ON THE REGULARITY OF VERY WEAK SOLUTIONS FOR LINEAR ELLIPTIC EQUATIONS IN DIVERGENCE FORM

DOMENICO ANGELO LA MANNA, CHIARA LEONE, AND ROBERTA SCHIATTARELLA

AbStract. In this paper we consider a linear elliptic equation in divergence form

$$
\begin{equation*}
\sum_{i, j} D_{j}\left(a_{i j}(x) D_{i} u\right)=0 \quad \text { in } \Omega \tag{0.1}
\end{equation*}
$$

Assuming the coefficients $a_{i j}$ in $W^{1, n}(\Omega)$ with a modulus of continuity satisfying a certain Dinitype continuity condition, we prove that any very weak solution $u \in L_{\mathrm{loc}}^{n^{\prime}}(\Omega)$ of (0.1) is actually a weak solution in $W_{\mathrm{loc}}^{1,2}(\Omega)$.

1. Introduction

Let $n \geq 2$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded open set. In this paper we study regularity properties of very weak solutions to the linear elliptic equation

$$
\begin{equation*}
\sum_{i, j} D_{j}\left(a_{i j}(x) D_{i} u\right)=0 \quad \text { in } \Omega \tag{1.1}
\end{equation*}
$$

where the matrix-field $A: \Omega \rightarrow \mathbb{R}^{n \times n}, A(x)=\left(a_{i j}(x)\right)_{i, j}$, is elliptic and belongs to $W^{1, n}\left(\Omega, \mathbb{R}^{n \times n}\right) \cap$ $L^{\infty}\left(\Omega, \mathbb{R}^{n \times n}\right)$, i.e.

$$
\begin{equation*}
\sup _{i, j=1, \cdots, n}\left\|a_{i j}\right\|_{W^{1, n}(\Omega)} \leq M \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda|\xi|^{2} \leq \sum_{i, j} a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2} \quad \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{R}^{n}, \text { a.e. in } \Omega, \tag{1.3}
\end{equation*}
$$

for some positive constants λ, Λ, and M. Moreover, the matrix A is symmetric, that is $a_{i j}=a_{j i}$ a.e. in Ω for all $i, j \in\{1, \ldots, n\}$.

Finally we assume that the coefficients $\left(a_{i j}(x)\right)_{i, j}$ are double-Dini continuous in Ω, i.e. $a_{i j} \in$ $C^{0}(\Omega)$ and

$$
\bar{A}_{\Omega}(r):=\sum_{i, j} \sup _{\substack{x, y \in \Omega \\|x-y| \leq r}}\left|a_{i j}(x)-a_{i j}(y)\right|, \quad r>0,
$$

satisfies

$$
\begin{equation*}
\int_{0}^{\operatorname{diam}(\Omega)} \frac{1}{t} \int_{0}^{t} \frac{\bar{A}_{\Omega}(s)}{s} d s d t<\infty \tag{1.4}
\end{equation*}
$$

[^0]A common type of double-Dini continuous functions are, of course, $\omega(r)=r^{\alpha}, 0<\alpha \leq 1$, thus an example of a matrix-field A satisfying (1.2) and (1.4) is $A \in W^{1, p}\left(\Omega, \mathbb{R}^{n \times n}\right)$, with $p>n$. On the other hand, condition (1.4) occurs not only for $\omega(r)=r^{\alpha}$, but more generally for $\omega(r)=\log ^{\beta}\left(\frac{1}{r}\right)$, $\beta<-2$.

Given a measurable matrix $A(x)=\left(a_{i j}(x)\right)_{i, j}$ satisfying (1.3), a function $u \in W_{\text {loc }}^{1,2}(\Omega)$ is called a weak solution of (1.1) if

$$
\sum_{i, j} \int a_{i j}(x) D_{i} u D_{j} \varphi d x=0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega)
$$

The celebrated result by De Giorgi in [5] states that if u is a weak solution of (1.1) then u is locally Hölder continuous.

Subsequently, J. Serrin produced in [13] a famous example, constructing an equation of the form (1.1) which has a solution $u \in W^{1, p}(\Omega)$, with $1<p<2$, and $u \notin L_{\text {loc }}^{\infty}(\Omega)$. Serrin conjectured that if the coefficients $a_{i j}$ are locally Hölder continuous, then any solution (in the sense of distributions) $u \in W_{\text {loc }}^{1,1}(\Omega)$ of (1.1) must be a (usual) weak solution, i.e. $u \in W_{\text {loc }}^{1,2}(\Omega)$. Serrin's conjecture was established by R.A. Hager and J. Ross in [10], and then in full generality by H. Brezis in [2] (see also [1] for a full proof) starting with $u \in W_{\mathrm{loc}}^{1,1}(\Omega)$, or even with $u \in B V_{\mathrm{loc}}(\Omega)$, i.e., $u \in L_{\mathrm{loc}}^{1}(\Omega)$ and its derivatives (in the sense of distributions) being Radon measures. Let us remark that in Brezis's result the coefficients $a_{i j}$, satisfying (1.3), are Dini continuous functions in Ω. The Dini continuity of the coefficients is optimal in some sense: for the unit ball B_{1} and continuous coefficients, T. Jin, V. Maz'ya, and J.V. Schaftingen in [9] constructed a solution (in the sense of distributions) $u \in W_{\mathrm{loc}}^{1,1}\left(B_{1}\right) \backslash W_{\mathrm{loc}}^{1, p}\left(B_{1}\right)$ for every $p>1$.

For $A(x)=\left(a_{i j}(x)\right)_{i, j}$ satisfying (1.2) and (1.3), we will consider a very weak solution $u \in L_{\text {loc }}^{n^{\prime}}(\Omega)$ of (1.1), namely

$$
\begin{equation*}
\sum_{i, j} \int u(x) D_{i}\left(a_{i j}(x) D_{j} \varphi(x)\right) d x=0, \quad \forall \varphi \in C_{c}^{\infty}(\Omega) \tag{1.5}
\end{equation*}
$$

with $n^{\prime}=\frac{n}{n-1}$.
Remark 1.1. It is not difficult to prove that the test functions φ in (1.5) can be taken in $W^{2, n}(\Omega) \cap$ $W^{1, \infty}(\Omega)$, with $\operatorname{supp} \varphi \Subset \Omega$. Indeed, one can argue by density to show that given a function $\varphi \in W^{2, n}(\Omega) \cap W^{1, \infty}(\Omega)$ with compact support, we may find a sequence $\varphi_{k} \in C_{c}^{\infty}(\Omega)$ such that $\varphi_{k} \rightarrow \varphi$ strongly in $W^{2, n}$ and $\sup _{k}\left\|\varphi_{k}\right\|_{1, \infty}<\infty$ (so that $D \varphi_{k}$ converges to $D \varphi$ weakly* in L^{∞}) and then taking the limit as k goes to infinite in the equation (1.5) for φ_{k}.

The main result of the paper is the following.
Theorem 1.2. Let u be a very weak solution of (1.1), with $A(x)=\left(a_{i j}(x)\right)_{i, j}$ satisfying (1.2), (1.3) and (1.4), then u belongs to $W_{\text {loc }}^{1,2}(\Omega)$ and thus it is a weak solution.

Remark 1.3. It is worth noting that, under hypotheses (1.2) and (1.3), one can consider a very weak solution $u \in L_{\text {loc }}^{n^{\prime}}(\Omega)$ to (1.1), but when dealing with the regularity properties of u some extra conditions on the coefficients $a_{i j}$ must be considered. The counterexample constructed in [9] provides in fact continuous coefficients $a_{i j}$ which belong also to $W^{1, n}\left(B_{1}\right)$, showing that one can not expect a very weak solution $u \in L_{\text {loc }}^{n^{\prime}}(\Omega)$ to be a weak solution in $W_{\text {loc }}^{1,2}(\Omega)$ under just conditions (1.2) and (1.3). For the sake of completeness, we will propose the example given in [9] in the Appendix B , underlining that the constructed coefficients belong also to $W^{1, n}\left(B_{1}\right)$.

On the other hand, in Section 4 we propose an alternative to double Dini continuous coefficients which again bypasses the counterexample. In particular, under hypotheses (1.2) and (1.3) we consider a very weak solution in $L_{\mathrm{loc}}^{q}(\Omega)$, with $q>n^{\prime}$.

Remark 1.4. In [14] W. Zhang and J. Bao deal with the case of very weak solutions $u \in L_{\text {loc }}^{1}(\Omega)$ of (1.5), interpreting the coefficients as Lipschitz functions, due to the assumption made on the solutions. Thus our result represents a natural extension from their research.

2. Notation and preliminary Results

We collect here the main definitions and notation and some useful results that will be needed in the sequel.
2.1. Notation. In the following, we denote by $B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\}$ the ball of radius r centered at x.

We indicate by $\left\{e_{1}, \cdots e_{n}\right\}$ the canonical basis of \mathbb{R}^{n}. Given $h \in \mathbb{R} \backslash\{0\}$, for a measurable function $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and for $\ell=1, \cdots, n$, we introduce the notation

$$
\Delta_{h}^{\ell} \psi:=\frac{\psi\left(x+h e_{\ell}\right)-\psi(x)}{h}
$$

for the incremental quotient in the ℓ-th direction. We recall that for every pair of functions φ, ψ, we have

$$
\begin{equation*}
\Delta_{h}^{\ell}(\varphi \psi)=\Delta_{h}^{\ell} \varphi \psi+\varphi\left(x+h e_{\ell}\right) \Delta_{h}^{\ell} \psi \tag{2.1}
\end{equation*}
$$

The following result pertaining to difference quotients of functions in Sobolev spaces is well known t (see [8, Proposition 4.8] for example).

Theorem 2.1. Let $p>1$; if $\psi \in W^{1, p}(\Omega)$, then $\Delta_{h}^{\ell} \psi \in L^{p}\left(\Omega^{\prime}\right)$ for any $\Omega^{\prime} \Subset \Omega$ satisfying $h<$ $\frac{\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)}{2}$, and we have

$$
\left\|\Delta_{h}^{\ell} \psi\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq\left\|D_{\ell} \psi\right\|_{L^{p}(\Omega)}
$$

If $\psi \in L^{p}(\Omega)$ and there exists $L \geq 0$ such that, for every $h<\operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right), \ell=1, \cdots, n$, we have

$$
\left\|\Delta_{h}^{\ell} \psi\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq L
$$

then $\psi \in W^{1, p}\left(\Omega^{\prime}\right),\left\|D_{\ell} \psi\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq L$ and $\Delta_{h}^{\ell} \psi \rightarrow D_{\ell} \psi$ in $L^{p}\left(\Omega^{\prime}\right)$ as $h \rightarrow 0$.
Finally, given $p>1$, we denote by $p^{\prime}=\frac{p}{p-1}$ the conjugate exponent of p.
2.2. Dini continuous functions. We say that a continuous function f on Ω is Dini continuous if the modulus of continuity $\bar{f}_{\Omega}:[0, \operatorname{diam}(\Omega)] \rightarrow \mathbb{R}^{+}$defined by

$$
\bar{f}_{\Omega}(r):=\sup _{\substack{x, y \in \Omega \\|x-y| \leq r}}|f(x)-f(y)|
$$

satisfies

$$
\int_{0}^{\operatorname{diam}(\Omega)} \frac{\bar{f}_{\Omega}(t)}{t} d t<\infty
$$

We also denote by $C^{D}(\Omega)$ the space of Dini continuous functions; it turns out to be a Banach space equipped with the following norm:

$$
\|f\|_{C^{D}(\Omega)}:=\|f\|_{\infty}+\int_{0}^{\operatorname{diam}(\Omega)} \frac{\bar{f}_{\Omega}(t)}{t} d t
$$

where $\|\cdot\|_{\infty}$ is the usual uniform norm.
Let us remark that by the uniform continuity, any function in $C^{D}(\Omega)$ may be extended up to the boundary of Ω with the same modulus of continuity. Moreover,

$$
C^{0, \alpha}(\Omega) \subseteq C^{D}(\Omega),
$$

for any $0<\alpha \leq 1$, where $C^{0, \alpha}(\Omega)$ denotes the space of Hölder continuous functions.
The space $\bar{C}_{c}^{D}(\Omega)$ will denote the set of functions in $C^{D}(\Omega)$ with compact support in Ω.
Lemma 2.2. The space $C_{c}^{\infty}(\Omega)$ is dense in $C_{c}^{D}(\Omega)$.
Proof. Let $f \in C_{c}^{D}(\Omega)$ that we extend to zero on $\mathbb{R}^{n} \backslash \Omega$ and set $f_{\varepsilon}(x)=\left(\rho_{\varepsilon} * f\right)(x)$, where ρ_{ε} is a standard mollifier. Then, if ε is sufficiently small, $f_{\varepsilon} \in C_{c}^{\infty}(\Omega)$; we will prove that

$$
\begin{equation*}
f_{\varepsilon} \rightarrow f \quad \text { in } C^{D}(\Omega) \tag{2.2}
\end{equation*}
$$

It is easily seen that f_{ε} uniformly converges to f in Ω, thus in order to prove (2.2) we will just show that

$$
\int_{0}^{\operatorname{diam}(\Omega)} \frac{\left(\overline{f-f_{\varepsilon}}\right)_{\Omega}(t)}{t} d t \rightarrow 0
$$

as ε tends to 0 . Observe that

$$
\left(\overline{f-f_{\varepsilon}}\right)_{\Omega}(r)=\sup _{\substack{x, y \in \Omega \\|x-y|<r}}\left\{\left|f_{\varepsilon}(x)-f(x)-f_{\varepsilon}(y)+f(y)\right|\right\} \leq \bar{f}_{\Omega}(r)+\left(\bar{f}_{\varepsilon}\right)_{\Omega}(r)
$$

and

$$
\begin{aligned}
\left(\bar{f}_{\varepsilon}\right)_{\Omega}(r) & =\sup _{\substack{x, y \in \Omega \\
|x-y|<r}}\left\{\left|f_{\varepsilon}(x)-f_{\varepsilon}(y)\right|\right\} \\
& =\sup _{\substack{x, y \in \Omega \\
\mid x, y \in r}}\left\{\left|\int \rho_{\varepsilon}(z)(f(x-z)-f(y-z)) d z\right|\right\} \\
& \leq \int \rho_{\varepsilon}(z) \bar{f}_{\Omega}(r) d z=\bar{f}_{\Omega}(r),
\end{aligned}
$$

which together yield

$$
\left(\overline{f_{\varepsilon}-f}\right)_{\Omega}(r) \leq 2 \bar{f}_{\Omega}(r) .
$$

On the other hand, since $\left(\overline{f_{\varepsilon}-f}\right)_{\Omega} \rightarrow 0$ pointwise, the dominated convergence theorem implies

$$
\int_{0}^{\operatorname{diam}(\Omega)} \frac{\left(\overline{f_{\varepsilon}-f}\right)_{\Omega}(t)}{t} \rightarrow 0
$$

which concludes the proof of (2.2).
Remark 2.3. The previous result ensures that $C_{c}^{D}(\Omega)$ is a separable space, noting that $C_{c}^{1}(\Omega)$ is separable with respect to the usual norm $\|f\|_{1, \infty}:=\sum_{|\alpha| \leq 1}\left\|D_{\alpha} f\right\|_{\infty}, C_{c}^{1}(\Omega) \subseteq C_{c}^{D}(\Omega)$ and $\bar{f}_{\Omega}(r) \leq r\|D f\|_{\infty}$, for every $f \in C_{c}^{1}(\Omega)$.
Lemma 2.4. Let f, f_{ε}, and g belonging to $C^{D}(\Omega)$ such that f_{ε} converges to f in C^{D}; then $g f_{\varepsilon}$ converges to gf in C^{D}.

Proof. As before, it is enough to prove the convergence of the seminorm since the uniform convergence is immediate. Then, writing the definition of the modulus of continuity, we have

$$
\begin{align*}
{\left[\overline{g\left(f_{\varepsilon}-f\right)}\right]_{\Omega}(r) } & =\sup _{\substack{x, y \in \Omega \\
|x-y|<r}}\left\{\left|g(x)\left(f_{\varepsilon}(x)-f(x)\right)-g(y)\left(f_{\varepsilon}(y)-f(y)\right)\right|\right\} \\
& \leq \sup _{\substack{x, y \in \Omega \\
|x-y|<r}}\left\{|g(x)|\left|\left(f_{\varepsilon}(x)-f(x)\right)-\left(f_{\varepsilon}(y)-f(y)\right)\right|\right\} \tag{2.3}\\
& +\sup _{\substack{x, y \in \Omega \\
|x-y|<r}}\left\{|g(x)-g(y)|\left|f(y)-f_{\varepsilon}(y)\right|\right\} \\
& \leq\|g\|_{\infty}\left(\overline{f-f_{\varepsilon}}\right)_{\Omega}(r)+\bar{g}_{\Omega}(r)\left\|f-f_{\varepsilon}\right\|_{\infty}
\end{align*}
$$

Hence,

$$
\begin{aligned}
\int_{0}^{\operatorname{diam}(\Omega)} \frac{\left[\overline{g\left(f_{\varepsilon}-f\right)}\right]_{\Omega}(t)}{t} d t & \leq\|g\|_{\infty} \int_{0}^{\operatorname{diam}(\Omega)} \frac{\left(\overline{f-f_{\varepsilon}}\right)_{\Omega}(t)}{t} d t \\
& +\left\|f-f_{\varepsilon}\right\|_{\infty} \int_{0}^{\operatorname{diam}(\Omega)} \frac{\bar{g}_{\Omega}(t)}{t} d t
\end{aligned}
$$

which goes to zero as ε tends to zero.
2.3. C^{1}-Dini regularity of solutions to divergence form elliptic equations with Dinicontinuous coefficients. For the proof of our result, we will need the following extension of the Schauder regularity theory for elliptic equations in divergence form with Dini continuous coefficients (see [11, Theorem 1.1] and [6, Theorem 1.3]). For the L^{p}-regularity theory we refer to [7], where the general case of $V M O$ coefficients is treated (see also [12, Theorem 5.5.3 (a)] or [3, Theorem 2.2. Chapter 10] for the case of continuous coefficients).

Theorem 2.5. For $\Omega \subset \mathbb{R}^{n}$, let $a_{i j}$ satisfy (1.3) and (1.4); we consider $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ with $f_{j} \in C_{c}^{\infty}(\Omega)$ for all $j \in\{1, \ldots, n\}$. Assume that $u \in H^{1}(\Omega)$ is a weak solution of the equation

$$
\begin{equation*}
\sum_{i, j} D_{j}\left(a_{i j} D_{i} u\right)=\sum_{j} D_{j} f_{j} \quad \text { in } \Omega \tag{2.4}
\end{equation*}
$$

Then $u \in C^{1, D}\left(\Omega^{\prime}\right)$, for any bounded open set $\Omega^{\prime}, \Omega^{\prime} \Subset \Omega$.
Moreover, let Ω a $C^{1,1}$ bounded open subset of \mathbb{R}^{n}, let $a_{i j}$ satisfy (1.2) and (1.3), and let $f_{j} \in$ $L^{p}(\Omega)$, for every $j \in\{1, \ldots, n\}$, with $1<p<\infty$, then there exists a unique solution $u \in W_{0}^{1, p}(\Omega)$ to the problem

$$
\sum_{i, j} \int_{\Omega} a_{i j} D_{i} u D_{j} \varphi d x=\sum_{j} \int_{\Omega} f_{j} D_{j} \varphi d x \quad \forall \varphi \in W_{0}^{1, p^{\prime}}(\Omega)
$$

and

$$
\begin{equation*}
\|u\|_{W^{1, p}(\Omega)} \leq C \sum_{j}\left\|f_{j}\right\|_{L^{p}(\Omega)} \tag{2.5}
\end{equation*}
$$

holds, where C depends on $n, \lambda, \Lambda, p, \partial \Omega,\|A\|_{W^{1, n}\left(\Omega, \mathbb{R}^{n \times n}\right)}$.
Remark 2.6. The first conclusion of Theorem 2.5 comes with an estimate of the Dini modulus of continuity of $D u$ involving the Dini modulus of continuity of $a_{i j}$ and f_{j}. Actually, in [11, Theorem 1.1] and in [6, Theorem 1.3] only the continuity of $D u$ is proved and these results are obtained with a weaker assumption on the coefficients $a_{i j}$. Assuming (1.4) for the coefficients we are able to prove
also the Dini continuity of the gradient of the solution. In Appendix A we will resume in broad terms the proof of [11, Theorem 1.1], developing it in order to get the needed Dini continuity result.
2.4. C^{2}-regularity of solutions to non divergence form elliptic equations with Dinicontinuous coefficients. Let us first recall the $W^{2, p}$-solvability of the Dirichlet problem for non divergence elliptic equations with discontinuous coefficients (see [4, Theorem 4.2 and Theorem 4.4]).

Theorem 2.7. The Dirichlet problem

$$
\begin{cases}\sum_{i, j} a_{i j}(x) D_{i j} u=f & \text { a.e. in } \Omega \tag{2.6}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a $C^{1,1}$ smooth and bounded subset of $\mathbb{R}^{n}, f \in L^{p}(\Omega)$ with $1<p<\infty$, and $a_{i j}$ satisfies (1.2) and (1.3), admits a unique solution $u \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ and

$$
\begin{equation*}
\|u\|_{W^{2, p}(\Omega)} \leq C\left(\|u\|_{L^{p}(\Omega)}+\|f\|_{L^{p}(\Omega)}\right) \tag{2.7}
\end{equation*}
$$

where the constant C depends on $n, p, \lambda, \Lambda, \partial \Omega,\|A\|_{W^{1, n}\left(\Omega, \mathbb{R}^{n \times n}\right)}$.
The next result specifies estimate (2.7); its proof is quite standard but we prefer to write it for the sake of completeness.

Proposition 2.8. Suppose u is a solution of the elliptic Dirichlet problem (2.6) with $a_{i j}, f, p$ and Ω as above. Then

$$
\begin{equation*}
\|u\|_{W^{2, p}(\Omega)} \leq C\|f\|_{L^{p}(\Omega)} \tag{2.8}
\end{equation*}
$$

Proof. Let

$$
\mathcal{L}=\left\{L=\sum_{i, j} a_{i j} D_{i j}, \sup _{i, j}\left\|a_{i j}\right\|_{W^{1, n}(\Omega)} \leq 2 M, \lambda|\xi|^{2} \leq \sum_{i, j} a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}\right\}
$$

having in mind Theorem 2.7, if we prove that for any operator $L \in \mathcal{L}$ and for any $f \in L^{p}(\Omega)$, the solution u of

$$
\begin{cases}L u=f & \text { a.e. in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

satisfies

$$
\|u\|_{L^{p}(\Omega)} \leq C\|f\|_{L^{p}(\Omega)}
$$

we are done. Suppose it is not the case, then this is equivalent to say that for every $N \in \mathbb{N}$, there exists an operator $L_{N}=\sum_{i, j} a_{i j}^{N} D_{i j} \in \mathcal{L}$ and a function $f_{N} \in L^{p}(\Omega)$ such that the corresponding solution u_{N} to the Dirichlet problem

$$
\begin{cases}L_{N} u_{N}=f_{N} & \text { a.e. in } \Omega \\ u_{N}=0 & \text { on } \partial \Omega\end{cases}
$$

satisfies

$$
\begin{equation*}
\left\|u_{N}\right\|_{L^{p}(\Omega)}>N\left\|f_{N}\right\|_{L^{p}(\Omega)} \tag{2.9}
\end{equation*}
$$

Let us define $v_{N}=u_{N} /\left\|u_{N}\right\|_{L^{p}(\Omega)}$ and $g_{N}=f_{N} /\left\|u_{N}\right\|_{L^{p}(\Omega)}$, so that v_{N} solves (2.6) with L_{N} and g_{N}. By the $W^{2, p}$ estimate (2.7),

$$
\left\|v_{N}\right\|_{W^{2, p}(\Omega)} \leq C\left(\left\|v_{N}\right\|_{L^{p}(\Omega)}+\left\|g_{N}\right\|_{L^{p}(\Omega)}\right)<C\left(1+\frac{1}{N}\right)
$$

where C does not depend on N and hence,

$$
\begin{equation*}
\left\|v_{N}\right\|_{W^{2, p}(\Omega)} \leq C \tag{2.10}
\end{equation*}
$$

Thus v_{N} is a precompact sequence: up to a non relabeled subsequence, we can suppose $v_{N} \rightharpoonup u^{*}$ weakly in $W^{2, p}(\Omega)$, for some $u^{*} \in W^{2, p}(\Omega)$, moreover $u^{*} \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. Similarly, we can also say that, for every $i, j=1, \cdots, n, a_{i j}^{N} \rightharpoonup a_{i j}^{*}$ weakly in $W^{1, n}(\Omega)$ and $a_{i j}^{N} \rightarrow a_{i j}^{*}$ strongly in $L^{q}(\Omega) \forall 1 \leq q<\infty$. Thus, the operator $L^{*}=\sum_{i, j} a_{i j}^{*} D_{i j}$ belongs to \mathcal{L} and for $\varphi \in L^{p^{\prime}}(\Omega)$ we have

$$
\begin{aligned}
& \left|\int_{\Omega}\left(L_{N} v_{N}-L^{*} u^{*}\right) \varphi d x\right| \\
& \leq \sum_{i, j=1}^{n}\left\{\int_{\Omega}\left|\left(a_{i j}^{N}-a_{i j}^{*}\right) \frac{\partial^{2} v_{N}}{\partial x_{i} \partial x_{j}} \varphi\right| d x+\left|\int_{\Omega} a_{i j}^{*} \varphi\left(\frac{\partial^{2} v_{N}}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} u^{*}}{\partial x_{i} \partial x_{j}}\right) d x\right|\right\} \\
& \leq C \sum_{i, j=1}^{n}\left\|\left(a_{i j}^{N}-a_{i j}^{*}\right) \varphi\right\|_{L^{p^{\prime}}(\Omega)}+\sum_{i, j=1}^{n}\left\{\left|\int_{\Omega} a_{i j}^{*} \varphi\left(\frac{\partial^{2} v_{N}}{\partial x_{i} \partial x_{j}}-\frac{\partial^{2} u^{*}}{\partial x_{i} \partial x_{j}}\right) d x\right|\right\} .
\end{aligned}
$$

Therefore, $L_{N} v_{N}$ converges weakly in $L^{p}(\Omega)$ to $L^{*} u^{*}$. On the other hand, using (2.9), we have

$$
\left\|g_{N}\right\|_{L^{p}(\Omega)}<\frac{1}{N}
$$

Passing to the limit in the equation satisfied by v_{N}, we discover that the limit $u^{*} \in W^{2, p}(\Omega) \cap$ $W_{0}^{1, p}(\Omega)$ satisfies $L^{*} u^{*}=0$ a.e. in Ω. By the uniqueness properties of the solutions to (2.6), it follows that $u^{*}=0$. Thus v_{N} converges to zero and the argument becomes contradictory since $\left\|v_{N}\right\|_{L^{p}(\Omega)}=1$.

In [6, Theorem 1.5] it is shown that solutions to elliptic equations in non divergence form with zero Dirichlet boundary conditions are C^{2} up to the boundary when the leading coefficients are Dini continuous functions.

Theorem 2.9. Assume that Ω is a $C^{2,1}$ smooth and bounded open subset of $\mathbb{R}^{n}, f \in C^{D}(\Omega)$ and $a_{i j}$ satisfies (1.2), (1.3), and (1.4). Let $u \in W^{2,2}(\Omega) \cap W_{0}^{1,2}(\Omega)$ be a solution of the Dirichlet problem

$$
\begin{cases}\sum_{i, j} a_{i j}(x) D_{i j} u=f & \text { a.e. in } \Omega \tag{2.11}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

then $u \in C^{2}(\bar{\Omega})$.
Remark 2.10. The assumption in [6] about the coefficients is weaker then (1.4), since they assume that the modulus of continuity

$$
\tilde{A}_{\Omega}(r):=\sum_{i, j} \sup _{x \in \bar{\Omega}} f_{B_{r}(x) \cap \Omega}\left|a_{i j}(y)-\left(a_{i j}\right)_{B_{r}(x) \cap \Omega}\right| d y
$$

with $\left(a_{i j}\right)_{B_{r}(x) \cap \Omega}=f_{B_{r}(x) \cap \Omega} a_{i j}$, satisfies

$$
\int_{0} \frac{\tilde{A}_{\Omega}(r)}{r} d r<\infty
$$

3. Proof of the main theorem

We use a duality argument in conjunction with the regularity properties for elliptic equations in divergence and in non divergence form, stated in Theorems 2.5 and 2.9.

Proof. Let $\Omega^{\prime} \Subset \Omega$ be an open set and choose a $C^{2,1}$ open set Ω_{0} with $\Omega^{\prime} \Subset \Omega_{0} \Subset \Omega$; let $d\left(\Omega^{\prime}, \partial \Omega_{0}\right)=$ $d>0$. Let $h_{0}=d / 4$, and $0<|h|<h_{0}$.
For the sake of clarity, we divide the proof into two steps.
Step 1. For $\ell=1, \cdots, n$, we claim that $\Delta_{h}^{\ell} u$ is bounded in the dual space of Dini continuous functions with compact support $\left(C_{c}^{D}\left(\Omega^{\prime}\right)\right)^{\prime}$.

Given a Dini continuous function $w \in C_{c}^{D}\left(\Omega^{\prime}\right)$, according to Theorem 2.9 combined with Theorem 2.7 , the solution $v \in W^{2, q}\left(\Omega_{0}\right), \forall q>1$, to the Dirichlet problem

$$
\begin{cases}\sum_{i, j} a_{i j}(x) D_{i j} v=w & \text { a.e in } \Omega_{0} \tag{3.1}\\ v=0 & \text { on } \partial \Omega_{0}\end{cases}
$$

enjoys the C^{2}-regularity up to the boundary of Ω_{0}.
We consider a partition of unity: let $x_{1}, \cdots, x_{J} \in \Omega^{\prime}$ and $\eta_{1}, \cdots, \eta_{J} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ be such that

$$
\Omega^{\prime} \subset \bar{\Omega}^{\prime} \subset \bigcup_{k=1}^{J} B_{d / 8}\left(x_{k}\right), 0 \leq \eta_{k} \leq 1, \forall k=1, \cdots, J, \text { and } \sum_{k=1}^{J} \eta_{k}=1 \text { in } \Omega^{\prime}
$$

and

$$
\operatorname{supp} \eta_{k} \text { is compact and supp } \eta_{k} \subset B_{d / 8}\left(x_{k}\right)
$$

We fix one of these balls and the related function η_{k}; we omit to indicate the center x_{k} and the index k for η_{k} for simplicity.

In view of Remark 1.1, we can insert $\varphi=\eta \Delta_{-h}^{\ell} v$ in (1.5), getting

$$
\begin{aligned}
0 & =\sum_{i, j} \int u D_{i}\left(a_{i j} D_{j}\left(\eta \Delta_{-h}^{\ell} v\right) d x\right. \\
& =\sum_{i, j} \int u D_{i} a_{i j} D_{j}\left(\eta \Delta_{-h}^{\ell} v\right) d x+\sum_{i, j} \int u a_{i j} D_{i j}\left(\eta \Delta_{-h}^{\ell} v\right) d x \\
& =\sum_{i, j} \int u D_{i} a_{i j} D_{j} \eta \Delta_{-h}^{\ell} v d x+\sum_{i, j} \int u \eta D_{i} a_{i j} D_{j}\left(\Delta_{-h}^{\ell} v\right) d x \\
& +\sum_{i, j} \int \eta u a_{i j} D_{i j}\left(\Delta_{-h}^{\ell} v\right) d x+\sum_{i, j} \int u a_{i j} D_{j} \eta D_{i}\left(\Delta_{-h}^{\ell} v\right) d x \\
& +\sum_{i, j} \int u a_{i j} D_{i} \eta D_{j}\left(\Delta_{-h}^{\ell} v\right) d x+\sum_{i, j} \int u a_{i j} D_{i j} \eta \Delta_{-h}^{\ell} v d x
\end{aligned}
$$

We can rearrange the previous equation in order to have

$$
\begin{aligned}
\sum_{i, j} \int \eta u a_{i j} D_{i j}\left(\Delta_{-h}^{\ell} v\right) d x & =-\sum_{i, j} \int u D_{i} a_{i j} D_{j} \eta \Delta_{-h}^{\ell} v d x \\
& -\sum_{i, j} \int u \eta D_{i} a_{i j} D_{j}\left(\Delta_{-h}^{\ell} v\right) d x \\
& -\sum_{i, j} \int u a_{i j} D_{j} \eta D_{i}\left(\Delta_{-h}^{\ell} v\right) d x \\
& -\sum_{i, j} \int u a_{i j} D_{i} \eta D_{j}\left(\Delta_{-h}^{\ell} v\right) d x \\
& -\sum_{i, j} \int u a_{i j} D_{i j} \eta \Delta_{-h}^{\ell} v d x
\end{aligned}
$$

With a simple change of variables, we get

$$
\begin{aligned}
\sum_{i, j} \int \eta u a_{i j} D_{i j}\left(\Delta_{-h}^{\ell} v\right) d x & =\sum_{i, j} \int_{\mathbb{R}^{n}} \eta u a_{i j} \Delta_{-h}^{\ell}\left(D_{i j} v\right) d x \\
& =\sum_{i, j} \int_{\mathbb{R}^{n}} \Delta_{h}^{\ell}\left(\eta u a_{i j}\right) D_{i j} v d x \\
& =\sum_{i, j} \int \Delta_{h}^{\ell} u \eta a_{i j} D_{i j} v d x \\
& +\sum_{i, j} \int u\left(x+h e_{\ell}\right) \Delta_{h}^{\ell}\left(\eta a_{i j}\right) D_{i j} v d x
\end{aligned}
$$

where we also used (2.1). Thus, we finally have

$$
\begin{aligned}
\sum_{i, j} \int \eta \Delta_{h}^{\ell} u a_{i j} D_{i j} v d x & =-\sum_{i, j} \int u D_{i} a_{i j} D_{j} \eta \Delta_{-h}^{\ell} v d x \\
& -\sum_{i, j} \int u \eta D_{i} a_{i j} D_{j}\left(\Delta_{-h}^{\ell} v\right) d x \\
& -\sum_{i, j} \int u a_{i j} D_{j} \eta D_{i}\left(\Delta_{-h}^{\ell} v\right) d x \\
& -\sum_{i, j} \int u a_{i j} D_{i} \eta D_{j}\left(\Delta_{-h}^{\ell} v\right) d x \\
& -\sum_{i, j} \int u a_{i j} D_{i j} \eta \Delta_{-h}^{\ell} v d x \\
& -\sum_{i, j} \int u\left(x+h e_{\ell}\right) \Delta_{h}^{\ell}\left(\eta a_{i j}\right) D_{i j} v d x \\
& =\mathcal{I}_{1}+\mathcal{I}_{2}+\mathcal{I}_{3}+\mathcal{I}_{4}+\mathcal{I}_{5}+\mathcal{I}_{6} .
\end{aligned}
$$

Now, we estimate the six terms \mathcal{I}_{m}.

The use of Hölder's inequality gives

$$
\begin{aligned}
\left|\mathcal{I}_{1}\right| & \leq \sum_{i, j} \int_{B_{d / 8}}\left|u D_{i} a_{i j} D_{j} \eta \Delta_{-h}^{\ell} v\right| d x \\
& \leq\|D \eta\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}\|A\|_{W^{1, n}\left(\Omega, \mathbb{R}^{n \times n}\right)}\|u\|_{L^{n^{\prime}}\left(\Omega_{0}\right)}\left\|\Delta_{-h}^{\ell} v\right\|_{L^{\infty}\left(B_{d / 8}\right)} \\
& \leq C\|D v\|_{L^{\infty}\left(\Omega_{0}, \mathbb{R}^{n}\right)} \leq C\|w\|_{L^{\infty}\left(\Omega^{\prime}\right)}
\end{aligned}
$$

combined with Sobolev's embedding and Proposition 2.8 in the last inequality. Analogously

$$
\left|\mathcal{I}_{2}\right| \leq\|A\|_{W^{1, n}\left(\Omega, \mathbb{R}^{n \times n}\right)} \mid\|u\|_{L^{n^{\prime}}\left(\Omega_{0}\right)}\left\|D^{2} v\right\|_{L^{\infty}\left(\Omega_{0}, \mathbb{R}^{n \times n}\right)}
$$

The terms \mathcal{I}_{3} and \mathcal{I}_{4} can be treated in the same way. Using Hölder's inequality, Theorem 2.1 and Proposition 2.8, we have

$$
\left|\mathcal{I}_{3}\right|,\left|\mathcal{I}_{4}\right| \leq \Lambda\|u\|_{L^{n^{\prime}}\left(\Omega_{0}\right)}\|D \eta\|_{L^{\infty}\left(\mathbb{R}^{n} \mathbb{R}^{n}\right)}\|v\|_{W^{2, n}\left(\Omega_{0}\right)} \leq C\|w\|_{L^{n}\left(\Omega^{\prime}\right)}
$$

Again, for \mathcal{I}_{5} we have

$$
\left|\mathcal{I}_{5}\right| \leq \Lambda\|u\|_{L^{n^{\prime}}\left(\Omega_{0}\right)}\left\|D^{2} \eta\right\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right)}\|D v\|_{L^{n}\left(\Omega_{0}, \mathbb{R}^{n}\right)} \leq C\|w\|_{L^{n}\left(\Omega^{\prime}\right)}
$$

We finally estimate \mathcal{I}_{6}. From (2.1), we get

$$
\begin{aligned}
\mathcal{I}_{6}= & -\sum_{i, j} \int u\left(x+h e_{\ell}\right) \eta \Delta_{h}^{\ell} a_{i j} D_{i j} v d x \\
& -\sum_{i, j} \int u\left(x+h e_{\ell}\right) a_{i j}\left(x+h e_{\ell}\right) \Delta_{h}^{\ell} \eta D_{i j} v d x
\end{aligned}
$$

The second term can be estimated as \mathcal{I}_{3} and \mathcal{I}_{4}, thus:

$$
\begin{align*}
\left|\mathcal{I}_{6}\right| & \leq \sum_{i, j} \int_{B_{d / 8}}\left|u\left(x+h e_{\ell}\right) \eta \Delta_{h}^{\ell} a_{i j} D_{i j} v\right| d x+C\|w\|_{L^{n}\left(\Omega^{\prime}\right)} \tag{3.3}\\
& \leq C\|A\|_{W^{1, n}\left(\Omega, \mathbb{R}^{n \times n}\right)}\|u\|_{L^{n^{\prime}}\left(\Omega_{0}\right)}\left\|D^{2} v\right\|_{L^{\infty}\left(\Omega_{0}, \mathbb{R}^{n \times n}\right)}+C\|w\|_{L^{n}\left(\Omega^{\prime}\right)}
\end{align*}
$$

Here we have used once more Theorem 2.9.
Finally, combining the estimates found for $\mathcal{I}_{m}, m \in\{1, \ldots 6\}$, from (3.2) we get

$$
\sum_{i, j} \int_{B_{d / 8}} \eta \Delta_{h}^{\ell} u a_{i j} D_{i j} v d x \leq C
$$

where C depends on $\lambda, \Lambda,\|D \eta\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)},\left\|D^{2} \eta\right\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right)},\|u\|_{L^{n^{\prime}}\left(\Omega_{0}\right)}$, $\|A\|_{W^{1, n}\left(\Omega, \mathbb{R}^{n \times n}\right)},\|w\|_{L^{\infty}\left(\Omega^{\prime}\right)}$ and $\left\|D^{2} v\right\|_{L^{\infty}\left(\Omega_{0}, \mathbb{R}^{n \times n}\right)}$, as well as on the modulus of continuity of the coefficients $a_{i j}$ and of the datum w. Summing over $k=1, \cdots, J$, since v is the weak solution to the Dirichlet problem (3.1), we finally have

$$
\left|\int_{\Omega^{\prime}} \eta w \Delta_{h}^{\ell} u d x\right| \leq C
$$

and we get

$$
\left|\int_{\Omega^{\prime}} w \Delta_{h}^{\ell} u d x\right| \leq C
$$

for every $w \in C_{c}^{D}\left(\Omega^{\prime}\right)$. By the uniform boundedness principle this means that $\left\{\Delta_{h}^{\ell} u\right\}_{h}$ is a family of equibounded elements in the dual space of Dini continuous functions $\left(C_{c}^{D}\left(\Omega^{\prime}\right)\right)^{\prime}$. Since $\left(C_{c}^{D}\left(\Omega^{\prime}\right)\right)^{\prime}$ is separable, we have that, up to a subsequence,

$$
\Delta_{h}^{\ell} u \stackrel{*}{\psi} \mu^{\ell} \in\left(C_{c}^{D}\left(\Omega^{\prime}\right)\right)^{\prime} .
$$

Step 2. We prove that $u \in W_{\text {loc }}^{1, p^{\prime}}(\Omega)$, with $p>n$.
Using the previous Step we can easily deduce from (1.5) that

$$
\begin{equation*}
\sum_{i, j}\left\langle\mu^{i}, a_{i j} D_{j} \varphi\right\rangle=0 \quad \forall \varphi \in C_{c}^{\infty}\left(\Omega^{\prime}\right), \tag{3.4}
\end{equation*}
$$

where the duality pairing is between $\left(C_{c}^{D}\left(\Omega^{\prime}\right)\right)^{\prime}$ and $C_{c}^{D}\left(\Omega^{\prime}\right)$.
For $j \in\{1, \cdots, n\}$, let $f=\left(f_{1}, \cdots, f_{n}\right)$ with $f_{j} \in C_{c}^{\infty}\left(\Omega^{\prime}\right)$ be such that

$$
\sum_{j}\left\|f_{j}\right\|_{L^{p}\left(\Omega^{\prime}\right)} \leq 1,
$$

with $p>n$. Introducing as before a regular set Ω_{0} between Ω^{\prime} and Ω we can possibly assume that Ω is a $C^{1,1}$ set. Let $v \in W_{0}^{1,2}(\Omega)$ be the weak solution of the problem

$$
\begin{equation*}
\sum_{i, j} \int a_{i j} D_{i} v D_{j} \varphi d x=\sum_{j} \int D_{j} \varphi f_{j} d x \quad \forall \varphi \in C_{c}^{\infty}(\Omega) \tag{3.5}
\end{equation*}
$$

By Theorem 2.5 we have that $v \in W_{0}^{1, p}(\Omega)$ and

$$
\|v\|_{W^{1, p}(\Omega)} \leq C\|f\|_{L^{p}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
$$

Note that, since $p>n$, this means also that the function v is Hölder continuous.
We take $B_{R / 2} \subset B_{R} \subset \Omega^{\prime}$ a pair of concentric balls centered at $x_{0} \in \Omega^{\prime}$ and we consider $\xi(x)=\xi\left(\left|x-x_{0}\right|\right)$ a smooth function such that $\xi(t)=1$ for $t \in[0, R / 2]$ and $\xi(t)=0$ for $t \geq R$.

We would like to use $\varphi=\xi v$ as test function in (3.4). We first observe that, by Theorem 2.5 , the function ξv belongs to $C_{c}^{1, D}\left(\Omega^{\prime}\right)$. Moreover, proving Lemma 2.2 , we actually proved that a mollification of a Dini continuous function with compact support strongly converges in C^{D} to the function itself. Thus, combining this fact with Lemma 2.4, we have that $a_{i j} D_{j}(\xi v)_{\varepsilon}$ strongly converges in C^{D} to $a_{i j} D_{j}(\xi v)$, where $(\xi v)_{\varepsilon}(x)=\left(\rho_{\varepsilon} * \xi v\right)(x), \rho_{\varepsilon}$ being a standard mollifier. This in turn implies that the use of $\varphi=\xi v$ as test function in (3.4) is admissible:

$$
\begin{equation*}
\sum_{i, j}\left\langle\mu^{i}, a_{i j} D_{j} v \xi\right\rangle+\sum_{i, j}\left\langle\mu^{i}, a_{i j} v D_{j} \xi\right\rangle=0 . \tag{3.6}
\end{equation*}
$$

Let us come back now to the equation satisfied by v. Let u_{ε} be a mollification of the solution u, that is $u_{\varepsilon}=\rho_{\varepsilon} * u$, with ρ_{ε} a standard radial mollifier. We use ξu_{ε} in (3.5):

$$
\begin{aligned}
& \sum_{i, j} \int a_{i j} \xi D_{j} u_{\varepsilon} D_{i} v d x+\sum_{i, j} \int a_{i j} D_{j} \xi u_{\varepsilon} D_{i} v d x \\
& =\sum_{j} \int \xi f_{j} D_{j} u_{\varepsilon} d x+\sum_{j} \int u_{\varepsilon} D_{j} \xi f_{j} d x .
\end{aligned}
$$

Now we claim that this implies, when we pass to the limit as $\varepsilon \rightarrow 0$, that

$$
\begin{equation*}
\sum_{i, j}\left\langle\mu^{j}, a_{i j} \xi D_{i} v\right\rangle+\sum_{i, j} \int a_{i j} D_{i} \xi u D_{j} v d x=\sum_{j}\left\langle\mu^{j}, \xi f_{j}\right\rangle+\sum_{j} \int u D_{j} \xi f_{j} d x . \tag{3.7}
\end{equation*}
$$

Note that the most delicate terms are the two involving the gradient of u_{ε}. For a Dini continuous function w (the domain of w is not specified since the function will be multiplied by a function with compact support) we will show that

$$
\lim _{\varepsilon \rightarrow 0} \lim _{h \rightarrow 0} \int \Delta_{h}^{j}\left(u_{\varepsilon}-u\right) w \xi d x=0
$$

or, in other terms, recalling that μ^{j} is the limit in the weak* topology of $C_{c}^{D}\left(\Omega^{\prime}\right)$ of the incremental quotient of u

$$
\lim _{\varepsilon \rightarrow 0} \int D_{j} u_{\varepsilon} w \xi d x=\left\langle\mu^{j}, w \xi\right\rangle
$$

We have:

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \lim _{h \rightarrow 0} \int \Delta_{h}^{j} u_{\varepsilon} w \xi d x \\
= & \lim _{\varepsilon \rightarrow 0} \lim _{h \rightarrow 0} \int \xi(x) w(x) \int \rho_{\varepsilon}(x-z) \frac{u\left(z+h e_{j}\right)-u(z)}{h} d z d x \\
= & \lim _{\varepsilon \rightarrow 0} \lim _{h \rightarrow 0} \int \frac{u\left(z+h e_{j}\right)-u(z)}{h} \int \rho_{\varepsilon}(x-z) \xi(x) w(x) d x d z \\
= & \lim _{\varepsilon \rightarrow 0} \lim _{h \rightarrow 0} \int \frac{u\left(z+h e_{j}\right)-u(z)}{h} \int \rho_{\varepsilon}(z-x) \xi(x) w(x) d x d z \\
= & \lim _{\varepsilon \rightarrow 0} \lim _{h \rightarrow 0} \int \frac{u\left(z+h e_{j}\right)-u(z)}{h}(w \xi)_{\varepsilon}(z) d z=\lim _{\varepsilon \rightarrow 0} \lim _{h \rightarrow 0} \int \Delta_{h}^{j} u(w \xi)_{\varepsilon} d z \\
= & \lim _{\varepsilon \rightarrow 0}\left\langle\mu^{j},(w \xi)_{\varepsilon}\right\rangle=\left\langle\mu^{j}, w \xi\right\rangle
\end{aligned}
$$

where in the last equality we used again that a mollified function of a Dini continuous function with compact support strongly converges in C^{D} to the function itself. Thus we obtain (3.7).

From it, exploiting the symmetry of $a_{i j}$ and using (3.6) we get

$$
\begin{align*}
\sum_{j}\left\langle\mu^{j}, \xi f_{j}\right\rangle & =-\sum_{i, j}\left\langle\mu^{i}, a_{i j} D_{j} \xi v\right\rangle+\sum_{i, j} \int a_{i j} D_{i} \xi u D_{j} v d x-\sum_{j} \int u D_{j} \xi f_{j} d x \tag{3.8}\\
& =I_{1}+I_{2}+I_{3}
\end{align*}
$$

We now estimate the three terms $I_{m}, m=1,2,3$. We have

$$
\left|I_{1}\right| \leq \sum_{i, j}\left\|\mu^{i}\right\|_{\left(C_{c}^{D}\left(\Omega^{\prime}\right)\right)^{\prime}}\left\|a_{i j} v D_{i} \xi\right\|_{C^{D}\left(\Omega^{\prime}\right)}
$$

By the definition of the norm in the space of Dini continuous functions we have

$$
\left\|a_{i j} v D_{i} \xi\right\|_{C^{D}\left(\Omega^{\prime}\right)} \leq \Lambda\|v\|_{L^{\infty}\left(\Omega^{\prime}\right)}\left\|D_{i} \xi\right\|_{L^{\infty}\left(B_{R}\right)}+\int_{0}^{\operatorname{diam}\left(\Omega^{\prime}\right)} \frac{\left(\overline{a_{i j} v D_{i} \xi}\right)_{\Omega^{\prime}}(r)}{r} d r
$$

By simple computation we have

$$
\left(\overline{a_{i j} v D_{i} \xi}\right)_{\Omega^{\prime}}(r) \leq\|v\|_{L^{\infty}\left(\Omega^{\prime}\right)}\left(\overline{a_{i j} D_{i} \xi}\right)_{\Omega^{\prime}}(r)+\left\|a_{i j} D_{i} \xi\right\|_{L^{\infty}\left(\Omega^{\prime}\right)} \bar{v}_{\Omega^{\prime}}(r)
$$

and, using the properties of the solution v (recall that $p>n$), the right hand side can be estimated as

$$
\begin{aligned}
\left(\overline{a_{i j} v D_{i} \xi}\right)_{\Omega^{\prime}}(r) & \leq C\left(\overline{a_{i j} D_{j} \xi}\right)_{\Omega^{\prime}}(r)\|f\|_{L^{p}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)} \\
& +C r^{1-\frac{n}{p}}\left\|a_{i j} D_{j} \xi\right\|_{L^{\infty}\left(\Omega^{\prime}\right)}\|D v\|_{L^{p}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
\end{aligned}
$$

To summarize, we have

$$
\left|I_{1}\right| \leq C\|f\|_{L^{p}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
$$

The estimate of I_{2} and I_{3} simply comes by Hölder's inequality and again by the properties of the solution v :

$$
\begin{aligned}
\left|I_{2}\right| \leq \sum_{i, j}\left|\int a_{i j} D_{i} \xi u D_{j} v d x\right| & \leq C\|u\|_{L^{n^{\prime}}\left(\Omega^{\prime}\right)}\|D \xi\|_{L^{\infty}\left(B_{R}, \mathbb{R}^{n}\right)} \Lambda\|v\|_{W^{1, n}\left(\Omega^{\prime}\right)} \\
& \leq C\|f\|_{L^{n}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
\end{aligned}
$$

and

$$
\left|I_{3}\right| \leq \sum_{j}\left|\int u D_{j} \xi f_{j} d x\right| \leq\|u\|_{L^{n^{\prime}}\left(\Omega^{\prime}\right)}\|D \xi\|_{L^{\infty}\left(B_{R}, \mathbb{R}^{n}\right)}\|f\|_{L^{n}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
$$

At the end, the estimates proved for I_{1}, I_{2} and I_{3} lead to

$$
\sum_{j}\left\langle\mu^{j}, \xi f_{j}\right\rangle \leq C\|f\|_{L^{p}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
$$

as well

$$
\sum_{j}\left\langle\mu^{j} \xi, f_{j}\right\rangle \leq C\|f\|_{L^{p}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
$$

Since f is an arbitrary smooth function in $L^{p}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)$, we conclude

$$
\sum_{j}\left\|\mu^{j} \xi\right\|_{L^{p^{\prime}}\left(\Omega^{\prime}\right)} \leq C
$$

which means, using a finite covering argument, that μ^{j} is a function in $L_{\text {loc }}^{p^{\prime}}(\Omega)$ and then $u \in$ $W_{\text {loc }}^{1, p^{\prime}}(\Omega)$, since, for every $\varphi \in C_{c}^{\infty}(\Omega)$ and for h small enough, we have

$$
\int \Delta_{h}^{j} u \varphi d x=\int u \Delta_{-h}^{j} \varphi d x
$$

passing to the limit as $h \rightarrow 0$, we derive

$$
\left\langle\mu^{j}, \varphi\right\rangle=\int \varphi \mu^{j} d x=-\int u D_{j} \varphi d x
$$

Since $u \in W_{\text {loc }}^{1, p}(\Omega)$, Brezis's result implies that u is a weak solution of the equation (1.5), i.e. our statement.

4. Sobolev coefficients

As pointed out in the Introduction, very weak solutions in $L_{\text {loc }}^{n^{\prime}}(\Omega)$ associated to coefficients in $W^{1, n}(\Omega)$ are not weak solutions, since of the counterexample found in [9]. The quoted references on this problem have suggested us to consider Sobolev coefficients with a modulus of continuity satisfying the double Dini condition.

On the other hand, another way to get around the counterexample is to deal with very weak solutions in $L_{\mathrm{loc}}^{q}(\Omega)$, with $q>n^{\prime}$. The result is the following.

Theorem 4.1. Let $u \in L_{\mathrm{loc}}^{q}(\Omega), q>n^{\prime}$, be a very weak solution of (1.1), with $A(x)=\left(a_{i j}(x)\right)_{i, j}$ satisfying (1.2) and (1.3), then u belongs to $W_{\mathrm{loc}}^{1,2}(\Omega)$ and thus it is a weak solution.
Proof. The proof rests on a duality and a bootstrap argument.
Step 1. We claim that $u \in W_{\text {loc }}^{1,\left(\frac{q n^{\prime}}{q-n^{\prime}}\right)^{\prime}}(\Omega)$.
We proceed as in the Step 1 of the proof of Theorem 1.2 to arrive to (3.2). Now we estimate the six terms \mathcal{I}_{m}. We use Hölder's inequality and Proposition 2.8 to get

$$
\begin{aligned}
&\left|\mathcal{I}_{1}\right| \leq\|D \eta\|_{L^{\infty}\left(\mathbb{R}^{n}\right)}\|A\|_{W^{1, n}\left(\Omega, \mathbb{R}^{n \times n}\right)}\|u\|_{L^{q}\left(\Omega_{0}\right)}\|D v\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}}\left(\Omega_{0}, \mathbb{R}^{n}\right)} \\
& \leq C\|w\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}}\left(\Omega_{0}\right)}, \\
&\left|\mathcal{I}_{2}\right| \leq\|A\|_{W^{1, n}\left(\Omega, \mathbb{R}^{n \times n}\right)}\|u\|_{L^{q}\left(\Omega_{0}\right)}\left\|D^{2} v\right\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}\left(\Omega_{0}, \mathbb{R}^{n \times n}\right)}} \leq C\|w\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}\left(\Omega_{0}\right)}}, \\
&\left|\mathcal{I}_{3}\right|,\left|\mathcal{I}_{4}\right| \leq \Lambda\|u\|_{L^{q}\left(\Omega_{0}\right)}\|D \eta\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)}\left\|D^{2} v\right\|_{L^{q^{\prime}\left(\Omega_{0}, \mathbb{R}^{n \times n}\right)}} \leq C\|w\|_{L^{q^{\prime}}\left(\Omega^{\prime}\right)} \\
& \leq C\|w\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}}\left(\Omega^{\prime}\right)} \\
&\left|\mathcal{I}_{5}\right| \leq \Lambda\|u\|_{L^{q}\left(\Omega_{0}\right)}\left\|D^{2} \eta\right\|_{L^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right)}\|D v\|_{L^{q^{\prime}}\left(\Omega_{0}, \mathbb{R}^{n}\right)} \leq C\|w\|_{L^{q^{\prime}}\left(\Omega^{\prime}\right)} \\
& \leq C\|w\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}\left(\Omega^{\prime}\right)}},
\end{aligned}
$$

and finally, as for (3.3),

$$
\left|\mathcal{I}_{6}\right| \leq C\|w\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}\left(\Omega^{\prime}\right)}}+C\|w\|_{L^{q^{\prime}}\left(\Omega^{\prime}\right)} \leq C\|w\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}}\left(\Omega^{\prime}\right)} .
$$

So, arguing as in the Step 1 of Theorem 1.2, we deduce

$$
\left|\int_{\Omega^{\prime}} w \Delta_{h}^{\ell} u d x\right| \leq C\|w\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}\left(\Omega^{\prime}\right)}}
$$

which in turn implies, thanks also to Theorem 2.1, that $u \in W_{\text {loc }}^{1,\left(\frac{q n^{\prime}}{q-n^{\prime}}\right)^{\prime}}(\Omega)$. Let us note that thanks to this, the equation satisfied by u may be rewritten as

$$
\begin{equation*}
\sum_{i, j} \int a_{i j}(x) D_{i} u D_{j} \varphi d x=0 \tag{4.1}
\end{equation*}
$$

where the test functions φ can be taken in $W^{1, \frac{q n^{\prime}}{q-n^{\prime}}}(\Omega)$ with compact support. On the other hand, the summability of the solution u is not improved by its belonging to this Sobolev space, since $\left(\frac{q n^{\prime}}{q-n^{\prime}}\right)^{\prime}=\frac{q n^{\prime}}{q n^{\prime}-q+n^{\prime}}$ and the Sobolev conjugate of $\frac{q n^{\prime}}{q n^{\prime}-q+n^{\prime}}$ is q.

Step 2. We prove that $u \in W_{\mathrm{loc}}^{1, q}(\Omega)$.

As in the Step 2 of the proof of Theorem 1.2, for $j \in\{1, \cdots, n\}$ let $f=\left(f_{1}, \cdots, f_{n}\right)$ with $f_{j} \in C_{c}^{\infty}\left(\Omega^{\prime}\right)$ be such that

$$
\sum_{j}\left\|f_{j}\right\|_{L^{q^{\prime}}\left(\Omega^{\prime}\right)} \leq 1
$$

For every $p>1$, let $v \in W_{0}^{1, p}(\Omega)$ be the weak solution of the problem

$$
\begin{equation*}
\sum_{i, j} \int a_{i j} D_{i} v D_{j} \varphi d x=\sum_{j} \int D_{j} \varphi f_{j} d x \quad \forall \varphi \in W_{0}^{1, p^{\prime}}(\Omega) \tag{4.2}
\end{equation*}
$$

By Theorem 2.5 we have in particular that

$$
\|v\|_{W^{1, q^{\prime}}\left(\Omega^{\prime}\right)} \leq C\|f\|_{L^{q^{\prime}}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
$$

As before, we take $B_{R / 2} \subset B_{R} \subset \Omega^{\prime}$ a pair of concentric balls centered at $x_{0} \in \Omega^{\prime}$ and we consider $\xi(x)=\xi\left(\left|x-x_{0}\right|\right)$ a smooth function such that $\xi(t)=1$ for $t \in[0, R / 2]$ and $\xi(t)=0$ for $t \geq R$. We can choose $\varphi=v \xi$ in (4.1) and $\varphi=u \xi$ as test function in (4.2), so that

$$
\sum_{i, j} \int a_{i j} D_{i} u D_{j} v \xi d x+\sum_{i, j} \int a_{i j} D_{i} u D_{j} \xi v d x=0
$$

and

$$
\begin{aligned}
& \sum_{i, j} \int a_{i j} D_{i} v D_{j} u \xi d x+\sum_{i, j} \int a_{i j} D_{i} v D_{j} \xi u d x \\
& =\sum_{j} \int f_{j} D_{j} u \xi d x+\sum_{j} \int f_{j} D_{j} \xi u d x
\end{aligned}
$$

Subtracting the two equations and using the symmetry of $a_{i j}$ we get

$$
\begin{aligned}
\sum_{j} \int f_{j} D_{j} u \xi d x= & -\sum_{j} \int f_{j} D_{j} \xi u d x+\sum_{i, j} \int a_{i j} D_{i} v D_{j} \xi u d x \\
& -\sum_{i, j} \int a_{i j} D_{i} u D_{j} \xi v d x=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

We estimate the three terms I_{m}. We have

$$
\begin{gathered}
\left|I_{1}\right| \leq\|u\|_{L^{q}\left(\Omega^{\prime}\right)}\|D \xi\|_{L^{\infty}\left(B_{R}, \mathbb{R}^{n}\right)}\|f\|_{L^{q^{\prime}}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)} \leq C\|f\|_{L^{q^{\prime}}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)} \\
\left|I_{2}\right| \leq \Lambda\|D \xi\|_{L^{\infty}\left(B_{R}, \mathbb{R}^{n}\right)}\|u\|_{L^{q}\left(\Omega^{\prime}\right)}\|D v\|_{L^{q^{\prime}}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)} \leq C\|f\|_{L^{q^{\prime}}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
\end{gathered}
$$

and finally

$$
\left|I_{3}\right| \leq \Lambda\|u\|_{\left.W^{1,\left(\frac{q n^{\prime}}{q-n^{\prime}}\right.}\right)_{\left(\Omega^{\prime}\right)}^{\prime}}\|v\|_{L^{\frac{q n^{\prime}}{q-n^{\prime}}\left(\Omega^{\prime}\right)}} \leq C\|v\|_{W^{1, q^{\prime}}\left(\Omega^{\prime}\right)}
$$

where the last inequality derives from the fact that the Sobolev conjugate of q^{\prime} is $\frac{q n^{\prime}}{q-n^{\prime}}$. To sum up we have obtained

$$
\left|\sum_{j} \int f_{j} \xi D_{j} u d x\right| \leq C\|f\|_{L^{q^{\prime}}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)}
$$

as well

$$
\|\xi D u\|_{L^{q}\left(\Omega^{\prime}, \mathbb{R}^{n}\right)} \leq C
$$

and, using a finite covering argument, this implies that $u \in W_{\mathrm{loc}}^{1, q}(\Omega)$. Let us observe that this Sobolev regularity improves the summability of u. In particular, $u \in L_{\text {loc }}^{q^{*}}(\Omega)$, where q^{*} is the Sobolev conjugate of q.

Step 3. We claim that if $q>n$ then u is a weak solution.
By the previous step, we deduce that if $q>n$ then the solution u is in $L_{\text {loc }}^{\infty}(\Omega)$. At this point, it is not difficult to prove, arguing as in Step 1 , that $u \in W_{\mathrm{loc}}^{1, n}(\Omega)$.

Step 4. We prove that $u \in L_{\mathrm{loc}}^{\infty}(\Omega)$.
We just observed that if $q>n$ we are done. Let us consider now $q \leq n$. The solution u is in $W_{\mathrm{loc}}^{1, q}(\Omega)$ and by the Sobolev's embedding $u \in L_{\mathrm{loc}}^{q^{*}}(\Omega)$, where $q^{*}=\frac{q n}{n-q}$ if $q<n$ and any number greater then 1 if $q=n$. Arguing exactly as in the Step 2 we derive that $u \in W_{\text {loc }}^{1, q^{*}}(\Omega)$, which in turn implies that u is in $L_{\text {loc }}^{\infty}(\Omega)$ if $q^{*}>n$. We already noticed in Step 3 that this gives the desired result. Let us observe that if $q=n, q^{*}$ is any number greater then 1 and so this can be chosen greater then n, while if $q<n, q^{*}>n$ is equivalent to $q>\frac{n}{2}$. We can iterate this procedure. Given $q>n^{\prime}=\frac{n}{n-1}$ after (at most) $n-1$ times we deduce that u is locally bounded.

By Step 3 the locally boundedness of the solution gives the desired result.

Appendix A. The C^{1}-Dini regularity of solutions to divergence form elliptic equations with Dini-continuous coefficients

As announced in Remark 2.6, we will specify the modulus of continuity of the gradient of solutions to (2.4) in the proof of [11, Theorem 1.1]. We will consider only the main points of the proof reminding for the rest to [11]. The set Ω is supposed to be the ball B_{4} centered at 0 and $\Omega^{\prime}=B_{1}$. The improvement regards Proposition 1.1 in [11]: for the sake of completeness we will sketch the proof, modifying the original when needed.

Proposition A.1. For $B_{4} \subset \mathbb{R}^{n}$, $n \geq 1$, let $a_{i j}$, defined on B_{4}, satisfy (1.3) and (1.4) and let $f=\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ with $f_{j} \in C_{c}^{\infty}\left(B_{4}\right)$ for all $j \in\{1, \ldots, n\}$. Assume that $u \in H^{1}\left(B_{4}\right)$ is a weak solution of (2.4), then there exist $a \in \mathbb{R}$ and $b \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
f_{B_{r}}|u(x)-(a+b \cdot x)| d x \leq r \delta(r)\left[\|u\|_{L^{2}\left(B_{2}\right)}+\|f\|_{C^{1}\left(B_{2}\right)}\right], \quad \forall r \in(0,1) \tag{A.1}
\end{equation*}
$$

where $\delta(r)$, depending on n, λ, Λ, and on the modulus of continuity of $a_{i j}$ and f, is a monotonically increasing positive function defined on $(0,1)$ satisfying

$$
\int_{0}^{1} \frac{\delta(r)}{r} d r<+\infty
$$

Remark A.2. As shown in [11, Proposition 1.2], $\delta(r)$ will be the modulus of continuity of $D u$.
Proof. The proof is carried out for $f=0$. We use the same notation of [11], denoting by φ the modulus of continuity such that

$$
\left(f_{B_{r}}|A-A(0)|^{2}\right)^{\frac{1}{2}} \leq \varphi(r)
$$

where $A=\left(a_{i j}\right)_{i, j}$. Observe that in our case, assuming (1.4), $\varphi(r)$ has the following form

$$
\begin{aligned}
\left(f_{B_{r}}|A-A(0)|^{2}\right)^{\frac{1}{2}} & \leq\left(f_{B_{r}} \bar{A}_{B_{4}}(|x|)^{2} d x\right)^{\frac{1}{2}} \\
& \leq C\left(\frac{1}{r^{n}} \int_{0}^{r} \bar{A}_{B_{4}}(\rho)^{2} \rho^{n-1} d \rho\right)^{\frac{1}{2}}=: \varphi(r)
\end{aligned}
$$

which is double-Dini continuous since $\varphi(r) \leq \bar{A}_{B_{4}}(r)$, and satisfies

$$
\max _{r / 2 \leq s \leq r} \varphi(s) \leq \mu \varphi(r)
$$

with $\mu>1$. As in [11], by induction, one will find, for $k \geq 0, w_{k} \in H^{1}\left(B_{3 / 4^{k+1}}\right)$ such that

$$
\begin{equation*}
\left\|D^{2} w_{k}\right\|_{L^{\infty}\left(B_{\left.1 / 4^{k+1}, \mathbb{R}^{n \times n}\right)} \leq C 4^{k} \varphi\left(4^{-k}\right), ~\right. \text {, }} \tag{A.4}
\end{equation*}
$$

$$
\begin{equation*}
\left\|w_{k}\right\|_{L^{2}\left(B_{2 / 4^{k+1}}\right)} \leq C 4^{-\frac{k(n+2)}{2}} \varphi\left(4^{-k}\right), \quad\left\|D w_{k}\right\|_{L^{\infty}\left(B_{\left.1 / 4^{k+1}, \mathbb{R}^{n}\right)} C \varphi\left(4^{-k}\right), ~\right.} \tag{A.3}
\end{equation*}
$$

$$
\begin{equation*}
\left\|u-\sum_{j=0}^{k} w_{j}\right\|_{L^{2}\left(B_{1 / 4} k+1\right.} \leq 4^{-\frac{(k+1)(n+2)}{2}} \varphi\left(4^{-(k+1)}\right) \tag{A.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|w_{k}\right\|_{L^{\infty}\left(B_{1 / 4^{k+1}}\right)} \leq C 4^{-k} \varphi\left(4^{-k}\right) \tag{A.6}
\end{equation*}
$$

see $[11,(14),(15),(16),(17)$, and (18) of Proposition 1.1]. Here and in the sequel C will denote a universal constant.

For $x \in B_{1 / 4^{k+1}}$, using (A.3), (A.4), (A.6) and Taylor expansion,

$$
\begin{align*}
& \left|\sum_{j=0}^{k} w_{j}(x)-\sum_{j=0}^{\infty} w_{j}(0)-\sum_{j=0}^{\infty} D w_{j}(0) \cdot x\right| \\
\leq & \sum_{j=k+1}^{\infty}\left(\left|w_{j}(0)\right|+\left|D w_{j}(0) \| x\right|\right)+\sum_{j=0}^{k}\left\|D^{2} w_{j}\right\|_{L^{\infty}\left(B_{1 / 4} k+1, \mathbb{R}^{n \times n}\right)}|x|^{2} \tag{A.7}\\
\leq & C \sum_{j=k+1}^{\infty}\left(4^{-j} \varphi\left(4^{-j}\right)+\varphi\left(4^{-j}\right)|x|\right)+C \sum_{j=0}^{k} 4^{j} \varphi\left(4^{-j}\right)|x|^{2} \\
\leq & C 4^{-(k+1)} \int_{0}^{4^{-k}} \frac{\varphi(r)}{r} d r+C|x|^{2} \int_{\frac{|x|}{2}}^{1} \frac{\varphi(r)}{r^{2}} d r
\end{align*}
$$

We then derive from (A.5) and the above, using Hölder's inequality, that

$$
\begin{align*}
& \int_{B_{1 / 4} k+1}\left|u(x)-\sum_{j=0}^{\infty} w_{j}(0)-\sum_{j=0}^{\infty} D w_{j}(0) \cdot x\right| d x \\
& \leq\left\|\sum_{j=0}^{k} w_{j}(x)-\sum_{j=0}^{\infty} w_{j}(0)-\sum_{j=0}^{\infty} D w_{j}(0) \cdot x\right\|_{L^{1}\left(B_{1 / 4^{k+1}}\right)} \\
& +\left\|u-\sum_{j=0}^{k} w_{j}(x)\right\|_{L^{1}\left(B_{1 / 4^{k+1}}\right)} \tag{A.8}\\
& \leq C 4^{-(k+1)(n+1)} \int_{0}^{4^{-k}} \frac{\varphi(r)}{r} d r+C \int_{0}^{1 / 4^{k+1}} \rho^{n+1} \int_{\frac{\rho}{2}}^{1} \frac{\varphi(r)}{r^{2}} d r d \rho \\
& +C 4^{-(k+1)(n+1)} \varphi\left(1 / 4^{k+1}\right)
\end{align*}
$$

Proposition A. 1 follows from the above with $a=\sum_{j=0}^{\infty} w_{j}(0), b=\sum_{j=0}^{\infty} D w_{j}(0) \cdot x$, and

$$
\delta(r) \simeq \int_{0}^{r} \frac{\varphi(s)}{s} d s+\frac{1}{r^{n+1}} \int_{0}^{r} \rho^{n+1} \int_{\frac{\rho}{2}}^{1} \frac{\varphi(s)}{s^{2}} d s d \rho+\varphi(r)
$$

the symbol \simeq standing for $=u p$ to a constant. It remains to prove that $\delta(r)$ is a Dini modulus of continuity. Thanks to assumption (1.4), it occurs if we show the Dini continuity of the second term in the previous sum. It yields

$$
\frac{1}{r^{n+1}} \int_{0}^{r} \rho^{n+1} \int_{\frac{\rho}{2}}^{1} \frac{\varphi(s)}{s^{2}} d s d \rho \leq r \int_{\frac{r}{2}}^{1} \frac{\varphi(s)}{s^{2}} d s
$$

so that, integrating by parts,

$$
\int_{0} \int_{\frac{r}{2}}^{1} \frac{\varphi(s)}{s^{2}} d s d r=\left.r \int_{\frac{r}{2}}^{1} \frac{\varphi(s)}{s^{2}} d s\right|_{0}+\int_{0} \frac{\varphi\left(\frac{r}{2}\right)}{r / 4} d r
$$

It is easy to see that $\lim _{r \rightarrow 0} r \int_{\frac{r}{2}}^{1} \frac{\varphi(s)}{s^{2}} d s=0$, and thus the thesis follows by the Dini continuity of φ.

Appendix B. The counterexample

To construct the example, one first considers, for $r \in(0,1)$ and for $\beta>1$, the function

$$
\alpha(r)=\frac{-\beta n}{(n-1) \log \left(\frac{r_{0}}{r}\right)}+\frac{\beta(\beta+1)}{(n-1) \log ^{2}\left(\frac{r_{0}}{r}\right)},
$$

for some $r_{0}>1$. One takes then $A(x)=\left(a_{i j}(x)\right)_{i, j}$ defined by

$$
a_{i j}(x)=\delta_{i j}+\alpha(|x|)\left(\delta_{i j}-\frac{x_{i} x_{j}}{|x|^{2}}\right)
$$

with r_{0} large enough so that $\alpha \geq-\frac{1}{2}, A$ being then uniformly elliptic.

Let us check now that $A \in W^{1, n}\left(B_{1}, \mathbb{R}^{n \times n}\right)$. Simple computation gives

$$
\left|\frac{\partial a_{i j}}{\partial x_{\ell}}\right| \lesssim\left|\alpha^{\prime}(|x|)\right|+|\alpha(|x|)| \frac{1}{|x|}
$$

for every $i, j, \ell=1, \cdots, n$ (the symbol \lesssim stand for \leq up to a constant). On the other hand

$$
\left|\alpha^{\prime}(|x|)\right| \simeq \frac{1}{|x| \log ^{2}\left(\frac{r_{0}}{|x|}\right)}+\frac{1}{|x| \log ^{3}\left(\frac{r_{0}}{|x|}\right)}
$$

which in turn implies

$$
\left|\frac{\partial a_{i j}}{\partial x_{\ell}}\right| \lesssim \frac{1}{|x| \log \left(\frac{r_{0}}{|x|}\right)}+\frac{1}{|x| \log ^{2}\left(\frac{r_{0}}{|x|}\right)}+\frac{1}{|x| \log ^{3}\left(\frac{r_{0}}{|x|}\right)} \lesssim \frac{1}{|x| \log \left(\frac{r_{0}}{|x|}\right)}
$$

if r_{0} is big enough. Thus, the belonging of A to $W^{1, n}\left(B_{1}, \mathbb{R}^{n \times n}\right)$ is provided by the estimate

$$
\int_{B_{1}}\left|\frac{\partial a_{i j}}{\partial x_{\ell}}\right|^{n} d x \lesssim \int_{B_{1}} \frac{1}{|x|^{n} \log ^{n}\left(\frac{r_{0}}{|x|}\right)} d x \simeq \int_{0}^{1} \frac{1}{r \log ^{n}\left(\frac{r_{0}}{r}\right)} d r<+\infty
$$

With such an A, in [9] the authors construct a solution of (1.1) (in the sense of distributions) $u \in W_{\text {loc }}^{1,1}\left(B_{1}\right) \backslash W_{\text {loc }}^{1, p}\left(B_{1}\right)$ for every $p>1$. In particular, let us observe that such a solution belongs to $L_{\text {loc }}^{n^{\prime}}\left(B_{1}\right)$.

Acknowledgments. The authors are members of Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of INdAM. The first author was partially supported by the Academy of Finland grant 314227. The research of R. S. has been funded by PRIN Project 2017JFFHSH.

References

[1] A. Ancona, Elliptic operators, conormal derivatives and positive parts of functions (with an appendix by Haïm Brezis), J. Funct. Anal., 257 (2009), 2124-2158.
[2] H. Brezis, On a conjecture of J. Serrin, Rend. Lincei Mat. Appl., 19 (2008), 335-338.
[3] Y.Z. Chen, L.C. Wu, Second Order Elliptic Equations and Elliptic Systems, Transl. Math. Monogr., 174, Amer. Math. Soc. 1998.
[4] F. Chiarenza, M. Frasca, P. Longo, $W^{2, p}$-solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853.
[5] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 3 (1957), 25-43.
[6] H. Dong, L. Escauriaza, S. Kim, On C^{1}, C^{2}, and weak type-(1, 1) estimates for linear elliptic operators, part II, Math. Ann., 370, (2018), 447-489.
[7] G. Di Fazio, L^{p} estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7), 10 (1996), 409-420.
[8] M. Giaquinta, L. Martinazzi, An Introduction to the Regularity Theory for Elliptic Systems, Harmonic Maps and Minimal Graphs, Edizioni della Normale, Pisa, 2012.
[9] T. Jin, V. Maz'ya, J. V. Schaftingen, Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Acad. Sci. Paris, Ser. I 347 (2009), 773-778.
[10] R.A. Hager, J. Ross, A regularity theorem for linear second order elliptic divergence equations, Ann. Sc. Norm. Sup. Pisa, 23 (1971), 283-290.
[11] Y. Li, On the C^{1} regularity of solutions to divergence form elliptic systems with dini-continuous coefficients, Chin. Ann. Math. Ser. B, 38(2), (2017), 489-496.
[12] C.B. Morrey, Multiple integrals in the Calculus of Variations, Grundlehren Math. Wiss., Vol. 130, SpringerVerlag, New York, 1996.
[13] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Sc. Norm. Super. Pisa (3) 18 (1964), 385-387.
[14] W. Zhang, J. Bao, Regularity of very weak solutions for elliptic equation of divergence form, J. Functional Anal. 262 (2012), 1867-1878.

University of Jyvaskylä, Department of Mathematics and Statistics, P.O. Box 35 (MaD) FI-40014, Finland

Email address: domenicolamanna@hotmail.it
Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università di Napoli Federico II, via Cintia, 80126 Napoli, ITALY

Email address: chiara.leone@unina.it
Dipartimento di Matematica e Applicazioni "R. Caccioppoli", Università di Napoli Federico II, via Cintia, 80126 Napoli, ITALY

Email address: roberta.schiattarella@unina.it

[^0]: Date: January 1, 2004.
 1991 Mathematics Subject Classification. Primary 35-02; Secondary 35B65.
 Key words and phrases. Elliptic equations, very weak solutions.

