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Abstract. In this paper we consider a linear elliptic equation in divergence form

(0.1)
∑
i,j

Dj(aij(x)Diu) = 0 in Ω.

Assuming the coefficients aij in W 1,n(Ω) with a modulus of continuity satisfying a certain Dini-

type continuity condition, we prove that any very weak solution u ∈ Ln′
loc(Ω) of (0.1) is actually

a weak solution in W 1,2
loc (Ω).

1. Introduction

Let n ≥ 2 and Ω ⊂ Rn be a bounded open set. In this paper we study regularity properties of
very weak solutions to the linear elliptic equation

(1.1)
∑
i,j

Dj(aij(x)Diu) = 0 in Ω,

where the matrix-field A : Ω→ Rn×n, A(x) = (aij(x))i,j , is elliptic and belongs to W 1,n(Ω,Rn×n)∩
L∞(Ω,Rn×n), i.e.

(1.2) sup
i,j=1,··· ,n

‖aij‖W 1,n(Ω) ≤M

and

(1.3) λ|ξ|2 ≤
∑
i,j

aij(x)ξiξj ≤ Λ|ξ|2 ∀ξ = (ξ1, . . . , ξn) ∈ Rn, a.e. in Ω,

for some positive constants λ,Λ, and M . Moreover, the matrix A is symmetric, that is aij = aji
a.e. in Ω for all i, j ∈ {1, ..., n}.

Finally we assume that the coefficients (aij(x))i,j are double-Dini continuous in Ω, i.e. aij ∈
C0(Ω) and

ĀΩ(r) :=
∑
i,j

sup
x,y∈Ω
|x−y|≤r

|aij(x)− aij(y)|, r > 0,

satisfies

(1.4)

ˆ diam(Ω)

0

1

t

ˆ t

0

ĀΩ(s)

s
ds dt <∞.
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A common type of double-Dini continuous functions are, of course, ω(r) = rα, 0 < α ≤ 1, thus an
example of a matrix-field A satisfying (1.2) and (1.4) is A ∈ W 1,p(Ω,Rn×n), with p > n. On the

other hand, condition (1.4) occurs not only for ω(r) = rα, but more generally for ω(r) = logβ
(

1
r

)
,

β < −2.
Given a measurable matrix A(x) = (aij(x))i,j satisfying (1.3), a function u ∈ W 1,2

loc (Ω) is called
a weak solution of (1.1) if ∑

i,j

ˆ
aij(x)DiuDjϕdx = 0, ∀ϕ ∈ C∞c (Ω).

The celebrated result by De Giorgi in [5] states that if u is a weak solution of (1.1) then u is
locally Hölder continuous.

Subsequently, J. Serrin produced in [13] a famous example, constructing an equation of the form
(1.1) which has a solution u ∈ W 1,p(Ω), with 1 < p < 2, and u /∈ L∞loc(Ω). Serrin conjectured that
if the coefficients aij are locally Hölder continuous, then any solution (in the sense of distributions)

u ∈ W 1,1
loc (Ω) of (1.1) must be a (usual) weak solution, i.e. u ∈ W 1,2

loc (Ω). Serrin’s conjecture was
established by R.A. Hager and J. Ross in [10], and then in full generality by H. Brezis in [2] (see

also [1] for a full proof) starting with u ∈W 1,1
loc (Ω), or even with u ∈ BVloc(Ω), i.e., u ∈ L1

loc(Ω) and
its derivatives (in the sense of distributions) being Radon measures. Let us remark that in Brezis’s
result the coefficients aij , satisfying (1.3), are Dini continuous functions in Ω. The Dini continuity
of the coefficients is optimal in some sense: for the unit ball B1 and continuous coefficients, T.
Jin, V. Maz’ya, and J.V. Schaftingen in [9] constructed a solution (in the sense of distributions)

u ∈W 1,1
loc (B1) \W 1,p

loc (B1) for every p > 1.

For A(x) = (aij(x))i,j satisfying (1.2) and (1.3), we will consider a very weak solution u ∈ Ln′loc(Ω)
of (1.1), namely

(1.5)
∑
i,j

ˆ
u(x)Di(aij(x)Djϕ(x)) dx = 0, ∀ϕ ∈ C∞c (Ω),

with n′ = n
n−1 .

Remark 1.1. It is not difficult to prove that the test functions ϕ in (1.5) can be taken in W 2,n(Ω)∩
W 1,∞(Ω), with suppϕ b Ω. Indeed, one can argue by density to show that given a function
ϕ ∈ W 2,n(Ω) ∩W 1,∞(Ω) with compact support, we may find a sequence ϕk ∈ C∞c (Ω) such that
ϕk → ϕ strongly in W 2,n and supk ‖ϕk‖1,∞ < ∞ (so that Dϕk converges to Dϕ weakly* in L∞)
and then taking the limit as k goes to infinite in the equation (1.5) for ϕk.

The main result of the paper is the following.

Theorem 1.2. Let u be a very weak solution of (1.1), with A(x) = (aij(x))i,j satisfying (1.2), (1.3)

and (1.4), then u belongs to W 1,2
loc (Ω) and thus it is a weak solution.

Remark 1.3. It is worth noting that, under hypotheses (1.2) and (1.3), one can consider a very

weak solution u ∈ Ln
′

loc(Ω) to (1.1), but when dealing with the regularity properties of u some
extra conditions on the coefficients aij must be considered. The counterexample constructed in [9]
provides in fact continuous coefficients aij which belong also to W 1,n(B1), showing that one can

not expect a very weak solution u ∈ Ln′loc(Ω) to be a weak solution in W 1,2
loc (Ω) under just conditions

(1.2) and (1.3). For the sake of completeness, we will propose the example given in [9] in the
Appendix B, underlining that the constructed coefficients belong also to W 1,n(B1).
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On the other hand, in Section 4 we propose an alternative to double Dini continuous coefficients
which again bypasses the counterexample. In particular, under hypotheses (1.2) and (1.3) we
consider a very weak solution in Lqloc(Ω), with q > n′.

Remark 1.4. In [14] W. Zhang and J. Bao deal with the case of very weak solutions u ∈ L1
loc(Ω)

of (1.5), interpreting the coefficients as Lipschitz functions, due to the assumption made on the
solutions. Thus our result represents a natural extension from their research.

2. Notation and preliminary results

We collect here the main definitions and notation and some useful results that will be needed in
the sequel.

2.1. Notation. In the following, we denote by Br(x) = {y ∈ Rn : |y − x| < r} the ball of radius r
centered at x.

We indicate by {e1, · · · en} the canonical basis of Rn. Given h ∈ R \ {0}, for a measurable
function ψ : Rn → R and for ` = 1, · · · , n, we introduce the notation

∆`
hψ :=

ψ(x+ he`)− ψ(x)

h

for the incremental quotient in the `-th direction. We recall that for every pair of functions ϕ,ψ,
we have

(2.1) ∆`
h(ϕψ) = ∆`

hϕψ + ϕ(x+ he`) ∆`
hψ.

The following result pertaining to difference quotients of functions in Sobolev spaces is well
known t(see [8, Proposition 4.8] for example).

Theorem 2.1. Let p > 1; if ψ ∈ W 1,p(Ω), then ∆`
hψ ∈ Lp(Ω′) for any Ω′ b Ω satisfying h <

dist(Ω′,∂Ω)
2 , and we have

‖∆`
hψ‖Lp(Ω′) ≤ ‖D`ψ‖Lp(Ω).

If ψ ∈ Lp(Ω) and there exists L ≥ 0 such that, for every h < dist(Ω′, ∂Ω), ` = 1, · · · , n, we have

‖∆`
hψ‖Lp(Ω′) ≤ L,

then ψ ∈W 1,p(Ω′), ‖D`ψ‖Lp(Ω′) ≤ L and ∆`
hψ → D`ψ in Lp(Ω′) as h→ 0.

Finally, given p > 1, we denote by p′ = p
p−1 the conjugate exponent of p.

2.2. Dini continuous functions. We say that a continuous function f on Ω is Dini continuous if
the modulus of continuity f̄Ω : [0, diam(Ω)]→ R+ defined by

f̄Ω(r) := sup
x,y∈Ω
|x−y|≤r

|f(x)− f(y)|

satisfies ˆ diam(Ω)

0

f̄Ω(t)

t
dt <∞.

We also denote by CD(Ω) the space of Dini continuous functions; it turns out to be a Banach
space equipped with the following norm:

‖f‖CD(Ω) := ‖f‖∞ +

ˆ diam(Ω)

0

f̄Ω(t)

t
dt,
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where ‖ · ‖∞ is the usual uniform norm.
Let us remark that by the uniform continuity, any function in CD(Ω) may be extended up to

the boundary of Ω with the same modulus of continuity. Moreover,

C0,α(Ω) ⊆ CD(Ω),

for any 0 < α ≤ 1, where C0,α(Ω) denotes the space of Hölder continuous functions.
The space CDc (Ω) will denote the set of functions in CD(Ω) with compact support in Ω.

Lemma 2.2. The space C∞c (Ω) is dense in CDc (Ω).

Proof. Let f ∈ CDc (Ω) that we extend to zero on Rn \ Ω and set fε(x) = (ρε ∗ f)(x), where ρε is a
standard mollifier. Then, if ε is sufficiently small, fε ∈ C∞c (Ω); we will prove that

(2.2) fε → f in CD(Ω).

It is easily seen that fε uniformly converges to f in Ω, thus in order to prove (2.2) we will just
show that ˆ diam(Ω)

0

(f − fε)Ω(t)

t
dt→ 0,

as ε tends to 0. Observe that

(f − fε)Ω(r) = sup
x,y∈Ω
|x−y|<r

{|fε(x)− f(x)− fε(y) + f(y)|} ≤ f̄Ω(r) + (f̄ε)Ω(r)

and

(f̄ε)Ω(r) = sup
x,y∈Ω
|x−y|<r

{|fε(x)− fε(y)|}

= sup
x,y∈Ω
|x−y|<r

{∣∣∣∣ˆ ρε(z) (f(x− z)− f(y − z)) dz
∣∣∣∣}

≤
ˆ
ρε(z)f̄Ω(r)dz = f̄Ω(r),

which together yield

(fε − f)Ω(r) ≤ 2f̄Ω(r).

On the other hand, since (fε − f)Ω → 0 pointwise, the dominated convergence theorem implies

ˆ diam(Ω)

0

(fε − f)Ω(t)

t
→ 0,

which concludes the proof of (2.2). �

Remark 2.3. The previous result ensures that CDc (Ω) is a separable space, noting that C1
c (Ω)

is separable with respect to the usual norm ‖f‖1,∞ :=
∑
|α|≤1 ‖Dαf‖∞, C1

c (Ω) ⊆ CDc (Ω) and

f̄Ω(r) ≤ r‖Df‖∞, for every f ∈ C1
c (Ω).

Lemma 2.4. Let f, fε, and g belonging to CD(Ω) such that fε converges to f in CD; then gfε
converges to gf in CD.
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Proof. As before, it is enough to prove the convergence of the seminorm since the uniform conver-
gence is immediate. Then, writing the definition of the modulus of continuity, we have

[g(fε − f)]Ω(r) = sup
x,y∈Ω
|x−y|<r

{|g(x)(fε(x)− f(x))− g(y)(fε(y)− f(y))|}

≤ sup
x,y∈Ω
|x−y|<r

{|g(x)| |(fε(x)− f(x))− (fε(y)− f(y))|}

+ sup
x,y∈Ω
|x−y|<r

{|g(x)− g(y)||f(y)− fε(y)|}

≤ ‖g‖∞(f − fε)Ω(r) + ḡΩ(r)‖f − fε‖∞.

(2.3)

Hence, ˆ diam(Ω)

0

[g(fε − f)]Ω(t)

t
dt ≤ ‖g‖∞

ˆ diam(Ω)

0

(f − fε)Ω(t)

t
dt

+ ‖f − fε‖∞
ˆ diam(Ω)

0

ḡΩ(t)

t
dt,

which goes to zero as ε tends to zero. �

2.3. C1-Dini regularity of solutions to divergence form elliptic equations with Dini-
continuous coefficients. For the proof of our result, we will need the following extension of the
Schauder regularity theory for elliptic equations in divergence form with Dini continuous coefficients
(see [11, Theorem 1.1] and [6, Theorem 1.3]). For the Lp-regularity theory we refer to [7], where
the general case of VMO coefficients is treated (see also [12, Theorem 5.5.3 (a)] or [3, Theorem 2.2.
Chapter 10] for the case of continuous coefficients).

Theorem 2.5. For Ω ⊂ Rn, let aij satisfy (1.3) and (1.4); we consider f = (f1, f2, . . . , fn) with
fj ∈ C∞c (Ω) for all j ∈ {1, . . . , n}. Assume that u ∈ H1(Ω) is a weak solution of the equation

(2.4)
∑
i,j

Dj (aijDiu) =
∑
j

Djfj in Ω

Then u ∈ C1,D(Ω′), for any bounded open set Ω′, Ω′ b Ω.

Moreover, let Ω a C1,1 bounded open subset of Rn, let aij satisfy (1.2) and (1.3), and let fj ∈
Lp(Ω), for every j ∈ {1, . . . , n}, with 1 < p < ∞, then there exists a unique solution u ∈ W 1,p

0 (Ω)
to the problem ∑

i,j

ˆ
Ω

aijDiuDjϕdx =
∑
j

ˆ
Ω

fjDjϕdx ∀ϕ ∈W 1,p′

0 (Ω),

and

(2.5) ‖u‖W 1,p(Ω) ≤ C
∑
j

‖fj‖Lp(Ω)

holds, where C depends on n, λ,Λ, p, ∂Ω, ‖A‖W 1,n(Ω,Rn×n).

Remark 2.6. The first conclusion of Theorem 2.5 comes with an estimate of the Dini modulus of
continuity of Du involving the Dini modulus of continuity of aij and fj . Actually, in [11, Theorem
1.1] and in [6, Theorem 1.3] only the continuity of Du is proved and these results are obtained with
a weaker assumption on the coefficients aij . Assuming (1.4) for the coefficients we are able to prove
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also the Dini continuity of the gradient of the solution. In Appendix A we will resume in broad
terms the proof of [11, Theorem 1.1], developing it in order to get the needed Dini continuity result.

2.4. C2-regularity of solutions to non divergence form elliptic equations with Dini-
continuous coefficients. Let us first recall the W 2,p-solvability of the Dirichlet problem for non
divergence elliptic equations with discontinuous coefficients (see [4, Theorem 4.2 and Theorem 4.4]).

Theorem 2.7. The Dirichlet problem

(2.6)


∑
i,j

aij(x)Diju = f a.e. in Ω

u = 0 on ∂Ω

where Ω is a C1,1 smooth and bounded subset of Rn, f ∈ Lp(Ω) with 1 < p < ∞, and aij satisfies

(1.2) and (1.3), admits a unique solution u ∈W 2,p(Ω) ∩W 1,p
0 (Ω) and

(2.7) ||u||W 2,p(Ω) ≤ C
(
||u||Lp(Ω) + ||f ||Lp(Ω)

)
,

where the constant C depends on n, p, λ,Λ, ∂Ω, ‖A‖W 1,n(Ω,Rn×n).

The next result specifies estimate (2.7); its proof is quite standard but we prefer to write it for
the sake of completeness.

Proposition 2.8. Suppose u is a solution of the elliptic Dirichlet problem (2.6) with aij , f, p and
Ω as above. Then

(2.8) ||u||W 2,p(Ω) ≤ C||f ||Lp(Ω).

Proof. Let

L =
{
L =

∑
i,j

aijDij , sup
i,j
||aij ||W 1,n(Ω) ≤ 2M, λ|ξ|2 ≤

∑
i,j

aij(x)ξiξj ≤ Λ|ξ|2
}

;

having in mind Theorem 2.7, if we prove that for any operator L ∈ L and for any f ∈ Lp(Ω), the
solution u of {

Lu = f a.e. in Ω
u = 0 on ∂Ω,

satisfies

||u||Lp(Ω) ≤ C||f ||Lp(Ω),

we are done. Suppose it is not the case, then this is equivalent to say that for every N ∈ N, there
exists an operator LN =

∑
i,j a

N
ijDij ∈ L and a function fN ∈ Lp(Ω) such that the corresponding

solution uN to the Dirichlet problem{
LNuN = fN a.e. in Ω
uN = 0 on ∂Ω,

satisfies

(2.9) ||uN ||Lp(Ω) > N ||fN ||Lp(Ω).

Let us define vN = uN/‖uN‖Lp(Ω) and gN = fN/‖uN‖Lp(Ω), so that vN solves (2.6) with LN
and gN . By the W 2,p estimate (2.7),

||vN ||W 2,p(Ω) ≤ C
(
||vN ||Lp(Ω) + ||gN ||Lp(Ω)

)
< C

(
1 +

1

N

)
,
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where C does not depend on N and hence,

(2.10) ||vN ||W 2,p(Ω) ≤ C.

Thus vN is a precompact sequence: up to a non relabeled subsequence, we can suppose vN ⇀ u∗

weakly in W 2,p(Ω), for some u∗ ∈ W 2,p(Ω), moreover u∗ ∈ W 2,p(Ω) ∩W 1,p
0 (Ω). Similarly, we can

also say that, for every i, j = 1, · · · , n, aNij ⇀ a∗ij weakly in W 1,n(Ω) and aNij → a∗ij strongly in

Lq(Ω) ∀ 1 ≤ q <∞. Thus, the operator L∗ =
∑
i,j a

∗
ijDij belongs to L and for ϕ ∈ Lp′(Ω) we have∣∣∣∣ˆ

Ω

(LNvN − L∗u∗)ϕdx
∣∣∣∣

≤
n∑

i,j=1

{ˆ
Ω

∣∣∣∣(aNij − a∗ij) ∂2vN
∂xi∂xj

ϕ

∣∣∣∣ dx+

∣∣∣∣ˆ
Ω

a∗ijϕ

(
∂2vN
∂xi∂xj

− ∂2u∗

∂xi∂xj

)
dx

∣∣∣∣}

≤ C
n∑

i,j=1

‖(aNij − a∗ij)ϕ‖Lp′ (Ω) +

n∑
i,j=1

{∣∣∣∣ˆ
Ω

a∗ijϕ

(
∂2vN
∂xi∂xj

− ∂2u∗

∂xi∂xj

)
dx

∣∣∣∣} .
Therefore, LNvN converges weakly in Lp(Ω) to L∗u∗. On the other hand, using (2.9), we have

||gN ||Lp(Ω) <
1

N
.

Passing to the limit in the equation satisfied by vN , we discover that the limit u∗ ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω) satisfies L∗u∗ = 0 a.e. in Ω. By the uniqueness properties of the solutions to (2.6), it
follows that u∗ = 0. Thus vN converges to zero and the argument becomes contradictory since
‖vN‖Lp(Ω) = 1. �

In [6, Theorem 1.5] it is shown that solutions to elliptic equations in non divergence form with
zero Dirichlet boundary conditions are C2 up to the boundary when the leading coefficients are
Dini continuous functions.

Theorem 2.9. Assume that Ω is a C2,1 smooth and bounded open subset of Rn, f ∈ CD(Ω) and aij
satisfies (1.2), (1.3), and (1.4). Let u ∈W 2,2(Ω) ∩W 1,2

0 (Ω) be a solution of the Dirichlet problem

(2.11)


∑
i,j

aij(x)Diju = f a.e. in Ω

u = 0 on ∂Ω,

then u ∈ C2(Ω).

Remark 2.10. The assumption in [6] about the coefficients is weaker then (1.4), since they assume
that the modulus of continuity

ÃΩ(r) :=
∑
i,j

sup
x∈Ω

−
ˆ
Br(x)∩Ω

|aij(y)− (aij)Br(x)∩Ω| dy

with (aij)Br(x)∩Ω = −
ˆ
Br(x)∩Ω

aij , satisfies

ˆ
0

ÃΩ(r)

r
dr <∞.
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3. Proof of the main theorem

We use a duality argument in conjunction with the regularity properties for elliptic equations in
divergence and in non divergence form, stated in Theorems 2.5 and 2.9.

Proof. Let Ω′ b Ω be an open set and choose a C2,1 open set Ω0 with Ω′ b Ω0 b Ω; let d(Ω′, ∂Ω0) =
d > 0. Let h0 = d/4, and 0 < |h| < h0.
For the sake of clarity, we divide the proof into two steps.

Step 1. For ` = 1, · · · , n, we claim that ∆`
hu is bounded in the dual space of Dini continuous

functions with compact support (CDc (Ω′))′.
Given a Dini continuous function w ∈ CDc (Ω′), according to Theorem 2.9 combined with Theorem

2.7, the solution v ∈W 2,q(Ω0), ∀q > 1, to the Dirichlet problem

(3.1)


∑
i,j

aij(x)Dijv = w a.e in Ω0

v = 0 on ∂Ω0,

enjoys the C2-regularity up to the boundary of Ω0.
We consider a partition of unity: let x1, · · · , xJ ∈ Ω′ and η1, · · · , ηJ ∈ C∞(Rn) be such that

Ω′ ⊂ Ω̄′ ⊂
J⋃
k=1

Bd/8(xk), 0 ≤ ηk ≤ 1, ∀k = 1, · · · , J, and

J∑
k=1

ηk = 1 in Ω′,

and

supp ηk is compact and supp ηk ⊂ Bd/8(xk).

We fix one of these balls and the related function ηk; we omit to indicate the center xk and the
index k for ηk for simplicity.

In view of Remark 1.1, we can insert ϕ = η∆`
−hv in (1.5), getting

0 =
∑
i,j

ˆ
uDi(aijDj(η∆`

−hv) dx

=
∑
i,j

ˆ
uDiaijDj(η∆`

−hv) dx+
∑
i,j

ˆ
u aijDij(η∆`

−hv) dx

=
∑
i,j

ˆ
uDiaijDjη∆`

−hv dx+
∑
i,j

ˆ
u ηDiaijDj(∆

`
−hv) dx

+
∑
i,j

ˆ
η u aijDij(∆

`
−hv) dx+

∑
i,j

ˆ
u aijDjηDi(∆

`
−hv) dx

+
∑
i,j

ˆ
u aijDiηDj(∆

`
−hv) dx+

∑
i,j

ˆ
u aijDijη∆`

−hv dx.
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We can rearrange the previous equation in order to have∑
i,j

ˆ
η u aijDij(∆

`
−hv) dx = −

∑
i,j

ˆ
uDiaijDjη∆`

−hv dx

−
∑
i,j

ˆ
u ηDiaijDj(∆

`
−hv) dx

−
∑
i,j

ˆ
u aijDjηDi(∆

`
−hv) dx

−
∑
i,j

ˆ
u aijDiηDj(∆

`
−hv) dx

−
∑
i,j

ˆ
u aijDijη∆`

−hv dx.

With a simple change of variables, we get∑
i,j

ˆ
η u aijDij(∆

`
−hv) dx =

∑
i,j

ˆ
Rn
η u aij∆

`
−h(Dijv) dx

=
∑
i,j

ˆ
Rn

∆`
h(η u aij)Dijv dx

=
∑
i,j

ˆ
∆`
hu η aijDijv dx

+
∑
i,j

ˆ
u(x+ he`)∆

`
h(η aij)Dijv dx,

where we also used (2.1). Thus, we finally have∑
i,j

ˆ
η∆`

hu aijDijv dx = −
∑
i,j

ˆ
uDiaijDjη∆`

−hv dx

−
∑
i,j

ˆ
u ηDiaijDj(∆

`
−hv) dx

−
∑
i,j

ˆ
u aijDjηDi(∆

`
−hv) dx

−
∑
i,j

ˆ
u aijDiηDj(∆

`
−hv) dx

−
∑
i,j

ˆ
u aijDijη∆`

−hv dx

−
∑
i,j

ˆ
u(x+ he`)∆

`
h(η aij)Dijv dx

= I1 + I2 + I3 + I4 + I5 + I6.

(3.2)

Now, we estimate the six terms Im.
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The use of Hölder’s inequality gives

|I1| ≤
∑
i,j

ˆ
Bd/8

|uDiaijDjη∆`
−hv| dx

≤ ||Dη||L∞(Rn,Rn)||A||W 1,n(Ω,Rn×n)||u||Ln′ (Ω0)||∆
`
−hv||L∞(Bd/8)

≤ C||Dv||L∞(Ω0,Rn) ≤ C‖w‖L∞(Ω′),

combined with Sobolev’s embedding and Proposition 2.8 in the last inequality. Analogously

|I2| ≤ ||A||W 1,n(Ω,Rn×n)||u||Ln′ (Ω0)‖D
2v‖L∞(Ω0,Rn×n).

The terms I3 and I4 can be treated in the same way. Using Hölder’s inequality, Theorem 2.1 and
Proposition 2.8, we have

|I3|, |I4| ≤ Λ‖u‖Ln′ (Ω0)‖Dη‖L∞(RnRn)||v||W 2,n(Ω0) ≤ C||w||Ln(Ω′).

Again, for I5 we have

|I5| ≤ Λ‖u‖Ln′ (Ω0)‖D
2η‖L∞(Rn,Rn×n)‖Dv‖Ln(Ω0,Rn) ≤ C‖w‖Ln(Ω′).

We finally estimate I6. From (2.1), we get

I6 =−
∑
i,j

ˆ
u(x+ he`) η∆`

haijDijv dx

−
∑
i,j

ˆ
u(x+ he`)aij(x+ he`)∆

`
hη Dijv dx.

The second term can be estimated as I3 and I4, thus:

|I6| ≤
∑
i,j

ˆ
Bd/8

|u(x+ he`) η∆`
haijDijv| dx+ C‖w‖Ln(Ω′)

≤C‖A‖W 1,n(Ω,Rn×n)‖u‖Ln′ (Ω0)‖D
2v‖L∞(Ω0,Rn×n) + C‖w‖Ln(Ω′).

(3.3)

Here we have used once more Theorem 2.9.
Finally, combining the estimates found for Im, m ∈ {1, . . . 6}, from (3.2) we get∑

i,j

ˆ
Bd/8

η∆`
hu aijDijv dx ≤ C,

where C depends on λ,Λ, ‖Dη‖L∞(Rn,Rn), ‖D2η‖L∞(Rn,Rn×n), ‖u‖Ln′ (Ω0),

‖A‖W 1,n(Ω,Rn×n), ‖w‖L∞(Ω′) and ‖D2v‖L∞(Ω0,Rn×n), as well as on the modulus of continuity of the
coefficients aij and of the datum w. Summing over k = 1, · · · , J , since v is the weak solution to
the Dirichlet problem (3.1), we finally have∣∣∣∣ˆ

Ω′
η w∆`

hu dx

∣∣∣∣ ≤ C,
and we get ∣∣∣∣ˆ

Ω′
w∆`

hu dx

∣∣∣∣ ≤ C,
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for every w ∈ CDc (Ω′). By the uniform boundedness principle this means that {∆`
hu}h is a family

of equibounded elements in the dual space of Dini continuous functions (CDc (Ω′))′. Since (CDc (Ω′))′

is separable, we have that, up to a subsequence,

∆`
hu

∗
⇀ µ` ∈ (CDc (Ω′))′.

Step 2. We prove that u ∈W 1,p′

loc (Ω), with p > n.
Using the previous Step we can easily deduce from (1.5) that

(3.4)
∑
i,j

〈µi, aijDjϕ〉 = 0 ∀ϕ ∈ C∞c (Ω′),

where the duality pairing is between (CDc (Ω′))′ and CDc (Ω′).
For j ∈ {1, · · · , n}, let f = (f1, · · · , fn) with fj ∈ C∞c (Ω′) be such that∑

j

||fj ||Lp(Ω′) ≤ 1,

with p > n. Introducing as before a regular set Ω0 between Ω′ and Ω we can possibly assume that
Ω is a C1,1 set. Let v ∈W 1,2

0 (Ω) be the weak solution of the problem

(3.5)
∑
i,j

ˆ
aijDivDjϕdx =

∑
j

ˆ
Djϕfj dx ∀ϕ ∈ C∞c (Ω).

By Theorem 2.5 we have that v ∈W 1,p
0 (Ω) and

||v||W 1,p(Ω) ≤ C||f ||Lp(Ω′,Rn).

Note that, since p > n, this means also that the function v is Hölder continuous.
We take BR/2 ⊂ BR ⊂ Ω′ a pair of concentric balls centered at x0 ∈ Ω′ and we consider

ξ(x) = ξ(|x− x0|) a smooth function such that ξ(t) = 1 for t ∈ [0, R/2] and ξ(t) = 0 for t ≥ R .
We would like to use ϕ = ξv as test function in (3.4). We first observe that, by Theorem

2.5, the function ξv belongs to C1,D
c (Ω′). Moreover, proving Lemma 2.2, we actually proved that

a mollification of a Dini continuous function with compact support strongly converges in CD to
the function itself. Thus, combining this fact with Lemma 2.4, we have that aijDj(ξv)ε strongly
converges in CD to aijDj(ξv), where (ξv)ε(x) = (ρε ∗ ξv)(x), ρε being a standard mollifier. This in
turn implies that the use of ϕ = ξv as test function in (3.4) is admissible:

(3.6)
∑
i,j

〈µi, aijDjv ξ〉+
∑
i,j

〈µi, aijvDjξ〉 = 0.

Let us come back now to the equation satisfied by v. Let uε be a mollification of the solution u,
that is uε = ρε ∗ u, with ρε a standard radial mollifier. We use ξuε in (3.5):∑

i,j

ˆ
aijξDjuεDiv dx+

∑
i,j

ˆ
aijDjξ uεDiv dx

=
∑
j

ˆ
ξfjDjuε dx+

∑
j

ˆ
uεDjξfj dx.

Now we claim that this implies, when we pass to the limit as ε→ 0, that

(3.7)
∑
i,j

〈µj , aijξDiv〉+
∑
i,j

ˆ
aijDiξuDjv dx =

∑
j

〈µj , ξfj〉+
∑
j

ˆ
uDjξfj dx.



12 DOMENICO ANGELO LA MANNA, CHIARA LEONE, AND ROBERTA SCHIATTARELLA

Note that the most delicate terms are the two involving the gradient of uε. For a Dini continuous
function w (the domain of w is not specified since the function will be multiplied by a function with
compact support) we will show that

lim
ε→0

lim
h→0

ˆ
∆j
h(uε − u)w ξ dx = 0,

or, in other terms, recalling that µj is the limit in the weak∗ topology of CDc (Ω′) of the incremental
quotient of u

lim
ε→0

ˆ
Djuεw ξ dx = 〈µj , w ξ〉.

We have:

lim
ε→0

lim
h→0

ˆ
∆j
huεw ξ dx

= lim
ε→0

lim
h→0

ˆ
ξ(x)w(x)

ˆ
ρε(x− z)

u(z + hej)− u(z)

h
dz dx

= lim
ε→0

lim
h→0

ˆ
u(z + hej)− u(z)

h

ˆ
ρε(x− z)ξ(x)w(x) dx dz

= lim
ε→0

lim
h→0

ˆ
u(z + hej)− u(z)

h

ˆ
ρε(z − x)ξ(x)w(x) dx dz

= lim
ε→0

lim
h→0

ˆ
u(z + hej)− u(z)

h
(w ξ)ε(z) dz = lim

ε→0
lim
h→0

ˆ
∆j
hu (w ξ)ε dz

= lim
ε→0
〈µj , (wξ)ε〉 = 〈µj , w ξ〉,

where in the last equality we used again that a mollified function of a Dini continuous function with
compact support strongly converges in CD to the function itself. Thus we obtain (3.7).

From it, exploiting the symmetry of aij and using (3.6) we get∑
j

〈µj , ξfj〉 = −
∑
i,j

〈µi, aijDjξv〉+
∑
i,j

ˆ
aijDiξuDjv dx−

∑
j

ˆ
uDjξfj dx

= I1 + I2 + I3.

(3.8)

We now estimate the three terms Im, m = 1, 2, 3. We have

|I1| ≤
∑
i,j

‖µi‖(CDc (Ω′))′‖aijvDiξ‖CD(Ω′).

By the definition of the norm in the space of Dini continuous functions we have

‖aijvDiξ‖CD(Ω′) ≤ Λ‖v‖L∞(Ω′)‖Diξ‖L∞(BR) +

ˆ diam(Ω′)

0

(aijvDiξ)Ω′(r)

r
dr.

By simple computation we have

(aijvDiξ)Ω′(r) ≤ ‖v‖L∞(Ω′)(aijDiξ)Ω′(r) + ‖aijDiξ‖L∞(Ω′)vΩ′(r),
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and, using the properties of the solution v (recall that p > n), the right hand side can be estimated
as

(aijvDiξ)Ω′(r) ≤ C(aijDjξ)Ω′(r)‖f‖Lp(Ω′,Rn)

+ Cr1−np ‖aijDjξ‖L∞(Ω′)‖Dv‖Lp(Ω′,Rn).

To summarize, we have

|I1| ≤ C‖f‖Lp(Ω′,Rn).

The estimate of I2 and I3 simply comes by Hölder’s inequality and again by the properties of the
solution v:

|I2| ≤
∑
i,j

∣∣∣∣ˆ aijDiξuDjv dx

∣∣∣∣ ≤ C‖u‖Ln′ (Ω′)‖Dξ‖L∞(BR,Rn)Λ‖v‖W 1,n(Ω′)

≤ C‖f‖Ln(Ω′,Rn),

and

|I3| ≤
∑
j

∣∣∣∣ˆ uDjξfjdx

∣∣∣∣ ≤ ‖u‖Ln′ (Ω′)‖Dξ‖L∞(BR,Rn)‖f‖Ln(Ω′,Rn).

At the end, the estimates proved for I1, I2 and I3 lead to∑
j

〈µj , ξfj〉 ≤ C‖f‖Lp(Ω′,Rn),

as well ∑
j

〈µjξ, fj〉 ≤ C‖f‖Lp(Ω′,Rn).

Since f is an arbitrary smooth function in Lp(Ω′,Rn), we conclude∑
j

‖µjξ‖Lp′ (Ω′) ≤ C,

which means, using a finite covering argument, that µj is a function in Lp
′

loc(Ω) and then u ∈
W 1,p′

loc (Ω), since, for every ϕ ∈ C∞c (Ω) and for h small enough, we have

ˆ
∆j
huϕdx =

ˆ
u∆j
−hϕdx;

passing to the limit as h→ 0, we derive

〈µj , ϕ〉 =

ˆ
ϕµj dx = −

ˆ
uDjϕdx.

Since u ∈ W 1,p
loc (Ω), Brezis’s result implies that u is a weak solution of the equation (1.5), i.e.

our statement. �
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4. Sobolev coefficients

As pointed out in the Introduction, very weak solutions in Ln
′

loc(Ω) associated to coefficients in
W 1,n(Ω) are not weak solutions, since of the counterexample found in [9]. The quoted references
on this problem have suggested us to consider Sobolev coefficients with a modulus of continuity
satisfying the double Dini condition.

On the other hand, another way to get around the counterexample is to deal with very weak
solutions in Lqloc(Ω), with q > n′. The result is the following.

Theorem 4.1. Let u ∈ Lqloc(Ω), q > n′, be a very weak solution of (1.1), with A(x) = (aij(x))i,j
satisfying (1.2) and (1.3), then u belongs to W 1,2

loc (Ω) and thus it is a weak solution.

Proof. The proof rests on a duality and a bootstrap argument.

Step 1. We claim that u ∈W
1,
(
qn′
q−n′

)′
loc (Ω).

We proceed as in the Step 1 of the proof of Theorem 1.2 to arrive to (3.2). Now we estimate the
six terms Im. We use Hölder’s inequality and Proposition 2.8 to get

|I1| ≤ ‖Dη‖L∞(Rn)‖A‖W 1,n(Ω,Rn×n)‖u‖Lq(Ω0)‖Dv‖
L

qn′
q−n′ (Ω0,Rn)

≤ C‖w‖
L

qn′
q−n′ (Ω0)

,

|I2| ≤ ‖A‖W 1,n(Ω,Rn×n)‖u‖Lq(Ω0)‖D2v‖
L

qn′
q−n′ (Ω0,Rn×n)

≤ C‖w‖
L

qn′
q−n′ (Ω0)

,

|I3|, |I4| ≤ Λ‖u‖Lq(Ω0)‖Dη‖L∞(Rn,Rn)‖D2v‖Lq′ (Ω0,Rn×n) ≤ C‖w‖Lq′ (Ω′)
≤ C‖w‖

L
qn′
q−n′ (Ω′)

,

|I5| ≤ Λ‖u‖Lq(Ω0)‖D2η‖L∞(Rn,Rn×n)‖Dv‖Lq′ (Ω0,Rn) ≤ C‖w‖Lq′ (Ω′)
≤ C‖w‖

L
qn′
q−n′ (Ω′)

,

and finally, as for (3.3),

|I6| ≤ C‖w‖
L

qn′
q−n′ (Ω′)

+ C‖w‖Lq′ (Ω′) ≤ C‖w‖
L

qn′
q−n′ (Ω′)

.

So, arguing as in the Step 1 of Theorem 1.2, we deduce∣∣∣∣ˆ
Ω′
w∆`

hu dx

∣∣∣∣ ≤ C‖w‖
L

qn′
q−n′ (Ω′)

,

which in turn implies, thanks also to Theorem 2.1, that u ∈W
1,
(
qn′
q−n′

)′
loc (Ω). Let us note that thanks

to this, the equation satisfied by u may be rewritten as

(4.1)
∑
i,j

ˆ
aij(x)DiuDjϕdx = 0,

where the test functions ϕ can be taken in W
1, qn

′
q−n′ (Ω) with compact support. On the other hand,

the summability of the solution u is not improved by its belonging to this Sobolev space, since(
qn′

q−n′

)′
= qn′

qn′−q+n′ and the Sobolev conjugate of qn′

qn′−q+n′ is q.

Step 2. We prove that u ∈W 1,q
loc (Ω).
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As in the Step 2 of the proof of Theorem 1.2, for j ∈ {1, · · · , n} let f = (f1, · · · , fn) with
fj ∈ C∞c (Ω′) be such that ∑

j

||fj ||Lq′ (Ω′) ≤ 1.

For every p > 1, let v ∈W 1,p
0 (Ω) be the weak solution of the problem

(4.2)
∑
i,j

ˆ
aijDivDjϕdx =

∑
j

ˆ
Djϕfj dx ∀ϕ ∈W 1,p′

0 (Ω).

By Theorem 2.5 we have in particular that

||v||W 1,q′ (Ω′) ≤ C||f ||Lq′ (Ω′,Rn).

As before, we take BR/2 ⊂ BR ⊂ Ω′ a pair of concentric balls centered at x0 ∈ Ω′ and we consider
ξ(x) = ξ(|x−x0|) a smooth function such that ξ(t) = 1 for t ∈ [0, R/2] and ξ(t) = 0 for t ≥ R . We
can choose ϕ = vξ in (4.1) and ϕ = uξ as test function in (4.2), so that∑

i,j

ˆ
aijDiuDjv ξ dx+

∑
i,j

ˆ
aijDiuDjξv dx = 0,

and ∑
i,j

ˆ
aijDivDju ξ dx+

∑
i,j

ˆ
aijDivDjξu dx

=
∑
j

ˆ
fjDju ξ dx+

∑
j

ˆ
fjDjξu dx.

Subtracting the two equations and using the symmetry of aij we get∑
j

ˆ
fjDju ξ dx =−

∑
j

ˆ
fjDjξu dx+

∑
i,j

ˆ
aijDivDjξu dx

−
∑
i,j

ˆ
aijDiuDjξv dx = I1 + I2 + I3.

We estimate the three terms Im. We have

|I1| ≤ ‖u‖Lq(Ω′)‖Dξ‖L∞(BR,Rn)‖f‖Lq′ (Ω′,Rn) ≤ C‖f‖Lq′ (Ω′,Rn),

|I2| ≤ Λ‖Dξ‖L∞(BR,Rn)‖u‖Lq(Ω′)‖Dv‖Lq′ (Ω′,Rn) ≤ C‖f‖Lq′ (Ω′,Rn),

and finally

|I3| ≤ Λ‖u‖
W

1,

(
qn′
q−n′

)′
(Ω′)

‖v‖
L

qn′
q−n′ (Ω′)

≤ C‖v‖W 1,q′ (Ω′),

where the last inequality derives from the fact that the Sobolev conjugate of q′ is qn′

q−n′ . To sum up

we have obtained ∣∣∣∑
j

ˆ
fjξDju dx

∣∣∣ ≤ C‖f‖Lq′ (Ω′,Rn),

as well

‖ξDu‖Lq(Ω′,Rn) ≤ C,
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and, using a finite covering argument, this implies that u ∈ W 1,q
loc (Ω). Let us observe that this

Sobolev regularity improves the summability of u. In particular, u ∈ Lq
∗

loc(Ω), where q∗ is the
Sobolev conjugate of q.

Step 3. We claim that if q > n then u is a weak solution.
By the previous step, we deduce that if q > n then the solution u is in L∞loc(Ω). At this point, it

is not difficult to prove, arguing as in Step 1, that u ∈W 1,n
loc (Ω).

Step 4. We prove that u ∈ L∞loc(Ω).
We just observed that if q > n we are done. Let us consider now q ≤ n. The solution u is in

W 1,q
loc (Ω) and by the Sobolev’s embedding u ∈ Lq

∗

loc(Ω), where q∗ = qn
n−q if q < n and any number

greater then 1 if q = n. Arguing exactly as in the Step 2 we derive that u ∈ W 1,q∗

loc (Ω), which in
turn implies that u is in L∞loc(Ω) if q∗ > n. We already noticed in Step 3 that this gives the desired
result. Let us observe that if q = n, q∗ is any number greater then 1 and so this can be chosen
greater then n, while if q < n, q∗ > n is equivalent to q > n

2 . We can iterate this procedure. Given
q > n′ = n

n−1 after (at most) n− 1 times we deduce that u is locally bounded.
By Step 3 the locally boundedness of the solution gives the desired result.

�

Appendix A. The C1-Dini regularity of solutions to divergence form elliptic
equations with Dini-continuous coefficients

As announced in Remark 2.6, we will specify the modulus of continuity of the gradient of solutions
to (2.4) in the proof of [11, Theorem 1.1]. We will consider only the main points of the proof
reminding for the rest to [11]. The set Ω is supposed to be the ball B4 centered at 0 and Ω′ = B1.
The improvement regards Proposition 1.1 in [11]: for the sake of completeness we will sketch the
proof, modifying the original when needed.

Proposition A.1. For B4 ⊂ Rn, n ≥ 1, let aij, defined on B4, satisfy (1.3) and (1.4) and let
f = (f1, f2, . . . , fn) with fj ∈ C∞c (B4) for all j ∈ {1, . . . , n}. Assume that u ∈ H1(B4) is a weak
solution of (2.4), then there exist a ∈ R and b ∈ Rn such that

(A.1) −
ˆ
Br

|u(x)− (a+ b · x)| dx ≤ rδ(r)[‖u‖L2(B2) + ‖f‖C1(B2)], ∀r ∈ (0, 1),

where δ(r), depending on n, λ,Λ, and on the modulus of continuity of aij and f , is a monotonically
increasing positive function defined on (0, 1) satisfying

ˆ 1

0

δ(r)

r
dr < +∞.

Remark A.2. As shown in [11, Proposition 1.2], δ(r) will be the modulus of continuity of Du.

Proof. The proof is carried out for f = 0. We use the same notation of [11], denoting by ϕ the
modulus of continuity such that (

−
ˆ
Br

|A−A(0)|2
) 1

2

≤ ϕ(r),
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where A = (aij)i,j . Observe that in our case, assuming (1.4), ϕ(r) has the following form(
−
ˆ
Br

|A−A(0)|2
) 1

2

≤
(
−
ˆ
Br

ĀB4
(|x|)2 dx

) 1
2

≤ C
(

1

rn

ˆ r

0

ĀB4(ρ)2ρn−1dρ

) 1
2

=: ϕ(r),

which is double-Dini continuous since ϕ(r) ≤ ĀB4(r), and satisfies

max
r/2≤s≤r

ϕ(s) ≤ µϕ(r),

with µ > 1. As in [11], by induction, one will find, for k ≥ 0, wk ∈ H1(B3/4k+1) such that

(A.2)
∑
i,j

Dj(aij(0)Diwk) = 0 in B3/4k+1 ,

(A.3) ‖wk‖L2(B
2/4k+1 ) ≤ C4−

k(n+2)
2 ϕ(4−k), ‖Dwk‖L∞(B

1/4k+1 ,Rn)Cϕ(4−k),

(A.4) ‖D2wk‖L∞(B
1/4k+1 ,Rn×n) ≤ C4kϕ(4−k),

(A.5) ‖u−
k∑
j=0

wj‖L2(B
1/4k+1 ) ≤ 4−

(k+1)(n+2)
2 ϕ(4−(k+1)),

and

(A.6) ‖wk‖L∞(B
1/4k+1 ) ≤ C4−kϕ(4−k),

see [11, (14), (15), (16), (17), and (18) of Proposition 1.1]. Here and in the sequel C will denote a
universal constant.

For x ∈ B1/4k+1 , using (A.3), (A.4), (A.6) and Taylor expansion,

|
k∑
j=0

wj(x)−
∞∑
j=0

wj(0)−
∞∑
j=0

Dwj(0) · x|

≤
∞∑

j=k+1

(|wj(0)|+ |Dwj(0)||x|) +

k∑
j=0

‖D2wj‖L∞(B
1/4k+1 ,Rn×n)|x|2

≤C
∞∑

j=k+1

(4−jϕ(4−j) + ϕ(4−j)|x|) + C

k∑
j=0

4jϕ(4−j)|x|2

≤C4−(k+1)

ˆ 4−k

0

ϕ(r)

r
dr + C|x|2

ˆ 1

|x|
2

ϕ(r)

r2
dr.

(A.7)
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We then derive from (A.5) and the above, using Hölder’s inequality, that
ˆ
B

1/4k+1

|u(x)−
∞∑
j=0

wj(0)−
∞∑
j=0

Dwj(0) · x| dx

≤ ‖
k∑
j=0

wj(x)−
∞∑
j=0

wj(0)−
∞∑
j=0

Dwj(0) · x‖L1(B
1/4k+1 )

+ ‖u−
k∑
j=0

wj(x)‖L1(B
1/4k+1 )

≤ C4−(k+1)(n+1)

ˆ 4−k

0

ϕ(r)

r
dr + C

ˆ 1/4k+1

0

ρn+1

ˆ 1

ρ
2

ϕ(r)

r2
dr dρ

+ C 4−(k+1)(n+1)ϕ(1/4k+1).

(A.8)

Proposition A.1 follows from the above with a =
∞∑
j=0

wj(0), b =

∞∑
j=0

Dwj(0) · x, and

δ(r) '
ˆ r

0

ϕ(s)

s
ds+

1

rn+1

ˆ r

0

ρn+1

ˆ 1

ρ
2

ϕ(s)

s2
ds dρ+ ϕ(r),

the symbol ' standing for = up to a constant. It remains to prove that δ(r) is a Dini modulus of
continuity. Thanks to assumption (1.4), it occurs if we show the Dini continuity of the second term
in the previous sum. It yields

1

rn+1

ˆ r

0

ρn+1

ˆ 1

ρ
2

ϕ(s)

s2
ds dρ ≤ r

ˆ 1

r
2

ϕ(s)

s2
ds,

so that, integrating by parts,

ˆ
0

ˆ 1

r
2

ϕ(s)

s2
ds dr = r

ˆ 1

r
2

ϕ(s)

s2
ds

∣∣∣∣∣
0

+

ˆ
0

ϕ( r2 )

r/4
dr.

It is easy to see that limr→0 r
´ 1
r
2

ϕ(s)
s2 ds = 0, and thus the thesis follows by the Dini continuity of

ϕ.
�

Appendix B. The counterexample

To construct the example, one first considers, for r ∈ (0, 1) and for β > 1, the function

α(r) =
−βn

(n− 1) log
(
r0
r

) +
β(β + 1)

(n− 1) log2
(
r0
r

) ,
for some r0 > 1. One takes then A(x) = (aij(x))i,j defined by

aij(x) = δij + α(|x|)
(
δij −

xixj
|x|2

)
,

with r0 large enough so that α ≥ − 1
2 , A being then uniformly elliptic.
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Let us check now that A ∈W 1,n(B1,Rn×n). Simple computation gives∣∣∣∣∂aij∂x`

∣∣∣∣ . |α′(|x|)|+ |α(|x|)| 1

|x|
,

for every i, j, ` = 1, · · · , n (the symbol . stand for ≤ up to a constant). On the other hand

|α′(|x|)| ' 1

|x| log2
(
r0
|x|

) +
1

|x| log3
(
r0
|x|

) ,
which in turn implies∣∣∣∣∂aij∂x`

∣∣∣∣ . 1

|x| log
(
r0
|x|

) +
1

|x| log2
(
r0
|x|

) +
1

|x| log3
(
r0
|x|

) . 1

|x| log
(
r0
|x|

) ,
if r0 is big enough. Thus, the belonging of A to W 1,n(B1,Rn×n) is provided by the estimateˆ

B1

∣∣∣∣∂aij∂x`

∣∣∣∣n dx . ˆ
B1

1

|x|n logn
(
r0
|x|

) dx ' ˆ 1

0

1

r logn
(
r0
r

) dr < +∞.

With such an A, in [9] the authors construct a solution of (1.1) (in the sense of distributions)

u ∈W 1,1
loc (B1) \W 1,p

loc (B1) for every p > 1. In particular, let us observe that such a solution belongs

to Ln
′

loc(B1).
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