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Abstract

This is a survey paper about Ornstein-Uhlenbeck semigroups in infinite dimension,
and their generators. We start from the classical Ornstein-Uhlenbeck semigroup in
Wiener spaces and then discuss the general case in Hilbert spaces. Finally, we present
some results for O-U semigroups in Banach spaces.
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Introduction

In this article we present the basic results on Ornstein-Uhlenbeck semigroups on infinite
dimensional spaces. We refer to the survey The Ornstein-Uhlenbeck semigroup in finite di-
mension by A. Lunardi, G. Metafune and D. Pallara in this volume for a general introduction
to the finite dimensional case.

Infinite dimensional Ornstein-Uhlenbeck operators, semigroups and processes find their
motivations in statistical mechanics, quantum theory, analysis of partial differential equa-
tions, control theory, random processes and stochastic PDEs. In quantum field theory the
classical O-U operator is the “number operator”, whose eigenvalues represent the number of
bosons in a quantum field, and indeed classical results like hypercontractivity and logarith-
mic Sobolev inequalities have their origins in the quantum theory community. In analysis,
the O-U operator appears as the generator of Chebyshev-Hermite orthogonal polynomials,
which eventually led to the Wiener chaos decomposition mentioned in Section 2. The classi-
cal Ornstein-Uhlenbeck semigroup plays an essential role in Malliavin Calculus. This theory
began in order to provide a probabilistic proof of Hörmander hypoellipticity theorem and
found important applications in the regularity theory of probability distributions of func-
tionals of underlying Gaussian processes and of solutions of stochastic differential equations,
as well as multiple stochastic integrals.

The principal motivation to study nonsymmetric OU semigroups comes from stochastic
evolution equations. The connection is explained in Subsection 33.1, see (3.6), (3.7).

The paper is organized as follows. After an introductory section with preliminaries and
notation, the classical O-U semigroup on separable Banach spaces is discussed in Section 2;
we refer to the survey paper [2] for many details and historical notes.
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The main body of this paper is Section 3, where we describe the theory of Ornstein-
Uhlenbeck semigroups on separable Hilbert spaces. The reference book is [15], where one
can find the basic ideas, many examples and applications, and connections with stochastic
analysis in Hilbert spaces.

In the last section we consider Ornstein-Uhlenbeck semigroups on separable Banach
spaces. There are many more technicalities and far fewer examples than in the Hilbert
setting, and in this short survey we have not room to give details, so we only briefly list
some extensions of the results of Section 3 to the Banach case.

1 Preliminaries

Throughout the paper X is a separable real Banach space, with norm ‖ · ‖. Bb(X), Cb(X)
and BUC(X) denote the spaces of Borel measurable, continuous, uniformly continuous
and bounded functions from X to R, respectively, endowed with the sup norm ‖ · ‖∞.
Occasionally, we will be concerned also with the mixed topology in Cb(X), which is the
finest locally convex topology that agrees on every bounded set in Cb(X) with the topology
of uniform convergence on compact sets. As we are concerned with Gaussian measures on X
and the relative Cameron-Martin Hilbert space H ⊂ X is separable, we state the standing
assumption that X itself is separable: in fact, Gaussian measures are always concentrated
on the closure of H in X. See Subsection 1.4.

If Y is any Banach space, L (X,Y ) is the space of linear bounded operators from X
to Y ; as usual if Y = X it is denoted by L (X) and if X = R it is denoted by X∗. For
2 ≤ h ∈ N, Lh(X) is the space of continuous h-linear operators from Xh to R.

The Borel σ-algebra B(X) coincides with the σ-algebra E (X) generated by the cylindrical
sets, i.e, the sets of the form C = {x ∈ X : (f1(x), . . . , fn(x)) ∈ C0}, where f1, . . . , fn ∈ X∗
and C0 ∈ B(Rn), see e.g. [43, Ch. 1]. Accordingly, a function f : X → R is called cylindrical
if there are f1, . . . , fn ∈ X∗ and ϕ : Rn → R such that f(x) = ϕ(f1(x), . . . , fn(x)).

If X is a Hilbert space, we denote by 〈·, ·〉 its inner product. L1(X) and L2(X) denote
the subspaces of L (X) of nuclear self-adjoint and Hilbert-Schmidt operators, respectively.

1.1 Symmetric and positive operators.

An operator Q ∈ L (X∗, X) is called symmetric if g(Qf) = f(Qg) for every f , g ∈ X∗, and
positive if f(Qf) ≥ 0 for every f ∈ X∗ (in fact, the right word should be “nonnegative”
but we adopt the common terminology). As usual, if X is a Hilbert space we identify X
and X∗, and the above notions correspond respectively to a self-adjoint and nonnegative
Q ∈ L (X).

If Q is symmetric and positive, there exists a unique Hilbert space HQ continuously
embedded in X such that Q(X∗) is dense in HQ and 〈Qf,Qg〉HQ = g(Qf), for every
f , g ∈ X∗, see [43, Prop. III.1.6]. Denoting by i : HQ → X the embedding we have

‖i‖L (HQ,X) = ‖Q‖1/2L (X∗,X) and i ◦ i∗ = Q; see [43, Chapter III]. HQ may be equivalently

constructed by completingQ(X∗) with respect to the norm associated with the inner product
(Qf,Qg) 7→ g(Qf). It is easily seen that every Cauchy sequence (Qfn) in such norm
converges in X, and two equivalent Cauchy sequences converge in X to the same limit.
Identifying (the equivalence class of) any Cauchy sequence (Qfn) with its X-limit h, the
completion is identified with HQ.
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If X is a Hilbert space and Q ∈ L (X) is self-adjoint and nonnegative, HQ is just Q1/2(X)
with the inner product 〈Q1/2x,Q1/2y〉HQ = 〈x, y〉 for every x, y ∈ X, or equivalently

〈h, k〉HQ = 〈Q−1/2h,Q−1/2k〉. Here, if Q1/2 is not one to one, Q−1/2 denotes its pseudo-

inverse(1).
The space HQ is sometimes called reproducing kernel Hilbert space associated with Q,

but since the expression “reproducing kernel Hilbert space” has several different meanings
in the literature, we will not use it.

1.2 Regular functions.

Let Y be any Banach space, α ∈ (0, 1), k ∈ N.
Cαb (X;Y ) is the space of bounded and α-Hölder continuous functions from X to Y ,

endowed with its standard norm ‖f‖Cαb (X;Y ) := ‖f‖∞ + [f ]Cα(X;Y ), where [f ]Cα(X;Y ) =
supx, y∈X; x 6=y ‖f(x)− f(y)‖Y /‖x− y‖α. If Y = R we set Cαb (X;R) =: Cαb (X).

Ckb (X) is the space of k times Fréchet differentiable functions F : X → R, with contin-
uous and bounded derivatives Djf : X → Lj(X) for every j = 1, . . . , k. The first order
Fréchet derivative D1 is denoted by D.

If X is a Hilbert space and f : X → R is Fréchet differentiable at x, by the Riesz isometry
there is a unique z ∈ X such that Df(x)(h) = 〈z, h〉 for every h ∈ X. Such z is denoted by
∇f(x).

Ck+αb (X) is the space of functions f ∈ Ckb (X) such that Dkf ∈ Cα(X;Lk(X)), endowed

with the norm ‖f‖Ck+αb (X) := ‖f‖∞ +
∑k
j=1 supx∈X ‖Djf(x)‖Lj(X) + [Dkf ]Cα(X;Lk(X)).

Let now H ⊂ X be a Hilbert space continuously embedded in X, with inner product
〈·, ·〉H . A function ϕ : X → Y is H-Hölder continuous if there is α ∈ (0, 1) such that
[ϕ]CαH(X,Y ) := supx∈X,h∈H\{0}{‖ϕ(x + h) − ϕ(x)‖Y /‖h‖αH} < +∞. CαH(X,Y ) is the space
of the functions in Cb(X,Y ) that are H-Hölder continuous with exponent α, with norm
‖ϕ‖CαH(X,Y ) := ‖ϕ‖∞ + [ϕ]CαH(X,Y ).

A function ϕ : X → Y is H-differentiable at x ∈ X if there exists G ∈ L (H,Y ) such
that ‖ϕ(x + h) − ϕ(x) − G(h)‖Y = o(‖h‖H), as h → 0 in H. In this case the operator G
is unique, and denoted by DHϕ(x). Again, if Y = R there is a unique y ∈ H such that
G(h) = 〈y, h〉H for each h ∈ H. Such y is denoted by ∇Hϕ(x). If ϕ is differentiable at x it
is also H-differentiable at x, and

∂ϕ

∂h
(x) := Y − lim

t→0

ϕ(x+ th)− ϕ(x)

h
= 〈∇Hϕ(x), h〉H = DHϕ(x)(h) = Dϕ(x)(h), h ∈ H.

If ϕ : X → R is H-differentiable at every point, and in its turn DH : X → H∗ is H-
differentiable at x ∈ X, we set D2

Hϕ(x) := DH(DHϕ)(x) ∈ L2(H) (after identifying
L (H,H∗) with L2(H)). The space C1

H(X) (resp. C2
H(X)) consists of the continuous,

bounded and (resp. twice) H-differentiable functions such that ∇Hϕ ∈ Cb(X,H) (resp.
∇Hϕ ∈ Cb(X,H) and D2

Hf ∈ Cb(X,L2(H))).

1.3 Semigroups of bounded operators on Cb(X)

Let T (t) be a semigroup of bounded operators on Cb(X), such that ‖T (t)‖L (Cb(X)) ≤Meωt

for some M > 0, ω ∈ R and for every t ≥ 0. Assume in addition that the function

1If T ∈ L (X) is self-adjoint and nonnegative, for every h ∈ T (X) T−1h is the element of minimal norm
in the set T−1({h}). We have T−1h = Py for every y ∈ T ({h}), where P is the orthogonal projection on

T (X) = ( KerT )⊥.
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(t, x) 7→ T (t)f(x) is continuous in [0,+∞)×X.
Since we are going to deal with resolvent and spectrum, it is convenient to extend T (t)

to the space Cb(X;C), setting T (t)(f + ig) = T (t)f + iT (t)g for f , g ∈ Cb(X).
This allows to define a generator through its resolvent,

Rλf(x) :=

∫ ∞
0

e−λtT (t)f(x)dt, Reλ > ω, f ∈ Cb(X;C), x ∈ X. (1.1)

Indeed, in the space Cb(X,C) the family {Rλ : Re λ > ω} satisfies the resolvent identity
RλRµ = (Rµ − Rλ)/(λ − µ) in the half-plane Π := {λ ∈ C : Reλ > ω}, since T (t) is a
semigroup. Moreover, such identity implies that if Rµf = 0 for some µ ∈ Π then Rλf = 0 for
every λ ∈ Π. In particular, for every x ∈ X the Laplace transform G of the function g(t) :=
e−ωtT (t)f(x) vanishes for Reλ > 0; since g ∈ Cb([0,+∞)) then g(0) = limλ→∞ λG(λ) = 0,
so that f(x) = g(0) = 0. Therefore, Rµ is one to one for every µ ∈ Π, and by e.g. [45,
§VIII.4] there exists a unique closed operator whose resolvent operator is Rµ for every µ with
Reµ > ω. The part L of such operator in Cb(X) preserves Cb(X) and it is called generator
of T (t) in Cb(X), although it is not an infinitesimal generator in the classical sense.

From the definition it follows T (t)L = LT (t) on D(L). For every x ∈ X, the continuity
of T (·)f(x) in [0,+∞) yields easily its differentiability provided f ∈ D(L), see e.g. [7, Prop.
4.2].

We recall that a Borel probability measure µ in X is called invariant for T (t) if∫
X

T (t)f dµ =

∫
X

f dµ, t > 0, f ∈ Cb(X). (1.2)

1.4 Gaussian measures

We list here notation and results that will be used in the paper, referring to [1] for their
proofs and for the general theory.

A probability measure γ on (X,B(X)) is Gaussian if γ ◦ f−1 (defined as γ ◦ f−1(B) =
γ(f−1(B)) for every B ∈ B(R)) is a Gaussian measure on R for every f ∈ X∗. The measure
γ is called centered if all the measures γ ◦f−1 have zero mean, and it is called nondegenerate
if for any f 6= 0 the measure γ ◦ f−1 is absolutely continuous with respect to the Lebesgue
measure.

We fix a centered Gaussian measure γ. By the Fernique Theorem, see [1, Thm. 2.8.5],
γ has finite moments of any order. For every g ∈ X∗ the mapping R : X∗ → R, Rf :=∫
X
f(x)g(x) γ(dx) belongs to X∗∗, and even if X is not reflexive there exists a unique y ∈ X

such that Rf = f(y), for every f ∈ X∗. We set y = Qg. The operator Q ∈ L (X∗, X) is
called covariance operator, it is symmetric and positive and it is represented by the Bochner
integral

Qf =

∫
X

f(x)x γ(dx), f ∈ X∗.

(Such a formula may be used as an equivalent definition of Q). If X is a Hilbert space we
identify as usual X and X∗, and therefore Q ∈ L (X) is defined by

〈Qx0, y0〉 =

∫
X

〈x0, x〉 〈y0, x〉 γ(dx), x0, y0 ∈ X.

Moreover, Q belongs to L1(X). Conversely, if a linear self-adjoint nonnegative operator Q
is nuclear, then it is the covariance of a centered Gaussian measure, called N0,Q.
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Let us go back to general Banach spaces. The closure of X∗ in L2(X, γ) is denoted by
X∗γ . For every g ∈ X∗γ , the mapping R defined above still has the representation Rg = g(y),
for a suitable (unique) y ∈ X, and we set y =: Rγg. So, Rγ is the natural extension of Q to
the whole X∗γ .

The Cameron-Martin space H consists of the elements h ∈ X such that the measure
γh(B) := γ(B − h), B ∈ B(X), is absolutely continuous with respect to γ. An important
characterization of H, that yields a Hilbert space structure in it, is the following: we have
H = Rγ(X∗γ ), namely h ∈ X belongs to H if and only if there is ĥ ∈ X∗γ such that∫
X
ĥ(x)g(x) γ(dx) = g(h) for every g ∈ X∗. In this case, ‖h‖H = ‖ĥ‖L2(X,γ). Therefore

Rγ : X∗γ → H is an isometry, and H is a Hilbert space with the inner product 〈h, k〉H :=

〈ĥ, k̂〉L2(X,γ) whenever h = Rγ ĥ, k = Rγ k̂.

Remark 1.1 The triplet (X, γ,H) is usually referred to as abstract Wiener space. In our
discussion we have followed the presentation in [1]. As we have seen, γ (or equivalently,
the covariance operator Q), determines H, but it is possible to go the other way around as
follows. If a separable Hilbert space H is given together with a continuous inclusion mapping
i : H → X, setting Q = i◦i∗, it turns out that Q : X∗ → X is a positive symmetric operator.
If Q is the covariance operator of a Gaussian measure γ, then

‖i∗f‖2H = f(Qf) =

∫
X

(f(x))2γ(dx) = ‖f‖2L2(X,γ), f ∈ X∗.

Since the range of i∗ is dense in H, this shows that the mapping i∗f 7→ f has a unique
extension to an isometric embedding of H into L2(X, γ). The image of every h ∈ H under

this embedding is just ĥ, so that the range of this embedding is the space X∗γ defined above.

For every h ∈ H, the density of γh with respect to γ is given by e−‖h‖
2
H/2+ĥ. It yields

the integration by parts formula∫
X

∂ϕ

∂h
ψ γ(dx) = −

∫
X

ϕ
∂ψ

∂h
γ(dx) +

∫
X

ϕψ ĥ γ(dx), ϕ, ψ ∈ C1
b (X). (1.3)

Moreover for every h ∈ H the function ĥ is a real Gaussian random variable with
law N0,‖h‖2H . In particular, ĥ ∈ Lq(X, γ) for every q ∈ [1,∞) and ‖ĥ‖Lq(X,γ) =

(
∫
R |ξ|

qN0,1(dξ))1/q‖h‖H =: cq‖h‖H .
Recalling that for f ∈ X∗ we have

∫
X
f(x)g(x) γ(dx) = g(Qf) for every g ∈ X∗, we

see that H = HQ (the space introduced in Subsection (i)), with the same inner product.
More precisely, referring to the construction of HQ in [43, Chapter III] and the operators A
involved there, we can take A : X∗ → X∗γ , Af = f , so that A∗ = Rγ .

If X is a Hilbert space, the Cameron-Martin space is the range of Q1/2, and we
have precisely 〈Q1/2x,Q1/2y〉H = 〈x, y〉 for every x, y ∈ X, or equivalently 〈h, k〉H =
〈Q−1/2h,Q−1/2k〉.

If {ej : j ∈ N} is any orthonormal basis of X such that Qej = λjej for every j ∈ N, then

for every h ∈ H the function ĥ may be represented as ĥ(x) =
∑
j:λj 6=0 λ

−1
j 〈h, ej〉〈x, ej〉.

The series converges in Lp(X, γ) for every p ∈ [1,+∞) and it converges pointwise only for

x ∈ H, in which case we have ĥ(x) = 〈h, x〉H . For this reason ĥ is called 〈Q−1/2h,Q−1/2·〉
in [16, 15].

We warn the reader that in the literature about Gaussian measures the expression “re-
producing kernel Hilbert space” is used both for H and for X∗γ .
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We denote by FCkb (X) the space of the cylindrical functions f : X → R such that
f(x) = ϕ(f1(x), . . . , fn(x)) with f1, . . . , fn ∈ X∗ and ϕ ∈ Ckb (Rn). Any such functions
is k times Fréchet differentiable, and we have Df(x) =

∑n
j=1Djϕ(f1(x), . . . , fn(x))fj ,

∇Hf(x) = QDf(x). Using (1.3), one proves that for every p ∈ [1,∞) and k ∈ N, the
operator ∇H : FCkb (X) ⊂ Lp(X, γ)→ Lp(X, γ;H) is closable, and the domain of its closure
(still denoted by ∇H) is a Banach space endowed with the graph norm, independent of k,
called W 1,p(X, γ). Moreover for k ≥ 2 the operator (∇H , D2

H) : FCkb (X) ⊂ Lp(X, γ) →
Lp(X, γ;H)×Lp(X, γ; L2(H)) is closable too, and the domain of its closure, endowed with
the graph norm, is independent of k and called W 2,p(X, γ).

The Gaussian divergence is defined as minus the formal adjoint of ∇H and is denoted
by divH . More precisely, a vector field F ∈ L1(X, γ;H) has Gaussian divergence if there
exists (a unique) β ∈ L1(X, γ) such that

∫
X
〈∇Hϕ, F 〉H γ(dx) =

∫
X
ϕ(x)β(x) γ(dx), for

every ϕ ∈ FC1
b (X). In this case we set divHf := −β.

2 The classical O-U semigroup

Here X is a separable Banach space endowed with a centered Gaussian measure γ. The
proofs of the statements of this section may be found in the book [1], unless otherwise
specified.

The Ornstein–Uhlenbeck semigroup is defined through the Mehler formula by

T (0)f = f, T (t)f(x) :=

∫
X

f(e−tx+
√

1− e−2ty)γ(dy), t > 0, f ∈ Cb(X). (2.1)

It is a contraction semigroup on Cb(X), and γ is its unique invariant measure. It is not
strongly continuous, not even on BUC(X). In fact, it is easily seen that for every f ∈
BUC(X) we have limt→0+ ‖T (t)f − f‖∞ = 0 if and only if limt→0+ ‖f(e−t·) − f‖∞ = 0.
However, for every f ∈ Cb(X) the function (t, x) 7→ T (t)f(x) is continuous on [0,∞) ×X
by the Dominated Convergence Theorem, and this allows to define the generator L as in
Section 1(iii). Moreover, T (t) is strongly continuous in the mixed topology, see [25, 26].

Coming back to the norm topology, T (t) is not analytic and even not continuous in norm
on (0,∞), since ‖T (t) − T (s)‖L (Cb(X)) ≥ 2 for t 6= s, as a consequence of [41, Prop. 2.4].
The semigroup T (t) is smoothing along the Cameron-Martin space H. More precisely, for
every f ∈ Cb(X) and t > 0, T (t)f is H-differentiable at every x ∈ X, and we have

〈∇HT (t)f(x), h〉H =
e−t√

1− e−2t

∫
X

f(e−tx+
√

1− e−2ty)ĥ(y)γ(dy), h ∈ H. (2.2)

Therefore, using the Hölder inequality and recalling that ‖ĥ‖L1(X,γ) ≤ ‖h‖H , ‖ĥ‖Lq(X,γ) =
cq‖h‖H , for every f ∈ Cb(X) and x ∈ X we get

(i) ‖∇HT (t)f(x)‖H ≤ e−t(
√

1− e−2t)−1/2‖f‖∞,
(ii) ‖∇HT (t)f(x)‖H ≤ cp′e−t(

√
1− e−2t)−1/2[(T (t)|f |p)(x)]1/p, p ∈ (1,∞),

(2.3)

and moreover ∇HT (t)f : X → H is continuous. If in addition f ∈ C1
b (X), then T (t)f ∈

C1
b (X) for any t ≥ 0, and

∂T (t)f

∂h
(x) = DT (t)f(x)(h) = e−tT (t)(Df(·)(h)), x, h ∈ X, (2.4)
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so that supx∈X ‖DT (t)f(x)‖X∗ ≤ e−t supx∈X ‖Df(x)‖X∗ . Iterating, we get
T (t)Ckb (X) ⊂ Ckb (X) for any t ≥ 0, k ∈ N, and supx∈X ‖DkT (t)f(x)‖Lk(X) ≤
e−kt supx∈X ‖Dkf(x)‖Lk(X).

Notice that (2.2) and (2.3) describe a smoothing property of T (t), while the subsequent
statements assert that T (t) preserves the spaces Ckb (X) and it is contractive there. However,
T (t) regularizes only along H and it does not map Cb(X) into C1(X).

The continuity of ∇HT (t)f for f ∈ Cb(X) and estimate (2.3)(i) yield the embedding
D(L) ⊂ C1

H(X) through the representation formula (1.1) for R(λ, L). Here, L is the gener-
ator of T (t) defined in Section 2(1.3). Moreover, for every f ∈ D(L), DHf ∈ Cθb (X,H) for
every θ ∈ (0, 1), and it also satisfies a Zygmund condition along H, see [10]. A Schauder
type theorem was proved in [10] for H-Hölder continuous functions, and precisely: for every
α ∈ (0, 1), λ > 0 and f ∈ CαH(X), R(λ, L)f ∈ C2

H(X) and D2
HR(λ, L)f ∈ CαH(X,L2(H)).

The semigroup T (t) is readily extended to Lp(X, γ), for every p ∈ [1,∞). Indeed, we
have∫

X

|T (t)f(x)|p γ(dx) ≤
∫
X

T (t)(|f |p) γ(dx) =

∫
X

|f |pγ(dx), t > 0, f ∈ Cb(X), (2.5)

by the Hölder inequality and the invariance of γ. Hence {T (t) : t ≥ 0} is uniquely extendable
to a contraction semigroup {Tp(t) : t ≥ 0} on Lp(X, γ). Moreover,

(i) {Tp(t) : t ≥ 0} is strongly continuous on Lp(X, γ), for every p ∈ [1,∞);

(ii) T2(t) is self-adjoint and nonnegative on L2(X, γ) for every t > 0;

(iii)
∫
X
Tp(t)f γ(dx) =

∫
X
f γ(dx), for every f ∈ Lp(X, γ);

(iv) (hypercontractivity) for any p, q > 1 and t > 0 such that q ≤ 1 + (p−1)e2t, T (t) maps
Lp(X, γ) into Lq(X, γ) and ‖T (t)f‖Lq(X,γ) ≤ ‖f‖Lp(X,γ) for every f ∈ Lp(X, γ). For
q > 1 + (p− 1)e2t, T (t)(Lp(X, γ)) is not contained in Lq(X, γ).

For p ∈ (1,∞), Lp estimates for ‖∇HTp(t)f‖H are obtained similarly to (2.5). For every
f ∈ Cb(X), (2.3)(ii) yields∫

X

‖∇HT (t)f(x)‖pH γ(dx) ≤ cp′e
−t

√
1− e−2t

∫
X

T (t)(|f |p) γ(dx) =
cp′e

−t
√

1− e−2t

∫
X

|f |pγ(dx).

This argument fails for p = 1, since (2.3)(ii) holds only for p > 1. Indeed, T (t) does not
map L1(X, γ) into W 1,1(X, γ) for t > 0, even in the simplest case X = R where γ is the
standard Gaussian measure (see for instance [35, Corollary 5.1]). For 1 ≤ p < ∞, using
formulae (2.4) in C1

b (X), one obtains that Tp(t) preserves W 1,p(X, γ) for every t > 0, and
‖Tp(t)f‖W 1,p(X,γ) ≤ ‖f‖W 1,p(X,γ) for every f ∈W 1,p(X, γ).

Let us denote by Lp the infinitesimal generator of Tp(t) in Lp(X, γ). It is not hard to
see that every f ∈ FC2

b (X) belongs to D(Lp), and using (1.3) we get

Lpf(x) = divγ∇Hf(x) =

∞∑
j=1

(
∂2hjhjf(x)− ĥj(x)∂hjf(x)

)
, γ−a.e. x ∈ X, (2.6)

where {hj : j ∈ N} is any orthonormal basis of H. Moreover, FC2
b (X) is a core of Lp for

every p ∈ [1,∞). In other words, D(Lp) consists of all f ∈ Lp(X, γ) such that there exists a
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sequence (fn) in FC2
b (X) which converges to f in Lp(X, γ) and such that Lpfn = divH∇Hfn

converges in Lp(X, γ). The Meyer inequalities, see [37], yield

D(Lp) = W 2,p(X, γ), 1 < p <∞, (2.7)

with equivalence of the respective norms (an independent analytic proof is in [1, Section
5.5]). For p = 2, L2 is the operator associated with the Dirichlet form

D(f, g) =

∫
X

〈∇Hf,∇Hg〉H dγ, f, g ∈W 1,2(X, γ), (2.8)

namely we have

D(L2) = {u ∈W 1,2(X, γ) : ∃ f ∈ L2(X, γ) s. t.

D(u, g) = −〈f, g〉L2(X,γ) ∀ g ∈W 1,2(X, γ)}, L2u = f.

In particular, 〈L2u, u〉L2(X,γ) = −‖∇Hu‖2L2(X,γ;H) ≤ 0 for every u ∈ D(L2). Having a self-

adjoint and dissipative generator, T2(t) is an analytic semigroup with angle of analyticity
π/2; classical results about Markov semigroups (e.g., [17, Thm. 1.4.2]) yield that Tp(t) is
an analytic semigroup on Lp(X, γ) with angle of analyticity ≥ π(1− |2/p− 1|)/2, for every
p ∈ (1,+∞). The optimal analyticity angle angle in finite dimension θp = π/2−arctan(|π−
2|/2
√
p− 1) was shown to be optimal also in infinite dimension in the paper [31]. Functional

calculus for Lp in the sector {z ∈ C : z 6= 0, | arg z| < θp} was considerd in [5, 6].
A complete description of the spectral properties of L2 is available. Even more, there is an

explicit orthonormal basis of L2(X, γ) made by eigenfunctions of L2, that are the Hermite
polynomials, defined for every multiindex α ∈ Λ := {α ∈ (N ∪ {0})N, α = (αj), |α| =∑∞
j=1 αj <∞}, by

Hα(x) =

∞∏
j=1

Hαj (ĥj(x)), x ∈ X, (2.9)

where for k ∈ N ∪ {0}, Hk : R → R is the polynomial Hk(ξ) =
(−1)k√
k!

exp{ξ2/2} d
k

dξk
exp{−ξ2/2}, for every ξ ∈ R.

All the polynomials Hα belong to Lp(X, γ) for every p ∈ [1,∞), and the set {Hα :
α ∈ Λ} is an orthonormal basis of L2(X, γ). Moreover, denoting by Xk the closure of span
{Hα : α ∈ Λ, |α| = k} in L2(X, γ), we have the Wiener chaos decomposition,

L2(X, γ) =
⊕

k∈N∪{0}

Xk.

The spectrum of L2 is equal to −N∪{0}. For every k ∈ N∪{0}, Xk is the eigenspace of L2

with eigenvalue −k. X0 is the kernel of L2, consisting of constant functions, and X1 = X∗γ .

3 Ornstein-Uhlenbeck semigroups in Hilbert spaces

Here X is a separable real Hilbert space, Q ∈ L (X) is a self-adjoint nonnegative operator,
and A : D(A) ⊂ X → X is the infinitesimal generator of a strongly continuous semigroup
etA on X.
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We consider the Ornstein-Uhlenbeck operator formally defined by

Lu(x) =
1

2
Tr[QD2u(x)] + 〈Ax,∇u(x)〉. (3.1)

The standing assumption of this section is that the linear operators Qt defined by

Qtx =

∫ t

0

esAQesA
∗
x ds, t > 0, x ∈ X, (3.2)

are nuclear (Q itself does not need to be nuclear). Under such assumption, in [15, Ch. 6]
it was proved that for very good initial data, namely f ∈ BUC2(X) such that QD2f ∈
BUC(X; L1(X)), the initial value problem

ut(t, x) = Lu(t, ·)(x), t ≥ 0, x ∈ D(A); u(0, x) = f(x), x ∈ X, (3.3)

has a unique strict solution, which is a continuous function u : [0,+∞)×X → R such that
u(t, ·) ∈ BUC2(X) for every t ≥ 0, QD2u(t, x) ∈ L1(X) for every t ≥ 0 and x ∈ X, u(·, x)
is continuously differentiable in [0,+∞) for every x ∈ D(A), and satisfies (3.3). Moreover,
the solution is given by

u(t, x) =

∫
X

f(etAx+ y)µt(dy), t ≥ 0, x ∈ X, (3.4)

where µt is the centered Gaussian measure N0,Qt with covariance Qt for t > 0, and µ0 = δ0.

3.1 Ornstein-Uhlenbeck semigroups on spaces of continuous func-
tions

The right hand side of (3.4) is meaningful for every f ∈ Bb(X). Setting

T (t)f(x) :=

∫
X

f(etAx+ y)µt(dy), t ≥ 0, f ∈ Bb(X), x ∈ X, (3.5)

T (t) is a contraction semigroup on Bb(X). The fact that T (t) maps Bb(X) into itself and
it is a contraction is obvious. The fact that T (t) is a semigroup is less obvious. It can be
proved rewriting T (t+ s), for t, s > 0, as

T (t+ s)f(x) =

∫
X

f(e(t+s)Ax+ w)(µt ◦ (esA)−1 ? µs)(dw), f ∈ Bb(X), x ∈ X,

and checking that µt ◦ (esA)−1 ? µs = µt+s, or else recalling that T (t) is the transition
semigroup of the stochastic differential equation

dXt = AXt dt+
√
QdWt, t > 0, X(0) = x, (3.6)

where Wt is any cylindrical Wiener process on X. Indeed, for every x ∈ X the unique mild
solution of (3.6) is Xt = etAx+

∫ t
0
e(t−s)AQ1/2dWs, and the law of the stochastic convolution∫ t

0
e(t−s)AQ1/2dWs is precisely N0,Qt , see [16, Ch. 5]. Therefore,

T (t)f(x) = E(f(Xt)), t ≥ 0, f ∈ Bb(X), x ∈ X. (3.7)
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If A = −I and Q is nuclear, setting γ := N0,2Q, T (t) coincides with the classical Ornstein-
Uhlenbeck semigroup considered in Section 2. If A = 0, T (t) may be called heat semigroup.
In this case, Qt = tQ so that setting y =

√
tz in the right hand side of (3.5) we get a simpler

representation formula for T (t),

T (t)f(x) :=

∫
X

f(x+
√
tz)µ(dz), t ≥ 0, f ∈ Bb(X), x ∈ X,

where µ := N0,Q.
Going back to the general case, the representation formula (3.5) yields that T (t) is a

Feller semigroup, namely it maps Cb(X) into itself and, in fact, it maps the subspaces
BUC(X), Cαb (X), Ckb (X), Cα+kb (X) into themselves, for α ∈ (0, 1), k ∈ N. In particular,
for f ∈ C1

b (X) we have

〈∇T (t)f(x), h〉 =

∫
X

〈etA
∗
∇f(etAx+ y), h〉µt(dy), x, h ∈ X. (3.8)

T (t) is strong-Feller (namely, it maps Bb(X) into Cb(X)) iff (see also [16, Remark 9.20])

etA(X) ⊂ Q1/2
t (X), t > 0. (3.9)

In this case, T (t) maps Bb(X) into Ckb (X) for every k ∈ N, see [15, Ch. 6]), and the
operators

Λt = Q
−1/2
t etA, t > 0, (3.10)

play an important role in the rest of the theory. First, Λt ∈ L (X) for every t > 0. Moreover,
for every k ∈ N there exists Ck > 0 such that

‖DkT (t)f(x)‖Lk(X) ≤ Ck‖Λt‖kL (X)‖f‖∞, t > 0, f ∈ Bb(X), x ∈ X. (3.11)

A proof for k = 1, 2 is in [15, Ch. 6]. For general k, (3.11) follows e.g. from [30, Sect. 5.1,
Prop. 3.3(ii)].

Condition (3.9) is called controllability condition since it is equivalent to null control-
lability in any time t of an associated linear evolution equation in X, see e.g. [16, Ap-
pendix B] and [15, Chapter III]. It is not satisfied if A = −I, and, more generally, if A
generates a strongly continuous group. Instead, it is satisfied if Q = I, and in this case
‖Λt‖L (X) ≤Meωtt−1/2 for some M > 0, ω ∈ R, and for every t > 0. See [15, Appendix B],
[26, Thm. 3.5(3)].

Anyway, smoothing properties along H := Q1/2(X) are available also in the case where
H is properly contained in X, provided that etA maps H into itself, and that SH(t) := etA|H :

H → H is a strongly continuous semigroup on H. In this case etA maps H into Q
1/2
t (X) for

every t > 0, and sup0<t<1 ‖etA‖L (H,Q
1/2
t (X))

<∞, by [26, Thm. 3.5]. This allows to prove

that T (t) is smoothing along H, by arguments similar to the ones that led to (2.3)(ii). See
[34, Sect. 2], and [30] for representation formulae and estimates for any order H-derivatives
of T (t)f when f ∈ Cb(X).

Let us discuss strong continuity. Even in the case X = R, T (t) is not strongly continuous
on BUC(X) unless A = 0 (let alone on Cb(X)). However, it is not hard to show that µt
converges weakly to δ0 as t→ 0 (namely, limt→0

∫
X
f(y)µt(dy) = f(0) for every f ∈ Cb(X))

and this implies
lim
t→0
‖T (t)f − f(etA·)‖∞ = 0, f ∈ BUC(X).
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So, the subspace BUCS(X) of strong continuity of T (t) on BUC(X) is {f ∈ BUC(X) :
‖T (t)f − f(etA·)‖∞ → 0 as t → 0}. If (3.11) holds, T (t)(Cb(X)) ⊂ BUC(X) for every
t > 0 and therefore BUCS(X) coincides with the subspace of strong continuity of T (t)
in Cb(X). In the general case, the subspace of strong continuity of T (t) in Cb(X) is not
known. However, T (t) is strongly continuous on Cb(X) with respect to the mixed topology,
see [7, 25]. In particular, the function (t, x) 7→ T (t)f(x) is continuous on [0,+∞) ×X for
every f ∈ Cb(X), and this allows to define a generator L as in Section 1(iii). Moreover,
setting ∆hf = (T (h)f − f)/h for h > 0, we have

D(L) ={f ∈ Cb(X) : lim sup
h→0

‖∆hf‖∞ < +∞, ∃g ∈ Cb(X)s.t.

lim
h→0

∆hf(x) = g(x) uniformly on compact sets}, Lf = g. (3.12)

See [25, 26]. An analogous characterization with the space Cb(X) replaced by BUC(X) is in
[40]. Still in [25] it was proved that (similarly to the case of strongly continuous semigroups
on Banach spaces) any subspace D ⊂ D(L) which is dense in Cb(X) in the mixed topology
and such that T (t)(D) ⊂ D, is a core for L, namely for every f ∈ D(L) there exists a net
(fα) ⊂ D(L) such that fα → f and Lfα → Lf in the mixed topology. In [26, Thm. 6.6],
see also [25, Thm. 4.5], it is proved that

F0 := {f ∈ Cb(X) : f = ϕ(〈·, a1〉, . . . , 〈·, an〉); ϕ ∈ C2
b (Rn),

n ∈ N, ai ∈ D(A∗), 〈·, A∗∇f〉 ∈ Cb(X)} (3.13)

and its subspace FC∞ (whose members are the functions f represented as in (3.13) with
ϕ ∈ C∞c (Rn)) are cores for L and that

Lf(x) =
1

2
Tr[QD2f(x)] + 〈x,A∗∇f(x)〉, f ∈ F0, x ∈ X, (3.14)

where the right-hand side is equal to Lf(x) for every x ∈ D(A). Related results with
BUC(X) replacing Cb(X) are in [7, 9, 40]. In some papers, see e.g. [25], also the realization
of T (t) in the weighted spaces Cm(X) = {f ∈ C(X;R) : ‖f‖Cm(X) := supx∈X |f(x)|/(1 +
‖x‖m) <∞} has been studied.

In finite dimension T (t) is analytic iff A = 0. Instead, if X is infinite dimensional, we
have ‖T (t) − T (s)‖L (BUCS(X)) = 2 and therefore ‖T (t) − T (s)‖L (Cb(X) ≥ 2 whenever µt
and µs are singular (which is the case for every t, s > 0 if A = 0). The same equality holds
if etA 6= esA, see [41, 38]. Therefore, T (t) is not norm continuous, and hence not analytic,
both in the case A = 0 and in the case A 6= 0. See [26, 41, 38].

An alternative proof of norm discontinuity in the case A = 0 comes from [36], where it
has been proved that the spectrum of the part of L in BUC(X;C) is the halfplane {λ ∈ C :
Reλ ≤ 0}, and for every t > 0 the spectrum of T (t) in BUC(X;C) is the whole closed unit
disk.

Schauder type results in the usual Hölder spaces are available if (3.9) holds, under the
further assumption

∃M, θ > 0, ω ∈ R : ‖Λt‖L (X) ≤
Meωt

tθ
, t > 0. (3.15)

Easy examples such that (3.2) and (3.15) hold (with any θ > 0) are given in [15, Ex. 6.2.11].
The following theorem is taken from [30, Sect. 5.1].
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Theorem 3.1 Let (3.2) and (3.15) hold. For every f ∈ Cb(X) and λ > 0, let u = R(λ, L)f .
Then

(i) If 1/θ /∈ N, then u ∈ C
1/θ
b (X), and there is C > 0, independent of f , such that

‖u‖
C

1/θ
b (X)

≤ C‖f‖∞.

(ii) If in addition f ∈ Cαb (X) with α ∈ (0, 1) and α + 1/θ /∈ N, then u ∈ Cα+1/θ
b (X) and

there is C > 0, independent of f , such that ‖u‖
C
α+1/θ
b (X)

≤ C‖f‖Cαb (X).

Statement (ii) was already proved in [8] in the case that A is the realization of a second
order elliptic system with general boundary conditions in X = L2(Ω), Ω being a bounded
open set in Rn, and suitable assumptions on Q that yield θ = 1/2. See also [4] for an earlier
result.

Statement (i) implies that D(L) ⊂ C
1/θ
b (X) if 1/θ /∈ N, with continuous embedding.

Statement (ii) implies that the domain of the part of L in Cαb (X) is continuously embedded

in C
α+1/θ
b (X) if α+ 1/θ /∈ N. In both cases, we gain “1/θ degrees” of regularity.

Both for α = 0 and for α > 0, in the critical cases α + 1/θ = k ∈ N we cannot expect
that u ∈ Ck(X); in [30] it is proved that u belongs to a suitable Zygmund space, which is
continuously embedded in all spaces Ck−εb (X) with ε ∈ (0, 1). This difficulty arises even in
finite dimension, for instance if X = Rn, A = 0, Q = 2I we have L = ∆, Qt = 2tI and
(3.15) holds with θ = 1/2, but if λu−∆u = f ∈ Cb(Rn) with n ≥ 2, u is not necessarily a
C2 function.

If etA maps H = Q1/2(X) into itself, and SH(t) = etA|H : H → H is a strongly continuous
semigroup on H, Schauder theorems similar to the ones stated in Sect. 2 were proved in
[30]: for every α ∈ (0, 1), λ > 0 and f ∈ CαH(X), R(λ, L)f ∈ C2

H(X) and D2
HR(λ, L)f ∈

CαH(X,L2(H)).
Schauder type regularity results are available also for evolution equations with bounded

and continuous data, see [30].
The asymptotic behavior of T (t) is well understood if

sup
t>0

Tr (Qt) =

∫ ∞
0

Tr(esAQesA
∗
)ds < +∞. (3.16)

Next statements are taken from [16, Sect. 11.3], [15, Sect. 10.1]. If (3.16) holds there exists
a nuclear self-adjoint operator Q∞, given by

Q∞x =

∫ ∞
0

esAQesA
∗
x ds, x ∈ X, (3.17)

which maps D(A∗) into D(A) and satisfies the identity (called Lyapunov equation)

Q∞A
∗x+AQ∞x = −Qx, x ∈ D(A∗), (3.18)

Such identity is easily obtained recalling that 〈Q∞etA
∗
x, etA

∗
y〉 = −〈Q∞x, y〉− 〈Qtx, y〉 for

every x, y ∈ X. Indeed, taking x, y ∈ D(A∗), differentiating in time and taking t = 0 we
get 〈Q∞A∗x, y〉+ 〈Q∞x,A∗y〉 = 〈Qx, y〉 and (3.18) follows by the density of D(A∗).

Moreover, the Gaussian measure µ∞ := N0,Q∞ is invariant for T (t), namely∫
X

T (t)f(x)µ∞(dx) =

∫
X

f(x)µ∞(dx), t > 0, f ∈ Cb(X).
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In fact, it is possible to show that (3.16) holds iff there exists a probability invariant measure
for T (t) iff there exists a self-adjoint nonnegative nuclear operator P mapping D(A∗) into
D(A) and such that PA∗x + APx = −Qx for every x ∈ D(A∗) (which is equivalent to
2〈PA∗x, x〉 + 〈Qx, x〉 = 0 for every x ∈ D(A∗)). Moreover, any invariant measure is given
by ν ? µ∞, ν being a probability invariant measure for the semigroup R(t) defined by
R(t)f(x) = f(etAx) (e.g. [46], [16, Thm. 11.17]). So, if R(t) has no invariant measures
except δ0, µ∞ is the unique invariant measure for T (t). In particular, this happens if
limt→∞ etAx = 0 for every x.

If ‖etA‖L (X) vanishes as t→∞, namely if there are M , ω > 0 such that

‖etA‖L (X) ≤Me−ωt, t > 0, (3.19)

it is not hard to see that (3.16) holds (e.g., [16, Thm. 11.20]), and therefore µ∞ is well
defined and it is the unique invariant measure for T (t). Moreover, if (3.19) holds then A is
invertible.

Notice that if Q commutes with etA for every t and in addition A is self-adjoint then
Q∞ = −QA−1/2 = −A−1Q/2. The equality Q∞ = −A−1Q/2 holds even in a more general
situation, see the remarks after Theorem 3.2.

It is interesting to compare kernels and ranges of Q1/2, Q
1/2
t and Q

1/2
∞ for t > 0, that

play an important role in the theory. We set

H := Q1/2(X), Ht := Q
1/2
t (X), H∞ := Q1/2

∞ (X),

endowing them with their natural inner products, described in Sect. 1(i). Using the Lya-
punov equation (3.18) one gets easily (e.g., [22, Lemma 2.1])

etAH∞ ⊂ H∞, ‖Q−1/2∞ etAQ1/2
∞ ‖L (X) ≤ 1, t > 0.

Therefore, etA|H∞ : H∞ → H∞ is a contraction semigroup, called S∞(t). Its infinitesimal

generator is the part A∞ of A in H∞. Since 〈Qtx, x〉 ≤ 〈Q∞x, x〉 for every t > 0 and x ∈ X,

then KerQ∞ = KerQ
1/2
∞ ⊂KerQ

1/2
t ⊂KerQ1/2 = KerQ, and Ht ⊂ H∞ (we recall that,

given self-adjoint operators T1, T2 ∈ L (X), we have T1(X) ⊂ T2(X) iff there exists C > 0
such that ‖T1x‖ ≤ C‖T2x‖ for every x ∈ X). Instead, the converse inclusion H∞ ⊂ Ht is
not necessarily satisfied, and by [22, Prop. 4.1] or [11, Lemma 4] it is equivalent to

‖Q−1/2∞ etAQ1/2
∞ ‖L (X) < 1, (3.20)

namely, to ‖S∞(t)‖L (H∞) < 1.
In the proof of Theorem 11.22 of [16] it was shown that if (3.9) holds, then H∞ ⊂ Ht

(so that (3.20) holds) and moreover the operators Q
−1/2
t Q∞Q

−1/2
t − I are Hilbert-Schmidt

on H∞ for every t > 0 and therefore µt and µ∞ are equivalent measures, for every t > 0,
by the Feldman-Hájek Theorem (see e.g. [16, Thm. 2.25]).

If (3.16) holds, we have (see [16, Thm. 11.20])

lim
t→∞

T (t)f(x) =

∫
X

f(y)µ∞(dy), f ∈ Cb(X), x ∈ X. (3.21)

We notice that if A = 0, then TrQt = tTr Q, so that (3.16) does not hold, and the
heat semigroup has no invariant measure. Instead, if A = −ωI with ω > 0, then Tr
Qt = (1 − e−2ωt) TrQ/(2ω), so that (3.16) holds with Q∞ = Q/(2ω). In particular, as we
already mentioned in Section 2, the classical Ornstein-Uhlenbeck semigroup has γ itself as
unique invariant measure (we recall that the covariance of γ is 2Q).
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3.2 Ornstein-Uhlenbeck semigroups on Lp spaces with respect to
invariant measures

Throughout this section we assume that (3.16) holds, and we consider Lp spaces with respect
to the invariant measure µ∞, 1 ≤ p <∞.

For every f ∈ Cb(X) and t > 0, the Hölder inequality and the invariance of µ∞ yield∫
X

|T (t)f(x)|pµ∞(dx) ≤
∫
X

T (t)(|f |p)µ∞(dx) =

∫
X

|f |pµ∞(dx)

and therefore, since Cb(X) is dense in Lp(X,µ∞), T (t) has a bounded extension to
Lp(X,µ∞), denoted by Tp(t). The above inequality implies that Tp(t) is a contraction
semigroup on Lp(X,µ∞). By the Dominated Convergence Theorem, limt→0 ‖T (t)f −
f‖Lp(X,µ∞) = 0 for every f ∈ Cb(X), and this yields limt→0 ‖Tp(t)f − f‖Lp(X,µ∞) = 0
for every f ∈ Lp(X,µ∞).

The generator of Tp(t) is denoted by Lp. Since Tp(t)f = Tq(t)f for p ≤ q and f ∈
Lq(X,µ∞), then Lq is the part of Lp in Lq(X,µ∞), and the subindex p will be written only
if needed.

Notice that, for every f ∈ D(Lp), letting t→ 0 in the equality
∫
X

[(T (t)f−f)/t]dµ∞ = 0
we obtain

∫
X
Lpf dµ∞ = 0 .

Concerning asymptotic behavior, for every f ∈ Lp(X,µ∞) we have

lim
t→∞

∥∥∥∥Tp(t)f − ∫
X

f(y)µ∞(dy)

∥∥∥∥
Lp(X,µ∞)

= 0. (3.22)

If f ∈ Cb(X), (3.22) is a consequence of (3.21) through the Dominated Convergence Theo-
rem; if f ∈ Lp(X,µ∞) it follows approximating f by a sequence of continuous and bounded
functions.

Using the Dominated Convergence Theorem, it is easy to see that the space F0 defined in
(3.13) is contained in D(Lp) for every p ∈ [1,∞), and it is a core for Lp since it is invariant
under T (t) and dense in Lp(X,µ∞). Another convenient core, used in [15], is the subspace
of F0 defined by

EA(X) := span {cos(〈·, h〉), sin(〈·, k〉); h, k ∈ D(A∗)}.

Necessary and sufficient conditions for T2(t) be self-adjoint for every t > 0 (or, equivalently,
for L2 be self-adjoint) were given in [13] under the assumption that Q∞ is one to one, that
was later removed in [26]. In both papers, the key tool was the representation of T2(t) as
the second quantization operator of the operator S∞(t)∗, that goes back to [11].

Theorem 3.2 The following conditions are equivalent.

(i) T2(t) = T2(t)∗ for every t > 0;

(ii) Q(D(A∗)) ⊂ D(A), and AQx = QA∗x for every x ∈ D(A∗);

(iii) etAQ = QetA
∗
, for every t > 0;

(iv) etAQ∞ = Q∞e
tA∗ , for every t > 0;

(v) etA(H) ⊂ H, and SH(t) := etA|H : H → H is a self-adjoint strongly continuous semi-
group on H.
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We refer to the conditions of Theorem 3.2 as “the symmetric case”. In such a case, by
the general theory of semigroups the infinitesimal generator L2 of T2(t) is self-adjoint too.
Moreover T2(t) is a symmetric Markov semigroup on L2(X,µ∞), according to the terminol-
ogy of [17], and therefore Tp(t) is an analytic semigroup on Lp(X,µ∞) for every p ∈ (1,+∞)
with angle of analyticity ≥ π(1− |2/p− 1|)/2, by [17, Thm. 1.4.2]. In addition, (iv) yields
that Q∞ maps D(A∗) into D(A), and on D(A∗) we have AQ∞ = Q∞A

∗ (= −Q/2 by the
Lyapunov equation). In particular, if 0 belongs to the resolvent set ρ(A) we get an explicit
formula for Q∞ = − 1

2A
−1Q = − 1

2Q(A∗)−1. About condition (v), we remark that SH(t)

is self-adjoint and strongly continuous on H iff Q−1/2etAQ1/2 is self-adjoint and strongly
continuous on X. Moreover, in the symmetric case not only SH(t) is strongly continuous,
but there are M1, β > 0 such that

‖SH(t)‖L (H) ≤M1e
−βt, t > 0. (3.23)

See [26, Thm. 4.5]. Such estimate plays an important role in the asymptotic behavior of
Tp(t).

In the nonsymmetric case, Tp(t) is not in general analytic, even in finite dimension:
see the counterexamples in [21]. Necessary and sufficient conditions for analyticity were
studied in the papers [42, 21, 23, 26, 31, 38]. In particular, [26] contains extensions and
improvements of the previous ones, that are summarized in the next theorem.

Theorem 3.3 The following conditions are equivalent:

(i) T2(t) is an analytic semigroup on L2(X,µ∞);

(ii) there exists M > 0 such that |〈Q∞A∗x, y〉| ≤ M〈Qx, x〉1/2〈Qy, y〉1/2, for every x,
y ∈ D(A∗);

(iii) S∞(t) is an analytic contraction semigroup(2) in H∞.

If in addition Q has a bounded inverse, the above conditions are also equivalent to

(iv) The operator AQ∞ has an extension belonging to L (X);

(v) The operator Q∞A
∗ has an extension belonging to L (X).

We refer to the conditions of Theorem 3.3 as “the analytic case”. As in the symmetric case,
if T2(t) is analytic on L2(X,µ∞) then Tp(t) is analytic on Lp(X,µ∞) for every p ∈ (1,∞),
by a simple application of the Stein Interpolation Theorem (e.g., [29, Sect. 6.2]). Moreover,
Tp(t) is an analytic contraction semigroup and the optimal angle of analyticity θp has been
determined in [31]; in [6] it has been proved that such angle coincides with the optimal
angle for the bounded H∞ calculus of −Lp. In addition, in the analytic case the semigroup
etA maps H into itself, and the semigroup SH(t) is a strongly continuous, bounded analytic
semigroup on H, see [34, Thm. 3.3]. For p = 1, T1(t) is not analytic, even in finite dimension.
Characterizations of the domains D(Lp) as suitable Sobolev spaces are known only in the
analytic case.

The definition of the proper Sobolev spaces relies on the closability of the operator ∇H :
F0 ⊂ Lp(X,µ∞)→ Lp(X,µ∞;H), with p ∈ [1,∞). If f ∈ F0, f(x) = ϕ(〈x, x1〉, . . . , 〈x, xn〉)

2An analytic semigroup T (t) on a real Banach space X is called “analytic contraction semigroup” if
there exists a sector Σ := {z 6= 0 : |arg z| < θ} with θ > 0 such that the analytic extension T (z) satisfies
‖T (z)‖L(XC) ≤ 1 for every z ∈ Σ. XC is the complexification of X.
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with ϕ ∈ C2
b (Rn) and xk ∈ D(A∗), we have ∇Hf(x) =

∑n
k=1Dkϕ(〈x, x1〉, . . . , 〈x, xn〉)Qxk.

Recalling (3.14), (1.3) and using the Lyapunov equation it is easy to see that for f , g ∈ F0

we have∫
X

(Lf g + f Lg)µ∞(dx) = −
∫
X

〈Q∇f,∇g〉µ∞(dx) = −
∫
X

〈∇Hf,∇Hg〉Hµ∞(dx). (3.24)

According to [24, Sect. 6], a sufficient condition for ∇H be closable is that Q is one to one

and the operator W : H∞ → X, W (x) = Q1/2Q
−1/2
∞ x, is closable in X. Another sufficient

condition, see [24, Cor. 5.6], is that etA maps H into itself and SH(t) is strongly continuous
on H. So, in the analytic case (and, in particular, in the symmetric case) ∇H is closable in
Lp(X,µ∞) for every p ∈ [1,∞). See also [26, Prop. 8.3] and [24] for counterexamples to the
closability of the gradient.

Whenever ∇H is closable in Lp(X,µ∞), the Sobolev space W 1,p
H (X,µ∞) is defined as

the domain of its closure (still called ∇H), and it is a Banach space endowed with the graph
norm

‖f‖p
W 1,p
H (X,µ∞)

= ‖f‖pLp(X,µ∞) +

∫
X

‖∇Hf(x)‖pH µ∞(dx).

In particular, for p = 2 it is a Hilbert space with inner product 〈f, g〉W 1,2
H (X,µ∞) =

〈f, g〉L2(X,µ∞) + 〈∇Hf,∇Hg〉L2(X,µ∞;H). In its turn, the operator D2
H : F0 ⊂ Lp(X,µ∞)→

Lp(X,µ∞; L2(H)) is closable, and W 2,p
H (X,µ∞) is defined as the domain of the closure (still

called D2
H), endowed with the graph norm

‖f‖p
W 2,p
H (X,µ∞)

= ‖f‖p
W 1,p
H (X,µ∞)

+

∫
X

‖D2
Hf(x)‖pL2(H) µ∞(dx).

Another involved Sobolev-type space is the domain of the closure of A∗∞∇H∞ : F0 ⊂
Lp(X,µ∞) → Lp(X,µ∞;H∞) in Lp(X,µ∞), called W 1,p

AQ(X,µ∞) (we recall that A∞ is
the part of A in H∞).

Using the notation in (3.13), for f ∈ F0 we have ‖∇Hf(x)‖H = ‖Q1/2∇f(x)‖,
‖D2

Hf(x)‖2L2(H) = Tr (QD2f(x))2, and ‖A∗∞∇H∞f(x)‖2H∞ = 〈A∗∇ϕ(x), Q∞A
∗∇ϕ(x)〉.

In the symmetric case, using the Lyapunov equation we get ‖A∗∞∇H∞f(x)‖2H∞ =
〈∇ϕ(x),−AQ∇ϕ(x)〉/2. In the case of the classical Ornstein-Uhlenbeck operator, we have
A = −I, Q∞ = 2Q, and the spaces W 1,p

H (X,µ∞) = W 1,p
AQ(X,µ∞), W 2,p

H (X,µ∞) considered

here coincide respectively with the spaces W 1,p(X, γ), W 2,p(X, γ) described in Section 1(iv),
with γ = N0,2Q.

Before going on, we observe that the quadratic form

Q(ϕ,ψ) :=
1

2

∫
X

〈∇Hϕ(x),∇Hψ(x)〉Hµ∞(dx), ϕ, ψ ∈W 1,2
H (X,µ∞)

is closed, and in the symmetric case −L2 is the operator associated with the form Q in
L2(X,µ∞), namely

D(L2) = {f ∈W 1,2
H (X,µ∞); ∃g ∈ L2(X,µ∞) s.t. Q(f, ψ) = 〈f, g〉L2(X,µ∞)}, L2f = −g,

and therefore D(−L2)1/2 = W 1,2
H (X,µ∞). Even in the nonsymmetric case, recalling that

F0 is a core for L2, formula (3.24) yields D(L2) ⊂W 1,2
H (X,µ∞) and (3.24) holds for any f ,

g ∈ D(L2). In particular, taking f = g we get∫
X

Lf(x) f(x)µ∞(dx) = −1

2

∫
X

‖∇Hf‖2H µ∞(dx), f ∈ D(L). (3.25)
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In the analytic case (see condition (ii) of Thm. 3.3) there is a sort of bounded extension
of Q∞A

∗ to H; more precisely, see [31], there exists an operator B ∈ L (H) such that
BQ∞x = Q∞A

∗x for x ∈ D(A∗), and that satisfies B + B∗ = −I in H by the Lyapunov
equation. Moreover, Lpf = ∇∗HB∇Hf , for every f in the core F0. In the symmetric case we
have B = −I/2, and this statement coincides with (2.6) for the classical Ornstein-Uhlenbeck
operator.

The next theorem follows from [12, 13, 32, 34], and generalizes an earlier result of [14].

Theorem 3.4 In the symmetric case for every p ∈ (1,+∞) we have D(Lp) =

W 2,p
H (X,µ∞) ∩W 1,p

AQ(X,µ∞), D((−Lp)1/2) = W 1,p
H (X,µ∞), with equivalence of the respec-

tive norms.

The next theorem follows from [33, 34]. We recall that in the analytic case etA maps H
into itself, and SH(t) = etA|H : H → H is a strongly continuous semigroup. We denote by
AH its infinitesimal generator.

Theorem 3.5 Let 1 < p <∞. In the analytic case, the following conditions are equivalent.

(i) D((−Lp)1/2) = W 1,p
H (X,µ∞), with equivalence of the respective norms;

(ii) the operator −AH admits bounded H∞ functional calculus in H.

If such equivalent conditions are satisfied, we have D(Lp) = W 2,p
H (X,µ∞) ∩W 1,p

AQ(X,µ∞),
with equivalence of the respective norms.

Theorem 3.5 is a generalization of 3.4, since in the symmetric case (i) and (ii) are satisfied.
In [32] sufficient conditions were given in order that D(Lp) ⊂W 2,p

H (X,µ∞) for p ∈ (1, 2],
even in the nonanalytic case.

Concerning summability improving, the following hypercontractivity result holds.

Theorem 3.6 Fix t > 0 and let 1 ≤ p < q be such that

q − 1 ≤ (p− 1)‖Q−1/2∞ etAQ1/2
∞ ‖−2L (X). (3.26)

Then Tp(t)(L
p(X,µ)) ⊂ Lq(X,µ), and ‖Tp(t)f‖Lq(X,µ) ≤ ‖f‖Lp(X,µ) for every f ∈

Lp(X,µ).

The proof is in [22] and (in the case that Q∞ is one to one) in [11]. Of course, the
statement is meaningful only if (3.20) is satisfied. As we mentioned before, if (3.9) holds
then (3.20) holds for every t > 0. Another simple example is the case that Q commutes with

etA and (3.19) holds; then Q
−1/2
∞ etAQ

1/2
∞ = etA and (3.20) is satisfied for large t if M > 1,

for every t > 0 if M = 1, independently of the validity of (3.9). In particular, if A = −ωI
with ω > 0, (3.9) is not satisfied but (3.20) holds for every t > 0.

For the classical Ornstein-Uhlenbeck semigroup of Section 2 condition (3.26) coincides
with the hypercontractivity property stated there.

It is well known, see [27, 18], that under appropriate assumptions the hypercontractivity
of a semigroup is equivalent to the occurrence of a suitable logarithmic Sobolev inequality.
But for general Ornstein-Uhlenbeck semigroups the assumptions of [27] are not necessarily
satisfied, as shown in [22]. In the symmetric case, namely under the conditions of Theorem
3.2, they are satisfied, and by [13, Thm. 4.2] for every β > 0 the following conditions are
equivalent.
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(i) ‖Q−1/2etAQ1/2‖L (X) ≤ e−βt, for every t > 0;

(ii) ‖Q−1/2∞ etAQ
1/2
∞ ‖L (X) ≤ e−βt, for every t > 0;

(iii) for every f ∈ D(L2) we have∫
X

|f(x)|2 log(|f(x)|)µ∞(dx) ≤ 2

β
〈−L2f, f〉L2(X,µ∞) + ‖f‖2L2(X,µ∞) log(‖f‖L2(X,µ∞)),

(iv) T (t) is a contraction from Lp(X,µ∞) to Lq(X,µ∞) for every t > 0, 1 ≤ p ≤ q such
that q − 1 ≤ (p− 1)e2βt.

In [22] it was remarked that if (3.20) holds for some t > 0, then there exist K, ν > 0
such that∥∥∥∥T2(t)f −

∫
X

f(x)µ∞(dx)

∥∥∥∥
L2(X,µ∞)

≤ Ke−νt‖f‖L2(X,µ∞), t > 0, f ∈ L2(X,µ∞).

Notice that the operator Π : L2(X,µ∞) → L2(X,µ∞), (Πf)(x) =
∫
X
f(x)µ∞(dx) for a.e.

x ∈ X, is just the orthogonal projection on the subspace of constant functions.
In general, exponential convergence of T2(t)f to Πf is related to the behavior of the

semigroup SH(t). Indeed, if etA maps H into itself, for every f ∈ C1
b (X), t > 0 and h ∈ H

formula (3.8) yields

∂T (t)f

∂h
(x) =

∫
X

〈∇f(etAx+ y), etAh〉Xµt(dy) =

∫
X

〈∇Hf(etAx+ y), etAh〉Hµt(dy),

and therefore, if ‖SH(t)‖L (H) ≤M1e
−βt for some M1, β > 0, we argue as in Section 2 and

we obtain

|〈∇HT (t)f(x), h〉H | =
∣∣∣∂T (t)f

∂h
(x)
∣∣∣ ≤M1e

−βt‖h‖H
∫
X

‖∇Hf(etAx+ y)‖H µt(dy)

≤M1e
−βt‖h‖H

(∫
X

‖∇Hf(etAx+ y)‖2H µt(dy)
)1/2

= M1e
−βt‖h‖H(T (t)

(
‖∇Hf‖2H)(x)

)1/2
namely,

‖〈∇HT (t)f(x)‖H ≤M1e
−βt
(
T (t)(‖∇Hf‖2)(x)

)1/2
, t > 0, x ∈ X. (3.27)

Squaring and integrating with respect to µ∞ we get, for every t > 0,∫
X

‖∇HT (t)‖2H dµ∞ ≤M2
1 e
−2βt

∫
X

T (t)(‖∇Hf‖2H) dµ∞ = M2
1 e
−2βt

∫
X

‖∇Hf‖2H dµ∞.

In the analytic case this estimate and (3.25) allow to obtain a Poincaré inequality,∫
X

|f −Πf |2 dµ∞ ≤
M2

1

2β

∫
X

‖∇Hf‖2H dµ∞, f ∈W 1,2
H (X,µ∞) (3.28)
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by a classical method that seems to go back to [19] (the proof given in [15, Prop. 10.5.2] for
a particular case works as well in general, using as main ingredients (3.25) and (3.27)).

By the invariance of µ∞, T2(t) maps L2
0(X,µ∞) := (I − Π)(L2(X,µ∞)) into itself.

Moreover, (3.28) and (3.25) yield 〈L2f, f〉L2(X,µ∞) ≤ −(β/M2
1 )‖f‖2L2(X,µ∞) for every

f ∈ D(L2) ∩ L2
0(X,µ∞). By the general theory of semigroups (e.g. [45, Section IX.8]),

‖T2(t)‖L (L2
0(X,µ∞)) ≤ e−βt/M

2
1 for t > 0, and therefore

‖T2(t)f −Πf‖L2(X,µ∞) ≤ e−βt/M
2
1 ‖f‖L2(X,µ∞), t > 0, f ∈ L2(X,µ∞). (3.29)

If in addition (3.20) holds for some t > 0, the rate of convergence of Tp(t)f to Πf is
the same in all spaces Lp(X,µ∞), 1 ≤ p < ∞. Indeed, if p > 2 we fix τ > 0 such that

T (τ) is a contraction from L2(X,µ∞) to Lp(X,µ∞) (such a τ exists, since Q
−1/2
∞ etAQ

1/2
∞ is a

semigroup, and therefore if (3.20) holds for some t > 0 then limτ→∞ ‖Q−1/2∞ eτAQ
1/2
∞ ‖L (X) =

0). For every t ≥ τ and f ∈ Lp(X,µ∞) we have

‖T (t)f −Πf‖Lp(X,µ∞) = ‖T (τ)(T (t− τ)f −Πf)‖Lp(X,µ∞) ≤ ‖T (t− τ)f −Πf‖L2(X,µ∞)

by Theorem 3.6, and using (3.29) we get

‖T (t)f −Πf‖Lp(X,µ∞) ≤ e−β(t−τ)/M
2
1 ‖f‖L2(X,µ∞) ≤ eβτ/M

2
1 e−βt/M

2
1 ‖f‖Lp(X,µ∞), t ≥ τ.

Similarly, if p < 2 we fix τ > 0 such that T (τ) is a contraction from Lp(X,µ∞) to L2(X,µ∞).
For every t ≥ τ and f ∈ Lp(X,µ∞) we have

‖T (t)f −Πf‖Lp(X,µ∞) ≤ ‖T (t)f −Πf‖L2(X,µ∞) = ‖T (t− τ)(T (τ)f −Π(T (τ)f))‖L2(X,µ∞)

so that using (3.29) and then Theorem 3.6 we get

‖T (t)f−Πf‖Lp(X,µ∞) ≤ e−β(t−τ)/M
2
1 ‖T (τ)f‖L2(X,µ∞) ≤ eβτ/M

2
1 e−βt/M

2
1 ‖f‖Lp(X,µ∞), t ≥ τ.

4 Ornstein-Uhlenbeck semigroups in Banach spaces

Many of the results of Section 3 have been extended to the case where X is a separable
Banach space. In fact, the already mentioned papers [6, 26, 24, 31, 32, 33, 34, 40, 41, 42]
deal with the Banach space case. A survey of the state of the art up to 2003 is in [26].

As in Section 3, Q ∈ L (X∗, X) is a symmetric positive operator, and A : D(A) ⊂ X →
X is the infinitesimal generator of a strongly continuous semigroup etA on X. As in the
Hilbert case, the basic assumption of this section is that for every t > 0 the operator Qt
defined by (3.2) is the covariance of a Gaussian measure µt, and in this case the Ornstein-
Uhlenbeck semigroup T (t) is defined by (3.5).

If Q itself is a covariance and A = −I, T (t) is the classical Ornstein-Uhlenbeck semigroup
of Sect. 2, provided γ is the centered Gaussian measure on X with covariance 2Q.

As in the Hilbert case, it is the transition semigroup of a stochastic differential equation
in X, with a proper notion of mild solution, see [3, 44], and it is a contraction semigroup
on Bb(X) that leaves invariant the spaces Cb(X), BUC(X), Cαb (X), Ckb (X), Cα+kb (X) for
α ∈ (0, 1), k ∈ N.

The strong-Feller property of T (t) is not easily recognizable as in the Hilbert case.
Characterizations and sufficient conditions for T (t) be strong-Feller are in [26, Sect. 6.1].
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Concerning the behavior of T (t) on Cb(X), it is strongly continuous in the mixed topol-
ogy, and the space F0 defined now by

F0 := {f ∈ Cb(X) : f = ϕ(〈·, a1〉, . . . , 〈·, an〉); ϕ ∈ C2
b (Rn),

n ∈ N, ai ∈ D(A∗), A∗Df(·)(·) ∈ Cb(X)} (4.1)

is a core of the generator L of T (t) in the mixed topology, by [26, Thm.6.6]. The domain of
L is still given by (3.12), see [26, Section 6.1].

The spaces H := HQ and Ht := HQt introduced in Sect. 1(i) play the role of the spaces

Q1/2(X), Q
1/2
t (X) in the Hilbert case. We recall that Ht is the Cameron-Martin space of

the measure µt.
As reported in Sect. 3 in the Hilbert space case, an important hypothesis to get smooth-

ing properties if T (t) aling H is that etA maps H into itself, and SH(t) := etA|H : H → H is a

strongly continuous semigroup on H. Indeed, in this case etA maps H into Ht for every t > 0,
and sup0<t<1 ‖etA‖L (H,Ht) < ∞, by [26, Thm. 3.5]. As a consequence, T (t) is smoothing
along H. See [34, Sect. 2] and [30] for representation formulae and estimates for any order
H-derivatives of T (t)f when f ∈ Cb(X). Again, as in the Hilbert case, Schauder type the-
orems were proved in [30], that generalize the one stated in Sect. 2, and precisely for every
α ∈ (0, 1), λ > 0 and f ∈ CαH(X), R(λ, L)f ∈ C2

H(X) and D2
HR(λ, L)f ∈ CαH(X,L2(H)).

Notice that H is invariant under etA in the analytic case, see [34, Th. 3.3].
Concerning asymptotic behavior and existence of invariant measures, assumption (3.16)

is generalized as follows.{
(i) ∀f ∈ X∗ ∃ weak− limt→∞Qtf := Q∞f,
(ii) Q∞ is the covariance of a centered Gaussian measure µ∞.

(4.2)

Condition (i) is satisfied if (3.19) holds, in which case a representation formula similar to
(3.17) holds, namely Q∞f =

∫∞
0
esAQesA

∗
f ds for every f ∈ X∗, where now the integral

converges as a Pettis integral, see [26, Sect. 2]. As in the Hilbert case, if (i) holds the
operator Q∞ maps D(A∗) into D(A) and satisfies the Lyapunov equation (3.18); moreover
(i) holds iff there exists a symmetric and positive operator P ∈ L (X∗, X) mapping D(A∗)
into D(A) such that PA∗f +APf = −Qf for every f ∈ D(A∗), see [26, Sect. 4].

However, establishing whether a given symmetric positive operator is the covariance of a
Gaussian measure is not as simple as in the Hilbert case. Necessary and sufficient conditions
are in [44]. If (4.2) holds, denoting by H∞ := HQ∞ = the Cameron-Martin space of µ∞ (as
in the Hilbert case), several statements of the previous section are extendable to the Banach
setting. In particular:

(a) etA maps H∞ into itself, and etA|H∞ : H∞ → H∞ is a strongly continuous contrac-

tion semigroup, still denoted by S∞(t). Moreover, for any t > 0 we have H∞ = Ht iff
‖S∞(t)‖L (H∞) < 1.

(b) µ∞ is an invariant measure of T (t), and the arguments used in Sections 2 and 3 yield
that T (t) extends to a contraction C0-semigroup Tp(t) on Lp(X,µ∞), for every p ∈ [1,+∞).

(c) Conditions (i) and (iii) of Theorem 3.2 are still equivalent, see [26, Thm. 7.4]; if they
hold Tp(t) is an analytic contraction semigroup on Lp(X,µ∞) for every p ∈ (1,∞).

(d) Conditions (i), (ii), and (iii) of Theorem 3.3 are still equivalent, see [26, Sect. 8]; if they
hold Tp(t) is an analytic contraction semigroup on Lp(X,µ∞) for every p ∈ (1,+∞). The
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optimal angle of analyticity and the optimal angle for the bounded H∞ calculus of −Lp
were determined in [31, 6], respectively, in the present Banach setting.

(e) Theorems 3.2 and 3.3 still hold, where the involved Sobolev spaces W 1,p
H (X,µ∞),

W 2,p
H (X,µ∞), W 1,p

AQ(X,µ∞) are defined in a similar way to the Hilbert case. See [32, 33, 34].
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