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Abstract. For Ω ⊂ R2 a smooth and bounded domain, we derive a sharp universal energy
estimate for non-negative solutions of free boundary problems on Ω arising in plasma physics.
As a consequence, we are able to deduce new universal estimates for this class of problems. We
first come up with a sharp positivity threshold which guarantees that there is no free boundary
inside Ω or either, equivalently, with a sharp necessary condition for the existence of a free
boundary in the interior of Ω. Then we derive an explicit bound for the L∞-norm of non-
negative solutions and also obtain explicit estimates for the thresholds relative to other neat
density boundary values. At least to our knowledge, these are the first explicit estimates of this
sort in the superlinear case.
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1. Introduction

Letting Ω ⊂ R2 be an open and bounded domain of class C2,1, we consider the free boundary
problem 

−∆v = (v)p+ in Ω

−
∫
∂Ω

∂v

∂ν
= I

v = γ on ∂Ω

(F)I

for the unknowns γ ∈ R and v ∈ C2,r(Ω ), r ∈ (0, 1). Here (v)+ is the positive part of v, ν is
the exterior unit normal, I > 0 and p ∈ (1,+∞) are fixed. Up to a suitable rescaling, we can
assume without loss of generality that |Ω| = 1 and (v)p+ to be multiplied by any positive constant.

The problem (F)I arises in Tokamak’s plasma physics and we refer to [17, 19, 23] for a physical
description of the problem. A systematic analysis of (F)I has been initiated in [10, 23, 24]. In
particular, the authors in [10] considered the problem with more general operators and nonlin-
earities and showed that for any I > 0 there exists at least one solution of (F)I . For old and new
results about (F)I for p > 1, see for example [1, 3, 4, 6, 14, 18, 21, 25], while for the model case

2020 Mathematics Subject classification: 35J20, 35J61, 35Q99, 35R35, 76X05.
(†)Research partially supported by: Beyond Borders project 2019 (sponsored by Univ. of Rome ”Tor Ver-

gata”) ”Variational Approaches to PDE’s”, MIUR Excellence Department Project awarded to the Department of
Mathematics, Univ. of Rome Tor Vergata, CUP E83C18000100006.

1



2 D. BARTOLUCCI AND A. JEVNIKAR

p = 1 (which requires a slightly different formulation, see the discussion after (P)λ) [13, 15, 20].
For further references and for the last developments about the uniqueness of solutions and about
the qualitative behavior of the branch of solutions via bifurcation analysis, see [8].

We will be here mainly concerned with positive solutions of (F)I , which are related to the
following dual formulation introduced in [10, 24],

−∆ψ = (α+ λψ)p in Ω∫
Ω

(α+ λψ)p = 1

ψ > 0 in Ω, ψ = 0 on ∂Ω

α ≥ 0

(P)λ

for the unknowns α ∈ R and ψ ∈ C2,r
0,+(Ω ). Here, λ ≥ 0 and p ∈ [1,+∞) are fixed and for

r ∈ (0, 1) we set

C2,r
0 (Ω ) = {ψ ∈ C2,r(Ω ) : ψ = 0 on ∂Ω}, C2,r

0,+(Ω ) = {ψ ∈ C2,r
0 (Ω ) : ψ > 0 in Ω}.

Indeed, the relation between the dual problems (F)I and (P)λ is as follows. Take q such that

1

p
+

1

q
= 1.

For any fixed λ > 0 and p > 1, (αλ, ψλ) is a solution of (P)λ if and only if, for I = Iλ = λq,

(γI , vI) = (λ
1
p−1αλ, λ

1
p−1 (αλ + λψλ)) is a non-negative solution, i.e. with γI ≥ 0, of (F)I . There-

fore in particular, if (γI , vI) solves (F)I with γI ≥ 0, then (αλ, ψλ) = (I
− 1
pγI , I

−1(vI − γI))

solves (P)λ and the identity I
− 1
p vI = αλ + λψλ holds. Finally, observe that for p = 1 (P)λ is

already equivalent to a more general problem than (F)I and solutions of (P)λ correspond to
non-negative solutions of (F)I where the first equation is replaced by −∆v = λ(v)+.

We point out that since |Ω| = 1 and λ ≥ 0, then any solution (αλ, ψλ) of (P)λ satisfies

αλ ≤ 1,

and the equality holds if and only if λ = 0, for which (P)λ admits a unique solution which we
denote by ψ0. The energy associated to a solution (αλ, ψλ) of (P)λ is defined as

Eλ =
1

2

∫
Ω
|∇ψλ|2.

Here and in the rest of this paper D will denote the two-dimensional ball of unit area. We will
state the results in terms of (P)λ, keeping in mind the above discussed equivalence with (F)I .

Our first result is the following sharp universal energy estimate for any solution of (P)λ, de-
pending only on the exponent p.
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Theorem 1.1. Let p ∈ [1,+∞) and (αλ, ψλ) be a solution of (P)λ. Then it holds,

2λ

(
p+ 1

16π
− Eλ

)
≥ αλ(1− αpλ), (1.1)

where the equality holds if and only if, up to a translation, Ω = D. In particular,

Eλ ≤
p+ 1

16π
, (1.2)

and the equality holds if and only if, up to a translation, Ω = D and αλ = 0.

By making use of the latter result we will derive new universal estimates for this class of problems.
First of all the sharp character of (1.2) yields other sharp estimates for the positivity threshold
of solutions of (P)λ and in particular of variational solutions of (P)λ and (F)I , as introduced
in [10, 24], see also [3, 4, 5, 6]. For any plasma density

ρ ∈ PΩ :=
{
ρ ∈ L1+ 1

p (Ω) |ρ ≥ 0 a.e. in Ω
}
,

and any λ ≥ 0, we define the free energy,

Jλ(ρ) = p
p+1

∫
Ω

(ρ)
1+ 1

p − λ

2

∫
Ω
ρG[ρ], (1.3)

whereG[ρ](x) =
∫

ΩGΩ(x, y)ρ(y) dy andGΩ is the Green function of−∆ with Dirichlet boundary
conditions on Ω. We then consider the minimization problem

J (λ) = inf

{
Jλ(ρ) : ρ ∈ PΩ,

∫
Ω
ρ = 1

}
.

We know from [10, 24] that for each λ > 0 there exists at least one ρ
λ

which minimize Jλ.
In particular those minimizers ρ

λ
whose Lagrange multiplier αλ is non negative yield a solution

(αλ, ψλ) of (P)λ where ψλ = G[ρ
λ
]. Any such solution is called a variational solution of (P)λ.

Again, for p > 1, there is an equivalent dual variational principle for (F)I which we will not
discuss here, see [10] and Appendix A in [8] for further details.

Concerning the positivity threshold for variational solutions we know by [4, 24] (see also Corol-
lary A.1 in [8]) the following,

Theorem A ([4, 24]). Let p ∈ [1,+∞) and (αλ, ψλ) be a variational solution of (P)λ. Then
there exists λ∗∗(Ω, p) ∈ (0,+∞) such that αλ > 0 if and only if λ ∈ (0, λ∗∗(Ω, p)) and αλ = 0 if
and only if λ = λ∗∗(Ω, p).

Also, let Sp(Ω) be the best constant in the Sobolev embedding ‖w‖p ≤ Sp(Ω)‖∇w‖2, w ∈ H1
0 (Ω)

and for p ∈ [1,+∞) let us define Λ(Ω, p) = S−2
p (Ω) and

λ2p
∗ (Ω, p) =

(
8π

p+ 1

)p−1

Λp+1(Ω, p+ 1).

It is well known ([12]) that λ∗(Ω, p) ≥ λ∗(D, p) where the equality holds if and only if, up to a
translation, Ω = D. Here we have,

Theorem 1.2. Let p ∈ [1,+∞) and (λ, ψλ) be a solution of (P)λ with λ ≤ λ∗(Ω, p). Then
αλ > 0 unless either p = 1 and λ = λ∗(Ω, 1) or p > 1, λ = λ∗(D, p) and, up to a translation,
Ω = D, in which cases αλ = 0.
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In particular, for variational solutions of (P)λ, we have λ∗∗(Ω, p) ≥ λ∗(Ω, p) and the equality
holds if and only if either p = 1 or p > 1 and up to a translation Ω = D.

It is interesting to comment about the sharp character of these estimates. For p = 1 they
are sharp as they reduce to the well-known ([10, 24]) sharp positivity threshold λ∗∗(Ω, 1) =

λ∗(Ω, 1) = λ(1)(Ω) ≡ Λ(Ω, 2), where λ(1) is the first eigenvalue of −∆ with Dirichlet boundary
conditions. For p > 1 they are sharp in the sense that the equality αλ = 0 is attained if and
only if λ = λ∗(D, p) and up to a translation Ω = D. Moreover, since solutions of (P)λ/(F)I
are unique on D ([6]), then interestingly enough, we obtain in this case the explicit value of the
sharp positivity threshold λ∗∗(D, p) = λ∗(D, p), see also [8] for new results concerning this case.
Actually it seems that explicit estimates about λ∗∗(Ω, p) and λ∗(Ω, p) were not known so far for
p > 1, while besides the model case p = 1, results of this sort are well known in the sublinear case
([1]), see also [5] and [11]. In particular, via the equivalence with (F)I , in the superlinear case
p > 1 we obtain a sharp condition which guarantees that for variational solutions of (F)I there
is no free boundary inside Ω or either, equivalently, a necessary condition for the existence of a
free boundary in the interior of Ω. Indeed, based on Theorems A and 1.2, it is straightforward
to deduce the following,

Corollary 1.3. Let p > 1 and (γI , vI) be a variational solution of (F)I with γI ≤ 0. Then

I ≥ (λ∗(Ω, p))
1
q and the equality holds if and only if γI = 0 and up to a translation Ω = D.

Other useful information can be derived from Theorem 1.1. It is known by [10] that the solutions
of (F)I and of (P)λ are uniformly a priori bounded. However such bound is obtained by standard
elliptic estimates and bootstrap arguments and thus explicit estimates were missing so far. Our
goal concerning this point is to derive universal (independent on Ω and depending only on the
exponent p) explicit estimates for the L∞-norm of solutions of (P)λ. On the other hand, one
may ask which are the thresholds relative to other neat values of αλ. Let us introduce

`(Ω) =
1

2π
|∂Ω|2 − 1, (1.4)

which, by the isoperimetric inequality, satisfies `(Ω) ≥ `(D) = 1. Then we have,

Theorem 1.4. Let p ∈ [1,+∞) and let (αλ, ψλ) be a solution of (P)λ. Then the following holds.

1. (L∞ bound):

‖ψλ‖∞ <
p+ 1

4π

(
1 +

λp

8π

)
. (1.5)

2. (1
2 -1
q thresholds):

αλ >
1

2
for λ ≤ 4π

ep
,

αλ > max

{
1

2
,
1

q

}
for λ ≤ 4π

ep `(Ω)
.

(1.6)

We point out that, concerning the L∞-bound (1.5), a slightly better estimate holds true, see
Proposition 2.1. At least to our knowledge, these are the first explicit estimates of this sort in
the superlinear case p > 1. It is interesting to check how far we get, with the argument pursued
in Theorem 1.4, from the optimal result of Theorem 1.2. Indeed, with this argument we can
prove, see Proposition 2.4, that if λ ≤ 16π

e(p+1) then αλ > 0.
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The main idea of the proof is to exploit the role of the energy Eλ associated to a solution (αλ, ψλ)
of (P)λ, which turns out to be related to the density interaction energy E(ρ) = 1

2

∫
Ω ρG[ρ] for a

plasma density ρ ∈ L1(Ω). Indeed, it is easily seen that Eλ = E(ρ
λ
) whenever ψλ = G[ρ

λ
]. First,

we derive the sharp energy estimate, which is based on a differential inequality involving level
sets of solutions of (P)λ. This yields, by using also the isoperimetric property of the Sobolev
constant [12], Theorem 1.2. Next, we manage to control the L∞-norm of a solution by means
of its energy and then the uniform bound follows once more by the energy estimate. Then we
exploit the L∞-bound to deduce the 1

2 -1
q thresholds.

2. Proof of the main results

We collect in this section the proof of the main results. We divide the argument in several
steps. Letting (αλ, ψλ) be a solution of (P)λ, it will be convenient to use the auxiliary function
uλ = λψλ which satisfies 

−∆uλ = λ (αλ + uλ)
p in Ω∫

Ω

(αλ + uλ)
p = 1

uλ ≥ 0 in Ω, uλ = 0 on ∂Ω

αλ ≥ 0.

(2.1)

We point out that we already know by [10] that the L∞-norm of uλ is uniformly bounded (see
also Proposition 2.1 below) and so we assume without loss of generality that

θλ := uλ(0) = ‖uλ‖L∞(Ω).

Since
∫

Ω (αλ + uλ)
p = 1 and |Ω| = 1, then necessarily for any solution and for λ > 0,

(αλ + θλ)
p > 1. (2.2)

We start with the sharp universal energy estimate.

Proof of Theorem 1.1. Let θλ = ‖uλ‖L∞(Ω) and set

Ω(t) = {x ∈ Ω : uλ > t}, Γ(t) = {x ∈ Ω : uλ = t}, t ∈ [0, θλ],

and

m(t) = λ

∫
Ω(t)

(αλ + uλ)
p , µ(t) = |Ω(t)|, e(t) =

∫
Ω(t)

|∇uλ|2,

where |Ω(t)| is the area of Ω(t). If λ = 0 then (1.1) is trivially satisfied and (1.2) follows by well
known rearrangement estimates ([22]),

E0(Ω) =
1

2

∫
Ω

∫
Ω
GΩ(x, y) dxdy ≤ 1

2

∫
D

∫
D
GD(x, y) dxdy =

1

16π
. (2.3)

Hence, we consider now λ > 0. Since |∆uλ| is bounded below away from zero and since the
boundary is smooth, then it is not difficult to see that actually m(t) and µ(t) are continuous in
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[0, θλ] and piecewise smooth in [0, θλ], that is, of class C1 with the exception of a finite number
of points in [0, θλ]. In particular the level sets have vanishing area |Γ(t)| = 0 for any t and we
will use the fact that,

m(0) = λ, µ(0) = 1, e(0) =

∫
Ω

|∇uλ|2 ≡ 2λ2Eλ,

and
m(θλ) = 0, µ(θλ) = 0, e(θλ) = 0.

By the co-area formula and the Sard Lemma we have,

−m′(t) = λ

∫
Γ(t)

(αλ + uλ)
p

|∇uλ|
= λ (αλ + t)p

∫
Γ(t)

1

|∇uλ|
= λ (αλ + t)p (−µ′(t)), (2.4)

and

m(t) = −
∫

Ω(t)

∆uλ =

∫
Γ(t)

|∇uλ| = −e′(t), (2.5)

for a.a. t ∈ [0, θλ]. By the Schwarz inequality and the isoperimetric inequality we find that,

−m′(t)m(t) = λ

∫
Γ(t)

(αλ + uλ)
p

|∇uλ|

∫
Γ(t)

|∇uλ| = λ (αλ + t)p
∫

Γ(t)

1

|∇uλ|

∫
Γ(t)

|∇uλ| ≥

λ (αλ + t)p (|Γ(t)|1)2 ≥ λ (αλ + t)p 4πµ(t), for a.a. t ∈ [0, θλ],

where |Γ(t)|1 denotes the length of Γ(t). Therefore, we conclude that,

(m2(t))′

8π
+ λ (αλ + t)p µ(t) ≤ 0, for a.a. t ∈ [0, θλ]. (2.6)

By using the following identity,

(αλ + t)p µ(t) =
1

p+ 1

(
(αλ + t)p+1 µ(t)

)′
− 1

p+ 1
(αλ + t)p+1 µ′(t), for a.a. t ∈ [0, θλ],

together with (2.6) and (2.4) we conclude that,(
m2(t)

8π
+

λ

p+ 1
(αλ + t)p+1 µ(t)

)′
− 1

p+ 1
(αλ + t)m′(t) ≤ 0, for a.a. t ∈ [0, θλ].

Therefore, we see that,

−m
2(t)

8π
− λ

p+ 1
(αλ + t)p+1 µ(t) +

1

p+ 1
αλm(t)− 1

p+ 1

θλ∫
t

m′(s)s ds ≤ 0, ∀ t ∈ [0, θλ).

Clearly, by using (2.5), we have that,

−
θλ∫
t

m′(s)s ds = tm(t) +

θλ∫
t

m(s) ds = tm(t) + e(t),

and we conclude that,

−m
2(t)

8π
− λ

p+ 1
(αλ + t)p+1 µ(t) +

1

p+ 1
(αλ + t)m(t) +

1

p+ 1
e(t) ≤ 0, ∀ t ∈ [0, θλ). (2.7)
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Evaluating (2.7) at t = 0 we find that

−m
2(0)

8π
− λ

p+ 1
αp+1
λ µ(0) +

1

p+ 1
αλm(0) +

1

p+ 1
e(0) =

−λ
2

8π
− λ

p+ 1
αp+1
λ +

λ

p+ 1
αλ +

2λ2

p+ 1
Eλ ≤ 0, (2.8)

which is (1.1). It is readily seen that the equality holds if and only if Γ(t) is a disk for any t,
whence if and only if uλ is radial and Ω = D. Here and in the sequel the radial symmetry is
intended up to a translation. The inequality (1.2) is a straightforward consequence of (1.1) and
the fact that αλ ≤ 1. Concerning the characterization of the equality sign in (1.2) we observe
that if the equality holds, then necessarily αλ(1−αpλ) = 0 and in particular the equality holds in
(1.1). Therefore, if the equality holds in (1.2), then Ω = D and either αλ = 0 or αλ = 1. But if

Ω = D and αλ = 1 then Eλ = E0(D) = 1
16π , see (2.3), and then Eλ cannot be equal to p+1

16π in this
case. Therefore, if the equality holds in (1.2), then Ω = D and αλ = 0. On the contrary, suppose

that Ω = D and αλ = 0. Then, since Ω = D, the equality holds in (1.1) and λ(p+1
16π − Eλ) = 0.

But if λ = 0 then necessarily αλ = 1, and then αλ cannot be zero in this case. Therefore, if
Ω = D and αλ = 0 then the equality holds in (1.2). This concludes the characterization of the
equality sign in (1.2). �

Next we prove the sharp positivity threshold.

Proof of Theorem 1.2. We first prove that if p > 1 and (λ, ψλ) is any solution of (P)λ with
αλ = 0 then λ ≥ λ∗(Ω, p) where the equality holds if and only if, up to a translation, Ω = D. By

defining, Rp+1(w) =

∫
Ω |∇w|

2(∫
Ω |w|p+1

) 2
p+1

, w ∈ H1
0 (Ω) \ {0}, then standard arguments in the calculus

of variations and, since Ω is of class C2,1, elliptic regularity theory, show that v is a classical
C2,r

0 (Ω) solution of

−∆v = µvp in Ω, v = 0 on ∂Ω, (2.9)

if and only if µ =
Rp+1(v)(∫

Ω |v|p+1
) p−1
p+1

and v is a critical point of Rp+1. In particular

Rp+1(v) ≥ inf
w∈H1

0 (Ω)
Rp+1(w) = Λ(Ω, p+ 1),

for any solution of (2.9). On the other side, if (λ, ψλ) is any solution of (P)λ with αλ = 0, then

for uλ = λψλ solving (2.1) we have Eλ = 1
2λ‖uλ‖

p+1
p+1 and

λ =
Rp+1(uλ)

‖uλ‖p−1
p+1

≥ Λ(Ω, p+ 1)

‖uλ‖p−1
p+1

=
Λ(Ω, p+ 1)

(2λEλ)
p−1
p+1

.

As a consequence we readily deduce that,

λ2p ≥ Λp+1(Ω, p+ 1)

(2Eλ)
p−1 ,

where the equality holds if and only if uλ is a minimizer of Rp+1. At this point, since by

Theorem 1.1 we have that 2Eλ ≤ p+1
8π , where the equality holds if and only if, up to a translation,

Ω = D, then we also find that,
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λ2p ≥
(

8π

p+ 1

)p−1

Λp+1(Ω, p+ 1), (2.10)

where the equality holds if and only if, up to a translation, Ω = D. In other words, we see from
(2.10) that if (λ, ψλ) is a solution of (P)λ with αλ = 0, then λ ≥ λ∗(Ω, p) and that the equality
holds if and only if, up to a translation, Ω = D. With this result at hand we can conclude the
proof.
Clearly (2.10) holds also for p = 1 since in this case the energy plays no role. As a consequence
we readily infer that if λ ≤ λ∗(Ω, p), then either αλ > 0 or αλ = 0 which is the case if and only

if either p = 1 and λ = λ∗(Ω, 1) (since λ∗(Ω, 1) = Λ(Ω, 2) = λ(1)(Ω)) or p > 1, λ = λ∗(D, p) and
Ω coincides up to a translation with D. This proves the first part of the claim.
Next, by Theorem A, we know that for variational solutions of (P)λ, αλ > 0 if and only if
λ < λ∗∗(Ω, p) and in particular that if λ = λ∗∗(Ω, p) then αλ = 0. As a consequence by the first
part of the proof we have λ∗∗(Ω, p) ≥ λ∗(Ω, p) as well as the characterization of the equality
sign. �

We next consider the universal explicit L∞-bound. Here Γ(p) is the Euler Gamma function.

Proposition 2.1. Let p ∈ [1,+∞) and (αλ, ψλ) be a solution of (P)λ. Then it holds,

‖ψλ‖∞ ≤
k̃p
4π

(αλ + 2λEλ)
p
p+1 , (2.11)

where k̃p = (Γ(p+ 2))
1
p+1 . In particular we have,

‖ψλ‖∞ <
p+ 1

4π

(
1 +

λp

8π

)
. (2.12)

Proof. Suppose first λ > 0. Let us define,

kp(Ω) =

(∫
Ω
Gp+1

Ω (0, y)

) 1
p+1

,

then, by the Green representation formula and the Hölder inequality we see that,

θλ
λ

=

∫
Ω
GΩ(0, y) (αλ + uλ(y))p ≤ kp(Ω)

(∫
Ω

(αλ + uλ)
p+1

) p
p+1

=

kp(Ω)

(
αλ +

∫
Ω

(αλ + uλ)
p uλ

) p
p+1

= kp(Ω) (αλ + 2λEλ)
p
p+1 .

By a well know result, see for example (2.20)-(2.21) on page 61 in [2] (or either by some estimates
due to R. Talenti ([22])) one can see that,∫

Ω
Gp+1

Ω (0, y) ≤
∫

Ω
Gp+1

D (0, y) =
Γ(p+ 2)

(4π)p+1
,

and then we deduce that,

‖ψλ‖∞ =
θλ
λ
≤ k̃p

4π
(αλ + 2λEλ)

p
p+1 ,
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which is (2.11) for λ > 0. Letting now λ→ 0+ and using the fact that ψλ depends continuously
on λ ([8]) we conclude that (2.11) holds for λ = 0 as well.

Concerning (2.12), we deduce from (2.11) and (1.2) that,

‖ψλ‖∞ ≤
p

4π

k̃p
p

(
αλ +

λp

8π

p+ 1

p

) p
p+1

<
p

4π

1 + p

p

(
1 +

λp

4π

p+ 1

2p

) p
p+1

≤ p+ 1

4π

(
1 +

λp

8π

)
,

where we used k̃p < 1 + p and (1 + a)β ≤ 1 + βa for any a ≥ 0, β ≤ 1.
�

We next turn to the estimates about the 1
2 -1
q thresholds. Recalling the definition of `(Ω) in (1.4),

we start with the following preliminary result.

Lemma 2.2. Let p ∈ [1,+∞) and (αλ, ψλ) be a solution of (P)λ. Then it holds,

θλ ≤
λ

2π − λp
`(Ω) for λ <

2π

p
. (2.13)

Proof. For λ = 0, (2.13) is trivially satisfied. Consider now λ > 0. By the Green representation
formula we have,

θλ
λ

=
1

2π

∫
Ω
G0(y) (αλ + uλ(y))p , (2.14)

where

G0(y) = 2πGΩ(0, y).

Now if αλ = 1 then uλ ≡ 0 and (2.13) holds true. Thus we can assume w.l.o.g. that αλ ∈ [0, 1).
Therefore

(αλ + uλ|∂Ω)p = αpλ < 1

and we define

Ω+ = {y ∈ Ω : (αλ + uλ(y))p > 1} , Ω− = {y ∈ Ω : (αλ + uλ(y))p ≤ 1} ,

which both have nonempty interior (recall also (2.2)).
Since G0(y) > 0 in Ω, by using (2.14) and the inequality ab ≤ ea− 1 + (b log(b))1{b≥1}, a, b ≥ 0,
we find that,

θλ
λ
<

1

2π

∫
Ω

(
eG0(y) − 1

)
+

1

2π

∫
Ω+

(αλ + uλ(y))p log (αλ + uλ(y))p .

By a classical isoperimetric inequality due to Huber ([16]) we have,

∫
Ω

eG0(y) ≤ 1

2π

 ∫
∂Ω

e
1
2
G0(y)

2

=
1

2π
|∂Ω|2,

and since |Ω| = 1 we conclude that,∫
Ω

(
eG0(y) − 1

)
≤ 1

2π
|∂Ω|2 − 1 = `(Ω).
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Therefore we find that,

θλ
λ
<
`(Ω)

2π
+

1

2π

∫
Ω+

(αλ + uλ(y))p log (αλ + uλ(y))p <

`(Ω)

2π
+ log (αλ + θλ)

p 1

2π

∫
Ω+

(αλ + uλ(y))p <
`(Ω)

2π
+ log (αλ + θλ)

p 1

2π

∫
Ω

(αλ + uλ(y))p ,

that is

θλ ≤
λ

2π
`(Ω) +

λ

2π
log (αλ + θλ)

p <
λ

2π
`(Ω) +

λp

2π
θλ,

which, for λp < 2π, immediately implies that (2.13) holds. �

At this point we show a first bound from below for the boundary value αλ.

Proposition 2.3. Let p ∈ [1,+∞) and (αλ, ψλ) be a solution of (P)λ. Then it holds,

αλ >
1

q
for λ ≤ 4π

ep `(Ω)
.

Proof. For λ = 0 we already know that αλ = 1 and the thesis holds true. We thus consider

λ > 0. We argue by contradiction and assume that αλ ≤ 1
q for some λ ≤ 4π

ep `(Ω)
.

First of all, since `(Ω) ≥ 1, we have

λp ≤ 4π

e`(Ω)
≤ 4π

e
< 2π, ∀λ ≤ 4π

ep `(Ω)
. (2.15)

Therefore we can use (2.13), which yields,

θλ ≤
1

p

2`(Ω)

e`(Ω)− 2
=:

1

p
a0, ∀λ ≤ 4π

ep `(Ω)
, (2.16)

and a0 is always positive and well defined since e`(Ω)− 2 ≥ e − 2 > 0. We can assume w.l.o.g.
that a0 > 1, since otherwise we would find that

(αλ + θλ)
p ≤

(
1

q
+ θλ

)p
≤
(

1− 1

p
+
a0

p

)p
≤ 1,

which contradicts (2.2). Observe now that by using

(αλ + θλ)
p ≤

(
1 +

a0 − 1

p

)p
in (2.14) we have,

θλ <
λκ(Ω)

4π

(
1 +

a0 − 1

p

)p
≤ λ

4π

(
1 +

a0 − 1

p

)p
,

where

κ(Ω) = 4π

∫
Ω
GΩ(0, y)
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and we used a classical rearrangement result [22], which speaks that,

κ(Ω) = 4π

∫
Ω
GΩ(0, y) ≤ 4π

∫
D

GD(0, y) = 1.

As a consequence we conclude that,

if θλ ≤
1

p
a0, then θλ <

1

p

1

e

(
1 +

a0 − 1

p

)p
, ∀λ ≤ 4π

ep `(Ω)
. (2.17)

In view of (2.17) we can iterate the argument and conclude in particular that, for any n ≥ 1
such that an−1 > 0 it holds,

θλ <
1

p
an =

1

p
h(an−1), ∀λ ≤ 4π

ep `(Ω)
, (2.18)

where

h(t) =
1

e

(
1 +

t− 1

p

)p
, t ∈ (0,+∞).

However, it is trivial to check that if t ∈ [1, 3], then h(t) − t ≤ max{h(1) − 1, h(3) − 3} ≤
max

{
1
e − 1, 1

e

(
1 + 2

p

)p
− 3
}
< e− 3, for any p ≥ 1. Since

1 < a0 =
2`(Ω)

e`(Ω)− 2
≤ 2

e− 2
< 3,

then a1 = h(a0) ≤ a0 +e−3 and for any n ≥ 2 such that an−1 > 1, we have an ≤ a0 +n(e−3) ≤
2
e−2 + n(e− 3). Therefore an1 ≤ a0 + n1(e− 3) < 1, for some n1 ≥ 2, and θλ <

1
p an1 <

1
p . As a

consequence we conclude that,

(αλ + θλ)
p <

(
1− 1

p
+

1

p

)p
≤ 1,

which contradicts once more (2.2). This is the desired contradiction which concludes the proof
of Proposition 2.3. �

Finally, we derive the following universal explicit estimates about the 1
2 and the positivity

threshold.

Proposition 2.4. Let p ∈ [1,+∞) and (αλ, ψλ) be a solution of (P)λ. Then it holds,

αλ >
1

2
for λ ≤ 4π

ep
.

Moreover,

if αλ = 0 then λ >
16π

e(p+ 1)
. (2.19)

Remark 2.5. Actually, we can prove that there exists an increasing function g : [1,+∞) 7→
[8π
e ,+∞) satisfying g(t) ≥ 16π

e(t+1) , t ∈ [1, 4], g(t) ≥ 16π
et , t ∈ [4, 16], g(t) ≥ 16π

et
t+1
t , t ∈ [16, 24],

g(t) ≥ 24π
e(t+1) , t ∈ [24, 48], g(t) ≥ 24π

et
3
2 , t ∈ [48,+∞], such that if (αλ, ψλ) is a solution of (P)λ

with αλ = 0 then λ > g(p). We skip the details of this fact which can be derived by the same
arguments used in the proof of Proposition 2.4.
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Proof. We postpone the proof of (2.19) and start to deduce the first assertion. By (2.19) we can

actually assume that αλ > 0. Suppose then by contradiction that αλ ≤ 1
2 for some λ ≤ 4π

ep
. If

1− 16πEλ

p+ 1
≤ αλ,

then we deduce from (1.1) that λ
8π (p+ 1) ≥ 1− αpλ, that is,

αpλ ≥ 1− 1

e

p+ 1

2p
, whenever λ ≤ 4π

ep
.

Since 1 − 1
e
p+1
2p ≥ 1 − 1

e , for any p ≥ 1, then we also have, 1
2 ≥ αλ ≥ αpλ ≥ 1 − 1

e , which is a

contradiction. Therefore it holds,

1− 16πEλ

p+ 1
> αλ, that is Eλ <

p+ 1

16π
(1− αλ).

At this point we use (2.11), recalling uλ = λψλ, and deduce that,

θλ ≤
λ

4π
k̃p (αλ + 2λEλ)

p
p+1 <

λ

4π
k̃p

(
αλ +

λp

4π

p+ 1

2p
(1− αλ)

) p
p+1

≤

k̃p
ep

(
αλ +

1

e

p+ 1

2p
(1− αλ)

) p
p+1

, whenever λ ≤ 4π

ep
. (2.20)

The function f(t, α) = k̃t
e

(
α+ 1

e
t+1
2t (1− α)

) t
t+1 , t ≥ 1, α ≤ 1

2 , satisfies,

f(t, α) ≤ f
(
t,

1

2

)
≤ t

2
≤ t(1− α),∀ t ≥ 1, ∀α ≤ 1

2
,

and we readily infer from (2.20) that θλ < (1 − αλ), which is a contradiction to (2.2). This
completes the proof of the first part of the claim.

We next turn to the estimate (2.19). We first infer from (2.11) that, whenever αλ = 0, it holds,

θλ ≤ λ
4π k̃p (2λEλ)

p
p+1 . In particular, since by (1.2) we have Eλ ≤ p+1

16π , then we conclude that,

θλ ≤ 2k̃p
λ

8π

(
λp

8π

p+ 1

p

) p
p+1

, (2.21)

whenever αλ = 0. At this point we can prove (2.19). Assume by contradiction that for some
λ ≤ 16π

e(p+1) there exists a solution of (P)λ with αλ = 0. Therefore, after a straightforward

evaluation, it follows from (2.21) that if λ ≤ 16π
ep

p
p+1 then,

θλ ≤
2k̃p
p

2p

e(p+ 1)

(
2

e

) p
p+1

.

The function f1(t) = 2k̃t
2t

e(t+1)

(
2
e

) t
t+1 , t ∈ [1,+∞), satisfies, f1(t) < t, ∀ t ∈ [1,+∞) and then

we deduce that θλ < 1 for p ∈ [1,+∞) which contradicts (2.2) (with αλ = 0). �

We can now complete the proof of Theorem 1.4.
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Proof of Theorem 1.4. The L∞ bound (1.5) is proved in Proposition 2.1, while (1.6) follows by
Propositions 2.3 and 2.4. �
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