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ABSTRACT. We give a multiplicity result for solutions of the Van der Waals-Cahn-Hilliard
two phase transition equation with volume constraints on a closed Riemannian manifold.
Our proof employs some results from the classical Lusternik–Schnirelman and Morse the-
ory, together with a technique, the so-called photography method, which allows us to ob-
tain lower bounds on the number of solutions in terms of topological invariants of the
underlying manifold. The setup for the photography method employs recent results from
Riemannian isoperimetry for small volumes.
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1. INTRODUCTION

The Van der Waals-Cahn-Hilliard two phase transition equation (2.1) has attracted the
interest of physicists, analysts, and geometers. This is a variational equation, obtained as
the Euler-Lagrange equation of the energy functional Eε defined in equation (2.6), which
has the classical form of a kinetic term plus a double well potential. Historically, the
energy Eε was already proposed in 1898 by Van der Waals in [vdW88] for the transition
liquid-vapor phase. In 1958, J. W. Cahn and J.E. Hilliard in [CH58] used it to model the
transition of phase in some binary alloy. Ginzburg-Landau used the same functional to
model ferromagnetic behaviour of materials [Pre09]. A quick search through the literature
shows the ubiquitous nature of this equation. For instance, for applications to Biology the
interested reader can consult the book of Murray [Mur09].
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From the theoretical physics viewpoint, various attempts were made to derive equation
(2.1) as limit of some microscopically consistent model of statistical mechanics, however,
this goal is yet to be completely achieved. Along this line, in the papers [GL97], [GL98] a
more complicated non-local equation is derived from a microscopical model whose prop-
erties have analogies to the properties of equation (2.1), and which constitutes a first order
approximation. Let us also mention the paper [BLO97], in which (2.1) is obtained as the
hydrodynamic limit of the Ginzburg Landau equation. For a complete account of statisti-
cal mechanics studies of these problems the interested reader can also consider the book
[Pre09].

A quite complete mathematical analysis of the positive functions realizing the minimum
ofEε was carried out in the work of Modica [Mod87]. Following this seminal paper, many
other authors gave results about the minimization of Eε, see for example [Bal90] for the
case of multicomponent mixtures etc.

In the present paper we consider a constrained variational problem for the functional
Eε. More precisely, we develop techniques to determine a family uε, ε P s0, ε0s, of critical
points of Eε under the volume constraint

ş

M
uε “ V , with V ą 0 fixed, i.e., each uε is

a solution of problem (2.1) below. It follows from [HT00, Theorem 1] that, under mild
conditions, uε converges as ε goes to 0, in an appropriate geometric measure theoretic
sense, to a characteristic function of a finite perimeter set. This set has reduced boundary
whose regular part is a constant mean curvature (CMC) smooth hypersurface, and it is
relatively open and dense into the boundary. However, in this limit multiplicity issues may
occur, and this affects the optimal regularity of the limit. It was only recently that a more
advanced regularity theory became available, thanks to the works [BW18], [BCW18] and
[CM18]. Under a different perspective, in [PR03] Pacard and Ritoré showed that every
smooth constant mean curvature boundary can be suitably approximated by solutions of
(2.1). These circumstances open new perspectives as to the search of CMC boundaries
using this PDE approach, which is the objective pursued in this research project. We will
address the limit procedure and the geometric consequences in a forthcoming paper.

The main results of the present paper are built upon a theory of multiplicity of solutions
for semi-linear variational elliptic equations based on topological and nonlinear methods,
along the lines of [BC91], [BCP91], [BC94], [Ben95], [BBM07]. More precisely, in order
to establish a lower bound on the number of solutions of problem 2.1 we employ a method
from Lyusternik–Schnirelman and Morse theory, that will be referred to as the photogra-
phy method, see Section 4 for details. Roughly speaking, a lower bound on the number
of solutions that belong to a suitable sublevel of the associated energy is given in terms
of topological invariants of the underlying manifold. A correspondence between the topo-
logical invariants of the energy sublevel and those of the underlying (finite-dimensional)
manifold is produced by two continuous maps going in both ways, and whose compo-
sition is a homotopy equivalence of the finite-dimensional manifold. The map from the
finite-dimensional manifold to the sublevel is a sort of photography map, which asso-
ciates to each point a bell-shaped function around the point. This map reproduces a copy
(the photography) of the underlying manifold inside the energy sublevel. The map go-
ing backwards, i.e., from the sublevel to the finite-dimensional manifold, is given by a
barycenter map, which associates to each function, a suitably defined point in the domain
around which most of the mass of the function is concentrated. This construction is in-
teresting when it can be made in such a way that the barycenter of a photography map is
the identity map, up to homotopies. In this case, by an elementary topological argument
the Lysternik–Schnirelman category and each Betti number takes on the energy sublevel
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a larger value than the value it takes on the domain manifold, and the desired estimate
follows from standard variational theories. We use the photography method to prove the
existence of multiple solutions of our constrained variational problem; such solutions come
in two classes: low energy solutions, and high energy solutions. By high energy solutions,
we mean that we do not have an a priori estimate of the energy. The result is obtained un-
der suitable assumptions on the potential function W associated to the problem, including
a certain growth condition at infinity, see Section 2 for details. It is important to observe
that such asymptotic growth assumption can be weakened significantly in order to obtain
the existence of low energy solutions. This will be discussed in Section 5.

The paper is organized as follows. Section 2 contains the formulation of the PDE prob-
lem, with all technical assumptions on the potential function needed for the variational
setup, and the statement of our main results. Section 4 is the core of the paper. After
recalling some generalities on Lusternik–Schnirelman theory and Morse theory, we give a
detailed description of the photography method, and its concrete application for the varia-
tional problem considered here. We prove the Palais–Smale condition, and we establish the
properties of the photography map and the barycenter map. As to the photography map,
our definition relies heavily on some geometric measure theoretical result proven by Mod-
ica in [Mod87] in the case of domains of Rn. For the development of our theory, we will
need a formulation of the results in the context of Riemannian manifolds, and the details
of this formulation are given in Section 3 and in Proposition 4.19. For the barycenter map,
we employ a non-intrinsic approach by resorting to Nash embedding theorem, and we use
heavily several extrinsic Riemannian geometry results obtained by the second author in
[Nar18]. In particular, our approach requires several technical results from isoperimetric
theory that establish an estimate on the diameter of isoperimetric regions of small volume.

2. FORMULATION OF THE PROBLEM AND MAIN RESULTS

In this section we will give the description of the nonlinear PDE problem, and we will
formulate the main result concerning the multiplicity of its solutions. Let us assume that
W : RÑ r0,`8r is a function of class C2 and that pM, gq is an N -dimensional compact
Riemannian manifold without boundary; precise assumptions on W will be given below.
For fixed ε, V ą 0, we are concerned with the existence of multiple pairs puε,V , λε,V q P
H1pMq ˆR such that the following equalities are satisfied:

(2.1)
´ε∆uε,V `

1
εW

1puε,V q “ λε,V ,
ż

M

uε,V dvg “ V.

As to the assumptions onW , we will consider a double well potential, i.e., a map satisfying
the following assumptions:

(a) W psq has two global minima, at s “ 0 and at s “ 1, and a unique local maximum
at s “ 1

2 ; moreover

(2.2) W p0q “W 1p0q “W p1q “W 1p1q “ 0; W 2p0q,W 2p1q ą 0;

(b) there exist positive constants A,B such that

(2.3)
ˇ

ˇW 1psq
ˇ

ˇ ď A`Bsp´1, for some p ă
2N

N ´ 2
“: 2˚, pp ă 8 if N “ 1, 2q;

(c) for some δ ą 0:

(2.4) W 1psq ą 0, @ s P s1, 1` δs ;
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(d) there exists c1, c2, t0 ą 0 such that:

(2.5) c1|t|
p1 ăW ptq ă c2|t|

p2 , when |t| ě t0,

and where 2 ă p1 ă 2̂, p1 ď p2 ď 2pp1 ´ 1q, with 2̂ “ 1
2 2˚ ` 1 ď 2˚ ` 1.

s

y

0 11
2

y =W (s)

FIGURE 1. The typical shape of the symmetric double well potential W
considered in Problem pPε,V q.

The solutions of Problem pPε,V q are the critical points of the following energy functional

Eε : H1pMq ÝÑ R,

(2.6) Eεpuq “
ε

2

ż

M

|∇u|2 dvg `
1

ε

ż

M

W
`

upxq
˘

dvg,

under the constraint
ż

M

udvg “ V.

Here, dvg denotes the volume density of the metric g.

Consider the following topological invariants of the manifold M . Given a topological
space X , let us recall the definition of some topological invariants of X :

‚ catpX q is the Lusternik–Schnirelman category of X , see Definition 4.1,
‚ βkpX q is the k-th Betti number1 of X . Similarly, if Y Ă X is a subspace,
βkpX ,Yq is the k-th Betti number of the pair;

‚ P1pX qq “
ř

k βkpX q; this is the value at 1 of the Poincaré polynomial of X (see
Definition 4.5).

The main result of the paper gives a lower bound on the number of solutions of Problem
pPε,V q in terms of these topological invariants of M .

Theorem 2.1. Let W satisfy assumptions (a), (b), (c) and (d) above. Then, there exists
V ˚ “ V ˚pM, gq ą 0 such that for every V P s0, V ˚r there exists ε˚ “ ε˚pV,M, gq ą
0, such that for every ε P s0, ε˚r, Problem pPε,V q admits at least catpMq ` 1 distinct
solutions. Moreover, if for some given V and ε as above all the solutions of Problem
pPε,V q are nondegenerate (i.e., they correspond to nondegenerate critical points of Eε)
then there are at least 2P1pMq ´ 1 solutions.

1Recall that the k-th Betti number of X is the dimension of the k-th Alexander-Spanier cohomology vector
space of X with coefficients inR
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The nondegeneracy assumption in the last part of the statement can be omitted, pro-
vided that a suitable notion of multiplicity of solutions is taken into consideration, see
Definition 4.8.

Notations and terminology. Given a Riemannian manifold pM, gq, we will denote by
volg the volume function of the metric g, by injM the injectivity radius of pM, gq (well
defined in the compact case), and by diamg the diameter function of sets induced by the
metric associated to g.

Acknowledgement. The second author is partially sponsored by Fapesp (2018/22938-4),
and by CNPq (302717/2017-0), Brazil. The third author is sponsored by Fapesp (Scholar-
ship 2017/13155-3). The fourth author is partially sponsored by Fapesp (2016/23746-6),
and by CNPq, Brazil. The authors wish to thank João Henrique Santos de Andrade for the
proof-reading of the final manuscript.

3. GEOMETRIC MEASURE THEORETICAL PRELIMINARIES

For the development of our theory, we will need a Riemannian counterpart of some
results that were originally obtained by Modica in [Mod87] in the case of domains in
Euclidean spaces. Although Modica’s main ideas carry over to the geometrical setup with-
out major difficulties, for the reader’s convenience we will give here a detailed proof of
[Mod87, Proposition 2] stated in our Riemannian context. Let us first recall some defini-
tions.

Definition 3.1. Let pM, gq be a Riemannian manifold of dimension n, U Ď M an open
subset, XcpUq the set of smooth vector fields with compact support on U . Given a function
u P L1pM, gq, define the variation of u by

(3.1) |Du|pMq :“ sup

"
ż

M

udivgpXqdvg : X P XcpMq, ||X||8 ď 1

*

,

where ||X||8 :“ sup t|Xp|g : p PMu and |Xp|g is the norm of the vector Xp in the
metric g on TpM . We say that a function u P L1pM, gq, has bounded variation, if
|Du|pMq ă 8 and we define the set of all functions of bounded variations on M by
BV pM, gq :“

 

u P L1pM, gq : |Du|pMq ă `8
(

. A function u P L1
locpMq has locally

bounded variation in M , if for each open set U ŤM ,

|Du|pUq :“ sup

"
ż

U

udivgpXqdvg : X P XcpUq, }X}8,g ď 1

*

ă 8,

and we define the set of all functions of locally bounded variations on M by BVlocpMq :“
tu P L1

locpMq : |Du|pUq ă `8, U ŤMu. So for any u P BV pM, gq, we can associate a
vector Radon measure on M ∇gu with total variation |∇gu|.

Definition 3.2. Let pM, gq be a Riemannian manifold of dimension n, U Ď M be an
open subset, XcpUq the set of smooth vector fields with compact support in U . Given
E Ă M measurable with respect to the Riemannian measure, the perimeter of E in U ,
PgpE,Uq P r0,`8s, is

(3.2) PgpE,Uq :“ sup

"
ż

U

χEdivgpXqdvg : X P XcpUq, ||X||8 ď 1

*

,

where ||X||8 :“ sup t|Xp|g : p PMu and |Xp|g is the norm of the vectorXp in the metric
g on TpM . If PgpE,Uq ă `8 for every open set U ĂĂ M , we call E a locally finite
perimeter set. Let us set PgpEq :“ PgpE,Mq. Finally, if PgpEq ă `8 we say that E is
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a set of finite perimeter. We will use also the following notation PgpE,F q :“ |∇χE |gpF q
for every Borel set F ĎM .

Proposition 3.3 (Riemannian version of [Mod87, Proposition 2, p. 133]). Let pMN , gq be
a complete smooth Riemannian manifold, letA and Ω be open subsets ofM with BA a non-
empty, compact, smooth hypersurface, and with HN´1

g pBA X BΩq “ 0. Assume that Ω is
compact with smooth boundary (possibly empty). Given real numbers α, β, with α ă β,
define the function v0 : Ω Ñ R by

v0pxq “

#

α, if x P A,
β, if x P ΩzA.

Then there is a family pvεqεą0 of Lipschitz continuous function on M such that vε con-
verges to v0 in L1pMq as εÑ 0`, α ď vε ď β for every ε ą 0, and

(i)
ş

Ω
vε dvg “

ş

Ω
v0 dvg “ α|AX Ω| ` β|ΩzA|, @ε ą 0,

(ii) lim sup
εÑ0`

Eεpvεq ď PgpA,Ωqσpα, βq, where σpα, βq “
şβ

α

a

2W psqds, and Eε is as

in (2.6).

Proof. Let us define the function dA as

dApxq “

#

´distpx, BAq if x P A

distpx, BAq if x R A.

dA(x) > 0dA(x) < 0

∂A

FIGURE 2. Level sets of a typical example of the signed distance func-
tion for a subset A ĎM .

It is well known (see for instance [Mod87, Lemma 4] that dA is Lipschitz continuous,
that |∇gdApxq|g “ 1 for almost all x PM and that, if St :“ tx PM : dApxq “ tu, then

(3.3) lim
tÑ0

HN´1
g pSt X Ωq “ HN´1

g pBAX Ωq.

Define the function q0 : RÑ R by

q0ptq “ α if t ă 0, q0ptq “ β if t ě 0,

and let v0pxq “ q0pdApxqq.
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Now, let us consider functions qε satisfying the ordinary differential equation:

(3.4)
ε

2
q1εptq

2 “
1

ε
W pqεptqq `

?
ε

2
;

these functions give an approximation of q0, and will be employed to define the desired
maps pvεq. Let us explain why this equation. We want approximate the two-valued function
q0 by a Lipschitz continuous function qε, which interpolates between α and β and, at the
same time, minimizes the one-dimensional Van der Walls-Allen-Cahn-Hilliard gradient
phase field energy functional

ż

R

„

ε

2
q12ε `

1

ε
W pqεq



dt.

The corresponding Euler equation is ε2q2ε “ W 1 pqεq; multiplying by q1ε and integrating,
we obtain ε2

2 q
12
ε “ W pqεq ` cε. To avoid the constant trivial solutions, the constant cε

cannot be set equal to zero. On the other hand, we need cε " ε2 to make qε fill the gap
between α and β as quickly as possible (note that q12ε ě 2cε{ε

2q), and for that reason we
choose cε “ ε3{2{2. To construct the functions qε, consider for a fix ε ą 0 the function

ψεptq “

ż t

α

ε
a

ε3{2 ` 2W psq
ds, α ď t ď β

where ηε “ ψεpβq.
Let rqε : r0, ηεs Ñ rα, βs denote the inverse of ψε, see Figure 3.

ηε

α

β
q̃ε

FIGURE 3. Graph of rqε.

Since W is non-negative,

0 ă ηε ď ε
1
4 pβ ´ αq;(3.5)

and, by the continuity of W , rqε is of class C1 and

εrq1εptq “
b

ε3{2 ` 2W prqεq,(3.6)

for 0 ď t ď ηε.
We now extend the definition of rqε to the entire real line by setting

rqεptq “ α for t ă 0, rqεptq “ β for t ą ηε,

so that rqε is a Lipschitz continuous function onR. Note that, for every t P R, rqεptq ď q0ptq
and rqε pt` ηεq ě q0ptq. Thus, there exists δε,A,V P r0, ηεs such that

ż

Ω

rqε
`

dA,V pxq ` δε,A,V
˘

dvg “

ż

Ω

q0pdA,V pxqqdvg “

ż

Ω

v0pxqdvg.(3.7)
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Finally, we define qεptq “ rqε pt` δε,A,V q for t P R and

vε,A,V pxq “ qεpdA,V pxqq “ rqε pdA,V pxq ` δε,A,V q ,

for x P Ω.
We now prove that vε,A,V Ñ v0 inL1. Notice that each vε,A,V is a Lipschitz continuous

function and α ď vε,A,V ď β.
By Lemma 4 of [Mod87] and the co-area formula for Lipschitz functions (see for in-

stance [Fed69])
ż

Ω

fpupxqq|∇gupxq|g dvg “

ż

R

fptqHN´1
g

`

tx P Ω : upxq “ tu
˘

dt,(3.8)

which holds for any Lebesgue measurable function f and any Lipschitz continuous func-
tion u, we get the following

ż

Ω

|vε,A,V ´ v0|dvg “

ż

Ω

|qεpdApxqq ´ q0pdApxqq| |∇gdApxq|gdvg

“

ż ηε´δε,A,V

´δε,A,V

|qεptq ´ q0ptq|HN´1
g pSt X Ωqdt

ď ηεpβ ´ αq sup
|t|ďηε

HN´1
g pSt X Ωq

ď ε
1
4 pβ ´ αq2CpM, gq,

where St “ tx PM : dApxq “ tu, and we obtain the last inequality applying (3.5). Then
we conclude that vε,A,V , converges to v0 in L1pΩq as εÑ 0` uniformly with respect to A
and V .

To prove (ii) we call
γε “ sup

|t|ďηε

HN´1
g pSt X Ωq .

We again employ the coarea formula (3.8), obtaining

Eε pvε,A,V q “

ż

R

„

ε

2
q1εptq

2 `
1

ε
W pqεptqq



HN´1
g pSt X Ωqdt

ď γε

ż ηε´δε,A,V

´δε,dA,V

„

ε

2
rq1εpt` δε,A,V q

2 `
1

ε
W prqεpt` δε,A,V qq



dt

ď γε

ż ηε

0

„

ε

2
rq1εptq

2 `
1

ε
W prqεptqq `

ε1{2

2



dt

and, recalling (3.6),

Eε pvε,A,V q ď γε

ż ηε

0

´

2W prqεptqq ` ε
3{2

¯
1
2

rq1εptqdt

“ γε

ż β

α

p2W psq ` ε3{2q
1
2 ds.

Since Lemma 4 of [Mod87] implies

lim
εÑ0`

γε “ HN´1
g pBAX Ωq “ P pA,Ωq,

we conclude that

lim sup
εÑ0`

Eε pvε,A,V q ď P pA,Ωq

ż β

α

?
2Wds “ P pA,Ωqσpα, βq,
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and the proposition is proved. �

Definition 3.4. Given sets A,Ω Ă M and a function v0 as in Proposition 3.3, a family
pvεqεą0 of functions as in the statement of the Proposition will be called a Modica approx-
imation of v0. When the set Ω is not specified, it will be implicitly assumed Ω “M .

4. THE PHOTOGRAPHY METHOD

In this section we discuss a technique, originally due to Benci, Cerami, and others, (see
[BCP91] or [BC94]) which is a twist over the classical Lusternik-Schnirelmann theory and
Morse theory. We will call this technique the photography method, for reasons that will be
clear along the way. A formal statement of the results generated by this method is given in
Theorems 4.4 and 4.9.

4.1. General setup. We start off by recalling a few basic definitions.

Definition 4.1. Let pX, τq be a topological space and Y Ď X be a closed subset. We define
the Lusternik-Schnirelmann category of Y in X , denoted by catXpY q, as the minimum
number k P N such that there exist U1, ...,Uk P τ , open subsets Ui Ď X contractible in
X satisfying Y Ď

Ť

i Ui. If no such finite family exists, then one sets catXpY q “ `8.
Furthermore, one defines catpXq “ catXpXq.

Definition 4.2. Let M be a C2-Hilbert manifold, J : MÑ R a C1 functional, and punq a
sequence in M. We say that un is a Palais–Smale sequence pa PS-sequence for shortq, if

(4.1) Jpunq Ñ c,

(4.2)
›

›dJpunq
›

›

T˚unM
Ñ 0.

Definition 4.3. Let M be a C2-Hilbert manifold, J : MÑ R a C1 functional. We say that
J satisfies the Palais-Smale condition, if every Palais-Smale sequence has a convergent
subsequence.

Classical results of Calculus of Variations relate the number of critical points in a sub-
level of the energy functional with suitable topological/homological/cohomological invari-
ants (category, Betti numbers, cuplength, etc.) of the sublevel. However, it is in principle
rather involved to have a good topological description of subleveles of an abstract func-
tional, which typically are the closure of arbitrary open subsets of infinite-dimensional
manifolds.

The photography method is a technique that allows us to estimate, when the functional
space consists of real-valued functions on a manifold, the value of the topological invariants
of the sublevels in terms of the analogous invariants associated to the underlying manifold.
The estimate is obtained by reproducing a copy of the underlying manifold in a given sub-
level (the photography); this is done by means of a continuous function which associates
to each point of the manifold, a map in the function spaces which concentrates its mass
around the given point. The technique works when such operation can be made in such a
way that the photography of the underlying manifold is sufficiently ample in the sublevel,
i.e., when the sublevel can be continuously retracted to the image of the photography. In
many situations, such retraction is obtained as a barycenter map. This is formalized using
continuous maps and homotopies, as follows.

Theorem 4.4. Let M be a C2-Hilbert manifold and let J : M Ñ R be a C1 functional.
Assume that
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(i) inf
 

Jpuq : u PM
(

ą ´8,
(ii) J satisfies pPSq condition,

(iii) there exist c ą inf J , a topological space X and two continuous maps

f : X Ñ Jc,

g : Jc Ñ X

such that g ˝ f is homotopic to the identity map of X .
Then, there are at least catpXq critical points in Jc. Furthermore, if M is contractible and
catpXq ą 1, there is at least one critical point u R Jc.

Proof. See [BCP91] or [BC94]. �

The above result can be made slightly more accurate (at least in the nondegenerate case)
by using Morse theory.

Definition 4.5. Let X be a topological space; the Poincare’s Polynomial PtpXq of X is
defined as the following power series in the variable t

(4.3) PtpXq “
8
ÿ

n“0

βnpXq t
n.

4.6. Remark. If X is a compact manifold, we have that HnpXq is a finite dimensional
vector space and the formal series (4.3) is actually a polynomial.

In the following definition, we give the notion of Morse index of a critical point, which
is necessary in our treatment to establish a relation between the Poincare’s polynomial
PtpMq and the number of solutions to the Euler equation associated to a given functional
J . In this work we use the approach to Morse theory developed in [Ben95], which is
suitable in problems arising from PDE’s.

Definition 4.7 (Morse Index). Let M be a C2-Hilbert manifold, J : M Ñ R a C1 func-
tional and let u PM an isolated critical point of J at level2 c P R. We denote by itpuq the
following formal power series in t

(4.4) itpuq “
`8
ÿ

k“0

βk
`

Jc, Jcztuu
˘

tk,

where Jc “
 

v PM : Jpvq ď c
(

. We call itpuq the (polynomial) Morse index of u. The
number i1puq is called the multiplicity of u.

If J is of class C2 in a neighborhood of u and J2rus is not degenerate, we say that u is
nondegenerate. In this case we have that

(4.5) itpuq “ tµpuq,

where µpuq is the (numerical) Morse index of u, i.e., the dimension of the maximal
subspace on which the bilinear form J2rusp¨, ¨q is negative-definite. This fact suggests the
following definition.

Definition 4.8. Let M be a C2-Hilbert manifold, J : M Ñ R be a C1 functional and
let u P M be an isolated critical point of J at level c. We say that u is ptopologicallyq
nondegenerate, if itpuq “ tµpuq, for some natural number µpuq P N.

2This means that Jpuq “ c, dJpuq “ 0, and there exists a neighborhood U of u in M such that the only
critical critical point of J contained in U coincide with u.
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Theorem 4.9. Under assumptions (i), (ii), and (iii) of Theorem 4.4, there exists c1 ą c
such that one of the two following conditions hold:

(1) Jc1 contains infinitely many critical points.
(2) Jc contains P1pXq critical points and Jc1zJc, contains P1pXq´ 1 critical points

if counted with their multiplicity. More exactly we have the following relation

(4.6)
ÿ

uPCritpJc1 q

itpuq “ PtpXq ` trPtpXq ´ 1s ` p1` tqQptq,

where Qptq is a polynomial with nonnegative integer coefficients, and CritpJc1q
denotes the set of critical points of J in the sublevel Jc1 .

In particular, if all the critical points are nondegenerate there are at least P1pXq critical
points with energy less or equal than c, and at least P1pXq´1 with energy between c and
c1.

4.10. Remark. If we count the critical points with their multiplicity, then by Theorem 4.9
follows that there are at least 2P1pXq ´ 1 critical points. Namely, when the critical points
are isolated, the result follows from the Morse’s relation (4.6), otherwise there are infinitely
many of them.

4.11. Remark. Given topological spaces X and Y , we say that Y is homotopically super-
jacent to X if there exist continuous maps f : X Ñ Y and g : Y Ñ X such that g ˝ f
is homotopic to the identity map of X . Thus, assumption (iii) of Theorem 4.4 (and of
Theorem 4.9) says that the sublevel Jc is homotopically sujacent to X . When Y is homo-
topically superjacent toX , then the induced map f˚ in homotopy or homology is injective,
which implies that catpXq ď catpY q, and that for all n P N, βnpXq ď βnpY q. This
is the reason why the estimates on the number of critical points in Theorem 4.4 and in
Theorem 4.9 are given in terms of the topological invariants of X .

4.2. The Palais–Smale condition. First of all we need to prove the Palais–Smale condi-
tion for the functional Eε :

Proposition 4.12. For every ε, V ą 0, the functional Eε satisfies the Palais-Smale condi-
tion on MV .

Proof. Assume that punq is a Palais-Smale sequence for Eε in MV ; by density, we can
suppose that un is continuous for all n. Observe that Equations (4.1) and (4.2) written
explicitly are

(4.7)
ε2

2

ż

M

|∇un|2 dx`

ż

M

W punpxqq dxÑ c

(4.8) ´ ε2∆un `W
1punq “ λn ` Tn,

where pλnqn is some sequence in R, and Tn Ñ 0 strongly in H´1pMq. Then, by (4.7)
and using the assumptions (2.2), (2.3) we have

c` 1 ě
ε2

2

ż

|∇un|2 dx`

ż

W punpxqqdx

ě
ε2

2

ż

|∇un|2 dx´ k

ż

un

“
ε2

2

ż

|∇un|2 dx´ kV.
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Hence, |∇un| is bounded in L2. On the other hand, from (4.7) we deduce that
ş

M
W punq

is bounded. By assumption (d) in Section 2, limtÑ˘8W ptq “ `8, and with this we
obtain that min

M
|un| is also a bounded sequence. Thus, un is bounded in H1pMq, so that

there exists u P H1pMq such that, up to a subsequence, un á u. We have to show that
un Ñ u strongly in MV

ε,c.
By (2.3), for some p ă 2N

N´2 , the map u ÞÑ W 1puq of left composition with W 1 gives a
bounded nonlinear operator from LppMq to LqpMq, with 1 1

p `
1
q “ 1; thus q ą 2N

N`2 ě 2.
By the Sobolev embedding theorem, the inclusionH1pMq ãÑ LppMq is compact, and thus
we get a compact nonlinear operator H1pMq Q u ÞÑ W 1puq P LqpMq. This implies that,
up to subsequences W 1punq Ñ W 1puq strongly in LqpMq Ă H´1pMq. Multiplying (4.8)
by un, integrating by parts the corresponding identity, and using the constraint

ş

un “ V ,
we get that λn is a bounded sequence. Whence, up to a subsequence we can assume
λn Ñ λ.

Now, recalling that ∆´1 : H´1pMq Ñ H1pMq is an isomorphism, we obtain that

un “
1

ε2
p´∆´1q

“

λn ´W
1punq ` Tn

‰

is a convergent sequence. �

4.3. The photography method in our concrete setting. In this section we will define the
objects needed for the setup and the proof of Theorems 4.4 and 4.9; an analysis of these
objects will be carried out in the following sections.

The objects M, J , X , c, f : X Ñ Jc and g : Jc Ñ X that appear in the statement of
Theorem 4.4 in our concrete setting are described below.

‚ M “MV , where

MV “

"

u P H1pMq :

ż

M

upxqdvg “ V

*

,

‚ J “ Eε|MV , where

Eεpuq “
ε

2

ż

M

|∇u|2 dvg `
1

ε

ż

M

W pupxqq dvg,

‚ X “M , f “ Φε,V : M Ñ EcεXM
V “: Ecε , where c “ cpε, V q “ σcNV

N´1
N `δ

where

σ “ σp0, 1q “

ż 1

0

a

2W psqds,

cN is the Euclidean isoperimetric constant, i.e., the best constant in the Euclidean
isoperimetric inequality PRN pEq ě cNVRN pEq

N´1
N , δ ą 0 is a suitable small

constant that will be specified later (Corollary 4.28), and Φε,V : M Ñ Ecε XMV

is defined by:

(4.9) Φε,V px0qpxq :“ Uε,V,x0
pxq ,

where Uε,V,x0
: M Ñ R is the function obtained in Proposition 3.3 assuming

Ω :“ M and A :“ MzBgpx0, rV q where Bgpx0, rV q is the metric ball of vol-
ume volgpBgpx0, rV qq “ V . We observe that Uε,V,x0

: M Ñ R is a Lipschitz
continuous function with the following properties:
‚ as it is easy to see, by construction we always have

supp pUε,V,x0
q Ť Bgpx0, rV ` δε,MzBgpx0,rV qq,
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where δε,MzBgpx0,rV q ą 0 is defined as in Proposition 3.3. Then for small
V ! 1 and small ε ! 1 we have that for every x0 it holds

Bgpx0, rV ` δε,MzBgpx0,rV qq Ť Bg

ˆ

x0,
injM

2

˙

.

‚ the family
`

Uε,V,x0

˘

εą0
is a Modica approximation (see Definition 3.4) of the

characteristic function of the geodesic ball Bgpx0, rV q of volume V . Here,
for V P s0, Vx0

r with:

C1 ď Vx0 “ volg
`

Bgpx0,
1
2 injM q

˘

ď C2pM, gq,

where C1 :“ volgb´ pBpMnb´ ,gb´ q
p0, 1

2 injM qq and

C2 :“ volgb` pBpMnb` ,gb` q
p0, 1

2 injM qq,

pMn
k , gkq is the simply connected space form of constant sectional curvature k P

R, and b´, b` P R are such that b´ ď Secgpσ, xq ď b` for every 2-dimensional
subspace σ ď TxM and for every x P M , with Secgpσ, xq being the sectional
curvature of the 2-dimensional subspace σ with respect to metric g. The existence
of the functions Ux0,V,ε is proved in Proposition 3.3.

x0

x1x2
M2

Φε,V (x0)

Φε,V (x1)Φε,V (x2)

FIGURE 4. The image of the photography map is a (photography) of
the underlying (finite-dimensional) manifold in the infinite dimensional
functional manifold H1pMq.

‚ assuming that the Riemannian manifold M is isometrically embedded in some
Euclidean space Rl (Nash embedding theorem) ĝ :“ π ˝ β : Ecε XMV Ñ M ,
where π is the nearest point projection given in Definition 4.14, the barycenter
map β, β1 : Ecε XMV Ñ Rl,

(4.10) β1puq :“

ş

M
xupxqdvgpxq

ş

M
upxqdvgpxq

.

We will next show that the above objects are well defined, and that they satisfy the assump-
tions required in the photography method.

4.4. Continuity of the photography map. This is the map f that reproduces a copy of
the finite-dimensional ambient manifold MN inside the infinite functional space which is
the domain of the energy functional. For the definition of f , see Section 4.3, formula (4.9).

Let us start by looking more closely at its definition and by proving the continuity of
the photography map.
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Proposition 4.13. There exists V1 “ V1pM, gq ą 0 such that for every 0 ă V ă V1

and for every δ ą 0 there exists ε1pV, δq ą 0 such that for every ε P s0, ε1r we have that
Φε,V carries M into the sublevel Ecε XMV , where c “ σcNV

N´1
N ` δ, and Φε,V : M Ñ

Ecε XMV is a continuous function.

Proof. Recall from Section Section 4.3 the map Φε,V at some point x0 P M is defined
in terms of Modica approximations for the characteristic functions of balls centered at x0

with volume equal to V , see formula (4.9). By (ii) in Proposition 3.3 and the asymptotic
expansion for small volumes of the area of the geodesic balls with respect to the enclosed
volume, it follows that EεpΦε,V px0qq À σcNV

N´1
N as ε Ñ 0, uniformly with respect to

x0 and V . Using this and the compactness of M , one proves easily that for any fixed small
enough V ă V1 it holds EεpΦε,V px0qq Ñ σcNV

N´1
N as εÑ 0, uniformly with respect to

x0. So the Proposition is proved if we show that Φε,V is continuous. To this aim, we will
first prove the following estimate:

(4.11) ||Φε,V px0q ´ Φε,V px1q||W 1,2pMq ď C
“

||hx0
´ hx1

||8 ` |δε,x0,V ´ δε,x1,V |
‰

` C
“

||∇hx0
´∇hx1

||8
‰

,

where hx “ ∇dgpx, ¨q (see Figure 5), C “ Cpε, V,M, g,W
ˇ

ˇ

r0,1s
q ą 0 and δε,x0,V :“

δε,MzBgpx0,rV q, where Bgpx0, rV q is the small geodesic ball enclosing volume V , see
formula (3.7). It is worth to notice here that for small volumes V ! 1, we have that
BBgpx0, rV q is smooth. The desired continuity property of Φε,V will follow from this
inequality,

∇d(x0, ·)∇d(x1, ·)

x0 x1

FIGURE 5. Continuity of the photography map, ∇dgpx, ¨q “: hxp¨q.

observing that:

‚ ||hx0
´ hx1

||C1pMq Ñ 0, as x1 Ñ x0;
‚ x ÞÑ δε,x,V is a C1 map, as it can be seen easily applying the implicit function

theorem in (3.7).
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Thus, |δε,x0,V ´ δε,x1,V | Ñ 0 as x0 Ñ x1 for any fixed ε, V ą 0. In order to prove (4.11),
we proceed as follows:

||Φε,V px0q ´ Φε,V px1q||
2
W 1,2pMq “

ż

M

|φ1εphx0,V pxq ` δε,x0,V q∇hx0,V pxq ´ φ
1
εphx1,V pxq ` δx1

q∇hx1,V pxq|
2 dvg

`

ż

M

|φεphx0,V pxq ` δε,x1,V q ´ φεphx1,V pxq ` δx1
q|2 dvg

ď 2}φ1ε}
2
8

ż

|∇hx0pxq ´∇hx1pxq|
2 dvg

` 2}φ1ε}
2
8

ż

p|hx0
pxq ´ hx1

pxq|2 ` |δε,hx1,V
´ δε,hx0,V

q|2qdvg

(3.6)
ď C

`

}∇hx0
´∇hx1

}28 ` }hx0
´ hx1

}28 ` |δε,hx1,V
´ δε,hx0,V

q|2
˘

,

where

C “ Cpε, V,M, g,W |r0,1sq “ 2}φ1ε}
2
8VolgpBgp¨,

injM
2
qq

ě C˚˚pε,W |r0,1sqC
˚pM, gq ą 0,

since 2}φ1ε}
2
8 “ C˚˚pε,W |r0,1sq ą 0, being φ1ε the solution of the one-dimensional

problem. From this estimate the continuity of Φε,V follows easily and the theorem is
proved. �

4.5. The barycenter map. In this section we will show that the baricenter map (4.10) is
well-defined and continuous. We start with the following:

Definition 4.14. Given an isometric embedding i : pMN , gq Ñ pRl, ξq. We define the
normal injectivity radius ripMq as the largest nonnegative number r such that the normal
exponential expνM : νM Ñ Rl is a diffeomorphism of a neighborhood of the zero section
of νM into Mr where Mr :“ tx P Rl : dξpx,Mq ă ru Ď Rl and νM denotes the normal
bundle induced by i on M . Let us denote by π : MripMq Ñ M the canonical projection
associated with the canonical projection rπ : νM ÑM .

4.15. Remark. Notice that M is a retract of MripMq, and ripMq ą 0, since M is compact.

For the reader’s convenience, we give a proof of the following simple result.

Lemma 4.16. The map β1 : H1pMqzt0u Ñ Rl defined in (4.10) is continuous. In partic-
ular, their restrictions to MV are continuous for every V P R.

Proof. Let us prove the continuity of β1.
For all w P H1pMq, set µw :“

ş

M
wpxqdvgpxq. We have the following estimate

ˇ

ˇ

ˇ

ˇ

ş

M
xupxqdvgpxq

ş

M
upxqdvgpxq

´

ş

M
xvpxqdvgpxq

ş

M
vpxqdvgpxq

ˇ

ˇ

ˇ

ˇ

ď
||x||8
µu

ż

M

ˇ

ˇ

ˇ

ˇ

u´
µu
µv
v

ˇ

ˇ

ˇ

ˇ

dvg(4.12)

where ||x||8 :“ supxPMt|x|Rlu “ Cpiq ă `8, because M is compact. Here |x|Rl is
the Euclidean length of the position vector and i is the isometric embedding of M in Rl.
It is easy to show that the right-hand side of (4.12) goes to zero when v Ñ u in L2pMq
(Lebesgue’s dominated convergence, Hölder inequality). �

4.17. Remark. In order to apply the abstract theory of Theorems 4.4, 4.9, in our concrete
setting, a crucial point to be shown is that for fixed small ε, V ą 0 and for c close to the
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minimum ofEε in MV , the image βpEcεXMV q is contained in a tubular neighborhoodMr

of M in Rl, whose thinckness r ą 0 is small enough to make the nearest point projection
Mr Ñ M well-defined and continuous. The proof of this fact is rather involved, and
it requires notions and nontrivial results about the isoperimetric problem in Riemannian
manifolds.

We recall here a very classical notion of measure theory that will be useful in the proof
of Proposition 4.19.

Definition 4.18. Let u, punqn be measurable functions on a measure space pX,Σ, µq. The
sequence fn is said to converge globally in measure to u, if for every ε ą 0, it holds

lim
nÑ8

µ
 

x P X : |upxq ´ unpxq| ě ε
(

“ 0.

We need a Riemannian formulation of another result from [Mod87].

Proposition 4.19 (Riemannian version of [Mod87, Prop. 1, Prop. 3]). Under assumption
(d) in Section 2 for the potential W (see (2.5)), assume also that there exist constants
E˚ ą 0, t0 ą 0, 0 ă c1 ă c2, 2 ă p1 ă 2̂, p1 ď p2 ď 2pp1 ´ 1q, with 2̂ :“ 2˚

2 ` 1, a
sequence of positive numbers such that εi Ñ 0`, and a sequence of functions uεi satisfying

(4.13) Eεipuεiq ď E˚,@i P N.

Then, there exists a subsequence still denoted pεiqi such that puεiqi converges to a function
u8 P BV pMq in L1pMq. Moreover, there exists a finite perimeter set Ω such that u8 “
χΩ such that |Du8|pMq “

ş

M
|Du8| ď

E˚

σ , where σ “
ş1

0

a

2W psqds.

Proof. Let φ be the primitive function of p2W q
1
2 with φp0q “ 0, i.e.,

φptq “

ż t

0

p2W psqq
1
2 ds,

and set vεipxq :“ φ puεipxqq. We claim that the family pvεiqεią0 is bounded in L1pMq. In
fact if (2.5) holds, it is not restrictive to assume that t0 ě 1, and we easily have that

φptq “

ż t0

0

p2W psqq
1
2 ds`

ż t

t0

p2W psqq
1
2 ds

ď

ż t0

0

p2W psqq
1
2 ds` 2

?
2c2

p2 ` 2
t
p2
2 `1, @t ě t0.

Moreover, p2 ď 2pp1 ´ 1q implies that p2

2 ` 1 ď p1; hence

φptq ď c13 ` c
1
4W ptq, @t ě 0,

for some real constants c13 and c14. One can prove an analogous estimate for t ď 0, so we
get

|φptq| ď c3 ` c4W ptq, @t P R,

for some real constants c3 and c4. Then,
ż

M

|vεi |dvg ď c3 VolgpMq ` c4

ż

M

W puεipxqq dvg

ď c3 VolgpMq ` c4εiEεi puεiq ,

thus
ż

M

|vεi |dvg ď c3 VolgpMq ` rc4E
˚,@i P N,
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for some real constant rc4, and from this we conclude that pvεiq is a bounded sequence in
L1pMq. By the chain rule for BV-functions see Theorem 3.96 of [AFP00] we obtain easily
that

|∇vεi | “ |φ1puεiq∇uεi | “ p2W puεiqq
1
2 |∇uεi |.

From the elementary inequality ab ď ηa2

2 ` b2

2η valid for every η ą 0 and a, b P R but
nontrivial only when a ¨ b P s0,`8r, putting η :“ εi, a “ |∇uεi |, b “

a

2W puεiq we get
ż

M

|∇vεi |dvg ď

ż

M

ˆ

1

2
εi|∇uεi |2 `

1

εi
W puεiq

˙

dvg

ď Eεipuεiq
(4.13)
ď E˚.(4.14)

Applying the compactness theorem for bounded variation functions, (cf. [AFP00, The-
orem 3.23] or [MPPP07, Proposition 1.4]), there exists a subsequence also denoted by
pvεiqi and an a.e. pointwise limit function v8 P BV pM, gq that is the L1pM, gq limit of
the vεi , which satisfies

|Dv8|pMq ď lim inf
iÑ8

||∇vεi ||1,M ď E˚,

where as customarily we denote byDv8 the Radon measure representing the distributional
derivative of v8 and by |Dv8| is its total variation. We now return to the study of the
original functions uεi . Let ψ be the inverse function of φ which always exists because,
by our assumption on the double well potential W , φptq is monotone increasing; define
u8pxq “ ψ pv8pxqq. By (2.5) then φ1ptq ě

?
2c1t

p1{2
0 for every |t| ě t0; hence ψ is

Lipschitz continuous on s´8, φ p´t0qs˚
Ť

rφ pt0q ,`8r and so uniformly continuous on the
entire real line. From this combined with Theorem 2 of [BJ61] we infer that uεi “ ψ ˝ vεi
converges in measure on M to u8 as εi Ñ 0` so a fortiori also uεi converges pointwise
a.e. on M to u8 as εi Ñ 0`; since

ż

M

up1
εi dvg ď

ż

M

tp1

0 dvg `
1

c1

ż

M

W puεipxqq dvg

ď tp1

0 VolgpMq `
1

c1
εiEεi puεiq

ď tp1

0 VolgpMq `
εi
c1
E˚,

we conclude that puεiq is bounded in Lp1pMq with p1 ě 2. This implies (via Hölder
inequality) uniform integrability of the sequence puεiqi. Hence, by the classical theorem of
Vitali (compare Theorem 2.18 of [ADPM11] or Theorem 4.5.4 of [Bog07]), we know that
uniform integrability and convergence in measure (which implies pointwise convergence
a.e.) that puεiq actually converges in L1pMq to u8. The remaining part of the proof goes
along the same lines of the proof of [Mod87, Proposition 1]. In fact, by Fatou’s Lemma
and (4.13) it holds

0 ď

ż

M

W pu8qdvg ď lim inf
iÑ8

ż

M

W puεiqdvg ď lim inf
iÑ8

εiEεi

(4.13)
ď lim inf

iÑ8
εiE

˚ “ 0.

The last chain of inequalities shows that W pu8q “ 0 a.e. on M which in turn implies
that u8pMq “ t0, 1u a.e. Moreover by Theorem 3.96 of [AFP00] and formula p3.90q of
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[AFP00] the sets u´1
8 p0q and u´1

8 p1q are of finite perimeter in M , since by the Fleming-
Rishel formula

(4.15) HN´1
g pB˚tu´1

8 p1quq “ |Du8|pMq “

ż

M

|Du8| “
1

σ

ż

M

|Dv8|
(4.14)
ď

E˚

σ
,

where σ “ σp0, 1q. This yields the proof of Proposition 4.19. �

For our purposes we need the following classical definition.

Definition 4.20. The isoperimetric profile function of pMN , gq por briefly, the isoperimet-
ric profileq IpM,gq : r0, V pMqr Ñ r0,`8r, is defined by

IM pV q :“ inf tAgpBΩq : Ω P τM , VgpΩq “ V u ,

where τM denotes the set of relatively compact open subsets of M with smooth boundary,
where Ag is the pN ´ 1q-volume form of BΩ induced by g.

Lemma 4.21 (Berard-Meyer). If pM, gq is compact, then

IM pV q „ cNV
N´1
N , as V Ñ 0.

Lemma 4.22. Let pMn, gq be a compact Riemannian manifold. For every 1 ą η ą 0,
V P s0, VgpMqr, δ ą 0 there exists ε0 “ ε0pg,W, η, V, δq ą 0 such that for every
0 ă ε ă ε0 and for any u P Ecε XMV with c “ cpW,V, δq “ σIM pV q ` δ ą 0,
there exists ΩV,u a finite perimeter set of volume V such that ||u´ χΩV,u ||L1pMq ď η and
PgpΩV,uq ď c

σ .

Proof. We argue by contradiction. Suppose that the conclusion does not hold. Then there
exist 1 ą η ą 0, V P s0, VgpMqr, δ ą 0 a sequence εi Ñ 0, uεi P E

c
εi XMV such that

for every ΩV finite perimeter set of volume V we have

(4.16) ||uεi ´ χΩV ||L1pMq ą η ą 0.

If we assume furthermore that holds (2.5) we can apply Proposition 4.19 with E˚ :“ c.
This provides a subsequence still denoted pεiqi, a finite perimeter set ΩV of volume V such
that PgpΩV,puεi qiq ď

c
σ and

||uεi ´ χΩV,puεi qi
||L1pMq Ñ 0, as iÑ `8.

This last equation contradicts (4.16) and in turn completes the proof of the lemma. �

Corollary 4.23. Let pMn, gq be a compact Riemannian manifold. For every 1 ą η ą 0,
V P s0, VgpMqr, δ ą 0 there exists ε0 “ ε0pg,W, η, V, δq ą 0 such that for every
0 ă ε ă ε0 and for any u P Ecε XMV with c “ cpW,V, δq “ σcNV

N´1
N ` δ ą 0

there exists ΩV,u a finite perimeter set of volume V such that ||u´ χΩV,u ||L1pMq ď η and
PgpΩV,uq ď c

σ .

Observe that we can choose δ sufficiently small and refine the result of Lemma 4.21
in order to have that Ωu,V as above is actually an isoperimetric region; this yields the
following concentration lemma for functions with energy close to the minimum energy
level.

Lemma 4.24. Let pMn, gq be a compact Riemannian manifold. For every 1 ą η ą 0,
V P s0, VgpMqr, there exist δ0 “ δ0pη, V,M

n, g,W q ą 0 such that for every 0 ă δ ă δ0
there exists ε0 “ ε0pg,W, η, V, δq ą 0 such that for every 0 ă ε ă ε0 and for any
u P Ecε XMV with c “ cpW,V, δq “ σIM pV q ` δ there exists ΩV,u isoperimetric region
of volume V such that ||u´ χΩV,u ||L1pMq ď η.
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Proof. We argue by contradiction. Suppose that the conclusion does not hold. Then there
exist 1 ą η ą 0, V P s0, VgpMqr, a sequence δi Ñ 0` a second sequence εi Ñ 0`, a
sequence of functions puεiqi satisfying uεi P E

ci“cpV,δiq“σIM pV q`δi
εi XMV such that for

every ΩV isoperimetric region of volume V we have

(4.17) ||uεi ´ χΩV ||L1pMq ą η ą 0.

If we assume furthermore that (2.5) holds, we can apply Proposition 4.19 with E˚ :“ c1.
We can also use the more sophisticated a priori estimates on the Lagrange multiplier as in
Proposition 5.3 to show that uεi are uniformly bounded with respect to εi. This provides
a subsequence, still denoted by pεiqi, a finite perimeter set Ω

p1q
V of volume V such that

PgpΩp1qV q ď c1
σ and

(4.18) ||uεi ´ χΩ
p1q
V

||L1pMq ÝÑ 0, as iÑ `8.

To this subsequence we apply again Proposition 4.19, now with E˚ :“ c2. In this way we
obtain again a new subsequence, still denoted pεiqi, a finite perimeter set Ω

p2q
V of volume

V such that PgpΩp2qV q ď c2{σ and

(4.19) ||uεi ´ χΩ
p2q
V

||L1pMq Ñ 0, as iÑ `8.

The sequence appearing in (4.19) being a subsequence of the sequence appearing in (4.18)
readily gives that Ω

p2q
V “ Ω

p1q
V by the uniqueness of the limit. Continuing this process and

applying a standard diagonal argument we get the existence of a subsequence still denoted
pεiqi, a finite perimeter set ΩV “ Ω

p1q
V “ Ω

p2q
V “ Ω

p3q
V “ ..., of volume V such that

(4.20) PgpΩV q ď
ci
σ
,@i P N,

and

(4.21) ||uεi ´ χΩV ||L1pMq Ñ 0, as iÑ `8.

From (4.20) we conclude immediately that PgpΩV q ď IM pV q and so a fortiori we can as-
sert that ΩV is an isoperimetric region of volume V . This last fact combined with equation
(4.21) contradicts (4.17) and in turn completes the proof of the lemma. �

Corollary 4.25. Let pMn, gq be a compact Riemannian manifold. For every η P s0, 1r,
V P s0, VgpMqr, there exist δ0 “ δ0pη, V,M

n, g,W q ą 0 such that for every δ P s0, δ0r
there exists ε0 “ ε0pg,W, η, V, δq ą 0 such that for every ε P s0, ε0r and for any u P
Ecε XMV with c “ cpW,V, δq “ σcNV

N´1
N ` δ there exists ΩV,u isoperimetric region of

volume V such that ||u´ χΩV,u ||L1pMq ď η.

Lemma 4.26 ([MJ00, Theorem 2.2] and [NOA18, Theorem 3.0]). Let pMn, gq be a com-
pact Riemannian manifold. There exist two positive constants µ˚ “ µ˚pMq ą 0 and
v˚ “ v˚pMq ą 0 such that whenever Ω Ď M is an isoperimetric region of volume
0 ď v ď v˚ it holds that

diamgpΩq ď µ˚v
1
n .

Lemma 4.27. For any η P s0, 1r sufficiently small and any r P
‰

0, 1
2 injM

“

there exists
V2 “ V2pM

n, η, rq ą 0 s.t. for all V P s0, V2s there exists δ0 “ δ0pη, V,M
n, g,W q ą 0

such that for every δ P s0, δ0r there exists ε2 “ ε2pg,W, η, V, δq ą 0 such that for every
ε P s0, ε2r and for any u P Ecε XMV with c “ cpW,V, δq “ σIM pV q ` δ there exists
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ΩV,u isoperimetric region of volume V such that ||u ´ χΩV,u ||L1pMq ď η. In particular
for any rη P s0, 1r pclose to 1q there exists pu PM such that

(4.22)
ż

Bgppu,r{2q

|u|dvg ě rηV.

Proof. By [NOA18, Lemma 4.9] we know that there exists v˚0 :“ v˚0 pn, k, injM , rq ą 0
such that for every isoperimetric region Ω of volume V smaller than V ˚0 is contained in a
geodesic ball of radius r{2. Furthermore, by Lemma 4.24 we get

||u´ χΩV,u ||L1pMq ď η.

From this it is straightforward to deduce the theorem. To see the last fact, if we suppose
that for all p P M we have that p1 ´ ηqV ď

ş

Bgpp,r{2q
u ď V , for some η. But assuming

that holds (2.5), and by Lemma 4.24 for all isoperimetric region ΩV of volume V ď V0

}u´ χΩV }L1pMq ą η ą 0.

By lemma 4.26 and for V small, exist pΩV such that ΩV Ă BgppΩV , r{2q, and satisfies

p1´ ηqV ď

ż

BgppΩV
,r{2q

u ď V “

ż

BgppΩV
,r{2q

χΩV

then we get the contradiction. �

Corollary 4.28. For any η P s0, 1r sufficiently small and r P
‰

0, 1
2 injM

“

there exists V3 “

V3pn, k, v0, η, rq ą 0 such that for all V P s0, V3s there exist δ0 “ δ0pη, V,M
n, g,W q ą 0

such that for every δ P s0, δ0r there exists ε3 “ ε3pg,W, η, V, δq ą 0 such that for every
ε P s0, ε3r and for any u P Ecε XMV with c “ cpW,V, δq “ σcNV

N´1
N ` δ there exists

ΩV,u isoperimetric region of volume V such that

||u´ χΩV,u ||L1pMq ď η.

In particular for any rη P s0, 1r sufficiently close to 1 there exists pu PM with

(4.23)
ż

Bgppu,r{2q

|u|dvg ě rηV.

Let us denote by diamRLpMq the diameter of M as subset of RL.

Lemma 4.29. For r P
‰

0, 1
2 injM

“

there exists V4 “ V4pn, k, v0, injM , r,diamRLpMqq ą
0 such that for every 0 ă V ă V4, there exists ε4 “ ε4pV q ą 0, 0 ă ε ă ε4, and every
u PMV X E

c
ε we have βpuq PMr.

Proof. Define ρpupxqq :“ |upxq|
ş

M
|upxq|dvg

. By (4.23) for every V P s0, V3rwe obtain
ş

Bgppu,r{2q
ρpupxqqdvg ě

ηV , where 0 ă η ă 1 will be chosen later. From this last inequality we deduce

|βpuq ´ pu| “

ˇ

ˇ

ˇ

ˇ

ż

M

px´ puqρpupxqqdvg

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Bgppu,r{2q

px´ puqρpupxqqdvg

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

MzBgppu,r{2q

px´ puqρpupxqqdvg

ˇ

ˇ

ˇ

ˇ

ˇ

ď
r

2
` 2Dp1´ ηq,



VAN DER WAALS-CAHN-HILLIARD EQUATION WITH VOLUME CONSTRAINT 21

where D :“ diamRLpMq. Choosing η close to 1 such that 2Dp1 ´ ηq ă r
2 and applying

Lemma 4.27 we conclude the proof of the Lemma. �

Corollary 4.30. There exists r0 “ r0pMq ą 0 such that for any r P s0, r0r, there exists
V5 “ V5

`

n, k, v0, injM , r,diamRLpMq
˘

ą 0 such that for every V P s0, V5r, there exists
ε5 “ ε5pV q ą 0 such that for every ε P s0, ε5r, we have dgpπ ˝β ˝Φε,V px0q, x0q ă injM .
In particular π ˝ β ˝ Φε,V is homotopic to the identity map of Mn.

Proof. As in Lemma 4.29, if we choose r0 small enough depending only on the second
fundamental form of the isometric immersion of M in RN and the injectivity radius of
M , it is easy to see that we have dgpπ ˝ β ˝ Φε,V px0q, x0q ď Cp||IIM ||8qr0 ă injM ,
because M is compact. To understand this standard argument of extrinsic Riemannian
geometry, the reader can look up [Nar18, Lemma 2.1]. Let us now define the homotopy
F : r0, 1s ˆM ÑM ,

F pt, x0q :“ expx0
pt exp´1

x0
pπ ˝ βpΦε,V px0qqqq.

From the very definition of F it is easy to check that F p0, x0q “ x0 and F p1, x0q “

π ˝ β ˝ Φε,V px0q for every x0 P M . Checking the continuity of F with respect to x0 is a
standard fact of Riemannian geometry about the exponential map. �

We are finally in position to prove Theorem 2.1.

Proof. Set V ˚ :“ mintV0, V1, V2, V3, V4, V5u ą 0, then fix 0 ă δ ă δ0, with δ0 as in
Lemma 4.27, and set ε˚ “ mintε0, ε1, ε2, ε3, ε4, ε5u, c “ σcNV

N´1
N ` δ. Then for any

V P s0, V ˚r and ε P s0, ε˚r, by an easy application of Proposition 4.13, Lemma 4.29
and Corollary 4.30 we obtain the functions f :“ Φε,V and g :“ π ˝ β required to apply
Theorem 4.4 to X “M , J “ Eε|MV , M “MV . The conclusion then follows readily.

The last assertion of the theorem follows directly from Theorem 4.9, using the nonde-
generacy assumption. �

5. DROPPING THE SUBCRITICAL GROWTH CONDITION

We will now show how to deal with the case where one does not assume the subcrit-
ical growth of the potential (2.3). The idea is to show some a priori estimates on the
solutions (and for the corresponding Lagrange multiplier), and then consider a perturbed
problem that satisfies the growth condition, whose solutions are also solutions of the origi-
nal problem. Towards this goal, we need two auxiliary lemmas that have their own interest.
Recalling Remark 4.11, a careful inspection of the proof of Theorem 2.1, Corollaries 4.30,
and 4.28 reveals that we have:

Lemma 5.1. Let W satisfying assumptions (2.2), (2.3), and (2.4). Then, there exists ĉ “
ĉ
`

N, ε, V, s0,W |r0,s0s
˘

ą infMV Eε such that for all c P sinfMV Eε, ĉs, the sublevel Ecε
is homotopically superjacent to M (see Remark 4.11). �

The proof of the following result goes along the same lines as the proof of [Che96,
Lemma 3.4]. Before giving its statement, it will be useful to make a remark.

5.2. Remark. Let us observe that from the quadratic growth condition obtained integrating
two times W 2ptq ě c0 ą 0,@|t| ě t0, on the interval rt0, ss we obtain W psq ě W pt0q `
ps´ t0qW

1pt0q`
1
2 ps´ t0q

2c0 from which we conclude that there exists t1 ě t0, c10 ą c0,
such that W psq ě 1

2s
2c10, for every s such that |s| ě t1.
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Proposition 5.3 (Lagrange Multiplier Estimates). Let E0, V , and ε Ps0,`8r be fixed, and
assume that puεqεPs0,εs is a family of solutions for the equation

(5.1) ´ div pε∇uεq ` 1
εW

1
`

uε
˘

“ ´λε, in M,

ż

M

uε “ V ą 0,

where W satisfy (2.2), W 2p1q ą 0, W 2psq ě c0 ą 0 if |u| ě t0 for some c0 ą 0 and
t0 ą s0 ą 0, i.e., large quadratic or super quadratic growth such that

(5.2) 0 ď Eεruεs ď E0,@ε P s0, εs .

Then there exist positive constants c1 “ c1pN,VolgpMq, V, E0, t0, c0,W
ˇ

ˇ

r´t1,t1s
q ą 0

pc1 ą 0 largeq and ε0 “ ε0pN,VolgpMq, V, E0, t0,W |r´t1,t1sq ą 0, pε0 ą 0 smallq such
that for any ε̂ Ps0, ε0s we have c1 ď rc1, rc1 “ rc1pN,VolgpMq, V, E0, t0, c0,W |r´t1,t1sq ą
0 with

|λε̂puε̂q| ď c1Eε̂puε̂q

ď rc1Eε̂puε̂q

ď rc1E0.

5.4. Remark. The assumptions of Proposition 5.3 are satisfied in the case of the classical
symmetric Van der Waals-Allen-Cahn-Hilliard potential that is a positive polynomial of
fourth order with just two absolute minima at which the potential is zero.

5.5. Remark. Roughly speaking, Proposition 5.3 says that the constants involved in the
statement of our results depend on the geometry of the problem, on an upper bound of
the energy, on the behavior of the potential over a compact interval, and on the index
of quadratic and superquadratic growth at infinity, which is represented by the constant
c0 ą 0.

Proof of Proposition 5.3. We can assume w.l.g. that 0 ă ε̄ ă 1. Looking at the equation
(5.1) we want to give a uniform estimate with respect to ε of λε,V depending only on the
energy of the associated solutions. With this aim in mind, we will make use of an auxiliary
function ψε,ρ : M Ñ R given as the unique solution to

(5.3)

$

&

%

∆ψε,ρ “ uε,ρ ´ ūε,ρ, in M,
ż

M

ψε,ρ “ 0,

with uε,ρ :“ uε ˚ ψρ, where ψρ is the usual mollification kernel satisfying
ş

ψρ “ 1 and
ūε,ρ :“ VolgpMq

´1 ş

M
uε,ρdx. By a direct computation coming from the very definition

of uε,ρ we get

||uε,ρ||8,M “ ||rpuε ´ 1q ` 1s ˚ ψρ||8,M

ď 1` sup
xPMρ

ż

B
RN px,ρq

ψρpyq ||uεpx´ ρyq| ´ 1| dy

Hölder
ď 1` Cρ´

N
2 |||uε| ´ 1||2,M

ď 1` C
a

E0ε
1
2 ρ´

N
2 .

The last inequality is an immediate consequence of

(5.4)
ż

M

p|uε| ´ 1q
2
ď CεE0,

where C “ C
`

W |r´t0,t0s, c0
˘

ą 0.
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In order to show (5.4) we start by considering the Taylor expansion of W near the point
s “ 1 on the s-axis, which gives the existence of θ between 1 and s such that

W psq `m “W psq ´W p1q “W 1p1qps´ 1q `
1

2
ps´ 1q2W 2pθsq.

From this we easily obtain that for |s´ 1| ď δ ď 1
2

W 2pθsq ě η0pδ,W |r1´δ,1`δsq ą 0,

because by assumption (2.2) we have W 2p1q ą 0. For D :“ ts P R||s ´ 1| ě δ, s P
rt0, t0su we have that the function g defined as

gpsq :“W 2pθsq “
W psq

ps´ 1q2
ą 0, g : D Ñ R,

is continuous and stays away from zero on an compact interval. Hence infsPDtgpsqu “:
η1pδ,W |Dq ą 0. Finally for |s| ě t0 it is immediate to get W 2pθsq ą c0 ą 0. This
argument implies readily that there exists η2 “ η2pm,W |r´t0,t0s, c0q :“ mintη0, η1, c0u
such that

ż

M

p|uε| ´ 1q2 ď

ż

M

puε ´ 1q2 ď
1

η2
rεEεruεs ´

1

2
||∇uε||2L2s ď

1

η2
εE0.

From the last inequality we infer quickly (5.4) setting C :“ 1
η2

. Analogously it is not too
hard to see that from the very definition of the mollifier and the theorem of derivation under
the integral sign we get

(5.5) ||uε,ρ||C1pMq ď Cp∇ψ,VolgpMq,W
ˇ

ˇ

r´t0,t0s
, c0qrE0ρ

´1p1` ε
1
2 ρ´

N
2 q,

where rE0 :“ maxt
?
E0, 1u. Thus by classical Schauder’s elliptic estimates we conclude

(5.6) ||ψε,ρ||C2pMqďC||uε,ρ||C1pMq

(5.5)
ď p∇ψ,VolgpMq,W|r´t0,t0s, c0q

rE0ρ
´1p1` ε

1
2 ρ´

N
2 q.

Now we come back to our uniform estimates on λε and multiply (5.1), by the function
ϕε,ρ :“ x∇ψε,ρ,∇uεy then we integrate overM and use the divergence theorem obtaining

ż

M

ϕε,ρp´λεqdvolg “

ż

M

ϕε,ρ

ˆ

´divpε∇uεq `
1

ε
W 1puεq

˙

(5.3)
ď

1

ε

ż

M

W 1puεqx∇ψε,ρ,∇uεyg

“
1

ε

ż

M

W puεqdivp∇ψε,ρq

“
1

ε

ż

M

W puεqdivp∇ψε,ρq

ď
1

ε

ż

M

W puεq|divp∇ψε,ρq|(5.7)

ď ||ψε,ρ||C2pMqEεpuεq

(5.6)
ď C rE0ρ

´1p1` ε
1
2 ρ´

N
2 qEεpuεq.
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An integration by parts on the left-hand side of the above inequality yields
ż

M

x∇ψε,ρ,∇uεydx “ ´

ż

BM

uεx∇ψε,ρ, νBM ydx

`

ż

M

uε divp∇ψε,ρqdx

(5.3)
“

ż

M

uε∆ψε,ρdx

(5.3)
“

ż

M

uε puε,ρ ´ ūε,ρq dx

“

ż

M

uε puε,ρ ´ uεq dx`

ż

M

pu2
ε ´ 1qdx

` VolgpMqp1´ ū
2
εq `VolgpMqūεpūε ´ ūε,ρq.

Recall here that ūε “ V
VolgpMq

P s0, 1r; using the equality px ´ 1q2 ` 2px ´ 1q “ x2 ´ 1

and an application of Hölder inequality we obtain

(5.8)

ż

M

|u2
ε ´ 1|dx ď

ż

M

|u2
ε ´ 1|2dx` 2

ż

M

|uε ´ 1|dx

by (5.4)
ď CεE0 ` 2

a

CεE0 VolgpMq
1
2

ď CÊ0

?
ε;

for the last inequality in (5.8) we have taken Ê0 :“ E0`2
?
E0|M |

1
2 ą 0, assuming without

losso of generality ε P s0, 1r and C ą 1. In order to verify

||ūε,ρ ´ ūε||8,M
Hölder
ď VolgpMq

´ 1
2 ||uε,ρ ´ uε||2,M(5.9)

ď C
?
ρ,(5.10)

it is convenient to introduce a new auxiliary function wε defined by wε “ ĂW ˝ uε where

ĂW psq “

ż s

0

b

2 rF ptqdt,

rF ptq :“ min
 

W ptq ` 1, 1` |t|2
(

ě 1, @t P R.

Notice that
ż

M

|∇wε| “
ż

M

b

2 rF puεq |∇uε| ď
ż

M

eε puεq “ Eεruεs ď E0,

where eεpuq “ ε
2 |u|

2 ` 1
εW puq is the energy density. Furthermore, by the properties of

W , there are positive constants c˚1 and c2 such that
(5.11)

c˚1 |s1 ´ s2|
2
ď

ˇ

ˇ

ˇ

ĂW ps1q ´ĂW ps2q

ˇ

ˇ

ˇ
ď c2 |s1 ´ s2| p1` |s1| ` |s2|q ,@s1, s2 P R.

and
ż

M

|uε,η ´ uε|
2
dx ď

ż

M

ż

B1

ψρpyq |uεpx´ ρyq ´ uεpxq|
2

dy dx

ď c˚1

ż

M

ż

B1

ψρpyq |wεpx´ ρyq ´ wεpxq| dy dx

[GT01, Lemma 7.23]+Fubini
ď c˚1 |B1|ρ }∇wεp¨q}1,M ď Cρ, p by (5.11)q,
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where C “ CpE0,VolgpMqq “ c˚1MNE0 ą 0. From the last inequality and (5.9) we
obtain easily (5.10). By the quadratic growth condition obtained integrating two times
W 2ptq ě c0 ą 0, on the interval rt0, ss we obtain W psq ě W pt0q ` ps ´ t0qW

1pt0q `
1
2 ps ´ t0q

2c0 from which we conclude that there exists t1 ě t0, c10 ą c0 ą 0, such that
W psq ě 1

2s
2c10, for every s ě t1. We use this information to give the following estimate

(5.12)

ż

M

u2
ε “

ż

|uε|ăt1

u2
ε `

ż

|uε|ět1

u2
ε

ď

ż

|uε|ět1

1

2
c10W puεq `

ż

|uε|ăt1

u2
ε

ď

ż

|uε|ět1

1

2
c10 pW puεqq
looomooon

ě0

`

ż

|uε|ăt1

1

2
c10pW puεqq

ď

ż

|uε|ět1

1

2
c10pW puεqq

ď
1

2
c10εEεpuεq ď

1

2
c10εE0

εă1
ď

1

2
c10pE0q

` ď
1

2
c10|E0|,

which implies by an application of Hölder inequality that
ˇ

ˇ

ˇ

ˇ

ż

M

uε puε,ρ ´ uεq dx

ˇ

ˇ

ˇ

ˇ

ď ||uε||2||uε,ρ ´ uε||2

(5.9)´(5.12)
ď C

a

c10|E0|
?
ρ “ CE˚0

?
ρ.(5.13)

So

(5.14)
ż

M

uε divp∇ψε,ρqdx

(5.8)´(5.13)
ě VolgpMq

˜

1´

ˆ

V

VolgpMq

˙2
¸

´ CÊ0p
?
εq ´ Cp1` E˚0 q

?
ρ.

Now combining (5.8) and (5.14) we deduce that

(5.15) |λε,V | ď
C rE0ρ

´1p1` ε
1
2 ρ´

N
2 qEεpuεq

VolgpMqp1´
´

V
VolgpMq

¯2

q ´ CÊ0

?
ε´ Cp1` E˚0 q

?
ρ
.

So taking ε such that
(5.16)

1

2
VolgpMq

˜

1´

ˆ

V

VolgpMq

˙2
¸

´ CÊ0

?
ε ď

VolgpMq

4

˜

1´

ˆ

V

VolgpMq

˙2
¸

,

and ρ such that

1

2
VolgpMq

˜

1´

ˆ

V

VolgpMq

˙2
¸

´Cp1`E˚0 q
?
ρ ď

VolgpMq

4

˜

1´

ˆ

V

VolgpMq

˙2
¸

,

we conclude that

|λε,V | ď
2C rE0ρ

´1p1` ε
1
2 ρ´

N
2 qEεpuεq

VolgpMq

ˆ

1´
´

V
VolgpMq

¯2
˙ . �
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5.6. Remark. In Proposition 5.3 we do not require any subcritical growth condition, just
that the second derivative of the potential is bounded from below by a positive constant in
a neighborhood of infinity.

In our next result we generalize Theorem 2.1 by dropping assumption (2.3), and replac-
ing it with a quite more general one. The price we pay is a weaker estimate on the lower
bound on the number of solutions than the one determined in Theorem 2.1. In fact, our
proof gives only the existence of low energy solutions. We conjecture that the following
result remains true also for high energy solutions, but at the moment we are unable to
give a complete proof. Thus under the assumptions of the preceding lemma we state the
following theorem.

Theorem 5.7. For every W P C2pRq satisfying (2.2) and W 2p1q ą 0, W 2psq ą c0 ą
0,@|s| ě t0 ą 1 ą 0, for some large t0 there exists V1 “ V1

`

W |r´t1,t1s, ....
˘

ą 0, such
that for every V P s0, V1r there exists ε1 “ ε1pV q ą 0 with the property that for every
ε P s0, ε1r, Problem pPε,V q admits at least catpMq distinct solutions. Moreover, assume
additionally that for given V P s0, V1r and ε P s0, ε1pV qr, all solutions of Problem pPε,V q
having energy less than or equal to the constant cpε, V,N,W q defined in Lemma 4.27 are
nondegenerate psee Definition 4.8q. Then, Problem pPε,V q has at least P1pMq distinct
solutions.

Proof. Let V ˚ be the constant determined in Theorem 2.1, and assume in the rest of the
proof that V P s0, V ˚r. We can suppose that W satisfies

(5.17) lim sup
sÑ`8

W 1psq “ `8, and lim inf
sÑ´8

W 1psq “ ´8,

because otherwise W 1 would be bounded, and so W would satisfy a growth condition as
in (2.3), falling under the assumptions of Theorem 2.1. Now, using (5.17) it is easy to see
that there exists ŝ´ ď ´t1, ŝ` ě t1 such that

(5.18) ´ 1
ε W

1pŝ´q ´ λ˚ ą 0,

and

(5.19) ´ 1
ε W

1pŝ`q ` λ˚ ă 0,

where 0 ă V ă V1, λ˚ “ λ˚pN,VolgpMq, ε, V, s0, t0, ĉ,W |r´t1,t1sq :“ c1ĉ with the
notations of Lemma 5.1 and Proposition 5.3. Consider the quadratic truncated problem
pP̂V,εq: for fixed positive constants V and ε, find u P H1

0 pMq, and λ P R such that

(5.20)
´ε2∆u`xW 1puq “ λ,
ż

M

upxqdx “ V,

with the same M as in the statement of the theorem and xW P C2pRq satisfying xW psq :“
W psq, @s P rŝ´, ŝ`s, (2.3),

(5.21) ´ 1
ε
xW 1psq ´ λ˚ ą 0, @s P

‰

´8, ŝ´
‰

,

(5.22) ´ 1
ε
xW 1psq ` λ˚ ă 0, @s P

“

ŝ`,`8
“

.

Observe that it is always possible to find such a xW . It is straightforward to check that
Problem pPε,V q satisfies the hypothesis of Theorem 2.1 and Proposition 5.3. Furthermore
by the very definition of xW we have xW |rŝ`,ŝ´s “ W |rŝ`,ŝ´s. We claim that all the solu-
tions with energy (w.r.t. xW ) less than or equal to ĉ of Problem ppPε,V q are also solutions
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of Problem pPε,V q with energy (w.r.t. W ) less than or equal to ĉ. Suppose that pû1, λ̂1q

is a solution of Problem ppPε,V q then again standard elliptic regularity theory (compare
Theorem 19 of [GT01]) shows that û1 is of class C2,α

loc pMq and using Lemma 5.1, Propo-
sition 5.3, inequalities (5.21), and (5.22) combined with the maximum principle, it is easy
to check that û1 P rŝ

´, ŝ`s, so pû1, λ̂1q is also a solution of Problem pPV,εq, since W and
xW coincide on the interval rŝ´, ŝ`s. With this last argument, we conclude the proof of the
theorem. �
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