EXISTENCE OF MINIMIZERS FOR THE SDRI MODEL IN 2D: WETTING AND DEWETTING REGIME WITH MISMATCH STRAIN

SHOKHRUKH YU. KHOLMATOV AND PAOLO PIOVANO*

Abstract

The model introduced in [45] in the framework of the theory on Stress-Driven Rearrangement Instabilities (SDRI) [3, 43] for the morphology of crystalline materials under stress is considered. As in [45] and in agreement with the models in [50, 55], a mismatch strain, rather than a Dirichlet condition as in [16], is included into the analysis to represent the lattice mismatch between the crystal and possible adjacent (supporting) materials. The existence of solutions is established in dimension two in the absence of graph-like assumptions and of the restriction to a finite number m of connected components for the free boundary of the region occupied by the crystalline material, thus extending previous results for epitaxially strained thin films and material cavities [6, 34, 35, 45]. Due to the lack of compactness and lower semicontinuity for the sequences of m-minimizers, i.e., minimizers among configurations with at most m connected boundary components, a minimizing candidate is directly constructed, and then shown to be a minimizer by means of uniform density estimates and the convergence of m-minimizers' energies to the energy infimum as $m \rightarrow \infty$. Finally, regularity properties for the morphology satisfied by every minimizer are established.

1. Introduction

In this paper we establish existence and regularity properties for the solutions of the variational model for Stress-Driven Rearrangement Instabilities (SDRI) [3, 23, 43] that was introduced in [45]. Under the name of SDRI are included all those material morphologies, such as boundary irregularities, cracks, filaments, and surface patterns, which a crystalline material may exhibit in the presence of external forces, such as in particular the chemical bonding forces with adjacent materials. In order to release the induced stresses, atoms rearrange from the material optimal crystalline order and instabilities may develop.
The main advancement provided by the results in this manuscript with respect to [45] is the absence of the unphysical restriction on the number of connected components for the boundary of the region occupied by the crystalline material, by also avoiding graph-like assumptions for such boundaries assumed for the specific settings of epitaxially strained thin films in $[6,16,34]$ and material voids in [35]. In particular, with respect to [16] we include into the analysis the dewetting regime, i.e., the presence of other fixed materials with possibly different boundary surface tensions, even if by only treating the two dimensional case, and we establish regularity results for the crystalline morphologies and instabilities satisfied by every minimizer. Furthermore, our strategy stems from the approach used in [22] for the Mumford-Shah functional, and hence differs from the method introduced in [16], which instead is based on allowing displacements to attain a limit value ∞ on

[^0]sets with positive measure (and on technically assigning a zero cost to the elastic-energy contribution related to those sets).

The SDRI model of [45] is a variational model introduced in the framework of the SDRI theory initiated in the seminal papers of [3] and [43], and on the basis of the subsequent analytical descriptions provided in the context of epitaxially strained thin films $[6,24,25$, 34], crystal cavities [8, 35], capillarity droplets [26, 30], fractures [7, 11, 17, 19, 36], and boundary debonding and delamination [4, 49]. All such settings are included and can be treated simultaneously in the SDRI model [45] (see Section 2.5). In agreement with [3, 43] since SDRI morphologies relate to the boundary of crystalline materials and depend on the bulk rearrangements, the energy \mathcal{F} characterizing the SDRI model displays both an elastic bulk energy and a surface energy denoted by \mathcal{W} and \mathcal{S}, respectively. More precisely, the energy \mathcal{F} is defined as

$$
\begin{equation*}
\mathcal{F}(A, u):=\mathcal{S}(A, u)+\mathcal{W}(A, u) \tag{1.1}
\end{equation*}
$$

for any admissible configurational pair (A, u) consisting of a set A that represents the region occupied by the crystalline material in a fixed container $\Omega \subset \mathbb{R}^{d}$ for $d \in \mathbb{N}$, i.e.,

$$
A \in \mathcal{A}:=\left\{A \subset \bar{\Omega}: A \text { is } \mathcal{L}^{2} \text {-measurable and } \partial A \text { is } \mathcal{H}^{1} \text {-rectifiable }\right\}
$$

and of a displacement function u of the bulk materials (with respect to the optimal crystal arrangement) given by

$$
u \in G S B D^{2}\left(\operatorname{Int}(A \cup S \cup \Sigma) ; \mathbb{R}^{d}\right) \cap H_{\mathrm{loc}}^{1}\left(\operatorname{Int}(A) \cup S ; \mathbb{R}^{d}\right)
$$

where $S \subset \mathbb{R}^{d} \backslash \Omega$ is the region occupied by a fixed material, which we denote substrate in analogy with the thin-film setting and we consider possibly different from the material in the container, and

$$
\Sigma:=\partial S \cap \partial \Omega
$$

represents the contact surface between the container Ω and the substrate S. In the following we refer to \mathcal{C} as the configurational space and to each configuration $(A, u) \in \mathcal{C}$ as a free crystal with A and u as the free-crystal region and the free-crystal displacement, respectively (see Figure 1).

The bulk elastic energy \mathcal{W} in (1.1) is defined in [45] by

$$
\mathcal{W}(A, u)=\int_{A \cup S} W\left(z, e(u)-M_{0}\right) d z
$$

where the elastic density W is given by

$$
\begin{equation*}
W(z, M):=\mathbb{C}(z) M: M \tag{1.2}
\end{equation*}
$$

for any $z \in \Omega \cup S$ and any $(d \times d)$-symmetric matrix $M \in \mathbb{M}_{\mathrm{sym}}^{d \times d}$, and for a positivedefinite elasticity tensor \mathbb{C}, and attains its minimum value zero for every z at a fixed strain $M_{0} \in M \in \mathbb{M}_{\mathrm{sym}}^{d \times d}$ in the following referred to as mismatch strain. The inclusion in (1.2) of a mismatch strain M_{0} defined by

$$
M_{0}:= \begin{cases}e\left(u_{0}\right) & \text { in } \Omega \tag{1.3}\\ 0 & \text { in } S\end{cases}
$$

for a fixed $u_{0} \in H^{1}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$, together with the fact that both M_{0} and \mathbb{C} are let free of jumping across Σ, allows to model the presence of two different materials in the substrate and in the free crystals, and in particular to take into account the lattice mismatch between their optimal crystalline lattices that is crucial, e.g., in the setting of heteroepitaxy [24, 25].

The surface energy \mathcal{S} in (1.1) is defined as

$$
\mathcal{S}(A, u)=\int_{\partial A} \psi(z, u, \nu) d \mathcal{H}^{d-1}
$$

Figure 1. An admissible free-crystal region A is displayed in light blue in the container Ω, while the substrate S is represented in dark blue. The boundary of A (with the cracks) is depicted in black, the container boundary in green, the contact surface Σ in red (thicker line) while the free-crystal delamination region J_{u} with a white dashed line.
where the surface tension ψ is given by

$$
\psi(z, u, \nu):= \begin{cases}\varphi\left(z, \nu_{A}(z)\right) & z \in \Omega \cap \partial^{*} A \tag{1.4}\\ 2 \varphi\left(z, \nu_{A}(z)\right) & z \in \Omega \cap\left(A^{(1)} \cup A^{(0)}\right) \cap \partial A \\ \varphi\left(z, \nu_{S}(z)\right)+\beta(z) & z \in \Sigma \cap A^{(0)} \cap \partial A \\ \beta(z) & z \in \Sigma \cap \partial^{*} A \backslash J_{u} \\ \varphi\left(z, \nu_{S}(z)\right) & z \in J_{u}\end{cases}
$$

with $\varphi \in C\left(\bar{\Omega} \times \mathbb{R}^{d} ;[0,+\infty)\right)$ being a Finsler norm such that $c_{1}|\xi| \leq \varphi(x, \xi) \leq c_{2}|\xi|$ for some $c_{1}, c_{2}>0$ and representing the anisotropy of the free-crystal material, β denoting the relative adhesion coefficient on Σ such that, as for capillarity problems [26, 30],

$$
|\beta(z)| \leq \varphi\left(z, \nu_{S}(z)\right)
$$

for every $z \in \Sigma, \nu$ coinciding with the exterior normal on the reduced boundary $\partial^{*} A$, and $A^{(\delta)}$ denoting the set of points of A with density $\delta \in[0,1]$.

The anisotropic form of ψ in (1.4) distinguishes various portions of the free-crystal topological boundary ∂A : the free boundary $\partial^{*} A \cap \Omega$, the family of internal cracks $A^{(1)} \cap$ $\Omega \cap \partial A$, the family of external filaments $A^{(0)} \cap \Omega \cap \partial A$, the delaminated region J_{u}, i.e., the portion on the contact surface Σ where there is no bonding between the free crystal and the substrate (even if they are adjacent), the adhesion area where the free-crystal displacement is continuous through Σ, i.e., $\Sigma \cap \partial^{*} A \backslash J_{u}$, and the wetting layer represented by the filaments on Σ, i.e., $\Sigma \cap A^{(0)}$. In particular, ψ weights the different portions of ∂A in relation to the active chemical bondings present at each portion, i.e., φ when there is no extra chemical bonding, such as at the free profile and at the delaminated region, and β at the adhesion contact area with the substrate, while both the cracks and at external filaments are counted 2φ and the wetting layer sees the contribution of both ψ and β.

We consider the case $d=2$ as in [45], with the fixed sets Ω and S being bounded Lipschitz open connected sets such that Σ is a Lipschitz 1-manifold. For $d \geq 3$ results are available for the isotropic Griffith model with L^{p}-fidelity term (of the type (2.19)) in [11] and with Dirichlet conditions for the displacements at the boundary in [12]. Moreover, a similar energy as the SDRI energy introduced in [45] was subsequently found in [16] as a relaxation formula separately for thin films and material voids, for the different setting with a Dirichlet condition imposed at $\partial \Omega$, and in the wetting regime, i.e., the case where free crystals are expected to cover the substrate. Unfortunately the strategy employed in [16] is not implementable in our setting, where rather than prescribing a Dirichlet condition as in [16], the mismatch strain (1.3) (which depends on the substrate region S) is considered in the elastic energy in analogy with the models in [55] and [50, Section 4.2.2] (see also the mathematical treatments [24, 25, 34, 47]).
In fact, the existence results in [16] are achieved by working (in the proofs) with displacements in a larger space than the classical framework of small displacements of linearized elasticity, namely the space $G S B D_{\infty}^{p}$ for $p>1$ that includes displacements attaining a limit value ∞ in a set of finite perimeter (on which their strain $e(u)$ is defined to be zero [16, Page 1055]). Such a method works well with a Dirichlet condition that keeps the displacements anchored, while in our setting it would be always convenient for the displacements in $G S B D_{\infty}^{p}$ of the minimizing sequences to escape to infinity, as this would result with the definition of the energy in [16] in the minimum (zero) value of the elastic energy for the limiting free-crystal region. A treatment for $d \geq 3$ of the model under consideration in this paper with mismatch strain (and without Dirichlet conditions) is under preparation [46] by implementing the ideas in this manuscript together with the ones in [45], but without the need of Golab's Theorem (and without employing the space $G S B D_{\infty}^{p}$ for the displacements).

Therefore, we must proceed differently here and we rely on the results of [45] for $d=2$. We begin by observing that, as shown in [45], the specific weights of (1.4) are crucial to obtain the lower semicontinuity of the energy \mathcal{F} under the constraint on a fixed number $m \in \mathbb{N}$ of boundary connected components for the free-crystal regions, which represented an extension of the more restrictive graph condition assumed in [34] for the particular setting of epitaxially strained thin films and the starshapedness condition in [35] for material cavities. More precisely, by considering the subfamily \mathcal{C}_{m} of configurations with free crystals presenting at most $m \in \mathbb{N}$ boundary connected components, namely

$$
\mathcal{C}_{m}:=\{(A, u) \in \mathcal{C}: \partial A \text { has at most } m \text { connected components }\},
$$

in [45, Theorem 2.8] it is shown that

$$
\liminf _{k \rightarrow \infty} \mathcal{F}\left(A_{k}, u_{k}\right) \geq \mathcal{F}(A, u)
$$

for every sequence $\left\{\left(A_{k}, u_{k}\right)\right\} \subset \mathcal{C}_{m}$ converging in a properly chosen topology $\tau_{\mathcal{C}}$ to a configuration $(A, u) \in \mathcal{C}_{m}$. In particular, the convergence with respect to $\tau_{\mathcal{C}}$ prescribes that $\mathcal{H}^{1}\left(\partial A_{k}\right)$ are equibounded, $\operatorname{sdist}\left(\cdot, \partial A_{k}\right) \rightarrow \operatorname{sdist}(\cdot, \partial A)$ locally uniformly in \mathbb{R}^{2} with sdist representing the signed distance function (recall definition at (2.2)), and $u_{n} \rightarrow u$ a.e. in $\operatorname{Int}(A) \cup S$. We notice that the restriction to the subfamily \mathcal{C}_{m} was needed in [45] to establish not only the lower semicontinuity, but also the compactness with respect to $\tau_{\mathcal{C}}$, which indeed fails in \mathcal{C} (see Remark 2.3), so that by means of the direct method of the calculus of variations, the existence of minimizers $\left(A_{m}, u_{m}\right) \in \mathcal{C}_{m}$ of \mathcal{F} among all configurations in \mathcal{C}_{m} followed in [45, Theorem 2.6].

The aim of the investigation contained in this paper is to recover the full generality avoiding any extra hypothesis on the admissible free-crystal regions. This is achieved by retrieving compactness with respect to the free-crystal regions at least for any sequence of m-minimizers $\left(A_{m}, u_{m}\right) \in \mathcal{C}_{m}$, and by combining the strategies of [22] and [45]. More
precisely, the use in [45] of the Golab-type Theorem [40] is avoided for the compactness of the free-crystal regions by adapting to our setting the classical density-estimate arguments first introduced for surface energies and the Mumford-Shah functional (see, e.g., [2, 28, 52]), and then extended to the Griffith functional [12, 19], which in turns allow us also to establish some regularity results. Moreover, in our setting there is the extra difficulty with respect to [22] that the compactness and lower semicontinuity along sequences of m-minimizers (with respect to the topology used to find such m-minimizers through the direct method) are both missing. We overcome this issue, by directly constructing a minimizing candidate, proving that it belongs to the class

$$
\widetilde{\mathcal{A}}:=\left\{A \subset \bar{\Omega}: A \text { is } \mathcal{L}^{2} \text {-measurable and } \mathcal{H}^{1}(\partial A)<+\infty\right\},
$$

and establishing a "lower-semicontinuity inequality" (see (1.7) below) along the selected sequence of m-minimizers (A_{m}, u_{m}) (see Subsection 1.1 for more details).
Since $\mathcal{A} \subset \widetilde{\mathcal{A}}$, for proving such lower-semicontinuity property we introduce an auxiliary energy $\widetilde{\mathcal{F}}$ defined in the larger family $\widetilde{\mathcal{C}}$ of configurations (A, u) for which $A \in \widetilde{\mathcal{A}}$, i.e.,

$$
\widetilde{\mathcal{F}}(A, u):=\widetilde{\mathcal{S}}(A, u)+\mathcal{W}(A, u),
$$

with auxiliary surface energy $\widetilde{\mathcal{S}}$ defined as

$$
\widetilde{\mathcal{S}}(A, u)=\int_{\partial A} \widetilde{\psi}(z, u, \nu) d \mathcal{H}^{d-1},
$$

where the surface tension $\widetilde{\psi}$ is given by

$$
\widetilde{\psi}(z, u, \nu):= \begin{cases}\varphi\left(z, \nu_{A}(z)\right) & z \in \Omega \cap \partial^{*} A \\ 2 \varphi\left(z, \nu_{A}(z)\right) & z \in S_{u}^{A} \\ \beta(z) & z \in \Sigma \cap \partial^{*} A \backslash J_{u} \\ \varphi\left(z, \nu_{S}(z)\right) & z \in J_{u}\end{cases}
$$

for S_{u}^{A} denoting the jump set of u along the \mathcal{H}^{1}-rectifiable portion of the cracks (see (2.6) for the precise definition).

The results of this paper are twofold: The existence results contained in Theorem 2.6 and the regularity properties of Theorem 2.7. More precisely, in Theorem 2.6 we prove the existence of a minimum configuration of \mathcal{F} and $\widetilde{\mathcal{F}}$ among all configurations in \mathcal{C} and $\widetilde{\mathcal{C}}$, respectively, with free-crystal region satisfying a volume constraint, i.e., we solve the minimum problems

$$
\begin{equation*}
\inf _{(A, u) \in \mathcal{C},|A|=\mathrm{v}} \mathcal{F}(A, u) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{(A, u) \in \widetilde{\mathcal{C}},|A|=\mathrm{v}} \widetilde{\mathcal{F}}(A, u) \tag{1.6}
\end{equation*}
$$

for a fixed volume parameter $\mathrm{v} \in(0,|\Omega|)$ or, if $S=\emptyset, \mathrm{v}=|\Omega|$. Furthermore, the minimum problems (1.5) and (1.6) are proven to be equivalent to the unconstraint minimum problems consisting in minimizing volume-penalized versions \mathcal{F}^{λ} and $\widetilde{\mathcal{F}}^{\lambda}$ of the functionals \mathcal{F} and $\widetilde{\mathcal{F}}$, for a penalization constant $\lambda>0$ provided that $\lambda \geq \lambda_{1}$ for some uniform constant $\lambda_{1}>0$.

In Theorem 2.7 regularity properties shared by all solutions of (1.5) and (1.6) are found. Notice that we cannot directly apply the arguments of [34, 35] based on the external sphere condition considered in [15] because of the absence of graph and star-shapedness assumptions on the admissible free-crystal regions. As a byproduct of Theorem 2.6 and Proposition 5.1 given a configuration (A, u) minimizing (1.5) resp. (1.6), we can construct a configuration $\left(A^{\prime}, u\right) \in \mathcal{C}$ which minimizes both minimum problems (1.5) and (1.6) such that A^{\prime} is an open set with cracks coinciding in Ω with the jump set of the corresponding minimizing free-crystal displacement u, and boundary ∂A^{\prime} satisfying uniform upper and
lower density estimates. Furthermore, we also observe that, any connected component E of A^{\prime} that does not intersect $\Sigma \backslash J_{u}$ (up to \mathcal{H}^{1}-negligible sets), must have a sufficiently large area, i.e.,

$$
|E| \geq\left(c_{1} \sqrt{4 \pi} / \lambda_{1}\right)^{2}
$$

and must satisfy $u=u_{0}$ in E up to adding a rigid displacement.
1.1. Paper organization and detail of the proofs. The paper is organized in 5 sections. In Section 2 we introduce the mathematical setting, recall the SDRI model from [45], and carefully state the main results of the paper.

In Section 3 we prove the upper and lower density estimates for the local decay of the energy \mathcal{F} on any sequence of m-minimizers $\left(A_{m}, u_{m}\right) \in \mathcal{C}_{m}$ (see Theorem 3.1) by considering a local version of \mathcal{F}^{λ} (see (2.9)), adapting arguments of [2, 12, 19] to our setting with displacements paired with free-crystal regions, and paying extra care to the fact that \mathbb{C} is possibly not constant (but in $L^{\infty}(\Omega \cup S) \cap C^{0}(\Omega)$).

In Section 4 we prove compactness and lower-semicontinuity properties for a sequence of m-minimizers. We begin by establishing in Proposition 4.1 the compactness for a sequence of m-minimizers $\left\{\left(A_{m}, u_{m}\right)\right\}$ with free-crystal regions A_{m} not containing isolated points of such free-crystal regions to a limiting set of finite perimeter $A \subset \Omega$ by means of both the Blaschke-type selection principle [45, Proposition 3.1] and the density estimates established in Section 3. Then, in Proposition 4.3, we further extend the (already generalized) Golabtype Theorem [40, Theorem 4.2] to a priori not-connected \mathcal{H}^{1}-measurable (not necessarily \mathcal{H}^{1}-rectifiable) sets satisfying uniform density estimates (see [22] for the isotropic case). The compactness of the displacements in $\left\{\left(A_{m}, u_{m}\right)\right\}$ is then proved in Propositions 4.4 by carefully constructing the limiting displacement u in view of the property that for every connected component E_{i} of A the set in which displacements u_{m} diverge is either the whole component E_{i} or \emptyset, which follows from [45, Theorem 3.7]. Finally, in Proposition 4.6 we establish the lower-semicontinuity property

$$
\begin{equation*}
\liminf _{h \rightarrow \infty} \mathcal{F}\left(A_{m_{h}}, u_{m_{h}}\right) \geq \widetilde{\mathcal{F}}(A, u), \tag{1.7}
\end{equation*}
$$

by treating separately the elastic and the surface energy. For the latter we employ a blow-up method differently performed for each portion of the ∂A where $\widetilde{\psi}$ is supported. In particular extra care is needed for the jump set J_{u} and jump set along cracks S_{u}^{A} (since there is no bound on the number of connected components), where we need to extend some ideas from [45, Proposition 4.1].

In Section 5 we prove the main results of the manuscript, i.e., the existence and regularity results that are contained in Theorems 2.6 and 2.7, respectively. In order to prove Theorem 2.6 we first establish in Proposition 5.1 the equalities

$$
\begin{equation*}
\inf _{(B, v) \in \widetilde{\mathcal{C}},|B|=\mathrm{v}} \tilde{\mathcal{F}}(B, v)=\inf _{(B, v) \in \mathcal{C},|B|=\mathrm{v}} \mathcal{F}(B, v)=\lim _{m \rightarrow \infty} \inf _{(B, v) \in \mathcal{C}_{m},|B|=\mathrm{v}} \mathcal{F}(B, v) . \tag{1.8}
\end{equation*}
$$

(recall that the second equality follows from [45, Theorem 2.6]) by using similar arguments previously used in [45, Theorem 2.6]. In particular, (1.7) and (1.8) imply that the configuration $(A, u) \in \widetilde{\mathcal{C}}$ is a minimizer of $\widetilde{\mathcal{F}}$ in $\widetilde{\mathcal{C}}$. In Theorem 5.3 we establish the uniform density estimates for the jump set S_{u}^{A} of u along cracks for a minimizer (A, u) of $\widetilde{\mathcal{F}}$. In particular, S_{u}^{A} is then essentially closed, and using this fact in Proposition 5.4 we construct a configuration $\left(A^{\prime}, u\right) \in \mathcal{C}$, which minimizes boths $\widetilde{\mathcal{F}}$ and \mathcal{F}, starting from a minimizer (A, u) of $\widetilde{\mathcal{F}}$ in $\widetilde{\mathcal{C}}$. Moreover, $\left(A^{\prime}, u\right)$ solves both (1.5) and (1.6) and satisfies the properties stated in Theorem 2.7. Theorem 2.7 is then a direct consequence of Proposition 5.4, comparison arguments, the isoperimetric inequality in \mathbb{R}^{2}, and the equivalence of the constrained minimum problems and the unconstrained penalized minimum problem related to the energies \mathcal{F}^{λ} and $\widetilde{\mathcal{F}}^{\lambda}$.

We conclude the manuscript with Appendix A that contains some subsidiary results recalled for Reader's convenience since very relevant in the arguments used throughout the paper.

2. Mathematical setting

In this section we recall the SDRI model from [45], collect all the definitions and hypotheses and state the main results of the paper. Since our model is two-dimensional, unless otherwise stated, all sets we consider are subsets of \mathbb{R}^{2}. We choose the standard basis $\left\{\mathbf{e}_{1}=(1,0), \mathbf{e}_{\mathbf{2}}=(0,1)\right\}$ in \mathbb{R}^{2} and denote the coordinates of $x \in \mathbb{R}^{2}$ with respect to this basis by $\left(x_{1}, x_{2}\right)$. We denote by $\operatorname{Int}(A)$ the interior of $A \subset \mathbb{R}^{2}$. Given a Lebesgue measurable set E, we denote by χ_{E} its characteristic function and by $|E|$ its Lebesgue measure. The set

$$
E^{(\alpha)}:=\left\{x \in \mathbb{R}^{2}: \lim _{r \rightarrow 0} \frac{\left|E \cap B_{r}(x)\right|}{\left|B_{r}(x)\right|}=\alpha\right\}, \quad \alpha \in[0,1]
$$

where $B_{r}(x)$ denotes the ball in \mathbb{R}^{2} centered at x of radius $r>0$, is called the set of points of density α of E. Clearly, $E^{(\alpha)} \subset \partial E$ for any $\alpha \in(0,1)$, where

$$
\partial E:=\left\{x \in \mathbb{R}^{2}: B_{r}(x) \cap E \neq \emptyset \text { and } B_{r}(x) \backslash E \neq \emptyset \text { for any } r>0\right\}
$$

is the topological boundary. The set $E^{(1)}$ is the Lebesgue set of E and $\left|E^{(1)} \Delta E\right|=0$. We denote by $\partial^{*} E$ the reduced boundary of a set E of finite perimeter [2, 41], i.e.,

$$
\partial^{*} E:=\left\{x \in \mathbb{R}^{2}: \exists \nu_{E}(x):=-\lim _{r \rightarrow 0} \frac{D \chi_{E}\left(B_{r}(x)\right)}{\left|D \chi_{E}\right|\left(B_{r}(x)\right)}, \quad\left|\nu_{E}(x)\right|=1\right\}
$$

The vector $\nu_{E}(x)$ is called the generalized outer normal to E.
Remark 2.1. If E is a set of finite perimeter, then

- $\overline{\partial^{*} E}=\partial E^{(1)}$ (see e.g., [52, Eq. 15.3]);
- $\partial^{*} E \subseteq E^{(1 / 2)}$ and $\mathcal{H}^{1}\left(E^{(1 / 2)} \backslash \partial^{*} E\right)=0$ (see e.g., [52, Theorem 16.2]);
- $P(E, B)=\mathcal{H}^{1}\left(B \cap \partial^{*} E\right)=\mathcal{H}^{1}\left(B \cap E^{(1 / 2)}\right)$ for any Borel set E;
where $P(E, B)$ and \mathcal{H}^{1} denote the perimeter of E in B and the 1-dimensional Hausdorff measure, respectively.

An \mathcal{H}^{1}-measurable set K is called \mathcal{H}^{1}-rectifiable if $\mathcal{H}^{1}(K)<\infty$ and there exist countably many Lipschitz functions $f_{i}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{equation*}
\mathcal{H}^{1}\left(K \backslash \bigcup_{i \geq 1} f_{i}(\mathbb{R})\right)=0 \tag{2.1}
\end{equation*}
$$

(see e.g., [2, Definition 2.57]). Notice that one can assume in (2.1) that the functions f_{i} are C^{1}, since Lipschitz functions are a.e. differentiable. By the Besicovitch-Marstrand-Mattila Theorem ([2, Theorem 2.63] a Borel set $K \subset \mathbb{R}^{2}$ with $\mathcal{H}^{1}(K)<+\infty$ is \mathcal{H}^{1}-rectifiable if and only if $\theta^{*}(K, x)=\theta_{*}(K, x)=1$ for \mathcal{H}^{1}-a.e. $x \in K$, where

$$
\theta^{*}(K, x):=\limsup _{r \rightarrow 0^{+}} \frac{\mathcal{H}^{1}\left(B_{r}(x) \cap K\right)}{2 r} \quad \text { and } \quad \theta_{*}(K, x):=\liminf _{r \rightarrow 0^{+}} \frac{\mathcal{H}^{1}\left(B_{r}(x) \cap K\right)}{2 r} .
$$

In particular, any \mathcal{H}^{1}-rectifiable set K admits a approximate tangent line at \mathcal{H}^{1}-a.e. $x \in K$, see e.g., [52, Remark 10.3]. When $\theta_{*}(K, x)=\theta^{*}(K, x)=1$, we write for simplicity $\theta(K, x)=1$. A Borel set $K \subset \mathbb{R}^{2}$ with $\mathcal{H}^{1}(K)<+\infty$ is said purely unrectifiable if $\mathcal{H}^{1}(K \cap \Gamma)=0$ for every 1-dimensional Lipschitz graph $\Gamma \subset \mathbb{R}^{2}$ (see e.g., [2, Definition 2.64]).

Moreover, by [29, Theorem 5.7], if $K \subset \mathbb{R}^{2}$ is an arbitrary Borel set with $\mathcal{H}^{1}(E)<+\infty$, then there exist Borel subsets K^{r} and K^{u} of K such that $K=K^{r} \cup K^{u}, K^{r}$ is \mathcal{H}^{1}-rectifiable
and K^{u} is purely unrectifiable, and such a decomposition is unique up to a \mathcal{H}^{1}-negligible set. More precisely, if $K=L^{r} \cup L^{u}$ with \mathcal{H}^{1}-rectifiable L^{r} and purely unrectifiable L^{u}, then $\mathcal{H}^{1}\left(K^{r} \Delta L^{r}\right)=\mathcal{H}^{1}\left(K^{u} \Delta L^{u}\right)=0$. In what follows we call K^{r} and K^{u} the rectifiable and purely unrectifiable parts of K, respectively. When $A \subset \mathbb{R}^{2}$ with $\mathcal{H}^{1}(\partial A)<+\infty$, we denote by $\partial^{r} A$ and $\partial^{u} A$ the \mathcal{H}^{1}-rectifiable and purely unrectifiable parts of ∂A, respectively.
The notation $\operatorname{dist}(\cdot, E)$ stands for the distance function from the set $E \subset \mathbb{R}^{2}$ with the convention that $\operatorname{dist}(\cdot, \emptyset) \equiv+\infty$. Given a set $A \subset \mathbb{R}^{2}$, we consider also signed distance function from ∂A, negative inside, defined as

$$
\operatorname{sdist}(x, \partial A):= \begin{cases}\operatorname{dist}(x, A) & \text { if } x \in \mathbb{R}^{2} \backslash A, \tag{2.2}\\ -\operatorname{dist}\left(x, \mathbb{R}^{2} \backslash A\right) & \text { if } x \in A .\end{cases}
$$

Remark 2.2. The following assertions are equivalent:
(a) $\operatorname{sdist}\left(x, \partial E_{k}\right) \rightarrow \operatorname{sdist}(x, \partial E)$ locally uniformly in \mathbb{R}^{2};
(b) $E_{k} \xrightarrow{K} \bar{E}$ and $\mathbb{R}^{2} \backslash E_{k} \xrightarrow{K} \mathbb{R}^{2} \backslash \operatorname{Int}(E)$, where K denotes the Kuratowski convergence of sets [20].

Moreover, either assumption implies $\partial E_{k} \xrightarrow{K} \partial E$.
Given $r>0, \nu \in \mathbb{S}^{1}$ and $x \in \mathbb{R}^{2}$ we denote by $Q_{r, \nu}(x)$ the square of sidelength $2 r$ centered at x whose sides are either parallel or perpendicular to ν. When $\nu=\mathbf{e}_{\mathbf{2}}$ or $\nu=\mathbf{e}_{\mathbf{1}}$, we drop the dependence on ν and write $Q_{r}(x)$. If in addition $x=0$, we write just Q_{r}. We also set

$$
\begin{equation*}
I_{r}:=[-r, r] \times\{0\}, Q_{r}^{+}=\left\{x \in Q_{r}: x \cdot \mathbf{e}_{2}>0\right\}, \text { and } Q_{r}^{-}=\left\{x \in Q_{r}: x \cdot \mathbf{e}_{2}<0\right\} . \tag{2.3}
\end{equation*}
$$

Given $x \in \mathbb{R}^{2}$ and $r>0$, the blow-up map $\sigma_{x, r}$ is defined as

$$
\begin{equation*}
\sigma_{x, r}(y)=\frac{y-x}{r} . \tag{2.4}
\end{equation*}
$$

The blow-up of $K \subset \mathbb{R}^{2}$ is defined as $\sigma_{x, r}(K)$.
Given an open set $U \subset \mathbb{R}^{2}$ and a metric space X we denote by $\operatorname{Lip}(U ; X)$ the family of all Lipschitz functions $\psi: U \rightarrow X$. We denote by $\operatorname{Lip}(\psi)$ the Lipschitz constant of $\psi \in \operatorname{Lip}(U ; X)$. Furthermore, $\operatorname{GSBD}\left(U ; \mathbb{R}^{2}\right)$ denotes the collection of all generalized special functions of bounded deformation (see [14, 21] for their definition and properties). Given $u \in G S B D\left(U ; \mathbb{R}^{2}\right)$ we denote with $e(u) \in \mathbb{M}_{\text {sym }}^{2 \times 2}$ the approximate symmetric gradient of u, for which

$$
\operatorname{ap}_{y \rightarrow x} \lim \frac{[u(y)-u(x)-e(u)(x)(y-x)] \cdot(y-x)}{|y-x|^{2}}=0
$$

holds for a.e. $x \in U$ by [21, Theorem 9.1], and with J_{u} the jump set of u, which is \mathcal{H}^{1}-rectifiable by [21, Theorem 6.2]. Let us also define

$$
G S B D^{2}\left(U, \mathbb{R}^{2}\right):=\left\{u \in G S B D\left(U ; \mathbb{R}^{2}\right): e(u) \in L^{2}\left(U ; \mathbb{M}_{\mathrm{sym}}^{2 \times 2}\right)\right\}
$$

Given a \mathcal{H}^{1}-rectifiable set $M \subset \bar{U}$, we consider a normal vector ν_{M} to its approximate tangent line and we denote by u_{M}^{+}and u_{M}^{-}the approximate limits of $u \in G S B D^{2}\left(U ; \mathbb{R}^{2}\right)$ with respect to ν_{M}, i.e.,

$$
\begin{equation*}
u_{M}^{+}(x):=\underset{\substack{(y-x) \cdot \nu_{M}>0, y \in U}}{\operatorname{ap}} \lim _{\substack{ \\(y-x) \cdot \nu_{M}<0 \\ y \in U}} u(y) \quad \text { and } \quad u_{M}^{-}(x):=\operatorname{ap}_{\substack{ \\\operatorname{ap}^{\prime}}} u(y) \tag{2.5}
\end{equation*}
$$

for every $x \in M$ whenever they exist (see [21, Definition 2.4]). We refer to u_{M}^{+}and u_{M}^{-} as the two-sided traces of u at M and we notice that they are uniquely determined up to a permutation when changing the sign of ν_{M}. If $U=\operatorname{Int}(A)$ for some measurable set A with $\mathcal{H}^{1}(\partial A)<+\infty$ and $M:=\partial^{r} A$, we use the simplified notations $u_{\partial A}^{ \pm}$on $A^{(1)} \cap \partial^{r} A$,
and $\operatorname{tr}_{A} u:=u_{\partial A}^{+}$on $\partial^{*} A$, where on $\partial^{*} A$ we always choose ν_{M} in (2.5) as the generalized outer unit normal to A. Moreover, we define

$$
\begin{equation*}
S_{u}^{A}:=\left\{x \in A^{(1)} \cap \partial^{r} A: u_{\partial A}^{+}(x) \neq u_{\partial A}^{-}(x)\right\} . \tag{2.6}
\end{equation*}
$$

Note that S_{u}^{A} is \mathcal{H}^{1}-rectifiable. We refer to S_{u}^{A} the jump set of u along the cracks of A.
A linear function $a: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, defined as $A x=M x+b$, where M is 2×2-matrix and $b \in \mathbb{R}^{2}$, is an (infinitesimal) rigid displacement if $M=-M^{T}$.
2.1. The SDRI model. Given two nonempty bounded Lipschitz connected open sets $\Omega \subset \mathbb{R}^{2}$ and $S \subset \mathbb{R}^{2} \backslash \Omega$ such that $\bar{\Omega} \cap \bar{S} \neq \emptyset$ and the set $\Sigma:=\partial S \cap \partial \Omega$ is a Lipschitz 1-manifold, we define the family of admissible regions for the free crystal and the space of admissible configurations by

$$
\mathcal{A}:=\left\{A \subset \bar{\Omega}: A \text { is } \mathcal{L}^{2} \text {-measurable and } \partial A \text { is } \mathcal{H}^{1} \text {-rectifiable }\right\}
$$

and

$$
\begin{aligned}
\mathcal{C}:=\{(A, u): & A \in \mathcal{A} \\
& \left.u \in G S B D^{2}\left(\operatorname{Int}(A \cup S \cup \Sigma) ; \mathbb{R}^{2}\right) \cap H_{\mathrm{loc}}^{1}\left(\operatorname{Int}(A) \cup S ; \mathbb{R}^{2}\right)\right\}
\end{aligned}
$$

respectively. By Proposition A. 1 any $A \in \mathcal{A}$ has finite perimeter. Furthermore, $J_{u} \subset$ $\Sigma \cap \overline{\partial^{*} A}$ since $u \in H_{\mathrm{loc}}^{1}\left(\operatorname{Int}(A) \cup S ; \mathbb{R}^{2}\right)$.

The energy of admissible configurations is given by $\mathcal{F}: \mathcal{C} \rightarrow[-\infty,+\infty]$,

$$
\begin{equation*}
\mathcal{F}:=\mathcal{S}+\mathcal{W} \tag{2.7}
\end{equation*}
$$

where \mathcal{S} and \mathcal{W} are the surface and elastic energies of the configuration, respectively. The surface energy of $(A, u) \in \mathcal{C}$ is defined as

$$
\begin{align*}
\mathcal{S}(A, u):= & \int_{\Omega \cap \partial^{*} A} \varphi\left(x, \nu_{A}(x)\right) d \mathcal{H}^{1}(x) \\
& +\int_{\Omega \cap\left(A^{(1)} \cup A^{(0)}\right) \cap \partial A}\left(\varphi\left(x, \nu_{A}(x)\right)+\varphi\left(x,-\nu_{A}(x)\right)\right) d \mathcal{H}^{1}(x) \\
& +\int_{\Sigma \cap A^{(0)} \cap \partial A}\left(\varphi\left(x, \nu_{\Sigma}(x)\right)+\beta(x)\right) d \mathcal{H}^{1}(x) \\
& +\int_{\Sigma \cap \partial^{*} A \backslash J_{u}} \beta(x) d \mathcal{H}^{1}(x)+\int_{J_{u}} \varphi\left(x,-\nu_{\Sigma}(x)\right) d \mathcal{H}^{1}(x) \tag{2.8}
\end{align*}
$$

where $\varphi: \bar{\Omega} \times \mathbb{S}^{1} \rightarrow[0,+\infty)$ and $\beta: \Sigma \rightarrow \mathbb{R}$ are Borel functions denoting the anisotropy of crystal and the relative adhesion coefficient of the substrate, respectively, and $\nu_{\Sigma}:=\nu_{S}$. In the following we refer to the first term in (2.8) as the free-boundary energy, to the second as the energy of internal cracks and external filaments, to the third as the wetting-layer energy, to the fourth as the contact energy, and to the last as the delamination energy. In applications instead of $\varphi(x, \cdot)$ it is more convenient to use its positively one-homogeneous extension $|\xi| \varphi(x, \xi /|\xi|)$. With a slight abuse of notation we denote this extension also by φ.

The elastic energy of $(A, u) \in \mathcal{C}$ is defined as

$$
\mathcal{W}(A, u):=\int_{A \cup S} W\left(x, e(u(x))-M_{0}(x)\right) d x
$$

where the elastic density W is determined as the quadratic form

$$
W(x, M):=\mathbb{C}(x) M: M,
$$

by the so-called stress-tensor, a measurable function $x \in \Omega \cup S \rightarrow \mathbb{C}(x)$, where $\mathbb{C}(x)$ is a nonnegative fourth-order tensor in the Hilbert space $\mathbb{M}_{\text {sym }}^{2 \times 2}$ of all 2×2-symmetric matrices
with the natural inner product

$$
M: N=\sum_{i, j=1}^{2} M_{i j} N_{i j}
$$

for $M=\left(M_{i j}\right)_{i, j=1}^{2}, N=\left(N_{i j}\right)_{i, j=1}^{2} \in \mathbb{M}_{\text {sym }}^{2 \times 2}$.
The mismatch strain $x \in \Omega \cup S \mapsto M_{0}(x) \in \mathbb{M}_{\text {sym }}^{2 \times 2}$ is given by

$$
M_{0}:= \begin{cases}e\left(u_{0}\right) & \text { in } \Omega, \\ 0 & \text { in } S,\end{cases}
$$

for a fixed $u_{0} \in H^{1}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$.
Given $m \in \mathbb{N}$, let \mathcal{A}_{m} be a collection of all $A \in \mathcal{A}$ such that ∂A has at most m connected components and let

$$
\mathcal{C}_{m}:=\left\{(A, u) \in \mathcal{C}: A \in \mathcal{A}_{m}\right\}
$$

to be the set of constrained admissible configurations. For simplicity, we assume that $\mathcal{C}_{\infty}=\mathcal{C}$.

Remark 2.3. The reason to introduce \mathcal{C}_{m} is that \mathcal{C}_{m} is both closed under $\tau_{\mathcal{C}}$-convergence (see [45, Definition 2.5]) and \mathcal{F} is lower semicontinuous with respect to $\tau_{\mathcal{C}}$ in \mathcal{C}_{m} (see [45, Theorems 2.7 and 2.8]). Such two properties do not apply instead to \mathcal{C} as the following examples show.

We begin by recalling that a sequence $\left\{\left(A_{k}, u_{k}\right)\right\} \subset \mathcal{C}$ is said to $\tau_{\mathcal{C}}$-converge to $(A, u) \subset \mathcal{C}$ and we denote by $\left(A_{k}, u_{k}\right) \xrightarrow{\tau_{C}}(A, u)$, if

$$
\begin{aligned}
& -\sup _{k \geq 1} \mathcal{H}^{1}\left(\partial A_{k}\right)<\infty, \\
& -\operatorname{sdist}\left(\cdot, \partial A_{k}\right) \rightarrow \operatorname{sdist}(\cdot, \partial A) \text { locally uniformly in } \mathbb{R}^{2} \text { as } k \rightarrow \infty, \\
& -u_{k} \rightarrow u \text { a.e. } \operatorname{in} \operatorname{Int}(A) \cup S .
\end{aligned}
$$

Let $X:=\left\{x_{n}\right\}$ be a countable dense set in Ω and $A \in \mathcal{A}$ such that $|A|=\mathrm{v} \in(0,|\Omega|]$. Then the sets $A_{k}:=A \backslash\left\{x_{1}, \ldots, x_{k}\right\} \in \mathcal{A}, k \in \mathbb{N}$, are such that $\left|A_{k}\right|=\mathrm{v} \in(0,|\Omega|)$, $\mathcal{H}^{1}\left(\partial A_{k}\right)=\mathcal{H}^{1}(\partial A)$, and $\left(A_{k}, 0\right) \xrightarrow{\tau_{C}}(A \backslash X, 0)$ as $k \rightarrow \infty$, but $A \backslash X \notin \mathcal{A}$ since $\partial(A \backslash X)=\bar{A}$. Therefore, compactness with respect to $\tau_{\mathcal{C}}$ fails in \mathcal{C}.

Furthermore, let $\Gamma \subset A$ be a segment such that $\mathcal{H}^{1}(\Gamma)>0, B:=A \backslash \Gamma, B_{k}:=$ $A \backslash\left(\Gamma \cap\left\{x_{1}, \ldots, x_{k}\right\}\right)$ for every $k \in \mathbb{N}$, and assume that X is dense in Γ. We notice that $\left\{\left(B_{k}, 0\right)\right\} \subset \mathcal{C},(B, 0) \in \mathcal{C},\left|B_{k}\right|=|B|=|A|,\left(B_{k}, 0\right) \xrightarrow{\tau_{\mathcal{C}}}(B, 0)$ as $k \rightarrow \infty$. However,

$$
\mathcal{F}\left(B_{k}, 0\right)=\mathcal{F}(A, 0)<\mathcal{F}(A \backslash \Gamma, 0)=\mathcal{F}(B, 0) .
$$

Therefore, lower semicontinuity of \mathcal{F} with respect to $\tau_{\mathcal{C}}$ fails in \mathcal{C}.
2.2. Localized energies. In this section we introduce the notion of quasi minimizers of \mathcal{F} and $\widetilde{\mathcal{F}}$ in Ω and the localized version $\mathcal{F}(\cdot ; O): \mathcal{C}_{m} \rightarrow \mathbb{R}$ of \mathcal{F} for open sets $O \subset \Omega$ and for $m \in \mathbb{N} \cup\{\infty\}$ with the convention $\mathcal{C}_{\infty}:=\mathcal{C}$. We define

$$
\begin{equation*}
\mathcal{F}(A, u ; O):=\mathcal{S}(A ; O)+\mathcal{W}(A, u ; O) \tag{2.9}
\end{equation*}
$$

where

$$
\mathcal{S}(A ; O):=\int_{O \cap \partial^{*} A} \varphi\left(y, \nu_{A}\right) d \mathcal{H}^{1}+2 \int_{O \cap\left(A^{(1)} \cup A^{(0)}\right) \cap \partial A} \varphi\left(y, \nu_{A}\right) d \mathcal{H}^{1}
$$

and

$$
\mathcal{W}(A, u ; O)=\int_{O \cap A} \mathbb{C}(y) e(u): e(u) d y
$$

are the localized versions of the surface and elastic energies, respectively. Since we define the localized energy $\mathcal{F}(\cdot ; O)$ only for open subsets O of Ω, the localized surface energy
$\mathcal{S}(\cdot ; O)$ does not depend on u and the localized elastic energy $\mathcal{W}(\cdot ; O)$ can be defined without u_{0}; see also Remark 2.5 below.

Definition 2.4. Given $\Lambda \geq 0$ and $m \in \mathbb{N} \cup\{\infty\}$, the configuration $(A, u) \in \mathcal{C}_{m}$ is a local (Λ, m)-minimizer of $\mathcal{F}: \mathcal{C}_{m} \rightarrow \mathbb{R}$ in O if

$$
\mathcal{F}(A, u ; O) \leq \mathcal{F}(B, v ; O)+\Lambda|A \Delta B|
$$

whenever $(B, v) \in \mathcal{C}_{m}$ with $A \Delta B \subset \subset O$ and $\operatorname{supp}(u-v) \subset \subset O$. Furthermore, we define

$$
\begin{align*}
\Phi(A, u ; O):=\inf \{\mathcal{F}(B, v ; O): & (B, v) \in \mathcal{C}_{m}, \\
& B \Delta A \subset \subset O, \operatorname{supp}(u-v) \subset \subset O\} \tag{2.10}
\end{align*}
$$

and

$$
\begin{equation*}
\Psi(A, u ; O):=\mathcal{F}(A, u ; O)-\Phi(A, u ; O) \tag{2.11}
\end{equation*}
$$

for every $(A, u) \in \mathcal{C}_{m}$ and every open set $O \subset \subset \Omega$.
Remark 2.5. By [45, Theorem 2.6] (see also (3.1) below) for any minimizer (A, u) of \mathcal{F} in \mathcal{C}_{m}, the configuration $\left(A, u-u_{0}\right)$ is a $\left(\lambda_{0}, m\right)$-minimizer of $\mathcal{F}(\cdot, \cdot ; \Omega)$. Indeed, since (A, u) is a minimizer of $\mathcal{F}^{\lambda_{0}}$ in \mathcal{C}_{m}, the function $\widehat{u}:=u-u_{0}$ minimizes $\mathcal{C}_{m} \ni(B, v) \mapsto \widehat{\mathcal{F}}^{\lambda_{0}}(B, v):=$ $\mathcal{F}^{\lambda_{0}}\left(B, v+u_{0}\right)$. Hence, for any open set $O \subset \Omega$ and $(B, v) \in \mathcal{C}_{m}$ with $A \Delta B \subset \subset O$ and $\operatorname{supp}\left(u-u_{0}-v\right) \subset \subset O$ we have $\widehat{\mathcal{F}}^{\lambda_{0}}\left(A, u-\widehat{u}_{0}\right) \leq \widehat{\mathcal{F}}^{\lambda_{0}}(B, v)$ so that

$$
\mathcal{F}\left(A, u-u_{0} ; O\right) \leq \mathcal{F}(B, v ; O)+\lambda_{0}| | A|-|B|| \leq \mathcal{F}(B, v ; O)+\lambda_{0}|A \Delta B| .
$$

Similarly, if (A, u) is a minimizer of $\widetilde{\mathcal{F}}$ in $\widetilde{\mathcal{C}}$, the configuration $\left(A, u-u_{0}\right)$ is a λ_{0}-minimizer of $\widetilde{\mathcal{F}}(\cdot ; O)$.
2.3. Auxiliary model. We also introduce a weak formulation of the SRDI model defined in Section 2.1 for which the more general family $\widetilde{\mathcal{C}}$ of admissible configurations, given by

$$
\begin{aligned}
\widetilde{\mathcal{C}}:=\{(A, u): & A \in \widetilde{\mathcal{A}}, \\
& \left.u \in G S B D^{2}\left(\operatorname{Int}(A \cup S \cup \Sigma) ; \mathbb{R}^{2}\right) \cap H_{\mathrm{loc}}^{1}\left(\operatorname{Int}(A) \cup S ; \mathbb{R}^{2}\right)\right\},
\end{aligned}
$$

is considered, where

$$
\widetilde{\mathcal{A}}:=\left\{A \subset \bar{\Omega}: A \text { is } \mathcal{L}^{2} \text {-measurable and } \mathcal{H}^{1}(\partial A)<+\infty\right\} .
$$

The auxiliary energy $\widetilde{\mathcal{F}}: \widetilde{\mathcal{C}} \rightarrow \mathbb{R}$ is defined as

$$
\widetilde{\mathcal{F}}:=\widetilde{\mathcal{S}}+\mathcal{W},
$$

where

$$
\begin{align*}
\widetilde{\mathcal{S}}(A, u):= & \int_{\Omega \cap \partial^{*} A} \varphi\left(x, \nu_{A}(x)\right) d \mathcal{H}^{1}(x) \\
& +\int_{S_{u}^{A}}\left(\varphi\left(x, \nu_{A}(x)\right)+\varphi\left(x,-\nu_{A}(x)\right)\right) d \mathcal{H}^{1}(x) \\
& +\int_{\Sigma \cap \partial^{*} A \backslash J_{u}} \beta(x) d \mathcal{H}^{1}(x)+\int_{J_{u}} \varphi\left(x,-\nu_{\Sigma}(x)\right) d \mathcal{H}^{1}(x), \tag{2.12}
\end{align*}
$$

where $S_{u}^{A} \subset \Omega$ by definition (2.6).
2.4. Main results. We begin by stating the hypotheses which will be assumed throughout the paper:
(H1) $\varphi \in C\left(\bar{\Omega} \times \mathbb{R}^{2}\right)$ and is a Finsler norm, i.e., there exist $c_{2} \geq c_{1}>0$ such that for every $x \in \bar{\Omega}, \varphi(x, \cdot)$ is a norm in \mathbb{R}^{2} satisfying

$$
\begin{equation*}
c_{1}|\xi| \leq \varphi(x, \xi) \leq c_{2}|\xi| \tag{2.13}
\end{equation*}
$$

for any $x \in \bar{\Omega}$ and $\xi \in \mathbb{R}^{2}$;
(H2) $\beta \in L^{\infty}(\Sigma)$ and satisfies

$$
\begin{equation*}
-\varphi\left(x, \nu_{\Sigma}(x)\right) \leq \beta(x) \leq \varphi\left(x, \nu_{\Sigma}(x)\right) \tag{2.14}
\end{equation*}
$$

for \mathcal{H}^{1}-a.e. $x \in \Sigma$;
(H3) $\mathbb{C} \in L^{\infty}(\Omega \cup S) \cap C^{0}(\bar{\Omega})$ and there exists $c_{4} \geq c_{3}>0$ such that

$$
\begin{equation*}
2 c_{3} M: M \leq \mathbb{C}(x) M: M \leq 2 c_{4} M: M \tag{2.15}
\end{equation*}
$$

for any $x \in \Omega \cup S$ and $M \in \mathbb{M}_{\text {sym }}^{2 \times 2}$;
(H4) Either v $\in(0,|\Omega|)$ or $S=\emptyset$.

Given $\mathcal{G} \in\{\mathcal{F}, \widetilde{\mathcal{F}}\}$, we use the notation:

$$
\mathcal{X}_{\mathcal{G}}:= \begin{cases}\mathcal{C} & \text { if } \mathcal{G}=\mathcal{F} \\ \widetilde{\mathcal{C}} & \text { if } \mathcal{G}=\widetilde{\mathcal{F}}\end{cases}
$$

The first result is the existence of solutions without constraint on the number of freecrystal boundary components.

Theorem 2.6 (Existence). Assume (H1)-(H4). Let $\mathcal{G} \in\{\mathcal{F}, \widetilde{\mathcal{F}}\}$. Then the minimum problem

$$
\begin{equation*}
\inf _{(B, v) \in \mathcal{X}_{\mathcal{G}},|B|=\mathrm{v}} \mathcal{G}(B, v) \tag{2.16}
\end{equation*}
$$

admits a solution. Moreover, there exists $\lambda_{1}>0$ such that $(A, u) \in \mathcal{X}_{\mathcal{G}}$ is a solution of (2.16) if and only if it solves

$$
\inf _{(B, v) \in \mathcal{X}_{\mathcal{G}}} \mathcal{G}^{\lambda}(B, v)
$$

for every $\lambda \geq \lambda_{1}$, where

$$
\begin{equation*}
\mathcal{G}^{\lambda}(B, v):=\mathcal{G}(B, v)+\lambda| | B|-\mathrm{v}| ; \tag{2.17}
\end{equation*}
$$

For simplicity we call the solutions of (2.16) global minimizers.
The second result is a partial regularity of the free-crystal boundaries. We recall that the definition of S_{u}^{A} is provided in (2.6).

Theorem 2.7 (Properties of global minimizers). Assume (H1)-(H4). Let $\mathcal{G} \in\{\mathcal{F}, \widetilde{\mathcal{F}}\}$ and $(A, u) \in \mathcal{X}_{\mathcal{G}}$ be a solution of (2.16). Define

$$
\begin{equation*}
A^{\prime}:=\operatorname{Int}\left(A^{(1)}\right) \backslash \bar{\Gamma}, \tag{2.18}
\end{equation*}
$$

where $\bar{\Gamma}$ is the closure of $\left\{x \in S_{u}^{A}: \theta_{*}\left(S_{u}^{A}, x\right)>0\right\}$, and, with a slight abuse of notation, consider u as defined in $A^{\prime} \cup S$ (and so, also on the \mathcal{L}^{2}-negligible set $\left.A^{\prime} \backslash \operatorname{Int}(A)\right)$. Then:
(1) A^{\prime} is open, $\theta_{*}\left(S_{u}^{A^{\prime}}, x\right)>0$ for all $x \in S_{u}^{A^{\prime}},\left|A^{\prime} \Delta A\right|=0, \mathcal{H}^{1}\left(\partial A \Delta \partial A^{\prime}\right)=0$, $\mathcal{H}^{1}\left(S_{u} \Delta S_{u}^{A^{\prime}}\right)=0,\left(A^{\prime}, u\right) \in \mathcal{C}$, and

$$
\mathcal{G}(A, u)=\mathcal{F}\left(A^{\prime}, u\right)=\inf _{(B, v) \in \mathcal{C},|B|=\mathrm{v}} \mathcal{F}(B, v)=\inf _{(B, v) \in \widetilde{\mathcal{C}},|B|=\mathrm{v}} \widetilde{\mathcal{F}}(B, v)
$$

(2) for any $x \in \Omega$ and $r \in(0, \min \{1, \operatorname{dist}(x, \partial \Omega)\})$,

$$
\frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A^{\prime}\right)}{r} \leq \frac{16 c_{2}+4 \lambda_{1}}{c_{1}}
$$

(3) there exist $\varsigma_{0}=\varsigma_{0}\left(c_{3}, c_{4}\right) \in(0,1)$ and $R_{0}=R_{0}\left(c_{1}, c_{2}, c_{3}, c_{4}, \lambda_{1}\right)>0$, where $\lambda_{1}>0$ is given in Theorem 2.6, with the following property: if $x \in \Omega \cap \partial A^{\prime}$, then

$$
\frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A^{\prime}\right)}{r} \geq \varsigma_{0}
$$

for any square $Q_{r}(x) \subset \subset \Omega$ with $r \in\left(0, R_{0}\right)$.
(4) $\overline{A^{\prime(1)} \cap \partial A^{\prime}}=\overline{S_{u}^{A^{\prime}}}$ and

$$
\mathcal{H}^{1}\left(\overline{S_{u}^{A^{\prime}}} \backslash S_{u}^{A^{\prime}}\right)=0
$$

hence cracks essentially coincide with the jump set for the displacement u;
(5) If $E \subset A^{\prime}$ is any connected component of A^{\prime} with $\mathcal{H}^{1}\left(\partial E \cap \Sigma \backslash J_{u}\right)=0$, then $|E| \geq\left(c_{1} \sqrt{4 \pi} / \lambda_{1}\right)^{2}$ and $u=u_{0}+a$ in E, where a is a rigid displacement.

In what follows we refer to the estimates in (2) and (3) as the (uniform) upper and lower density estimate, respectively. Note that by assertion (1), the assertions (3) and (5) directly hold also for solutions (A, u) of (2.16).
2.5. Examples. We recall from [45] that the SDRI energy (2.7) coincides with the functionals of the following free-boundary problems considered in the Literature when restricted to the corresponding subfamilies of admissible configurations in \mathcal{C} :
(a) Epitaxially strained thin films, e.g., $[6,24,25,34,39,47]: \Omega:=(a, b) \times(0,+\infty), S:=$ $(a, b) \times(-\infty, 0)$ for some $a<b$, free crystals in the subfamily

$$
\mathcal{A}_{\text {subgraph }}:=\left\{A \subset \Omega: \exists h \in B V(\Sigma ;[0, \infty)) \text { and l.s.c. such that } A=A_{h}\right\} \subset \mathcal{A}_{1}
$$

where $A_{h}:=\left\{\left(x^{1}, x^{2}\right): 0<x^{2}<h\left(x^{1}\right)\right\}$, and admissible configurations in the subspace

$$
\mathcal{C}_{\text {subgraph }}:=\left\{(A, u): A \in \mathcal{A}_{\text {subgraph }}, u \in H_{\text {loc }}^{1}\left(\operatorname{Int}(A \cup S \cup \Sigma) ; \mathbb{R}^{2}\right)\right\} \subset \mathcal{C}_{1}
$$

(see also [5, 42]);
(b) Crystal cavities, e.g., $[35,38,54,56]: \Omega \subset \mathbb{R}^{2}$ smooth set containing the origin, $S:=$ $\mathbb{R}^{2} \backslash \Omega$, free crystals in the subfamily

$$
\mathcal{A}_{\text {starshaped }}:=\{A \subset \Omega: \text { open and } \Omega \backslash A \text { starshaped w.r.t. }(0,0)\} \subset \mathcal{A}_{1},
$$

and the space of admissible configurations

$$
\mathcal{C}_{\text {starshaped }}:=\left\{(A, u): A \in \mathcal{A}_{\text {starshaped }}, u \in H_{\text {loc }}^{1}\left(\operatorname{Int}(A \cup S \cup \Sigma) ; \mathbb{R}^{2}\right)\right\} \subset \mathcal{C}_{1}
$$

(b) Capillarity droplets, e.g., $[9,26,30]: \Omega \subset \mathbb{R}^{2}$ is a bounded Lipschitz open set (or a cylinder), admissible configurations in the collection

$$
\mathcal{C}_{\text {capillarity }}:=\left\{\left(A, u_{0}\right): A \in \mathcal{A}\right\} \subset \mathcal{C} \quad \text { or } \quad \widetilde{\mathcal{C}}_{\text {capillarity }}:=\left\{\left(A, u_{0}\right): A \in \widetilde{\mathcal{A}}\right\} \subset \widetilde{\mathcal{C}}
$$

(d) Griffith fracture model, e.g., $[7,11,12,17,19,36,37]: S=\Sigma=\emptyset, E_{0} \equiv 0$, and the space of configurations

$$
\mathcal{C}_{\text {Griffith }}:=\left\{(\Omega \backslash K, u): K \text { closed, } \mathcal{H}^{1} \text {-rectifiable, } u \in H_{\mathrm{loc}}^{1}\left(\Omega \backslash K ; \mathbb{R}^{2}\right)\right\} \subset \mathcal{C}
$$

(e) Mumford-Shah model, e.g., $[2,22,51]: S=\Sigma=\emptyset, E_{0}=0, \mathbb{C}$ is such that the elastic energy \mathcal{W} reduces to the Dirichlet energy, and the space of configurations

$$
\mathcal{C}_{\text {Mumfard-Shah }}:=\left\{(\Omega \backslash K, u) \in \mathcal{C}_{\text {Griffith }}: u=\left(u_{1}, 0\right)\right\} \subset \mathcal{C}
$$

(f) Boundary delaminations, e.g., [4, 31, 44, 48, 49, 57]: the SDRI model includes also the setting of debonding and edge delamination in composites [57]. The focus is here on the 2-dimensional film and substrate vertical section, while in [4, 48, 49] a reduced model for the horizontal interface between the film and the substrate is derived.

For the cases (a) and (b), the existence results for the SDRI model in $\mathcal{C}_{\text {subgraph }}$ and $\mathcal{C}_{\text {starshaped }}$ can be found for example in [45, Theorem 2.9 and Remark 2.10]. For (c), the same statements of Theorems 2.6 and 2.7 hold with $\mathcal{X}_{\mathcal{G}}:=\mathcal{C}_{\text {capillarity }}$ if $\mathcal{G}=\mathcal{F}$ or $\mathcal{X}_{\mathcal{G}}:=\widetilde{\mathcal{C}}_{\text {capillarity }}$ if $\mathcal{G}=\widetilde{\mathcal{F}}$ (note that S_{u} and Γ are empty in this case). For (d)-(f), we postpone the analysis to future investigations since some modifications in the proofs is needed to include boundary Dirichlet conditions or fidelity terms of type

$$
\begin{equation*}
\kappa \int_{\Omega \backslash K}|u-g|^{p} d x \tag{2.19}
\end{equation*}
$$

for $p \in(1, \infty), \kappa>0$, and $g \in L^{\infty}(\Omega)$, which are generally considered (and needed) in these mechanical applications.

3. Decay estimates for m-MINIMIzers

In this section we always assume (H4). We recall that by [45, Theorem 2.6] under the hypotheses (H1)-(H3) both the volume-contrained minimum problem

$$
\inf _{(A, u) \in \mathcal{C}_{m},|A|=\mathrm{v}} \mathcal{F}(A, u)
$$

and the unconstrained minimum problem

$$
\inf _{(A, u) \in \mathcal{C}_{m}} \mathcal{F}^{\lambda}(A, u)
$$

admit a solution for any $m \in \mathbb{N}$. Moreover, by [45, Theorem 2.6] there exists $\lambda_{0}>0$ such that

$$
\begin{equation*}
\inf _{(A, u) \in \mathcal{C},|A|=\mathrm{v}} \mathcal{F}(A, u)=\inf _{(A, u) \in \mathcal{C}} \mathcal{F}^{\lambda}(A, u)=\lim _{m \rightarrow \infty} \inf _{(A, u) \in \mathcal{C}_{m},|A|=\mathrm{v}} \mathcal{F}(A, u) \tag{3.1}
\end{equation*}
$$

for every $\lambda \geq \lambda_{0}$.
The main results of this section are the following density estimates for the quasiminimizers of \mathcal{F} in \mathcal{C}_{m} with $m \in \mathbb{N} \cup\{\infty\}$.

Theorem 3.1 (Density estimates for (Λ, m)-minimizers). There exist $\varsigma_{*}=$ $\varsigma_{*}\left(c_{3}, c_{4}\right) \in(0,1)$ and $R_{*}=R_{*}\left(c_{1}, c_{2}, c_{3}, c_{4}, \lambda_{0}\right)>0$, where c_{i} are given by (2.13) and (2.15), with the following property. Let $(A, u) \in \mathcal{C}_{m}$ be a (Λ, m)-minimizer of $\mathcal{F}(\cdot, \cdot ; \Omega)$ in \mathcal{C}_{m} for some $m \in \mathbb{N} \cup\{\infty\}$. Then for any $x \in \Omega$ and $r \in(0, \operatorname{dist}(x, \partial \Omega))$,

$$
\begin{equation*}
\frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A\right)}{r} \leq \frac{16 c_{2}+4 \Lambda}{c_{1}} \tag{3.2}
\end{equation*}
$$

Moreover, if $x \in \Omega$ belongs to the closure of the set $\left\{y \in \Omega \cap \partial A: \theta_{*}(\partial A, y)>0\right\}$, then

$$
\begin{equation*}
\frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A\right)}{r} \geq \varsigma_{*} \tag{3.3}
\end{equation*}
$$

for any square $Q_{r}(x) \subset \subset \Omega$ with $r \in\left(0, R_{*}\right)$.
To prove Theorem 3.1 we start with the following adaptation of [11, Theorem 3] to our setting (of set-function pairs).

Lemma 3.2. There exist $\eta \in(0,1 / 32)$ and $c_{0}>0$ with the following property: For any $m \in \mathbb{N} \cup\{\infty\}$, any admissible $(A, u) \in \mathcal{C}_{m}$, and any square $Q_{R}\left(x_{0}\right) \subset \Omega$ of sidelength $2 R>0$ with

$$
\begin{equation*}
\delta:=\left(\frac{\mathcal{H}^{1}\left(Q_{R}\left(x_{0}\right) \cap \partial^{r} A\right)}{R}\right)^{1 / 2}<\eta \tag{3.4}
\end{equation*}
$$

there exist $v \in G S B D^{2}\left(\operatorname{Int}(\Omega \cup S \cup \Sigma) ; \mathbb{R}^{2}\right), B \in \mathcal{A}$ with $\left(B,\left.v\right|_{B}\right) \in \mathcal{C}_{m}, R^{\prime} \in(R(1-$ $\sqrt{\delta}), R)$ and a Lebesgue measurable set $\omega \subset \subset Q_{R}\left(x_{0}\right)$ such that
(1) $v \in C^{\infty}\left(Q_{R(1-\sqrt{\delta})}\left(x_{0}\right)\right), A \Delta B \subset \subset Q_{R^{\prime}}\left(x_{0}\right) \backslash Q_{R(1-\sqrt{\delta})}\left(x_{0}\right)$ and $\operatorname{supp}(\widetilde{u}-v) \subset \subset$ $Q_{R}\left(x_{0}\right)$, where

$$
\begin{equation*}
\widetilde{u}:=u \chi_{Q_{R}\left(x_{0}\right) \cap A}+\xi \chi_{Q_{R}\left(x_{0}\right) \backslash A}, \tag{3.5}
\end{equation*}
$$

where $\xi \in Q_{R}$ is chosen such that $Q_{R} \cap \partial^{*} A \subset J_{\widetilde{u}}$;
(2) $\mathcal{H}^{1}(\partial B \backslash \partial A) \leq c_{0} \sqrt{\delta} \mathcal{H}^{1}\left(\left[Q_{R}\left(x_{0}\right) \backslash Q_{R(1-\sqrt{\delta})}\left(x_{0}\right)\right] \cap \partial A\right)$;
(3) $|\omega| \leq c_{0} \delta \mathcal{H}^{1}\left(Q_{R}\left(x_{0}\right) \cap \partial A\right)$ and

$$
\int_{Q_{R}\left(x_{0}\right) \backslash \omega}|v-\widetilde{u}|^{2} d x \leq c_{0} \delta^{2} R^{2} \int_{Q_{R}\left(x_{0}\right)}|e(\widetilde{u})|^{2} d x
$$

(4) for any $\psi \in \operatorname{Lip}\left(Q_{R} ;[0,1]\right)$ and elasticity tensor $\mathbb{C} \in L^{\infty}\left(Q_{R}\right)$ with

$$
\begin{equation*}
d_{1} M: M \leq \mathbb{C}(x) M: M \leq d_{2} M: M, \quad(x, M) \in Q_{R} \times \mathbb{M}_{\mathrm{sym}}^{2 \times 2} \tag{3.6}
\end{equation*}
$$

there exist $d_{3}:=d_{3}\left(c_{0}, d_{1}, d_{2}\right)>0$ and $s:=s\left(c_{0}, d_{1}, d_{2}\right) \in(0,1 / 2)$ such that

$$
\begin{aligned}
\int_{Q_{R}\left(x_{0}\right)} \psi \mathbb{C}(x) e(v): e(v) d x \leq & \int_{Q_{R}\left(x_{0}\right) \cap A} \psi \mathbb{C}(x) e(u): e(u) d x \\
& +d_{3} \delta^{s}(1+R \operatorname{Lip}(\psi)) \int_{Q_{R}\left(x_{0}\right) \cap A}|e(u)|^{2} d x
\end{aligned}
$$

The proof of Lemma 3.2 is an adaptation of the arguments of [11, Theorem 3] to our situation of functional depending on set-function pairs with extra care paid for the constraint on the number of boundary connected components. The idea is to treat the boundary of each admissible region as a jump of a properly defined displacement. In particular, we choose such displacement of the type (3.5), where ξ is selected as in the construction used in the proof of [45, Lemma 3.10]. We also notice that the constants η and $c:=c_{0} /(1+\sqrt{2} / 24)>0$ are given by [11, Theorem 3].

Proof of Lemma 3.2. By translating and rescaling if necessary, we assume that $x_{0}=0$ and $R=1$. Notice that since $\mathcal{H}^{1}\left(Q_{1} \cap \partial A\right)<+\infty$, by Proposition A. 2 there exists $\xi \in(0,1)^{2}$ such that the set

$$
\left\{x \in Q_{1} \cap \partial^{*} A: \operatorname{tr}_{A}(u) \text { exists and is equal to } \xi\right\}
$$

is \mathcal{H}^{1}-negligible. By [41, Theorem 4.4] up to a \mathcal{H}^{1}-negligible set we can cover $Q_{1} \cap \partial^{*} A$ with C^{1}-maps so that by [21, Theorem 5.2] $\operatorname{tr}_{A}(u)$ exists \mathcal{H}^{1}-a.e. on $Q_{1} \cap \partial^{*} A$.

Let

$$
\widetilde{u}:=u \chi_{Q_{1} \cap A}+\xi \chi_{Q_{1} \backslash A} .
$$

Note that $\widetilde{u} \in G S B D^{2}\left(Q_{1} ; \mathbb{R}^{2}\right)$ and by the choice of ξ and by $\left[21\right.$, Definition 2.4] $Q_{1} \cap \partial^{*} A \subset$ $J_{\widetilde{u}}$. In addition, by possibly adding to \widetilde{u} a function in $S B D^{2}\left(Q_{1} ; \mathbb{R}^{2}\right) \cap W^{1, \infty}\left(Q_{1} \backslash \partial A ; \mathbb{R}^{2}\right)$ with small $W^{1, \infty}\left(Q_{1} \backslash \partial A ; \mathbb{R}^{2}\right)$ norm, jump on the set $Q_{1} \cap \partial^{r} A$, and supported near $Q_{1} \cap \partial A$, we can assume without loss of generality that $Q_{1} \cap J_{\widetilde{u}} \supset Q_{1} \cap \partial^{r} A$ up to a \mathcal{H}^{1}-negligible set*. Notice that

$$
\delta:=\mathcal{H}^{1}\left(Q_{1} \cap \partial^{r} A\right)^{1 / 2}=\mathcal{H}^{1}\left(Q_{1} \cap J_{\widetilde{u}}\right)^{1 / 2}
$$

[^1]and set $N:=[1 / \delta]$ so that $(-N \delta, N \delta)^{2} \subset Q_{1}$. For $i:=0,1, \ldots, N-1$ let $Q^{i}:=(-(N-$ i) $\delta,(N-i) \delta)^{2}$ and $C^{i}:=Q^{i} \backslash Q^{i+1}$ (assuming $C^{N-1}:=Q^{N-1}$). Up to a slight translation of Q^{i} we assume that $\mathcal{H}^{1}\left(\partial A \cap \partial Q^{i}\right)=0$ for all i. By [11, Lemma 3.3] we find $i_{0} \geq 1$ such that
\[

\left\{$$
\begin{array}{l}
\int_{C^{i_{0}} \cup C^{i_{0}+1}}|e(\widetilde{u})|^{2} d x \leq 8 \sqrt{\delta} \int_{Q_{1} \backslash Q_{1-\sqrt{\delta}}}|e(\widetilde{u})|^{2} d x, \\
\mathcal{H}^{1}\left(\partial A \cap\left(C^{i_{0}} \cup C^{i_{0}+1}\right)\right) \leq 8 \sqrt{\delta} \mathcal{H}^{1}\left(\partial A \cap\left(Q_{1} \backslash Q_{1-\delta}\right)\right) .
\end{array}
$$\right.
\]

We partition $Q^{i_{0}+1}$ into pairwise disjoint squares with sidelength δ and divide the slice $C^{i_{0}}$ into dyadic slices

$$
G_{j}:=\left(-\left(N-i_{0}-2^{-j}\right) \delta,\left(N-i_{0}-2^{-j}\right) \delta\right)^{2} \backslash\left(-\left(N-i_{0}-2^{-j+1}\right) \delta,\left(N-i_{0}-2^{-j+1}\right) \delta\right)^{2},
$$

then we partition each slice G_{j} into pairwise disjoint squares $Q_{j, l}$ of sidelength $2^{-j} \delta$ whose sides are parallel to the coordinate axis. Let \mathcal{V}_{0} be the collection of all squares of sidelength δ that cover the central square $Q^{i_{0}+1}$ and let \mathcal{V} be the union of \mathcal{V}_{0} and of the collection of all $Q_{j, l}$. Following [11] we differentiate between "good" and "bad" squares in \mathcal{V}. A square $Q \in \mathcal{V}$ is "good" if

$$
\begin{equation*}
\mathcal{H}^{1}\left(Q^{\prime \prime \prime} \cap \partial A\right) \leq \eta \delta_{Q}, \tag{3.7}
\end{equation*}
$$

where $Q^{\prime \prime \prime}$ is the square with the same center as Q and dilated by $7 / 6$, and $\delta_{Q}:=\delta$ if $Q \in \mathcal{V}_{0}$ and $\delta_{Q}:=2^{-j} \delta$ if $Q \subset G_{j}$. A square Q is "bad" if it does not satisfy (3.7). By (3.4) $\delta^{2}=\mathcal{H}^{1}\left(Q_{1} \cap \partial A\right)<\eta \delta$, hence, by definition, all squares in \mathcal{V}_{0} are good and by [11, Eq. 12] the sum of the perimeters of all bad squares satisfies

$$
\begin{equation*}
\sum_{Q \text { bad }} \mathcal{H}^{1}\left(\partial^{*} Q\right) \leq \widetilde{c}_{0} \sqrt{\delta} \mathcal{H}^{1}\left(\left(Q_{1} \backslash Q_{1-\sqrt{\delta}}\right) \cap \partial A\right) \tag{3.8}
\end{equation*}
$$

for some $\widetilde{c}_{0}>0$. Since $\delta<\eta$, by $\left[11\right.$, Theorem 3] there exist $\widetilde{v} \in \operatorname{GSBD}^{2}\left(Q_{1} ; \mathbb{R}^{2}\right)$, $r \in(1-\sqrt{\delta}, 1)$ and a Lebesgue measurable set $\widetilde{\omega} \subset \subset Q_{r}$ such that
(a1) $\widetilde{v} \in C^{\infty}\left(Q_{1-\sqrt{\delta}}\right), \widetilde{u}=\widetilde{v}$ in $Q_{1} \backslash Q_{r}$ and $\mathcal{H}^{1}\left(J_{\widetilde{u}} \cap \partial Q_{r}\right)=\mathcal{H}^{1}\left(J_{\widetilde{v}} \cap \partial Q_{r}\right)=0$;
(a2) $\mathcal{H}^{1}\left(J_{\widetilde{v}} \backslash J_{\widetilde{u}}\right) \leq \widetilde{c}_{0} \sqrt{\delta} \mathcal{H}^{1}\left(\left(Q_{1} \backslash Q_{1-\sqrt{\delta}}\right) \cap J_{\widetilde{u}}\right)$;
(a3) $|\widetilde{\omega}| \leq \widetilde{c}_{0} \delta \mathcal{H}^{1}\left(Q_{r} \cap \partial A\right)$ and

$$
\int_{Q_{1} \backslash \widetilde{\omega}}|\widetilde{v}-\widetilde{u}|^{2} d x \leq \widetilde{c}_{0} \delta^{2} \int_{Q_{1}}|e(\widetilde{u})|^{2} d x ;
$$

(a4) for any $\psi \in \operatorname{Lip}\left(Q_{1} ;[0,1]\right)$ and elasticity tensor $\mathbb{C} \in L^{\infty}\left(Q_{1}\right)$ satisfying (3.6) there exists $d_{3}:=d_{3}\left(\widetilde{c}_{0}, d_{1}, d_{2}\right)>0$ such that

$$
\int_{Q_{1}} \psi \mathbb{C}(x) e(\widetilde{v}): e(\widetilde{v}) d x \leq \int_{Q_{1}} \psi \mathbb{C}(x) e(\widetilde{u}): e(\widetilde{u}) d x+d_{3} \delta^{s}(1+\operatorname{Lip}(\psi)) \int_{Q_{1}}|e(\widetilde{u})|^{2} d x
$$

with $s \in(0,1)$ depending only on \widetilde{c}_{0}, d_{1} and d_{2};
(a5) $J_{\widetilde{v}} \subset \partial^{*} D \cup\left(J_{\widetilde{u}} \backslash Q^{i_{0}+1}\right)$ and $J_{\widetilde{v}} \backslash J_{\widetilde{u}} \subset \partial^{*} D$, where D is the union of all bad squares.
Note that for proving (a4) in [11] a mollifying argument is used (together with the fact that \mathbb{C} is assumed to be constant in [11]). As in our setting \mathbb{C} is in general not constant, we revised such argument (see [11, Eq. 23]), by using the fact that the energy

$$
w \in G S B D^{2}(O) \mapsto \int_{O} \mathbb{C} e(w): e(w) d x
$$

is quadratic with respect to the $e(w)$ and hence, we have convexity and we can employ Cauchy-Schwartz inequality for positive semidefinite bilinear forms to obtain

$$
\begin{aligned}
& \int_{O} \mathbb{C}(x) e(\widetilde{v}): e(\widetilde{v}) d x \leq \int_{O} \mathbb{C}(x) e(\widetilde{u}): e(\widetilde{u}) d x+2 \int_{O} \mathbb{C}(x) e(\widetilde{v}):[e(\widetilde{v})-e(\widetilde{u})] d x \\
& \leq \int_{O} \mathbb{C}(x) e(\widetilde{u}): e(\widetilde{u}) d x+2\left[\int_{O} \mathbb{C}(x) e(\widetilde{v}): e(\widetilde{v}) d x\right]^{1 / 2} \times \\
& \times {\left[\int_{O} \mathbb{C}(x)[e(\widetilde{v})-e(\widetilde{u})]:[e(\widetilde{v})-e(\widetilde{u})] d x\right]^{1 / 2} }
\end{aligned}
$$

for any open set $O \subset Q_{1}$. Since the inequality $a^{2} \leq b^{2}+2 a c$, where $a, b, c \geq 0$, implies* $a \leq b+2 c$, we get

$$
\begin{aligned}
{\left[\int_{O} \mathbb{C}(x) e(\widetilde{v}): e(\widetilde{v}) d x\right]^{1 / 2} \leq } & {\left[\int_{O} \mathbb{C}(x) e(\widetilde{u}): e(\widetilde{u}) d x\right]^{1 / 2} } \\
& +2\left[\int_{O} \mathbb{C}(x)[e(\widetilde{v})-e(\widetilde{u})]:[e(\widetilde{v})-e(\widetilde{u})] d x\right]^{1 / 2} \\
\leq & \left(1+c \delta^{s}\right)\left[\int_{O} \mathbb{C}(x) e(\widetilde{u}): e(\widetilde{u}) d x\right]^{1 / 2}
\end{aligned}
$$

so that Eq. 23 of [11] holds also in our setting.
Let \mathcal{V}_{i} be the family of all bad squares Q intersecting $\operatorname{Int}(A)$ and $D_{i}:=\bigcup_{Q \in \mathcal{V}_{i}} Q$. For every $Q \in \mathcal{V}_{i}$ we define I_{Q} as the segment of smallest length connecting $\left(Q^{\prime \prime \prime} \cap \partial A\right) \backslash \bar{Q}$ to ∂Q with the convention that $I_{Q}=\emptyset$ if $\left(Q^{\prime \prime \prime} \cap \partial A\right) \backslash \bar{Q}=\emptyset$ or $Q \cap \operatorname{Int}(\Omega \backslash A) \neq \emptyset$. By the definition of $Q^{\prime \prime \prime}$ and $Q, \mathcal{H}^{1}\left(I_{Q}\right) \leq \frac{\sqrt{2}}{24} \mathcal{H}^{1}(\partial Q)$.

Let

$$
B:=\left[\left(A \backslash \overline{D_{i}}\right) \cup \partial D_{i}\right] \backslash \bigcup_{Q \in \mathcal{V}_{i}} I_{Q}
$$

and

$$
v:=\widetilde{v} \chi_{Q_{1}}+\widetilde{u} \chi_{(\Omega \cup S) \backslash Q_{1}} .
$$

We claim that B, v and $\widetilde{\omega}$ satisfy the assertions of the lemma.
Indeed, from (a4) applied with $\psi \equiv 1$ and $\mathbb{C}=I$ it follows that $v \in G S B D^{2}\left(\operatorname{Int}(B) ; \mathbb{R}^{2}\right)$. Moreover, by (a5) $v \in H_{\text {loc }}^{1}\left(\operatorname{Int}(B) ; \mathbb{R}^{2}\right)$, thus, $(B, v) \in \mathcal{C}$. Let us show that if $A \in \mathcal{A}_{m}$ for some $m \in \mathbb{N}$, then $B \in \mathcal{A}_{m}$. Indeed, by the construction of B, for each bad square Q, the dilated square $Q^{\prime \prime \prime}$ contains inside "large" portions of the boundary ∂A. Now if ∂A intersects \bar{Q}, then $I_{Q}=\emptyset$ and the modification $[A \backslash \bar{Q}] \cup \partial Q \backslash I_{Q}$ does not increase the number of boundary components. Otherwise, if ∂A does not increase \bar{Q}, so that it intersects only $Q^{\prime \prime \prime} \backslash \bar{Q}$, then adding a small segment I_{Q} to connect $\partial A \cap\left[Q^{\prime \prime \prime} \backslash \bar{Q}\right]$ to \bar{Q} again does not increase the number of boundary components of $[A \backslash \bar{Q}] \cup \partial Q \backslash I_{Q}$. Now, from the disjointness of the cubes $Q \in \mathcal{V}_{i}$ it follows that $B \in \mathcal{C}_{m}$. Therefore, if $(A, u) \in \mathcal{C}_{m}$ for some $m \in \mathbb{N}$, then $\left(B,\left.v\right|_{B}\right) \in \mathcal{C}_{m}$.

By (a1) it follows that $v \in C^{\infty}\left(Q_{1-\sqrt{\delta}}\right)$. Moreover, by the definition of $B, A \Delta B \subset \subset$ $Q_{r_{h}} \backslash Q_{1-\sqrt{\delta}}$ for some $r_{h} \in(1-\sqrt{\delta}, 1)$ such that $D_{i} \subset Q_{r_{h}}$. Also, by (a1) $\operatorname{supp}(\widetilde{u}-\widetilde{v}) \subset \subset Q_{1}$ so that $\operatorname{supp}(\widetilde{u}-v) \subset \subset Q_{1}$, and (1) follows.

[^2]Moreover, by the definition of B, I_{Q} and (3.8)

$$
\begin{aligned}
\mathcal{H}^{1}(\partial B \backslash \partial A) & \leq \sum_{Q \in \mathcal{V}_{i}} P(Q)+\sum_{Q \in \mathcal{V}_{i}} \mathcal{H}^{1}\left(I_{Q}\right) \\
& \leq\left(1+\frac{\sqrt{2}}{24}\right) \sum_{Q \in \mathcal{V}_{i}} P(Q) \leq c_{0} \sqrt{\delta} \mathcal{H}^{1}\left(\left(Q_{1} \backslash Q_{1-\sqrt{\delta}}\right) \cap \partial A\right),
\end{aligned}
$$

where $c_{0}:=\widetilde{c}_{0}(1+\sqrt{2} / 24)$, and (2) follows.
Next, by (a3) $|\omega| \leq c_{0} \delta \mathcal{H}^{1}\left(Q_{1} \cap \partial A\right)$, and

$$
\begin{aligned}
\int_{Q_{1} \backslash \omega}|v(x)-\widetilde{u}(x)|^{2} d x & =\int_{Q_{1} \backslash \widetilde{\omega}}|\widetilde{v}(y)-\widetilde{u}(y)|^{2} d y \leq \widetilde{c}_{0} \delta^{2} \int_{Q_{1}}|e(\widetilde{u})|^{2} d y \\
& \leq c_{0} \delta^{2} \int_{Q_{1}}|e(\widetilde{u})|^{2}(y) d y .
\end{aligned}
$$

Finally, by (a4) and the definition of v (i.e., $v=\widetilde{v}$ in $\left.Q_{1}\right)$ for any $\psi \in \operatorname{Lip}\left(Q_{1}\right)$ and $\mathbb{C} \in L^{\infty}\left(Q_{1}\right)$ satisfying (3.6) we have

$$
\begin{aligned}
& \int_{Q_{1}} \psi(x) \mathbb{C}(x) e(v): e(v) d x=\int_{Q_{1}} \psi(x) \mathbb{C}(x) e(\widetilde{v}): e(\widetilde{v}) d x \\
\leq & \int_{Q_{1}} \psi(x) \mathbb{C}(x) e(\widetilde{u}): e(\widetilde{u}) d x+d_{3}(1+\operatorname{Lip}(\psi)) \int_{Q_{1}}|e(\widetilde{u})|^{2} d x \\
= & \int_{Q_{1} \cap A} \psi(x) \mathbb{C}(x) e(u): e(u) d x+d_{3} \delta^{s}(1+\operatorname{Lip}(\psi)) \int_{Q_{1} \cap A}|e(u)|^{2} d x,
\end{aligned}
$$

since \widetilde{u} is constant in $Q_{1} \backslash A$. Hence, (4) follows.
The following proposition is a generalization to our setting of [11, Theorem 4] established for the Griffith model.

Proposition 3.3. Let $Q_{R}\left(x_{0}\right) \subset \Omega$ be a square of side length $2 R>0$. Consider sequences $\left\{m_{h}\right\} \subset \mathbb{N} \cup\{\infty\}$, Finsler norms $\left\{\varphi_{h}\right\}$ and ellipticity tensors $\left\{\mathbb{C}_{h}\right\}$ such that $\left\{\mathbb{C}_{h}\right\}$ is equicontinuous in $\overline{Q_{R}\left(x_{0}\right)}$ and there exist $d_{3}, d_{4}, d_{5}>0$ with

$$
\begin{equation*}
d_{3} M: M \leq \mathbb{C}_{h}(x) M: M \leq d_{4} M: M \quad \text { for all }(x, M) \in \overline{Q_{R}\left(x_{0}\right)} \times \mathbb{M}_{\mathrm{sym}}^{2 \times 2} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{5} \sup _{(x, \nu) \in Q_{R} \times \mathbb{S}^{1}} \varphi_{h}(x, \nu) \leq \inf _{(x, \nu) \in Q_{R} \times \mathbb{S}^{1}} \varphi_{h}(x, \nu), \tag{3.10}
\end{equation*}
$$

and define \mathcal{F}_{h} and Ψ_{h} in $\mathcal{C}_{m_{h}}$ as in (2.9) and (2.11), respectively, with $\varphi_{h}, \mathbb{C}_{h}$ and m_{h} in places of φ, \mathbb{C} and m. Let $\left\{\left(A_{h}, u_{h}\right)\right\} \subset \mathcal{C}_{m_{h}}$ be such that

$$
\begin{gather*}
\lim _{h \rightarrow \infty} \Psi_{h}\left(A_{h}, u_{h} ; Q_{R}\left(x_{0}\right)\right)=0, \tag{3.11}\\
\lim _{h \rightarrow \infty} \mathcal{H}^{1}\left(Q_{R}\left(x_{0}\right) \cap \partial A_{h}\right)=0, \tag{3.12}\\
\sup _{h \geq 1} \mathcal{F}_{h}\left(A_{h}, u_{h} ; Q_{R}\left(x_{0}\right)\right)=: M<\infty . \tag{3.13}
\end{gather*}
$$

Then there exist $u \in H^{1}\left(Q_{R}\left(x_{0}\right)\right)$, an elasticity tensor $\mathbb{C} \in C^{0}\left(\overline{Q_{R}\left(x_{0}\right)} ; \mathbb{M}_{\text {sym }}^{2 \times 2}\right)$, sequences $\left\{\xi_{j}\right\} \subset(0,1)^{2}$ of vectors and $\left\{a_{j}\right\}$ of rigid displacements and subsequences $\left\{\left(A_{h_{j}}, u_{h_{j}}\right)\right\}$, $\left\{\varphi_{h_{j}}\right\}$ and $\left\{\mathbb{C}_{h_{j}}\right\}$ such that
(a) $\mathbb{C}_{h_{j}} \rightarrow \mathbb{C}$ uniformly in $\overline{Q_{R}\left(x_{0}\right)}$ and $w_{j}:=u_{h_{j}} \chi_{Q_{R}\left(x_{0}\right) \cap A_{h_{j}}}+\xi_{j} \chi_{Q_{R}\left(x_{0}\right) \backslash A_{h_{j}}}-a_{j} \rightarrow u$ pointwise a.e. in $Q_{R}\left(x_{0}\right)$, and $e\left(w_{j}\right) \rightharpoonup e(u)$ in $L^{2}\left(Q_{R}\left(x_{0}\right)\right)$ as $j \rightarrow \infty$;
(b) for all $v \in u+H_{0}^{1}\left(Q_{R}\left(x_{0}\right)\right)$

$$
\begin{equation*}
\int_{Q_{R}\left(x_{0}\right)} \mathbb{C}(y) e(u): e(u) d y \leq \int_{Q_{R}\left(x_{0}\right)} \mathbb{C}(y) e(v): e(v) d y ; \tag{3.14}
\end{equation*}
$$

(c) for any $r \in(0, R]$

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \mathcal{F}_{h}\left(A_{h_{j}}, u_{h_{j}} ; Q_{r}\left(x_{0}\right)\right)=\int_{Q_{r}\left(x_{0}\right)} \mathbb{C}(x) e(u): e(u) d x \tag{3.15}
\end{equation*}
$$

Proof. Without loss of generality, we suppose $R=1$ and $x_{0}=0$. Let

$$
\begin{equation*}
c_{1, h}:=\inf _{(x, \nu) \in Q_{1} \times \mathbb{S}^{1}} \varphi_{h}(x, \nu), \quad c_{2, h}:=\sup _{(x, \nu) \in Q_{1} \times \mathbb{S}^{1}} \varphi_{h}(x, \nu) ; \tag{3.16}
\end{equation*}
$$

by (3.10) we have $d_{5} c_{2, h} \leq c_{1, h}$. Since $\sup _{h} \mathcal{H}^{1}\left(Q_{1} \cap \partial A_{h}\right)<\infty$, by Proposition A. 2 for every $h \geq 1$ there exists $\xi_{h} \in(0,1)^{2}$ such that

$$
\mathcal{H}^{1}\left(\left\{y \in Q_{1} \cap \partial A_{h}: \operatorname{tr}_{A_{h}}\left(u_{h}\right) \text { exists and equals to } \xi_{h} \text { at } y\right\}\right)=0 .
$$

Therefore

$$
\widetilde{u}_{h}:= \begin{cases}u_{h} & \text { in } Q_{1} \cap A_{h}, \tag{3.17}\\ \xi_{h} & \text { in } Q_{1} \backslash A_{h}\end{cases}
$$

belongs to $G S B D^{2}\left(Q_{1} ; \mathbb{R}^{2}\right)$ with $J_{\widetilde{u}_{h}} \subset Q_{1} \cap \partial A_{h}$ and

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \mathcal{H}^{1}\left(J_{\widetilde{u}_{h}}\right)=0 \tag{3.18}
\end{equation*}
$$

in view of (3.12). Further we suppose $\mathcal{H}^{1}\left(J_{\widetilde{u}_{h}}\right)<1 / 4$ for any $h \geq 1$.
By [10, Proposition 2] and (3.9), there exist a constant c (depending only on d_{3}) and sequences $\left\{\widetilde{\omega}_{h}\right\}$ of a Lebesgue measurable subsets of Q_{1} with $\left|\widetilde{\omega}_{h}\right| \leq c \mathcal{H}^{1}\left(Q_{1} \cap \partial A_{h}\right)$ and $\left\{a_{h}\right\}$ of rigid motions such that

$$
\begin{equation*}
\int_{Q_{1} \backslash \widetilde{\omega}_{h}}\left|\widetilde{u}_{h}-a_{h}\right|^{2} d x \leq c \int_{Q_{1}} \mathbb{C}_{h}(x) e\left(\widetilde{u}_{h}\right): e\left(\widetilde{u}_{h}\right) d x . \tag{3.19}
\end{equation*}
$$

By (3.9) and (3.13), there exists $u \in L^{2}\left(Q_{1}\right)$ such that up to a subsequence ($\widetilde{u}_{h}-$ $\left.a_{h}\right) \chi_{Q_{1} \backslash \widetilde{\omega}_{h}} \rightharpoonup u$ weakly in $L^{2}\left(Q_{1}\right)$. Furthermore from (3.9) and (3.13) we obtain

$$
\sup _{h \geq 1} \int_{Q_{1}}\left|e\left(\widetilde{u}_{h}-a_{h}\right)\right|^{2} d x+\mathcal{H}^{1}\left(J_{\widetilde{u}_{h}}\right)<\infty,
$$

and hence, by [14, Theorem 1.1] there exist a subsequence still denoted by $\left\{\widetilde{u}_{h}-a_{h}\right\}$ for which the set

$$
E:=\left\{y \in Q_{1}: \lim _{h \rightarrow \infty}\left|\widetilde{u}_{h}(y)-a_{h}(y)\right| \rightarrow \infty\right\}
$$

has finite perimeter and $\widetilde{u} \in G S B D^{2}\left(Q_{1} \backslash E ; \mathbb{R}^{2}\right)$ with $\widetilde{u}=0$ in E such that

$$
\begin{gather*}
\widetilde{u}_{h}-a_{h} \rightarrow \widetilde{u} \quad \text { a.e. in } Q_{1} \backslash E \\
e\left(\widetilde{u}_{h}-a_{h}\right) \rightharpoonup e(\widetilde{u}) \quad \text { in } L^{2}\left(Q_{1} \backslash E ; \mathbb{M}_{\text {sym }}^{2 \times 2}\right), \tag{3.20}\\
\mathcal{H}^{1}\left(\left(Q_{1} \backslash \partial^{*} E\right) \cap J_{\widetilde{u}}\right)+\mathcal{H}^{1}\left(Q_{1} \cap \partial^{*} E\right)=\mathcal{H}^{1}\left(J_{\widetilde{u}} \cup \partial^{*} E\right) \leq \liminf _{h \rightarrow+\infty} \mathcal{H}^{1}\left(J_{\widetilde{u}_{h}}\right)=0 .
\end{gather*}
$$

In particular, $P\left(E, Q_{1}\right)=0$ so that by the relative isoperimetric inequality either $|E|=$ $\left|Q_{1}\right|$ or $|E|=0$. By the definition of E, (3.12), the uniform $L^{2}\left(Q_{1}\right)$-boundedness of $\left\{\left(\widetilde{u}_{h}-\right.\right.$ $\left.\left.a_{h}\right) \chi_{Q_{1} \backslash \tilde{\omega}_{h}}\right\}$ which is a consequence of (3.19) and (3.13), and Fatou's Lemma it follows that $|E|=0$. Hence, from (3.20) we get $\widetilde{u}_{h}-a_{h} \rightarrow \widetilde{u}$ a.e. in Q_{1} and $e\left(\widetilde{u}_{h}-a_{h}\right) \rightharpoonup e(\widetilde{u})$ in $L^{2}\left(Q_{1} ; \mathbb{M}_{\text {sym }}^{2 \times 2}\right)$, and all relations in (3.20) hold in Q_{1} and $\widetilde{u}=u$ a.e. in Q_{1}. In particular, since $\mathcal{H}^{1}\left(J_{u}\right)=0$, by Proposition A. 3 we have that $u \in H^{1}\left(Q_{1} ; \mathbb{R}^{2}\right)$. In view of the fact that our elastic energy is invariant under rigid deformations, we suppose $a_{h}=0$ for any $h \geq 1$.

Next we prove (3.14). Let $v \in H^{1}\left(Q_{1} ; \mathbb{R}^{2}\right)$ be such that $\operatorname{supp}(u-v) \subset \subset Q_{r}$ for some $r \in(0,1)$. Let $\psi \in C_{c}^{1}\left(Q_{r} ;[0,1]\right)$ be a cut-off function with $\{0<\psi<1\} \subset\{u=v\} \cap Q_{r^{\prime}}$ and $\operatorname{supp}(u-v) \subseteq\{\psi \equiv 1\} \subseteq Q_{r^{\prime \prime}}$ for some $r^{\prime \prime}<r^{\prime}<r$. By (3.18) and Lemma 3.2 applied with $\left(A_{h}, u_{h}\right)$ and Q_{r} there exist $\widetilde{v}_{h} \in G S B D^{2}\left(\operatorname{Int}(\Omega \cup S \cup \Sigma) ; \mathbb{R}^{2}\right), B_{h} \in \mathcal{A}_{m_{h}}$ with $\left(B_{h},\left.\widetilde{v}_{h}\right|_{B_{h}}\right) \in \mathcal{C}_{m_{h}}, r_{h} \in\left(r\left(1-\sqrt{\delta_{h}}\right), r\right)$ and a Lebesgue measurable set $\omega_{h} \subset \subset Q_{r}$ such that
(a1) $\widetilde{v}_{h} \in C^{\infty}\left(Q_{r\left(1-\sqrt{\delta_{h}}\right)}\right), A_{h} \Delta B_{h} \subset \subset Q_{r_{h}} \backslash Q_{r\left(1-\sqrt{\delta_{h}}\right)}$ and $\operatorname{supp}\left(\widetilde{u}_{h}-\widetilde{v}_{h}\right) \subset \subset Q_{r}$;
(a2) $\mathcal{H}^{1}\left(\partial B_{h} \backslash \partial A_{h}\right) \leq c_{0} \sqrt{\delta_{h}} \mathcal{H}^{1}\left(\left[Q_{r} \backslash Q_{r\left(1-\sqrt{\delta_{h}}\right)}\right] \cap \partial A_{h}\right)$;
(a3) $\left|\omega_{h}\right| \leq c_{0} \delta_{h} \mathcal{H}^{1}\left(Q_{r} \cap \partial A_{h}\right)$ and

$$
\int_{Q_{r} \backslash \omega_{h}}\left|\widetilde{v}_{h}-\widetilde{u}_{h}\right|^{2} d x \leq c_{0} \delta_{h}^{2} r^{2} \int_{Q_{r} \cap A_{h}}\left|e\left(u_{h}\right)\right|^{2} d x
$$

(a4) for any $\eta \in \operatorname{Lip}\left(Q_{r} ;[0,1]\right)$

$$
\begin{align*}
\int_{Q_{r}} \eta \mathbb{C}_{h} e\left(\widetilde{v}_{h}\right): e\left(\widetilde{v}_{h}\right) d x \leq & \int_{Q_{r} \cap A_{h}} \eta \mathbb{C}_{h} e\left(u_{h}\right): e\left(u_{h}\right) d x \\
& +d_{3} \delta_{h}^{s}(1+r \operatorname{Lip}(\eta)) \int_{Q_{r} \cap A_{h}}\left|e\left(u_{h}\right)\right|^{2} d x \tag{3.21}
\end{align*}
$$

where $\delta_{h}:=r^{-1 / 2} \mathcal{H}^{1}\left(Q_{r} \cap \partial A_{h}\right)^{1 / 2} \rightarrow 0$, and d_{3} and s are constants. We assume that h is large enough so that $r_{h}>r^{\prime}$. Set

$$
v_{h}:=(1-\psi) \widetilde{v}_{h}+\psi v
$$

We observe that $\operatorname{supp}\left(u_{h}-\left.v_{h}\right|_{B_{h}}\right) \subset \subset Q_{r}:$ by (a1) and the definition of ψ, there exists $r_{0} \in\left(r_{h}, r\right)$ such that $A_{h} \backslash Q_{r_{0}}=B_{h} \backslash Q_{r_{0}}$ and $\widetilde{u}_{h}=\widetilde{v}_{h}=v_{h}$ in $Q_{r} \backslash Q_{r_{0}}$ and hence, $\left.u_{h}\right|_{Q_{r} \cap A_{h} \backslash Q_{r_{0}}}=\left.\widetilde{u}_{h}\right|_{Q_{r} \cap A_{h} \backslash Q_{r_{0}}}=\left.v_{h}\right|_{Q_{r} \cap B_{h} \backslash Q_{r_{0}}}$. Thus, $\left(B_{h}, v_{h}\right)$ is an admissible configuration in (2.10) and from (3.11) and the definition of deviation it follows that

$$
\begin{equation*}
\mathcal{F}_{h}\left(A_{h}, u_{h} ; Q_{1}\right) \leq \mathcal{F}_{h}\left(B_{h}, v_{h} ; Q_{1}\right)+o(1) \tag{3.22}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $h \rightarrow \infty$. We observe that

$$
\begin{aligned}
\mathcal{S}_{h}\left(B_{h} ; Q_{1}\right)-\mathcal{S}_{h}\left(A_{h} ; Q_{1}\right) \leq & \mathcal{S}_{h}\left(B_{h} ; Q_{r} \backslash \overline{Q_{r\left(1-\sqrt{\delta_{h}}\right)}}\right)-\mathcal{S}_{h}\left(A_{h} ; Q_{r} \backslash \overline{Q_{r\left(1-\sqrt{\delta_{h}}\right)}}\right) \\
\leq & \int_{\left(\partial^{*} B_{h} \backslash \partial^{*} A_{h}\right) \cap Q_{r} \backslash \overline{Q_{r\left(1-\sqrt{\delta_{h}}\right.}}} \varphi\left(x, \nu_{B_{h}}\right) d \mathcal{H}^{1} \\
& +2 \int_{\left(Q_{r} \backslash \overline{Q_{r\left(1-\sqrt{\delta_{h}}\right)}}\right) \cap\left(B_{h}^{(1)} \cup B_{h}^{(0)}\right) \cap\left(\partial B_{h} \backslash \partial A_{h}\right)} \varphi\left(x, \nu_{A_{h}}\right) d \mathcal{H}^{1} \\
\leq & 2 c_{2, h} \mathcal{H}^{1}\left(\partial B_{h} \backslash \partial A_{h}\right) \leq 2 c_{0} c_{2, h} \sqrt{\delta_{h}} \mathcal{H}^{1}\left(\left[Q_{r} \backslash Q_{r\left(1-\sqrt{\delta_{h}}\right)}\right] \cap \partial A_{h}\right) \\
\leq & \frac{2 c_{0} \sqrt{\delta_{h}}}{d_{5}} \mathcal{S}_{h}\left(A_{h} ; Q_{1}\right)=o(1)
\end{aligned}
$$

as $h \rightarrow+\infty$, where we used in the first inequality (a1), in the second the definition and nonnegativity of \mathcal{S}_{h}, in the third (3.16), in the fourth (a2) in the last again (3.16) and the definition of \mathcal{S}_{h}, and finally in the equality we used (3.13). Thus, (3.22) is rewritten as

$$
\begin{equation*}
\mathcal{W}_{h}\left(A_{h}, u_{h} ; Q_{1}\right) \leq \mathcal{W}_{h}\left(B_{h}, v_{h} ; Q_{1}\right)+o(1) \tag{3.23}
\end{equation*}
$$

Note that by (a1), (a3), (3.18), (3.20) and Fatou's Lemma, $\widetilde{v}_{h} \chi_{Q_{r} \backslash \omega_{h}} \rightarrow u$ a.e. in Q_{r} and by (a3) $\chi_{Q_{r} \backslash \omega_{h}} \rightarrow 1$ a.e. in Q_{r}. Therefore, for a.e. $x \in Q_{r}$ there exists $h_{x} \geq 1$ such that $\chi_{Q_{r} \backslash \omega_{h}}(x)=1$ for every $h>h_{x}$ and $\widetilde{v}_{h}(x)=\widetilde{v}_{h}(x) \chi_{Q_{r} \backslash \omega_{h}}(x) \rightarrow u(x)$. So

$$
\begin{equation*}
\widetilde{v}_{h} \rightarrow u \text { a.e. in } Q_{r} . \tag{3.24}
\end{equation*}
$$

We claim that $\widetilde{v}_{h} \rightarrow u$ strongly in $L_{\text {loc }}^{2}\left(Q_{r}\right)$. To see this we fix $\rho \in(0, r)$, and, since $\delta_{h} \rightarrow 0$ by (a1), there exists $h_{\rho} \geq 1$ such that $\widetilde{v}_{h} \in H^{1}\left(Q_{\rho}\right)$ for every $h>h_{\rho}$. From (3.9), (3.13) and (3.21) as well as the Korn-Poincaré inequality

$$
\sup _{h>h_{\rho}}\left\|\widetilde{v}_{h}-b_{h}\right\|_{H^{1}\left(Q_{\rho}\right)}<\infty
$$

for some sequence $\left\{b_{h}\right\}$ of rigid displacements. On the one hand, by Rellich-Kondrachov Theorem there exist $z \in H^{1}\left(Q_{\rho} ; \mathbb{R}^{2}\right)$ and not relabelled subsequence such that $\widetilde{v}_{h}-b_{h} \rightarrow z$ in $L^{2}\left(Q_{\rho} ; \mathbb{R}^{2}\right)$ and a.e. in Q_{ρ}. On the other hand, by (3.24) $b_{h}=\widetilde{v}_{h}-\left(\widetilde{v}_{h}-b_{h}\right)$ converges to $b:=u-z$ a.e. in Q_{ρ}. Since b_{h} is a rigid displacement, so is b and hence $b_{h} \rightarrow b$ uniformly in Q_{ρ}. Therefore,

$$
\limsup _{h \rightarrow \infty}\left\|\widetilde{v}_{h}-u\right\|_{L^{2}\left(Q_{\rho}\right)} \leq \limsup _{h \rightarrow \infty}\left\|\widetilde{v}_{h}-b_{h}-z\right\|_{L^{2}\left(Q_{\rho}\right)}+\limsup _{h \rightarrow \infty}\left\|b_{h}-b\right\|_{L^{2}\left(Q_{\rho}\right)}=0
$$

and the claim follows.
Since $u=v$ out of $\{\psi=1\}$, the claim implies $\widetilde{v}_{h} \rightarrow v$ strongly in $L^{2}(\{0<\psi<1\})$, and hence,

$$
\begin{equation*}
\left.\lim _{h \rightarrow \infty} \int_{Q_{r}}\left|\nabla \psi \odot\left(v-\widetilde{v}_{h}\right)\right|_{A_{h}}\right|^{2} \leq \liminf _{h \rightarrow \infty} \int_{\{0<\psi<1\}}\left|\nabla \psi \odot\left(v-\widetilde{v}_{h}\right)\right|^{2}=0 \tag{3.25}
\end{equation*}
$$

where $X \odot Y=(X \otimes Y+Y \otimes X) / 2$, Thus, by the definition of v_{h} and the equality

$$
e\left(v_{h}\right)=(1-\psi) e\left(\widetilde{v}_{h}\right)+\psi e(v)+\nabla \psi \odot\left(v-\widetilde{v}_{h}\right)
$$

we estimate

$$
\begin{align*}
& \int_{Q_{r}} \mathbb{C}_{h} e\left(v_{h}\right): e\left(v_{h}\right) d x \\
= & \int_{Q_{r}}(1-\psi)^{2} \mathbb{C}_{h} e\left(\widetilde{v}_{h}\right): e\left(\widetilde{v}_{h}\right) d x+\int_{Q_{r}} \psi^{2} \mathbb{C}_{h} e(v): e(v) d x \\
& +\int_{Q_{r}} \mathbb{C}_{h}\left(\nabla \psi \odot\left(v-\widetilde{v}_{h}\right)\right):\left(\nabla \psi \odot\left(v-\widetilde{v}_{h}\right)\right) d x \\
& +2 \int_{Q_{r}}(1-\psi) \mathbb{C}_{h} e\left(\widetilde{v}_{h}\right):\left(\nabla \psi \odot\left(v-\widetilde{v}_{h}\right)\right) d x \\
& +2 \int_{Q_{r}} \psi \mathbb{C}_{h} e(v):\left(\nabla \psi \odot\left(v-\widetilde{v}_{h}\right)\right) d x \\
= & \int_{Q_{r}}(1-\psi)^{2} \mathbb{C}_{h} e\left(\widetilde{v}_{h}\right): e\left(\widetilde{v}_{h}\right) d x+\int_{Q_{r}} \psi^{2} \mathbb{C}_{h} e(v): e(v) d x+o(1) \\
\leq & \int_{Q_{r} \cap A_{h}}(1-\psi)^{2} \mathbb{C}_{h} e\left(u_{h}\right): e\left(u_{h}\right) d x+\int_{Q_{r}} \psi^{2} \mathbb{C}_{h} e(v): e(v) d x+o(1), \tag{3.26}
\end{align*}
$$

where in the second equality we use (3.13), (3.21) with $\eta \equiv 1,(3.25),(3.9)$ and the Hölder inequality, while in the last inequality we use (3.21) with $\eta=(1-\psi)^{2}$ and (3.17). Now (3.23), (3.26) and (3.17) imply

$$
\begin{equation*}
\int_{Q_{r}}\left(2 \psi-\psi^{2}\right) \mathbb{C}_{h} e\left(\widetilde{u}_{h}\right): e\left(\widetilde{u}_{h}\right) d x \leq \int_{Q_{r}} \psi^{2} \mathbb{C}_{h} e(v): e(v) d x+o(1) \tag{3.27}
\end{equation*}
$$

Since $\left\{\mathbb{C}_{h}\right\}$ is equibounded (see (3.9)) and equicontinuous, by the Arzela-Ascoli Theorem, there exist a (not relabelled) subsequence and an elasticity tensor $\mathbb{C} \in C^{0}\left(Q_{1} ; \mathbb{M}_{\text {sym }}^{2 \times 2}\right)$ such that $\mathbb{C}_{h} \rightarrow \mathbb{C}$ uniformly in Q_{1}. Hence, letting $h \rightarrow \infty$ in (3.27) and using the convexity of the elastic energy and (3.20), we obtain

$$
\begin{equation*}
\int_{Q_{r}}\left(2 \psi-\psi^{2}\right) \mathbb{C}(y) e(u): e(u) d y \leq \int_{Q_{r}} \psi^{2} \mathbb{C}(y) e(v): e(v) d y \tag{3.28}
\end{equation*}
$$

By the choice of ψ, (3.28) implies

$$
\begin{equation*}
\int_{Q_{r^{\prime \prime}}} \mathbb{C}(y) e(u): e(u) d y \leq \int_{Q_{r}} \mathbb{C}(y) e(v): e(v) d y \tag{3.29}
\end{equation*}
$$

Since $r^{\prime \prime}$ is arbitrary, letting $r^{\prime \prime} \nearrow r$ we deduce that (3.29) holds also with $r^{\prime \prime}=r$. Since $\operatorname{supp}(u-v) \subset \subset Q_{r}$, this implies (3.14).

It remains to prove (3.15). If we take $v=u$ in (3.27) and use $0 \leq \psi \leq 1$ and $\psi=1$ in $Q_{r^{\prime \prime}}$ we get

$$
\begin{aligned}
& \int_{Q_{r^{\prime \prime}}} \mathbb{C} e(u): e(u) d x \leq \liminf _{h \rightarrow \infty} \int_{Q_{r^{\prime \prime}}} \mathbb{C}_{h} e\left(\widetilde{u}_{h}\right): e\left(\widetilde{u}_{h}\right) d x \\
& \leq \limsup _{h \rightarrow \infty} \int_{Q_{r^{\prime \prime}}} \mathbb{C}_{h} e\left(\widetilde{u}_{h}\right): e\left(\widetilde{u}_{h}\right) d x \leq \int_{Q_{r}} \mathbb{C} e(u): e(u) d x .
\end{aligned}
$$

Since $r^{\prime \prime}$ is arbitrary, letting $r^{\prime \prime} \nearrow r$ we deduce

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \int_{Q_{r}} \mathbb{C}_{h} e\left(\widetilde{u}_{h}\right): e\left(\widetilde{u}_{h}\right) d x=\int_{Q_{r}} \mathbb{C} e(u): e(u) d x \tag{3.30}
\end{equation*}
$$

Now we prove that

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \mathcal{S}_{h}\left(A_{h} ; Q_{r}\right)=0 \tag{3.31}
\end{equation*}
$$

for any $r \in(0,1)$. By (3.12), we can find $h_{r}>0$ such that

$$
\begin{equation*}
\mathcal{H}^{1}\left(Q_{1} \cap \partial A_{h}\right)<(1-r) / 5 \tag{3.32}
\end{equation*}
$$

for any $h>h_{r}$, and hence there is no connected component of ∂A_{h} intersecting both ∂Q_{r} and ∂Q_{1}. Also by the relative isoperimetric inequality, passing to further subsequence we suppose that either

$$
\begin{equation*}
\lim _{h \rightarrow \infty}\left|Q_{1} \cap A_{h}\right|=0 \tag{3.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\lim _{h \rightarrow \infty}\left|Q_{1} \backslash A_{h}\right|=0 \tag{3.34}
\end{equation*}
$$

First assume that (3.33) holds. Let $E_{h} \subset A_{h}$ be the set consisting of all connected components of $\overline{A_{h}}$ not intersecting ∂Q_{1}. Then, $\left(A_{h} \backslash E_{h},\left.u_{h}\right|_{A_{h} \backslash E_{h}}\right)$ is an admissible configuration in (2.10), thus,

$$
\begin{equation*}
\mathcal{F}_{h}\left(A_{h}, u_{h} ; Q_{1}\right) \leq \Phi_{h}\left(A_{h}, u_{h} ; Q_{1}\right)+o(1) \leq \mathcal{F}_{h}\left(A_{h} \backslash E_{h}, u_{h} ; Q_{1}\right)+o(1), \tag{3.35}
\end{equation*}
$$

where in the first inequality we use (3.11) and in the second we use the definition of Φ_{h}. Hence,

$$
\begin{aligned}
\mathcal{S}\left(A_{h} ; Q_{r}\right) & \leq \mathcal{S}\left(E_{h} ; Q_{1}\right)=\mathcal{S}_{h}\left(A_{h} ; Q_{1}\right)-\mathcal{S}_{h}\left(A_{h} \backslash E_{h} ; Q_{1}\right) \\
& \leq \mathcal{F}_{h}\left(A_{h} ; Q_{1}\right)-\mathcal{F}_{h}\left(A_{h} \backslash E_{h} ; Q_{1}\right) \leq o(1),
\end{aligned}
$$

where we used in the first inequality the definition of E_{h}, which entitles that $U_{r} \cap \partial A_{h} \subset$ ∂E_{h}, in the equality the disjointness of $\overline{A_{h} \backslash E_{h}}$ and $\overline{E_{h}}$ which follows by (3.32), and in the second inequality the nonnegativity of the elastic energy and in the third (3.35). Hence, (3.31) follows.

Now assume that (3.34) holds and let $\delta_{h}:=r^{-1 / 2} \sqrt{\mathcal{H}^{1}\left(Q_{r} \cap \partial A_{h}\right)} \rightarrow 0$. Fix any $\rho \in$ $(0, r)$. By (3.12), we can find $h_{r, \rho}>0$ such that $\delta_{h}<\min \{1-r, r-\rho\} / 5$ for any $h>h_{r, \rho}$. Since $A_{h} \in \mathcal{A}_{m_{h}}$, no connected component of ∂A_{h} intersects both ∂Q_{r} and ∂Q_{ρ}. Let $F_{h} \subset Q_{1} \backslash A_{h}$ be the union of all connected components of $\overline{Q_{1} \backslash A_{h}}$ lying strictly inside Q_{1} (so F_{h} is a union of "holes" and $\partial F_{h} \subset \partial A_{h}$). Let $\psi \in C_{c}^{1}\left(Q_{r} ;[0,1]\right)$ be a cutoff function with $\{0<\psi<1\} \subset Q_{r^{\prime}}$ and $\{\psi \equiv 1\} \subseteq Q_{r^{\prime \prime}}$ for some $r^{\prime \prime}<r^{\prime}<r$. Set $A_{h}^{\prime}:=A_{h} \cup \overline{F_{h}}$. Applying Lemma 3.2 with $\left(A_{h}^{\prime},\left.\widetilde{u}_{h}\right|_{A_{h}^{\prime}} ^{\prime}\right), Q_{r}$ and $m=m_{h}$ we find
$\widetilde{v}_{h}^{\prime} \in G S B D^{2}\left(\operatorname{Int}(\Omega \cup S \cup \Sigma) ; \mathbb{R}^{2}\right), B_{h}^{\prime} \in \mathcal{A}_{m_{h}}$ with $\left(B_{h}^{\prime},\left.\widetilde{v}_{h}^{\prime}\right|_{B_{h}}\right) \in \mathcal{C}_{m_{h}}, r_{h} \in\left(r\left(1-\sqrt{\delta_{h}}\right), r\right)$ and a Lebesgue measurable set $\omega_{h}^{\prime} \subset \subset Q_{r}$ such that
(b1) $\widetilde{v}_{h}^{\prime} \in C^{\infty}\left(Q_{r\left(1-\sqrt{\delta_{h}}\right)}\right), A_{h}^{\prime} \Delta B_{h}^{\prime} \subset \subset Q_{r_{h}} \backslash Q_{r\left(1-\sqrt{\delta_{h}}\right)}$ and $\operatorname{supp}\left(\widetilde{u}_{h}-\widetilde{v}_{h}^{\prime}\right) \subset \subset Q_{r}$;
(b2) $\mathcal{H}^{1}\left(\partial B_{h}^{\prime} \backslash \partial A_{h}^{\prime}\right) \leq c_{0} \sqrt{\delta_{h}} \mathcal{H}^{1}\left(\left[Q_{r} \backslash Q_{r\left(1-\sqrt{\delta_{h}}\right)}\right] \cap \partial A_{h}^{\prime}\right)$;
(b3) $\left|\omega_{h}^{\prime}\right| \leq c_{0} \delta_{h} \mathcal{H}^{1}\left(Q_{r} \cap \partial A_{h}^{\prime}\right)$ and

$$
\int_{Q_{r} \backslash \omega_{h}^{\prime}}\left|\widetilde{v}_{h}^{\prime}-\widetilde{u}_{h}\right|^{2} d x \leq c_{0} \delta_{h}^{2} r^{2} \int_{Q_{r} \cap A_{h}^{\prime}}\left|e\left(u_{h}\right)\right|^{2} d x
$$

(b4) for any $\eta \in \operatorname{Lip}\left(Q_{r} ;[0,1]\right)$

$$
\begin{aligned}
\int_{Q_{r}} \eta \mathbb{C} e\left(\widetilde{v}_{h}^{\prime}\right): e\left(\widetilde{v}_{h}^{\prime}\right) d x \leq & \int_{Q_{r} \cap A_{h}} \eta \mathbb{C} e\left(u_{h}\right): e\left(u_{h}\right) d x \\
& +d_{3} \delta_{h}^{s}(1+r \operatorname{Lip}(\eta)) \int_{Q_{r} \cap A_{h}}\left|e\left(u_{h}\right)\right|^{2} d x
\end{aligned}
$$

where d_{3} and s are constants. Set

$$
v_{h}^{\prime}:=(1-\psi) \widetilde{v}_{h}^{\prime}+\psi u .
$$

By the definition of A_{h}^{\prime} and (b1) $\left(B_{h}^{\prime},\left.v_{h}^{\prime}\right|_{B_{h}^{\prime}}\right)$ is an admissible configuration for $\Phi_{h}\left(A_{h}, u_{h} ; Q_{1}\right)$ in (2.10). Thus from (3.11) and (3.34)

$$
\begin{equation*}
\mathcal{F}_{h}\left(A_{h}, u_{h} ; Q_{1}\right) \leq \mathcal{F}_{h}\left(B_{h}^{\prime},\left.v_{h}^{\prime}\right|_{B_{h}^{\prime}} ; Q_{1}\right)+o(1) \tag{3.36}
\end{equation*}
$$

Now as in the proof of (3.27)

$$
\begin{align*}
& \mathcal{W}_{h}\left(B_{h}^{\prime},\left.v_{h}^{\prime}\right|_{B_{h}^{\prime}} ; Q_{1}\right)-\mathcal{W}_{h}\left(A_{h}, u_{h} ; Q_{1}\right) \\
\leq & \int_{Q_{r}} \psi^{2} \mathbb{C}_{h} e(u): e(u) d x-\int_{Q_{r}}\left(2 \psi-\psi^{2}\right) \mathbb{C}_{h} e\left(\widetilde{u}_{h}\right): e\left(\widetilde{u}_{h}\right) d x+o(1) \\
\leq & \int_{Q_{r}} \mathbb{C}_{h} e(u): e(u) d x-\int_{Q_{r^{\prime \prime}}} \mathbb{C}_{h} e\left(\widetilde{u}_{h}\right): e\left(\widetilde{u}_{h}\right) d x+o(1) \tag{3.37}
\end{align*}
$$

Moreover,

$$
\begin{align*}
& \mathcal{S}_{h}\left(B_{h}^{\prime} ; Q_{1}\right)-\mathcal{S}_{h}\left(A_{h} ; Q_{1}\right)=\left(\mathcal{S}_{h}\left(B_{h}^{\prime} ; Q_{1}\right)-\mathcal{S}_{h}\left(A_{h}^{\prime} ; Q_{1}\right)\right)+\left(\mathcal{S}_{h}\left(A_{h}^{\prime} ; Q_{1}\right)-\mathcal{S}_{h}\left(A_{h} ; Q_{1}\right)\right) \\
\leq & \mathcal{S}_{h}\left(B_{h}^{\prime} ; Q_{r} \backslash Q_{r\left(1-\sqrt{\delta_{h}}\right)}\right)-\mathcal{S}_{h}\left(A_{h} ; Q_{\rho}\right) \leq 2 c_{2, h} \mathcal{H}^{1}\left(\partial B_{h}^{\prime} \backslash \partial A_{h}^{\prime}\right)-\mathcal{S}_{h}\left(A_{h} ; Q_{\rho}\right) \\
\leq & 2 c_{0} c_{2, h} \sqrt{\delta_{h}} \mathcal{H}^{1}\left(\left[Q_{r} \backslash Q_{r\left(1-\sqrt{\delta_{h}}\right)}\right] \cap \partial A_{h}\right)-\mathcal{S}_{h}\left(A_{h} ; Q_{\rho}\right) \\
\leq & \frac{2 c_{0} \sqrt{\delta_{h}}}{d_{5}} \mathcal{S}_{h}\left(A_{h} ; Q_{1}\right)-\mathcal{S}_{h}\left(A_{h} ; Q_{\rho}\right)=o(1)-\mathcal{S}_{h}\left(A_{h} ; Q_{\rho}\right) \tag{3.38}
\end{align*}
$$

where we used in the first inequality (b1) and the definition of A_{h}^{\prime}, in the second and in the last inequalities the definition of $\mathcal{S}_{h},(3.16)$ and (3.10), in the third inequality (b2), and in the last equality (3.13) and that $\delta_{h} \rightarrow 0$ by (3.12). Hence, (3.36), (3.37) and (3.38) imply

$$
\mathcal{S}_{h}\left(A_{h} ; Q_{\rho}\right)+\int_{Q_{r^{\prime \prime}}} \mathbb{C}_{h} e\left(\widetilde{u}_{h}\right): e\left(\widetilde{u}_{h}\right) d x \leq \int_{Q_{r}} \mathbb{C}_{h} e(u): e(u) d x+o(1)
$$

Thus, letting $h \rightarrow \infty$ and using (3.30) we get

$$
\limsup _{h \rightarrow \infty} \mathcal{S}_{h}\left(A_{h} ; Q_{\rho}\right)+\int_{Q_{r^{\prime \prime}}} \mathbb{C} e(u): e(u) d x \leq \int_{Q_{r}} \mathbb{C} e(u): e(u) d x
$$

Now letting $r^{\prime \prime} \rightarrow r$ we get

$$
\begin{equation*}
\limsup _{h \rightarrow \infty} \mathcal{S}_{h}\left(A_{h} ; Q_{\rho}\right)=0 \tag{3.39}
\end{equation*}
$$

Observe that the function $B \mapsto \mathcal{S}_{h}\left(A_{h} ; B\right)$ defined for Borel sets $B \subset Q_{1}$ extends to a bounded nonnegative Radon measure μ_{h} in Q_{1}. Since (3.39) holds for any $\rho \in(0, r), \mu_{h}$ converges to 0 in the weak* sense, and thus (3.31) follows.

Recall that by [18, Proposition 3.4] if the elasticity tensor \mathbb{C} is constant, then for any $\gamma \in(0,2)$ there exists $c_{\gamma}:=c_{\gamma}\left(c_{3}, c_{4}\right)>0$ such that for every local minimizer $(\Omega, u) \in \mathcal{C}$ of $\mathcal{F}(\cdot ; O), u$ is analytic in O and for any square $Q_{R}(x) \subset \subset O$ and $r \in(0, R)$,

$$
\begin{equation*}
\int_{Q_{r}(x)} \mathbb{C} e(u): e(u) d x \leq c_{\gamma}\left(\frac{r}{R}\right)^{2-\gamma} \int_{Q_{R}(x)} \mathbb{C} e(u): e(u) d x \tag{3.40}
\end{equation*}
$$

Given $\gamma \in(0,1)$ let

$$
\tau_{0}=\tau_{0}\left(\gamma, c_{3}, c_{4}\right):=\min \left\{1, \frac{1}{2} c_{\gamma}^{-\frac{1}{4-2 \gamma}}\right\}
$$

where c_{γ} is the constant appearing in (3.40). Using Proposition 3.3 and repeating similar arguments of $[12,19]$ we get the following decay property of the functional \mathcal{F}.

Proposition 3.4. For any $\tau \in\left(0, \tau_{0}\right)$ there exist $\varsigma=\varsigma(\tau) \in(0,1)$ and $\vartheta:=\vartheta(\tau) \in$ $(0,1)$ with the following property: If there exist $m \in \mathbb{N} \cup\{\infty\},(A, u) \in \mathcal{C}_{m}$ and a square $Q_{\rho}(x) \subset \subset \Omega$ such that

$$
\mathcal{H}^{1}\left(Q_{\rho}(x) \cap \partial A\right) \leq 2 \varsigma \rho \quad \text { and } \quad \mathcal{F}\left(A, u ; Q_{\rho}(x)\right) \leq(1+\vartheta) \Phi\left(A, u ; Q_{\rho}(x)\right)
$$

then

$$
\mathcal{F}\left(A, u ; Q_{\tau \rho}(x)\right) \leq \tau^{2-\gamma} \mathcal{F}\left(A, u ; Q_{\rho}(x)\right)
$$

Proof. We argue by contradiction. Assume that there exists $\tau \in\left(0, \tau_{0}\right)$ such that for all $\varsigma, \vartheta \in(0,1)$ we can find $m:=m(\varsigma, \vartheta) \in \mathbb{N} \cup\{\infty\},(A, u):=(A(\varsigma, \vartheta), u(\varsigma, \vartheta)) \in \mathcal{C}_{m}$ and $Q_{\rho}(x) \subset \subset \Omega$ with $\rho:=\rho(\varsigma, \vartheta)$ and $x:=x(\varsigma, \vartheta)$ satisfying

$$
\begin{equation*}
\mathcal{H}^{1}\left(Q_{\rho}(x) \cap \partial A\right) \leq 2 \varsigma \rho \quad \text { and } \quad \mathcal{F}\left(A, u ; Q_{\rho}(x)\right) \leq(1+\vartheta) \Phi\left(A, u ; Q_{\rho}(x)\right) \tag{3.41}
\end{equation*}
$$

but

$$
\begin{equation*}
\mathcal{F}\left(A, u ; Q_{\tau \rho}(x)\right)>\tau^{2-\gamma} \mathcal{F}\left(A, u ; Q_{\rho}(x)\right) \tag{3.42}
\end{equation*}
$$

Let us choose any positive real numbers $\varsigma_{h}, \vartheta_{h} \rightarrow 0$, and denote for simplicity $m_{h}:=$ $m\left(\varsigma_{h}, \vartheta_{h}\right),\left(A_{h}, u_{h}\right)=\left(A\left(\varsigma_{h}, \vartheta_{h}\right), u\left(\varsigma_{h}, \vartheta_{h}\right)\right), \rho_{h}:=\rho\left(\varsigma_{h}, \vartheta_{h}\right), x_{h}=x\left(\varsigma_{h}, \vartheta_{h}\right)$. By (3.41) and (3.42),

$$
\begin{align*}
& \mathcal{H}^{1}\left(Q_{\rho_{h}}\left(x_{h}\right) \cap \partial A_{h}\right) \leq 2 \varsigma_{h} \rho_{h} \tag{3.43}\\
& \mathcal{F}\left(A_{h}, u_{h} ; Q_{\rho_{h}}\left(x_{h}\right)\right) \leq\left(1+\vartheta_{h}\right) \Phi\left(A_{h}, u_{h} ; Q_{\rho_{h}}\left(x_{h}\right)\right) \tag{3.44}
\end{align*}
$$

but

$$
\begin{equation*}
\mathcal{F}\left(A_{h}, u_{h} ; Q_{\tau \rho_{h}}\left(x_{h}\right)\right)>\tau^{2-\gamma} \mathcal{F}\left(A_{h}, u_{h} ; Q_{\rho_{h}}\left(x_{h}\right)\right) \tag{3.45}
\end{equation*}
$$

for any h. Note that $\mathcal{F}\left(A_{h}, u_{h} ; Q_{\rho_{h}}\left(x_{h}\right)\right)>0$. Let us define the rescaled energy $\mathcal{F}_{h}\left(\cdot ; Q_{1}\right)$: $\mathcal{C}_{m_{h}} \rightarrow \mathbb{R}$ as in (2.9) with

$$
\varphi_{h}(y, \nu):=\frac{\rho_{h} \varphi\left(x_{h}+\rho_{h} y, \nu\right)}{\mathcal{F}\left(A_{h}, u_{h} ; Q_{\rho_{h}}\left(x_{h}\right)\right)}
$$

in place of $\varphi(y, \nu)$ and

$$
\mathbb{C}_{h}(y):=\mathbb{C}\left(x_{h}+\rho_{h} y\right)
$$

in place of $\mathbb{C}(y)$, for $y \in Q_{1}$. We notice that

$$
\begin{equation*}
\mathcal{F}_{h}\left(E_{h}, v_{h} ; Q_{1}\right)=1 \tag{3.46}
\end{equation*}
$$

for

$$
E_{h}:=\sigma_{x_{h}, \rho_{h}}\left(A_{h}\right)
$$

(see definition of blow-up map $\sigma_{x, r}$ at (2.4)) and

$$
v_{h}(y):=\frac{u_{h}\left(x_{h}+\rho_{h} y\right)}{\sqrt{\mathcal{F}\left(A_{h}, u_{h} ; B_{\rho_{h}}\left(x_{h}\right)\right)}} .
$$

By (3.43) we obtain

$$
\mathcal{H}^{1}\left(Q_{1} \cap \partial E_{h}\right)<2 \varsigma_{h}
$$

while (3.44) and (3.46) entails

$$
\Psi_{h}\left(E_{h}, v_{h} ; Q_{1}\right) \leq \vartheta_{h} \Phi_{h}\left(E_{h}, v_{h} ; Q_{1}\right) \leq \vartheta_{h} \mathcal{F}_{h}\left(E_{h}, v_{h} ; Q_{1}\right)=\vartheta_{h}
$$

where Φ_{h} and Ψ_{h} are defined as in (2.10) and (2.11) (again with φ_{h} and \mathbb{C}_{h} in places of φ and \mathbb{C}, respectively). By (2.15) $\left\{\mathbb{C}_{h}\right\}$ is equibounded. Since Ω is bounded, there exists $x_{0} \in \bar{\Omega}$ such that, up to extracting a subsequence, $x_{h} \rightarrow x_{0}$ as $h \rightarrow+\infty$. As $\rho_{h} \rightarrow 0$, one has $x_{h}+\rho_{h} y \rightarrow x_{0}$ for every $y \in \overline{Q_{1}}$. Thus $\left\{\mathbb{C}_{h}\right\}$ is also equicontinuous and $\mathbb{C}_{h} \rightarrow \mathbb{C}_{0}:=\mathbb{C}\left(x_{0}\right)$ uniformly in $\overline{Q_{1}}$. In view of (3.43), (3.44) and (3.46), we can apply Proposition 3.3 to find $v \in H^{1}\left(Q_{1} ; \mathbb{R}^{2}\right)$, vectors $\xi_{h} \in(0,1)^{2}$, and infinitesimal rigid displacements a_{h} such that, up to a subsequence,

$$
w_{h}:=v_{h} \chi_{Q_{1} \cap E_{h}}+\xi_{h} \chi_{Q_{1} \backslash E_{h}}-a_{h} \rightarrow v
$$

pointwise a.e. in $Q_{1}, e\left(w_{h}\right) \rightharpoonup e(v)$ in $L^{2}\left(Q_{1}\right)$ as $h \rightarrow+\infty$, and

$$
\begin{equation*}
\lim _{h \rightarrow+\infty} \mathcal{F}_{h}\left(E_{h}, w_{h} ; Q_{r}\right)=\lim _{h \rightarrow+\infty} \mathcal{F}_{h}\left(E_{h}, v_{h} ; Q_{r}\right)=\int_{Q_{r}} \mathbb{C}_{0}(x) e(v): e(v) d x \tag{3.47}
\end{equation*}
$$

for any $r \in(0,1]$. In particular, from (3.47) and (3.45) it follows that

$$
\begin{aligned}
\int_{Q_{\tau}} \mathbb{C}_{0}(x) e(v): e(v) d x & =\lim _{h \rightarrow+\infty} \mathcal{F}\left(E_{h}, v_{h} ; Q_{\tau}\right) \\
& \geq \lim _{h \rightarrow+\infty} \tau^{2-\gamma} \mathcal{F}\left(E_{h}, v_{h} ; Q_{1}\right)=\tau^{2-\gamma} \int_{Q_{1}} \mathbb{C}_{0}(x) e(v): e(v) d x
\end{aligned}
$$

Since \mathbb{C}_{0} is constant, applying (3.40) with $r:=\tau$ and $R:=1$ we get

$$
\begin{aligned}
c_{\gamma} \tau^{2-\gamma} \int_{Q_{1}} \mathbb{C}_{0}(x) e(v): e(v) d x & \geq \int_{Q_{\tau}} \mathbb{C}_{0}(x) e(v): e(v) d x \\
& \geq \tau^{\gamma-2} \int_{Q_{1}} \mathbb{C}_{0}(x) e(v): e(v) d x
\end{aligned}
$$

Now recalling that $\mathcal{F}_{h}\left(E_{h}, v_{h} ; Q_{1}\right)=1$, by (3.47) we get $\int_{Q_{1}} \mathbb{C}_{0}(x) e(v): e(v) d x=1$, thus, $\tau^{2-\gamma} \geq c_{\gamma}^{-1 / 2}>\tau_{0}^{2-\gamma}$, a contradiction.

By employing the arguments of [53, Section 4.3] and using Proposition 3.4 we establish the following lower bound for \mathcal{F}.

Proposition 3.5. Given $\tau \in\left(0, \tau_{0}\right)$, let $\varsigma:=\varsigma(\tau) \in(0,1)$ and $\vartheta:=\vartheta(\tau) \in(0,1)$ be as in Proposition 3.4. Let $(A, u) \in \mathcal{C}_{m}$ be a (Λ, m)-minimizer of \mathcal{F} in $Q_{r_{0}}\left(x_{0}\right)$ for some $m \in \mathbb{N} \cup\{\infty\}$ and $r_{0}>0$, and let

$$
J_{A}^{*}:=\left\{y \in Q_{r_{0}}\left(x_{0}\right) \cap \partial A: \theta_{*}(\partial A, y)>0\right\}
$$

Then,

$$
\begin{equation*}
\mathcal{F}\left(A, u ; Q_{\rho}(x)\right) \geq 2 c_{1} \varsigma \rho \tag{3.48}
\end{equation*}
$$

for every $x \in \overline{J_{A}^{*}}$ and for every square $Q_{\rho}(x) \subset Q_{r_{0}}\left(x_{0}\right)$ with $\rho \in\left(0, R_{0}\right)$, where

$$
R_{0}:=R_{0}\left(r_{0}, \Lambda, c_{1}, \tau\right):=\min \left\{r_{0}, \frac{\sqrt{\pi} c_{1} \vartheta}{\Lambda(2+\vartheta)}\right\}
$$

Proof. Fix $m \in \mathbb{N} \cup\{\infty\}$. Note that for any $(C, w),(D, v) \in \mathcal{C}_{m}$ and $O \subset \Omega$ with $C \Delta D \subset \subset$ O

$$
\begin{align*}
\sqrt{4 \pi}|C \Delta D|^{1 / 2} & \leq \mathcal{H}^{1}\left(\partial^{*}(C \Delta D)\right) \leq \mathcal{H}^{1}\left(O \cap \partial^{*} C\right)+\mathcal{H}^{1}\left(O \cap \partial^{*} D\right) \\
& \leq \frac{\mathcal{S}(C, O)+\mathcal{S}(D, O)}{c_{1}} \leq \frac{\mathcal{F}(C, w ; O)+\mathcal{F}(D, v ; O)}{c_{1}} \tag{3.49}
\end{align*}
$$

where in the first inequality we used the isoperimetric inequality, in the second $\partial^{*}(C \Delta D) \subset$ $O \cap\left(\partial^{*} C \cup \partial^{*} D\right)$, in the third (2.13) and the definition of $\mathcal{S}(\cdot ; O)$ and in the last the nonnegativity of $\mathcal{W}(\cdot ; O)$. Thus, from the (Λ, m)-minimality of (A, u) in $Q_{r_{0}}\left(x_{0}\right)$ we deduce that

$$
\begin{align*}
\mathcal{F}\left(A, u ; Q_{r}(x)\right) & \leq \mathcal{F}\left(B, v ; Q_{r}(x)\right)+\Lambda|A \Delta B|^{\frac{1}{2}}|A \Delta B|^{\frac{1}{2}} \\
& \leq \mathcal{F}\left(B, v ; Q_{r}(x)\right)+\frac{\Lambda r}{\sqrt{\pi} c_{1}}\left(\mathcal{F}\left(A, u ; Q_{r}(x)\right)+\mathcal{F}\left(B, v ; Q_{r}(x)\right)\right) \tag{3.50}
\end{align*}
$$

for any $Q_{r}(x) \subset Q_{r_{0}}\left(x_{0}\right)$ and $(B, v) \in \mathcal{C}_{m}$ with $A \Delta B \subset \subset Q_{r}(x)$ and $\operatorname{supp}(u-v) \subset \subset Q_{r}(x)$, where in the last inequality we used (3.49) and the inequality $|A \Delta B| \leq\left|Q_{r}\right|=4 r^{2}$. Let $r>0$ be small enough so that $\frac{\Lambda r}{\sqrt{\pi} c_{1}} \leq \frac{\vartheta}{2+\vartheta}$, where $\vartheta:=\vartheta(\tau) \in(0,1)$ is given by Proposition 3.4. From (3.50) we obtain

$$
\mathcal{F}\left(A, u ; Q_{r}(x)\right) \leq(1+\vartheta) \mathcal{F}\left(B, v ; Q_{r}(x)\right)
$$

which by the arbitrariness of (B, v) is equivalent to

$$
\begin{equation*}
\mathcal{F}\left(A, u ; Q_{r}(x)\right) \leq(1+\vartheta) \Phi\left(A, u ; Q_{r}(x)\right) \tag{3.51}
\end{equation*}
$$

Now we prove (3.48). Let $x \in J_{A}^{*}$. For simplicity we suppose that $x=0$. Assume by contradiction that for such $m \in \mathbb{N} \cup\{\infty\},(A, u) \in \mathcal{C}_{m}$ and for some $Q_{\rho} \subset \subset Q_{r_{0}}\left(x_{0}\right)$ with $\rho \in\left(0, R_{0}\right)$ we have

$$
\mathcal{F}\left(A, u ; Q_{\rho}\right)<2 c_{1} \varsigma \rho
$$

Then by the nonnegativity of the elastic energy and (2.13),

$$
2 c_{1} \varsigma \rho>\mathcal{F}\left(A, u ; Q_{\rho}\right) \geq \int_{Q_{\rho} \cap \partial A} \varphi\left(x, \nu_{A}\right) d \mathcal{H}^{1} \geq c_{1} \mathcal{H}^{1}\left(Q_{\rho} \cap \partial A\right)
$$

so that

$$
\begin{equation*}
\mathcal{H}^{1}\left(Q_{\rho} \cap \partial A\right)<2 \varsigma \rho \tag{3.52}
\end{equation*}
$$

By (3.52) and (3.51) we can apply Proposition 3.4 and obtain that

$$
\mathcal{F}\left(A, u ; Q_{\tau \rho}\right) \leq \tau^{2-\gamma} \mathcal{F}\left(A, u ; Q_{\rho}\right) \leq 2 c_{1} \varsigma \tau^{2-\gamma} \rho
$$

Hence,

$$
\mathcal{H}^{1}\left(Q_{\tau \rho} \cap \partial A\right) \leq 2 \varsigma \tau^{2-\gamma} \rho<2 \varsigma \tau \rho
$$

where we used $\gamma, \tau \in(0,1)$, and by induction

$$
\mathcal{H}^{1}\left(Q_{\tau^{n} \rho} \cap \partial A\right) \leq 2 \varsigma \tau^{(2-\gamma) n} \rho<2 \varsigma \tau^{n} \rho, \quad n \in \mathbb{N}
$$

However, by the choice of x

$$
0<\theta_{*}(\partial A, x)=\liminf _{n \rightarrow+\infty} \frac{\mathcal{H}^{1}\left(Q_{\tau^{n} \rho} \cap \partial A\right)}{2 \tau^{n} \rho} \leq \lim _{n \rightarrow+\infty} \frac{2 c_{1} \varsigma \tau^{(1-\gamma) n}}{2 c_{1}}=0
$$

a contradiction. This contradiction implies (3.48) for $x \in J_{A}^{*}$.
Now consider any $x \in Q_{r_{0}}\left(x_{0}\right) \cap \overline{J_{A}^{*}}$ and $\rho \in\left(0, R_{0}\right)$ with $Q_{\rho}(x) \subset Q_{r_{0}}\left(x_{0}\right)$, and let us choose a sequence $\left\{Q_{\rho_{k}}\left(x_{k}\right)\right\}$ of squares with $x_{k} \in J_{A}^{*}$ and $\rho_{1} \leq \rho_{2} \leq \ldots \leq \rho$ such that

$$
Q_{\rho_{1}}\left(x_{1}\right) \subseteq Q_{\rho_{2}}\left(x_{2}\right) \subseteq \ldots Q_{\rho}(x) \quad \text { and } \quad Q_{\rho}(x)=\bigcup_{k} Q_{\rho_{k}}\left(x_{k}\right)
$$

Notice that $x_{k} \rightarrow x$ and $\rho_{k} \rightarrow \rho$. By De Giorgi-Letta Theorem [2, Theorem 1.53], both maps

$$
O \mapsto \int_{O \cap \partial^{*} A} \varphi\left(x, \nu_{A}\right) d \mathcal{H}^{1}+2 \int_{O \cap\left(A^{(0)} \cup A^{(1)}\right) \cap \partial A} \varphi\left(x, \nu_{A}\right) d \mathcal{H}^{1}
$$

and

$$
O \mapsto \int_{O \cap A} \mathbb{C}(y) e(u): e(u) d y
$$

defined at open sets $O \subset \subset \Omega$, uniquely extend to positive Borel measures μ_{1} and μ_{2} in Ω. Therefore, from the continuity of μ_{1} and μ_{2} (see e.g. [2, Remark 1.3]) and the validity of (3.48) with x_{k} and ρ_{k} it follows that

$$
\begin{aligned}
\mathcal{F}\left(A, u ; Q_{\rho}(x)\right) & =\mu_{1}\left(Q_{\rho}(x)\right)+\mu_{2}\left(Q_{\rho}(x)\right)=\lim _{k \rightarrow+\infty}\left[\mu_{1}\left(Q_{\rho}\left(x_{k}\right)\right)+\mu_{2}\left(Q_{\rho_{k}}\left(x_{k}\right)\right)\right] \\
& =\lim _{k \rightarrow+\infty} \mathcal{F}\left(A, u ; Q_{\rho_{k}}\left(x_{k}\right)\right) \geq \lim _{k \rightarrow+\infty}\left(2 c_{2} \varsigma \rho_{k}\right)=2 c_{2} \varsigma \rho
\end{aligned}
$$

Now we are ready to prove (3.2) and (3.3).
Proof of Theorem 3.1. Let $m \in \mathbb{N} \cup\{\infty\}$ and (A, u) be a (Λ, m)-minimizer of $\mathcal{F}(\cdot, \cdot ; \Omega)$. We begin by establishing (3.2). Let $x \in \Omega, r \in(0, \min \{1, \operatorname{dist}(x, \partial \Omega)\})$, and $Q_{r}:=Q_{r}(x)$. Since (3.2) is trivial if $Q_{r} \cap \partial A=\emptyset$, then we assume that $Q_{r} \cap \partial A \neq \emptyset$ and so $E:=$ $\left(A \backslash \overline{Q_{r}}\right) \cup \partial Q_{r} \in \mathcal{A}_{m}$. By the (Λ, m)-minimality of (A, u)

$$
\mathcal{F}\left(A, u ; Q_{r}\right) \leq \mathcal{F}\left(E, u ; Q_{r}\right)+\Lambda\left|Q_{r}\right|
$$

Hence, by the nonnegativity $\mathcal{W}\left(A \cap Q_{r}, u ; Q_{r}\right)$

$$
\int_{Q_{r} \cap \partial A} \varphi\left(x, \nu_{A}\right) d \mathcal{H}^{1} \leq 2 \int_{\partial Q_{r}} \varphi\left(x, \nu_{Q_{r}}\right) d \mathcal{H}^{1}+4 \Lambda r^{2}
$$

and hence (2.13) entails (3.2). In particular, since $E \Delta A \subset \subset Q_{\rho}$ for every $\rho \in$ $(r, \operatorname{dist}(x, \partial \Omega))$, we also have

$$
\begin{aligned}
\mathcal{F}\left(A, u ; Q_{\rho}\right) & \leq \mathcal{F}\left(E, u ; Q_{\rho}\right)+\Lambda\left|Q_{r}\right|=\mathcal{F}\left(E, u ; Q_{\rho} \backslash \overline{Q_{r}}\right)+\mathcal{S}\left(E, u ; \overline{Q_{r}}\right)+4 \Lambda r^{2} \\
& \leq \mathcal{F}\left(E, u ; Q_{\rho} \backslash \overline{Q_{r}}\right)+2 \int_{\partial Q_{r}} \varphi\left(x, \nu_{Q_{r}}\right) d \mathcal{H}^{1}+4 \Lambda r^{2} \\
& \leq \mathcal{F}\left(E, u ; Q_{\rho} \backslash \overline{Q_{r}}\right)+16 c_{2} r+4 \Lambda r^{2}
\end{aligned}
$$

and hence, letting $\rho \searrow r$ and using $r \leq 1$ we get

$$
\begin{equation*}
\mathcal{F}\left(A, u ; \overline{Q_{r}}\right) \leq\left(16 c_{2}+4 \Lambda\right) r \tag{3.53}
\end{equation*}
$$

Now assuming that x belongs to the closure of the set $\left\{y \in \Omega \cap \partial A: \theta_{*}(\partial A, y)>0\right\}$, we prove (3.3). For $\tau_{o}:=\tau_{0} / 2$, let $\varsigma_{o}=\varsigma\left(\tau_{o}\right) \in(0,1)$ and $R_{o}=R_{0}\left(1, \Lambda, c_{1}, \tau_{o}\right)>0$ be as in Proposition 3.5. Then by (3.48),

$$
\begin{equation*}
\mathcal{F}\left(A, u ; Q_{\kappa r}\right) \geq 2 c_{1} \varsigma_{o} \kappa r \tag{3.54}
\end{equation*}
$$

for $\kappa \in(0,1]$ and for any square $Q_{r} \subset \Omega$ with $r \in\left(0, R_{o}\right)$. We consider $\varsigma_{*}:=\varsigma\left(\tau_{*}\right)$, $\vartheta_{*}:=\vartheta\left(\tau^{*}\right)$, and $R_{*}:=\min \left\{R\left(1, \Lambda, c_{1}, \tau_{*}\right), R_{o}\right\}$ as given by Proposition 3.4 for $\tau_{*}:=$ $\min \left\{\frac{\tau_{0}}{2},\left(\frac{c_{1 \varsigma_{o}}}{16 c_{2}+4 \Lambda}\right)^{\frac{1}{1-\gamma}}\right\}$. By contradiction, if $\mathcal{H}^{1}\left(Q_{r} \cap \partial A\right)<\varsigma_{*} r$, then by applying (3.51) with $\kappa=\tau_{*}$ we obtain

$$
\mathcal{F}\left(A, u ; Q_{r}\right) \leq\left(1+\vartheta_{*}\right) \Phi\left(A, u ; Q_{r}\right)
$$

Then by Proposition 3.4,

$$
\mathcal{F}\left(A, u ; Q_{\tau_{*} r}\right) \leq \tau_{*}^{2-\gamma} \mathcal{F}\left(A, u ; Q_{r}\right)
$$

so that by (3.54) and (3.53)

$$
\tau_{*}^{1-\gamma} \geq \frac{2 c_{1} \varsigma_{o}}{16 c_{2}+4 \Lambda}
$$

which is a contradiction.

4. Compactness and lower-Semicontinuity properties

For the convenience of the reader, we divide the prove into several propositions. We start by showing the compactness of free crystal regions of the sequence of constrained minimizers $\left\{\left(A_{m}, u_{m}\right)\right\}$.
Proposition 4.1. Assume that either $\mathrm{v} \in(0,|\Omega|)$ or $S=\emptyset$. There exist $m_{h} \nearrow+\infty$, $\left(A_{m_{h}}, u_{m_{h}}\right) \in \mathcal{C}_{m_{h}}$ and $A \in \widetilde{\mathcal{A}}$ such that
(a) for any $h \in \mathbb{N},\left(A_{m_{h}}, u_{m_{h}}\right)$ is a minimizer of \mathcal{F} in $\mathcal{C}_{m_{h}}$ with $|A|=\mathrm{v}$ such that $\partial A_{m_{h}}$ does not contain isolated points;
(b) $\operatorname{sdist}\left(\cdot, \partial A_{m_{h}}\right) \rightarrow \operatorname{sdist}(\cdot, \partial A)$ locally uniformly in \mathbb{R}^{2} as $h \rightarrow \infty$;
(c) for any $x \in \Omega \cap \partial A$ and $r \in\left(0, \min \left\{R_{*}, \operatorname{dist}(x, \partial \Omega)\right\}\right)$

$$
\begin{equation*}
\frac{c_{1} \varsigma_{*}}{8 \pi c_{2}} \leq \frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A\right)}{2 r} \leq \frac{2 \pi c_{2}}{c_{1} \varsigma_{*}} \tag{4.1}
\end{equation*}
$$

where $\varsigma_{*}:=\varsigma_{*}\left(c_{3}, c_{4}\right) \in(0,1)$ and $R_{*}:=R_{*}\left(c_{1}, c_{2}, c_{3}, c_{4}\right)>0$ are given in Theorem 3.1.

Proof. By [45, Theorem 2.6] there exists a minimizer $\left(A_{m}, u_{m}\right) \in \mathcal{C}_{m}$ for every $m \in \mathbb{N}$. Without loss of generality we assume that ∂A_{m} does not contain isolated points. In fact, if ∂A_{m} has a isolated point x in $A_{m}^{(0)}$, then $A_{m} \backslash\{x\} \in \mathcal{A}_{m}$ and $\mathcal{F}\left(A_{m}, u_{m}\right)=\mathcal{F}\left(A_{m} \backslash\{x\}, u_{m}\right)$. Analogously, if ∂A_{m} has an isolated point in $A_{m}^{(1)}$, then there exists $r>0$ such that $B_{r}(x) \cap \partial A_{m}=\{x\}$ (and $B_{r}(x) \subset A_{m} \cup\{x\} \in \mathcal{C}_{m}$). In view of Proposition A. 3 the function u_{m}, arbitrarily extended to x belongs to $H_{\text {loc }}^{1}\left(B_{r}(x)\right)$, hence, the configuration $\left(A_{m} \cup\{x\}, u_{m}\right) \in \mathcal{C}_{m}$ and satisfies $\mathcal{F}\left(A_{m}, u_{m}\right)=\mathcal{F}\left(A_{m} \cup\{x\}, u_{m}\right)$.

In view of Remark $2.5\left(A_{m}, u_{m}-u_{0}\right)$ is a $\left(\lambda_{0}, m\right)$-minimizer of $\mathcal{F}(\cdot, \cdot ; \Omega)$. Moreover, since ∂A_{m} does not contain isolated points $\theta_{*}\left(\partial A_{m}, x\right)>0$ for any $x \in \partial A_{m}$, hence by Theorem 3.1 the density estimates (3.2) and (3.3) hold for all $x \in \Omega \cap \partial A_{m}$.

By [45, Proposition 3.1], there exist $A \subset \Omega$ and a subsequence $\left\{\left(A_{m_{h}}, u_{m_{h}}\right)\right\}$ such that $\operatorname{sdist}\left(\cdot, \partial A_{m_{h}}\right) \rightarrow \operatorname{sdist}(\cdot, \partial A)$ as $h \rightarrow \infty$. Consider the sequence $\mu_{h}:=\mathcal{H}^{1}\left\llcorner\partial A_{m_{h}}\right.$ of positive Radon measures. By Theorem 3.1

$$
\begin{equation*}
\frac{\varsigma_{*}}{2} \leq \frac{\mu_{h}\left(Q_{r}(x)\right)}{2 r} \leq \frac{2 \pi c_{2}}{c_{1}} \tag{4.2}
\end{equation*}
$$

for every $x \in \Omega \cap \partial A_{m_{h}}$ and $Q_{r}(x) \subset \subset \Omega$ with $r \in\left(0, R_{*}\right)$. By (2.13), (2.14) and (3.1),

$$
\begin{aligned}
\mu_{h}\left(\mathbb{R}^{2}\right)=\mathcal{H}^{1}\left(\partial A_{m_{h}}\right) & \leq \mathcal{H}^{1}(\partial \Omega)+\frac{\mathcal{F}\left(A_{m_{h}}, u_{m_{h}}\right)+2 c_{2} \mathcal{H}^{1}(\Sigma)}{c_{1}} \\
& \leq \mathcal{H}^{1}(\partial \Omega)+\frac{\mathcal{F}\left(A_{1}, u_{1}\right)+2 c_{2} \mathcal{H}^{1}(\Sigma)}{c_{1}},
\end{aligned}
$$

hence, by compactness, there exist a not relabelled subsequence and a positive Radon measure μ in \mathbb{R}^{2} such that $\mu_{h} \rightharpoonup^{*} \mu$ as $h \rightarrow \infty$. We claim that

$$
\overline{\Omega \cap \partial A} \subseteq \operatorname{supp} \mu \subseteq \partial A
$$

Indeed, let $x \in \Omega \cap \partial A$ and $r \in\left(0, \min \left\{\operatorname{dist}(x, \partial \Omega), R_{*}\right\}\right)$. By the sdist-convergence, there exists $x_{h} \in Q_{r}(x) \cap \partial A_{m_{h}}$ with $x_{h} \rightarrow x$ such that $Q_{r / 2}\left(x_{h}\right) \subset Q_{r}(x)$ and hence, by the weak* convergence and (4.2),

$$
\mu\left(\overline{Q_{r}(x)}\right) \geq \limsup _{h \rightarrow \infty} \mu_{h}\left(\overline{Q_{r}(x)}\right) \geq \limsup _{h \rightarrow \infty} \mu_{h}\left(Q_{r / 2}\left(x_{h}\right)\right) \geq \varsigma_{*} r .
$$

This implies $x \in \operatorname{supp} \mu$. Conversely, if, by contradiction, there exists $x \in \operatorname{supp} \mu \backslash \partial A$, then we can find $r>0$ such that $Q_{r}(x) \cap \partial A=\emptyset$. From the sdist-convergence it follows that $Q_{r / 2}(x) \cap \partial A_{m_{h}}=\emptyset$ for h large enough, and hence,

$$
0<\mu\left(Q_{r / 2}(x)\right) \leq \liminf _{h \rightarrow \infty} \mu_{h}\left(Q_{r / 2}(x)\right)=0
$$

which is a contradiction.
From (4.2) it follows that

$$
\begin{equation*}
\frac{\varsigma_{*}}{2} \leq \frac{\mu\left(Q_{r}(x)\right)}{2 r} \leq \frac{2 \pi c_{2}}{c_{1}} \tag{4.3}
\end{equation*}
$$

for any $x \in \Omega \cap \operatorname{supp} \mu$ any $r \in\left(0, R_{*}\right)$ with $Q_{r}(x) \subset \subset \Omega$. Indeed, let $x \in \Omega \cap \operatorname{supp} \mu$ and let $R(x):=\min \left\{R_{*}, \operatorname{dist}(x, \partial \Omega)\right\}$. Then by the weak* convergence $\mu_{h}\left(Q_{r}(x)\right) \rightarrow \mu\left(Q_{r}(x)\right)=0$ for a.e. $r \in(0, R(x))$. In particular, (4.3) holds for a.e. $r \in(0, R(x))$. Since μ is a Radon measure, (4.3) extends to all $r \in(0, R(x))$ by the left-continuity of the map $r \mapsto \mu\left(Q_{r}(x)\right)$.

From (4.3) and [2, Theorem 2.56] it follows that

$$
\begin{equation*}
\varsigma_{*} \mathcal{H}^{1}\left\llcorner(\Omega \cap \operatorname{supp} \mu) \leq \mu\left\llcorner\Omega \leq \frac{4 \pi c_{2}}{c_{1}} \mathcal{H}^{1}\llcorner(\Omega \cap \operatorname{supp} \mu)\right.\right. \tag{4.4}
\end{equation*}
$$

Thus, $\mu\left\llcorner\Omega\right.$ is absolutely continuous with respect to $\mathcal{H}^{1}\left\llcorner(\Omega \cap \operatorname{supp} \mu)\right.$ and $\mathcal{H}^{1}(\operatorname{supp} \mu)<\infty$. By (4.4),

$$
\mathcal{H}^{1}(\partial A) \leq \mathcal{H}^{1}(\Omega \cap \partial A)+\mathcal{H}^{1}(\partial \Omega \cap \partial A) \leq \frac{1}{\varsigma_{*}} \mu(\Omega)+\mathcal{H}^{1}(\partial \Omega)<\infty
$$

Finally let us prove (4.1). Fix any $x \in \Omega \cap \partial A$ and let $R(x):=\min \left\{R_{*}, \operatorname{dist}(x, \partial \Omega)\right\}$. Then by (4.4)

$$
\frac{\varsigma_{*} \mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A\right)}{2 r} \leq \frac{\mu\left(Q_{r}(x)\right)}{2 r} \leq \frac{4 \pi c_{2}}{c_{1}} \frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A\right)}{2 r} .
$$

This and (4.3) imply

$$
\frac{\varsigma_{*} \mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A\right)}{2 r} \leq \frac{2 \pi c_{2}}{c_{1}} \quad \text { and } \quad \frac{\varsigma_{*}}{2} \leq \frac{4 \pi c_{2}}{c_{1}} \frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A\right)}{2 r}
$$

and hence, (4.1) follows.
We notice that by Proposition A. 1 the limit set A in Proposition 4.1 is of finite perimeter. However, a priori, by the arguments of Proposition 4.1, its topological boundary ∂A does not need to be \mathcal{H}^{1}-rectifiable, and so in \mathcal{A}. This issue is overcome by introducing the extended class $\widetilde{\mathcal{A}}$ and the auxiliary model \widetilde{F} in Section 2.3 .
Corollary 4.2. Let $\left\{A_{m_{h}}\right\}$ and A be as in Proposition 4.1. Then $A_{m_{h}} \rightarrow A$ in $L^{1}\left(\mathbb{R}^{2}\right)$ as $h \rightarrow \infty$.

Proof. Since $\mathcal{H}^{1}(\partial A)<\infty$ and $A_{m_{h}} \xrightarrow{K} \bar{A}$ as $h \rightarrow \infty$, one has $\chi_{A_{m_{h}}}(x) \rightarrow \chi_{A}(x)$ as $h \rightarrow \infty$ for a.e. $x \in \mathbb{R}^{2}$. Now Corollary 4.2 follows from the Dominated Convergence Theorem.

The following result generalizes [40, Theorem 4.2] since it applies to set Γ a priori not connected and even not necessarily \mathcal{H}^{1}-rectifiable), but satisfying uniform density estimates. Recall that we denote by Γ^{r} and Γ^{u} the \mathcal{H}^{1}-rectifiable and purely unrectifiable parts of a Borel 1-set Γ.

Proposition 4.3. Let $\Gamma \subset \mathbb{R}^{2}$ be a Borel set such that $\mathcal{H}^{1}(\Gamma)<+\infty$ and for some $r_{0}, c, C>0$ and for all $x \in \Gamma$

$$
\begin{equation*}
c \leq \frac{\mathcal{H}^{1}\left(Q_{r}(x)\right)}{2 r} \leq C, \quad r \in\left(0, r_{0}\right) \tag{4.5}
\end{equation*}
$$

Then for any $R>0$ and a.e. $x \in \Gamma^{r}$ one has

$$
\begin{equation*}
\overline{Q_{R, \nu_{\Gamma}(x)}(x)} \cap \sigma_{x, \rho}(\Gamma) \xrightarrow{K} \overline{Q_{R, \nu_{\Gamma}(x)}(x)} \cap T_{x} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{H}^{1}\left\llcorner(\sigma _ { x , \rho } (\Gamma)) \stackrel { * } { \rightharpoonup } \mathcal { H } ^ { 1 } \left\llcorner T_{x}\right.\right. \tag{4.7}
\end{equation*}
$$

as $\rho \rightarrow 0$, where $\sigma_{x, r}$ is the blow-up map defined in (2.4) and T_{x} is the generalized tangent line to Γ at x. Moreover, for any \mathcal{H}^{1}-measurable $\Gamma^{\prime} \subset \Gamma$ and \mathcal{H}^{1}-a.e. $x \in\left[\Gamma^{\prime}\right]^{r}$ the relations (4.6) and (4.7) hold with Γ^{\prime} in place of Γ.

Proof. By [33, Theorem 3.3], Γ^{r} (and hence $\left[\Gamma^{\prime}\right]^{r}$) has a approximate tangent line at \mathcal{H}^{1} a.e. x, therefore, (4.7) follows from [2, Remark 2.80]. To prove (4.6) with Γ choose $x \in \Gamma$ such that $\theta(\Gamma, x)=1$ and T_{x} exists. Without loss of generality we assume that $x=0$ and $\nu_{\Gamma}(x)=\mathbf{e}_{2}$ is the unit normal to T_{x}. First we prove

$$
\begin{equation*}
\sigma_{0, r}(\Gamma) \xrightarrow{K} T_{0} \tag{4.8}
\end{equation*}
$$

as $r \searrow 0$. Indeed, let $\mu_{r}:=\mathcal{H}^{1}\left\llcorner\left(\sigma_{0, r}(\Gamma)\right)\right.$ and $\mu_{0}:=\mathcal{H}^{1}\left\llcorner T_{0}\right.$. Given $r>0$, since $\mu_{r}\left(Q_{\rho}(x)\right)=\frac{\mathcal{H}^{1}\left(Q_{\rho r}(r x)\right)}{r}$, by (4.5) for all $x \in \sigma_{0, r}(\Gamma)$ and $\rho \in\left(0, r_{0} / r\right)$ one has

$$
\begin{equation*}
c \leq \frac{\mu_{r}\left(Q_{\rho}(x)\right)}{2 \rho} \leq C \tag{4.9}
\end{equation*}
$$

Let $r_{k} \searrow 0$ be any sequence. By compactness of sets in the Kuratowski convergence, passing to a further not relabelled subsequence if necessary we suppose that

$$
\begin{equation*}
\sigma_{0, r_{k}}(\Gamma) \xrightarrow{K} L \tag{4.10}
\end{equation*}
$$

for some closed set $L \subset \mathbb{R}^{2}$ as $k \rightarrow \infty$. We claim that $L=T_{0}$. If there exists $x \in T_{0} \backslash L$, then for some $\rho>0, Q_{\rho}(x) \cap L=\emptyset$. By (4.10), $Q_{\rho / 2}(x) \cap \sigma_{0, r_{k}}(\Gamma)=\emptyset$ for all large k so that $\mu_{r_{k}}\left(Q_{\rho / 2}(x)\right)=0$. Then by (4.7)

$$
0=\lim _{k \rightarrow \infty} \mu_{r_{k}}\left(Q_{\rho / 2}(x)\right) \geq \mu_{0}\left(Q_{\rho / 2}(x)\right) \geq \rho
$$

a contradiction. If there exists $x \in L \backslash T_{0}$, then for some $Q_{\rho}(x) \cap T_{0}=\emptyset$ for some $\rho>0$ and there exists a sequence $x_{k} \in \sigma_{0, r_{k}}(\Gamma)$ such that $x_{k} \rightarrow x$. Then $Q_{\rho / 2}\left(x_{k}\right) \subset Q_{\rho}(x)$ for all large k so that by (4.7) and (4.9),

$$
0=\mu_{0}\left(\overline{Q_{\rho}(x)}\right) \geq \limsup _{k \rightarrow \infty} \mu_{r_{k}}\left(\overline{Q_{\rho}(x)}\right) \geq \limsup _{k \rightarrow \infty} \mu_{r_{k}}\left(Q_{\rho / 2}\left(x_{k}\right)\right) \geq c \rho
$$

a contradiction. Thus, $L=T_{0}$. Since the sequence $r_{k} \searrow 0$ is arbitrary, (4.8) follows. Now (4.6) is obvious.

To prove the assertion for Γ^{\prime}, fix any $x \in \Gamma^{\prime}$ such that $\theta(\Gamma, x)=\theta\left(\Gamma^{\prime}, x\right)=1$ and both generalized tangents T_{x}^{Γ} and $T_{x}^{\Gamma^{\prime}}$ of Γ and Γ^{\prime} exist. Note that $T_{x}^{\Gamma}=T_{x}^{\Gamma^{\prime}}=: T_{x}$. For shortness, assume that $x=0$ and $\nu_{\Gamma}(x)=\mathbf{e}_{2}$. Since in general Γ^{\prime} does not satisfy the uniform density estimates of type (4.5), we cannot argue as above.

Let $r_{k} \searrow 0$ be arbitrary sequence such that $\sigma_{0, r_{k}}\left(\Gamma^{\prime}\right) \rightarrow L$ for some closed set $L \subset \mathbb{R}^{2}$. Then for every $x \in L$ there exists a sequence $x_{k} \in \sigma_{0, r_{k}}\left(\Gamma^{\prime}\right)$ such that $x_{k} \rightarrow x$. Since $\Gamma^{\prime} \subset \Gamma$ and by (4.8) $\sigma_{0, r_{k}}(\Gamma) \xrightarrow{K} T_{0}$, we have $x_{k} \in \sigma_{0, r_{k}}(\Gamma)$ and $x_{k} \rightarrow x \in T_{0}$. Thus, $L \subset T_{0}$. To prove the converse inclusion, assume that there exists $x \in T_{0} \backslash L$. Since L is closed there
exists $r>0$ such that $B_{2 r}(x) \cap L=\emptyset$. As we mentioned in the beginning of the proof, for $\mu_{k}:=\mathcal{H}^{1}\left\llcorner\left(\sigma_{0, r_{k}}\left(\Gamma^{\prime}\right)\right)\right.$ we have $\mu_{k} \xrightarrow{*} \mathcal{H}^{1}\left(T_{0}\right)$. In particular, for every $\rho \in(0, r)$

$$
\lim _{k \rightarrow+\infty} \mu_{k}\left(B_{\rho}(x)\right)=\mathcal{H}^{1}\left(B_{\rho}(x) \cap T_{0}\right)=2 \rho
$$

Hence, $B_{\rho}(x) \cap \sigma_{0, r_{k}}\left(\Gamma^{\prime}\right) \neq \emptyset$ for each such ρ and thus, taking a sequence $\rho_{n} \rightarrow 0$ and using a diagonal argument we obtain a sequence $x_{n} \in \sigma_{0, r_{k_{n}}}\left(\Gamma^{\prime}\right)$ converging to x. So $x \in L$, a contradiction.
Since $r_{k} \rightarrow 0$ is arbitrary, one has $\sigma_{0, r}\left(\Gamma^{\prime}\right) \xrightarrow{K} T_{0}$ as $r \rightarrow 0$.
Next we turn to the compactness of displacements of the sequence of constrained minimizers $\left\{\left(A_{m}, u_{m}\right)\right\}$.
Proposition 4.4. Let $A_{m_{h}}$ and A be as in Proposition 4.1. Let $\left\{E_{i}\right\}_{i \in \mathbb{N}}$ be the family of all connected components of $\operatorname{Int}(A)$. There exist a further (not relabelled) subsequence of $\left\{\left(A_{m_{h}}, u_{h}\right)\right\}$, a sequence $\left\{a_{h}\right\}$ of rigid displacements, a subset N of \mathbb{N}, a function $v_{0} \in$ $H^{1}(S)$ and a family $\left\{v_{i} \in G S B D^{2}\left(\operatorname{Int}\left(E_{i}\right)\right) \cap H_{\mathrm{loc}}^{1}\left(\operatorname{Int}\left(E_{i}\right) \cup S\right)\right\}_{i \in N}$ such that

$$
\left|u_{m_{h}}+a_{h}\right| \rightarrow+\infty
$$

a.e. in $\bigcup_{i \in \mathbb{N} \backslash N} E_{i}$,

$$
u_{m_{h}}+a_{h} \rightharpoonup v_{0} \chi_{S}+\sum_{i \in N} v_{i} \chi_{E_{i}}
$$

weakly in $H_{\mathrm{loc}}^{1}\left(\left(\cup_{i \in N} E_{i}\right) \cup S\right)$ (and hence a.e. in $\left(\cup_{i \in N} E_{i}\right) \cup S$),

$$
e\left(u_{m_{h}}\right) \rightarrow e\left(v_{0}\right) \chi_{S}+\sum_{i \in N} e\left(v_{i}\right) \chi_{E_{i}}
$$

weakly in $L_{\mathrm{loc}}^{2}\left(\left(\cup_{i \in N} E_{i}\right) \cup S\right)$.
The main difference of our compactness result from [14, Theorem 1.1] is not only that in our setting we have the set-function coupling, but also we need to select those components of limiting free crytal region where the displacements diverge and those in which they don't. This first requires to actually prove that the behavior is consistent inside each component of the limiting free-crystal region, which is achieved using [45, Proposition 3.7].

Proof. Since S is connected and Lipschitz, by the Korn-Poincaré inequality and the RellichKondrachov Theorem there exists a further not relabelled subsequence $\left\{u_{m_{h}}\right\}$, a sequence $\left\{a_{h}\right\}$ of infinitesimal rigid displacements and $v_{0} \in H^{1}\left(S ; \mathbb{R}^{2}\right)$ such that $u_{m_{h}}+a_{h} \rightarrow v_{0}$ weakly in $H^{1}\left(S ; \mathbb{R}^{2}\right)$ and a.e. in S.

We define the set $N \subset \mathbb{N}$ as follows: For each $i \in \mathbb{N}$ fix some ball $B_{i} \subset \subset E_{i}$. Since $A_{m_{h}} \xrightarrow{K} A$, there exists $h_{i}^{0}>0$ such that $B_{i} \subset \subset A_{m_{h}}$ for all $h>h_{i}^{0}$. By (2.15) and (3.1)

$$
\sup _{h>h_{i}^{0}} \int_{B_{i}}\left|e\left(u_{m_{h}}+a_{h}\right)\right|^{2} d x \leq \frac{1}{2 c_{3}} \sup _{h>h_{i}^{0}} \int_{A_{m_{h}} \cup S} \mathbb{C}(x) e\left(u_{m_{h}}\right): e\left(u_{m_{h}}\right) d x<+\infty,
$$

and thus, by [45, Proposition 3.7] either $\left|u_{m_{h}}+a_{h}\right| \rightarrow+\infty$ a.e. in B_{i} or up to a subsequence, $u_{m_{h}}+a_{h}$ converges a.e. in B_{i}. By a diagonal argument, we choose a further not relabelled subsequence $\left\{u_{m_{h}}\right\}$ and the subset N of indices $i \in \mathbb{N}$ such that for every $i \in N$ the sequence $w_{h}:=u_{m_{h}}+a_{h} \rightarrow v_{i}$ converges a.e. in B_{i} as $h \rightarrow+\infty$.

We claim that for every $i \in N$ there exists $v_{i} \in H_{\text {loc }}^{1}\left(E_{i} ; \mathbb{R}^{2}\right) \cap G S B D^{2}\left(E_{i} ; \mathbb{R}^{2}\right)$ such that $w_{h} \rightarrow v_{i}$ weakly in $H_{\text {loc }}^{1}\left(E_{i} ; \mathbb{R}^{2}\right)$ and a.e. in E_{i} as $h \rightarrow \infty$. To prove the claim we fix $i \in N$ and let $D \subset \subset E_{i}$ be an arbitrary connected open set containing B_{i}. Since sdist($\left.\cdot, \partial A_{m_{h}}\right) \rightarrow$
$\operatorname{sdist}(\cdot, \partial A)$ locally uniformly in \mathbb{R}^{2}, there exists $h_{D}>0$ such that $D \subset \subset \operatorname{Int}\left(A_{m_{h}}\right)$ for all $h>h_{D}$. Note that $w_{h} \in H^{1}(D)$ and

$$
\begin{equation*}
\sup _{h>h_{D}} \int_{D}\left|e\left(w_{h}\right)\right|^{2} d x \leq C:=\frac{1}{2 c_{3}} \sup _{h>h_{D}} \int_{A_{m_{h}} \cup S} \mathbb{C}(x) e\left(u_{m_{h}}\right): e\left(u_{m_{h}}\right) d x<+\infty \tag{4.11}
\end{equation*}
$$

where in the first inequality we used (2.15) and in the second (3.1). Since w_{h} has finite limit a.e. in $B_{i} \subset D$, by [45, Proposition 3.7] there exists $v_{i}^{D} \in H_{\text {loc }}^{1}(D) \cap G S B D^{2}(D)$ and a subsequence $\left\{w_{h}^{D}\right\}$ of $\left\{w_{h}\right\}$ such that $w_{h}^{D} \rightarrow v_{i}^{D}$ weakly in $H_{\text {loc }}^{1}$ and a.e. in D. Now choosing a sequence $D_{1} \subset \subset D_{2} \subset \subset \ldots \subset \subset E_{i}$ of connected open sets such that $B_{i} \subset D_{1}$ and $E_{i}=\cup_{j} D_{j}$ and using a diagonal argument we choose a (not relablled) subsequence $\left\{w_{h}\right\}$ and $v_{i} \in H_{\text {loc }}^{1}\left(E_{i}\right) \cap G S B D_{\mathrm{loc}}^{2}\left(E_{i}\right)$ such that $w_{h} \rightarrow v_{i}$ weakly in $H_{\mathrm{loc}}^{1}\left(E_{i}\right)$ and a.e. in E_{i}. In particular, $e\left(w_{h}\right) \rightarrow e\left(v_{i}\right)$ weakly in $L_{\text {loc }}^{2}\left(E_{i}\right)$ and hence, by convexity and (4.11)

$$
\int_{D_{j}}\left|e\left(v_{i}\right)\right|^{2} d x \leq \liminf _{h \rightarrow+\infty} \int_{D_{j}}\left|e\left(w_{h}\right)\right|^{2} d x \leq C
$$

Hence, letting $j \rightarrow \infty$ we get $v_{i} \in G S B D^{2}\left(E_{i}\right)$.
Let us now show that by the choice of N, for every $j \in \mathbb{N} \backslash N$ one has $\left|u_{m_{h}}+a_{h}\right| \rightarrow+\infty$ a.e. in E_{j} as $h \rightarrow+\infty$. Indeed, by definition, if $i \notin N$, then $\left|u_{m_{h}}+a_{h}\right| \rightarrow+\infty$ a.e. in $B_{i} \subset \subset E_{i}$. Let $D \subset \subset E_{i}$ be any connected open set containing B_{i}. As in (4.11) we can show $\left\|e\left(u_{m_{h}}+a_{h}\right)\right\|_{L^{2}(D)}^{2}$ is uniformly bounded for all sufficiently large h, and therefore, by [45, Proposition 4.7] $\left|u_{m_{h}}+a_{h}\right| \rightarrow+\infty$ a.e. in D.

Finally, since $u_{m_{h}}+a_{h} \rightarrow u$ weakly in $H_{\text {loc }}^{1}\left(\left(\cup_{i \in N} E_{i}\right) \cup S\right)$, it follows that $e\left(u_{m_{h}}\right)=$ $e\left(u_{m_{h}}+a_{h}\right) \rightarrow e(u)$ weakly in $L_{\mathrm{loc}}^{2}\left(\left(\cup_{i \in N} E_{i}\right) \cup S\right)$.

Proposition 4.4 allows us to define a "limit" displacement.
Proposition 4.5. Let $\left\{\left(A_{m_{h}}, u_{m_{h}}\right)\right\},\left\{a_{h}\right\}, A, N$ and $\left\{v_{i}\right\}_{i \in N \cup\{0\}}$ satisfy the assertion of Proposition 4.4 and let

$$
u:=v_{0} \chi_{S}+\sum_{i \in N} v_{i} \chi_{E_{i}}+\sum_{j \in \mathbb{N} \backslash N} u_{0} \chi_{E_{j}}
$$

where u_{0} is the displacement defining the mismatch strain M_{0}. Then

$$
\begin{equation*}
\liminf _{h \rightarrow \infty} \mathcal{W}\left(A_{m_{h}}, u_{m_{h}}\right) \geq \mathcal{W}(A, u) \tag{4.12}
\end{equation*}
$$

Proof. Fix arbitrary open set $D \subset \subset \operatorname{Int}(A) \cup S$. By Proposition $4.4 u_{m_{h}}+a_{h} \rightarrow u$ weakly in $L^{2}\left(D \cap\left[\left(\cup_{i \in N} E_{i}\right) \cup S\right]\right)$, hence, by the convexity of the elastic energy

$$
\begin{aligned}
& \liminf _{h \rightarrow \infty} \mathcal{W}\left(A_{m_{h}}, u_{m_{h}}\right)=\liminf _{h \rightarrow \infty} \int_{A_{m_{h}} \cup S} W\left(x, e\left(u_{m_{h}}\right)-M_{0}\right) d x \\
\geq & \liminf _{h \rightarrow \infty}\left(\int_{D \cap S} W\left(x, e\left(u_{m_{h}}\right)-M_{0}\right) d x+\sum_{j \in N} \int_{D \cap E_{i}} W\left(x, e\left(u_{m_{h}}\right)-M_{0}\right) d x\right) \\
\geq & \int_{D \cap S} W\left(x, e(u)-M_{0}\right) d x+\sum_{i \in N} \int_{D \cap E_{i}} W\left(x, e(u)-M_{0}\right) d x
\end{aligned}
$$

where we recall that $M_{0}=e\left(u_{0}\right)$. Since $e(u)-M_{0}=0$ a.e. in $\cup_{j \in \mathbb{N} \backslash N} E_{j}$, this inequality can also be rewritten as

$$
\liminf _{h \rightarrow \infty} \mathcal{W}\left(A_{m_{h}}, u_{m_{h}}\right) \geq \int_{D \cap(A \cup S)} W\left(x, e(u)-M_{0}\right) d x
$$

Now letting $D \nearrow \operatorname{Int}(A) \cup S$ and using $|A \backslash \operatorname{Int}(A)| \leq|\partial A|=0$ we get (4.12).
Now we establish the following "lower semicontinuity" of $\mathcal{F}\left(A_{m}, u_{m}\right)$.

Proposition 4.6. Let $\left\{\left(A_{m_{h}}, u_{m_{h}}\right)\right\}, A$ and u be as in Proposition 4.5. Then $(\operatorname{Int}(A), u) \in$ $\widetilde{\mathcal{C}}$ and

$$
\begin{equation*}
\liminf _{h \rightarrow \infty} \mathcal{S}\left(A_{m_{h}}, u_{m_{h}}\right) \geq \widetilde{\mathcal{S}}(\operatorname{Int}(A), u) \tag{4.13}
\end{equation*}
$$

where $\widetilde{\mathcal{S}}$ is defined in (2.12).
We postpone the proof of this proposition after the following auxiliary lemma, needed to treat the delamination and jumps along the cracks.

Lemma 4.7. Recall the definition of the sets I_{r} and $Q_{r}^{ \pm}$from (2.3). Let ϕ be any norm in \mathbb{R}^{2}. Let $\left\{D_{k}\right\}$ and $\left\{m_{k}\right\}$ be sequences of subsets of Q_{4} and of natural numbers, respectively, satisfying
(a) the number of connected components ∂D_{k} lying strictly inside Q_{4} does not exceed m_{k};
(b) $\operatorname{sdist}\left(\cdot, \partial D_{k}\right) \rightarrow-\operatorname{dist}\left(\cdot, I_{4}\right)$ uniformly in Q_{4} and

$$
\sup _{k} \mathcal{H}^{1}\left(Q_{1} \cap \partial D_{k}\right)<+\infty ;
$$

(c) there exists a sequence $\left\{w_{k}\right\} \subset G S B D^{2}\left(Q_{4}\right)$ such that $J_{w_{k}} \subset Q_{1} \cap \partial D_{k}$ and

$$
\sup _{k} \int_{Q_{1}}\left|e\left(w_{k}\right)\right|^{2} d x<+\infty ;
$$

(d) there exist $\xi^{ \pm} \in \mathbb{R}^{2}$ such that

$$
w_{k} \rightarrow w_{0}:=\xi^{+} \chi_{Q_{1}^{-}}+\xi^{-} \chi_{Q_{1}^{+} \backslash U_{1}^{\infty}} \quad \text { a.e. in } Q_{1} \backslash U_{1}^{\infty}
$$

and

$$
\left|w_{k}\right| \rightarrow+\infty \quad \text { a.e. in } U_{1}^{\infty},
$$

where U_{1}^{∞} is either \emptyset or Q_{1}^{+}.
Then there exists a subsequence $\left\{k_{h}\right\} \subset \mathbb{N}$ such that for any $\delta \in(0,1)$ we can find $h_{\delta}>0$ for which

$$
\begin{equation*}
\int_{Q_{1} \cap \partial^{*} D_{k_{h}}} \phi\left(\nu_{D_{k_{h}}}\right) d \mathcal{H}^{1}+2 \int_{Q_{1} \cap D_{k_{h}}^{(1)} \cap \partial D_{k_{h}}} \phi\left(\nu_{D_{k_{h}}}\right) d \mathcal{H}^{1} \geq 2 \int_{I_{1}} \phi\left(\mathbf{e}_{2}\right) d \mathcal{H}^{1}-\delta \tag{4.14}
\end{equation*}
$$

for all $h>h_{\delta}$.
Before the proof of Lemma 4.7 we recall some notations and results from [14]. Given $\xi \in \mathbb{R}^{2} \backslash\{0\}$, let $\Pi_{\xi}:=\left\{y \in \mathbb{R}^{2}: y \cdot \xi=0\right\}$. For every set $B \subset \mathbb{R}^{2}$ and for every $y \in \Pi_{\xi}$ we define

$$
B_{y}^{\xi}:=\{t \in \mathbb{R}: y+t \xi \in B\} .
$$

Moreover, for every $u: B \rightarrow \mathbb{R}^{2}$ we define $\widehat{u}_{y}^{\xi}: B_{y}^{\xi} \rightarrow \mathbb{R}$ by

$$
\widehat{u}_{y}^{\xi}(t):=u(y+t \xi) \cdot \xi .
$$

When $u \in G S B D^{2}\left(Q_{1}\right)$, then $\widehat{u}_{y}^{\xi} \in S B V_{\text {loc }}^{2}\left(\left[Q_{1}\right]_{y}^{\xi}\right)$ for \mathcal{H}^{1}-a.e. $\pi_{\xi}\left(Q_{1}\right)$ and for all $\xi \in$ $\mathbb{R}^{2} \backslash\{0\}$. In this case we define

$$
I_{y}^{\xi}(u):=\int_{\left[Q_{1}\right]_{y}^{\xi}}\left|(\dot{u})_{y}^{\xi}\right|^{2} d t,
$$

where $(\dot{u})_{y}^{\xi}$ is the density of the absolutely continuity part of $D \widehat{u}_{y}^{\xi}$ and also

$$
I I_{y}^{\xi}(u):=\left|D\left(\tau(u \cdot \xi)_{y}^{\xi}\right)\right|\left([Q]_{1}^{\xi}\right),
$$

where $\tau(t):=\arctan (t)$. Recall that

$$
\int_{\Pi_{\xi}} I_{y}^{\xi}(u) \mathcal{H}^{1}(y)+\int_{\Pi_{\xi}} I I_{y}^{\xi}(u) \mathcal{H}^{1}(y) \leq \int_{Q_{1}}|e(u)| d x+\int_{Q_{1}}|e(u)|^{2} d x+\mathcal{H}^{1}\left(J_{u}\right)
$$

(see e.g. [14, Eq. 3.8 and 3.9]).
Proof. The proof is similar to [45, Lemma 4.7]. Since ϕ is even,

$$
\phi(\xi)=\sup _{\eta \in \mathbb{R}^{2}, \phi^{\circ}(\eta)=1}|\xi \cdot \eta|, \quad \xi \in \mathbb{R}^{2}
$$

where ϕ^{o} is the dual norm of ϕ. By the compactness of $B^{\phi^{o}}:=\left\{\eta \in \mathbb{R}^{2}: \phi^{o}(\eta)=1\right\}$, for any countable set $\left\{\eta_{i}\right\}$ dense in $B^{\phi^{o}}$ and for any \mathcal{H}^{1}-rectifiable set $K \subset \mathbb{R}^{2}$

$$
\phi\left(\nu_{K}(x)\right)=\sup _{i \geq 1}\left|\nu_{K}(x) \cdot \eta_{i}\right| \quad \text { for } \mathcal{H}^{1} \text {-a.e. } x \in K .
$$

Hence, by [27, Lemma 6] for any open set $U \subset \mathbb{R}^{2}$
$\int_{U \cap K} \phi\left(\nu_{K}\right) d \mathcal{H}^{1}=\sup _{k} \sup \left\{\sum_{i=1}^{k} \int_{A_{i} \cap K}\left|\nu_{K} \cdot \eta_{i}\right| d \mathcal{H}^{1}: A_{i} \subset \subset U\right.$ open and pairwise disjoint $\}$.
Moreover, by the area formula for any Borel set B

$$
\int_{B \cap K}\left|\nu_{K} \cdot \xi\right| d \mathcal{H}^{1}=|\xi| \int_{\pi_{\xi}(B)} \mathcal{H}^{0}\left(K \cap B_{y}^{\xi}\right) d \mathcal{H}^{1}(y),
$$

where $\pi_{\xi}(z)=z-\left(z \cdot \frac{\xi}{|\xi|}\right) \frac{\xi}{|\xi|}$ and given $y \in \pi_{\xi}(B), B_{y}^{\xi}=\pi_{\xi}^{-1}(y) \cap B$.
Step 1: There exists an at most countable set $\Upsilon \subset B^{\phi^{o}}$ such that

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \mathcal{H}^{1}\left(\pi_{\xi}\left(I_{1}\right) \backslash \pi_{\xi}\left(J_{w_{k}}\right)\right)=0 \tag{4.15}
\end{equation*}
$$

for any $\xi \in B^{\phi^{o}} \backslash \Upsilon$.
Indeed, let Υ be the set of all $\xi \in B^{\phi^{o}}$ for which there exists $y \in \pi_{\xi}\left(I_{1}\right)$ such that $\mathcal{H}^{1}\left(\pi_{\xi}^{-1}(y) \cap \partial D_{k}\right)>0$. By assumption (b) and Proposition A. 2 the set Υ is at most countable. Let $\left\{w_{k_{l}}\right\}$ be arbitrary not relabelled subsequence of $\left\{w_{k}\right\}$. In view of [14, Eq. 3.23] (applied with $\left.A=U_{1}^{\infty}\right)$ for any $\xi \in B^{\phi^{o}} \backslash \Upsilon, \epsilon>0$ and for \mathcal{H}^{1}-a.e. $y \in \pi_{\xi}\left(Q_{1}\right)$ there exists a further subsequence $w_{k_{l_{h}}}$ (possibly depending on ξ, ϵ and y)

$$
\begin{equation*}
\mathcal{H}^{0}\left(J_{\left.\left[\widehat{w}_{0}\right]\right]_{y}^{\xi}} \cap\left[Q_{1} \backslash U_{1}^{\infty}\right]_{y}^{\xi}\right)+\mathcal{H}^{0}\left(\left[\partial U_{1}^{\infty}\right]_{y}^{\xi}\right) \leq \liminf _{h \rightarrow+\infty}\left[\mathcal{H}^{1}\left(J_{\left[w_{k_{l_{h}}}\right\}_{y}}\right)+\epsilon\left(I_{y}^{\xi}\left(w_{k_{l_{h}}}\right)+I I_{y}^{\xi} w_{k_{l_{h}}}\right)\right] . \tag{4.16}
\end{equation*}
$$

By the definition of w_{0} and U_{1}^{∞}, the left-side of (4.16) is equal to 1 for \mathcal{H}^{1}-a.e. $y \in \pi_{\xi}\left(I_{1}\right)$. Theorefore, for such y and for sufficiently small $\epsilon>0$ we have $\liminf _{h \rightarrow+\infty} \mathcal{H}^{1}\left(J_{\left[w_{k_{h}}\right]_{y}^{\xi}}\right) \geq 1$. Hence, for \mathcal{H}^{1}-a.e. $y \in \pi_{\xi}\left(I_{1}\right)$ the line $\pi_{\xi}^{-1}(y)$ intersects $J_{w_{k_{h}}}$ for all h and (4.15) follows.

Note that by [45, Proposition 4.6]

$$
\begin{equation*}
\liminf _{k \rightarrow+\infty} \int_{Q_{1} \cap J_{w_{k}}} \phi\left(\nu_{J_{w_{k}}}\right) d \mathcal{H}^{1} \geq \int_{I_{1}} \phi\left(\mathbf{e}_{2}\right) d \mathcal{H}^{1} . \tag{4.17}
\end{equation*}
$$

Step 2: Now we improve (4.17) by including coefficient 2 on the right-hand side of the inequality in the presence of a small error term.

We proceed in three substeps. We redefine the displacement w_{k} in the convex envelope V_{k}^{i} of each connected component K_{k}^{i} of ∂D_{k} in such a way that ∂V_{k}^{i} become jump sets with the left-hand side of (4.14) lowered up to a small error.

Substep 2.1: First we identify $\left\{V_{k}^{i}\right\}$.

Fix any $\delta \in(0,1)$. By (b) there exists $k_{\delta}^{1}>0$ such that $([-2,2] \times[-2,-\delta]) \cup([-2,2] \times$ $[\delta, 2]) \subset \operatorname{Int}\left(D_{k}\right)$ for any $k \geq k_{\delta}^{1}$. Let $F_{k}:=Q_{1} \cap D_{k}$. Note that $\partial F_{k} \subset\left(Q_{1} \cap \partial D_{k}\right) \cup(\{ \pm 1\} \times$ $[-\delta, \delta])$ and since $D_{k} \in \mathcal{A}_{m_{k}}$, the number of connected components $\left\{L_{k}^{j}\right\}_{j \geq 1}$ of ∂F_{k} does not exceed m_{k}. Note that $F_{k} \subset[-1,1] \times[-\delta, \delta]$ and

$$
\begin{align*}
\alpha_{k} & :=\int_{Q_{1} \cap \partial^{*} E_{k}} \phi\left(\nu_{E_{k}}\right) d \mathcal{H}^{1}+2 \int_{Q_{1} \cap E_{k}^{(1)} \cap \partial E_{k}} \phi\left(\nu_{E_{k}}\right) d \mathcal{H}^{1} \\
& \geq \int_{Q_{2} \cap \partial^{*} F_{k}} \phi\left(\nu_{F_{k}}\right) d \mathcal{H}^{1}+2 \int_{Q_{2} \cap F_{k}^{(1)} \cap \partial F_{k}} \phi\left(\nu_{F_{k}}\right) d \mathcal{H}^{1}-4 \delta \\
& =\sum_{j \geq 1}\left[\int_{Q_{2} \cap \partial^{*} F_{k} \cap L_{k}^{j}} \phi\left(\nu_{F_{k}}\right) d \mathcal{H}^{1}+2 \int_{Q_{2} \cap F_{k}^{(1)} \cap \partial F_{k} \cap L_{k}^{j}} \phi\left(\nu_{F_{k}}\right) d \mathcal{H}^{1}\right]-4 \delta:=\alpha_{k}^{\prime} . \tag{4.18}
\end{align*}
$$

Next repeating the same arguments of Step 1 in the proof of [45, Lemma 4.7] we can find a family $\left\{V_{k}^{i}\right\}_{i}$ of at most countably many pairwise disjoint closed convex sets with non-empty interior such that for each L_{k}^{j} there exists a unique V_{i} with $L_{k}^{j} \subset V_{k}^{i}$ and

$$
\begin{equation*}
\alpha_{k}^{\prime} \geq \sum_{i \geq 1} \int_{\partial V_{k}^{i}} \phi\left(\nu_{V_{k}^{i}}\right) d \mathcal{H}^{1}-6 \delta \tag{4.19}
\end{equation*}
$$

see e.g. [45, Eq. 4.34]
Substep 2.2: Now we replace w_{k} with another function v_{k} associated to V_{k}^{i}. Fix $\xi_{0} \in \mathbb{R}^{2}$ such that the jump set of the function

$$
v_{k}:=w_{k} \chi_{Q_{1} \backslash \cup_{i} V_{k}^{i}}+\xi_{0} \chi_{\cup_{i} V_{k}^{i}}
$$

coincide with $\cup_{i} \partial V_{k}^{i}$ (up to a \mathcal{H}^{1}-negligible set).
By assumption (b) $\cup_{i} \partial V_{k}^{i} \xrightarrow{K} I_{1}$ as $k \rightarrow+\infty$. Moreover, as in Step 1 we can find a countable set $\Upsilon^{\prime} \subset B^{\phi^{o}}$ such that by assumption (b) and (4.15)

$$
\begin{aligned}
\limsup _{k \rightarrow+\infty} \mathcal{H}^{1}\left(\pi_{\xi}\left(I_{1}\right) \backslash \pi_{\xi}\left(\cup_{i} \partial V_{k}^{i}\right)\right) & \leq \limsup _{k \rightarrow+\infty} \mathcal{H}^{1}\left(\pi_{\xi}\left(I_{1}\right) \backslash \pi_{\xi}\left(\partial D_{k}\right)\right) \\
& \leq \lim _{k \rightarrow+\infty} \mathcal{H}^{1}\left(\pi_{\xi}\left(I_{1}\right) \backslash \pi_{\xi}\left(J_{w_{k}}\right)\right)=0
\end{aligned}
$$

for all $\xi \in B^{\phi^{o}} \backslash\left(\Upsilon \cup \Upsilon^{\prime}\right)$. Moreover, by assumption (d) $v_{k} \rightarrow w_{0}$ a.e. in $Q_{1} \backslash U_{1}^{\infty}$ and $\left|v_{k}\right| \rightarrow+\infty$ a.e. in U_{1}^{∞}.

Substep 2.3: By convexity of each V_{k}^{i} we observe that

$$
\liminf _{k \rightarrow+\infty} \mathcal{H}^{0}\left(\pi_{\xi}^{-1}(y) \cap J_{v_{k}}\right) \geq 2=2 \mathcal{H}^{0}\left(J_{\left[\widehat{w}_{0}\right]_{y}^{\xi}} \cap\left[Q_{1} \backslash U_{1}^{\infty}\right]_{y}^{\xi}\right)
$$

for all $\xi \in B^{\phi^{o}} \backslash\left(\Upsilon \cup \Upsilon^{\prime}\right)$ and \mathcal{H}^{1}-a.e. $y \in \pi_{\xi}$. Thus, by repeating the arguments of Step 1 in the proof of [45, Proposition 4.6] we get

$$
\liminf _{k \rightarrow+\infty} \int_{\cup_{i} \partial V_{k}^{i}} \phi\left(\nu_{\cup_{i} V_{k}^{i}}\right) d \mathcal{H}^{1}=\liminf _{k \rightarrow+\infty} \int_{J_{v_{k}}} \phi\left(\nu_{J_{v_{k}}}\right) d \mathcal{H}^{1} \geq 2 \int_{I_{1}} \phi\left(\mathbf{e}_{2}\right) d \mathcal{H}^{1}
$$

which together with (4.18) and (4.19) implies the assertion of the lemma.
Now we are ready to prove (4.13).
Proof of Proposition 4.6. For shortness, let

$$
G:=\operatorname{Int}(A)
$$

We define

$$
\widetilde{u}_{h}:=\left(u_{m_{h}}+a_{h}\right) \chi_{A_{m_{h}}}+\eta \chi_{\Omega \backslash A_{m_{h}}}
$$

and

$$
\widetilde{u}:=u \chi_{G}+\eta \chi_{\Omega \backslash G}
$$

for $\eta \in(0,1)^{2}$ such that $\Omega \cap \partial^{*} A_{m_{h}} \subset J_{\widetilde{u}_{h}}$ and $\Omega \cap \partial^{*} G \subset J_{\widetilde{u}}$ up to an \mathcal{H}^{1}-negligible set. Such η exists by Proposition A. 2 in view of the estimate

$$
\mathcal{H}^{1}\left(\partial A_{m_{h}}\right) \leq \frac{\mathcal{S}\left(A_{m_{h}}, u_{m_{h}}\right)}{c_{1}}+\frac{2 c_{2} \mathcal{H}^{1}(\partial \Omega)}{c_{1}} \leq \frac{\mathcal{F}\left(A_{1}, u_{1}\right)}{c_{1}}+\frac{2 c_{2} \mathcal{H}^{1}(\partial \Omega)}{c_{1}},
$$

which holds for every $h \geq 1$. Notice that $\widetilde{u}_{h} \in G S B D^{2}(\operatorname{Int}(\Omega \cup S \cup \Sigma)) \cap H_{\text {loc }}^{1}((\Omega \cup S) \backslash$ $\left.\partial A_{m_{h}}\right), \widetilde{u} \in G S B D^{2}(\operatorname{Int}(\Omega \cup S \cup \Sigma)) \cap H_{\mathrm{loc}}^{1}((\Omega \cup S) \backslash \partial G), J_{\widetilde{u}} \subset(\Omega \cap \partial G) \cup\left(\Sigma \cap J_{u}\right)$ and

$$
\begin{equation*}
\mathcal{H}^{1}\left(J_{\widetilde{u}_{h}}\right)+\int_{\Omega}\left|e\left(\widetilde{u}_{h}\right)\right|^{2} d x \leq \mathcal{F}\left(A_{m_{h}}, u_{m_{h}}\right)+\mathcal{H}^{1}(\Sigma) \leq M:=\mathcal{F}\left(A_{1}, u_{1}\right)+\mathcal{H}^{1}(\Sigma)<\infty \tag{4.20}
\end{equation*}
$$

for every $h \geq 1$. Moreover, by Proposition 4.4, the definitions of u, \widetilde{u}_{h} and \widetilde{u},

$$
\begin{equation*}
\widetilde{u}_{h} \rightarrow \widetilde{u} \quad \text { a.e. in }[S \cup(\Omega \backslash G)] \cup \bigcup_{i \in N} E_{i} \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\widetilde{u}_{h}\right| \rightarrow+\infty \quad \text { a.e. in } \bigcup_{j \in \mathbb{N} \backslash N} E_{j}, \tag{4.22}
\end{equation*}
$$

where $\left\{E_{i}\right\}$ and N are provided by Proposition 4.4.
We recall that a priori ∂A, and hence ∂G, does not need to be \mathcal{H}^{1}-rectifiable. Therefore, by [21, Theorem 6.2] $J_{\widetilde{u}} \subset\left(\Omega \cap \partial^{r} G\right) \cup\left(\Sigma \cap J_{u}\right)$, where we recall that $\partial^{r} G$ is \mathcal{H}^{1}-rectifiable part of ∂G.

To prove (4.13) we use similar arguments as in [45, Proposition 4.1]. Let $g \in L^{\infty}(\Sigma \times$ $\{0,1\}$) be such that

$$
g(x, s):=\varphi\left(x, \nu_{\Sigma}(x)\right)+s \beta(x)
$$

for which we know by (2.14) that $g \geq 0$ and

$$
\begin{equation*}
|g(x, 1)-g(x, 0)| \leq \varphi\left(x, \nu_{\Sigma}(x)\right) \quad \text { for a.e. } x \in \Sigma \text {. } \tag{4.23}
\end{equation*}
$$

Let μ_{h} be the sequence of positive Radon measures defined at Borel sets $B \subset \mathbb{R}^{2}$ as

$$
\begin{aligned}
\mu_{h}(B) & :=\int_{B \cap \Omega \cap \partial^{*} A_{m_{h}}} \varphi\left(x, \nu_{A_{m_{h}}}\right) d \mathcal{H}^{1}+2 \int_{B \cap \Omega \cap\left(A_{m_{h}}^{(1)} \cup A_{m_{h}}^{(0)}\right) \cap \partial A_{m_{h}}} \varphi\left(x, \nu_{A_{m_{h}}}\right) d \mathcal{H}^{1} \\
& +\int_{B \cap \Sigma \cap A_{m_{h}}^{(0)} \cap \partial A_{m_{h}}}\left[\varphi\left(x, \nu_{\Sigma}\right)+g(x, 1)\right] d \mathcal{H}^{1}(x)+\int_{B \cap \Sigma \backslash \partial A_{m_{h}}} g(x, 0) d \mathcal{H}^{1} \\
& +\int_{B \cap \Sigma \cap \partial^{*} A_{m_{h}} \backslash J_{u_{m_{h}}}} g(x, 1) d \mathcal{H}^{1}+\int_{B \cap \Sigma \cap J_{u_{m_{h}}}}\left[g(x, 0)+\varphi\left(x, \nu_{\Sigma}\right)\right] d \mathcal{H}^{1}
\end{aligned}
$$

and let μ be the positive measure defined at Borel sets $B \subset \mathbb{R}^{2}$ as

$$
\begin{aligned}
\mu(B):=\int_{B \cap \Omega \cap \partial^{*} G} \varphi\left(x, \nu_{A}\right) d \mathcal{H}^{1}+2 \int_{B \cap \Omega \cap G^{(1)} \cap \partial G \cap J_{\tilde{u}}} \varphi\left(x, \nu_{G}\right) d \mathcal{H}^{1} \\
+\int_{B \cap \Sigma \backslash \partial G} g(x, 0) d \mathcal{H}^{1}+\int_{B \cap \Sigma \cap \partial^{*} G \backslash J_{u}} g(x, 1) d \mathcal{H}^{1}+\int_{B \cap \Sigma \cap J_{\tilde{u}}}\left[g(x, 0)+\varphi\left(x, \nu_{\Sigma}\right)\right] d \mathcal{H}^{1} .
\end{aligned}
$$

Since $S_{\widetilde{u}}^{A}:=G^{(1)} \cap \partial G \cap J_{\widetilde{u}}$ and $\Sigma \cap J_{\widetilde{u}}=\Sigma \cap J_{u}$, we have

$$
\mu_{h}\left(\mathbb{R}^{2}\right)=\mathcal{S}\left(A_{m_{h}}, u_{m_{h}}\right)+\int_{\Sigma} \varphi\left(x, \nu_{\Sigma}\right) d \mathcal{H}^{1}
$$

and

$$
\mu\left(\mathbb{R}^{2}\right)=\widetilde{\mathcal{S}}(G, u)+\int_{\Sigma} \varphi\left(x, \nu_{\Sigma}\right) d \mathcal{H}^{1}
$$

Hence, to establish (4.13) it suffices to prove

$$
\begin{equation*}
\liminf _{h \rightarrow \infty} \mu_{h}\left(\mathbb{R}^{2}\right) \geq \mu\left(\mathbb{R}^{2}\right) . \tag{4.24}
\end{equation*}
$$

Since $\sup _{h} \mu_{h}\left(\mathbb{R}^{2}\right)<+\infty$, by compactness, there exists a positive Radon measure μ_{0} in \mathbb{R}^{2} such that (up to a subsequence) $\mu_{h} \rightharpoonup^{*} \mu_{0}$ as $h \rightarrow \infty$. We show

$$
\begin{equation*}
\mu_{0} \geq \mu \tag{4.25}
\end{equation*}
$$

and we observe that (4.24) immediately follows from (4.25). To establish (4.25) it suffices to prove

$$
\begin{align*}
& \frac{d \mu_{0}}{d \mathcal{H}^{1}\left\llcorner\left(\Omega \cap \partial^{*} G\right)\right.}(x) \geq \varphi\left(x, \nu_{G}(x)\right) \quad \text { for a.e. } x \in \Omega \cap \partial^{*} G, \tag{4.26a}\\
& \frac{d \mu_{0}}{d \mathcal{H}^{1}\left\llcorner\left(\Sigma \cap \partial^{*} G\right)\right.}(x) \geq g(x, 1) \quad \text { for a.e. } x \in \Sigma \cap \partial^{*} G, \tag{4.26b}\\
& \frac{d \mu_{0}}{d \mathcal{H}^{1}\llcorner(\Sigma \backslash \partial G)}(x) \geq \varphi\left(x, \nu_{\Sigma}(x)\right) \quad \text { for a.e. } x \in \Sigma \backslash \partial G, \tag{4.26c}\\
& \frac{d \mu_{0}}{d \mathcal{H}^{1}\left\llcorner S_{\widetilde{u}}^{A}\right.}(x) \geq 2 \varphi\left(x, \nu_{G}(x)\right) \quad \text { for a.e. } x \in S_{\widetilde{u}}^{A}, \tag{4.26d}\\
& \frac{d \mu_{0}}{d \mathcal{H}^{1}\left\llcorner\left(\Sigma \cap J_{\widetilde{u}}\right)\right.}(x) \geq 2 \varphi\left(x, \nu_{\Sigma}(x)\right) \quad \text { for a.e. } x \in \Sigma \cap J_{\widetilde{u}} \tag{4.26e}
\end{align*}
$$

since $g(x, 0)=\varphi\left(x, \nu_{\Sigma}\right)$.
The proof of the estimates (4.26a)-(4.26e) follows from similar arguments used in [45, Proposition 4.1] with special care needed for (4.26d). In fact for (4.26d) we cannot employ the strategy used for [45, Eq. 4.40c] that was hinged on the uniform bound on the number of boundary components, which here we do not have. We instead adapt the arguments employed in [45, Eq. 4.40 g$]$ by using Lemma 4.7.

Next we detail the proofs of (4.26a)-(4.26e).
Proof of (4.26a). Note that $A=G$ up to a negligible set. By Corollary $4.2 A_{m_{h}} \rightarrow A$ in $L^{1}\left(\mathbb{R}^{2}\right)$, thus, the proof of (4.26a) can be done following the arguments of [45, Eq. 4.40a] using Reshetnyak lower semicontinuity Theorem [2, Theorem 2.38].

Proof of (4.26b). Since $A_{m_{h}} \rightarrow G$ in $L^{1}\left(\mathbb{R}^{2}\right)$, we have $D \chi_{A_{m_{h}}} \rightharpoonup^{*} D \chi_{G}$. Thus, the proof of (4.26b) directly follows from [1, Lemma 3.8] (see also the proof of [45, Eq. 4.40d]).

Proof of (4.26c). Let $x_{0} \in \Sigma \backslash \partial G$ and let $r_{0}:=\operatorname{dist}\left(x_{0}, \partial G\right)>0$. Since $\mathbb{R}^{2} \backslash \operatorname{Int}\left(A_{m_{h}}\right) \xrightarrow{K}$ $\mathbb{R}^{2} \backslash \operatorname{Int}(A)=\mathbb{R}^{2} \backslash G$, there exists $r_{1} \in\left(0, r_{0}\right)$ such that $B_{r}\left(x_{0}\right) \cap \operatorname{Int}\left(A_{m_{h}}\right)$ for any $r \in\left(0, r_{1}\right)$. Therefore, for any $r \in\left(0, r_{1}\right)$

$$
\begin{aligned}
\mu_{h}\left(\overline{B_{r}\left(x_{0}\right)}\right) & =\int_{\overline{B_{r}\left(x_{0}\right)} \cap \Sigma \cap A_{m_{h}}^{(0)} \cap \partial A_{m_{h}}}\left[\varphi\left(x, \nu_{\Sigma}\right)+g(x, 1)\right] d \mathcal{H}^{1}(x)+\int_{\overline{B_{r}\left(x_{0}\right)} \cap \Sigma \backslash \partial A_{m_{h}}} g(x, 0) d \mathcal{H}^{1} \\
& \geq \int_{\overline{B_{r}\left(x_{0}\right)} \cap \Sigma \cap A_{m_{h}}^{(0)} \cap \partial A_{m_{h}}} g(x, 0) d \mathcal{H}^{1}(x)+\int_{\overline{B_{r}\left(x_{0}\right)} \cap \Sigma \backslash \partial A_{m_{h}}} g(x, 0) d \mathcal{H}^{1} \\
& =\int_{\overline{B_{r}\left(x_{0}\right)} \cap \Sigma} g(x, 0) d \mathcal{H}^{1},
\end{aligned}
$$

where in the inequality we used (4.23). Thus, taking limsup as $h \rightarrow+\infty$ and using $\mu_{h} \rightharpoonup^{*} \mu_{0}$ we get

$$
\mu_{0}\left(\overline{B_{r}\left(x_{0}\right)}\right) \geq \int_{B_{r}\left(x_{0}\right) \cap \Sigma} g(x, 0) d \mathcal{H}^{1} .
$$

Now (4.26c) follows from the Besicovitch Differentiation Theorem.

Proofs of (4.26d) and (4.26e). We establish

$$
\begin{equation*}
\frac{d \mu_{0}}{d \mathcal{H}^{1}\llcorner K} \geq 2 \phi\left(x, \nu_{K}\right) \quad \text { for } \mathcal{H}^{1} \text {-a.e. } x \in K \tag{4.27}
\end{equation*}
$$

where

$$
K=S_{\widetilde{u}}^{A} \cup\left(\Sigma \cap J_{\widetilde{u}}\right) .
$$

Let $x \in K$ be such that $\theta(K, x)=1$. Then either $x \in S_{\widetilde{u}} \subset G^{(1)} \cap \partial^{r} G$ or $x \in \Sigma \cap J_{\widetilde{u}}$. By setting $E_{0}:=S$ and recalling that $\operatorname{Int}(A)=\cup_{i \in \mathbb{N}} E_{i}$, in view of Proposition 4.4 we have one of the following:
(b1) there exists $i_{0} \in N$ such that $x \in E_{i_{0}}^{(1)} \cap \partial^{r} E_{i_{0}}, \theta\left(E_{i_{0}}^{(1)} \cap \partial^{r} E_{i_{0}}, x\right)=1$ and $u_{m_{h}}+$ $a_{m_{h}} \rightarrow u$ a.e. in $E_{i_{0}}$;
(b2) there exist $i_{0} \in N \cup\{0\}$ and $j_{0} \in \mathbb{N} \backslash N$ such that $x \in \partial^{*} E_{i_{0}} \cap \partial^{*} E_{j_{0}}$ and $u_{m_{h}}+a_{m_{h}} \rightarrow$ u a.e. in $E_{i_{0}}$ and $\left|u_{m_{h}}+a_{m_{h}}\right| \rightarrow \infty$ a.e. in $E_{j_{0}}$;
(b3) there exist $i_{1}, i_{2} \in N \cup\{0\}$ with $i_{1} \neq i_{2}$ such that $x \in \partial^{*} E_{i_{1}} \cap \partial^{*} E_{i_{2}}$ and $u_{m_{h}}+a_{m_{h}} \rightarrow$ u a.e. in $E_{i_{1}} \cup E_{i_{2}}$.
Let L denote the set among $E_{i_{0}}^{(1)} \cap \partial^{r} E_{i_{0}}, \partial^{*} E_{i_{0}} \cap \partial^{*} E_{j_{0}}$ and $\partial^{*} E_{i_{1}} \cap \partial^{*} E_{i_{2}}$ containing x. Without loss of generality we assume that $x \in Y \subset L$, where Y is defined as the set of points $y \in L \subset \partial A$ satisfying:
(c1) $\theta(\partial G, y)=\theta(\partial A, y)=\theta(L, y)=1$ and $\nu_{G}(y)=\nu_{A}(y)=\nu_{L}(y)$ exists. If $y \in \Sigma$, then additionally, $\theta(\Sigma, x)=1$ and ν_{Σ} also exists;
(c2) as $\rho \rightarrow 0$ the sets $\overline{Q_{R, \nu_{L}}(y)} \cap \sigma_{\rho, x}(\partial A), \overline{Q_{R, \nu_{L}}(x)} \cap \sigma_{\rho, y}(\partial G)$ and $\overline{Q_{R, \nu_{L}}(y)} \cap \sigma_{\rho, y}(L)$ converge $\overline{Q_{R, \nu_{L}}(y)} \cap T_{y}$ in the Kuratowski sense, where $R>0$ and T_{y} is the generalized tangent line to ∂A at y;
(c3) one-sided traces $\widetilde{u}^{+}(y)$ and $\widetilde{u}^{-}(y)$ of \widetilde{u} w.r.t. L exist and are not equal;
(c4) $\frac{d \mu_{0}}{d \mathcal{H}^{1}\llcorner K}(y)$ exists and is finite.
In fact, $\mathcal{H}^{1}(L \backslash Y)=0$ since for (c1) we notice that $Y \subset L \subset \partial^{r} A$ and $\partial^{r} A$ is \mathcal{H}^{1}-rectifiable, for (c2) we use Proposition 4.3 by observing that the points of Σ and $\Omega \cap \partial A$ satisfy uniform density estimates in view of the Lipchitzianity of Σ and Proposition 4.1, respectively, for (c3) we use [21, Definition 2.4] and the existence of traces of $G B D$-functions along C^{1} manifolds [21, Theorem 6.2] and the fact that being a jump set of \widetilde{u}, the set K (and also L) can be covered by at most countably many one-dimensional C^{1}-graphs (up to a \mathcal{H}^{1}-negligible set), and finally for (c4) we use Besicovitch Differentiation Theorem.

Without loss of generality, we assume $x=0, \nu_{K}(x)=\mathbf{e}_{\mathbf{2}}, T_{x}$ is the x_{1}-axis and \mathbf{e}_{2} is the outer normal of $E_{i_{0}}$.

Let $4 r_{0}:=\operatorname{dist}(0, \partial \Omega)$ if $0 \in \Omega$ and $4 r_{0}:=\operatorname{dist}(0, \partial \Sigma)$ if $0 \in \Sigma$; since Σ is Lipschitz, it consists of at most countably many open connected components in $\partial \Omega$, and hence, $r_{0}>0$. By weak convergence,

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \mu_{h}\left(\overline{Q_{r}}\right)=\mu_{0}\left(Q_{r}\right) \tag{4.28}
\end{equation*}
$$

for a.e. $r \in\left(0, r_{0}\right)$. By assumption (b3), [21, Definition 2.4] and [21, Remark 2.2] separately applied to $Q_{1}^{+}:=Q_{1} \cap\left\{x_{2}>0\right\}$ and $Q_{1} \backslash Q_{1}^{+}$we have

$$
\begin{equation*}
\lim _{r \rightarrow 0} \int_{Q_{1}}\left|\tau(\widetilde{u}(r x))-\tau\left(u_{0}(x)\right)\right| d x=0 \tag{4.29}
\end{equation*}
$$

where

$$
u_{0}:=\widetilde{u}^{+}(0) \chi_{Q_{1}^{+}}+\widetilde{u}^{-}(0) \chi_{Q_{1} \backslash Q_{1}^{+}}
$$

and

$$
\tau(z)=\left(\arctan z_{1}, \arctan z_{2}\right), \quad z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2} .
$$

For every $r \in\left(0, r_{0}\right)$ let

$$
U_{r}^{\infty}:=\left\{x \in Q_{1}: \liminf _{h \rightarrow \infty}\left|\widetilde{u}_{h}(r x)\right|=+\infty\right\}
$$

Unlike the proof of [45, Eq. 4.40 g], (4.22) implies that U_{r}^{∞} can have positive measure. By (4.21) and the Dominated Convergence Theorem

$$
\begin{equation*}
\lim _{h \rightarrow \infty} \int_{Q_{1} \backslash U_{r}^{\infty}}\left|\tau\left(\widetilde{u}_{h}(r x)\right)-\tau(\widetilde{u}(r x))\right| d x=0 \tag{4.30}
\end{equation*}
$$

By (c2) applied with $R=8$, Proposition 4.3 and (c1)-(c3)

$$
\begin{aligned}
& Q_{8} \cap \sigma_{r}(\partial A) \stackrel{K}{\rightarrow} I_{8} \quad \text { and } \quad \mathcal{H}^{1}\left\llcorner(Q _ { 8 } \cap \sigma _ { r } (\partial A)) \stackrel { * } { \rightharpoonup } \mathcal { H } ^ { 1 } \left\llcorner I_{8},\right.\right. \\
& Q_{8} \cap \sigma_{r}(L) \xrightarrow{K} I_{8} \quad \text { and } \quad \mathcal{H}^{1}\left\llcorner\left(Q_{8} \cap \sigma_{r}(L)\right)\right) \stackrel{*}{\rightharpoonup} \mathcal{H}^{1}\left\llcorner I_{8}\right.
\end{aligned}
$$

as $r \rightarrow 0$. Hence, by [45, Proposition A.5]

$$
\begin{align*}
& \operatorname{sdist}\left(\cdot, \sigma_{r}(\partial A)\right) \rightarrow-\operatorname{dist}\left(\cdot, T_{0}\right) \tag{4.31a}\\
& \operatorname{sdist}\left(\cdot, \sigma_{r}\left(\partial E_{i_{0}}\right)\right) \rightarrow-\operatorname{dist}\left(\cdot, T_{0}\right) \tag{4.31b}\\
& \operatorname{sdist}\left(\cdot, \sigma_{r}\left(\partial\left[E_{i_{0}} \cup E_{j_{0}}\right]\right)\right) \rightarrow-\operatorname{dist}\left(\cdot, T_{0}\right), \tag{4.31c}\\
& \operatorname{sdist}\left(\cdot, \sigma_{r}\left(\partial\left[E_{i_{1}} \cup E_{i_{2}}\right]\right)\right) \rightarrow-\operatorname{dist}\left(\cdot, T_{0}\right) \tag{4.31d}
\end{align*}
$$

locally uniformly in $\overline{Q_{4}}$ as $r \rightarrow 0$. Let

$$
U_{0}^{\infty}= \begin{cases}\emptyset & \text { in cases }(\mathrm{c} 1) \text { and }(\mathrm{c} 3) \\ Q_{1}^{+} & \text {in case }(\mathrm{c} 2)\end{cases}
$$

By the definitions of $E_{i_{0}}, E_{j_{0}}, E_{i_{1}}$ and $E_{i_{2}}$ and (4.31b)-(4.31d)

$$
\begin{equation*}
\lim _{r \rightarrow 0}\left|U_{r}^{\infty} \Delta U_{0}^{\infty}\right|=0 \tag{4.32}
\end{equation*}
$$

Step 1: We choose sequences $h_{k} \nearrow \infty$ and $r_{k} \searrow 0$ as follows. By (4.28), (4.29), (4.31a) and (4.32) for any $k \in \mathbb{N}$ there exists $r_{k} \in\left(0, \frac{1}{k}\right)$ such that (4.28) holds with $r=r_{k}$ and

$$
\begin{align*}
& \left\|\operatorname{sdist}\left(\cdot, \sigma_{r_{k}}(\partial A)\right)+\operatorname{dist}\left(\cdot, T_{0}\right)\right\|_{L^{\infty}\left(Q_{4}\right)}<\frac{1}{k^{2}} \tag{4.33a}\\
& \int_{Q_{1}}\left|\tau\left(\widetilde{u}\left(r_{k} x\right)\right)-\tau\left(u_{0}(x)\right)\right| d x<\frac{1}{k^{2}} \tag{4.33b}\\
& \left|U_{r_{k}}^{\infty} \Delta U_{0}^{\infty}\right|<\frac{1}{k^{2}} \tag{4.33c}
\end{align*}
$$

Given $k \geq 1$ and r_{k}, since $A_{m_{h}}$ sdist-converges to A and the function τ is bounded, by (4.30), (4.33c) and (4.28) we can choose h_{k} such that

$$
\begin{align*}
& \frac{1}{h_{k} r_{k}}<\frac{1}{k} \tag{4.34a}\\
& \left\|\operatorname{sdist}\left(\cdot, \sigma_{r_{k}}\left(\partial A_{m_{h_{k}}}\right)\right)-\operatorname{sdist}\left(\cdot, \sigma_{r_{k}}(\partial A)\right)\right\|_{L^{\infty}\left(Q_{4}\right)}<\frac{1}{k} \tag{4.34b}\\
& \int_{Q_{1} \backslash U_{0}^{\infty}}\left|\tau\left(\widetilde{u}_{h_{k}}\left(r_{k} x\right)\right)-\tau\left(\widetilde{u}\left(r_{k} x\right)\right)\right| d x<\frac{1}{k} \tag{4.34c}\\
& \mu_{h_{k}}\left(\overline{Q_{r_{k}}}\right) \leq \mu_{0}\left(Q_{r_{k}}\right)+r_{k}^{2} \tag{4.34~d}
\end{align*}
$$

Notice that by (4.34a), $h_{k} \rightarrow \infty$ as $k \rightarrow \infty$.
Let

$$
D_{k}:=\sigma_{r_{k}}\left(A_{m_{h_{k}}} \cup S\right)
$$

and

$$
w_{k}(x):=\widetilde{u}_{h_{k}}\left(r_{k} x\right), \quad x \in Q_{1} .
$$

Then the number of connected components of ∂D_{k} lying strictly inside Q_{4} does not exceed $m_{h_{k}}$, and $w_{k} \in G S B D^{2}\left(Q_{1}\right)$ with $J_{w_{k}} \subset Q_{1} \cap \partial D_{k}$. By (4.34b) and (4.33a),

$$
\operatorname{sdist}\left(\cdot, \partial D_{k}\right) \rightarrow-\operatorname{dist}\left(\cdot, T_{0}\right) \quad \text { uniformly in } Q_{4} \text { as } k \rightarrow \infty
$$

Moreover, by (4.33b) and (4.34c) $w_{k} \rightarrow u_{0}$ a.e. in $Q_{1} \backslash U_{1}^{\infty}$ and $\left|w_{k}\right| \rightarrow+\infty$ a.e. in U_{1}^{∞}. By the finiteness of

$$
\frac{d \mu_{0}}{\mathcal{H}^{1}\llcorner L}(0)=\lim _{k \rightarrow \infty} \frac{\mu_{0}\left(Q_{r_{k}}\right)}{2 r_{k}}
$$

and (4.34d)

$$
\begin{equation*}
\mathcal{H}^{1}\left(Q_{1} \cap \partial D_{k}\right)=\frac{\mathcal{H}^{1}\left(Q_{r_{k}} \cap \partial A_{m_{h_{k}}}\right)}{r_{k}} \leq \frac{\mu_{h_{k}}\left(\overline{Q_{r_{k}}}\right)}{c_{1} r_{k}} \leq C:=\frac{2}{c_{1}} \frac{d \mu_{0}}{\mathcal{H}^{1}\llcorner L}(0)+1 \tag{4.35}
\end{equation*}
$$

for all large k. Moreover, by changing variables as $x=r_{k} y$ and using (4.20) we get

$$
\int_{Q_{1}}\left|e\left(w_{k}\right)\right|^{2} d x=\int_{Q_{r_{k}}}\left|e\left(\widetilde{u}_{k}\right)\right|^{2} d y \leq M
$$

for all k; note that the first equality holds only in dimension two.
Fix $\delta \in(0,1)$. Since φ is uniformly continuous, there exists $k_{\delta}^{0}>0$ such that

$$
|\varphi(x, \nu)-\varphi(0, \nu)|<\delta, \quad x \in \overline{Q_{r_{k}}}, \nu \in \mathbb{S}^{1}
$$

Therefore, by the definitions of D_{k} and μ_{h}, the nonnegativity of g as well as (4.35)

$$
\begin{equation*}
\frac{\mu_{h_{k}}\left(\overline{Q_{r_{k}}}\right)}{r_{k}} \geq \int_{Q_{1} \cap \partial^{*} D_{k}} \phi\left(\nu_{D_{k}}\right) d \mathcal{H}^{1}+2 \int_{Q_{1} \cap D_{k}^{(1)} \cap \partial D_{k}} \phi\left(\nu_{D_{k}}\right) d \mathcal{H}^{1}-2 C c_{2} \delta \tag{4.36}
\end{equation*}
$$

where

$$
\phi(\nu)=\varphi(0, \nu)
$$

By Lemma 4.7 applied with sequences $\left\{D_{k}\right\}$ and $\left\{m_{h_{k}}\right\}$ we find $k_{\delta}^{2}>k_{\delta}^{1}$ such that

$$
\int_{Q_{1} \cap \partial^{*} D_{k}} \phi\left(\nu_{D_{k}}\right) d \mathcal{H}^{1}+2 \int_{Q_{1} \cap D_{k}^{(1)} \cap \partial D_{k}} \phi\left(\nu_{D_{k}}\right) d \mathcal{H}^{1} \geq 2 \int_{I_{1}} \phi\left(\mathbf{e}_{2}\right) d \mathcal{H}^{1}-\delta .
$$

Thus, by (4.36) and (4.34d) we get

$$
\frac{\mu_{0}\left(Q_{r_{k}}\right)}{2 r_{k}}+\frac{r_{k}}{2} \geq \int_{I_{1}} \phi\left(\mathbf{e}_{\mathbf{2}}\right) d \mathcal{H}^{1}-\frac{2 C c_{1}+1}{2} \delta
$$

for all $k>k_{\delta}^{2}$. Now letting first $k \rightarrow+\infty$ and then $\delta \rightarrow 0$ we get (4.27).

5. Proof of the main results

The aim of this section is to prove theorems of Section 2.4. We start by showing that the volume-constraint infima of \mathcal{F} in \mathcal{C} and of $\widetilde{\mathcal{F}}$ in $\widetilde{\mathcal{C}}$ in fact coincide.

Proposition 5.1. Assume hypotheses (H1)-(H3) and let $\mathrm{v} \in(0,|\Omega|)$ or $S=\emptyset$. Then

$$
\begin{equation*}
\inf _{(A, u) \in \mathcal{C},|A|=\mathrm{v}} \mathcal{F}(A, u)=\inf _{(A, u) \in \widetilde{\mathcal{C}},|A|=\mathrm{v}} \widetilde{\mathcal{F}}(A, u)=\inf _{(A, u) \in \widetilde{\mathcal{C}}} \widetilde{\mathcal{F}}^{\lambda}(A, u) \tag{5.1}
\end{equation*}
$$

for any $\lambda \geq \lambda_{0}$, where λ_{0} is given by [45, Theorem 2.6] and $\widetilde{\mathcal{F}}^{\lambda}$ is given by (5.17).
Proof. We repeat similar arguments to [45, Section 5]. Note that for any $\lambda>0$

$$
\begin{equation*}
\inf _{(A, u) \in \mathcal{C},|A|=\mathrm{v}} \mathcal{F}(A, u) \geq \inf _{(A, u) \in \widetilde{\mathcal{C}},|A|=\mathrm{v}} \tilde{\mathcal{F}}(A, u) \geq \inf _{(A, u) \in \widetilde{\mathcal{C}}} \widetilde{\mathcal{F}}^{\lambda}(A, u) \tag{5.2}
\end{equation*}
$$

Further we fix any $\lambda \geq \lambda_{0}$. Recall that from [45] for such λ

$$
\inf _{(A, u) \in \mathcal{C},|A|=\mathrm{v}} \mathcal{F}(A, u)=\lim _{m \rightarrow+\infty} \min _{(A, u) \in \mathcal{C}_{m},|A|=\mathrm{v}} \mathcal{F}(A, u)=\lim _{m \rightarrow+\infty} \min _{(A, u) \in \mathcal{C}_{m}} \mathcal{F}^{\lambda}(A, u)
$$

where \mathcal{F}^{λ} is given by (2.17). Thus, in view of (5.2) to prove (5.1) it is enough to establish that for $\epsilon>0$ there exists $n_{\epsilon} \in \mathbb{N}$ and $\left(A_{\epsilon}, u_{\epsilon}\right) \in \mathcal{C}_{n_{\epsilon}}$ such that

$$
\begin{equation*}
\inf _{(A, u) \in \widetilde{\mathcal{C}}} \widetilde{\mathcal{F}}^{\lambda}(A, u)+\epsilon>\mathcal{F}^{\lambda}\left(A_{\epsilon}, u_{\epsilon}\right) \tag{5.3}
\end{equation*}
$$

To prove the existence of n_{ϵ} and $\left(A_{\epsilon}, u_{\epsilon}\right) \in \mathcal{C}_{n_{\epsilon}}$, we repeat essentially the same arguments of the proof of [45, Eq. 5.4]. For the convenience of the reader we give the detailed proof. Given $\epsilon>0$ let $\left(B_{1}, v_{1}\right) \in \widetilde{\mathcal{C}}$ be such that

$$
\begin{equation*}
\inf _{(A, u) \in \widetilde{\mathcal{C}}} \mathcal{F}^{\lambda}(A, u)>\mathcal{F}^{\lambda}\left(B_{1}, v_{1}\right)-\epsilon \tag{5.4}
\end{equation*}
$$

Since $\left|B_{1}\right|=\left|\operatorname{Int}\left(B_{1}\right)\right|$ and $\mathcal{F}^{\lambda}\left(B_{1}, v_{1}\right) \geq \mathcal{F}^{\lambda}\left(\operatorname{Int}\left(B_{1}\right), v_{1}\right)$, we may assume that $B_{1}=$ $\operatorname{Int}\left(B_{1}\right)$, i.e., B_{1} is open.

Step 1: First we remove the jump set $J_{v_{1}}$ of v_{1} on Σ making a hole in Ω. Recall that by our choice, ν_{Σ} is always directed towards Ω. Since Σ is Lipschitz, by the regularity of $\mathcal{H}^{1} L \Sigma$, there exists a relatively open set $\Sigma^{\prime} \subset \Sigma$ such that $\mathcal{H}^{1}\left(J_{v_{1}} \backslash \Sigma^{\prime}\right)=0$ and $\mathcal{H}^{1}\left(\Sigma^{\prime} \backslash J_{v_{1}}\right)<\frac{\epsilon}{c_{2}}$.

Let $r \in\left(0, \frac{\epsilon}{\lambda \mathcal{H}^{1}(\Sigma)}\right)$ be such that

$$
\begin{equation*}
|\varphi(x, \nu)-\varphi(y, \nu)|<\frac{\epsilon}{\mathcal{H}^{1}(\Sigma)} \tag{5.5}
\end{equation*}
$$

whenever $|x-y|<4 r$. Since Σ is Lipschitz, by Vitaly Covering Lemma we can find an at most countable family $\left\{Q_{r_{j}, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)\right\}_{j \geq 1}$ of disjoint open squares such that $x_{j} \in \Sigma$, $r_{j} \in(0, r), \Sigma \cap Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)$ is a graph in $\nu_{\Sigma}\left(x_{j}\right)$-direction, Σ crosses two opposite sides of each $Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)$ parallel to $\nu_{\Sigma}\left(x_{j}\right)$ and

$$
\begin{equation*}
\mathcal{H}^{1}\left(\Sigma^{\prime} \backslash \bigcup_{j} \overline{Q_{r_{j}, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)}\right)=0 \tag{5.6}
\end{equation*}
$$

Note that $\sum_{j} r_{j}<\mathcal{H}^{1}(\Sigma)$. For each j define

$$
\Sigma_{j}:=\left(\Sigma \cap \overline{Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)}\right)+\rho_{j} \nu_{\Sigma}\left(x_{j}\right)
$$

where $\rho_{j} \in\left(0, r_{j}\right)$ is such that Σ_{j} still connects two vertical sides of $Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)$ and $\sum_{j} \rho_{j}<\frac{\epsilon}{2 c_{2}}$. Let U_{j} be the open set whose boundaries are $\Sigma_{j}, \Sigma \cap \overline{Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)}$ and two vertical sides of $Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)$. Note that $\left\{U_{j}\right\}_{j}$ is a countable family of pairwise disjoint open sets.

Let $B_{2}:=B_{1} \backslash \overline{\cup_{j} U_{j}}$ and $v_{2}:=\left.v_{1}\right|_{B_{2} \cup S}$. Then using the localized version of \mathcal{S} we get

$$
\begin{equation*}
\mathcal{S}\left(B_{2}, v_{2}\right) \leq \mathcal{S}\left(B_{1}, v_{1}-u_{0} ; \Omega \backslash \overline{\cup_{j} U_{j}}\right)+\sum_{j}\left(\int_{\Sigma_{j}} \varphi\left(x, \nu_{\Sigma}(x)\right) d \mathcal{H}^{1}+2 c_{2} \rho_{j}\right) \tag{5.7}
\end{equation*}
$$

By (5.5) and the definition of Σ_{j}

$$
\int_{\Sigma_{j}} \varphi\left(x, \nu_{\Sigma}(x)\right) d \mathcal{H}^{1} \leq \int_{\Sigma \cap Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)} \varphi\left(y, \nu_{\Sigma}(y)\right) d \mathcal{H}^{1}+\frac{\epsilon \mathcal{H}^{1}\left(\Sigma \cap Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)\right)}{\mathcal{H}^{1}(\Sigma)}
$$

Thus summing this inequality in j and using pairwise disjointness of $Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)$ and (5.6) we get

$$
\sum_{j} \int_{\Sigma_{j}} \varphi\left(x, \nu_{\Sigma}(x)\right) d \mathcal{H}^{1} \leq \int_{\Sigma^{\prime}} \varphi\left(y, \nu_{\Sigma}(y)\right) d \mathcal{H}^{1}+\frac{\epsilon \mathcal{H}^{1}\left(\Sigma^{\prime}\right)}{\mathcal{H}^{1}(\Sigma)}
$$

Using the definition of Σ^{\prime} we obtain

$$
\sum_{j} \int_{\Sigma_{j}} \varphi\left(x, \nu_{\Sigma}(x)\right) d \mathcal{H}^{1} \leq \int_{J_{v_{1}}} \varphi\left(y, \nu_{\Sigma}(y)\right) d \mathcal{H}^{1}+2 \epsilon
$$

Inserting this in (5.7) and using the inequality $\sum_{j} \rho_{j}<\frac{\epsilon}{2 c_{2}}$ we get

$$
\mathcal{S}\left(B_{2}, v_{2}\right) \leq \mathcal{S}\left(B_{1}, v_{1}-u_{0} ; \Omega \backslash \overline{\cup_{j} U_{j}}\right)+\int_{J_{v_{1}}} \varphi\left(y, \nu_{\Sigma}(y)\right) d \mathcal{H}^{1}+3 \epsilon \leq \mathcal{S}\left(B_{1}, v_{1}\right)+3 \epsilon
$$

Then by the nonnegativity of the elastic energy, for $\left(B_{2}, v_{2}\right)$ we get

$$
\widetilde{\mathcal{F}}\left(B_{2}, v_{2}\right) \leq \widetilde{\mathcal{F}}\left(B_{1}, v_{1}\right)+3 \epsilon
$$

Notice that by our construction $\Sigma \cap J_{v_{2}}$ is \mathcal{H}^{1}-negligible, hence by Proposition A. $3 v_{2} \in$ $H_{\text {loc }}^{1}\left(\operatorname{Int}\left(B_{2} \cup S \cup \Sigma\right)\right)$.

Finally we estimate the volume contribution of B_{2}. Since $U_{j} \subset Q_{r, \nu_{\Sigma}\left(x_{j}\right)}\left(x_{j}\right)$ and $r_{j} \leq$ $r<\frac{\epsilon}{\lambda \mathcal{H}^{1}(\Sigma)}$, using $\sum_{j} r_{j}<\mathcal{H}^{1}(\Sigma)$ we get

$$
\left|B_{1} \backslash B_{2}\right| \leq \sum_{j}\left|U_{j}\right| \leq \sum_{j} r_{j}^{2} \leq r \sum_{j} r_{j}<\frac{\epsilon}{\lambda}
$$

Therefore,

$$
\begin{equation*}
\widetilde{\mathcal{F}}^{\lambda}\left(B_{1}, v_{1}\right) \geq \widetilde{\mathcal{F}}^{\lambda}\left(B_{2}, v_{2}\right)-4 \epsilon \tag{5.8}
\end{equation*}
$$

Step 2: Let $\left\{E_{i}\right\}_{i \geq 1}$ be all open connected components of B_{2} (recall that B_{2} is open). We remove all sufficiently small connected components of B_{1}. Using the localized versions of \mathcal{S} and \mathcal{W} we have

$$
\mathcal{W}\left(B_{2}, v_{2}-u_{0} ; \Omega\right)=\sum_{i \geq 1} \mathcal{W}\left(E_{i}, v_{2}-u_{0} ; \Omega\right)
$$

Since $\partial E_{i} \cap \partial E_{j} \subset B_{2}^{(1)} \cap \partial B_{2}$ and $\varphi(x, \cdot)$ is even,

$$
\mathcal{S}\left(B_{2}, v_{2} ; \Omega\right)=\sum_{i \geq 1} \mathcal{S}\left(E_{i}, v_{2} ; \Omega\right)
$$

Hence, there exists $N_{1} \in \mathbb{N}$ such that the set $B_{3}:=\cup_{i=1}^{N_{1}} E_{i}$ satisfies

$$
\begin{gathered}
\mathcal{S}\left(B_{2}, v_{2} ; \Omega\right)+\mathcal{W}\left(B_{2}, v_{2}-u_{0} ; \Omega\right)+\epsilon>\mathcal{S}\left(B_{3}, v_{2} ; \Omega\right)+\mathcal{W}\left(B_{3}, v_{2}-u_{0} ; \Omega\right) \\
0 \leq\left|B_{2}\right|-\left|B_{3}\right|<\frac{\epsilon}{\lambda}
\end{gathered}
$$

Thus,

$$
\begin{equation*}
\mathcal{F}^{\lambda}\left(B_{2}, v_{2}\right)>\mathcal{F}^{\lambda}\left(B_{3}, v_{3}\right)-2 \epsilon \tag{5.9}
\end{equation*}
$$

where $v_{3}:=\left.v_{2}\right|_{B_{3}}$.
Step 3: Let $\left\{F_{j}\right\}_{j \geq 1}$ be all connected components of $\Omega \backslash \overline{B_{3}}$ such that $\partial F_{j} \subset \partial B_{3}$ (hence, F_{i} are holes in B_{3}). We fill in all sufficiently small holes. Since $\mathcal{S}\left(B_{3}, v\right)<+\infty$, there exists $N_{2} \geq 1$ such that

$$
\sum_{i>N_{2}} \mathcal{S}\left(F_{i}, v_{3} ; \Omega\right)+\sum_{i>N_{2}} \mathcal{W}\left(F_{i}, v_{3}-u_{0} ; \Omega\right)<\epsilon, \quad \sum_{i>N_{2}}\left|F_{i}\right|<\frac{\epsilon}{\lambda}
$$

Then the set $B_{4}:=B_{3} \cup\left(\cup_{i>N_{2}} F_{i}\right)$ and the function $v_{4}:=v_{3} \chi_{B_{2} \cup S}+u_{0} \chi_{\cup_{i>N_{2}}} F_{i}$ satisfies

$$
\begin{equation*}
\mathcal{F}^{\lambda}\left(B_{3}, v_{3}\right)>\mathcal{F}^{\lambda}\left(B_{4}, v_{4}\right)-2 \epsilon \tag{5.10}
\end{equation*}
$$

By construction, $\overline{\partial^{*} B_{4}}$ has at most $N_{1}+N_{2}$ connected components.
Step 5: Finally we construct $\left(A_{\epsilon}, u_{\epsilon}\right) \in \mathcal{C}_{n_{\epsilon}}$ satisfying (5.3) for some $n_{\epsilon} \in \mathbb{N}$. Let $B_{5}:=\operatorname{Int}\left(\overline{B_{4}}\right)$. Since B_{4} can have finitely many "substantial" holes $B_{5} \cap \partial B_{4}=\emptyset$. In
particular, if we extend v_{4} arbitrarily to the set $B_{4}^{(1)} \cap \partial B_{4}$ and denote the extension by v_{5}, then $v_{5} \in G S B D^{2}\left(\operatorname{Int}\left(B_{5} \cup S \cup \Sigma\right)\right)$ and $J_{v_{5}}=S_{v_{4}}^{B_{4}}$ up to a \mathcal{H}^{1}-negligible set, where S_{u}^{A} is defined in (2.6). Since $v_{5}=v_{4}$ a.e. in B_{5}, by (5.4)-(5.10)

$$
\int_{B_{5} \cup S} \mathbb{C}(x) e\left(v_{5}\right): e\left(v_{5}\right)=\mathcal{W}\left(B_{4}, v_{4}\right) \leq \widetilde{\mathcal{F}}\left(B_{4}, v_{4}\right)+c_{2} \mathcal{H}^{1}(\Sigma) \leq C+9 \epsilon,
$$

where $C:=\max \left\{1, \inf _{\widetilde{\mathcal{C}}} \widetilde{\mathcal{F}}\right\}$ is independent of ϵ.
By [13, Theorem 1.1] there exists $u_{\epsilon} \in S B V^{2}\left(\operatorname{Int}\left(B_{5} \cup S \cup \Sigma\right)\right) \cap L^{\infty}\left(\operatorname{Int}\left(B_{5} \cup S \cup \Sigma\right)\right)$ such that $J_{u_{\epsilon}}$ is contained in a union Γ of finitely many closed connected pieces of C^{1}-curves in $\operatorname{Int}\left(B_{5} \cup S \cup \Sigma\right), u_{\epsilon} \in W^{1, \infty}\left(\operatorname{Int}\left(B_{5} \cup S \cup \Sigma\right)\right)$ and

$$
\begin{equation*}
\int_{B_{5} \cup S}\left|e\left(u_{\epsilon}\right)-e\left(v_{5}\right)\right|^{2} d x \leq \frac{\epsilon}{4(C+11 \epsilon)\left(\|\mathbb{C}\|_{\infty}+1\right)} \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{H}^{1}\left(J_{u_{\epsilon}} \Delta J_{v_{5}}\right)<\frac{\epsilon}{2 c_{2}} . \tag{5.12}
\end{equation*}
$$

Since $J_{v_{5}} \subset B_{5}$, we can assume that the squares $\left\{Q_{j}\right\}_{j \geq 1}$ of Vitali cover in [13, Eq. 4.3a] satisfies $Q_{j} \subset \subset B_{5}$. Therefore, we may assume that $\Gamma \subset \overline{B_{5}}$. Since $\mathcal{H}^{1}\llcorner\Gamma$ is regular, we may extract finitely many intervals of Γ whose union Γ^{\prime} still covers $J_{u_{\epsilon}}$ and satisfies $\mathcal{H}^{1}\left(\Gamma^{\prime} \backslash J_{u_{\epsilon}}\right)<\frac{\epsilon}{2 c_{2}}$. Now we define

$$
A_{\epsilon}:=B_{5} \backslash \overline{\Gamma^{\prime}} .
$$

Recall that both $\Sigma \cap J_{v_{5}}$ and $\Sigma \cap J_{e-\epsilon}$ are \mathcal{H}^{1}-negligible. By the definition of B_{5} and Γ^{\prime}, there exists $n_{\epsilon} \in \mathbb{N}$ such that $\left(A_{\epsilon}, u_{\epsilon}\right) \in \mathcal{C}_{n_{\epsilon}}$. By the definition of $\widetilde{\mathcal{S}}, B_{5}$ and v_{5} as well as by (5.12) we have

$$
\begin{aligned}
\widetilde{\mathcal{S}}\left(B_{4}, v_{4}\right) & =\int_{\Omega \cap \partial^{*} B_{5}} \varphi\left(x, \nu_{B_{5}}\right) d \mathcal{H}^{1}+2 \int_{B_{5} \cap J_{v_{5}}} \varphi\left(x, \nu_{J_{v_{5}}}\right) d \mathcal{H}^{1}+\int_{\Sigma \cap \partial^{*} B_{5}} \beta d \mathcal{H}^{1} \\
& \geq \int_{\Omega \cap \partial^{*} B_{5}} \varphi\left(x, \nu_{B_{5}}\right) d \mathcal{H}^{1}+2 \int_{B_{5} \cap J_{u_{\epsilon}}} \varphi\left(x, \nu_{J_{u_{\epsilon}}}\right) d \mathcal{H}^{1}+\int_{\Sigma \cap \partial^{*} B_{5}} \beta d \mathcal{H}^{1}-\epsilon .
\end{aligned}
$$

Thus, by the definition of A_{ϵ} and Γ^{\prime}

$$
\begin{align*}
\widetilde{\mathcal{S}}\left(B_{4}, v_{4}\right) & \geq \int_{\Omega \cap \partial^{*} A_{\epsilon}} \varphi\left(x, \nu_{A_{\epsilon}}\right) d \mathcal{H}^{1}+2 \int_{A_{\epsilon}^{(1)} \cap \Gamma^{\prime}} \varphi\left(x, \nu_{\Gamma^{\prime}}\right) d \mathcal{H}^{1}+\int_{\Sigma \cap \partial^{*} A_{\epsilon}} \beta d \mathcal{H}^{1}-2 \epsilon \\
& =\mathcal{S}\left(A_{\epsilon}, u_{\epsilon}\right)-2 \epsilon . \tag{5.13}
\end{align*}
$$

Moreover, using the relations $\left|A_{\epsilon} \Delta B_{4}\right|=0$ and $v_{4}=v_{5}$ a.e. in B_{5} and Cauchy-Schwartz inequality for nonnegative symmetric forms we obtain

$$
\begin{align*}
\mathcal{W}\left(A_{\epsilon}, u_{\epsilon}\right) \leq & \leq \mathcal{W}\left(B_{4}, v_{4}\right)+2 \int_{B_{5} \cup S} \mathbb{C}(x) e\left(u_{\epsilon}\right):\left(e\left(u_{\epsilon}\right)-e\left(v_{5}\right)\right) \\
\leq & \mathcal{W}\left(B_{4}, v_{4}\right)+2\left(\int_{B_{5} \cup S} \mathbb{C}(x) e\left(u_{\epsilon}\right): e\left(u_{\epsilon}\right) d x\right)^{1 / 2} \times \\
& \times\left(\int_{B_{5} \cup S} \mathbb{C}(x)\left(e\left(u_{\epsilon}\right)-e\left(v_{5}\right)\right):\left(e\left(u_{\epsilon}\right)-e\left(v_{5}\right)\right) d x\right)^{1 / 2} . \tag{5.14}
\end{align*}
$$

Similarly,

$$
\begin{aligned}
& \int_{B_{4} \cup S} \mathbb{C}(x) e\left(u_{\epsilon}\right): e\left(u_{\epsilon}\right) d x \\
\leq & \mathcal{W}\left(B_{4}, v_{4}\right)+2\left(\mathcal{W}\left(B_{4}, v_{4}\right)\right)^{1 / 2}\left(\int_{B_{5} \cup S} \mathbb{C}(x)\left(e\left(u_{\epsilon}\right)-e\left(v_{5}\right)\right):\left(e\left(u_{\epsilon}\right)-e\left(v_{5}\right)\right) d x\right)^{1 / 2} \\
\leq & (C+9 \epsilon)+2 \sqrt{(C+9 \epsilon)\|\mathbb{C}\|_{\infty}}\left\|e\left(u_{\epsilon}\right)-e\left(v_{5}\right)\right\|_{L^{2}} \leq C+10 \epsilon,
\end{aligned}
$$

where in the last inequality we used (5.11). Therefore, by (5.14) and again by (5.11)

$$
\begin{equation*}
\mathcal{W}\left(A_{\epsilon}, u_{\epsilon}\right) \leq \mathcal{W}\left(B_{4}, v_{4}\right)+2 \sqrt{(C+10 \epsilon)\|\mathbb{C}\|_{\infty}}\left\|e\left(u_{\epsilon}\right)-e\left(v_{5}\right)\right\|_{L^{2}} \leq \mathcal{W}\left(B_{4}, v_{4}\right)+\epsilon \tag{5.15}
\end{equation*}
$$

Now combining (5.13) and (5.15) as well as using $\left|B_{5}\right|=\left|A_{\epsilon}\right|$ we get

$$
\begin{equation*}
\widetilde{\mathcal{F}}^{\lambda}\left(B_{4}, v_{4}\right) \geq \mathcal{F}^{\lambda}\left(A_{\epsilon}, u_{\epsilon}\right)-3 \epsilon \tag{5.16}
\end{equation*}
$$

Since $\left(A_{\epsilon}, u_{\epsilon}\right) \in \mathcal{C}_{n_{\epsilon}}$, by (5.4), (5.8), (5.9), (5.10) and (5.16) we get

$$
\inf _{(A, u) \in \widetilde{\mathcal{C}}} \tilde{\mathcal{F}}(A, u)+12 \epsilon \geq \mathcal{F}\left(A_{\epsilon}, u_{\epsilon}\right)
$$

and (5.3) follows.
Proposition 5.1 implies that the configuration (A, u) given by Proposition 4.6 is a volume-constraint minimizer of $\widetilde{\mathcal{F}}$ in $\widetilde{\mathcal{C}}$.
Proposition 5.2. Let $(A, u) \in \widetilde{\mathcal{C}}$ be given by Proposition 4.6. Then $(\operatorname{Int}(A), u)$ is a minimizer of $\widetilde{\mathcal{F}}$ in $\widetilde{\mathcal{C}}$ under the volume constraint $|A|=\mathrm{v}$. Moreover, let λ_{0} be as in Proposition 5.1 and let $(\widetilde{A}, \widetilde{u}) \in \widetilde{\mathcal{C}}$ be any volume-constraint minimizer of $\widetilde{\mathcal{F}}$. Then $(\widetilde{A}, \widetilde{u})$ is a minimizer of $\widetilde{\mathcal{F}}^{\lambda}$ for all $\lambda \geq \lambda_{0}$, where

$$
\begin{equation*}
\widetilde{\mathcal{F}}^{\lambda}(B, v):=\widetilde{\mathcal{F}}(B, v)+\lambda| | B|-\mathrm{v}|, \quad(B, v) \in \widetilde{\mathcal{C}}, \quad \lambda>0 . \tag{5.17}
\end{equation*}
$$

Proof. Note that since $|\operatorname{Int}(A) \Delta A|=0$ and $(\operatorname{Int}(A), u) \in \widetilde{\mathcal{C}}$, by Propositions 4.5, 4.6 and 5.1

$$
\widetilde{\mathcal{F}}(\operatorname{Int}(A), u)=\inf _{(B, v) \in \mathcal{C}} \mathcal{F}(B, v)=\inf _{(B, v) \in \widetilde{\mathcal{C}}} \widetilde{\mathcal{F}}(B, v)=\inf _{(B, v) \in \mathcal{C}} \widetilde{\mathcal{F}}^{\lambda}(B, v)
$$

for all $\lambda \geq \lambda_{0}$. Thus, $(\operatorname{Int}(\underset{\mathcal{F}}{A}), u)$ is a minimizer of both $\widetilde{\mathcal{F}}$ and $\widetilde{\mathcal{F}}^{\lambda_{0}}$. The same is true for every minimizer (B, v) of $\widetilde{\mathcal{F}}$.

Theorem 5.3 (Density estimates for minimizers of $\widetilde{\mathcal{F}}^{\lambda}$). Given $\lambda>0$, let $(A, u) \in \widetilde{\mathcal{C}}$ be any minimizer of $\widetilde{\mathcal{F}}^{\lambda}(\cdot, \cdot)$ in $\widetilde{\mathcal{C}}$ and let $\xi \in \mathbb{R}^{2}$ be such that for the function

$$
\widetilde{u}:=u \chi_{A \cup S}+\xi \chi_{\Omega \backslash A}
$$

one has $\Omega \cap \partial^{*} A \subset J_{\widetilde{u}}$. Then for any $x \in \Omega$ and $r \in(0, \operatorname{dist}(x, \partial \Omega))$,

$$
\begin{equation*}
\frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap J_{\widehat{u}}\right)}{r} \leq \frac{16 c_{2}+4 \lambda}{c_{1}} \tag{5.18}
\end{equation*}
$$

Moreover, there exist $\varsigma^{*}=\varsigma^{*} \in(0,1)$ and $R^{*}>0$ not depending on (A, u) with the following property. If $x \in \Omega$ belongs to the closure $J_{\widetilde{u}}^{c}$ of the set $\left\{y \in \Omega \cap J_{\widetilde{u}}: \theta_{*}\left(J_{\widetilde{u}}, y\right)>0\right\}$, then

$$
\begin{equation*}
\frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap J_{\widetilde{u}}\right)}{r} \geq \varsigma^{*} \tag{5.19}
\end{equation*}
$$

for any square $Q_{r}(x) \subset \subset \Omega$ with $r \in\left(0, \min \left\{R^{*}, \operatorname{dist}(x, \partial \Omega)\right\}\right)$, and if $x \in \Omega$ belongs to the closure S_{u}^{c} of $\left\{x \in S_{u}^{A}: \theta_{*}\left(S_{u}^{A}, x\right)>0\right\}$, then

$$
\begin{equation*}
\frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap S_{u}^{A}\right)}{r} \geq \varsigma^{*} \tag{5.20}
\end{equation*}
$$

for any $r \in\left(0, \min \left\{R^{*}, \operatorname{dist}\left(x, \overline{\partial^{*} A}\right)\right\}\right.$. In particular,

$$
\begin{equation*}
\mathcal{H}^{1}\left(\Omega \cap\left(J_{\widetilde{u}}^{c} \backslash J_{\widetilde{u}}\right)=\mathcal{H}^{1}\left(\operatorname{Int}\left(A^{(1)}\right) \cap\left(S_{u}^{c} \backslash S_{u}^{A}\right)=0\right.\right. \tag{5.21}
\end{equation*}
$$

Proof of Theorem 5.3. As in Remark $2.5(A, u)$ is a minimizer of $\widetilde{\mathcal{F}}^{\lambda}$ if and only if $(A, u+$ u_{0}) minimizes the $\widehat{\widehat{\mathcal{F}}^{\lambda}}(\cdot):=\widetilde{\mathcal{F}}^{\lambda}\left(\cdot-u_{0}\right)$. Thus, we can introduce the following localized version of $\widetilde{\mathcal{F}}$ in open subsets O of Ω which does not see the substrate:

$$
\widetilde{\mathcal{F}}(B, v ; O):=\widetilde{\mathcal{S}}(B ; O)+\mathcal{W}(B, v ; O)
$$

where

$$
\widetilde{\mathcal{S}}(B, v ; O):=\int_{O \cap \partial^{*} B} \varphi\left(y, \nu_{B}\right) d \mathcal{H}^{1}+2 \int_{O \cap B^{(1)} \cap \partial B \cap S_{v}} \varphi\left(y, \nu_{B}\right) d \mathcal{H}^{1}
$$

the $\mathcal{W}(\cdot ; O)$ is given as in (2.9) and S_{v}^{A} is defined as in (2.6). Then the minimality of (A, u) implies that $\left(A, u+u_{0}\right)$ is a quasi-minimizer of $\widetilde{\mathcal{F}}(\cdot ; O)$ in O, namely,

$$
\widetilde{\mathcal{F}}\left(A, u+u_{0} ; O\right) \leq \widetilde{\mathcal{F}}(B, v ; O)+\lambda_{0}|A \Delta B|
$$

whenever $(B, v) \in \widetilde{\mathcal{C}}$ with $A \Delta B \subset \subset O$ and $\operatorname{supp}\left(u+u_{0}-v\right) \subset \subset O$. Now the proof of the existence of ς^{*} and R^{*} satisfying (5.18) and (5.19) runs along the same lines of the proof of Theorem 3.1 for $m=\infty$, therefore, we do not repeat it here. Note that ς^{*} and R^{*} depend only on c_{i} and λ.

Let $A_{\circ}:=\operatorname{Int}\left(A^{(1)}\right)$. We claim that

$$
\partial A_{\circ}=\overline{\partial^{*} A}
$$

Indeed, note that $A^{(1)} \backslash A_{\circ} \subset \partial A^{(1)}=\overline{\partial^{*} A}$, where in the equality we used $\overline{\partial^{*} A}=\overline{\partial^{*} A^{(1)}}=$ $\partial A^{(1)}$ see e.g., [52, Eq. 15.3]. Thus, A_{\circ} is also equivalent to A, and hence, $\partial^{*} A_{\circ}=\partial^{*} A=$ $\partial^{*} A^{(1)}$. In particular, $\partial A^{(1)}=\overline{\partial^{*} A_{\circ}} \subset \partial A_{\circ}$. On the other hand, assume that there exists $x \in \partial A_{\circ} \backslash \partial A^{(1)}$. Since $\partial A^{(1)}$ is closed, there exists $r>0$ such that $\overline{B_{r}(x)} \cap \partial A^{(1)}=\emptyset$. Hence, either $B_{r}(x) \subset \operatorname{Int}\left(A^{(1)}\right)=A_{\circ}$ or $\overline{B_{r}(x)} \cap \overline{A^{(1)}}=\emptyset$. Since A_{\circ} is open and $x \in \partial A_{\circ}$, the inclusion $B_{r}(x) \subset A_{\circ}$ is not possible. On the other hand, since $\overline{A_{\circ}} \subset \overline{A^{(1)}}$ and $x \in \partial A_{\circ}$, the relation $\overline{B_{r}(x)} \cap \overline{A^{(1)}}=\emptyset$ is also not possible. Thus, $\partial A_{\circ} \subseteq \partial A^{(1)}$.

To prove (5.20) we fix $\Omega^{\prime} \subset \subset \Omega$. We claim that $\left.\widetilde{u}\right|_{A_{\circ}}$ is a minimizer of Griffith functional $\mathcal{G}: G S B D^{2}\left(\operatorname{Int}\left(A_{\circ} \cup S \cup \Sigma\right)\right) \rightarrow \mathbb{R}$,

$$
\mathcal{G}(v):=\int_{A_{\circ} \cap J_{v}} \varphi\left(x, \nu_{J_{v}}\right) d \mathcal{H}^{1}+\int_{A_{\circ}} \mathbb{C}(x) e(v): e(v) d x
$$

with Dirichlet boundary condition $v=\widetilde{u}=u$ in $A_{\circ} \backslash \Omega^{\prime}$. Indeed, for every $v \in G S B D^{2}\left(A_{\circ}\right)$ with $\widetilde{u}=v$ in $A_{\circ} \backslash \Omega^{\prime}$ we define $B:=A_{\circ} \backslash \overline{J_{v}}$. Then $(B, v) \in \widetilde{\mathcal{C}}$ and by the minimality of (A, u)

$$
\mathcal{G}(u)-\mathcal{G}(v)=\widetilde{\mathcal{F}}(A, u)-\widetilde{\mathcal{F}}(B, v) \leq 0
$$

Since $S_{v}^{B}=\left.J_{\widetilde{u}}\right|_{A \circ}$ up to a \mathcal{H}^{1}-negligible set, (5.20) directly follows from the density estimates for the jump set of Griffith minimizers (see e.g. [12]) with possibly smaller $\varsigma^{*} \in(0,1)$ and $R^{*}>0$.

Finally, we prove (5.21) only for S_{u}^{A}, the other being similar. Let $\Gamma:=\left\{x \in S_{u}^{A}\right.$: $\left.\theta_{*}\left(S_{u}^{A}, x\right)>0\right\}$. Note that $S_{u}^{c}=\bar{\Gamma}$.

We claim that

$$
\begin{equation*}
\mathcal{H}^{1}\left(A_{\circ} \cap(\bar{\Gamma} \backslash \Gamma)\right)=0 \tag{5.22}
\end{equation*}
$$

Indeed, let $\mu:=\mathcal{H}^{1}\llcorner\Gamma$. Then $\mu(\bar{\Gamma} \backslash \Gamma)=0$. By the regularity of μ, for every $\epsilon>0$ there exists an open set $U \subset \mathbb{R}^{2}$ such that $L:=A_{\circ} \cap(\bar{\Gamma} \backslash \Gamma) \subset U$ and $\mu(U)=\mathcal{H}^{1}(U \cap \Gamma)<\epsilon$. Note that $\bar{\Gamma} \subset \overline{\left\{y \in \Omega \cap J_{\widetilde{u}}: \theta_{*}\left(J_{\widetilde{u}}, x\right)>0\right\}}$, where \widetilde{u} is given by Theorem 5.3. Hence, for (5.19) holds for all points of $\bar{\Gamma}$. By the definition of the closure, and Vitali Covering Lemma we can find at most countable pairwise disjoint family $\left\{\overline{B_{r_{i}}\left(x_{i}\right)}\right\}_{i}$ of closed balls $\overline{B_{r_{i}}\left(x_{i}\right)}$ with $x_{i} \in A_{\circ} \cap \Gamma, r_{i} \leq \min \left\{R^{*}, \epsilon, \operatorname{dist}(x, \partial \bar{A})\right\}$ such that $A_{\circ} \cap(\bar{\Gamma} \backslash \Gamma) \subset \cup_{i} \overline{B_{5 r_{i}}\left(x_{i}\right)}$. Without
loss of generality we may assume that $B_{r_{i}}\left(x_{i}\right) \subset U$. Since $Q_{r_{i} / \sqrt{2}}\left(x_{i}\right) \subset B_{r_{i}}\left(x_{i}\right) \subset Q_{r_{i}}\left(x_{i}\right)$, from the definition of Hausdorff premeasure, (5.19) and disjointness of $\left\{B_{r_{i}}\left(x_{i}\right)\right\}$ as well as the choice of U we obtain

$$
\begin{aligned}
\mathcal{H}_{10 \epsilon}\left(A_{\circ} \cap(\bar{\Gamma} \backslash \Gamma)\right) & \leq \sum_{i \geq 1} 2 \pi\left(5 r_{i}\right) \leq \frac{10 \pi \sqrt{2}}{\varsigma^{*}} \sum_{i \leq 1} \mathcal{H}^{1}\left(Q_{r_{i} / \sqrt{2}}\left(x_{i}\right) \cap \Gamma\right) \\
& =\frac{10 \pi \sqrt{2}}{\varsigma^{*}} \mathcal{H}^{1}\left(\cup_{i} Q_{r_{i} / \sqrt{2}}\left(x_{i}\right) \cap \Gamma\right) \leq \frac{10 \pi \sqrt{2}}{\varsigma^{*}} \mathcal{H}^{1}(U \cap \Gamma)<\frac{10 \pi \sqrt{2} \epsilon}{\varsigma^{*}}
\end{aligned}
$$

Now letting $\epsilon \rightarrow 0$ we get (5.22).
In the following proposition we construct a "regular" minimizer of \mathcal{F} starting from a minimizer of $\widetilde{\mathcal{F}}$ in $\widetilde{\mathcal{C}}$.
Proposition 5.4. Given $\lambda>0$, let $(A, u) \in \widetilde{\mathcal{C}}$ be any minimizer of $\widetilde{\mathcal{F}}^{\lambda}$. Define

$$
A^{\prime}:=\operatorname{Int}\left(A^{(1)}\right) \backslash \bar{\Gamma}
$$

where $\Gamma:=\left\{x \in S_{u}^{A}: \theta_{*}\left(S_{u}^{A}, x\right)>0\right\}$, and, with a slight abuse of notation, consider u as defined in $A^{\prime} \cup S$ (and so, also on the \mathcal{L}^{2}-negligible set $\left.A^{\prime} \backslash \operatorname{Int}(A)\right)$. Then $\left(A^{\prime}, u\right) \in \mathcal{C}$ is such that $\widetilde{\mathcal{F}}(A, u)=\mathcal{F}\left(A^{\prime}, u\right)$ and satisfy the following assertions:
(1) A^{\prime} is open, $\theta_{*}\left(S_{u}^{A^{\prime}}, x\right)>0$ for all $x \in S_{u}^{A^{\prime}},\left|A \Delta A^{\prime}\right|=0$ and $u \chi_{A \cup S}=u \chi_{A^{\prime} \cup S}$ a.e. in $\Omega \cup S$.
(2) The closure of $A^{\prime(1)} \cap \partial A^{\prime}$ coincide with $\overline{S_{u}^{A^{\prime}}}$ and $\mathcal{H}^{1}\left(\overline{S_{u}^{A^{\prime}}} \backslash S_{u}^{A^{\prime}}\right)=0$.
(3) Let $\varsigma *$ and R^{*} be given by Theorem 5.3. Then

$$
\begin{equation*}
\frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A^{\prime}\right)}{r} \leq \frac{16 c_{2}+4 \lambda_{0}}{c_{1}} \tag{5.23}
\end{equation*}
$$

for every square $Q_{r}(x) \subset \Omega$ and

$$
\begin{equation*}
\frac{\mathcal{H}^{1}\left(Q_{r}(x) \cap \partial A^{\prime}\right)}{r} \geq \varsigma * \tag{5.24}
\end{equation*}
$$

for every $Q_{r}(x) \subset \Omega$ with for any $x \in \partial A^{\prime}$ and $r \in\left(0, R^{*}\right)$.
Proof. Note that by definition A^{\prime} is open and $\left|A^{\prime} \Delta A\right|=0$. Moreover, $S_{u}^{A^{\prime}} \subset \Gamma$, and by (5.20) all points of $\Omega \cap \bar{\Gamma}$ satisfy uniform lower density estimates, hence, $\theta_{*}\left(S_{u}^{A^{\prime}}, x\right)>0$ for any $x \in S_{u}^{A^{\prime}}$.

We claim that $A^{\prime} \in \mathcal{A}$. Indeed, let \widetilde{u} be given as in Theorem 5.3. By definition

$$
\begin{equation*}
\Omega \cap J_{\widetilde{u}}^{c}=\Omega \cap \partial A^{\prime} \quad \text { and } \quad \partial A^{\prime} \subset J_{\widetilde{u}}^{c} \cup \Sigma, \tag{5.25}
\end{equation*}
$$

where $J_{\widetilde{u}}^{c}$ is the closure of the set $\left\{x \in J_{\widetilde{u}}: \theta_{*}\left(J_{\widetilde{u}}, x\right)>0\right\}$. Since $J_{\widetilde{u}}$ is \mathcal{H}^{1}-rectifiable, so is $J_{\widetilde{u}}^{c}$ in view of (5.21). Therefore, ∂A^{\prime} is \mathcal{H}^{1}-rectifiable, i.e., $A^{\prime} \in \mathcal{A}$. Note that by construction $\mathcal{H}^{1}\left(A^{\prime} \cap J_{\widetilde{u}}\right)=0$ hence, by Proposition A. $3 \widetilde{u} \in H_{\mathrm{loc}}^{1}\left(A^{\prime}\right)$ and, since $u=\widetilde{u}$ a.e. in A^{\prime} it follows that $u \in H_{\mathrm{loc}}^{1}\left(A^{\prime}\right)$.

Since $\left|A \Delta A^{\prime}\right|=0$ and $u=u$ a.e. in A^{\prime}, it follows that

$$
\mathcal{W}(A, u)=\mathcal{W}\left(A^{\prime}, u\right)
$$

Moreover, by the definition of Γ and S_{u}^{A},

$$
\left|\mathcal{S}\left(A^{\prime}, u\right)-\widetilde{\mathcal{S}}(A, u)\right|=\int_{\operatorname{Int}\left(A^{(1)}\right) \cap\left(\bar{\Gamma} \backslash S_{u}^{A}\right)} \varphi\left(x, \nu_{\Gamma}\right) d \mathcal{H}^{1} \leq c_{2} \mathcal{H}^{1}\left(\operatorname{Int}\left(A^{(1)}\right) \cap(\bar{\Gamma} \backslash \Gamma)\right)=0
$$

where in the last equality we used (5.21). Finally, (5.23) and (5.24) follows from (5.25) and density estimates of Theorem 5.3.

Now we are ready to prove the existence of global minimizers of \mathcal{F}.

Proof of Theorem 2.6. First we prove the assertion for $\mathcal{G}=\mathcal{F}$.
Let $\left(A_{m}, u_{m}\right) \in \mathcal{C}_{m}$ be a minimizer of \mathcal{F} satisfying the volume constraint $\left|A_{m}\right|=\mathrm{v}$ and let $\left(A_{m_{h}}, u_{m_{h}}\right)$, and A and u be as in Proposition 4.6. By (3.1), (4.13) and (4.12) we have

$$
\inf _{(B, v) \in \mathcal{C},|B|=\mathrm{v}} \mathcal{F}(B, v)=\lim _{h \rightarrow+\infty} \mathcal{F}\left(A_{m_{h}}, u_{m_{h}}\right) \geq \tilde{\mathcal{F}}(\operatorname{Int}(A), u)
$$

Since $|\operatorname{Int}(A)|=\mathrm{v}$, by Propositions 5.1 and 5.2

$$
\begin{equation*}
\inf _{(B, v) \in \mathcal{C},|B|=\mathrm{v}} \mathcal{F}(B, v)=\inf _{(B, v) \in \widetilde{\mathcal{C}},|B|=\mathrm{v}} \widetilde{\mathcal{F}}^{\lambda_{0}}(B, v)=\widetilde{\mathcal{F}}^{\lambda_{0}}(\operatorname{Int}(A), u)=\widetilde{\mathcal{F}}(\operatorname{Int}(A), u) \tag{5.26}
\end{equation*}
$$

hence, $(\operatorname{Int}(A), u)$ is a minimizer of $\widetilde{\mathcal{F}}^{\lambda_{0}}$ in $\widetilde{\mathcal{C}}$. Then by Proposition 5.4 there exists $\left(A^{\prime}, u\right) \in$ \mathcal{C} such that

$$
\widetilde{\mathcal{F}}(\operatorname{Int}(A), u)=\mathcal{F}\left(A^{\prime}, u\right)
$$

and hence, in view of $(5.26),\left(A^{\prime}, u\right)$ is a solution to (2.16).
The proof of the second assertion (i.e., the existence of λ_{1} for which the set of minimizers in \mathcal{C} of both \mathcal{F} and \mathcal{F}^{λ} coincide for all $\lambda \geq \lambda_{1}$) can be done using the first one and also following the arguments of [32, Theorem 1.1] and [45, Proposition A.6]. Without loss of generality we assume that $\lambda_{1} \geq \lambda_{0}$, where λ_{0} is given by Proposition 5.1.

Now we prove Theorem 2.6 for $\mathcal{G}=\widetilde{\mathcal{F}}$. We have already shown above that the configuration $(\operatorname{Int}(A), u)$ given by Proposition 4.6 solves the minimum problem (2.16) with $\mathcal{G}=\widetilde{\mathcal{F}}$. In view of (5.1) every volume-constraint minimizer of $\widetilde{\mathcal{F}}$ also minimizer of $\widetilde{\mathcal{F}}^{\lambda}$ for all $\lambda \geq \lambda_{1}$. To prove the converse assertion, we fix any minimizer $(A, u) \in \widetilde{\mathcal{C}}$ of $\widetilde{\mathcal{F}}^{\lambda}$ for $\lambda \geq \lambda_{1}$. By Proposition 5.4 there exists $\left(A^{\prime}, u\right) \in \mathcal{C}$ such that $\left|A^{\prime}\right|=|A|$ and $\mathcal{F}\left(A^{\prime}, u\right)=\widetilde{\mathcal{F}}(A, u)$. By the first part of the proof and (5.1) we know that

$$
\inf _{(B, v) \in \mathcal{C}} \mathcal{F}^{\lambda}(B, v)=\inf _{(B, v) \in \mathcal{C},|B|=\mathrm{v}} \mathcal{F}(B, v)=\inf _{(B, v) \in \widetilde{\mathcal{C}}} \widetilde{\mathcal{F}}^{\lambda}(B, v)=\mathcal{F}^{\lambda}\left(A^{\prime}, u\right)
$$

Hence, $\left(A^{\prime}, u\right)$ is the minimizer of \mathcal{F}^{λ}. Since $\lambda \geq \lambda_{1}$ according to the first part of the proof, $\left|A^{\prime}\right|=\mathrm{v}$. Hence, $|A|=\mathrm{v}$ and (A, u) minimizer of (2.16).

We are ready now to study the properties of the minimizers of \mathcal{F} in \mathcal{C} provided by Theorem 2.6.

Proof of Theorem 2.7. First we properties (1)-(4) the assertion for $\mathcal{G}=\widetilde{\mathcal{F}}$.
Consider any solution $(A, u) \in \widetilde{\mathcal{C}}$ of (2.16). By Proposition 5.4 there exists a $\left(A^{\prime}, u\right) \in \mathcal{C}$ with A^{\prime} defined as in (2.18), such that the properties (1)-(4) hold except the conditions $\mathcal{H}^{1}\left(\partial A \Delta \partial A^{\prime}\right)=0$ and $\mathcal{H}^{1}\left(S_{u}^{A} \Delta S_{u}^{A^{\prime}}\right)=0$ of (1). To prove these two equations it is enough to observe that

$$
0=\left|\mathcal{F}(A, u)-\mathcal{F}\left(A^{\prime}, u\right)\right|=2 \int_{A^{(1)} \cap\left(\partial A \Delta \partial A^{\prime}\right)} \varphi\left(x, \nu_{A}\right) d \mathcal{H}^{1}
$$

and

$$
0=\left|\widetilde{\mathcal{F}}(A, u)-\widetilde{\mathcal{F}}\left(A^{\prime}, u\right)\right|=2 \int_{A^{(1)} \cap\left(S_{u}^{A} \Delta S_{u}^{A^{\prime}}\right)} \varphi\left(x, \nu_{A}\right) d \mathcal{H}^{1}
$$

Now we assume that $\mathcal{G}=\mathcal{F}$ and let $(A, u) \in \mathcal{C}$ be a solution to (2.16). Since $(A, u) \in \widetilde{\mathcal{C}}$, by Proposition 5.1

$$
\inf _{(B, v) \in \widetilde{\mathcal{C}},|B|=\mathrm{v}} \widetilde{\mathcal{F}}(B, v)=\mathcal{F}(A, u) \geq \widetilde{\mathcal{F}}(A, u)
$$

Therefore, (A, u) is also a volume-constraint minimizer of $\widetilde{\mathcal{F}}$. Thus, applying first part of the proof we establish that $\left(A^{\prime}, u\right) \in \mathcal{C}$ satisfies (1)-(4).

Finally, notice that if $E \subset A^{\prime}$ is a connected component of A^{\prime} with $\mathcal{H}^{1}\left(\partial E \cap \Sigma \backslash J_{u}\right)=0$, then for $\left(A^{\prime}, v\right)$ with $v=u \chi_{(A \cup S) \backslash E}+\left(u_{0}+a\right) \chi_{E}$, where a is any rigid displacement, we have

$$
\mathcal{S}\left(A^{\prime}, u\right) \geq \mathcal{S}\left(A^{\prime}, v\right)
$$

and

$$
\begin{equation*}
\mathcal{W}\left(A^{\prime}, u\right) \geq \mathcal{W}\left(A^{\prime}, v\right) \tag{5.27}
\end{equation*}
$$

where in (5.27) equality holds if and only of $u=u_{0}+a$ in E. Therefore, by the minimality of $\left(A^{\prime}, u\right)$ it follows that $u=u_{0}+a$ in E. It remains to prove

$$
\begin{equation*}
|E| \geq 4 \pi\left(\frac{c_{1}}{\lambda_{0}}\right)^{2} \tag{5.28}
\end{equation*}
$$

Consider the competitor $\left(A^{\prime} \backslash E, u\right) \in \mathcal{C}$. By minimality and Theorem 2.6, $\mathcal{F}^{\lambda_{1}}\left(A^{\prime}, u\right) \leq$ $\mathcal{F}^{\lambda_{1}}\left(A^{\prime} \backslash E, u\right)$, so that by (5.27) and the additivity of the surface energy, $\mathcal{S}(E, u) \leq \lambda_{1}|E|$. Then by (2.13) and the isoperimetric inequality in \mathbb{R}^{2}

$$
\lambda_{1}|E| \geq c_{1} \mathcal{H}^{1}(\partial E) \geq c_{1} \sqrt{4 \pi}|E|^{1 / 2}
$$

Hence, (5.28) follows.

Appendix A.

We include in this section auxiliary results used in the paper for the convenience of the Reader. We begin by a property satisfied by the free-crystal regions in \mathcal{A} and $\widetilde{\mathcal{A}}$.

Proposition A.1. Let $A \subset \mathbb{R}^{2}$ be a bounded \mathcal{L}^{2}-measurable set with $\mathcal{H}^{1}(\partial A)<+\infty$. Then A is a set of finite perimeter in \mathbb{R}^{2}.

Proof. Since $A \Delta \operatorname{Int}(\bar{A}) \subset \bar{A} \backslash \operatorname{Int}(A)=\partial A$, we have $|A \Delta \operatorname{Int}(\bar{A})| \leq|\partial A|=0$, and hence, it suffices to prove that the open set $E:=\operatorname{Int}(\bar{A})$ has finite perimeter in \mathbb{R}^{2}. Note that by construction, $\partial E \subset \partial A$ and $\mathcal{H}^{1}(\partial E) \leq \mathcal{H}^{1}(\partial A)<+\infty$.

We divide the proof of $E \in B V\left(\mathbb{R}^{2},\{0,1\}\right)$ into three steps.
Step 1. We claim that if E is simply connected, then $E \in B V\left(\mathbb{R}^{2} ;\{0,1\}\right)$. Indeed, in this case ∂E is a connected compact set with $\mathcal{H}^{1}(\partial E) \leq \mathcal{H}^{1}(\partial A)<+\infty$ and by [33, Lemma 3.12] it contains a closed curve Γ enclosing \bar{E}. Since $\mathcal{H}^{1}(\Gamma)<+\infty$, it is rectifiable in the sense of [33, Section 3.2]: its length $\mathcal{H}^{1}(\Gamma)$ is well-approximated by the length of closed polygonal curves π_{k} whose vertices lie on Γ, i.e., $\mathcal{H}^{1}\left(\pi_{k}\right) \rightarrow \mathcal{H}^{1}(\Gamma)$. Let E_{k} be the set enclosed by π_{k} and observe that $\pi_{k} \xrightarrow{K} \Gamma$. Since E_{k} are Lipschitz sets, they are sets of finite perimeter and $P\left(E_{k}\right)=\mathcal{H}^{1}\left(\pi_{k}\right) \leq \mathcal{H}^{1}(\Gamma)+1$ for large k. Since E is open, for every $x \in E$ there exists a ball $B_{r}(x) \subset E$ and by the Kuratowski convergence of π_{k} to Γ, it follows that $B_{r}(x) \subset E_{k}$ for large k, and hence $\chi_{E_{k}}(x)=\chi_{E}(x)=1$. Similarly, $\chi_{E_{k}}(x)=\chi_{E}(x)=0$ for every $x \in \mathbb{R}^{2} \backslash \bar{E}$ provided k is large enough. Therefore, $\chi_{E_{k}} \rightarrow \chi_{E}$ a.e. in \mathbb{R}^{2} and hence, $E_{k} \rightarrow E$ in $L^{1}\left(\mathbb{R}^{2}\right)$. Now by the L^{1}-lower semicontinuity of perimeter (see [52, Proposition 12.15]), E is a set of finite perimeter.

Step 2. We claim that if E is connected, then $E \in B V\left(\mathbb{R}^{2} ;\{0,1\}\right)$. Indeed, let E^{\prime} be the smallest simply connected open set containing E (basically, E^{\prime} is contructed by filling in all "holes" in E) and let

$$
F:=E^{\prime} \backslash \bar{E}
$$

be the union of all holes. Since $\partial E^{\prime} \subset \partial E$ and $\mathcal{H}^{1}(\partial E) \leq \mathcal{H}^{1}(\partial A)<+\infty$, by Step 1 $E^{\prime} \in B V\left(\mathbb{R}^{2} ;\{0,1\}\right)$. Observing $E=E^{\prime} \backslash \bar{F}$, to conclude this step it is enough to prove that F has finite perimeter. Since every open set in \mathbb{R}^{2} is a union of at most countably
many connected components ${ }^{\dagger}$, we have $F=\cup_{j} F_{j}$, where $\left\{F_{j}\right\}$ are open, connected and $F_{i} \cap F_{j}=\emptyset$ for $i \neq j$. Since E is connected, each F_{j} is simply connected, and hence, by Step $1 F_{j} \in B V\left(\mathbb{R}^{2} ;\{0,1\}\right)$. Moreover, the set $\partial F_{i} \cap \partial F_{j}, i \neq j$, can have at most one point. Indeed, otherwise, by the definition of F and the connectedness of E we could find a curve $\gamma \subset \partial F_{i} \cap \partial F_{j} \cap \partial E$ with $\mathcal{H}^{1}(\gamma)>0$, which contradicts the equality $E=\operatorname{Int}(\bar{E})$. Therefore, observing $\partial F=\bigcup \partial F_{j} \subset \partial E$, we obtain

$$
\sum_{j} P\left(F_{j}\right) \leq \sum_{j} \mathcal{H}^{1}\left(\partial F_{j}\right)=\mathcal{H}^{1}\left(\bigcup_{j} \partial F_{j}\right)=\mathcal{H}^{1}(\partial F) \leq \mathcal{H}^{1}(\partial E)<+\infty .
$$

Thus, $F=\bigcup_{j} F_{j}$ has finite perimeter in \mathbb{R}^{2}.
Step 3. Now we prove that $E \in B V\left(\mathbb{R}^{2} ;\{0,1\}\right)$ (without assuming any extra connectedness assumption). Let $\left\{E_{j}\right\}$ be the family of connected components of E. Since $\mathcal{H}^{1}\left(\partial E_{j}\right) \leq \mathcal{H}^{1}(\partial E)<+\infty$, by Step $2 E_{j} \in B V\left(\mathbb{R}^{2} ;\{0,1\}\right)$. Therefore, since $\partial E=\cup_{j} \partial E_{j}$ we obtain that
$\sum_{j} P\left(E_{j}\right) \leq \sum_{j} \mathcal{H}^{1}\left(\partial E_{j}\right) \leq \mathcal{H}^{1}\left(\bigcup_{j} \partial E_{j}\right)+\sum_{i<j} \mathcal{H}^{1}\left(\partial E_{i} \cap \partial E_{j}\right) \leq 2 \mathcal{H}^{1}\left(\bigcup_{j} \partial E_{j}\right)=2 \mathcal{H}^{1}(\partial E)$,
and hence, by the finiteness of $\mathcal{H}^{1}(\partial E)$, the set $E=\cup_{j} E_{j}$ has finite perimeter in \mathbb{R}^{2}.
The following proposition, which is based on [52, Proposition 2.16], is used throughout the paper.
Proposition A.2. Let $K \subset \mathbb{R}^{2}$ be such that $\mathcal{H}^{1}(K)<+\infty$ and let $\left\{E_{t}\right\}_{t \in Y}$ be a family of sets parametrized by $t \in \Upsilon$ such that

$$
\begin{equation*}
\mathcal{H}^{1}\left(K \cap E_{t} \cap E_{s}\right)=0 \tag{A.1}
\end{equation*}
$$

and $\mathcal{H}^{1}\left(K \cap E_{t}\right)>0$. Then Υ is at most countable.
Proof. The proof runs along the lines of the proof of [52, Proposition 2.16]. For $j \in \mathbb{N}$ let $\Upsilon_{j} \subset \Upsilon$ be the set of all $t \in \Upsilon$ such that $\mathcal{H}^{1}\left(K \cap E_{t}\right)>\frac{1}{j}$. Then by (A.1) Υ_{j} cannot contain more than $j \mathcal{H}^{1}(K)$ elements. Since $\Upsilon=\cup_{j} \Upsilon_{j}$, the set Υ is at most countable.

We finally state a regularity property of $G S B D$ functions with \mathcal{H}^{d-1}-negligible jump.
Proposition A.3. Let $U \subset \mathbb{R}^{d}$ be a connected bounded open set and $u \in G S B D^{2}(U)$ be such that $\mathcal{H}^{d-1}\left(J_{u}\right)=0$. Then $u \in H_{\mathrm{loc}}^{1}(U)$.

Proof. Indeed, for $r>0$ let $Q:=x_{0}+(-r, r)^{d} \subset U$ be any cube centered at $x \in U$ and let $0<\theta^{\prime \prime}<\theta^{\prime}<1$. For shortness, write $Q^{\prime}:=x_{0}+\left(-\theta^{\prime} r, \theta^{\prime} r\right)^{d}$ and $Q^{\prime \prime}:=x_{0}+\left(-\theta^{\prime \prime} r, \theta^{\prime \prime} r\right)^{d}$. By [11, Proposition 3.1 (1)] (see also [10, Theorem 1.1]) there exists a \mathcal{L}^{2}-measurable set $\omega \subset Q^{\prime}$ and a rigid displacement $a: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ such that $|\omega| \leq c_{*} r \mathcal{H}^{d-1}\left(J_{u}\right)=0$ and

$$
\int_{Q^{\prime}}|u-a|^{\frac{2 d}{d-1}} d x=\int_{Q^{\prime} \backslash \omega}|u-a|^{\frac{2 d}{d-1}} d x \leq c_{*} r^{2}\left(\int_{Q} \mid e(u)^{2}\right)^{\frac{d}{d-1}}
$$

where c_{*} depends only on d. Hence, $u \in L_{\text {loc }}^{\frac{2 d}{d-1}}(Q)$. Next, fix any mollifier $\rho_{1} \in C^{\infty}\left(B_{r}(0)\right)$ with $\rho_{\epsilon} \in C_{c}^{\infty}\left(B_{\left(\theta^{\prime}-\theta^{\prime \prime}\right) \epsilon}\right)$, where $\rho_{\epsilon}(x):=\rho_{1}(x / \epsilon), \epsilon \in(0, r)$. By [11, Proposition 3.1] there exists $\bar{p}>0$ depending on n and ϵ such that

$$
\int_{Q^{\prime \prime}}\left|e\left(u * \rho_{\epsilon}\right)-e(u) * \rho_{\epsilon}\right|^{2} d x \leq c\left(\frac{\mathcal{H}^{d-1}\left(J_{u}\right)}{r^{d-1}}\right)^{\bar{p}} \int_{Q}|e(u)|^{2} d x=0
$$

[^3]where c depends on n, ρ_{1} and ϵ. Hence,
\[

$$
\begin{equation*}
e\left(u * \rho_{\epsilon}\right)=e(u) * \rho_{\epsilon} \quad \text { a.e. in } Q^{\prime \prime} . \tag{A.2}
\end{equation*}
$$

\]

Recall that $u * \rho_{\epsilon} \in C^{\infty}\left(Q^{\prime \prime}\right)$. Since $e(u) \in L^{2}(Q), e(u) * \rho_{\epsilon} \in C^{\infty}\left(Q^{\prime \prime}\right) \cap L^{2}\left(Q^{\prime \prime}\right)$ in particular, $e\left(u * \rho_{\epsilon}\right) \in C^{\infty}\left(Q^{\prime \prime}\right) \cap L^{2}\left(Q^{\prime \prime}\right)$. By Poincaré-Korn inequality $u * \rho_{\epsilon} \in H^{1}\left(Q^{\prime \prime}\right)$. Since $e(u) * \rho_{\epsilon} \rightarrow e(u)$ in $L^{2}\left(Q^{\prime \prime}\right)$ as $\epsilon \rightarrow 0$, in view of (A.2) there exists $\epsilon_{0}>0$ such that

$$
\| e\left(u * \rho_{\epsilon}\left\|_{L^{2}\left(Q^{\prime \prime}\right)} \leq\right\| e(u) \|_{L^{2}\left(Q^{\prime \prime}\right)}+1 \quad \text { for all } \epsilon \in\left(0, \epsilon_{0}\right) .\right.
$$

Moreover, by Poincaré-Korn inequality for any $\epsilon \in\left(0, \epsilon_{0}\right)$ there exists a rigid displacement a_{ϵ} such that

$$
\left\|u * \rho_{\epsilon}-a_{\epsilon}\right\|_{H^{1}\left(Q^{\prime \prime}\right)} \leq C \| e\left(u * \rho_{\epsilon} \|_{L^{2}\left(Q^{\prime \prime}\right)} \leq C\left(\|e(u)\|_{L^{2}\left(Q^{\prime \prime}\right)}+1\right),\right.
$$

where C is the Poincaré-Korn constant for a cube. Thus, the family $\left\{u * \rho_{\epsilon}\right\}_{\epsilon}$ is uniformly bounded in $H^{1}\left(Q^{\prime \prime}\right)$. Since $u * \rho_{\epsilon} \rightarrow u$ in $L^{2}\left(Q^{\prime \prime}\right)$, there exists a rigid displacement a such that $a_{\epsilon} \rightarrow a$ in $L^{2}\left(Q^{\prime \prime}\right)$. Then $u * \rho_{\epsilon}-a_{\epsilon}$ weakly converges to $u-a$ in $H^{1}\left(Q^{\prime \prime}\right)$, i.e., $u-a \in H^{1}\left(Q^{\prime \prime}\right)$. Since a is linear and $\theta^{\prime \prime}$ is arbitrary, $u \in H_{\mathrm{loc}}^{1}(Q)$. Now covering U with finitely many cubes of edgelength $2 r$ we get $u \in H_{\mathrm{loc}}^{1}(U)$.

Acknowledgments

Sh. Kholmatov acknowledges support from the Austrian Science Fund (FWF) projects M 2571 and P 33716. P. Piovano acknowledges support from the Austrian Science Fund (FWF) projects P 29681 and TAI 293, from the Vienna Science and Technology Fund (WWTF) together with the City of Vienna and Berndorf Privatstiftung through Project MA16-005, and from BMBWF through the OeAD-WTZ project HR 08/2020. Furthermore, P. Piovano is member of the Italian "Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni" (GNAMPA-INdAM) and has received funding from the GNAMPA 2022 project CUP: E55F22000270001. Finally, P. Piovano is grateful for the support received as Visiting Professor and Excellence Chair at the Okinawa Institute of Science and Technology (OIST), Japan.

References

[1] S. Almi, G. Dal Maso, R. Toader:, A lower semicontinuity result for a free discontinuity functional with a boundary term. J. Math. Pures Appl. 108 (2017), 952-990.
[2] L. Ambrosio, N. Fusco, D. Pallara: Functions of Bounded Variation and Free Discontinuity problems. Oxford University Press, New York 2000.
[3] R. Asaro, W. Tiller: Interface morphology development during stress corrosion cracking: Part I. Via surface diffusion. Metall. Trans. 3 (1972), 1789-1796.
[4] J.-F. Babadjian, D. Henao: Reduced models for linearly elastic thin films allowing for fracture, debonding or delamination. Interface Free Bound. 18 (2016), 545-578.
[5] P. Bella, M. Goldman, B. Zwicknagl: Study of island formation in epitaxially strained films on unbounded domains. Arch. Rational Mech. Anal. 218 (2015), 163-217.
[6] E. Bonnetier, A. Chambolle: Computing the equilibrium configuration of epitaxially strained crystalline films. SIAM J. Appl. Math. 62 (2002), 1093-1121.
[7] B. Bourdin, G. Francfort, J.-J. Marigo: The variational approach to fracture. Springer, Amsterdam, 2008.
[8] A. Braides, A. Chambolle, M. Solci: A relaxation result for energies defined on pairs set-function and applications. ESAIM: Control Optim. Calc. Var. 13 (2007), 717-734.
[9] L. Caffarelli, A. Mellet: Capillary drops: contact angle hysteresis and sticking drops. Calc. Var. Partial Differential Equations 29 (2007), 141-160.
[10] A. Chambolle, S. Conti, G. Francfort: Korn-Poincaré inequalities for functions with a small jump set. Indiana Univ. Math. J. 65 (2016), 1373-1399.
[11] A. Chambolle, S. Conti, F. Iurlano: Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy. J. Math. Pures Appl. 128 (2019), 119-139.
[12] A. Chambolle, V. Crismale: Existence of strong solutions to the Dirichlet problem for the Griffith energy. Calc. Var. Partial Differential Equations 58 (2019), 136.
[13] A. Chambolle, V. Crismale: A density result in $G S B D^{p}$ with applications to the approximation of brittle fracture energies. Arch. Rational Mech. Anal. 232 (2019) 1329-1378.
[14] A. Chambolle, V. Crismale: Compactness and lower-semicontinuity in $G S B D$. J. Eur. Math. Soc. (JEMS) 23 (2021), 701-719.
[15] A. Chambolle, Ch.J. Larsen: C^{∞}-regularity of the free boundary for a two-dimensional optimal compliance problem. Calc. Var. Partial Differential Equations 18 (2003), 77-94.
[16] V. Crismale, M. Friedrich: Equilibrium configurations for epitaxially strained films and material voids in three-dimensional linear elasticity. Arch. Rational Mech. Anal. 237 (2020), 1041-1098.
[17] S. Conti, M. Focardi, F. Iurlano: Existence of minimizers for the 2d stationary Griffith fracture model. C.R. Math. 354 (2016), 1055-1059.
[18] S. Conti, M. Focardi, F. Iurlano: A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems. Commun. Contemp. Math. 21 (2019), 1950026.
[19] S. Conti, M. Focardi, F. Iurlano: Existence of strong minimizers for the Griffith static fracture model in dimension two. Ann. Inst. H. Poincaré Anal. Non Linéare 36 (2019), 455-474.
[20] G. Dal Maso: An Introduction to Γ-Convergence. Birkhäuser, Boston, 1993.
[21] G. Dal Maso: Generalised functions of bounded deformation. J. Eur. Math. Soc. 15 (2013), 19431997.
[22] G. Dal Maso, J. Morel, S. Solimini: A variational method in image segmentation: Existence and approximation results. Acta Math. 168 (1992), 89-151.
[23] A. Danescu: The Asaro-Tiller-Grinfeld instability revisited. Int. J. Solids Struct. 38 (2001), 46714684.
[24] E. Davoli, P. Piovano: Analytical validation of the Young-Dupré law for epitaxially strained thin films. Math. Models Methods Appl. Sci. 29 (2019), 2183-2223.
[25] E. Davoli, P. Piovano: Derivation of a heteroepitaxial thin-film model. Interface Free Bound. 22 (2020), 1-26.
[26] P.-G. De Gennes, F. Brochard-Wyart, D. Quéré: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York, 2004.
[27] E. De Giorgi, G. Buttazzo, G. Dal Maso: On the lower semicontinuity of certain integral functionals. Atti Acc. Naz. Lin. Cl. Sc. Fis. Mat. Nat. Rend. 874 (1983), 274-282.
[28] E. De Giorgi, M. Carriero, A. Leaci: Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal. 108 (1989), 195-218.
[29] C. De Lellis: Rectifiable sets, densities and tangent measures. Zürich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2008
[30] G. De Philippis, F. Maggi: Regularity of free boundaries in anisotropic capillarity problems and the validity of Young's law. Arch. Rational Mech. Anal. 216 (2015), 473-568.
[31] X. Deng: Mechanics of debonding and delamination in composites: Asymptotic studies. Compos. Eng. 5 (1995), 1299-1315.
[32] L. Esposito, N. Fusco: A remark on a free interface problem with volume constraint. J. Convex Anal. 18 (2011), 417-426.
[33] K. Falconer: The Geometry of Fractal Sets. Cambridge University Press, Cambridge, 1985.
[34] I. Fonseca, N. Fusco, G. Leoni, M. Morini: Equilibrium configurations of epitaxially strained crystalline films: existence and regularity results. Arch. Rational Mech. Anal. 186 (2007), 477-537.
[35] I. Fonseca, N. Fusco, G.Leoni, V. Millot: Material voids in elastic solids with anisotropic surface energies. J. Math. Pures Appl. 96 (2011), 591-639.
[36] G. Francfort, A. Giacomini, O. Lopez-Pamies: Fracture with healing: a first step towards a new view of cavitation. Anal. PDE 12 (2019), 417-447.
[37] G.A. Francfort, J.-J. Marigo: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998), 1319-1342.
[38] N. Fusco, V. Julin, M. Morini: The surface diffusion flow with elasticity in the plane. Commun. Math. Phys. 362 (2018), 571-607.
[39] N. Fusco, M. Morini: Equilibrium configurations of epitaxially strained elastic films: second order minimality conditions and qualitative properties of solutions. Arch. Rational Mech. Anal. 203 (2012), 247-327.
[40] A. Giacomini: A generalization of Golab's theorem and applications to fracture mechanics. Math. Models Methods Appl. Sci. 12 (2002), 1245-1267.
[41] E. Giusti: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston, 1984.
[42] M. Goldman, B. Zwicknagl: Scaling law and reduced models for epitaxially strained crystalline films. SIAM J. Math. Anal. 46 (2014), 1-24.
[43] M.A. Grinfeld: The stress driven instabilities in crystals: mathematical models and physical manifestations. J. Nonlinear Sci. 3 (1993), 35-83.
[44] J. Hutchinson, Z. Suo: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29 (1991), 63-191.
[45] Sh. Kholmatov, P. Piovano: A unified model for stress-driven rearrangement instabilities. Arch. Rational Mech. Anal. 238 (2020), 415-488.
[46] Sh. Kholmatov, P. Piovano: Existence of minimizers for the SDRI model in \mathbb{R}^{d} with $d>1$. In preparation.
[47] L.C. Kreutz, P. Piovano: Microscopic validation of a variational model of epitaxially strained crystalline films. SIAM J. Math. Anal. 53 (2021), 453-490.
[48] A.A. León Baldelli, B. Bourdin, J.-J. Marigo, C. Maurini: Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model. Cont. Mech. Thermodyn. 25 (2013), 243-268.
[49] A.A. León Baldelli, J.-F. Babadjian, B. Bourdin, D. Henao, C. Maurini: A variational model for fracture and debonding of thin films under in-plane loadings. J. Mech. Phys. Solids 70 (2014), 320-348.
[50] B. Li, J. Lowengrub, A. Rätz, A. Voigt: Geometric Evolution Laws for Thin Crystalline Films: Modeling and Numerics. Commun. Comput. Phys. 6-3 (2009), 433-482.
[51] F. Maddalena, S. Solimini: Lower semicontinuity properties of functionals with free discontinnuities. Arch. Rational Mech. Anal. 159 (2001), 273-294.
[52] F. Maggi: Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory. Cambridge University Press, Cambridge, 2012.
[53] P. Piovano: Evolution and Regularity Results for Epitaxially Strained Thin Films and Material Voids. Ph.D. Thesis - Carnegie Mellon University, 2012.
[54] M. Siegel, M. Miksis, P. Voorhees: Evolution of material voids for highly anisotropic surface energy. J. Mech. Phys. Solids 52 (2004), 1319-1353.
[55] B.J. Spencer: Asymptotic derivation of the glued-wetting-layer model and the contact-angle condition for Stranski-Krastanow islands. Phys. Rev. B 59 (1999), 2011-2017.
[56] H. Wang, Z. Li: The instability of the diffusion-controlled grain-boundary void in stressed solid. Acta Mech. Sinica 19 (2003), 330-339.
[57] Z.C. Xia, J.W. Hutchinson: Crack patterns in thin films. J. Mech. Phys. Solids 48 (2000), 11071131.
(Shokhrukh Yu. Kholmatov) University of Vienna, Faculty of Mathematics, OskarMorgenstern Platz 1, 1090 Vienna, Austria

E-mail address, Sh. Kholmatov: shokhrukh.kholmatov@univie.ac.at
(Paolo Piovano) Politecnico di Milano, Dipartimento di Matematica, P.zza Leonardo da Vinci 32, 20133 Milano, Italy, \& WPI c/o Research Platform MMM "Mathematics-Magnetism-Materials", Fak. Mathematik Univ. Wien, A1090 Vienna

E-mail address, P. Piovano: paolo. piovano@polimi.it

[^0]: Date: June 21, 2023.
 2010 Mathematics Subject Classification. 49J45, 35R35, 74G65.
 Key words and phrases. Minimal configurations, elastic energy, surface energy, existence, regularity, density estimates, SDRI, interface instabilities, thin films, crystal cavities, fractures.
 *Corresponding author.

[^1]: *A similar argument was used in [13, p. 1359, above Eq. 4.19]

[^2]: ${ }^{*}$ Note that $a \leq b+2 c$ follows from $a^{2} \leq b^{2}+2 a c$ as it yields $(a-2 c)^{2} \leq a(a-2 c) \leq b^{2}$.

[^3]: ${ }^{\dagger}$ This property easily follows by fact that we can always choose in each connected component a different point with rational coordinates

