÞÞ þ ruðt,XxðtÞÞ 	 vðt,XxðtÞÞ, (22)

thanks to Proposition 2.2. By (20) we also have that t 7!uðt,XxðtÞÞe
Ð t
0
gðs,XxðsÞÞds is abso-

lutely continuous in (0, 1), and for a.e. t 2 ð0, 1Þ it holds
d
dt

�
uðt,XxðtÞÞe

Ð t
0
gðs,XxðsÞÞds

�
¼
�

d
dt

uðt,XxðtÞÞ þ uðt,XxðtÞÞ gðt,XxðtÞÞ
�
e
Ð t
0
gðs,XxðsÞÞds:

(23)

In particular, it is immediate to check thatð1
0

ð
Rd

d
dt

uðt,XxðtÞÞe
Ð t
0
gðs,XxðsÞÞds

� �����
���� dq0ðxÞ dt � kukC1 q0ðRdÞ eMg 1þMv þMgð Þ,

where Mv :¼
Ð 1
0 supx2Rd

��vðt, xÞj dt, Mg :¼
Ð 1
0 supx2Rd

��gðt, xÞ�� dt, which are finite by
(18, 20). Therefore, we can apply Fubini’s theorem and (21–23), to computeð

X
Rd

@tuþru 	 vþ u gð Þ dq ¼
ð
Rd

ð1
0

d
dt

uðt,XxðtÞÞe
Ð t
0
gðs,XxðsÞÞds

� �
dt dq0ðxÞ,

where q ¼ dt � qt: Now notice that the above right-hand side vanishes since u is
compactly supported, concluding the proof. w

The next proposition states that, under some regularity assumptions, every solution
of (14) can be represented as in (21).

Proposition 2.4. Assume that qt : ½0, 1� ! MþðRdÞ is a narrowly continuous solution to

the continuity equation @tqt þ div ðvqtÞ ¼ gqt in ð0, 1Þ � Rd in the sense of (14), for

some Borel maps v : ½0, 1� � Rd ! Rd, g : ½0, 1� � Rd ! R satisfying (18, 20) andð1
0

ð
Rd
jvðt, xÞj þ jgðt, xÞj dqtðxÞ dt < 1: (24)
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Then for q0-a.e. x 2 Rd the ODE (19) admits a solution XxðtÞ for t 2 ½0, 1�, and

qt ¼ ðXð	ÞðtÞÞ# q0 e
Ð t
0
gðs,Xð	ÞðsÞÞds

� �
for each t 2 0, 1½ �,

where the push-forward is with respect to the space variable.

Proof. Define the map t 7!lt :¼ ðXð	ÞðtÞÞ#ðq0 e
Ð t

0
gðs,Xð	ÞðsÞÞdsÞ: Proposition 2.3 implies

that lt is a narrowly continuous solution to the continuity equation in ð0, 1Þ � Rd:

Moreover l0 ¼ q0 by construction. It is immediate to check that lt � qt and qt � lt
satisfy (121). As lt � qt and qt � lt both satisfy the continuity equation, we can apply
(twice) the comparison principle in Proposition A.6 to deduce that lt ¼ qt for
every t 2 ½0, 1�: w

3. Functional analytic setting

In this section we discuss the functional analytic setting that is instrumental in proving
the superposition principle in Theorem 1.1. Throughout the section, V will be the clos-

ure of a bounded domain of Rd, with d 2 N, d � 1: We recall the notations XV :¼
ð0, 1Þ � V and MV :¼ MðXVÞ �MðXV ;R

dÞ �MðXVÞ:

3.1. Curves in cones of measures

We start by introducing the set

CV :¼ hdc 2 MðVÞ : h � 0, c 2 V
� 	

(25)

and the space of narrowly continuous curves with values in CV , that is,

SV :¼ ðt 7! qtÞ 2 Cwð 0, 1½ �;MþðVÞÞ : qt 2 CV for all t 2 0, 1½ �� 	
: (26)

Notice that if t 7! qt belongs to SV , then q :¼ dt � qt belongs to MðXVÞ: With a lit-
tle abuse of notation, in what follows, we will denote by q both the curve t 7! qt and
the measure dt � qt:

Remark 3.1. If q 2 SV , then qt ¼ hðtÞdcðtÞ for h : ½0, 1� ! ½0,1Þ and c : ½0, 1� ! V ,
where c is uniquely determined in the set fh > 0g:
We endow the set CV with the flat distance on MðVÞ, that is, for qi 2 CV we set

dFðq1, q2Þ :¼ sup
ð
V
u dðq1 � q2Þ : u 2 CðVÞ, kuk1 � 1, Lipðu,VÞ � 1


 
: (27)

We then define a distance over SV , by setting

dðq1, q2Þ :¼ sup
t2 0, 1½ �

dFðq1t , q2t Þ: (28)

Remark 3.2. In [33, 36] the authors introduced the cone space over V given by CV :¼
ðV � ½0,1ÞÞ= � , where� is the equivalence relationship such that the pairs ðc1, h1Þ
and ðc2, h2Þ are identified if and only if c1 ¼ c2 and h1 ¼ h2, or if h1 ¼ h2 ¼ 0: Notice
that CV is in one-to-one correspondence with CV : However in [33, 36] the cone space
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is equipped with the cone distance

H2ðq1, q2Þ :¼ h1 þ h2 � 2
ffiffiffiffiffiffiffiffiffi
h1h2

p
cos ðjc1 � c2jÞ if jc1 � c2j � p,

h1 þ h2 þ 2
ffiffiffiffiffiffiffiffiffi
h1h2

p
otherwise,




for all q1, q2 2 CV : By elementary calculations, and employing (29) below, it is possible
to show that H2 and dF induce equivalent topologies on CV , for example, there exists a
constant C> 0 such that

1
C
H2ðq1, q2Þ � dFðq1, q2Þ � C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh1 þ h2ÞH2ðq1, q2Þ

p
:

The following characterization for dF holds.

Lemma 3.3. For q1, q2 2 CV we have

dFðq1, q2Þ ¼ jh1 � h2j þminðh1, h2Þjc1 � c2j if jc1 � c2j � 2,
h1 þ h2 otherwise:



(29)

Proof. By definition it follows that

dFðq1, q2Þ ¼ sup
c1, c22R

h1c1 � h2c2 : jc1j, jc2j � 1, jc1 � c2j � jc1 � c2jf g:

By symmetry we can assume h1 � h2: For all c1, c2 2 R such that jc1j, jc2j � 1 and
jc1 � c2j � jc1 � c2j, we estimate

h1c1 � h2c2 � jh1c1 � h2c1j þ jh2c1 � h2c2j � jh1 � h2j þ minðh1, h2Þjc1 � c2j:
The thesis follows since the supremum is achieved by ð1, 1� jc1 � c2jÞ if jc1 � c2j �

2 and by ð1, � 1Þ otherwise. w

We will now show that the metric space ðSV , dÞ can be identified with Cð½0, 1�;CVÞ,
where CV is equipped with dF and Cð½0, 1�;CVÞ inherits the relative topology as a subset
of Cð½0, 1�;MflatðVÞÞ, MflatðVÞ being the space MðVÞ equipped with the flat norm. In
order to achieve that, we need a preliminary lemma.

Lemma 3.4. Let qt : ½0, 1� ! CV. Then the following statements are equivalent:

(i) qt is narrowly continuous,
(ii) qt ¼ hðtÞdcðtÞ with h 2 C½0, 1� and c 2 Cðfh > 0g;RdÞ:

Proof. Assume (i), so that the map t 7! hðtÞuðcðtÞÞ is continuous for each u 2 CðVÞ: By
choosing u  1 we conclude that h is continuous. If we pick uðxÞ :¼ xi coordinate
function, for all i ¼ 1, :::, d, we also infer continuity for hc, so that c is continuous in
fh > 0g: Conversely, assume (ii). Let u 2 CðVÞ and t̂ 2 ½0, 1�: If hð̂tÞ ¼ 0, we conclude
continuity of t 7! hðtÞuðcðtÞÞ at t̂ by boundedness of u and continuity of h, while if
hð̂tÞ > 0, we conclude by (ii). w

Proposition 3.5. Assume that qt : ½0, 1� ! CV. Then the following statements
are equivalent:
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(i) qt is narrowly continuous,
(ii) qt is continuous with respect to dF:

In particular, we have that ðSV , dÞ is a metric space that can be identified
with Cð½0, 1�;CVÞ:

Proof. Assume (i), so that h 2 C½0, 1� and c 2 Cðfh > 0g;RdÞ by Lemma 3.4. Fix t 2
½0, 1� and tn ! t: If h(t) ¼ 0, by continuity of h and (29) we infer dFðqtn , qtÞ ¼ hðtnÞ !
0: If instead h(t) > 0, by continuity of c in t, it holds that jcðtnÞ � cðtÞj � 2 for n suffi-
ciently large. By continuity of h we conclude (ii). Conversely, assume (ii). In order to

show (i), we prove that h 2 C½0, 1� and c 2 Cðfh > 0g;RdÞ (Lemma 3.4). From (29) we
have jhðt1Þ � hðt2Þj � dFðqt1 , qt2Þ for all t1, t2 2 ½0, 1�, so that h is continuous by (ii). Let
us now fix t 2 fh > 0g and tn ! t: Since h(t) > 0, it is immediate to check by contra-
diction that jcðtnÞ � cðtÞj � 2 eventually, and hence

jhðtnÞ � hðtÞj þminðhðtnÞ, hðtÞÞjcðtnÞ � cðtÞj ¼ dFðqtn , qtÞ, (30)

for sufficiently large n. By continuity of h, (ii), and the assumption h(t) > 0, we con-
clude continuity for c, and hence (i). The final part of the statement follows from the
first part and from the definition of d:

For the space ðSV , dÞ the following holds. w

Proposition 3.6. We have that ðSV , dÞ is a complete separable metric space.

The above statement is somewhat classical. However, due to the lack of a reference,
we provide a proof in Section A.4. We conclude this section with a useful lemma that
provides sufficient conditions for continuity and measurability for scalar maps
on ðSV , dÞ:
Lemma 3.7. Let u : V � ½0,1Þ ! R be such that uðx, 0Þ ¼ 0 for all x 2 V. For t 2 ½0, 1�
define the map Wt : SV ! R by WtðqÞ :¼ uðcðtÞ, hðtÞÞ, where qt ¼ hðtÞdcðtÞ. If u is
measurable (resp. continuous), then Wt is measurable (resp. continuous) with respect to d:

Proof. Notice that the condition uðx, 0Þ ¼ 0 for all x 2 V implies that Wt is well
defined. Suppose first that u is continuous and assume that dðqn, qÞ ! 0 as n ! 1: By
(29) we have jhnðtÞ � hðtÞj � dFðqnt , qtÞ, so that hnðtÞ ! hðtÞ: If h(t) ¼ 0, then qt ¼ 0
and WtðqÞ ¼ 0: By continuity of u and compactness of V we infer that WtðqnÞ ! 0: If
h(t) > 0, the usual argument by contradiction implies that jcnðtÞ � cðtÞj � 2 for n suffi-
ciently large. Thus by (29) and the convergences minðhnðtÞ, hðtÞÞ ! hðtÞ > 0 and
dFðqnt , qtÞ ! 0, we have that cnðtÞ ! cðtÞ: By continuity of u we conclude WtðqnÞ !
WtðqÞ: Suppose now that u is measurable. Define the evaluation map et : SV ! CV by
etðqÞ :¼ qt and the projection p : CV ! V � ½0,1Þ by

pðhdcÞ :¼ ðc, hÞ vCVnfð0, 0Þgðc, hÞ þ ðp, 0Þ vfð0, 0Þgðc, hÞ,
where p 2 V is arbitrary but fixed. Notice that by construction et is continuous from
ðSV , dÞ into ðCV , dFÞ: Additionally the map hdc 7! ðc, hÞ is continuous in CV n fð0, 0Þg
by repeating the above arguments. Hence p is measurable, being sum of measurable
functions. Noting that Wt ¼ u � p � et , we see that Wt is measurable. w
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3.2. Properties of the Hellinger–Kantorovich energy over CV

In this section we investigate some properties of the coercive version of the
Hellinger–Kantorovich energy at (17) when restricted to measures belonging to SV : To
be more precise, we consider the functional F : SV ! ½0,1� defined by

FðqÞ :¼ inffJa,b, dðq,m, lÞ : ðm, lÞ 2 MðXV ;R
dÞ �MðXVÞg, (31)

where Ja,b, d is defined at (17) and a, b, d > 0: We start by introducing the subset of SV

HV :¼ qt ¼ hðtÞdcðtÞ 2 SV : h,
ffiffiffi
h

p
2 AC2 0, 1½ �,

ffiffiffi
h

p
c 2 AC2ð 0, 1½ �;RdÞ

n o
: (32)

As already mentioned in the introduction, we denote by AC2 the set of absolutely
continuous functions with a.e. derivative in L2 (see [12, Section 1.1] for a pre-
cise definition).

Lemma 3.8. Let qt ¼ hðtÞdcðtÞ 2 HV , b 2 C1ðVÞ. Then hðb � cÞ 2 AC2½0, 1� with
ðhðtÞbðcðtÞÞÞ0 ¼ _hðtÞbðcðtÞÞ þ hðtÞrbðcðtÞÞ 	 _cðtÞ a:e: in ð0, 1Þ: (33)

Proof. By definition of HV , it follows that hc 2 AC2ð½0, 1�;RdÞ: For every 0 � t � s � 1

jhðtÞbðcðtÞÞ � hðsÞbðcðsÞÞj � LipðbÞ hðtÞjcðsÞ � cðtÞj þ jjbjj1jhðsÞ � hðtÞj
� LipðbÞ jhðsÞcðsÞ � hðtÞcðtÞj þ jjcjj1LipðbÞ jhðsÞ � hðtÞj þ jjbjj1jhðsÞ � hðtÞj:

Hence hðb � cÞ 2 AC2½0, 1�: From the regularity assumed, we immediately infer the

product rule at (33) for a.e. t 2 fh > 0g: Moreover, using that hðb � cÞ 2
AC2ð½0, 1�;RdÞ, we have ðhðtÞbðcðtÞÞÞ0 ¼ 0 almost everywhere in fh ¼ 0g ([43, Theorem
4.4]), so that (33) follows. w

Proposition 3.9. Let qt ¼ hðtÞdcðtÞ 2 SV and ðm, lÞ 2 MðXV ;R
dÞ �MðXVÞ be such

that Ja, b, dðq,m, lÞ < 1. Then the following properties hold:

(i) There exist v : XV ! Rd, g : XV ! R measurable maps such that m ¼
vq, l ¼ gq,

(ii) _cðtÞ ¼ vðt, cðtÞÞ for a.e. t 2 fh > 0g and _hðtÞ ¼ gðt, cðtÞÞhðtÞ for a.e. t 2 ð0, 1Þ,
(iii) The curve t 7!qt belongs to HV :

Moreover the energy Ja,b, d can be computed by

Ja,b, dðq,m, lÞ ¼
ð
fh>0g

b
2

j_cðtÞj2hðtÞ þ bd2

2
j _hðtÞj2
hðtÞ þ ahðtÞ dt: (34)

Conversely, let qt ¼ hðtÞdcðtÞ 2 HV and set m :¼ hðtÞ_cðtÞ dt � dcðtÞ, l :¼ _hðtÞ
dt � dcðtÞ. Then ðq,m, lÞ belongs to MV and solves the continuity equation (14) in XV.

Moreover Ja,b, dðq,m, lÞ < 1 and (34) holds.

Proof. Assume qt ¼ hðtÞdcðtÞ 2 SV , ðm, lÞ 2 MðXV ;R
dÞ �MðXVÞ and Ja,b, dðq,m, lÞ <

1: In particular, by definition of Ja, b, d, we have that ðq,m, lÞ solves (14). By Lemma
A.4 we deduce (i). We now show that the second ODE in (ii) holds. By Lemma 2.1 we
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have h 2 BVð0, 1Þ, with distributional derivative given by p#ðgqÞ, where p : XV !
ð0, 1Þ is the projection on the time coordinate. Thus, for all u 2 C1

c ð0, 1Þ,

p#ðgqÞðuÞ ¼
ð1
0

ð
V
uðtÞgðt, xÞ dqtðxÞ dt ¼

ð1
0
uðtÞgðt, cðtÞÞhðtÞ dt:

Since Ja,b, dðq,m, lÞ < 1, by (119) and continuity of h, we conclude that _hðtÞ ¼
gðt, cðtÞÞhðtÞ almost everywhere and h 2 AC2½0, 1�: We will now show that the first
ODE in (ii) holds. By testing (14) against uðt, xÞ :¼ aðtÞbðxÞ with a 2 C1

c ð0, 1Þ, b 2
C1ðVÞ, we obtain

d
dt

ð
V
bðxÞ dqtðxÞ ¼

ð
V

rbðxÞ 	 vðt, xÞ þ bðxÞgðt, xÞ� �
dqtðxÞ, for a:e: t 2 ð0, 1Þ,

since the right-hand side belongs to L2ð0, 1Þ, thanks to Jensen’s inequality, (119) and
the assumption Ja,b, dðq,m, lÞ < 1: In particular, choosing b as the coordinate func-

tions, we deduce that hc 2 AC2ð½0, 1�;RdÞ with ðhcÞ0ðtÞ ¼ hðtÞ½vðt, cðtÞÞ þ cðtÞgðt, cðtÞÞ�:
In particular c 2 AC2ðfh � cg;RdÞ for every c> 0, given that V is bounded. Consider

now the test function u 2 C1
c ððfh > 0g \ ð0, 1ÞÞ � VÞ: Using that _hðtÞ ¼ gðt, cðtÞÞhðtÞ

almost everywhere, it is easy to check that the equation @tqt þ div ðvqtÞ ¼ gqt can be
rewritten asð1

0

d
dt

hðtÞuðt, cðtÞÞð Þ dt þ
ð1
0

ruðt, cðtÞÞ 	 ðvðt, cðtÞÞ � _cðtÞÞ hðtÞ dt ¼ 0: (35)

Notice that the first integral in (35) vanishes, as u is compactly supported. Set
uðt, xÞ :¼ aðtÞxi with a 2 C1

c ðfh > 0g \ ð0, 1ÞÞ and xi coordinate function. Testing (35)
against u yields (ii). By (ii), Lemma A.4, and the energy bound, we also see that (34)

holds. We are left to show (iii). First we claim that
ffiffiffi
h

p
c 2 AC2ð½0, 1�;RdÞ: Indeed, for

e > 0 and u 2 C1
c ð0, 1Þ, an integration by parts yieldsð1

0
hðtÞcðtÞ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðtÞ þ e
p _uðtÞ dt ¼ �

ð
fh>0g

ðhðtÞcðtÞÞ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðtÞ þ e

p � hðtÞcðtÞ _hðtÞ
2ðhðtÞ þ eÞ3=2

" #
uðtÞ dt, (36)

where we used that hc 2 AC2ð½0, 1�;RdÞ, ðhcÞ0 ¼ 0 a.e. in fh ¼ 0g (see, e.g., [43,

Theorem 4.4]) and ðhcÞ0 ¼ _hcþ h _c a.e. in fh > 0g: By (34), continuity of h, bounded-
ness of V, we can invoke dominated convergence and pass to the limit as e ! 0 in (36),

thus concluding that
ffiffiffi
h

p
c 2 AC2ð½0, 1�;RdÞ with derivative given by 2�1vfh>0g _hc=

ffiffiffi
h

p þffiffiffi
h

p
_c: A similar argument shows that

ffiffiffi
h

p 2 AC2½0, 1� with derivative given by

2�1vfh>0g _h=
ffiffiffi
h

p
, concluding the proof of (iii) and of the direct implication.

Conversely, assume that qt ¼ hðtÞdcðtÞ 2 HV and set m :¼ hðtÞ _cðtÞ dt � dcðtÞ, l :¼
_hðtÞ dt � dcðtÞ: It is clear that ðq,m, lÞ 2 MV , as a consequence of the regularity on h

and c. We claim that ðq,m, lÞ solves (14) in XV. Fix b 2 C1ðVÞ: By Lemma 3.8 we have
that hðb � cÞ 2 AC2½0, 1� and (33) holds. Thus, for all a 2 C1

c ð0, 1Þ,ð
XV

a0ðtÞbðxÞ dqtðxÞ dt ¼ �
ð
XV

aðtÞbðxÞ dl�
ð
XV

aðtÞrbðxÞ 	 dm:
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Therefore, by employing a standard density argument, ðq,m, lÞ solves (14) in XV.

Finally, by the regularity of h, c and (119), we conclude that Ja,b, dðq,m, lÞ < 1 and
(34) holds. w

Proposition 3.10. Let F : ðSV , dÞ ! ½0,1� be the functional defined at (31). The
domain of F is given by HV, where we have

FðqÞ ¼ Fðc, hÞ ¼
ð
fh>0g

b
2

j _cðtÞj2hðtÞ þ bd2

2
j _hðtÞj2
hðtÞ þ ahðtÞ dt: (37)

Moreover F is lower semi-continuous and its sublevel sets are compact.

Proof. We start by showing that the domain of F is given by HV and that (37) holds.

Assume first that q
 2 SV and Fðq
Þ < 1: We claim that exists a pair ðm
, l
Þ 2
MðXV ;R

dÞ �MðXVÞ such that

Fðq
Þ ¼ Ja,b, dðq
,m
, l
Þ: (38)

Indeed the functional ðm, lÞ 7! Ja,b, dðq,m, lÞ is weak
 lower semi-continuous by
Lemma A.5. Invoking (120) and the direct method, we conclude that the infimum at
(31) is achieved, showing (38). Hence we can apply the direct implication of
Proposition 3.9 to ðq
,m
, l
Þ to obtain that q
 2 HV and that (37) holds. Conversely,

assume that q
t ¼ hðtÞdcðtÞ 2 HV and set m :¼ _cq
, l :¼ ð _h=hÞq
: By the converse
implication of Proposition 3.9 we know that ðq
,m, lÞ 2 MV and Ja,b, dðq
,m, lÞ < 1,

from which we infer Fðq
Þ < 1: Thus there exists a pair ðm
, l
Þ 2 MðXV ;R
dÞ �

MðXVÞ such that (38) holds. An application of the direct implication of Proposition 3.9
to ðq
,m
, l
Þ yields (37).
We now prove that F is lower semi-continuous with respect to d: To this end,

assume that dðqn, qÞ ! 0 as n ! 1: We claim that dt � qnt *

 dt � qt weakly
 in

MðXVÞ: By density, it is sufficient to prove convergence for test functions uðt, xÞ ¼
aðtÞbðxÞ with a 2 Ccð0, 1Þ, b 2 CðVÞ: Moreover, it is not restrictive to assume that
kbk1 � 1: For a fixed e > 0 there exists c 2 C1ðVÞ such that kck1 � 1 and kb� ck1 <

e: For t 2 ½0, 1� we haveð
V
bðxÞ dðqnt � qtÞ

����
���� � kb� ck1ðkqnt kMðVÞ þ kqtkMðVÞÞ þ

ð
V
cðxÞ dðqnt � qtÞ

����
����

� eðdðqn, 0Þ þ dðq, 0ÞÞ þ LipðcÞ dðqn, qÞ � eC þ LipðcÞ dðqn, qÞ

where the first term in the first line was estimated by (29), and the second one by (27).
Since the estimate does not depend on t, and e is arbitrary, we conclude that dt �
qnt *


 dt � qt: We now claim that F is weak
 lower semi-continuous in SV consid-
ered as a subset of MðXVÞ : Indeed assume that qn *
 q in MðXVÞ: Without loss of
generality we can assume that supn FðqnÞ < 1 along a subsequence, so that there exist

ðmn, lnÞ 2 MðXV ;R
dÞ �MðXVÞ such that, up to subsequences, FðqnÞ ¼

Ja,b, dðqn,mn, lnÞ: By (120) we infer the existence of a pair ðm, lÞ such that, up to subse-
quences, mn*
m, ln *
 l: We can now invoke weak
 lower semi-continuity of Ja, b, d
(Lemma A.5) to conclude weak
 lower semi-continuity of F: Since dt � qnt *


 dt � qt
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in MðXVÞ whenever dðqn, qÞ ! 0, we infer lower semi-continuity of F with respect
to d:
Finally, we show that the sublevel sets of F are compact with respect to d: As F �

0 and is positively one-homogeneous, it is enough to show that SF :¼ fq 2 SV :

FðqÞ � 1g is compact. Let qt ¼ hðtÞdcðtÞ 2 SF, so that, in particular, q 2 HV : In order
to show compactness of SF we first provide some preliminary estimates for the maps h
and hc: By (37) we immediately infer that jjhjj1 � 1=a: Let 0 � t1 � t2 � 1: There holds

hðt2Þ � hðt1Þ �
ðt2
t1

j _hðsÞjds ¼
ð
ðt1, t2Þ\fh>0g

j _hðsÞjds ¼
ð
ðt1, t2Þ\fh>0g

j _hðsÞjffiffiffiffiffiffiffiffi
hðsÞp ffiffiffiffiffiffiffiffi

hðsÞ
p

ds

�
ð
fh>0g

j _hðsÞj2
hðsÞ ds

 !1=2 ðt2
t1

hðsÞds
 !1=2

� 2

bd2

ðt2
t1

hðsÞds
 !1=2

,

(39)

where we used that _h ¼ 0 almost everywhere in fh ¼ 0g ([43, Theorem 4.4]), H€older’s
inequality, and the fact that FðqÞ � 1 in conjunction with (37). Since h � 0, choosing
t1 2 arg minh in the above estimate yields

khk1 � 2

bd2
khk1=21 þ khk1 � C, khck1 � CR, (40)

where R :¼ maxfjpj : p 2 Vg, C :¼ 2= bd2
ffiffiffi
a

p� �
þ 1=a: Recall that R < 1 as V is

bounded. Thus, by (39) and (40),

jhðt2Þ � hðt1Þj �
ðt2
t1

hðsÞds
 !1=2

� C jt1 � t2j1=2 for all 0 � t1 � t2 � 1: (41)

Moreover, by (39)–(40) we can estimate

ðt2
t1

j _hðsÞcðsÞjds � R
ðt2
t1

j _hðsÞjds � R
ðt2
t1

hðsÞds
 !1=2

� CRjt1 � t2j1=2:

and also

ðt2
t1

jhðsÞ _cðsÞjds �
ðt2
t1

hðsÞds
 !1=2 ð1

0
j _cðsÞj2hðsÞds

 !1=2

� 2C
b

jt1 � t2j1=2,

where we used H€older’s inequality, (37, 41), and FðqÞ � 1: By Lemma 3.8 and the
above estimates we thus infer

jhðt1Þcðt1Þ � hðt2Þcðt2Þj �
ðt2
t1

j _hðsÞcðsÞjdsþ
ðt2
t1

jhðsÞ_cðsÞjds � CðRþ 2b�1Þjt1 � t2j1=2

(42)

for every 0 � t1 � t2 � 1: Hence, considering a sequence fqngn in SF with qnt ¼
hnðtÞdcnðtÞ, by (40)–(42) we have that hn and hncn are equibounded and equicontinuous.
Therefore Ascoli–Arzel�a’s theorem implies that, up to subsequences, hn ! h and

cnhn ! f uniformly, where h 2 C½0, 1�, h � 0 and f 2 Cð½0, 1�;RdÞ: Define cðtÞ :¼
f ðtÞ=hðtÞ if h(t) > 0. By the uniform convergence hn ! h we have that cðtÞ 2 V for t 2
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fh > 0g: Therefore, by setting qt :¼ hðtÞdcðtÞ, Lemma 3.4 implies that q 2 SV : Since
hn ! h pointwise and cn ! c pointwise in fh > 0g, and since khnk1 � C, by domi-
nated convergence one immediately concludes that dt � qnt *


 dt � qt in MðXVÞ: We
can then invoke the weak
 lower semi-continuity of F to conclude that q 2 SF: We
are left to prove that qn ! q with respect to d: Fix e > 0: By the uniform convergences
hn ! h and hncn ! hc, there exists NðeÞ 2 N such that

jhnðtÞ � hðtÞj < e
R
, jhnðtÞcnðtÞ � hðtÞcðtÞj < e, for all n � NðeÞ, t 2 0, 1½ �:

(43)

Let t 2 fh � eg and n � NðeÞ: Using the above condition we infer

jcnðtÞ � cðtÞj � hnðtÞ
hðtÞ cnðtÞ � cðtÞ
����

����þ jcnðtÞj
hnðtÞ
hðtÞ � 1

����
���� < e

hðtÞ þ R
e

RhðtÞ � 2:

Set mnðtÞ :¼ minðhnðtÞ, hðtÞÞ: Then, by (29),

dFðqnt , qtÞ <
e
R
þmnðtÞ jcnðtÞ � cðtÞj

� e
R
þ jcnðtÞj jmnðtÞ � hnðtÞj þ jhnðtÞcnðtÞ � hðtÞcðtÞj þ jcðtÞj jmnðtÞ � hðtÞj

� e
R
þ 2RjhnðtÞ � hðtÞj þ jhnðtÞcnðtÞ � hðtÞcðtÞj < ðR�1 þ 3Þe:

Let now t 2 fh � eg: By triangle inequality and (29, 43)

dFðqnt , qtÞ � hnðtÞ þ hðtÞ � jhnðtÞ � hðtÞj þ 2hðtÞ � eðR�1 þ 2Þ:
In total we infer dðqn, qÞ < Ce for n � NðeÞ, concluding the proof. w

4. The main decomposition theorem

In this section we will prove the decomposition result in Theorem 1.1 anticipated in the
introduction. Specifically, the proof is presented in Sections 4.1, 4.3, while Section 4.2
contains auxiliary results which are instrumental to the proof.
For reader’s convenience we will recall a few notations and the statement of Theorem

1.1. Let d 2 N, d � 1 and V � Rd be the closure of a bounded domain of Rd: We
denote the time-space cylinder by XV :¼ ð0, 1Þ � V: We also recall the definitions of
CV and SV at (25)–(26). The set CV is equipped with the flat metric dF defined at
(27), while SV is equipped with the supremum distance d defined at (28). We remind
the reader that ðSV , dÞ is a complete metric space (Proposition 3.6). Moreover we will

also consider the set HV introduced at (32). Let v : XV ! Rd, g : XV ! R be given
measurable maps and consider the system of ODEs

_cðtÞ ¼ vðt, cðtÞÞ a:e: in fh > 0g, (O1)

_hðtÞ ¼ gðt, cðtÞÞhðtÞ a:e: in ð0, 1Þ: (O2)
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For v and g as above, we define the following subset of HV :

Hv, g
V :¼ qt ¼ hðtÞdcðtÞ 2 HV : ðh, cÞ satisfy ðO1Þ � ðO2Þ� 	

:

Also define the subset of SV

H1
V :¼ fðh, cÞ 2 SV : jjhjj1 ¼ 1g: (45)

Finally, define the subset of MþðSVÞ :

Mþ
1 ðSVÞ :¼ r 2 MþðSVÞ :

ð
SV

jjhjj1 drðc, hÞ < 1

 

,

where the notation drðc, hÞ is a shorthand for expressing that the integral is computed
on all curves qt ¼ hðtÞdcðtÞ 2 SV :

Definition 4.1. For a measure r 2 MþðSVÞ we define the set function qrt as

qrt ðEÞ :¼
ð
SV

hðtÞ vEðcðtÞÞ drðc, hÞ (46)

for all Borel sets E � V and t 2 ½0, 1�:
Remark 4.2. The map ðc, hÞ 7! hðtÞvEðcðtÞÞ at (46) is measurable in ðSV , dÞ by Lemma
3.7; therefore the integral is well defined, possibly unbounded. Assume in addition that
r 2 Mþ

1 ðSVÞ: It is easy to check that qrt at (46) belongs to MþðVÞ for all t 2 ½0, 1�:
Moreover, if u 2 L1qrt ðVÞ for some fixed t 2 ½0, 1�, then the map ðc, hÞ 7! hðtÞuðcðtÞÞ
belongs to L1rðSVÞ andð

V
uðxÞ dqrt ðxÞ ¼

ð
SV

hðtÞ uðcðtÞÞ drðc, hÞ: (47)

This fact can be shown by mimicking the proof of [44, Theorem 3.6.1], in conjunc-
tion with Lemma 3.7. Similarly, if u : V ! R [ f61g is measurable and the map
ðc, hÞ 7! hðtÞuðcðtÞÞ belongs to L1rðSVÞ, then u 2 L1qrt ðVÞ and (47) holds.

We are now ready to state the main decomposition result of the article.

Theorem 4.3. Assume that X � Rd is the closure of a bounded domain, with
d 2 N, d � 1. Let qt 2 Cwð½0, 1�;MþðXÞÞ be a measure solution of the continuity equa-

tion @tqt þ divðvqtÞ ¼ gqt in XX in the sense of (14), for some measurable maps v :

XX ! Rd, g : XX ! R satisfyingð1
0

ð
X
jvðt, xÞj2 þ jgðt, xÞj2 dqtðxÞ dt < 1: (48)

Then there exists a measure r 2 Mþ
1 ðSXÞ concentrated on Hv, g

X \H1
X and such that

qt ¼ qrt for all t 2 ½0, 1�, where qrt is defined at (46), that is,ð
X
uðxÞ dqtðxÞ ¼

ð
SX

hðtÞuðcðtÞÞ drðc, hÞ for all u 2 CðXÞ: (49)
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Conversely, assume that r 2 MþðSXÞ is concentrated on Hv, g
X and satisfies the boundð1

0

ð
SX

hðtÞ 1þ jvðt, cðtÞÞj þ jgðt, cðtÞÞj� �
drðc, hÞ dt < 1: (50)

Then r belongs to Mþ
1 ðSXÞ and qrt defined by (46) belongs to Cwð½0, 1�;MþðXÞÞ and

satisfies @tqrt þ divðvqrt Þ ¼ gqrt in XX:

Remark 4.4. Condition (50) is natural in the following sense. If qt satisfies the assump-
tions of Theorem 4.3, then in particular the map uðt, xÞ :¼ 1þ jvðt, xÞj þ jgðt, xÞj
belongs to L1qrt ðXÞ for a.e. t 2 ð0, 1Þ, thanks to (48, 49) and narrow continuity of qt.

Therefore, by applying Remark 4.2, we see that the measure r representing qt satis-
fies (50).

4.1. Proof of the converse implication of Theorem 4.3

We now prove the converse statement in Theorem 4.3. To this end, assume that r 2
MþðSXÞ is concentrated on Hv, g

X and (50) holds. Let us first show that r 2 Mþ
1 ðSXÞ:

Let qt ¼ hðtÞdcðtÞ 2 SX and t
 2 arg min h, which exists by continuity of h (see

Lemma 3.4). Using the definition of Hv, g
X we can estimate

hðtÞ ¼ hðt
Þ þ
ðt
t

_hðsÞ ds �

ð1
0
hðsÞ dsþ

ðt
t

gðs, cðsÞÞhðsÞ ds r� a:e: in SX,

for all t 2 ½0, 1�: In particular,

khk1 �
ð1
0
hðtÞð1þ jgðt, cðtÞÞjÞ dt r� a:e: in SX, (51)

concluding that r 2 Mþ
1 ðSXÞ, thanks to (50). We now show that the curve t 7!qrt

defined by (46) belongs to Cwð½0, 1�;MþðXÞÞ: First, Remark 4.2 implies that qrt 2
MþðXÞ for all t 2 ½0, 1�: For the narrow continuity, fix u 2 CðXÞ and notice that by
definition the map t 7! hðtÞuðcðtÞÞ is continuous for all qt ¼ hðtÞdcðtÞ 2 SX: Since r 2
Mþ

1 ðSXÞ we can apply dominated convergence and conclude that also
t 7! Ð

XuðxÞ dqrt ðxÞ is continuous. We are left to show that qr solves the continuity
equation @tqrt þ div ðvqrt Þ ¼ gqrt in XX: To this end, fix b 2 C1ðXÞ: By Lemma 3.8 the
map t 7! hðtÞbðcðtÞÞ is differentiable almost everywhere and (33) holds. Therefore, for
all 0 � s � t � 1 the following holdsð

X
b dqrt �

ð
X
b dqrs ¼

ð
SX

ðt
s

d
ds

hðsÞbðcðsÞÞ½ � ds drðc, hÞ

¼
ð
SX

ðt
s

_hðsÞbðcðsÞÞ þ hðsÞrbðcðsÞÞ 	 _cðsÞ ds drðc, hÞ

¼
ðt
s

ð
SX

hðsÞ bðcðsÞÞgðs, cðsÞÞ þ rbðcðsÞÞ 	 vðs, cðsÞÞ� �
drðc, hÞ ds,
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where in the last equality we used that r is concentrated on Hv, g
X and applied Fubini’s

Theorem, which we are allowed to do as the integrand is absolutely integrable by (50),
triangle inequality, and the fact that b 2 C1ðXÞ: In particular, the map
t 7! Ð

XbðxÞ dqrt ðxÞ is absolutely continuous with almost everywhere derivative given by

d
dt

ð
X
bðxÞ dqrt ðxÞ ¼

ð
SX

hðtÞ bðcðtÞÞgðt, cðtÞÞ þ rbðcðtÞÞ 	 vðt, cðtÞÞ� �
drðc, hÞ

¼
ð
X
bðxÞgðt, xÞ þ rbðxÞ 	 vðt, xÞ dqrt ðxÞ:

(52)

The second equality in (52) follows because v and g are measurable and henceWðt, xÞ :¼
bðxÞgðt, xÞ þ rbðxÞ 	 vðt, xÞ is measurable in X for a.e. t fixed. From (50) we have that
ðc, hÞ 7! hðtÞWðt, cðtÞÞ belongs to L1rðSXÞ for a.e. t, and hence by Remark 4.2 we can apply
(47) toWðt, 	Þ and obtain the second equality in (52). Identity (52) implies that qrt solves the
continuity equation in XX in the sense of (14), for all u 2 C1

c ðXXÞ of the form uðt, xÞ ¼
aðtÞbðxÞ for a 2 C1

c ð0, 1Þ, b 2 C1ðXÞ, and hence, by density, for all the elements of C1
c ðXXÞ:

4.2. Regularized solutions of the continuity equation

Before starting the proof of the direct statement in Theorem 4.3, we provide some
smoothing arguments which will be employed to construct the measure r. To this end,

let X � Rd, d 2 N, d � 1 be the closure of a bounded domain. Let v : XX ! Rd, g :

XX ! R be given measurable maps, and qt 2 Cwð½0, 1�;MþðXÞÞ be such that @tqt þ
divðvqtÞ ¼ gqt in XX in the sense of (14). We extend v, g to zero to the space ð0, 1Þ �
Rd: Similarly extend qt to zero so that qt 2 MþðRdÞ: Notice that the extensions

ðq, v, gÞ satisfy the continuity equation in ð0, 1Þ � Rd, due to the no-flux boundary con-

ditions. For x 2 Rd, r> 0 let BrðxÞ :¼ fx 2 Rd : jxj < rg and let n 2 C1ðRdÞ be such

that n � 0, supp n � B1ð0Þ and
Ð
Rdn dx ¼ 1: For every 0 < e < 1 and x 2 Rd set neðxÞ :

¼ e�dnðxe�1Þ: Note that supp ne � Beð0Þ: Let R> 0 be such that

fx 2 Rd : distðx,XÞ � 2g � V , V :¼ BRð0Þ, (53)

and define

qet :¼ ðqt 
 neÞ þ ge, ge :¼ e vV , vet :¼
ðvtqtÞ 
 ne

qet
, get :¼

ðgtqtÞ 
 ne
qet

, (54)

where vet and get are set to be zero in the region where qetðxÞ ¼ 0, i.e., in ð0, 1Þ � ðRd n
VÞ: Here, with a little abuse of notation, we denote vt ¼ vðt, 	Þ, vet ¼ veðt, 	Þ,
gt ¼ gðt, 	Þ, get ¼ geðt, 	Þ:
Lemma 4.5. Let qt 2 Cwð½0, 1�;MþðXÞÞ and v : XX ! Rd, g : XX ! Rd be measurable.
Suppose that @tqt þ div ðvqtÞ ¼ gqt in XX in the sense of (14) and that (48) holds. Let
ðqet , vet , get Þ be defined as in (54). Then ðqet dx, vet , g

e
t Þ is a solution to @tqet dxþ

divðvetqet dxÞ ¼ getq
e
t dx in ð0, 1Þ � Rd and qet dx ! qt narrowly in MðVÞ as e ! 0, for all

t 2 ½0, 1�. Moreover ve and ge satisfy (18) and (20), respectively. Finally, for every t 2 ½0, 1�
there holds
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ð
Rd
jveðt, xÞj2 qetðxÞ dx �

ð
X
jvðt, xÞj2 dqtðxÞ,ð

Rd
jgeðt, xÞj2 qetðxÞ dx �

ð
X
jgðt, xÞj2 dqtðxÞ:

(55)

Proof. By the interplay between weak differentiation and mollification, it is immediate

to check that ðqet dx, vet , g
e
t Þ solves the continuity equation in ð0, 1Þ � Rd for all 0 < e <

1: The fact that qet dx ! qt narrowly is an immediate consequence of the properties of
convolutions and of the convergence ge ! 0 as e ! 0: We now prove that ve satisfies

(18). Notice that by definition vetðxÞ ¼ 0 in Rd n ðXþ B1ð0ÞÞ for every t 2 ½0, 1�:
Moreover qet � e in V for all t. Thereforeð1

0
sup
x2Rd

jveðt, xÞj dt � 1
e

ð1
0

sup
x2XþB1ð0Þ

jðvtqtÞ 
 neðxÞj dt �
1

edþ1

ð1
0

ð
Rd
jvtðyÞjdqtðyÞ dt < 1

by (48). By direct calculation rvet ¼ ½ððvtqtÞ 
 rneÞqet � ððvtqtÞ 
 neÞðqt 
 rneÞ�=ðqetÞ2,
so that

jrvet j � e�1jðvtqtÞ 
 rnej þ e�2jðvtqtÞ 
 neÞjjqt 
 rnej
� e�1krnek1 þ e�2knek1krnek1qtðXÞ
� �ð

X
jvtðxÞj dqtðxÞ:

As t 7! qtðXÞ is continuous, the quantity CðqÞ :¼ maxtjqtðXÞj is well defined.
Thereforeð1

0
Lipðveðt, 	Þ,RdÞ dt ¼

ð1
0
sup
x2Rd

jrvetðxÞjdt � CðeÞCðqÞ
ð1
0

ð
X
vtðxÞdqtðxÞdt < 1,

where the last term is finite by (48). By similar computations and by (48), one can eas-
ily show that ge satisfies (20). We now prove the first estimate in (55). Fix t 2 ½0, 1�: If
qt ¼ 0, there is nothing to prove. Otherwise we haveð

Rd
jveðt, xÞj2 qetðxÞ dx ¼

ð
XþBeð0Þ

jðvtqtÞ 
 nej2
qt 
 ne þ e

dx �
ð
XþBeð0Þ

jðvtqtÞ 
 nej2
qt 
 ne

dx

¼
ð
Rd

ðvtqtÞ 
 ne
qt 
 ne

����
����
2

ðqt 
 neÞ dx �
ð
Rd

vðt, xÞj j2 dqtðxÞ,

where in the last inequality we used Proposition A.7. Since vðt, 	Þ vanishes in Rd n X,
we conclude the first estimate in (55). A similar argument yields the second estimate
in (55). w

Remark 4.6. Notice that there exist nontrivial qt 2 Cwð½0, 1�;MþðXÞÞ which solve the con-
tinuity equation (14) for v and g that satisfy the bound (48), but such that qt ¼ 0 on an

open interval in ½0, 1�: For example, consider X :¼ ½0, 1�2, vðt, xÞ :¼ ð0, 0Þ, gðt, xÞ :¼
�ðt � 1=2Þ�2vð0, 1=2ÞðtÞ, cðtÞ :¼ ð1=2, 1=2Þ, hðtÞ :¼ exp ð2� 2ð1� 2tÞ�1Þvð0, 1=2ÞðtÞ: It is

easy to check that qt :¼ hðtÞdcðtÞ belongs to Cwð½0, 1�;MþðXÞÞ, solves (14) and (48) holds.
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The above is the reason why we add ge to the definition of qet in (54), since other-
wise, we could have qt 
 n ¼ 0 for some t, independently on the chosen mollifier. We
remark that the addition of ge is the main difference to the smoothing results [12,
Lemma 8.1.9] and [10, Lemma 3.10], where narrowly continuous measure solutions qt
to (14) are smoothed via qt 
 n with n being a mollifier.

4.3. Proof of the direct implication of Theorem 4.3

We divide the proof of the direct implication of Theorem 4.3 into two steps: First we con-
struct a measure r 2 MþðSXÞ satisfying (49); Then we prove that r is concentrated
on Hv, g

X :

Step 1 - Construction of the measure r.

Let V :¼ BRð0Þ, with R> 0 as in (53). For each 0 < e < 1 define qet , v
e
t , g

e
t according

to (54). By Lemma 4.5 the triple ðqet dx, vet , g
e
t Þ solves @tqet dx þ div ðvetqet dxÞ ¼ getq

e
t dx

in ð0, 1Þ � Rd and satisfies the bounds (18, 20, 55). As (48) holds, we can then apply
Proposition 2.4 and obtain the representation

qet dx ¼ ðXe
ð	ÞðtÞÞ# Re

ð	ÞðtÞ dx
h i

, Re
xðtÞ ¼ qe0ðxÞ e

Ð t
0
geðs,Xe

xðsÞÞds, (56)

where Xe
x and Re

x are the unique solutions to the ODEs system

_X
e
xðtÞ ¼ veðt,Xe

xðtÞÞ,
Xe
xð0Þ ¼ x,

_R
e
xðtÞ ¼ geðt,Xe

xðtÞÞ Re
xðtÞ,

Re
xð0Þ ¼ qe0ðxÞ,

((
(57)

for all t 2 ½0, 1�: We define re by duality asð
SV

uðc, hÞ dreðc, hÞ :¼
ð
V
u Xe

x,
Re
xÐ 1

0 R
e
xðtÞ dt

 ! ð1
0
Re
xðtÞ dt

 !
dx, (58)

for all u 2 CbðSVÞ: Here we adopted the notation uðc, hÞ to denote that u is evaluated
on the curve t 7! hðtÞdcðtÞ: We claim that re 2 MþðSVÞ: First, we show that re is well-
defined. Indeed, notice that qet � e in V by construction. Hence by (56) and (20) we
estimate ð1

0
Re
xðtÞ dt ¼ qe0ðxÞ

ð1
0
e
Ð t

0
geðs,Xe

xðsÞÞds dt � CðeÞqe0ðxÞ � CðeÞe > 0, (59)

for all x 2 V , where CðeÞ > 0 is a constant depending only on e. Also, by construction,

veðt, xÞ ¼ 0 for x 2 Rd n Xþ B1ð0Þ and t 2 ½0, 1�: Therefore from (57) we deduce that
Xe
xðtÞ 2 V for each initial datum x 2 V and 0 < e < 1: Thanks to Lemma 3.4, we then

obtain that the curve t 7! ðÐ 10 Re
xðsÞ dsÞ�1Re

xðtÞdXe
xðtÞ belongs to SV for all x 2 V:

Moreover the map

x 7! t 7!
ð1
0
Re
xðsÞ ds

 !�1

Re
xðtÞdXe

xðtÞ

0
@

1
A
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is continuous from Rd to ðSV , dÞ, which is a consequence of the stability of solutions

to (57) with respect to the initial datum x 2 Rd, and of the fact that uniform conver-
gence of weights and curves implies d-convergence of measures in SV , thanks to (29).
This proves that the definition at (58) is well posed. We now estimate the total variation
of re: By (54) and standard properties of convolutions we have that kqet dxkMðVÞ �
kqtkMðXÞ þ ejVj for all t 2 ½0, 1�, e 2 ð0, 1Þ: Hence, by testing re against u  1 and

using (56) we infer

krekMðSV Þ �
ð
V

ð1
0
Re
xðtÞ dt dx ¼

ð1
0
kqet dxkMðVÞ dt � kqkMðXXÞ þ ejVj: (60)

Moreover re � 0 by (59), showing that re 2 MþðSVÞ: We also remark that re is

concentrated on HV , given that the curve t 7! ðÐ 10 Re
xðsÞ dsÞ�1Re

xðtÞdXe
xðtÞ belongs to HV

for each x 2 V , thanks to the regularity of solutions to (57).
We now show that the family re is tight as 0 < e < 1, by proving that

sup
0<e<1

ð
SV

Fðc, hÞ dreðc, hÞ < 1, (61)

where F : ðSV , dÞ ! ½0,1� is the functional defined at (31): Indeed assume that (61)
holds; by Proposition 3.10 we know that F is d-measurable and its sublevels are com-
pact. Moreover ðSV , dÞ is a complete separable metric space (see Proposition 3.6). Thus
we can apply Proposition A.1 to conclude tightness for re: Let us proceed with the
proof of (61). First notice that (58) can be tested against F, as re � 0 and F is lower
semi-continuous with respect to the metric d (Proposition 3.10). Since re is concen-
trated on HV , by formula (37) and one-homogeneity of F with respect to h we haveð

SV

Fðc, hÞ dreðc, hÞ ¼
ð
SV

ð
fh>0g

b
2

j_cðtÞj2hðtÞ þ bd2

2
j _hðtÞj2
hðtÞ þ ahðtÞ dt dreðc, hÞ:

(62)

By (56, 57) and (55) we estimateð
SV

ð1
0
j_cðtÞj2hðtÞ dt dre ¼

ð
V

ð1
0
j _X e

xðtÞj2 Re
xðtÞ dt dx ¼

ð1
0

ð
V
jveðt,Xe

xðtÞÞj2 Re
xðtÞ dx dt

¼
ð1
0

ð
Rd
jveðt, xÞj2 qetðxÞ dx dt �

ð1
0

ð
X
jvðt, xÞj2 dqtðxÞ dt,

and, in a similar fashion,ð
SV

ð
fh>0g

j _hðtÞj2
hðtÞ dt dre ¼

ð
V

ð
fh>0g

j _Re
xðtÞj2
Re
xðtÞ

dt dx ¼
ð
fh>0g

ð
V
jgeðt,Xe

xðtÞÞj2 Re
xðtÞ dx dt

¼
ð
fh>0g

ð
Rd
jgeðt, xÞj2 qetðxÞ dx dt �

ð1
0

ð
X
jgðt, xÞj2 dqtðxÞ dt:
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Finally, by (60),ð
SV

ð1
0
hðtÞ dt dre ¼

ð
V

ð1
0
Re
xðtÞ dt dx � kqkMðXXÞ þ ejVj: (63)

From the above estimates, and (48, 62), we conclude (61), proving that frege is tight.
Since frege is uniformly bounded by (60), we can apply the compactness result [44,
Theorem 8.6.2] to infer the existence of r 2 MþðSVÞ such that re ! r narrowly as
e ! 0: In particular, as F is d-lower semi-continuous, F � 0 and (61) holds, we can
apply (115) in Proposition A.2 to infer

Ð
SV

Fðc, hÞ drðc, hÞ < 1: From the latter, we

see that r is concentrated on the domain of F, that is, on the set HV

(Proposition 3.10).
We now prove that r satisfies the representation formula (49). To this end, let u 2

CcðXVÞ and define the map Wðc, hÞ :¼ Ð 10 hðtÞuðt, cðtÞÞ dt for q ¼ hdc 2 SV : We claim
that re according to (58) can be tested against W : indeed, first notice that W is d-con-
tinuous. This is because the map ðc, hÞ 7! hðtÞuðt, cðtÞÞ is continuous for t fixed, by
Lemma 3.7; if dðqn, qÞ ! 0, then khn � hk1 � dðqn, qÞ by (29), so that fhngn is uni-
formly bounded; thus by dominated convergence we conclude continuity for W, since
u is bounded, and since uðt, cnðtÞÞ ! uðt, cðtÞÞ when h(t) > 0. Moreover, thanks to
(63), we can estimate

ð
V
W Xe

x,
Re
xÐ 1

0 R
e
xðtÞ dt

 !������
������
ð1
0
Re
xðtÞ dt

 !
dx � kuk1ðkqkMðXXÞ þ ejVjÞ, (64)

showing that the right-hand side of (58) tested against jWj is finite. The fact that re can
be tested against W follows immediately. By (58), the latter yieldsð

SV

Wðc, hÞ dreðc, hÞ ¼
ð
V

ð1
0
uðt,Xe

xðtÞÞRe
xðtÞ dt dx ¼

ð1
0

ð
V
uðt, xÞ qetðxÞ dx dt, (65)

where in the last equality we used (56). We want to pass to the limit as e ! 0 in (65).
Notice that the right-hand side passes to the limit since dt � qet dx*
 dt � qt in
MðXVÞ : Indeed qet dx ! qt narrowly in MðVÞ for all t (Lemma 4.5) and qet dx is uni-
formly bounded in MðVÞ, as previously shown. Concerning the left-hand side of (65),
we first claim that the map jWj is uniformly integrable with respect to re according to
definition (116). To this end, for k> 0 define Ak :¼ fðc, hÞ 2 SV : jWðc, hÞj � kg: By
the definition of re and by (63) we getð

Ak

Wðc, hÞj j dreðc, hÞ � 1
k

ð
SV

jWðc, hÞj2 dreðc, hÞ � kuk21
k

ð
V

ð1
0
Re
xðtÞ dt dx

� kuk21
k

ðkqkMðXXÞ þ jVjÞ,

concluding uniform integrability for jWj: Therefore we can invoke (117) and pass to the
limit as e ! 0 in the left-hand side of (65). After one application of Fubini’s Theorem
we obtain
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ð1
0

ð
SV

hðtÞuðt, cðtÞÞ drðc, hÞ dt ¼
ð1
0

ð
V
uðt, xÞ dqtðxÞ dt, for all u 2 CcðXVÞ:

(66)

We claim that (49) descends from (66). In order to show it, we first derive a
pointwise in time version of (66). We start by showing that HðtÞ :¼Ð
SV

hðtÞuðt, cðtÞÞ drðc, hÞ is continuous for all u 2 CcðXVÞ fixed. Indeed, the map

t 7! hðtÞuðt, cðtÞÞ is continuous for each fixed ðc, hÞ 2 SV , by Lemma 3.4. Moreover,
by recalling that re is concentrated on solutions of (57), and by arguing as in the proof
of (51), we can show that for all e it holds thatð

SV

khk1 dreðc, hÞ �
ð
SV

ð1
0
hðtÞð1þ jgeðt, cðtÞÞjÞ dt dreðc, hÞ:

Therefore, by employing (55, 56, 58, 63), and setting C :¼ kqkMðXXÞ þ jVj, we obtainð
SV

khk1 dreðc, hÞ � C þ
ð
V

ð1
0
Re
xðtÞjgeðt,Xe

xðtÞÞj dt dx ¼ C þ
ð1
0

ð
V
jgeðt, xÞj qetðxÞ dx dt

� C þ
ð1
0
kqet dxkMðVÞ dt

 !1=2 Ð 1
0

Ð
V jgeðt, xÞj2 qetðxÞ dx dt

� �1=2

� C þ C1=2

ð1
0

ð
V
jgðt, xÞj2 dqtðxÞ dt

 !1=2

,

and the last term is bounded by assumption (48). Finally, the map ðc, hÞ 2 SV 7! khk1
is d-continuous and non-negative, therefore by the narrow convergence re ! r and
(115) we infer

Ð
SV

khk1 drðc, hÞ < 1: By dominated convergence we then conclude

continuity of H. As a byproduct of this argument, we have additionally shown that r 2
Mþ

1 ðSVÞ: Notice that also the map t 7! Ð
Vuðt, xÞ dqtðxÞ is continuous, as a conse-

quence of the narrow continuity of t 7! qt: Testing (66) against uðt, xÞ :¼ aðtÞbðxÞ for
a 2 Ccð0, 1Þ, b 2 CðVÞ, yieldsð

SV

hðtÞbðcðtÞÞ drðc, hÞ ¼
ð
V
bðxÞ dqtðxÞ, for all b 2 CðVÞ, t 2 0, 1½ �: (67)

Fix t 2 ½0, 1� and b 2 CðVÞ such that b¼ 0 in X and b> 0 in V n X: Recalling that qt
is concentrated on X, from (67) we obtain a set Et � SV such that rðSV n EtÞ ¼ 0 and
hðtÞbðcðtÞÞ ¼ 0 for all ðc, hÞ 2 Et: In particular, by definition of b,

cðtÞ 2 X if hðtÞ > 0, (68)

for all ðc, hÞ 2 Et: Let Q � ½0, 1� be a dense countable subset and define E :¼ \t2QEt, so
that rðSV n EÞ ¼ 0 and (68) holds for all ðc, hÞ 2 E, t 2 Q, that is, cðfh > 0g \ QÞ � X
for r-a.e. ðc, hÞ 2 SV : By density of Q and continuity of h, c we deduce cðfh > 0gÞ �
X for r-a.e. ðc, hÞ 2 SV , from which we conclude concentration of r on SX: Since we
already showed that r is concentrated on HV we also infer that r is concentrated on
HX: It is immediate to check that SX is d-closed in SV , and hence d-measurable.
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Therefore we can restrict r to SX to obtain a measure in Mþ
1 ðSXÞ satisfying (49),

as claimed.

Step 2 – r is concentrated on Hv, g
X :

So far we have constructed a measure r 2 Mþ
1 ðSXÞ concentrated on HX and satisfying

(49). We now prove that r is concentrated on Hv, g
X , i.e., that the ODEs (O1)-(O2) hold

for r-a.e. ðc, hÞ in HX: This claim follows from two preliminary estimates, whose proof

we postpone for a moment: For �v 2 CcðXX;R
dÞ, �g 2 CcðXXÞ and any u 2 C1

c ð0, 1Þ, there
exists a constant C> 0 depending only on u and on the radius of V, such thatð

SX

ð1
0
hðtÞu0ðtÞ þ hðtÞ �gðt, cðtÞÞuðtÞ dt

����
���� dr � C

ð
XX

j�g � gj dqt dt, (69)

ð
SX

ð1
0
hðtÞcðtÞ 	 u0ðtÞ þW�v , �g ðt, c, hÞ 	 uðtÞ dt

����
����dr � C

ð
XX

j�v � vj þ j�g � gj dqt dt,

(70)

where W�v , �g ðt, c, hÞ :¼ hðtÞcðtÞ �gðt, cðtÞÞ þ hðtÞ �vðt, cðtÞÞ: We start by showing (O2). By
the energy bound (48) and H€older’s inequality, we can find two sequences fvngn in

CcðXX;R
dÞ and fgngn in CcðXXÞ converging to v and g in L1qðXXÞ, respectively. By (49)

and Remark 4.2 we getð
SX

ð1
0
hðtÞðgðt, cðtÞÞ � gnðt, cðtÞÞÞuðtÞ dt

����
���� dr � kuk1

ð
XX

jgn � gj dqt dt: (71)

Hence by (69) with �g :¼ gn, (71), and triangle inequality we getð
SX

ð1
0
hðtÞu0ðtÞ þ hðtÞgðt, cðtÞÞuðtÞ dt

����
���� dr � C

ð
XX

jgn � gj dqt dt ! 0,

as n ! 1, for every test function u 2 C1
c ðXXÞ: Thereforeð1

0
hðtÞu0ðtÞ þ hðtÞgðt, cðtÞÞuðtÞ dt ¼ 0 for all ðc, hÞ 2 Eu, (72)

where rðSX n EuÞ ¼ 0 and Eu depends on u: Let D � C1
c ð0, 1Þ be a dense countable set and

E :¼ \u2DEu, so that rðSX n EÞ ¼ 0 and (72) holds for all u 2 D and ðc, hÞ 2 E: Consider
uðt, xÞ :¼ 1þ jvðt, xÞj þ jgðt, xÞj and notice that uðt, 	Þ 2 L1qtðXÞ for a.e. t 2 ð0, 1Þ,
thanks to (48) and narrow continuity of qt. Hence, by Remark 4.2 applied to u, we conclude
that r satisfies (50). Therefore there exists a set F with rðSX n FÞ ¼ 0 and such thatð1

0
hðtÞð1þ jvðt, cðtÞÞj þ jgðt, cðtÞÞjÞ dt < 1 (73)

for all ðc, hÞ 2 F: Consider now u 2 C1
c ð0, 1Þ and un 2 D such that un ! u in C1

c ð0, 1Þ:
As a consequence of (72), for any ðc, hÞ in E \ F we haveð1

0
hðtÞu0ðtÞ þ hðtÞgðt, cðtÞÞuðtÞ dt

����
���� � kun � ukC1

ð1
0
hðtÞð1þ jgðt, cðtÞÞjÞ dt ! 0,
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as n ! 1, so that (72) holds for all u 2 C1
c ð0, 1Þ and ðc, hÞ 2 E \ F: Therefore

_h ¼ gðt, cðtÞÞhðtÞ (74)

in the sense of distributions for r-a.e. ðc, hÞ 2 SX: Since r is concentrated on HX, the
distributional formulation of (74) coincides with the a.e. one, so that (O2) holds. We
now prove (O1), which follows by similar arguments. First, by (49) and Remark 4.2, we
estimate ð

SX

����
ð1
0
ðWv, g ðt, c, hÞ �Wvn, gnðt, c, hÞÞ 	 uðtÞ dt

���� dr
� kuk1maxf1,Rg

ð
XX

jvn � vj þ jgn � gj dqt dt,

where R is as in (53). By applying (70) to �v :¼ vn, �g :¼ gn and by triangle inequality we
inferð
SX

ð1
0
hðtÞcðtÞ 	 u0ðtÞ þWv, gðt, c, hÞ 	 uðtÞ dt

����
����dr � C

ð
XX

jvn � vj þ jgn � gj dqt dt ! 0,

as n ! 1, for all u 2 C1
c ðð0, 1Þ;RdÞ: By reasoning as above, we can find a countable

dense subset ~D of C1
c ðð0, 1Þ;RdÞ and a set ~E with rðSX n ~EÞ ¼ 0 such thatð1

0
hðtÞcðtÞ 	 u0ðtÞ þWv, gðt, c, hÞ 	 uðtÞ dt ¼ 0 (75)

for all u 2 ~D, ðc, hÞ 2 ~E: By (75) and (73), we conclude that

ðhðtÞcðtÞÞ0 ¼ hðtÞcðtÞgðt, cðtÞÞ þ hðtÞvðt, cðtÞÞ
in the sense of distributions for all ðc, hÞ 2 ~E \ F: Recall that (74) holds in the sense of

distributions in E \ F: Moreover r is concentrated on HX, whose elements satisfy hc 2
AC2ð½0, 1�;RdÞ and the product rule holds (see Lemma 3.8). Hence we can find a set ~F
such that rðSX n ~FÞ ¼ 0, and that (O2) and

hðtÞ _cðtÞ ¼ hðtÞvðt, cðtÞÞ for a:e: t 2 ð0, 1Þ,
hold for r-a.e. ðc, hÞ 2 HX: This establishes (O1).
We are left to show (69)–(70). We start by proving (69). First notice that the map

/ðc, hÞ :¼
ð1
0
hðtÞu0ðtÞ þ hðtÞ�gðt, cðtÞÞuðtÞ dt

����
���� (76)

in the left-hand side of (69) is d-continuous: indeed, if dðqn, qÞ ! 0, from (29) we have
khn � hk1 � dðqn, qÞ, so that hn is uniformly bounded; by Lemma 3.7 it follows that
ðc, hÞ 7! hðtÞu0ðtÞ þ hðtÞ�gðt, cðtÞÞuðtÞ is d-continuous for every t; thus continuity of /
follows by dominated convergence. Extend �g to zero outside of X and set �g e :¼
½ð�gqtÞ 
 ne�=qet , with ne as in (54). As / is continuous, we can test (58) against /, inte-
grate by parts, and use (56)–(57) to get
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ð
SV

����
ð1
0
1hðtÞu0ðtÞ þ hðtÞ�gðt, cðtÞÞuðtÞ dt

���� dreðc, hÞ
� kuk1

ð
XV

�g � gej j qet dx dt � kuk1
ð
XV

�g e � gej j þ �g e � �gj j qet dx dt:

(77)

We then estimate each term separately. First, recalling (54),ð
XV

�g e � gej j qet dx dt ¼
ð1
0

ð
XþBeð0Þ

ððg � �gÞqtÞ 
 nej j dx dt �
ð
XX

g � �gj j dqt dt, (78)

by standard estimates on convolutions of measures. Second,Ð
XV
j�g e � �g j qet dx dt ¼ ÐXV

jð�gqtÞ 
 ne � �gðqt 
 ne þ eÞj dx dt
� ÐXV

jð�gqtÞ 
 ne � �gðqt 
 neÞj dx dt þ e
Ð
XV
j�g j dx dt:

(79)

The second term in (79) converges to zero as e ! 0: Moreover, by the uniform con-

tinuity of �g , for each f > 0 there exists ~f > 0 such that j�gðt, yÞ � �gðt, xÞj < f whenever

jx� yj � ~f, t 2 ½0, 1�: Therefore, for all e < ~f and x 2 V we have

jð�gqtÞ 
 ne � �gðqt 
 neÞjðxÞ �
ð
BeðxÞ

j�gðt, yÞ � �gðt, xÞjneðx � yÞ dqtðyÞ � f ðqt 
 neÞðxÞ,

from which we inferð
XV

jð�gqtÞ 
 ne � �gðqt 
 neÞj dx dt � f
ð
XV

qt 
 ne dx dt � fkqkMðXXÞ:

As f is arbitrary, by (79) we conclude that
Ð
XV
j�g e � �g j qet dx dt ! 0: Thus, from (77)

to (78)

limsup
e!0

ð
SV

ð1
0
hðtÞu0ðtÞ þ hðtÞ�gðt, cðtÞÞuðtÞ dt

����
���� dreðc, hÞ � kuk1

ð
XX

jg � �g j dqt dt:

As re ! r narrowly, r is concentrated on SX, / at (76) is continuous and non-
negative, by (115) we conclude (69). We now show (70). First notice that the function
in the left integral of (70) is d-continuous, a fact that can be proven similarly to (76).
Set C :¼ ðRþ 1Þkuk1, with R as in (53). Similarly to the above proof of (69), we can
integrate by parts and make use of (56)–(58), and estimateð
SV

ð1
0
hðtÞcðtÞ 	 u0ðtÞ þW�v ,�g ðt, c, hÞ 	 uðtÞ dt

����
����dreðc, hÞ

� C
ð
XV

Re
xðtÞ geðt,Xe

xðtÞÞ � �gðt,Xe
xðtÞÞ

�� ��þ veðt,Xe
xðtÞÞ � �vðt,Xe

xðtÞÞ
�� ��h i

dt dx

¼ C
ð
XV

ge � �gj j þ ve � �vj j qet dx dt � C
ð
XV

g � �gj j þ v� �vj j qet dx dt þ oð1Þ,

(80)

where in the last inequality we employed (78) and the convergence
Ð
XV
j�g e �

�g j qet dx dt ! 0 to estimate the first term, and similar estimates involving v for the
second, and where oð1Þ ! 0 as e ! 0: By passing to the limes superior in (80) and by
recalling that re ! r narrowly, we can invoke (115) and obtain (70).
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Step 3 – r is concentrated on H1
X:

We are left to prove that r is concentrated on H1
X ¼ fðh, cÞ 2 SX : jjhjj1 ¼ 1g: By

definition, the measure re 2 MþðSVÞ introduced at (58) is concentrated on H1
V ¼

fðh, cÞ 2 SV : jjhjj1 ¼ 1g, where V is as in (53). Also recall that we have proven re !
r narrowly. Moreover note that the set H1

V is closed in SV , as an immediate conse-
quence of (29). Hence, by (115), we get rðSV n H1

VÞ � lim inf e!0 reðSV n H1
VÞ ¼ 0,

showing that r is concentrated on H1
V : As r is concentrated on SX, we conclude. This

ends the proof of Theorem 4.3.

Remark 4.7. As mentioned in the introduction, it would be interesting to extend

Theorem 4.3 to the case of X ¼ Rd: Notice however that our construction of the meas-
ure r is heavily reliant on the boundedness of X: first, such assumption is needed in
proving compactness of the sublevels of the functional F (see (40) and estimates after),
which in turn allows to show tightness for the family re (see (61) and argument imme-
diately after); second, boundedness of X is employed to provide the uniform bound
(60) on the norm of re: These arguments are crucial to obtain compactness for re and,
consequently, the representing measure r as their limit.

5. Uniqueness of characteristics and uniqueness for the PDE

The aim of this section is to apply Theorem 4.3 to relate uniqueness of the characteristics
with uniqueness of solutions for the continuity equation with given initial data and minimal

total variation. Throughout the section X � Rd with d � 1 is the closure of a bounded
domain. We denote XX :¼ ð0, 1Þ � X: Moreover SX denotes the set defined at (26),
equipped with the distance d at (28). We remind the reader that ðSV , dÞ is a complete met-

ric space (Proposition 3.6). Let v : XX ! Rd and g : XX ! R be measurable maps and recall
the definition of Hv, g

X at (44), that is, the set of regular characteristics of the ODEs system

(O1)-(O2). Also recall the definition of H1
X at (45) Finally, we define the following set

Dv,g :¼ ðt 7!qtÞ2Cwð 0,1½ �;MþðXÞÞ : ðqt ,vt ,gtÞ satisfy @tqtþdiv ðvqtÞ¼gqt and ð48Þ� 	
:

We will prove the following result:

Theorem 5.1. Let A � X be a measurable set. Suppose that:
(Hyp) For each x 2 A the solution ðc, hÞ 2 Hv, g

X to (O1)-(O2) with initial value ðx, 1Þ
is unique in ½0, sÞ for every s 2 ð0, 1Þ such that ½0, sÞ � fh > 0g, i.e., if ðc1, h1Þ, ðc2, h2Þ 2
Hv, g

X solve (O1)-(O2) in ½0, sÞ with initial data ðx, 1Þ and h1 > 0, h2 > 0 in ½0, sÞ, then h1
¼ h2 and c1 ¼ c2 in ½0, sÞ:
Then, for any initial data q0 2 MþðXÞ concentrated on A, the continuity equation @tqt þ

div ðvqtÞ ¼ gqt admits at most one solution q 2 Dv, g with initial data q0 and such that

jjqjjMðXXÞ � jj~qjjMðXXÞ for all ~q 2 Dv, g such that ~q0 ¼ q0: (81)

In the next section we provide several auxiliary lemmas and definitions, which will be
instrumental in proving Theorem 5.1. The proof of Theorem 5.1 will be carried out in
Section 5.2.

2052 K. BREDIES ET AL.



5.1. Auxiliary results

Define the following subset of SX :

S

X :¼ fðc, hÞ 2 SX : fh > 0g ¼ 0, 1½ � \ ð�1, sÞ for some s 2 Rg: (82)

The first step is to prove that condition (81) implies that the measure r obtained by
Theorem 4.3 is concentrated on S


X: To this aim, we define a cutoff operator on the
space SX:

Definition 5.2 (Cutoff operator). Define the vanishing time map s : SX ! ½0,1� as

sðc, hÞ :¼ arg min ft 2 0, 1½ � : hðtÞ ¼ 0g if ft 2 0, 1½ � : hðtÞ ¼ 0g 6¼ ;,
1 otherwise,




and the cutoff operator G : SX ! SX as Gðc, hÞ :¼ ðc, h v½0, sðh, cÞÞÞ:
Lemma 5.3. Let s and G be as in in Definition 5.2. Then s is lower semi-continuous and G
is measurable. Moreover, GðSXÞ � S


X, GðHv, g
X Þ � Hv, g

X , and the set S

X is measurable.

Proof. We start by proving that s is lower semi-continuous. Assume that dðqn, qÞ ! 0
as n ! 1: Set sn :¼ sðqnÞ, s :¼ sðqÞ: Without loss of generality we can suppose that
s
 :¼ limn!1 sn ¼ lim infn!1 sn < 1: Thus, by definition, we have that hnðsnÞ ¼ 0 for
n sufficiently large. Therefore

hðs
Þ � jhðs
Þ � hðsnÞj þ jhðsnÞ � hnðsnÞj: (83)

Notice that jjhn � hjj1 ! 0 by (29) and dðqn, qÞ ! 0: Hence the second term in (83)
converges to zero as n ! 1: Thanks to the continuity of h and the convergence sn !
s
 also the first term in (83) is infinitesimal, concluding that hðs
Þ ¼ 0: Thus s � s
 by
minimality, from which lower semi-continuity follows.
We now show that G is measurable by constructing measurable maps Gn : SX !

SX such that GnðqÞ ! GðqÞ for all q 2 SX: Indeed this immediately implies measur-
ability of G (see, e.g., [44, Corollary 6.2.6]). To this end, define the continuous maps
un : R ! ½0, 1� by setting

unðtÞ :¼ vð�1,�1=n�ðtÞ � nt vð�1=n, 0ÞðtÞ:
Introduce Tn : ½0,1� ! Cð½0, 1�; ½0, 1�Þ by TnðsÞðtÞ :¼ unðt � sÞ for all s 2 ½0,1�, t 2

½0, 1�: It is straightforward to check that Tn is continuous. Thus the map

q 7! ððTn � sÞðqÞ, qÞ (84)

from SX into Cð½0, 1�; ½0, 1�Þ �SX is measurable, given that s lower semi-continuous,
and hence measurable. Moreover

ðu, qÞ 7!uq (85)

from Cð½0, 1�; ½0, 1�Þ �SX into SX is continuous, since by triangle inequality and (29)
we can readily check that for all qi ¼ hidci 2 SX, ui 2 Cð½0, 1�; ½0, 1�Þ, i¼ 1, 2, it holds

dðu1q
1,u2q

2Þ � dðu1q
1,u2q

1Þ þ dðu2q
1,u2q

2Þ ¼ ku1 � u2k1kh1k1 þ ku2k1dðq1, q2Þ:

We now define Gn : SX ! SX by composing the maps at (84)–(85), that is,

GnðqÞ ¼ ðTn � sÞðqÞ q ¼ ðc, h TnðsðqÞÞÞ, for q 2 SX:
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In view of the above, Gn is measurable for all n 2 N: We now claim that Gn ! G
pointwise in SX: Indeed, by (29), we see that

dðGnðqÞ,GðqÞÞ ¼ sup
t2½0, 1�

hðtÞjv½0, sðqÞÞðtÞ � unðt � sðqÞÞj, for all q ¼ hdc 2 SX: (86)

Fix q ¼ hdc 2 SX: If sðqÞ ¼ 1 it is immediate to check that TnðsðqÞÞ  1 in ½0, 1�,
so that dðGnðqÞ,GðqÞÞ ¼ 0 for all n 2 N by (86). Similarly, if sðqÞ ¼ 0, then
TnðsðqÞÞ  0 in ½0, 1� and again dðGnðqÞ,GðqÞÞ ¼ 0 for all n 2 N: Finally, assume that
0 < sðqÞ < 1 and fix e > 0: By continuity of h there exists n0 2 N such that sðqÞ �
1=n0 > 0 and

hðtÞ < e for all t 2 sðqÞ � 1=n0, sðqÞ½ �: (87)

For all n � n0 we can compute

hðtÞjv½0, sðqÞÞðtÞ � unðt � sðqÞÞj ¼ 0, if t 2 ½0, sðqÞ � 1=n� [ ½sðqÞ, 1�,
hðtÞjv½0, sðqÞÞðtÞ � unðt � sðqÞÞj ¼ hðtÞj1þ nðt � sðqÞÞj � hðtÞ, if t 2 ½sðqÞ � 1=n, sðqÞÞ:

Recalling (86)–(87) we then obtain dðGnðqÞ,GðqÞÞ < e for n � n0, and the proof of
the measurability of G is concluded.
The inclusion GðSXÞ � S


X is immediate from the definition of S

X: For the inclu-

sion GðHv, g
X Þ � Hv, g

X , consider ðc, hÞ 2 Hv, g
X and notice that if sðc, hÞ ¼ 1, then

Gðc, hÞ ¼ ðc, hÞ and the thesis is immediate. On the other hand, if sðc, hÞ 2 ½0, 1�, then
for every u 2 Ccð0, 1Þ there holdsð1

0
hðtÞv½0, sðc, hÞÞðtÞ _uðtÞ dt ¼

ðsðc, hÞ
0

hðtÞ _uðtÞ dt

¼ �
ðsðc, hÞ
0

_hðtÞuðtÞ dt þ hðsðc, hÞÞuðsðc, hÞÞ

¼ �
ðsðc, hÞ
0

hðtÞgðcðtÞ, tÞuðtÞ dt

¼ �
ð1
0
hðtÞv½0, sðc, hÞÞðtÞgðcðtÞ, tÞuðtÞ dt,

implying that hv½0, sðc, hÞÞ 2 AC2½0, 1� and ðhv½0, sðc, hÞÞÞ0ðtÞ ¼ v½0, sðc, hÞÞðtÞgðcðtÞ, tÞhðtÞ for

a.e. t 2 ð0, 1Þ: Noticing that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv½0, sðc, hÞÞ

q
¼ ffiffiffi

h
p

v½0, sðc, hÞÞ, by a similar argument we

obtain that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv½0, sðc, hÞÞ

q
2 AC2½0, 1� and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv½0, sðc, hÞÞ

q
c 2 AC2½0, 1�: This shows that

ðc, hv½0, sðc, hÞÞÞ 2 Hv, g
X , concluding the claimed inclusion. We finally show that S


X is

measurable. Consider the map G : SX ! SX �SX defined as Gðc, hÞ :¼
ððc, hÞ,Gðc, hÞÞ, where SX �SX is equipped with the Borel r-algebra of the product
space. As SX is a separable metric space (Proposition 3.6) and G is measurable, we
deduce that also G is measurable. Define the diagonal D :¼ fððc, hÞ, ðc, hÞÞ : ðc, hÞ 2
SXg, which is clearly closed. As the set FixðGÞ :¼ fðc, hÞ 2 SX : Gðc, hÞ ¼ ðc, hÞg coin-
cides with S


X, we obtain that S

X ¼ G�1ðDÞ, implying that S


X is measurable. w

2054 K. BREDIES ET AL.



Lemma 5.4. Let ðt 7! qtÞ 2 Cwð½0, 1�;MþðXÞÞ be in Dv, g and r 2 Mþ
1 ðSXÞ be concen-

trated on Hv, g
X . Suppose that (49) and (81) hold. Then r is concentrated on S


X:

Proof. Suppose by contradiction that rðSX nS

XÞ > 0: Let s and G be as in Definition

5.2. As G is measurable (Lemma 5.3), we can consider the measure r̂ :¼ G#r 2
MþðSXÞ: By the inclusion GðSXÞ � S


X in Lemma 5.3, we have that r̂ is concen-
trated on S


X: Using that r is concentrated on Hv, g
X and the inclusion GðHv, g

X Þ � Hv, g
X

(Lemma 5.3), we also deduce that r̂ is concentrated on Hv, g
X : By Remark 4.4 and by def-

inition of r̂, we get that r̂ satisfies (50) with respect to v and g. Therefore we can apply
Theorem 4.3 to r̂ and obtain a curve t 7! q̂t in Cwð½0, 1�;MþðXÞÞ such that (49) hold
and @tq̂t þ div ðvq̂tÞ ¼ gq̂t in XX: Additionally, using Remark 4.2, (49), and the defin-
ition of r̂, we obtain thatð1

0

ð
X
jvðt, xÞj2 þ jgðt, xÞj2 dq̂tðxÞ dt �

ð1
0

ð
X
jvðt, xÞj2 þ jgðt, xÞj2 dqtðxÞ dt < 1,

implying that ðt 7! q̂tÞ 2 Dv, g : Moreover q̂0 ¼ q0, by (49) at time t¼ 0 and definition
of r̂: Finally, using again (49), we estimate

jjq̂jjMðXXÞ ¼
ð1
0

ð
SX

hðtÞ dr̂ðc, hÞ dt ¼
ð
SX

ðsðh, cÞ
0

hðtÞ dt drðc, hÞ

� jjqjjMðXXÞ �
ð
SXnS


X

ð1
sðh, cÞ

hðtÞ dt drðc, hÞ:
(88)

Thanks to the continuity of h for every ðc, hÞ 2 SX and the definition of S

X, we

know that
Ð 1
sðh, cÞ hðtÞ dt > 0 for all ðc, hÞ 2 SX nS


X: Hence, as rðSX nS

XÞ > 0, from

(88) we conclude that jjq̂jjMðXXÞ < jjqjjMðXXÞ contradicting (81). w

Next we show that we can disintegrate any measure obtained by the application of
Theorem 4.3 into a family of Borel measures parametrized by x 2 X and concentrated
on the set

Ex :¼ fðc, hÞ 2 Hv, g
X \S


X \H1
X : cð0Þ ¼ xg: (89)

Notice that Ex is measurable for every x 2 X: Indeed, by employing similar argu-
ments to the ones in Lemma 3.7, one can show that the map p : S


X n f0g ! X defined
as pðc, hÞ :¼ cð0Þ is continuous. Therefore, as S


X \H1
X � S


X n f0g, we can write
Ex ¼ p�1ðxÞ \ Hv, g

X \H1
X: Thus Ex is measurable, given that H1

X is closed and Hv, g
X is

measurable by Lemma 5.3.

Lemma 5.5. Let v : XX ! Rd, g : XX ! R be measurable. Let q 2 Dv, g and r 2
Mþ

1 ðSXÞ be such that (49) holds. Then there exists a Borel family of measures
frxgx2X � MþðSXÞ such that for every f 2 L1rðSXÞ we have
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ð
Hv, g

X \H1
X\S


X

f ðc, hÞ drðh, cÞ ¼
ð
X

ð
Ex

f ðc, hÞ drxðc, hÞ dq0ðxÞ, (90)

where Ex is defined as in (89). Moreover rx is concentrated on Ex for q0-a.e. x 2 X:

Proof. Set H :¼ Hv, g
X \H1

X \S

X and notice that it is measurable thanks to Lemma 5.3.

Consider the map p : SX ! X defined by pðc, hÞ :¼ cð0Þ vHðc, hÞ þ z vSXnHðc, hÞ,
where z 2 X is arbitrary, but fixed. Notice that, as hð0Þ > 0 for every ðc, hÞ 2 H, the
map p is well-defined and measurable in SX using similar arguments as in Lemma 3.7.
Define then ~r :¼ rxH: We aim to show that p#~r � q0: To this end, consider a Borel
set B � X such that q0ðBÞ ¼ 0: Define ~B ¼ fðc, hÞ 2 H : cð0Þ 2 Bg and notice that ~B is
measurable as ~B ¼ p�1ðBÞ \ H: Then

0 ¼ q0ðBÞ ¼
ð
SX

hð0ÞvBðcð0ÞÞ dr �
ð
H
hð0ÞvBðcð0ÞÞ dr ¼

ð
~B
hð0Þ dr,

implying that rð~BÞ ¼ 0, since hð0Þ > 0 for all ðc, hÞ 2 H: By direct calculation we have
ðp#~rÞðBÞ ¼ rð~BÞ, and thus ðp#~rÞðBÞ ¼ 0, concluding that p#~r � q0: Hence, as SX is
a complete separable metric space by Proposition 3.6, we can apply Theorem A.3 to
~r 2 MþðSXÞ, and obtain a Borel family of measures frxgx2X � MþðSXÞ satisfying
the thesis. w

5.2. Proof of Theorem 5.1

Assume that t 7!qt belongs to Dv, g : Moreover suppose that q0 is concentrated on

A � X and that (81) holds. By Theorem 4.3, there exists r 2 Mþ
1 ðSXÞ concentrated

on Hv, g
X \H1

X that represents qt, that is, (49) holds. Using Lemma 5.4, we infer that

r is concentrated on H :¼ Hv, g
X \H1

X \S

X: Thanks to Lemma 5.5 we can disinte-

grate r into a Borel family frxgx2X � MþðSXÞ such that (90) holds, with rx concen-
trated on Ex for q0-a.e. x 2 X: We claim that assumption ðHypÞ implies that Ex
contains at most one point for all x 2 A: Indeed, suppose that ðcx1, hx1Þ, ðcx2, hx2Þ 2 Ex:
As ðcxi , hxi Þ 2 S


X \H1
X, there exist si 2 R such that fhi > 0g ¼ ½0, 1� \ ð�1, siÞ and

jjhxi jj1 ¼ 1: Assume s1 � s2: As ðcxi , hxi Þ 2 Hv, g
X , we have that ðcxi , hxi Þ solves (O1)-(O2)

in ½0, s1Þ: Now notice that by linearity of (O2) and assumption ðHypÞ, we have that
cx1ðtÞ ¼ cx2ðtÞ and hx1ðtÞ ¼ hx2ðtÞhx1ð0Þ=hx2ð0Þ for all t 2 ½0, s1Þ: As jjhxi jj1 ¼ 1, we then
infer ðcx1, hx1Þ ¼ ðcx2, hx2Þ in ½0, s1Þ and by the continuity of hi we also obtain that
hx1ðs1Þ ¼ hx2ðs2Þ ¼ 0: By definition of si we conclude that s1 ¼ s2 ¼ s, so that
ðcx1, hx1Þ ¼ ðcx2, hx2Þ in ½0, sÞ: Since hx1ðtÞ ¼ hx2ðtÞ ¼ 0 for all t � s, we conclude that Ex
contains at most one point. Thus, for q0-a.e. x 2 E, E :¼ fx 2 X : Ex 6¼ ;g, we have
rx ¼ cx dðcx , hxÞ, with cx :¼ jjrxjjMðSXÞ, ðcx, hxÞ 2 Ex: We claim that cx ¼ 1=hxð0Þ:
Indeed, by definition of Ex, we have cxð0Þ ¼ x: Using (49, 90), and rðSX n HÞ ¼ 0,
we then obtain ð

X
uðxÞ dq0ðxÞ ¼

ð
E
cxh

xð0ÞuðxÞ dq0ðxÞ,
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for all u 2 CðXÞ, showing that cxhxð0Þ ¼ 1 for q0-a.e. x 2 E: Again by (49) and (90) we
get ð

X
uðxÞ dqtðxÞ ¼

ð
E

1
hxð0Þ h

xðtÞuðcxðtÞÞ dq0ðxÞ,

for every u 2 CðXÞ, where we also used that rx ¼ 1
hxð0Þ dðcx , hxÞ for q0-a.e. x 2 E: Thus qt

depends only on the initial data q0, ending the proof.

6. Extremal points of the Wasserstein–Fisher–Rao energy

Let X � Rd with d � 1 be the closure of a bounded domain of Rd: Let a, b > 0, d 2
ð0,1� and define B to be the unit ball of the functional Ja,b, d defined at (17), that is,

B :¼ ðq,m, lÞ 2 MX : Ja,b, dðq,m, lÞ � 1
� 	

:

The aim of this section is to characterize the extremal points ExtB: Notice that
Ja,b,1 corresponds to the coercive version of the Benamou-Brenier energy, whose
extremal points were characterized in [13]. Hence here we focus on the case d < 1:

After the characterization of ExtB is obtained, we will show how this information can
be applied to the analysis of dynamic inverse problems which are regularized via the
optimal transport energy Ja,b, d [34]. In particular we will obtain a sparse representation
formula for regularized solutions to the dynamic problem.
Before stating the characterization theorem we remind the reader the notations

CX,SX,HX introduced at (25, 26, 32). In the following SX is equipped with the dis-
tance d at (28), making it a complete metric space (Proposition 3.6). We now define the
set of characteristics of (14) with energy Ja, b, d ¼ 1, which will play a role in the charac-
terization of ExtB:

Definition 6.1 (Characteristics). Define the set C of all the triples ðq,m, lÞ 2 MX of the

form q ¼ hðtÞ dt � dcðtÞ, m ¼ _cðtÞq, l ¼ _hðtÞ dt � dcðtÞ that satisfy the follow-
ing properties:

(i) t 7! hðtÞdcðtÞ belongs to HX,
(ii) the set fh > 0g :¼ ft 2 ½0, 1� : hðtÞ > 0g is connected,
(iii) the energy satisfies Ja,b, dðq,m, lÞ ¼ 1:

The above definition is well-posed since ðq,m, lÞ belongs to MX and solves the con-
tinuity equation (14) in XX (by the converse of Proposition 3.9 with V ¼ X). Hence
(iii) is compatible with the definition of Ja,b, d:

Remark 6.2. If ðq,m, lÞ 2 MX with q 2 HX, then an application of Proposition 3.9
(with V ¼ X) yields the representation

Ja,b, dðq,m, lÞ ¼ Ja,b, dðc, hÞ ¼
ð
fh>0g

b
2

hðtÞj_cðtÞj2 þ bd2

2

_hðtÞ2
hðtÞ þ ahðtÞ dt: (91)

In particular Ja,b, d is d-measurable, as a consequence of Proposition 3.10. For a meas-
urable set E � ½0, 1� we define the localized energy
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Ja, b, d,Eðq,m, lÞ :¼
ð
E\fh>0g

b
2

hðtÞj_cðtÞj2 þ bd2

2

_hðtÞ2
hðtÞ þ ahðtÞ dt:

We are now ready to state the characterization theorem.

Theorem 6.3. For parameters a, b, d > 0 we have ExtB ¼ C [ f0g, where 0 denotes the
null triple in MX:

The proof of Theorem 6.3 will be carried out in the next section, while in Section 6.2
we will detail the application of Theorem 6.3 to dynamic inverse problems.

6.1. Proof of Theorem 6.3

In order to simplify notations, we will denote J :¼ Ja,b, d and JE :¼ Ja,b, d, E for any E �
½0, 1� measurable.
Step 1. C [ f0g � ExtB : Assume first that ðq,m, lÞ ¼ 0, and that there exists a

decomposition

ð0, 0, 0Þ ¼ kðq1,m1, l1Þ þ ð1� kÞðq2,m2, l2Þ (92)

with ðqj,mj, ljÞ 2 B and k 2 ð0, 1Þ: In particular by Lemma A.4 point (i) we have qj �
0 and mj, lj � qj: Therefore (92) immediately implies that ðqj,mj, ljÞ ¼ 0, showing
that 0 2 ExtB:

Assume now that ðq,m, lÞ 2 C, according to Definition 6.1. In particular the set
fh > 0g is non-empty, since Jðq,m, lÞ ¼ 1: Assume that ðq1,m1, l1Þ, ðq2,m2, l2Þ 2 B

are such that

ðq,m, lÞ ¼ kðq1,m1, l1Þ þ ð1� kÞðq2,m2, l2Þ, (93)

for some k 2 ð0, 1Þ: We need to show that ðq,m, lÞ ¼ ðqj,mj, ljÞ: By (93), convexity of
J (see Lemma A.5), and the fact that Jðqj,mj, ljÞ � 1, Jðq,m, lÞ ¼ 1, we have that

Jðqj,mj, ljÞ ¼ 1: Thus, by Lemmas 2.1, A.4 we infer qj ¼ dt � qjt with t 7! qjt in

Cwð½0, 1�;MþðXÞÞ: Set hjðtÞ :¼ qjtðXÞ and notice that hj is continuous by narrow con-
tinuity of qj. From the decomposition (93) and the uniqueness of the disintegration, we

thus obtain qjt ¼ hjðtÞdcðtÞ 2 SX, and in particular

hðtÞ ¼ kh1ðtÞ þ ð1� kÞh2ðtÞ for every t 2 0, 1½ �: (94)

We will now show that there exists c> 0 such that

h2ðtÞ ¼ c h1ðtÞ for all t 2 fh > 0g: (95)

We start by defining the sets E :¼ fh1 > 0g \ fh2 > 0g, Z1 :¼ fh1 > 0g \ fh2 ¼ 0g
and Z2 :¼ fh1 ¼ 0g \ fh2 > 0g: These sets are pairwise disjoint, and by (94) we have
fh > 0g ¼ E [ Z1 [ Z2, where we recall that fh > 0g 6¼ ; is connected by assumption.
We claim that E 6¼ ;: Indeed, assume by contradiction that E ¼ ;, so that in particular
Z1 [ Z2 ¼ fh > 0g: Notice that Z1, Z2 are relatively closed in fh > 0g since they can be
written as Z1 ¼ fh > 0g \ fh2 ¼ 0g, Z2 ¼ fh > 0g \ fh1 ¼ 0g, due to (94). As fh > 0g
is connected, we deduce that either Z1 ¼ ; or Z2 ¼ ;: If Z1 ¼ ;, then we would have
h1  0, which in turn would imply q1 ¼ 0: Hence by Lemma A.4 point (i) we would
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obtain Jðq1,m1, l1Þ ¼ 0, contradicting Jðq1,m1, l1Þ ¼ 1: Similarly Z2 ¼ ; leads to the
contradiction Jðq2,m2, l2Þ ¼ 0: We therefore conclude E 6¼ ;:
Claim: h1=h2 is constant in each connected component of E.
Proof of Claim: Since Jðqj,mj, ljÞ < 1, by Proposition 3.9, we have that qj 2 HX and

there exist vj : XX ! Rd, gj : XX ! R measurable such that mj ¼ vjqj, lj ¼ gjqj and

_hjðtÞ ¼ gjðt, cðtÞÞhjðtÞ for a:e: t 2 ð0, 1Þ, (96)

_cðtÞ ¼ vjðt, cðtÞÞ a:e: in fhj > 0g: (97)

Moreover Jðqj,mj, ljÞ ¼ Jðhj, cÞ can be computed via (91). By direct calculation, and
using (93) and (91) we have

JEðq,m, lÞ ¼ JEðh, cÞ ¼ JEðkh1 þ ð1� kÞh2, cÞ
¼
ð
E
ðkh1 þ ð1� kÞh2Þ b

2
j_cj2 þ a

� �
dt þ bd2

2

ð
E

ðk _h1 þ ð1� kÞ _h2Þ2
kh1 þ ð1� kÞh2 dt

¼ kJEðh1, cÞ þ ð1� kÞJEðh2, cÞ þ bd2

2

ð
E

ðk _h1 þ ð1� kÞ _h2Þ2
kh1 þ ð1� kÞh2 � k

_h
2
1

h1
� ð1� kÞ

_h
2
2

h2
dt,

so that

JEðq,m, lÞ ¼ kJEðq1,m1, l1Þþ ð1� kÞJEðq2,m2, l2Þ
� bd2

2
kð1� kÞ

ð
E

ð _h1h2 � h1 _h2Þ2
ðkh1 þ ð1� kÞh2Þh1h2 dt:

(98)

By proceeding as above, one can check that

JZ1ðq,m, lÞ ¼ kJZ1ðq1,m1, l1Þ , JZ2ðq,m, lÞ ¼ ð1� kÞJZ2ðq2,m2, l2Þ, (99)

where we used (93, 94), definition of Zj and [43, Theorem 4.4]. Moreover by definition

Jðq1,m1, l1Þ ¼ JZ1ðq1,m1, l1Þ þ JEðq1,m1, l1Þ, (100)

Jðq2,m2, l2Þ ¼ JZ2ðq2,m2, l2Þ þ JEðq2,m2, l2Þ: (101)

By combining (98)–(101), we obtain

Jðq,m, lÞ ¼ kJðq1,m1, l1Þþ ð1� kÞJðq2,m2, l2Þ
� bd2

2
kð1� kÞ

ð
E

ð _h1h2 � h1 _h2Þ2
ðkh1 þ ð1� kÞh2Þh1h2 dt:

Now we can make use of the fact that Jðq,m, lÞ ¼ Jðqj,mj, ljÞ ¼ 1 to infer _h1h2 ¼
h1 _h2 a.e. in E. In particular ðh1=h2Þ0 ¼ 0 a.e. in E, and hence the claim follows.
We are now ready to show (95). For an arbitrary C> 0 and t 2 fh > 0g define the

map

f ðtÞ :¼ min
h1ðtÞ
h2ðtÞ ,C
� �

vfh2>0g þ C vfh2¼0g:

Notice that f is continuous and, since E 6¼ ;, f is not identically zero. Moreover, as

ðh1=h2Þ0 ¼ 0 a.e. in E, the image f ðfh > 0gÞ is at most countable. Assume by contradic-
tion that Z2 6¼ ;, and notice that f vanishes on Z2. Therefore f assumes at least two
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different values on fh > 0g, which is a contradiction, as f ðfh > 0gÞ is connected and,
consequently, uncountable. Hence Z2 ¼ ; and fh > 0g ¼ E [ Z1: By interchanging the
roles of h1 and h2, we can repeat the same argument and conclude that Z1 ¼ ;, so that
E ¼ fh > 0g: As fh > 0g is connected, we thus deduce (95) directly from the fact that
ðh1=h2Þ0 ¼ 0 a.e. in E.

We are now ready to conclude. Indeed, note that, as qjt ¼ hjðtÞdcðtÞ, condition (95)

implies that q2 ¼ cq1 and fhj > 0g ¼ fh > 0g: In particular (97) yields vjðt, cðtÞÞ ¼ _cðtÞ
a.e. in fh > 0g, showing that m2 ¼ c m1: Finally from (96) we infer g1ðt, cðtÞÞ ¼
g2ðt, cðtÞÞ a.e. in (0, 1), from which we conclude l2 ¼ c l1: In total we have
ðq2,m2, l2Þ ¼ c ðq1,m1, l1Þ, and by Jðqj,mj, ljÞ ¼ 1 and one-homogeneity of J we con-
clude that c¼ 1. Therefore (93) yields extremality of ðq,m, lÞ:
Step 2. ExtB � C [ f0g : Let ðq,m, lÞ 2 ExtB: We can assume that ðq,m, lÞ 6¼ 0, so

that Jðq,m, lÞ > 0: By extremality of ðq,m, lÞ, convexity and 1-homogeneity of J, we
conclude that Jðq,m, lÞ ¼ 1: In particular by Lemma A.4 we obtain q � 0 and m ¼
vq, l ¼ gq for some measurable maps v : XX ! Rd, g : XX ! R satisfying

Jðq,m, lÞ ¼
ð1
0

ð
X

b
2
jvðt, xÞj2 þ bd2

2
jgðt, xÞj2 þ a

� �
dqtðxÞ dt ¼ 1: (102)

By definition of J, we then have that @tqt þ div ðvqtÞ ¼ gqt in XX: Thanks to Lemma
2.1 we also have q ¼ dt � qt with t 7! qt in Cwð½0, 1�;MþðXÞÞ: Set h :¼ qtðXÞ, and
recall that h is continuous. We first prove the following claim.
Claim: supp qt is a singleton for every t 2 fh > 0g:
Proof of Claim: Assume by contradiction that there exists t̂ 2 fh > 0g such that

supp qt̂ is not a singleton. Then there exist disjoint Borel sets E1,E2 � X such that E1 [
E2 ¼ X and qt̂ ðEiÞ > 0 for i¼ 1, 2. Invoking Theorem 4.3, there exists a measure r 2
Mþ

1 ðSXÞ concentrated on Hv, g
X which represents qt, that is, (49) holds. Define the sets

Ai :¼ fðc, hÞ 2 SX : cð̂tÞ 2 Ei, hð̂tÞ > 0g, Z :¼ fðc, hÞ 2 SX : hð̂tÞ ¼ 0g,
and notice that A1,A2,Z are pairwise disjoint and SX ¼ A1 [ A2 [ Z: Also Z is d-meas-
urable, being d-closed, as it is readily seen by (29). We claim that also Ai is d-measur-

able. To this end define the maps et : SX ! CX with etðqÞ :¼ qt and p : CX ! Rd

where pðc, hÞ :¼ c vCXnf0gðc, hÞ þ pvf0gðc, hÞ, with p 2 Rd n X arbitrary but fixed.
Notice that by construction et is continuous from ðSX, dÞ into ðCX, dFÞ: Moreover p is

measurable since the map ðc, hÞ 7! c is dF-continuous in CX n f0g: Since Ai ¼
ðp � et̂Þ�1ðEiÞ, we have that Ai is measurable. By applying (49), we get

0 < qt̂ ðEiÞ ¼
ð
SX

hð̂tÞvEiðcð̂tÞÞ drðc, hÞ ¼
ð
Ai

hð̂tÞ drðc, hÞ, (103)

which implies rðAiÞ > 0: Hence setting R1 :¼ A1, R2 :¼ A2 [ Z we obtain a measurable

partition of SX with rðRiÞ > 0: Notice now that the map Wðt, xÞ :¼ bjvðt, xÞj2=2þ
bd2jgðt, xÞj2=2þ a belongs to L1qtðXÞ for a.e. t 2 ð0, 1Þ, thanks to (102). Moreover J is

non-negative and d-measurable by Remark 6.2. Since r is concentrated on Hv, g
X , we can

apply Remark 4.2 to W and obtain
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ð
SX

Jðc, hÞ drðc, hÞ ¼
ð
SX

ð1
0
hðtÞWðt, cðtÞÞ dt drðc, hÞ ¼

ð1
0

ð
X
Wðt, xÞ dqtðxÞ dt ¼ 1,

(104)

where in the last equality we again used (102). Define the coefficients ki :¼Ð
Ri
Jðc, hÞ drðc, hÞ: From (104) we infer 0 � k1, k2 � 1 and k1 þ k2 ¼ 1: We claim that

ki > 0: Indeed, the map fiðtÞ :¼
Ð
Ri
hðtÞ drðc, hÞ for t 2 ½0, 1� is continuous by domi-

nated convergence and the fact that
Ð
SX

khk1 drðc, hÞ < 1, as r 2 Mþ
1 ðSXÞ: Notice

that by construction fið̂tÞ > 0: Therefore by definition of J and continuity of fi we have

ki ¼
ð
Ri

Jðc, hÞ drðc, hÞ �
ð
Ri

ð1
0
hðtÞ dt drðc, hÞ ¼

ð1
0
fiðtÞ dt > 0,

as claimed. The measure rjRi
satisfies the hypothesis of the converse in Theorem 4.3,

given that (104) holds and r is concentrated on Hv, g
X : Hence, the curve t 7!qit defined

by ð
X
uðxÞ dqitðxÞ :¼

ð
Ri

hðtÞuðcðtÞÞ drðc, hÞ, for all u 2 CðXÞ (105)

belongs to Cwð½0, 1�;MþðXÞÞ and solves the continuity equation with v and g. We can
now define ðqi,mi, liÞ 2 M by setting qi :¼ dt � qit , m

i :¼ vqi, li :¼ gqi: Note that by
(49) and (105) we have that qit � qt for every t 2 ½0, 1�: Henceð1

0

ð
X

b
2
jvðt, xÞj2 þ bd2

2
jgðt, xÞj2 þ a

� �
dqitðxÞ dt � 1,

by (102). Given that the above holds, by repeating the same arguments used to prove
(104), but applied to qit and rxRi , we have that Jðqi,mi, liÞ ¼ ki: Consider the decom-
position

ðq,m, lÞ ¼ k1
1
k1

ðq1,m1, l1Þ þ k2
1
k2

ðq2,m2, l2Þ, (106)

and notice that k�1
i ðqi,mi, liÞ 2 B thanks to the condition Jðqi,mi, liÞ ¼ ki and to the

one-homogeneity of J. We assert that

1
k1

ðq1,m1, l1Þ 6¼ k2
1
k2

ðq2,m2, l2Þ: (107)

Indeed we have that k�1
1 q1 6¼ k�1

2 q2 : If they were equal then by narrow continuity

we would have k�1
1 qt̂

1 ¼ k�1
2 qt̂

2
: However by (103) it is immediate to check that

qt̂
1ðE1Þ ¼ qt̂ ðE1Þ > 0 and qt̂

2ðE1Þ ¼ 0, yielding a contradiction. Thus (107) holds and
(106) gives a non-trivial convex decomposition of ðq,m, lÞ, contradicting extremality.
This proves the claim.
In particular, we have shown that qt ¼ hðtÞdcðtÞ for some c : ½0, 1� ! X, h � 0: Thus

t 7! qt belongs to SX, being narrowly continuous. Hence c 2 Cðfh > 0g;RdÞ thanks to
Lemma 3.4. Moreover, as a consequence of (102) and Proposition 3.9, we have that

t 7! qt belongs to HX, m ¼ _cq, l ¼ _hðtÞ dt � dcðtÞ and
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Jðq,m, lÞ ¼
ð
fh>0g

b
2
hðtÞj_cðtÞj2 þ bd2

2

_hðtÞ2
hðtÞ þ ahðtÞ dt ¼ 1: (108)

In order to prove that ðq,m, lÞ 2 C we are left to show that the set fh > 0g is con-
nected. To this end, assume by contradiction that fh > 0g ¼ E1 [ E2 with E1, E2 rela-
tively open, non-empty and disjoint. For t 2 ½0, 1� set qit :¼ hðtÞvEiðtÞdcðtÞ: Note that as

fh > 0g is relatively open we have that @fh>0gEi ¼ @½0, 1�Ei \ fh > 0g where we denote
by @A the relative boundary with respect to the set A. Hence as @fh>0gEi ¼ ; we deduce
that h(t) ¼ 0 for every t 2 @½0, 1�Ei: In particular the map t 7! hðtÞvEiðtÞ is continuous in
½0, 1�: Moreover c 2 CðfhvEi > 0g;RdÞ, hence Lemma 3.4 ensures that the curve t 7! qit
belongs to SX: We claim that t 7! qit belongs to HX: In order to show this, we make
use of the information ðt 7! qtÞ 2 HX: Notice that the set Ei is relatively open in ½0, 1�,
given that fh > 0g is open. Thus Ei ¼ [1

n¼1In, where fIngn are pairwise disjoint inter-
vals in ½0, 1�: By dominated convergenceð1

0
hðtÞvEiðtÞ _uðtÞ dt ¼

X1
n¼1

ð
In

hðtÞ _uðtÞ dt ¼ �
X1
n¼1

ð
In

_hðtÞuðtÞ dt ¼
ð1
0

_hðtÞvEiðtÞuðtÞ dt

for every u 2 C1
c ð0, 1Þ, where we used that h¼ 0 on @½0, 1�In, given that @½0, 1�In �

@½0, 1�Ei: Since h 2 AC2½0, 1�, we infer that hvEi 2 AC2½0, 1�, with derivative _hvEi :

Noticing that
ffiffiffiffiffiffiffiffi
hvEi

p ¼ ffiffiffi
h

p
vEi by similar arguments we also deduce that

ffiffiffi
h

p 2 AC2½0, 1�
and

ffiffiffi
h

p
vEic 2 AC2ð½0, 1�;RdÞ, thus concluding ðt 7! qitÞ 2 HX: Set

qi :¼ vEiðtÞhðtÞ dt � dcðtÞ, mi :¼ _cðtÞqi, li ¼ vEiðtÞ _hðtÞdt � dcðtÞ:

Thanks to Proposition 3.9 we have that ðqi,mi, liÞ belongs to MX and

Jðqi,mi, liÞ ¼
ð
Ei

b
2
hðtÞj_cðtÞj2 þ bd2

2

_hðtÞ2
hðtÞ þ ahðtÞ dt < 1:

Set ki :¼ Jðqi,mi, liÞ and notice that 0 < ki < 1, k1 þ k2 ¼ 1 thanks to (108) and def-

inition of Ei. By construction we have vE1 þ vE2 ¼ 1 in fh > 0g: By recalling that _h ¼ 0
a.e. in fh > 0g, we have that a decomposition of the form (106) holds. As
k�1
1 ðq1,m1, l1Þ 6¼ k�1

2 ðq2,m2, l2Þ and k�1
i ðqi,mi, liÞ 2 B, this contradicts the extremal-

ity of ðq,m, lÞ: Thus we conclude that the set fh > 0g must be connected, ending
the proof.

6.2. Sparsity for dynamic inverse problems with optimal transport regularization

In this section we analyze the problem of reconstructing a family of time-dependent
Radon measures given a finite number of observations. More precisely, let H be a finite
dimensional Hilbert space and K : Cwð½0, 1�;MðXÞÞ ! H be a linear operator which is
continuous in the following sense: given a sequence fðt 7!qnt Þgn in Cwð½0, 1�;MðXÞÞ,
we require that
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qnt ! qt narrowly in MðXÞ for all t 2 0, 1½ � implies Kqn ! Kq in H:

(109)

For a given datum y 2 H, we aim at finding a solution q 2 Cwð½0, 1�;MðXÞÞ to the
ill-posed inverse problem

Kq ¼ y: (110)

We regularize (110) via the Hellinger–Kantorovich-type energy Ja,b, d defined at (17),
following the approach in [34]. To this end, introduce the space

~MX :¼ Cwð 0, 1½ �;MðXÞÞ �MðXX;R
dÞ �MðXX;RÞ,

and define the Tikhonov functional G : ~MX ! R [ f1g by

Gðq,m, lÞ :¼ FðKqÞ þ Ja,b, dðq,m, lÞ, (111)

where F : H ! R is a fidelity functional assumed to be convex, lower semi-continuous
and bounded from below. We then replace (110) by

min
ðq,m, lÞ2 ~MX

Gðq,m, lÞ: (112)

Note that G is proper, since Ja,b, dð0, 0, 0Þ ¼ 0: Moreover under the assumptions on K
and F, problem (112) admits a solution: This is indeed an immediate consequence of
the direct method and of Lemma A.5.
It is well-known that the finite-dimensionality of the data space H promotes sparsity

in the reconstruction of solutions to (110), in the sense that there exists a minimizer to
(112) which is finite linear combination of extremal points of the ball of the regularizer.
This observation was recently made rigorous in the works [40,41] (see also [45,46]).
Since in Theorem 6.3 we characterized the extremal points of the ball of Ja,b, d, we can
specialize the representation results in [40,41] to our setting, and obtain the following
statement for sparse minimizers to (112).

Theorem 6.4. There exists a solution ðq̂, m̂, l̂Þ 2 ~MX to (112) which is of the form

ðq̂, m̂, l̂Þ ¼
Xp
i¼1

ci ðqi,mi, liÞ, (113)

where p � dimðHÞ, ci > 0,
Pp

i¼1 ci ¼ Ja,b, dðq̂, m̂, l̂Þ and ðqi,mi, liÞ 2 C, with C is as in
Definition 6.1.
In order to prove the above theorem, it is sufficient to apply Theorem 6.3 and check

validity for the assumptions of Corollary 2 in [40]. The proof is a straightforward adap-
tation of the one of Theorem 10 in [13] (which deals with the case d ¼ 1) and is hence
omitted.
We now present an application of Theorem 6.4 to dynamic inverse problems, in a

simplified case of the framework introduced in [34]. To be more specific, let t1 < ::: <

tN be a finite discretization of the time interval ½0, 1�: The aim is to reconstruct an elem-
ent of Cwð½0, 1�;MðXÞÞ by only making observations at the time instants ti. Hence let
Hi be a family of finite-dimensional Hilbert spaces and set H ¼ �N

i¼1Hi, normed by

jjyjj2H :¼PN
i¼1 jjyijj2Hi

: Let Ki : MðXÞ ! Hi be linear and weak
 continuous operators.
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For a given observation y 2 H, consider the problem of finding q 2 Cwð½0, 1�;MðXÞÞ
such that

Kiqti ¼ yi for each i ¼ 1, :::,N:

Following [34], we regularize the above problem by

min
ðq,m, lÞ2 ~MX

1
2

XN
i¼1

jjKiqti � yijj2Hi
þ Ja,b, dðq,m, lÞ: (114)

To recast (114) into the form (112), define the linear operator K :

Cwð½0, 1�;MðXÞÞ ! H as Kq :¼ ðK1qt1 , :::,KNqtN Þ and note that K is continuous in the

sense of (109). Moreover define the fidelity term F : H ! R by FðxÞ :¼ 1
2 jjx� yjj2H ,

which is convex, lower semi-continuous and bounded from below. In this way (114) is
a particular case of (112) and Theorem 6.4 applies, thus showing the existence and
characterizing the structure of sparse solutions to the discrete reconstruction problem
regularized via the Hellinger–Kantorovich energy.
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Appendix A

[A.1.] Properties of narrow convergence

We give some results about narrow convergence of measures. These results are classical and are
stated for probability measures in the literature: here we adapt them to positive measures. For a
complete separable metric space Y, we say that a family of measures A � MðYÞ is tight if for
every e > 0 there exists a compact set Ke � Y such that jljðY n KeÞ < e for all l 2 A: The next
proposition provides a tightness criterion for positive measures. The proof follows as in [12,
Remark 5.1.5], and is hence omitted.

Proposition A.1. Let Y be a complete separable metric space and A � MþðYÞ. Suppose that
there exists a measurable function F : Y ! ½0,1� such that fy 2 Y : FðyÞ � cg is compact for
each c � 0 and supl2A

Ð
YFðyÞ dlðyÞ < 1. Then A is tight.

Finally, we provide a result which clarifies the behavior of narrowly convergent sequences of
positive measures when tested against lower semi-continuous, or continuous unbounded inte-
grands. The proof easily follows by combining [12, Lemma 5.1.7] with a scaling argument.

Proposition A.2. Let Y be a complete separable metric space. Assume that flngn, l belong to
MþðYÞ and ln ! l narrowly as n ! 1. If g : Y ! ½0,1� is lower semi-continuous thenð

Y
gðyÞ dlðyÞ � lim inf

n!1

ð
Y
gðyÞ dlnðyÞ: (115)

If f : Y ! R is continuous with jf j uniformly integrable with respect to flngn, that is,

lim
k!1

sup
n2N

ð
fy2Y:jf ðyÞj�kg

jf ðyÞj dlnðyÞ ¼ 0, (116)

then it holds

lim
n!1

ð
Y
f ðyÞ dlnðyÞ ¼

ð
Y
f ðyÞ dlðyÞ: (117)

[A.2] Disintegration of measures

In this section we state and prove the disintegration theorem employed in Section 5. This result
is a straightforward consequence of [12, Theorem 5.3.1].

Theorem A.3. Let Z, X be Radon separable metric spaces and let l 2 MþðZÞ, � 2 MþðXÞ be
given. Let p : Z ! X a measurable map such that p#l � �. Then there exists a Borel family of
measures flxgx2X � MþðZÞ such that

(i) lxðZ n p�1ðxÞÞ ¼ 0 for �-a.e. x 2 X,
(ii) for every function f 2 L1lðZÞ there holdsð

Z
f ðzÞ dlðzÞ ¼

ð
X

ð
Z
f ðzÞ dlxðzÞ d�ðxÞ, (118)

(iii) if l is concentrated on E � Z, then lx is concentrated on p�1ðxÞ \ E for �-a.e. x 2 X:

Proof. Without loss of generality we can suppose that l 6¼ 0: By a rescaling argument we can
assume that jjljjMðZÞ ¼ 1 as well. Thanks to [12, Theorem 5.3.1] there exists a Borel family of

measures f~lxgx2X � MþðZÞ such that ~lxðZ n p�1ðxÞÞ ¼ 0 for ðp#lÞ-a.e. x 2 X, and that (118)
holds with lx and � replaced by ~lx and p#l, respectively, for every Borel function f : Z !
½0,1�: For all x 2 X set lx :¼ @ðp#lÞ

@� ðxÞ ~lx: We immediately obtain that lx 2 MþðZÞ is a family
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of Borel measures satisfying (i). Moreover, it is easy to check that lx satisfies (118) for every
Borel function f : Z ! ½0,1�: If f 2 L1lðZÞ, by (118) we get f 2 L1lxðZÞ for �-a.e. x 2 X, yielding
(ii). Finally, (iii) is implied by (ii). w

[A.3.] Properties of Bd and Ja,b, d

In this section we gather some of the properties of the functionals Bd and Ja,b, d introduced in
Section 2.2. The interested reader can find the proofs of such results in Proposition 2.6 and
Lemmas 4.5, 4.6 in [34].

Lemma A.4 (Properties of Bd). The functional Bd defined in (16) is non-negative, convex, one-
homogeneous and sequentially lower semi-continuous with respect to the weak
 topology on MX.
Moreover it satisfies the following properties:

(i) if Bdðq,m, lÞ < 1, then q � 0 and m, l � q, that is, there exist measurable maps v :
XX ! Rd, g : XX ! R such that m ¼ vq, l ¼ gq,

(ii) if q � 0 and m ¼ vq, l ¼ gq for some measurable v : XX ! Rd, g : XX ! R, then

Bdðq,m, lÞ ¼
ð
XX

Wdð1, v, gÞ dq ¼ 1
2

ð
XX

jvj2 þ d2g2
� �

dq: (119)

Lemma A.5 (Properties of Ja,b, d). Let a, b, d > 0. The functional Ja,b, d is non-negative, convex,
one-homogeneous and sequentially lower semi-continuous with respect to the weak
 topology on
MX. For ðq,m, lÞ 2 MX such that Ja,b, dðq,m, lÞ < 1 we have that

maxfakqkMðXXÞ, CkmkMðXX;R
dÞ, CklkMðXXÞg � Ja,b, dðq,m, lÞ (120)

where C :¼ minf2a, bminf1, d2gg. If in addition the sequence fðqn ,mn , lnÞgn in MX is such that
supn Ja, b, dðqn,mn, lnÞ < 1, then qn ¼ dt � qnt for some ðt 7!qnt Þ 2 Cwð½0, 1�;MþðXÞÞ and there
exists ðq,m, lÞ in DX with q ¼ dt � qt , ðt 7!qtÞ 2 Cwð½0, 1�;MþðXÞÞ, such that, up to subsequen-
ces, ðqn,mn, lnÞ*
ðq,m, lÞ weakly
 in MX and qnt ! qt narrowly in MðXÞ for every t 2 ½0, 1�:

[A.4.] Proof of Proposition 3.6

Remember that SV ¼ Cð½0, 1�;CVÞ by Proposition 3.5. Therefore, in order to prove that ðSV , dÞ
is complete and separable, it is sufficient to show that ðCV , dFÞ is complete and separable (see
Theorem 4.19 in [47]). Let us first prove that ðCV , dFÞ is complete. Hence, let qn ¼ hndcn 2 CV

be a Cauchy sequence. By (29) we have jhn � hmj � dFðqn, qmÞ for all m, n 2 N: Therefore hn !
h for some h � 0: If h¼ 0, by (29) we have dFðqn, 0Þ ¼ hn ! 0, showing that qn converges to
0 2 CV : Assume now that h> 0. Notice that jcn � cmj � 2 for sufficiently large m, n, otherwise
we could extract a subsequence (not relabelled) such that dFðqn, qmÞ ¼ hn þ hm ! 2h > 0 as
m, n ! 1, which contradicts qn being Cauchy. By (29) and the facts that hn ! h > 0 and that
qn is Cauchy, we get that cn is Cauchy, so that cn ! c 2 V: An application of (29) shows that
qn ! q :¼ hdc with respect to dF , concluding completeness. The fact that ðSV , dÞ is separable is

immediate: indeed the countable set C0
V :¼ hdc : h 2 ½0,1Þ \Q, c 2 V \Qd

n o
� CV is

dF-dense in CV , since V is the closure of a domain.

[A.5.] Comparison principle

In this section we recall a comparison principle for signed measure solutions of the continu-
ity equation.
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Proposition A.6 (Comparison principle). Let qt : ½0, 1� ! MðRdÞ be narrowly continuous and
v : ð0, 1Þ � Rd ! Rd, g : ð0, 1Þ � Rd ! R be measurable. Suppose that @tqt þ div ðvqtÞ ¼ gqt
holds in ð0, 1Þ � Rd in the sense of (14). Assume that q0 � 0, as well as (18, 20) andð1

0

ð
Rd

jvðt, xÞj þ jgðt, xÞj� �
djqtjðxÞ dt < 1: (121)

Then qt � 0 for all t 2 ½0, 1�:
A proof of the above proposition can be found in [10, Lemma 3.5]. We just point out that in

[10, Lemma 3.5] it is assumed that the narrowly continuous curve t 7!qt 2 MðRdÞ satisfiesÐ 1
0 jqtjðBÞ dt < 1 for all B � Rd compact. However this condition is always fulfilled, since qt
automatically satisfies supt2½0, 1� kqtkMðRdÞ < 1, as shown in [34, Proposition A.3]. Moreover the
statement of [10, Lemma 3.5] also requires that g is bounded: after carefully inspecting the proof,
we noticed that such assumption is not needed.

[A.6.] Property of convolutions

Here we recall a result on convolution of measures, which can be found in [10, Lemma 3.9].

Proposition A.7. Let p � 1, q 2 MþðRdÞ, E 2 MðRd,RmÞ and n be a convolution kernel on
Rd. Suppose that E is absolutely continuous with respect to q. Then,ð

Rd

E 
 n
q 
 n
����

����
p

ðq 
 nÞ dx �
ð
Rd

dE
dq

����
����
p

dq,

where dE=dq is the Radon–Nikodym derivative of E with respect to q.
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