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Abstract. The model introduced in [45] in the framework of the theory on Stress-Driven
Rearrangement Instabilities (SDRI) [3, 43] for the morphology of crystalline materials
under stress is considered. As in [45] and in agreement with the models in [50, 55],
a mismatch strain, rather than a Dirichlet condition as in [16], is included into the
analysis to represent the lattice mismatch between the crystal and possible adjacent
(supporting) materials. The existence of solutions is established in dimension two in
the absence of graph-like assumptions and of the restriction to a finite number m of
connected components for the free boundary of the region occupied by the crystalline
material, thus extending previous results for epitaxially strained thin films and material
cavities [6, 34, 35, 45]. Due to the lack of compactness and lower semicontinuity for
the sequences of m-minimizers, i.e., minimizers among configurations with at most m
connected boundary components, a minimizing candidate is directly constructed, and
then shown to be a minimizer by means of uniform density estimates and the convergence
of m-minimizers’ energies to the energy infimum as m→∞. Finally, regularity properties
for the morphology satisfied by every minimizer are established.

1. Introduction

In this paper we establish existence and regularity properties for the solutions of the
variational model for Stress-Driven Rearrangement Instabilities (SDRI) [3, 23, 43] that was
introduced in [45]. Under the name of SDRI are included all those material morphologies,
such as boundary irregularities, cracks, filaments, and surface patterns, which a crystalline
material may exhibit in the presence of external forces, such as in particular the chemical
bonding forces with adjacent materials. In order to release the induced stresses, atoms
rearrange from the material optimal crystalline order and instabilities may develop.

The main advancement provided by the results in this manuscript with respect to [45] is
the absence of the unphysical restriction on the number of connected components for the
boundary of the region occupied by the crystalline material, by also avoiding graph-like
assumptions for such boundaries assumed for the specific settings of epitaxially strained
thin films in [6, 16, 34] and material voids in [35]. In particular, with respect to [16] we in-
clude into the analysis the dewetting regime, i.e., the presence of other fixed materials with
possibly different boundary surface tensions, even if by only treating the two dimensional
case, and we establish regularity results for the crystalline morphologies and instabilities
satisfied by every minimizer. Furthermore, our strategy stems from the approach used
in [22] for the Mumford-Shah functional, and hence differs from the method introduced
in [16], which instead is based on allowing displacements to attain a limit value ∞ on
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sets with positive measure (and on technically assigning a zero cost to the elastic-energy
contribution related to those sets).

The SDRI model of [45] is a variational model introduced in the framework of the SDRI
theory initiated in the seminal papers of [3] and [43], and on the basis of the subsequent
analytical descriptions provided in the context of epitaxially strained thin films [6, 24, 25,
34], crystal cavities [8, 35], capillarity droplets [26, 30], fractures [7, 11, 17, 19, 36], and
boundary debonding and delamination [4, 49]. All such settings are included and can be
treated simultaneously in the SDRI model [45] (see Section 2.5). In agreement with [3, 43]
since SDRI morphologies relate to the boundary of crystalline materials and depend on
the bulk rearrangements, the energy F characterizing the SDRI model displays both an
elastic bulk energy and a surface energy denoted byW and S, respectively. More precisely,
the energy F is defined as

F(A, u) := S(A, u) +W(A, u) (1.1)

for any admissible configurational pair (A, u) consisting of a set A that represents the
region occupied by the crystalline material in a fixed container Ω ⊂ Rd for d ∈ N, i.e.,

A ∈ A := {A ⊂ Ω : A is L2-measurable and ∂A is H1-rectifiable},
and of a displacement function u of the bulk materials (with respect to the optimal crystal
arrangement) given by

u ∈ GSBD2(Int(A ∪ S ∪ Σ);Rd) ∩H1
loc(Int(A) ∪ S;Rd),

where S ⊂ Rd \Ω is the region occupied by a fixed material, which we denote substrate in
analogy with the thin-film setting and we consider possibly different from the material in
the container, and

Σ := ∂S ∩ ∂Ω

represents the contact surface between the container Ω and the substrate S. In the fol-
lowing we refer to C as the configurational space and to each configuration (A, u) ∈ C as
a free crystal with A and u as the free-crystal region and the free-crystal displacement,
respectively (see Figure 1).

The bulk elastic energy W in (1.1) is defined in [45] by

W(A, u) =

ˆ
A∪S

W (z, e(u)−M0) dz,

where the elastic density W is given by

W (z,M) := C(z)M : M (1.2)

for any z ∈ Ω ∪ S and any (d × d)-symmetric matrix M ∈ Md×d
sym , and for a positive-

definite elasticity tensor C, and attains its minimum value zero for every z at a fixed
strain M0 ∈ M ∈ Md×d

sym in the following referred to as mismatch strain. The inclusion in
(1.2) of a mismatch strain M0 defined by

M0 :=

{
e(u0) in Ω,

0 in S,
(1.3)

for a fixed u0 ∈ H1(Rd;Rd), together with the fact that both M0 and C are let free of
jumping across Σ, allows to model the presence of two different materials in the substrate
and in the free crystals, and in particular to take into account the lattice mismatch between
their optimal crystalline lattices that is crucial, e.g., in the setting of heteroepitaxy [24, 25].

The surface energy S in (1.1) is defined as

S(A, u) =

ˆ
∂A
ψ(z, u, ν) dHd−1,
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Figure 1. An admissible free-crystal region A is displayed in light blue
in the container Ω, while the substrate S is represented in dark blue. The
boundary of A (with the cracks) is depicted in black, the container bound-
ary in green, the contact surface Σ in red (thicker line) while the free-crystal
delamination region Ju with a white dashed line.

where the surface tension ψ is given by

ψ(z, u, ν) :=



ϕ(z, νA(z)) z ∈ Ω ∩ ∂∗A,
2ϕ(z, νA(z)) z ∈ Ω ∩ (A(1) ∪A(0)) ∩ ∂A,
ϕ(z, νS(z)) + β(z) z ∈ Σ ∩A(0) ∩ ∂A,
β(z) z ∈ Σ ∩ ∂∗A \ Ju,
ϕ(z, νS(z)) z ∈ Ju,

(1.4)

with ϕ ∈ C(Ω × Rd; [0,+∞)) being a Finsler norm such that c1|ξ| ≤ ϕ(x, ξ) ≤ c2|ξ| for
some c1, c2 > 0 and representing the anisotropy of the free-crystal material, β denoting
the relative adhesion coefficient on Σ such that, as for capillarity problems [26, 30],

|β(z)| ≤ ϕ(z, νS(z))

for every z ∈ Σ, ν coinciding with the exterior normal on the reduced boundary ∂∗A, and
A(δ) denoting the set of points of A with density δ ∈ [0, 1].

The anisotropic form of ψ in (1.4) distinguishes various portions of the free-crystal

topological boundary ∂A: the free boundary ∂∗A ∩Ω, the family of internal cracks A(1) ∩
Ω ∩ ∂A, the family of external filaments A(0) ∩ Ω ∩ ∂A, the delaminated region Ju, i.e.,
the portion on the contact surface Σ where there is no bonding between the free crystal
and the substrate (even if they are adjacent), the adhesion area where the free-crystal
displacement is continuous through Σ, i.e., Σ∩∂∗A\Ju, and the wetting layer represented

by the filaments on Σ, i.e., Σ ∩A(0). In particular, ψ weights the different portions of ∂A
in relation to the active chemical bondings present at each portion, i.e., ϕ when there is
no extra chemical bonding, such as at the free profile and at the delaminated region, and
β at the adhesion contact area with the substrate, while both the cracks and at external
filaments are counted 2ϕ and the wetting layer sees the contribution of both ψ and β.
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We consider the case d = 2 as in [45], with the fixed sets Ω and S being bounded
Lipschitz open connected sets such that Σ is a Lipschitz 1-manifold. For d ≥ 3 results are
available for the isotropic Griffith model with Lp-fidelity term (of the type (2.19)) in [11]
and with Dirichlet conditions for the displacements at the boundary in [12]. Moreover, a
similar energy as the SDRI energy introduced in [45] was subsequently found in [16] as
a relaxation formula separately for thin films and material voids, for the different setting
with a Dirichlet condition imposed at ∂Ω, and in the wetting regime, i.e., the case where
free crystals are expected to cover the substrate. Unfortunately the strategy employed
in [16] is not implementable in our setting, where rather than prescribing a Dirichlet
condition as in [16], the mismatch strain (1.3) (which depends on the substrate region S)
is considered in the elastic energy in analogy with the models in [55] and [50, Section 4.2.2]
(see also the mathematical treatments [24, 25, 34, 47]).

In fact, the existence results in [16] are achieved by working (in the proofs) with displace-
ments in a larger space than the classical framework of small displacements of linearized
elasticity, namely the space GSBDp

∞ for p > 1 that includes displacements attaining a
limit value ∞ in a set of finite perimeter (on which their strain e(u) is defined to be
zero [16, Page 1055]). Such a method works well with a Dirichlet condition that keeps
the displacements anchored, while in our setting it would be always convenient for the
displacements in GSBDp

∞ of the minimizing sequences to escape to infinity, as this would
result with the definition of the energy in [16] in the minimum (zero) value of the elastic
energy for the limiting free-crystal region. A treatment for d ≥ 3 of the model under
consideration in this paper with mismatch strain (and without Dirichlet conditions) is
under preparation [46] by implementing the ideas in this manuscript together with the
ones in [45], but without the need of Golab’s Theorem (and without employing the space
GSBDp

∞ for the displacements).

Therefore, we must proceed differently here and we rely on the results of [45] for d = 2.
We begin by observing that, as shown in [45], the specific weights of (1.4) are crucial to
obtain the lower semicontinuity of the energy F under the constraint on a fixed number
m ∈ N of boundary connected components for the free-crystal regions, which represented
an extension of the more restrictive graph condition assumed in [34] for the particular
setting of epitaxially strained thin films and the starshapedness condition in [35] for ma-
terial cavities. More precisely, by considering the subfamily Cm of configurations with free
crystals presenting at most m ∈ N boundary connected components, namely

Cm :=
{

(A, u) ∈ C : ∂A has at most m connected components
}
,

in [45, Theorem 2.8] it is shown that

lim inf
k→∞

F(Ak, uk) ≥ F(A, u)

for every sequence {(Ak, uk)} ⊂ Cm converging in a properly chosen topology τC to a
configuration (A, u) ∈ Cm. In particular, the convergence with respect to τC prescribes
that H1(∂Ak) are equibounded, sdist(·, ∂Ak) → sdist(·, ∂A) locally uniformly in R2 with
sdist representing the signed distance function (recall definition at (2.2)), and un → u
a.e. in Int(A) ∪ S. We notice that the restriction to the subfamily Cm was needed in [45]
to establish not only the lower semicontinuity, but also the compactness with respect to
τC , which indeed fails in C (see Remark 2.3), so that by means of the direct method of
the calculus of variations, the existence of minimizers (Am, um) ∈ Cm of F among all
configurations in Cm followed in [45, Theorem 2.6].

The aim of the investigation contained in this paper is to recover the full generality
avoiding any extra hypothesis on the admissible free-crystal regions. This is achieved by
retrieving compactness with respect to the free-crystal regions at least for any sequence
of m-minimizers (Am, um) ∈ Cm, and by combining the strategies of [22] and [45]. More
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precisely, the use in [45] of the Golab-type Theorem [40] is avoided for the compactness of
the free-crystal regions by adapting to our setting the classical density-estimate arguments
first introduced for surface energies and the Mumford-Shah functional (see, e.g., [2, 28, 52]),
and then extended to the Griffith functional [12, 19], which in turns allow us also to
establish some regularity results. Moreover, in our setting there is the extra difficulty
with respect to [22] that the compactness and lower semicontinuity along sequences of
m-minimizers (with respect to the topology used to find such m-minimizers through the
direct method) are both missing. We overcome this issue, by directly constructing a
minimizing candidate, proving that it belongs to the class

Ã :=
{
A ⊂ Ω : A is L2-measurable and H1(∂A) < +∞

}
,

and establishing a “lower-semicontinuity inequality” (see (1.7) below) along the selected
sequence of m-minimizers (Am, um) (see Subsection 1.1 for more details).

Since A ⊂ Ã, for proving such lower-semicontinuity property we introduce an auxiliary

energy F̃ defined in the larger family C̃ of configurations (A, u) for which A ∈ Ã, i.e.,

F̃(A, u) := S̃(A, u) +W(A, u),

with auxiliary surface energy S̃ defined as

S̃(A, u) =

ˆ
∂A
ψ̃(z, u, ν)dHd−1,

where the surface tension ψ̃ is given by

ψ̃(z, u, ν) :=


ϕ(z, νA(z)) z ∈ Ω ∩ ∂∗A,
2ϕ(z, νA(z)) z ∈ SAu ,
β(z) z ∈ Σ ∩ ∂∗A \ Ju,
ϕ(z, νS(z)) z ∈ Ju

for SAu denoting the jump set of u along the H1-rectifiable portion of the cracks (see (2.6)
for the precise definition).

The results of this paper are twofold: The existence results contained in Theorem 2.6
and the regularity properties of Theorem 2.7. More precisely, in Theorem 2.6 we prove

the existence of a minimum configuration of F and F̃ among all configurations in C and

C̃, respectively, with free-crystal region satisfying a volume constraint, i.e., we solve the
minimum problems

inf
(A,u)∈C, |A|=v

F(A, u) (1.5)

and
inf

(A,u)∈C̃, |A|=v

F̃(A, u) (1.6)

for a fixed volume parameter v ∈ (0, |Ω|) or, if S = ∅, v = |Ω|. Furthermore, the minimum
problems (1.5) and (1.6) are proven to be equivalent to the unconstraint minimum problems

consisting in minimizing volume-penalized versions Fλ and F̃λ of the functionals F and F̃ ,
for a penalization constant λ > 0 provided that λ ≥ λ1 for some uniform constant λ1 > 0.

In Theorem 2.7 regularity properties shared by all solutions of (1.5) and (1.6) are found.
Notice that we cannot directly apply the arguments of [34, 35] based on the external
sphere condition considered in [15] because of the absence of graph and star-shapedness
assumptions on the admissible free-crystal regions. As a byproduct of Theorem 2.6 and
Proposition 5.1 given a configuration (A, u) minimizing (1.5) resp. (1.6), we can construct
a configuration (A′, u) ∈ C which minimizes both minimum problems (1.5) and (1.6) such
that A′ is an open set with cracks coinciding in Ω with the jump set of the corresponding
minimizing free-crystal displacement u, and boundary ∂A′ satisfying uniform upper and
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lower density estimates. Furthermore, we also observe that, any connected component E
of A′ that does not intersect Σ \ Ju (up to H1-negligible sets), must have a sufficiently
large area, i.e.,

|E| ≥ (c1

√
4π/λ1)2,

and must satisfy u = u0 in E up to adding a rigid displacement.

1.1. Paper organization and detail of the proofs. The paper is organized in 5 sec-
tions. In Section 2 we introduce the mathematical setting, recall the SDRI model from
[45], and carefully state the main results of the paper.

In Section 3 we prove the upper and lower density estimates for the local decay of
the energy F on any sequence of m-minimizers (Am, um) ∈ Cm (see Theorem 3.1) by
considering a local version of Fλ (see (2.9)), adapting arguments of [2, 12, 19] to our
setting with displacements paired with free-crystal regions, and paying extra care to the
fact that C is possibly not constant (but in L∞(Ω ∪ S) ∩ C0(Ω)).

In Section 4 we prove compactness and lower-semicontinuity properties for a sequence of
m-minimizers. We begin by establishing in Proposition 4.1 the compactness for a sequence
of m-minimizers {(Am, um)} with free-crystal regions Am not containing isolated points of
such free-crystal regions to a limiting set of finite perimeter A ⊂ Ω by means of both the
Blaschke-type selection principle [45, Proposition 3.1] and the density estimates established
in Section 3. Then, in Proposition 4.3, we further extend the (already generalized) Golab-
type Theorem [40, Theorem 4.2] to a priori not-connected H1-measurable (not necessarily
H1-rectifiable) sets satisfying uniform density estimates (see [22] for the isotropic case).
The compactness of the displacements in {(Am, um)} is then proved in Propositions 4.4 by
carefully constructing the limiting displacement u in view of the property that for every
connected component Ei of A the set in which displacements um diverge is either the
whole component Ei or ∅, which follows from [45, Theorem 3.7]. Finally, in Proposition
4.6 we establish the lower-semicontinuity property

lim inf
h→∞

F(Amh , umh) ≥ F̃(A, u), (1.7)

by treating separately the elastic and the surface energy. For the latter we employ a

blow-up method differently performed for each portion of the ∂A where ψ̃ is supported. In
particular extra care is needed for the jump set Ju and jump set along cracks SAu (since
there is no bound on the number of connected components), where we need to extend
some ideas from [45, Proposition 4.1].

In Section 5 we prove the main results of the manuscript, i.e., the existence and regu-
larity results that are contained in Theorems 2.6 and 2.7, respectively. In order to prove
Theorem 2.6 we first establish in Proposition 5.1 the equalities

inf
(B,v)∈C̃, |B|=v

F̃(B, v) = inf
(B,v)∈C, |B|=v

F(B, v) = lim
m→∞

inf
(B,v)∈Cm, |B|=v

F(B, v). (1.8)

(recall that the second equality follows from [45, Theorem 2.6]) by using similar argu-
ments previously used in [45, Theorem 2.6]. In particular, (1.7) and (1.8) imply that

the configuration (A, u) ∈ C̃ is a minimizer of F̃ in C̃. In Theorem 5.3 we establish the
uniform density estimates for the jump set SAu of u along cracks for a minimizer (A, u) of

F̃ . In particular, SAu is then essentially closed, and using this fact in Proposition 5.4 we

construct a configuration (A′, u) ∈ C, which minimizes boths F̃ and F , starting from a

minimizer (A, u) of F̃ in C̃. Moreover, (A′, u) solves both (1.5) and (1.6) and satisfies the
properties stated in Theorem 2.7. Theorem 2.7 is then a direct consequence of Proposi-
tion 5.4, comparison arguments, the isoperimetric inequality in R2, and the equivalence of
the constrained minimum problems and the unconstrained penalized minimum problem

related to the energies Fλ and F̃λ.
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We conclude the manuscript with Appendix A that contains some subsidiary results
recalled for Reader’s convenience since very relevant in the arguments used throughout
the paper.

2. Mathematical setting

In this section we recall the SDRI model from [45], collect all the definitions and hy-
potheses and state the main results of the paper. Since our model is two-dimensional,
unless otherwise stated, all sets we consider are subsets of R2. We choose the standard
basis {e1 = (1, 0), e2 = (0, 1)} in R2 and denote the coordinates of x ∈ R2 with respect
to this basis by (x1, x2). We denote by Int(A) the interior of A ⊂ R2. Given a Lebesgue
measurable set E, we denote by χE its characteristic function and by |E| its Lebesgue
measure. The set

E(α) :=
{
x ∈ R2 : lim

r→0

|E ∩Br(x)|
|Br(x)|

= α
}
, α ∈ [0, 1],

where Br(x) denotes the ball in R2 centered at x of radius r > 0, is called the set of points

of density α of E. Clearly, E(α) ⊂ ∂E for any α ∈ (0, 1), where

∂E := {x ∈ R2 : Br(x) ∩ E 6= ∅ and Br(x) \ E 6= ∅ for any r > 0}
is the topological boundary. The set E(1) is the Lebesgue set of E and |E(1)∆E| = 0. We
denote by ∂∗E the reduced boundary of a set E of finite perimeter [2, 41], i.e.,

∂∗E :=
{
x ∈ R2 : ∃νE(x) := − lim

r→0

DχE(Br(x))

|DχE |(Br(x))
, |νE(x)| = 1

}
.

The vector νE(x) is called the generalized outer normal to E.

Remark 2.1. If E is a set of finite perimeter, then

• ∂∗E = ∂E(1) (see e.g., [52, Eq. 15.3]);

• ∂∗E ⊆ E(1/2) and H1(E(1/2) \ ∂∗E) = 0 (see e.g., [52, Theorem 16.2]);

• P (E,B) = H1(B ∩ ∂∗E) = H1(B ∩ E(1/2)) for any Borel set E;

where P (E,B) and H1 denote the perimeter of E in B and the 1-dimensional Hausdorff
measure, respectively.

AnH1-measurable set K is calledH1-rectifiable ifH1(K) <∞ and there exist countably
many Lipschitz functions fi : R→ R2 such that

H1
(
K \

⋃
i≥1

fi(R)
)

= 0 (2.1)

(see e.g., [2, Definition 2.57]). Notice that one can assume in (2.1) that the functions fi are
C1, since Lipschitz functions are a.e. differentiable. By the Besicovitch-Marstrand-Mattila
Theorem ([2, Theorem 2.63] a Borel set K ⊂ R2 with H1(K) < +∞ is H1-rectifiable if
and only if θ∗(K,x) = θ∗(K,x) = 1 for H1-a.e. x ∈ K, where

θ∗(K,x) := lim sup
r→0+

H1(Br(x) ∩K)

2r
and θ∗(K,x) := lim inf

r→0+

H1(Br(x) ∩K)

2r
.

In particular, anyH1-rectifiable setK admits a approximate tangent line atH1-a.e. x ∈ K,
see e.g., [52, Remark 10.3]. When θ∗(K,x) = θ∗(K,x) = 1, we write for simplicity
θ(K,x) = 1. A Borel set K ⊂ R2 with H1(K) < +∞ is said purely unrectifiable if
H1(K ∩ Γ) = 0 for every 1-dimensional Lipschitz graph Γ ⊂ R2 (see e.g., [2, Definition
2.64]).

Moreover, by [29, Theorem 5.7] , if K ⊂ R2 is an arbitrary Borel set with H1(E) < +∞,
then there exist Borel subsets Kr and Ku of K such that K = Kr∪Ku, Kr isH1-rectifiable
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and Ku is purely unrectifiable, and such a decomposition is unique up to a H1-negligible
set. More precisely, if K = Lr∪Lu with H1-rectifiable Lr and purely unrectifiable Lu, then
H1(Kr∆Lr) = H1(Ku∆Lu) = 0. In what follows we call Kr and Ku the rectifiable and
purely unrectifiable parts of K, respectively. When A ⊂ R2 withH1(∂A) < +∞, we denote
by ∂rA and ∂uA the H1-rectifiable and purely unrectifiable parts of ∂A, respectively.

The notation dist(·, E) stands for the distance function from the set E ⊂ R2 with the
convention that dist(·, ∅) ≡ +∞. Given a set A ⊂ R2, we consider also signed distance
function from ∂A, negative inside, defined as

sdist(x, ∂A) :=

{
dist(x,A) if x ∈ R2 \A,
−dist(x,R2 \A) if x ∈ A.

(2.2)

Remark 2.2. The following assertions are equivalent:

(a) sdist(x, ∂Ek)→ sdist(x, ∂E) locally uniformly in R2;

(b) Ek
K→ E and R2 \Ek

K→ R2 \ Int(E), where K denotes the Kuratowski convergence
of sets [20].

Moreover, either assumption implies ∂Ek
K→ ∂E.

Given r > 0, ν ∈ S1 and x ∈ R2 we denote by Qr,ν(x) the square of sidelength 2r
centered at x whose sides are either parallel or perpendicular to ν. When ν = e2 or
ν = e1, we drop the dependence on ν and write Qr(x). If in addition x = 0, we write just
Qr. We also set

Ir := [−r, r]× {0}, Q+
r = {x ∈ Qr : x · e2 > 0}, andQ−r = {x ∈ Qr : x · e2 < 0}. (2.3)

Given x ∈ R2 and r > 0, the blow-up map σx,r is defined as

σx,r(y) =
y − x
r

. (2.4)

The blow-up of K ⊂ R2 is defined as σx,r(K).

Given an open set U ⊂ R2 and a metric space X we denote by Lip(U ;X) the family
of all Lipschitz functions ψ : U → X. We denote by Lip(ψ) the Lipschitz constant of
ψ ∈ Lip(U ;X). Furthermore, GSBD(U ;R2) denotes the collection of all generalized special
functions of bounded deformation (see [14, 21] for their definition and properties). Given
u ∈ GSBD(U ;R2) we denote with e(u) ∈M2×2

sym the approximate symmetric gradient of u,
for which

ap lim
y→x

[u(y)− u(x)− e(u)(x)(y − x)] · (y − x)

|y − x|2
= 0

holds for a.e. x ∈ U by [21, Theorem 9.1], and with Ju the jump set of u, which is
H1-rectifiable by [21, Theorem 6.2]. Let us also define

GSBD2(U,R2) := {u ∈ GSBD(U ;R2) : e(u) ∈ L2(U ;M2×2
sym)}.

Given a H1-rectifiable set M ⊂ U, we consider a normal vector νM to its approximate
tangent line and we denote by u+

M and u−M the approximate limits of u ∈ GSBD2(U ;R2)
with respect to νM , i.e.,

u+
M (x) := ap lim

(y−x)·νM>0,
y∈U

u(y) and u−M (x) := ap lim
(y−x)·νM<0

y∈U

u(y) (2.5)

for every x ∈ M whenever they exist (see [21, Definition 2.4]). We refer to u+
M and u−M

as the two-sided traces of u at M and we notice that they are uniquely determined up to
a permutation when changing the sign of νM . If U = Int(A) for some measurable set A

with H1(∂A) < +∞ and M := ∂rA, we use the simplified notations u±∂A on A(1) ∩ ∂rA,
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and trAu := u+
∂A on ∂∗A, where on ∂∗A we always choose νM in (2.5) as the generalized

outer unit normal to A. Moreover, we define

SAu := {x ∈ A(1) ∩ ∂rA : u+
∂A(x) 6= u−∂A(x)}. (2.6)

Note that SAu is H1-rectifiable. We refer to SAu the jump set of u along the cracks of A.

A linear function a : R2 → R2, defined as Ax = Mx+ b, where M is 2× 2-matrix and
b ∈ R2, is an (infinitesimal) rigid displacement if M = −MT .

2.1. The SDRI model. Given two nonempty bounded Lipschitz connected open sets
Ω ⊂ R2 and S ⊂ R2 \ Ω such that Ω ∩ S 6= ∅ and the set Σ := ∂S ∩ ∂Ω is a Lipschitz
1-manifold, we define the family of admissible regions for the free crystal and the space of
admissible configurations by

A := {A ⊂ Ω : A is L2-measurable and ∂A is H1-rectifiable}

and
C :=

{
(A, u) : A ∈ A,

u ∈ GSBD2(Int(A ∪ S ∪ Σ);R2) ∩H1
loc(Int(A) ∪ S;R2)

}
,

respectively. By Proposition A.1 any A ∈ A has finite perimeter. Furthermore, Ju ⊂
Σ ∩ ∂∗A since u ∈ H1

loc(Int(A) ∪ S;R2).

The energy of admissible configurations is given by F : C → [−∞,+∞],

F := S +W, (2.7)

where S andW are the surface and elastic energies of the configuration, respectively. The
surface energy of (A, u) ∈ C is defined as

S(A, u) :=

ˆ
Ω∩∂∗A

ϕ(x, νA(x))dH1(x)

+

ˆ
Ω∩(A(1)∪A(0))∩∂A

(
ϕ(x, νA(x)) + ϕ(x,−νA(x))

)
dH1(x)

+

ˆ
Σ∩A(0)∩∂A

(
ϕ(x, νΣ(x)) + β(x)

)
dH1(x)

+

ˆ
Σ∩∂∗A\Ju

β(x)dH1(x) +

ˆ
Ju

ϕ(x,−νΣ(x)) dH1(x), (2.8)

where ϕ : Ω×S1 → [0,+∞) and β : Σ→ R are Borel functions denoting the anisotropy of
crystal and the relative adhesion coefficient of the substrate, respectively, and νΣ := νS . In
the following we refer to the first term in (2.8) as the free-boundary energy, to the second
as the energy of internal cracks and external filaments, to the third as the wetting-layer
energy, to the fourth as the contact energy, and to the last as the delamination energy. In
applications instead of ϕ(x, ·) it is more convenient to use its positively one-homogeneous
extension |ξ|ϕ(x, ξ/|ξ|). With a slight abuse of notation we denote this extension also by
ϕ.

The elastic energy of (A, u) ∈ C is defined as

W(A, u) :=

ˆ
A∪S

W (x, e(u(x))−M0(x))dx,

where the elastic density W is determined as the quadratic form

W (x,M) := C(x)M : M,

by the so-called stress-tensor, a measurable function x ∈ Ω ∪ S → C(x), where C(x) is a
nonnegative fourth-order tensor in the Hilbert space M2×2

sym of all 2×2-symmetric matrices
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with the natural inner product

M : N =

2∑
i,j=1

MijNij

for M = (Mij)
2
i,j=1, N = (Nij)

2
i,j=1 ∈M2×2

sym.

The mismatch strain x ∈ Ω ∪ S 7→M0(x) ∈M2×2
sym is given by

M0 :=

{
e(u0) in Ω,

0 in S,

for a fixed u0 ∈ H1(R2;R2).

Given m ∈ N, let Am be a collection of all A ∈ A such that ∂A has at most m connected
components and let

Cm :=
{

(A, u) ∈ C : A ∈ Am
}

to be the set of constrained admissible configurations. For simplicity, we assume that
C∞ = C.

Remark 2.3. The reason to introduce Cm is that Cm is both closed under τC-convergence
(see [45, Definition 2.5]) and F is lower semicontinuous with respect to τC in Cm (see [45,
Theorems 2.7 and 2.8]). Such two properties do not apply instead to C as the following
examples show.

We begin by recalling that a sequence {(Ak, uk)} ⊂ C is said to τC-converge to (A, u) ⊂ C
and we denote by (Ak, uk)

τC→ (A, u), if

– sup
k≥1
H1(∂Ak) <∞,

– sdist(·, ∂Ak)→ sdist(·, ∂A) locally uniformly in R2 as k →∞,
– uk → u a.e. in Int(A) ∪ S.

Let X := {xn} be a countable dense set in Ω and A ∈ A such that |A| = v ∈ (0, |Ω|].
Then the sets Ak := A \ {x1, . . . , xk} ∈ A, k ∈ N, are such that |Ak| = v ∈ (0, |Ω|),
H1(∂Ak) = H1(∂A), and (Ak, 0)

τC→ (A\X, 0) as k →∞, but A\X /∈ A since ∂(A\X) = A.
Therefore, compactness with respect to τC fails in C.

Furthermore, let Γ ⊂ A be a segment such that H1(Γ) > 0, B := A \ Γ, Bk :=
A \ (Γ ∩ {x1, . . . , xk}) for every k ∈ N, and assume that X is dense in Γ. We notice that

{(Bk, 0)} ⊂ C, (B, 0) ∈ C, |Bk| = |B| = |A|, (Bk, 0)
τC→ (B, 0) as k →∞. However,

F(Bk, 0) = F(A, 0) < F(A \ Γ, 0) = F(B, 0).

Therefore, lower semicontinuity of F with respect to τC fails in C.

2.2. Localized energies. In this section we introduce the notion of quasi minimizers of

F and F̃ in Ω and the localized version F(·;O) : Cm → R of F for open sets O ⊂ Ω and
for m ∈ N ∪ {∞} with the convention C∞ := C. We define

F(A, u;O) := S(A;O) +W(A, u;O), (2.9)

where

S(A;O) :=

ˆ
O∩∂∗A

ϕ(y, νA)dH1 + 2

ˆ
O∩(A(1)∪A(0))∩∂A

ϕ(y, νA)dH1

and

W(A, u;O) =

ˆ
O∩A

C(y)e(u) : e(u)dy,

are the localized versions of the surface and elastic energies, respectively. Since we define
the localized energy F(·;O) only for open subsets O of Ω, the localized surface energy



EXISTENCE OF MINIMIZERS FOR THE SDRI MODEL IN 2D 11

S(·;O) does not depend on u and the localized elastic energy W(·;O) can be defined
without u0; see also Remark 2.5 below.

Definition 2.4. Given Λ ≥ 0 and m ∈ N ∪ {∞}, the configuration (A, u) ∈ Cm is a local
(Λ,m)-minimizer of F : Cm → R in O if

F(A, u;O) ≤ F(B, v;O) + Λ|A∆B|

whenever (B, v) ∈ Cm with A∆B ⊂⊂ O and supp (u− v) ⊂⊂ O. Furthermore, we define

Φ(A, u;O) := inf
{
F(B, v;O) : (B, v) ∈ Cm,

B∆A ⊂⊂ O, supp (u− v) ⊂⊂ O
}

(2.10)

and

Ψ(A, u;O) := F(A, u;O)− Φ(A, u;O) (2.11)

for every (A, u) ∈ Cm and every open set O ⊂⊂ Ω.

Remark 2.5. By [45, Theorem 2.6] (see also (3.1) below) for any minimizer (A, u) of F in
Cm, the configuration (A, u−u0) is a (λ0,m)-minimizer of F(·, ·; Ω). Indeed, since (A, u) is

a minimizer of Fλ0 in Cm, the function û := u−u0 minimizes Cm 3 (B, v) 7→ F̂λ0(B, v) :=
Fλ0(B, v + u0). Hence, for any open set O ⊂ Ω and (B, v) ∈ Cm with A∆B ⊂⊂ O and

supp (u− u0 − v) ⊂⊂ O we have F̂λ0(A, u− û0) ≤ F̂λ0(B, v) so that

F(A, u− u0;O) ≤ F(B, v;O) + λ0

∣∣|A| − |B|∣∣ ≤ F(B, v;O) + λ0

∣∣A∆B
∣∣.

Similarly, if (A, u) is a minimizer of F̃ in C̃, the configuration (A, u−u0) is a λ0-minimizer

of F̃(·;O).

2.3. Auxiliary model. We also introduce a weak formulation of the SRDI model defined

in Section 2.1 for which the more general family C̃ of admissible configurations, given by

C̃ :=
{

(A, u) : A ∈ Ã,
u ∈ GSBD2(Int(A ∪ S ∪ Σ);R2) ∩H1

loc(Int(A) ∪ S;R2)
}
,

is considered, where

Ã :=
{
A ⊂ Ω : A is L2-measurable and H1(∂A) < +∞

}
.

The auxiliary energy F̃ : C̃ → R is defined as

F̃ := S̃ +W,

where

S̃(A, u) :=

ˆ
Ω∩∂∗A

ϕ(x, νA(x))dH1(x)

+

ˆ
SAu

(
ϕ(x, νA(x)) + ϕ(x,−νA(x))

)
dH1(x)

+

ˆ
Σ∩∂∗A\Ju

β(x)dH1(x) +

ˆ
Ju

ϕ(x,−νΣ(x)) dH1(x), (2.12)

where SAu ⊂ Ω by definition (2.6).
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2.4. Main results. We begin by stating the hypotheses which will be assumed throughout
the paper:

(H1) ϕ ∈ C(Ω × R2) and is a Finsler norm, i.e., there exist c2 ≥ c1 > 0 such that for
every x ∈ Ω, ϕ(x, ·) is a norm in R2 satisfying

c1|ξ| ≤ ϕ(x, ξ) ≤ c2|ξ| (2.13)

for any x ∈ Ω and ξ ∈ R2;
(H2) β ∈ L∞(Σ) and satisfies

− ϕ(x, νΣ(x)) ≤ β(x) ≤ ϕ(x, νΣ(x)) (2.14)

for H1-a.e. x ∈ Σ;
(H3) C ∈ L∞(Ω ∪ S) ∩ C0(Ω) and there exists c4 ≥ c3 > 0 such that

2c3M : M ≤ C(x)M : M ≤ 2c4M : M (2.15)

for any x ∈ Ω ∪ S and M ∈M2×2
sym;

(H4) Either v ∈ (0, |Ω|) or S = ∅.

Given G ∈ {F , F̃}, we use the notation:

XG :=

{
C if G = F ,
C̃ if G = F̃ .

The first result is the existence of solutions without constraint on the number of free-
crystal boundary components.

Theorem 2.6 (Existence). Assume (H1)-(H4). Let G ∈ {F , F̃}. Then the minimum
problem

inf
(B,v)∈XG , |B|=v

G(B, v) (2.16)

admits a solution. Moreover, there exists λ1 > 0 such that (A, u) ∈ XG is a solution of
(2.16) if and only if it solves

inf
(B,v)∈XG

Gλ(B, v)

for every λ ≥ λ1, where

Gλ(B, v) := G(B, v) + λ
∣∣|B| − v

∣∣; (2.17)

For simplicity we call the solutions of (2.16) global minimizers.

The second result is a partial regularity of the free-crystal boundaries. We recall that
the definition of SAu is provided in (2.6).

Theorem 2.7 (Properties of global minimizers). Assume (H1)-(H4). Let G ∈ {F , F̃}
and (A, u) ∈ XG be a solution of (2.16). Define

A′ := Int(A(1)) \ Γ, (2.18)

where Γ is the closure of {x ∈ SAu : θ∗(S
A
u , x) > 0}, and, with a slight abuse of notation,

consider u as defined in A′ ∪ S (and so, also on the L2-negligible set A′ \ Int(A)). Then:

(1) A′ is open, θ∗(S
A′
u , x) > 0 for all x ∈ SA

′
u , |A′∆A| = 0, H1(∂A∆∂A′) = 0,

H1(Su∆SA
′

u ) = 0, (A′, u) ∈ C, and

G(A, u) = F(A′, u) = inf
(B,v)∈C, |B|=v

F(B, v) = inf
(B,v)∈C̃, |B|=v

F̃(B, v);
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(2) for any x ∈ Ω and r ∈ (0,min{1,dist(x, ∂Ω)}),

H1(Qr(x) ∩ ∂A′)
r

≤ 16c2 + 4λ1

c1
;

(3) there exist ς0 = ς0(c3, c4) ∈ (0, 1) and R0 = R0(c1, c2, c3, c4, λ1) > 0, where λ1 > 0
is given in Theorem 2.6, with the following property: if x ∈ Ω ∩ ∂A′, then

H1(Qr(x) ∩ ∂A′)
r

≥ ς0

for any square Qr(x) ⊂⊂ Ω with r ∈ (0, R0).

(4) A′(1) ∩ ∂A′ = SA′u and

H1(SA′u \ SA
′

u ) = 0,

hence cracks essentially coincide with the jump set for the displacement u;
(5) If E ⊂ A′ is any connected component of A′ with H1(∂E ∩ Σ \ Ju) = 0, then
|E| ≥ (c1

√
4π/λ1)2 and u = u0 + a in E, where a is a rigid displacement.

In what follows we refer to the estimates in (2) and (3) as the (uniform) upper and lower
density estimate, respectively. Note that by assertion (1), the assertions (3) and (5) directly
hold also for solutions (A, u) of (2.16).

2.5. Examples. We recall from [45] that the SDRI energy (2.7) coincides with the func-
tionals of the following free-boundary problems considered in the Literature when re-
stricted to the corresponding subfamilies of admissible configurations in C:

(a) Epitaxially strained thin films, e.g., [6, 24, 25, 34, 39, 47]: Ω := (a, b) × (0,+∞), S :=
(a, b)× (−∞, 0) for some a < b, free crystals in the subfamily

Asubgraph := {A ⊂ Ω : ∃h ∈ BV (Σ; [0,∞)) and l.s.c. such that A = Ah} ⊂ A1,

where Ah := {(x1, x2) : 0 < x2 < h(x1)}, and admissible configurations in the subspace

Csubgraph := {(A, u) : A ∈ Asubgraph, u ∈ H1
loc(Int(A ∪ S ∪ Σ);R2)} ⊂ C1

(see also [5, 42]);
(b) Crystal cavities, e.g., [35, 38, 54, 56]: Ω ⊂ R2 smooth set containing the origin, S :=

R2 \ Ω, free crystals in the subfamily

Astarshaped := {A ⊂ Ω : open and Ω \A starshaped w.r.t. (0, 0)} ⊂ A1,

and the space of admissible configurations

Cstarshaped := {(A, u) : A ∈ Astarshaped, u ∈ H1
loc(Int(A ∪ S ∪ Σ);R2)} ⊂ C1;

(b) Capillarity droplets, e.g., [9, 26, 30]: Ω ⊂ R2 is a bounded Lipschitz open set (or a
cylinder), admissible configurations in the collection

Ccapillarity := {(A, u0) : A ∈ A} ⊂ C or C̃capillarity := {(A, u0) : A ∈ Ã} ⊂ C̃;

(d) Griffith fracture model, e.g., [7, 11, 12, 17, 19, 36, 37]: S = Σ = ∅, E0 ≡ 0, and the
space of configurations

CGriffith := {(Ω \K,u) : K closed, H1-rectifiable, u ∈ H1
loc(Ω \K;R2)} ⊂ C;

(e) Mumford-Shah model, e.g., [2, 22, 51]: S = Σ = ∅, E0 = 0, C is such that the elastic
energy W reduces to the Dirichlet energy, and the space of configurations

CMumfard−Shah := {(Ω \K,u) ∈ CGriffith : u = (u1, 0)} ⊂ C;
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(f) Boundary delaminations, e.g., [4, 31, 44, 48, 49, 57]: the SDRI model includes also the
setting of debonding and edge delamination in composites [57]. The focus is here on the
2-dimensional film and substrate vertical section, while in [4, 48, 49] a reduced model
for the horizontal interface between the film and the substrate is derived.

For the cases (a) and (b), the existence results for the SDRI model in Csubgraph and
Cstarshaped can be found for example in [45, Theorem 2.9 and Remark 2.10]. For (c),
the same statements of Theorems 2.6 and 2.7 hold with XG := Ccapillarity if G = F or

XG := C̃capillarity if G = F̃ (note that Su and Γ are empty in this case). For (d)-(f), we
postpone the analysis to future investigations since some modifications in the proofs is
needed to include boundary Dirichlet conditions or fidelity terms of type

κ

ˆ
Ω\K
|u− g|pdx (2.19)

for p ∈ (1,∞), κ > 0, and g ∈ L∞(Ω), which are generally considered (and needed) in
these mechanical applications.

3. Decay estimates for m-minimizers

In this section we always assume (H4). We recall that by [45, Theorem 2.6] under the
hypotheses (H1)-(H3) both the volume-contrained minimum problem

inf
(A,u)∈Cm, |A|=v

F(A, u),

and the unconstrained minimum problem

inf
(A,u)∈Cm

Fλ(A, u)

admit a solution for any m ∈ N. Moreover, by [45, Theorem 2.6] there exists λ0 > 0 such
that

inf
(A,u)∈C, |A|=v

F(A, u) = inf
(A,u)∈C

Fλ(A, u) = lim
m→∞

inf
(A,u)∈Cm, |A|=v

F(A, u) (3.1)

for every λ ≥ λ0.

The main results of this section are the following density estimates for the quasi-
minimizers of F in Cm with m ∈ N ∪ {∞}.

Theorem 3.1 (Density estimates for (Λ,m)-minimizers). There exist ς∗ =
ς∗(c3, c4) ∈ (0, 1) and R∗ = R∗(c1, c2, c3, c4, λ0) > 0, where ci are given by (2.13) and
(2.15), with the following property. Let (A, u) ∈ Cm be a (Λ,m)-minimizer of F(·, ·; Ω) in
Cm for some m ∈ N ∪ {∞}. Then for any x ∈ Ω and r ∈ (0, dist(x, ∂Ω)),

H1(Qr(x) ∩ ∂A)

r
≤ 16c2 + 4Λ

c1
. (3.2)

Moreover, if x ∈ Ω belongs to the closure of the set {y ∈ Ω ∩ ∂A : θ∗(∂A, y) > 0}, then

H1(Qr(x) ∩ ∂A)

r
≥ ς∗ (3.3)

for any square Qr(x) ⊂⊂ Ω with r ∈ (0, R∗).

To prove Theorem 3.1 we start with the following adaptation of [11, Theorem 3] to our
setting (of set-function pairs).
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Lemma 3.2. There exist η ∈ (0, 1/32) and c0 > 0 with the following property: For any
m ∈ N ∪ {∞}, any admissible (A, u) ∈ Cm, and any square QR(x0) ⊂ Ω of sidelength
2R > 0 with

δ :=
(H1(QR(x0) ∩ ∂rA)

R

)1/2
< η (3.4)

there exist v ∈ GSBD2(Int(Ω ∪ S ∪ Σ);R2), B ∈ A with (B, v
∣∣
B

) ∈ Cm, R′ ∈ (R(1 −√
δ), R) and a Lebesgue measurable set ω ⊂⊂ QR(x0) such that

(1) v ∈ C∞(QR(1−
√
δ)(x0)), A∆B ⊂⊂ QR′(x0) \ QR(1−

√
δ)(x0) and supp (ũ − v) ⊂⊂

QR(x0), where

ũ := uχQR(x0)∩A + ξχQR(x0)\A, (3.5)

where ξ ∈ QR is chosen such that QR ∩ ∂∗A ⊂ Jũ;
(2) H1(∂B \ ∂A) ≤ c0

√
δH1([QR(x0) \QR(1−

√
δ)(x0)] ∩ ∂A);

(3) |ω| ≤ c0δH1(QR(x0) ∩ ∂A) andˆ
QR(x0)\ω

|v − ũ|2dx ≤ c0δ
2R2

ˆ
QR(x0)

|e(ũ)|2dx;

(4) for any ψ ∈ Lip(QR; [0, 1]) and elasticity tensor C ∈ L∞(QR) with

d1M : M ≤ C(x)M : M ≤ d2M : M, (x,M) ∈ QR ×M2×2
sym, (3.6)

there exist d3 := d3(c0, d1, d2) > 0 and s := s(c0, d1, d2) ∈ (0, 1/2) such thatˆ
QR(x0)

ψC(x)e(v) : e(v)dx ≤
ˆ
QR(x0)∩A

ψC(x)e(u) : e(u)dx

+ d3 δ
s (1 +RLip(ψ))

ˆ
QR(x0)∩A

|e(u)|2dx.

The proof of Lemma 3.2 is an adaptation of the arguments of [11, Theorem 3] to
our situation of functional depending on set-function pairs with extra care paid for the
constraint on the number of boundary connected components. The idea is to treat the
boundary of each admissible region as a jump of a properly defined displacement. In
particular, we choose such displacement of the type (3.5), where ξ is selected as in the
construction used in the proof of [45, Lemma 3.10]. We also notice that the constants η
and c := c0/(1 +

√
2/24) > 0 are given by [11, Theorem 3].

Proof of Lemma 3.2. By translating and rescaling if necessary, we assume that x0 = 0 and
R = 1. Notice that since H1(Q1 ∩ ∂A) < +∞, by Proposition A.2 there exists ξ ∈ (0, 1)2

such that the set

{x ∈ Q1 ∩ ∂∗A : trA(u) exists and is equal to ξ}
is H1-negligible. By [41, Theorem 4.4] up to a H1-negligible set we can cover Q1 ∩ ∂∗A
with C1-maps so that by [21, Theorem 5.2] trA(u) exists H1-a.e. on Q1 ∩ ∂∗A.

Let

ũ := uχQ1∩A + ξχQ1\A.

Note that ũ ∈ GSBD2(Q1;R2) and by the choice of ξ and by [21, Definition 2.4]Q1∩∂∗A ⊂
Jũ. In addition, by possibly adding to ũ a function in SBD2(Q1;R2)∩W 1,∞(Q1 \ ∂A;R2)
with small W 1,∞(Q1 \ ∂A;R2) norm, jump on the set Q1 ∩ ∂rA, and supported near
Q1 ∩ ∂A, we can assume without loss of generality that Q1 ∩ Jũ ⊃ Q1 ∩ ∂rA up to a
H1-negligible set∗. Notice that

δ := H1(Q1 ∩ ∂rA)1/2 = H1(Q1 ∩ Jũ)1/2

∗A similar argument was used in [13, p. 1359, above Eq. 4.19]
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and set N := [1/δ] so that (−Nδ,Nδ)2 ⊂ Q1. For i := 0, 1, . . . , N − 1 let Qi := (−(N −
i)δ, (N − i)δ)2 and Ci := Qi \Qi+1 (assuming CN−1 := QN−1). Up to a slight translation
of Qi we assume that H1(∂A ∩ ∂Qi) = 0 for all i. By [11, Lemma 3.3] we find i0 ≥ 1 such
that 

´
Ci0∪Ci0+1 |e(ũ)|2dx ≤ 8

√
δ
´
Q1\Q1−

√
δ
|e(ũ)|2dx,

H1(∂A ∩ (Ci0 ∪ Ci0+1)) ≤ 8
√
δH1(∂A ∩ (Q1 \Q1−δ)).

We partition Qi0+1 into pairwise disjoint squares with sidelength δ and divide the slice
Ci0 into dyadic slices

Gj := (−(N − i0 − 2−j)δ, (N − i0 − 2−j)δ)2 \ (−(N − i0 − 2−j+1)δ, (N − i0 − 2−j+1)δ)2,

then we partition each slice Gj into pairwise disjoint squares Qj,l of sidelength 2−jδ whose
sides are parallel to the coordinate axis. Let V0 be the collection of all squares of sidelength
δ that cover the central square Qi0+1 and let V be the union of V0 and of the collection of
all Qj,l. Following [11] we differentiate between “good” and “bad” squares in V. A square
Q ∈ V is “good” if

H1(Q′′′ ∩ ∂A) ≤ ηδQ, (3.7)

where Q′′′ is the square with the same center as Q and dilated by 7/6, and δQ := δ if

Q ∈ V0 and δQ := 2−jδ if Q ⊂ Gj . A square Q is “bad” if it does not satisfy (3.7). By

(3.4) δ2 = H1(Q1 ∩ ∂A) < ηδ, hence, by definition, all squares in V0 are good and by [11,
Eq. 12] the sum of the perimeters of all bad squares satisfies∑

Qbad

H1(∂∗Q) ≤ c̃0

√
δH1((Q1 \Q1−

√
δ) ∩ ∂A) (3.8)

for some c̃0 > 0. Since δ < η, by [11, Theorem 3] there exist ṽ ∈ GSBD2(Q1;R2),

r ∈ (1−
√
δ, 1) and a Lebesgue measurable set ω̃ ⊂⊂ Qr such that

(a1) ṽ ∈ C∞(Q1−
√
δ), ũ = ṽ in Q1 \Qr and H1(Jũ ∩ ∂Qr) = H1(Jṽ ∩ ∂Qr) = 0;

(a2) H1(Jṽ \ Jũ) ≤ c̃0

√
δH1((Q1 \Q1−

√
δ) ∩ Jũ);

(a3) |ω̃| ≤ c̃0δH1(Qr ∩ ∂A) and

ˆ
Q1\ω̃

|ṽ − ũ|2dx ≤ c̃0δ
2

ˆ
Q1

|e(ũ)|2dx;

(a4) for any ψ ∈ Lip(Q1; [0, 1]) and elasticity tensor C ∈ L∞(Q1) satisfying (3.6) there
exists d3 := d3(c̃0, d1, d2) > 0 such that

ˆ
Q1

ψC(x)e(ṽ) : e(ṽ)dx ≤
ˆ
Q1

ψC(x)e(ũ) : e(ũ)dx+ d3δ
s (1 + Lip(ψ))

ˆ
Q1

|e(ũ)|2dx

with s ∈ (0, 1) depending only on c̃0, d1 and d2;
(a5) Jṽ ⊂ ∂∗D∪(Jũ\Qi0+1) and Jṽ \Jũ ⊂ ∂∗D, where D is the union of all bad squares.

Note that for proving (a4) in [11] a mollifying argument is used (together with the fact
that C is assumed to be constant in [11]). As in our setting C is in general not constant,
we revised such argument (see [11, Eq. 23]), by using the fact that the energy

w ∈ GSBD2(O) 7→
ˆ
O
Ce(w) : e(w)dx
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is quadratic with respect to the e(w) and hence, we have convexity and we can employ
Cauchy-Schwartz inequality for positive semidefinite bilinear forms to obtain

ˆ
O
C(x)e(ṽ) : e(ṽ)dx ≤

ˆ
O
C(x)e(ũ) : e(ũ)dx+ 2

ˆ
O
C(x)e(ṽ) : [e(ṽ)− e(ũ)]dx

≤
ˆ
O
C(x)e(ũ) : e(ũ)dx+ 2

[ ˆ
O
C(x)e(ṽ) : e(ṽ)dx

]1/2
×

×
[ ˆ

O
C(x)[e(ṽ)− e(ũ)] : [e(ṽ)− e(ũ)]dx

]1/2

for any open set O ⊂ Q1. Since the inequality a2 ≤ b2 + 2ac, where a, b, c ≥ 0, implies∗

a ≤ b+ 2c, we get[ ˆ
O
C(x)e(ṽ) : e(ṽ)dx

]1/2
≤
[ ˆ

O
C(x)e(ũ) : e(ũ)dx

]1/2

+ 2
[ ˆ

O
C(x)[e(ṽ)− e(ũ)] : [e(ṽ)− e(ũ)]dx

]1/2

≤(1 + cδs)
[ ˆ

O
C(x)e(ũ) : e(ũ)dx

]1/2

so that Eq.23 of [11] holds also in our setting.

Let Vi be the family of all bad squares Q intersecting Int(A) and Di :=
⋃
Q∈Vi Q. For

every Q ∈ Vi we define IQ as the segment of smallest length connecting (Q′′′ ∩ ∂A) \Q to

∂Q with the convention that IQ = ∅ if (Q′′′ ∩ ∂A) \Q = ∅ or Q ∩ Int(Ω \ A) 6= ∅. By the

definition of Q′′′ and Q, H1(IQ) ≤
√

2
24 H

1(∂Q).

Let

B :=
[(
A \Di

)
∪ ∂Di

]
\
⋃
Q∈Vi

IQ

and

v := ṽχQ1
+ ũχ(Ω∪S)\Q1

.

We claim that B, v and ω̃ satisfy the assertions of the lemma.

Indeed, from (a4) applied with ψ ≡ 1 and C = I it follows that v ∈ GSBD2(Int(B);R2).
Moreover, by (a5) v ∈ H1

loc(Int(B);R2), thus, (B, v) ∈ C. Let us show that if A ∈ Am
for some m ∈ N, then B ∈ Am. Indeed, by the construction of B, for each bad square
Q, the dilated square Q′′′ contains inside “large” portions of the boundary ∂A. Now if
∂A intersects Q, then IQ = ∅ and the modification [A \ Q] ∪ ∂Q \ IQ does not increase

the number of boundary components. Otherwise, if ∂A does not increase Q, so that it
intersects only Q′′′ \ Q, then adding a small segment IQ to connect ∂A ∩ [Q′′′ \ Q] to Q

again does not increase the number of boundary components of [A \Q] ∪ ∂Q \ IQ. Now,
from the disjointness of the cubes Q ∈ Vi it follows that B ∈ Cm. Therefore, if (A, u) ∈ Cm
for some m ∈ N, then (B, v

∣∣
B

) ∈ Cm.
By (a1) it follows that v ∈ C∞(Q1−

√
δ). Moreover, by the definition of B, A∆B ⊂⊂

Qrh\Q1−
√
δ for some rh ∈ (1−

√
δ, 1) such that Di ⊂ Qrh . Also, by (a1) supp (ũ−ṽ) ⊂⊂ Q1

so that supp (ũ− v) ⊂⊂ Q1, and (1) follows.

∗Note that a ≤ b + 2c follows from a2 ≤ b2 + 2ac as it yields (a− 2c)2 ≤ a(a− 2c) ≤ b2.
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Moreover, by the definition of B, IQ and (3.8)

H1(∂B \ ∂A) ≤
∑
Q∈Vi

P (Q) +
∑
Q∈Vi

H1(IQ)

≤
(

1 +

√
2

24

) ∑
Q∈Vi

P (Q) ≤ c0

√
δH1((Q1 \Q1−

√
δ) ∩ ∂A),

where c0 := c̃0(1 +
√

2/24), and (2) follows.

Next, by (a3) |ω| ≤ c0δH1(Q1 ∩ ∂A), andˆ
Q1\ω

|v(x)− ũ(x)|2dx =

ˆ
Q1\ω̃

|ṽ(y)− ũ(y)|2dy ≤ c̃0δ
2

ˆ
Q1

|e(ũ)|2dy

≤c0δ
2

ˆ
Q1

|e(ũ)|2(y)dy.

Finally, by (a4) and the definition of v (i.e., v = ṽ in Q1) for any ψ ∈ Lip(Q1) and
C ∈ L∞(Q1) satisfying (3.6) we haveˆ

Q1

ψ(x)C(x)e(v) : e(v)dx =

ˆ
Q1

ψ(x)C(x)e(ṽ) : e(ṽ)dx

≤
ˆ
Q1

ψ(x)C(x)e(ũ) : e(ũ)dx+ d3 (1 + Lip(ψ))

ˆ
Q1

|e(ũ)|2dx

=

ˆ
Q1∩A

ψ(x)C(x)e(u) : e(u)dx+ d3δ
s (1 + Lip(ψ))

ˆ
Q1∩A

|e(u)|2dx,

since ũ is constant in Q1 \A. Hence, (4) follows. �

The following proposition is a generalization to our setting of [11, Theorem 4] established
for the Griffith model.

Proposition 3.3. Let QR(x0) ⊂ Ω be a square of side length 2R > 0. Consider sequences
{mh} ⊂ N ∪ {∞}, Finsler norms {ϕh} and ellipticity tensors {Ch} such that {Ch} is

equicontinuous in QR(x0) and there exist d3, d4, d5 > 0 with

d3M : M ≤ Ch(x)M : M ≤ d4M : M for all (x,M) ∈ QR(x0)×M2×2
sym, (3.9)

and

d5 sup
(x,ν)∈QR×S1

ϕh(x, ν) ≤ inf
(x,ν)∈QR×S1

ϕh(x, ν), (3.10)

and define Fh and Ψh in Cmh as in (2.9) and (2.11), respectively, with ϕh, Ch and mh in
places of ϕ, C and m. Let {(Ah, uh)} ⊂ Cmh be such that

lim
h→∞

Ψh(Ah, uh;QR(x0)) = 0, (3.11)

lim
h→∞

H1(QR(x0) ∩ ∂Ah) = 0, (3.12)

sup
h≥1
Fh(Ah, uh;QR(x0)) =: M <∞. (3.13)

Then there exist u ∈ H1(QR(x0)), an elasticity tensor C ∈ C0(QR(x0);M2×2
sym), sequences

{ξj} ⊂ (0, 1)2 of vectors and {aj} of rigid displacements and subsequences {(Ahj , uhj )},
{ϕhj} and {Chj} such that

(a) Chj → C uniformly in QR(x0) and wj := uhjχQR(x0)∩Ahj
+ ξjχQR(x0)\Ahj

−aj → u

pointwise a.e. in QR(x0), and e(wj) ⇀ e(u) in L2(QR(x0)) as j →∞;
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(b) for all v ∈ u+H1
0 (QR(x0))ˆ

QR(x0)
C(y)e(u) : e(u) dy ≤

ˆ
QR(x0)

C(y)e(v) : e(v) dy; (3.14)

(c) for any r ∈ (0, R]

lim
j→∞

Fh(Ahj , uhj ;Qr(x0)) =

ˆ
Qr(x0)

C(x)e(u) : e(u) dx. (3.15)

Proof. Without loss of generality, we suppose R = 1 and x0 = 0. Let

c1,h := inf
(x,ν)∈Q1×S1

ϕh(x, ν), c2,h := sup
(x,ν)∈Q1×S1

ϕh(x, ν); (3.16)

by (3.10) we have d5c2,h ≤ c1,h. Since suphH1(Q1 ∩ ∂Ah) < ∞, by Proposition A.2 for
every h ≥ 1 there exists ξh ∈ (0, 1)2 such that

H1({y ∈ Q1 ∩ ∂Ah : trAh(uh) exists and equals to ξh at y}) = 0.

Therefore

ũh :=

{
uh in Q1 ∩Ah,
ξh in Q1 \Ah

(3.17)

belongs to GSBD2(Q1;R2) with Jũh ⊂ Q1 ∩ ∂Ah and

lim
h→∞

H1(Jũh) = 0 (3.18)

in view of (3.12). Further we suppose H1(Jũh) < 1/4 for any h ≥ 1.

By [10, Proposition 2] and (3.9), there exist a constant c (depending only on d3) and
sequences {ω̃h} of a Lebesgue measurable subsets of Q1 with |ω̃h| ≤ cH1(Q1 ∩ ∂Ah) and
{ah} of rigid motions such thatˆ

Q1\ω̃h
|ũh − ah|2dx ≤ c

ˆ
Q1

Ch(x)e(ũh) : e(ũh)dx. (3.19)

By (3.9) and (3.13), there exists u ∈ L2(Q1) such that up to a subsequence (ũh −
ah)χQ1\ω̃h ⇀ u weakly in L2(Q1). Furthermore from (3.9) and (3.13) we obtain

sup
h≥1

ˆ
Q1

|e(ũh − ah)|2 dx+H1(Jũh) <∞,

and hence, by [14, Theorem 1.1] there exist a subsequence still denoted by {ũh − ah} for
which the set

E := {y ∈ Q1 : lim
h→∞

|ũh(y)− ah(y)| → ∞}

has finite perimeter and ũ ∈ GSBD2(Q1 \ E;R2) with ũ = 0 in E such that

ũh − ah → ũ a.e. in Q1 \ E
e(ũh − ah) ⇀ e(ũ) in L2(Q1 \ E;M2×2

sym),

H1((Q1 \ ∂∗E) ∩ Jũ) +H1(Q1 ∩ ∂∗E) = H1(Jũ ∪ ∂∗E) ≤ lim inf
h→+∞

H1(Jũh) = 0.

(3.20)

In particular, P (E,Q1) = 0 so that by the relative isoperimetric inequality either |E| =
|Q1| or |E| = 0. By the definition of E, (3.12), the uniform L2(Q1)-boundedness of {(ũh−
ah)χQ1\ω̃h} which is a consequence of (3.19) and (3.13), and Fatou’s Lemma it follows
that |E| = 0. Hence, from (3.20) we get ũh − ah → ũ a.e. in Q1 and e(ũh − ah) ⇀ e(ũ) in
L2(Q1;M2×2

sym), and all relations in (3.20) hold in Q1 and ũ = u a.e. in Q1. In particular,

since H1(Ju) = 0, by Proposition A.3 we have that u ∈ H1(Q1;R2). In view of the fact
that our elastic energy is invariant under rigid deformations, we suppose ah = 0 for any
h ≥ 1.
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Next we prove (3.14). Let v ∈ H1(Q1;R2) be such that supp (u − v) ⊂⊂ Qr for some
r ∈ (0, 1). Let ψ ∈ C1

c (Qr; [0, 1]) be a cut-off function with {0 < ψ < 1} ⊂ {u = v} ∩Qr′
and supp (u − v) ⊆ {ψ ≡ 1} ⊆ Qr′′ for some r′′ < r′ < r. By (3.18) and Lemma 3.2
applied with (Ah, uh) and Qr there exist ṽh ∈ GSBD2(Int(Ω ∪ S ∪ Σ);R2), Bh ∈ Amh
with (Bh, ṽh

∣∣
Bh

) ∈ Cmh , rh ∈ (r(1 −
√
δh), r) and a Lebesgue measurable set ωh ⊂⊂ Qr

such that

(a1) ṽh ∈ C∞(Qr(1−
√
δh)), Ah∆Bh ⊂⊂ Qrh \Qr(1−√δh) and supp (ũh − ṽh) ⊂⊂ Qr;

(a2) H1(∂Bh \ ∂Ah) ≤ c0

√
δhH1([Qr \Qr(1−√δh)] ∩ ∂Ah);

(a3) |ωh| ≤ c0δhH1(Qr ∩ ∂Ah) andˆ
Qr\ωh

|ṽh − ũh|2dx ≤ c0δ
2
hr

2

ˆ
Qr∩Ah

|e(uh)|2dx;

(a4) for any η ∈ Lip(Qr; [0, 1])ˆ
Qr

ηChe(ṽh) : e(ṽh)dx ≤
ˆ
Qr∩Ah

ηChe(uh) : e(uh)dx

+ d3 δ
s
h (1 + r Lip(η))

ˆ
Qr∩Ah

|e(uh)|2dx, (3.21)

where δh := r−1/2H1(Qr ∩ ∂Ah)1/2 → 0, and d3 and s are constants. We assume that h is
large enough so that rh > r′. Set

vh := (1− ψ)ṽh + ψv.

We observe that supp (uh − vh
∣∣
Bh

) ⊂⊂ Qr : by (a1) and the definition of ψ, there exists

r0 ∈ (rh, r) such that Ah \ Qr0 = Bh \ Qr0 and ũh = ṽh = vh in Qr \ Qr0 and hence,
uh
∣∣
Qr∩Ah\Qr0

= ũh
∣∣
Qr∩Ah\Qr0

= vh
∣∣
Qr∩Bh\Qr0

. Thus, (Bh, vh) is an admissible configura-

tion in (2.10) and from (3.11) and the definition of deviation it follows that

Fh(Ah, uh;Q1) ≤ Fh(Bh, vh;Q1) + o(1), (3.22)

where o(1)→ 0 as h→∞. We observe that

Sh(Bh;Q1)− Sh(Ah;Q1) ≤Sh(Bh;Qr \Qr(1−√δh))− Sh(Ah;Qr \Qr(1−√δh))

≤
ˆ

(∂∗Bh\∂∗Ah)∩Qr\Qr(1−√δh)

ϕ(x, νBh)dH1

+ 2

ˆ
(Qr\Qr(1−√δh)

)∩(B
(1)
h ∪B

(0)
h )∩(∂Bh\∂Ah)

ϕ(x, νAh)dH1

≤2c2,hH1(∂Bh \ ∂Ah) ≤ 2c0c2,h

√
δhH1([Qr \Qr(1−√δh)] ∩ ∂Ah)

≤2c0

√
δh

d5
Sh(Ah;Q1) = o(1)

as h → +∞, where we used in the first inequality (a1), in the second the definition and
nonnegativity of Sh, in the third (3.16), in the fourth (a2) in the last again (3.16) and the
definition of Sh, and finally in the equality we used (3.13). Thus, (3.22) is rewritten as

Wh(Ah, uh;Q1) ≤ Wh(Bh, vh;Q1) + o(1). (3.23)

Note that by (a1), (a3), (3.18), (3.20) and Fatou’s Lemma, ṽhχQr\ωh → u a.e. in Qr
and by (a3) χQr\ωh → 1 a.e. in Qr. Therefore, for a.e. x ∈ Qr there exists hx ≥ 1 such
that χQr\ωh(x) = 1 for every h > hx and ṽh(x) = ṽh(x)χQr\ωh(x)→ u(x). So

ṽh → u a.e. in Qr. (3.24)
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We claim that ṽh → u strongly in L2
loc(Qr). To see this we fix ρ ∈ (0, r), and, since

δh → 0 by (a1), there exists hρ ≥ 1 such that ṽh ∈ H1(Qρ) for every h > hρ. From (3.9),
(3.13) and (3.21) as well as the Korn-Poincaré inequality

sup
h>hρ

‖ṽh − bh‖H1(Qρ) <∞

for some sequence {bh} of rigid displacements. On the one hand, by Rellich-Kondrachov
Theorem there exist z ∈ H1(Qρ;R2) and not relabelled subsequence such that ṽh−bh → z
in L2(Qρ;R2) and a.e. in Qρ. On the other hand, by (3.24) bh = ṽh−(ṽh−bh) converges to
b := u− z a.e. in Qρ. Since bh is a rigid displacement, so is b and hence bh → b uniformly
in Qρ. Therefore,

lim sup
h→∞

‖ṽh − u‖L2(Qρ) ≤ lim sup
h→∞

‖ṽh − bh − z‖L2(Qρ) + lim sup
h→∞

‖bh − b‖L2(Qρ) = 0,

and the claim follows.

Since u = v out of {ψ = 1}, the claim implies ṽh → v strongly in L2({0 < ψ < 1}), and
hence,

lim
h→∞

ˆ
Qr

|∇ψ � (v − ṽh)
∣∣
Ah
|2 ≤ lim inf

h→∞

ˆ
{0<ψ<1}

|∇ψ � (v − ṽh)|2 = 0, (3.25)

where X � Y = (X ⊗ Y + Y ⊗X)/2, Thus, by the definition of vh and the equality

e(vh) = (1− ψ)e(ṽh) + ψe(v) +∇ψ � (v − ṽh),

we estimateˆ
Qr

Che(vh) : e(vh)dx

=

ˆ
Qr

(1− ψ)2Che(ṽh) : e(ṽh)dx+

ˆ
Qr

ψ2Che(v) : e(v)dx

+

ˆ
Qr

Ch(∇ψ � (v − ṽh)) : (∇ψ � (v − ṽh))dx

+ 2

ˆ
Qr

(1− ψ)Che(ṽh) : (∇ψ � (v − ṽh))dx

+ 2

ˆ
Qr

ψChe(v) : (∇ψ � (v − ṽh))dx

=

ˆ
Qr

(1− ψ)2Che(ṽh) : e(ṽh)dx+

ˆ
Qr

ψ2Che(v) : e(v)dx+ o(1)

≤
ˆ
Qr∩Ah

(1− ψ)2Che(uh) : e(uh)dx+

ˆ
Qr

ψ2Che(v) : e(v)dx+ o(1), (3.26)

where in the second equality we use (3.13), (3.21) with η ≡ 1, (3.25), (3.9) and the Hölder
inequality, while in the last inequality we use (3.21) with η = (1 − ψ)2 and (3.17). Now
(3.23), (3.26) and (3.17) implyˆ

Qr

(2ψ − ψ2)Che(ũh) : e(ũh)dx ≤
ˆ
Qr

ψ2Che(v) : e(v)dx+ o(1). (3.27)

Since {Ch} is equibounded (see (3.9)) and equicontinuous, by the Arzela-Ascoli Theorem,
there exist a (not relabelled) subsequence and an elasticity tensor C ∈ C0(Q1;M2×2

sym) such
that Ch → C uniformly in Q1. Hence, letting h→∞ in (3.27) and using the convexity of
the elastic energy and (3.20), we obtainˆ

Qr

(2ψ − ψ2)C(y)e(u) : e(u)dy ≤
ˆ
Qr

ψ2C(y)e(v) : e(v) dy. (3.28)
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By the choice of ψ, (3.28) impliesˆ
Qr′′

C(y)e(u) : e(u)dy ≤
ˆ
Qr

C(y)e(v) : e(v) dy. (3.29)

Since r′′ is arbitrary, letting r′′ ↗ r we deduce that (3.29) holds also with r′′ = r. Since
supp (u− v) ⊂⊂ Qr, this implies (3.14).

It remains to prove (3.15). If we take v = u in (3.27) and use 0 ≤ ψ ≤ 1 and ψ = 1 in
Qr′′ we get ˆ

Qr′′

Ce(u) : e(u)dx ≤ lim inf
h→∞

ˆ
Qr′′

Che(ũh) : e(ũh)dx

≤ lim sup
h→∞

ˆ
Qr′′

Che(ũh) : e(ũh)dx ≤
ˆ
Qr

Ce(u) : e(u)dx.

Since r′′ is arbitrary, letting r′′ ↗ r we deduce

lim
h→∞

ˆ
Qr

Che(ũh) : e(ũh)dx =

ˆ
Qr

Ce(u) : e(u)dx. (3.30)

Now we prove that

lim
h→∞

Sh(Ah;Qr) = 0 (3.31)

for any r ∈ (0, 1). By (3.12), we can find hr > 0 such that

H1(Q1 ∩ ∂Ah) < (1− r)/5 (3.32)

for any h > hr, and hence there is no connected component of ∂Ah intersecting both ∂Qr
and ∂Q1. Also by the relative isoperimetric inequality, passing to further subsequence we
suppose that either

lim
h→∞

|Q1 ∩Ah| = 0 (3.33)

or

lim
h→∞

|Q1 \Ah| = 0. (3.34)

First assume that (3.33) holds. Let Eh ⊂ Ah be the set consisting of all connected
components of Ah not intersecting ∂Q1. Then, (Ah \ Eh, uh

∣∣
Ah\Eh

) is an admissible con-

figuration in (2.10), thus,

Fh(Ah, uh;Q1) ≤ Φh(Ah, uh;Q1) + o(1) ≤ Fh(Ah \ Eh, uh;Q1) + o(1), (3.35)

where in the first inequality we use (3.11) and in the second we use the definition of Φh.
Hence,

S(Ah;Qr) ≤S(Eh;Q1) = Sh(Ah;Q1)− Sh(Ah \ Eh;Q1)

≤Fh(Ah;Q1)−Fh(Ah \ Eh;Q1) ≤ o(1),

where we used in the first inequality the definition of Eh, which entitles that Ur ∩ ∂Ah ⊂
∂Eh, in the equality the disjointness of Ah \ Eh and Eh which follows by (3.32), and in the
second inequality the nonnegativity of the elastic energy and in the third (3.35). Hence,
(3.31) follows.

Now assume that (3.34) holds and let δh := r−1/2
√
H1(Qr ∩ ∂Ah) → 0. Fix any ρ ∈

(0, r). By (3.12), we can find hr,ρ > 0 such that δh < min{1− r, r− ρ}/5 for any h > hr,ρ.
Since Ah ∈ Amh , no connected component of ∂Ah intersects both ∂Qr and ∂Qρ. Let

Fh ⊂ Q1 \ Ah be the union of all connected components of Q1 \Ah lying strictly inside
Q1 (so Fh is a union of “holes” and ∂Fh ⊂ ∂Ah). Let ψ ∈ C1

c (Qr; [0, 1]) be a cut-
off function with {0 < ψ < 1} ⊂ Qr′ and {ψ ≡ 1} ⊆ Qr′′ for some r′′ < r′ < r.
Set A′h := Ah ∪ Fh. Applying Lemma 3.2 with (A′h, ũh

∣∣
A′h

), Qr and m = mh we find
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ṽ′h ∈ GSBD2(Int(Ω ∪ S ∪ Σ);R2), B′h ∈ Amh with (B′h, ṽ
′
h

∣∣
Bh

) ∈ Cmh , rh ∈ (r(1−
√
δh), r)

and a Lebesgue measurable set ω′h ⊂⊂ Qr such that

(b1) ṽ′h ∈ C∞(Qr(1−
√
δh)), A

′
h∆B′h ⊂⊂ Qrh \Qr(1−√δh) and supp (ũh − ṽ′h) ⊂⊂ Qr;

(b2) H1(∂B′h \ ∂A′h) ≤ c0

√
δhH1([Qr \Qr(1−√δh)] ∩ ∂A′h);

(b3) |ω′h| ≤ c0δhH1(Qr ∩ ∂A′h) andˆ
Qr\ω′h

|ṽ′h − ũh|2dx ≤ c0δ
2
hr

2

ˆ
Qr∩A′h

|e(uh)|2dx;

(b4) for any η ∈ Lip(Qr; [0, 1])ˆ
Qr

ηCe(ṽ′h) : e(ṽ′h)dx ≤
ˆ
Qr∩Ah

ηCe(uh) : e(uh)dx

+ d3 δ
s
h (1 + rLip(η))

ˆ
Qr∩Ah

|e(uh)|2dx,

where d3 and s are constants. Set

v′h := (1− ψ)ṽ′h + ψu.

By the definition of A′h and (b1) (B′h, v
′
h

∣∣
B′h

) is an admissible configuration for

Φh(Ah, uh;Q1) in (2.10). Thus from (3.11) and (3.34)

Fh(Ah, uh;Q1) ≤ Fh(B′h, v
′
h

∣∣
B′h

;Q1) + o(1). (3.36)

Now as in the proof of (3.27)

Wh(B′h, v
′
h

∣∣
B′h

;Q1)−Wh(Ah, uh;Q1)

≤
ˆ
Qr

ψ2Che(u) : e(u)dx−
ˆ
Qr

(2ψ − ψ2)Che(ũh) : e(ũh)dx+ o(1)

≤
ˆ
Qr

Che(u) : e(u)dx−
ˆ
Qr′′

Che(ũh) : e(ũh)dx+ o(1). (3.37)

Moreover,

Sh(B′h;Q1)− Sh(Ah;Q1) =
(
Sh(B′h;Q1)− Sh(A′h;Q1)

)
+
(
Sh(A′h;Q1)− Sh(Ah;Q1)

)
≤Sh(B′h;Qr \Qr(1−√δh))− Sh(Ah;Qρ) ≤ 2c2,hH1(∂B′h \ ∂A′h)− Sh(Ah;Qρ)

≤2c0c2,h

√
δhH1([Qr \Qr(1−√δh)] ∩ ∂Ah)− Sh(Ah;Qρ)

≤2c0

√
δh

d5
Sh(Ah;Q1)− Sh(Ah;Qρ) = o(1)− Sh(Ah;Qρ), (3.38)

where we used in the first inequality (b1) and the definition of A′h, in the second and in
the last inequalities the definition of Sh, (3.16) and (3.10), in the third inequality (b2),
and in the last equality (3.13) and that δh → 0 by (3.12). Hence, (3.36), (3.37) and (3.38)
imply

Sh(Ah;Qρ) +

ˆ
Qr′′

Che(ũh) : e(ũh)dx ≤
ˆ
Qr

Che(u) : e(u)dx+ o(1).

Thus, letting h→∞ and using (3.30) we get

lim sup
h→∞

Sh(Ah;Qρ) +

ˆ
Qr′′

Ce(u) : e(u)dx ≤
ˆ
Qr

Ce(u) : e(u)dx.

Now letting r′′ → r we get

lim sup
h→∞

Sh(Ah;Qρ) = 0. (3.39)
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Observe that the function B 7→ Sh(Ah;B) defined for Borel sets B ⊂ Q1 extends to a
bounded nonnegative Radon measure µh in Q1. Since (3.39) holds for any ρ ∈ (0, r), µh
converges to 0 in the weak* sense, and thus (3.31) follows. �

Recall that by [18, Proposition 3.4] if the elasticity tensor C is constant, then for any
γ ∈ (0, 2) there exists cγ := cγ(c3, c4) > 0 such that for every local minimizer (Ω, u) ∈ C
of F(·;O), u is analytic in O and for any square QR(x) ⊂⊂ O and r ∈ (0, R),ˆ

Qr(x)
Ce(u) : e(u) dx ≤ cγ

( r
R

)2−γ
ˆ
QR(x)

Ce(u) : e(u) dx. (3.40)

Given γ ∈ (0, 1) let

τ0 = τ0(γ, c3, c4) := min{1, 1
2c
− 1

4−2γ
γ },

where cγ is the constant appearing in (3.40). Using Proposition 3.3 and repeating similar
arguments of [12, 19] we get the following decay property of the functional F .

Proposition 3.4. For any τ ∈ (0, τ0) there exist ς = ς(τ) ∈ (0, 1) and ϑ := ϑ(τ) ∈
(0, 1) with the following property: If there exist m ∈ N ∪ {∞}, (A, u) ∈ Cm and a square
Qρ(x) ⊂⊂ Ω such that

H1(Qρ(x) ∩ ∂A) ≤ 2ςρ and F(A, u;Qρ(x)) ≤ (1 + ϑ)Φ(A, u;Qρ(x)),

then

F(A, u;Qτρ(x)) ≤ τ2−γF(A, u;Qρ(x)).

Proof. We argue by contradiction. Assume that there exists τ ∈ (0, τ0) such that for all
ς, ϑ ∈ (0, 1) we can find m := m(ς, ϑ) ∈ N ∪ {∞}, (A, u) := (A(ς, ϑ), u(ς, ϑ)) ∈ Cm and
Qρ(x) ⊂⊂ Ω with ρ := ρ(ς, ϑ) and x := x(ς, ϑ) satisfying

H1(Qρ(x) ∩ ∂A) ≤ 2ςρ and F(A, u;Qρ(x)) ≤ (1 + ϑ)Φ(A, u;Qρ(x)), (3.41)

but

F(A, u;Qτρ(x)) > τ2−γF(A, u;Qρ(x)). (3.42)

Let us choose any positive real numbers ςh, ϑh → 0, and denote for simplicity mh :=
m(ςh, ϑh), (Ah, uh) = (A(ςh, ϑh), u(ςh, ϑh)), ρh := ρ(ςh, ϑh), xh = x(ςh, ϑh). By (3.41) and
(3.42),

H1(Qρh(xh) ∩ ∂Ah) ≤ 2ςhρh, (3.43)

F(Ah, uh;Qρh(xh)) ≤ (1 + ϑh)Φ(Ah, uh;Qρh(xh)), (3.44)

but

F(Ah, uh;Qτρh(xh)) > τ2−γF(Ah, uh;Qρh(xh)) (3.45)

for any h. Note that F(Ah, uh;Qρh(xh)) > 0. Let us define the rescaled energy Fh(·;Q1) :
Cmh → R as in (2.9) with

ϕh(y, ν) :=
ρhϕ(xh + ρhy, ν)

F(Ah, uh;Qρh(xh))

in place of ϕ(y, ν) and

Ch(y) := C(xh + ρhy)

in place of C(y), for y ∈ Q1. We notice that

Fh(Eh, vh;Q1) = 1 (3.46)

for

Eh := σxh,ρh(Ah)
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(see definition of blow-up map σx,r at (2.4)) and

vh(y) :=
uh(xh + ρhy)√
F(Ah, uh;Bρh(xh))

.

By (3.43) we obtain

H1(Q1 ∩ ∂Eh) < 2ςh

while (3.44) and (3.46) entails

Ψh(Eh, vh;Q1) ≤ ϑhΦh(Eh, vh;Q1) ≤ ϑhFh(Eh, vh;Q1) = ϑh,

where Φh and Ψh are defined as in (2.10) and (2.11) (again with ϕh and Ch in places of
ϕ and C, respectively). By (2.15) {Ch} is equibounded. Since Ω is bounded, there exists
x0 ∈ Ω such that, up to extracting a subsequence, xh → x0 as h→ +∞. As ρh → 0, one has
xh + ρhy → x0 for every y ∈ Q1. Thus {Ch} is also equicontinuous and Ch → C0 := C(x0)
uniformly in Q1. In view of (3.43), (3.44) and (3.46), we can apply Proposition 3.3 to find
v ∈ H1(Q1;R2), vectors ξh ∈ (0, 1)2, and infinitesimal rigid displacements ah such that,
up to a subsequence,

wh := vhχQ1∩Eh + ξhχQ1\Eh − ah → v

pointwise a.e. in Q1, e(wh) ⇀ e(v) in L2(Q1) as h→ +∞, and

lim
h→+∞

Fh(Eh, wh;Qr) = lim
h→+∞

Fh(Eh, vh;Qr) =

ˆ
Qr

C0(x)e(v) : e(v)dx (3.47)

for any r ∈ (0, 1]. In particular, from (3.47) and (3.45) it follows thatˆ
Qτ

C0(x)e(v) : e(v)dx = lim
h→+∞

F(Eh, vh;Qτ )

≥ lim
h→+∞

τ2−γF(Eh, vh;Q1) = τ2−γ
ˆ
Q1

C0(x)e(v) : e(v)dx.

Since C0 is constant, applying (3.40) with r := τ and R := 1 we get

cγτ
2−γ
ˆ
Q1

C0(x)e(v) : e(v)dx ≥
ˆ
Qτ

C0(x)e(v) : e(v)dx

≥ τγ−2

ˆ
Q1

C0(x)e(v) : e(v)dx.

Now recalling that Fh(Eh, vh;Q1) = 1, by (3.47) we get
´
Q1

C0(x)e(v) : e(v)dx = 1, thus,

τ2−γ ≥ c−1/2
γ > τ2−γ

0 , a contradiction. �

By employing the arguments of [53, Section 4.3] and using Proposition 3.4 we establish
the following lower bound for F .

Proposition 3.5. Given τ ∈ (0, τ0), let ς := ς(τ) ∈ (0, 1) and ϑ := ϑ(τ) ∈ (0, 1) be
as in Proposition 3.4. Let (A, u) ∈ Cm be a (Λ,m)-minimizer of F in Qr0(x0) for some
m ∈ N ∪ {∞} and r0 > 0, and let

J∗A := {y ∈ Qr0(x0) ∩ ∂A : θ∗(∂A, y) > 0}.

Then,

F(A, u;Qρ(x)) ≥ 2c1ςρ (3.48)

for every x ∈ J∗A and for every square Qρ(x) ⊂ Qr0(x0) with ρ ∈ (0, R0), where

R0 := R0(r0,Λ, c1, τ) := min
{
r0,

√
π c1ϑ

Λ(2 + ϑ)

}
.
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Proof. Fix m ∈ N∪{∞}. Note that for any (C,w), (D, v) ∈ Cm and O ⊂ Ω with C∆D ⊂⊂
O

√
4π |C∆D|1/2 ≤H1(∂∗(C∆D)) ≤ H1(O ∩ ∂∗C) +H1(O ∩ ∂∗D)

≤S(C,O) + S(D,O)

c1
≤ F(C,w;O) + F(D, v;O)

c1
, (3.49)

where in the first inequality we used the isoperimetric inequality, in the second ∂∗(C∆D) ⊂
O ∩ (∂∗C ∪ ∂∗D), in the third (2.13) and the definition of S(·;O) and in the last the
nonnegativity ofW(·;O). Thus, from the (Λ,m)-minimality of (A, u) in Qr0(x0) we deduce
that

F(A, u;Qr(x)) ≤F(B, v;Qr(x)) + Λ|A∆B|
1
2 |A∆B|

1
2

≤F(B, v;Qr(x)) +
Λr√
π c1

(
F(A, u;Qr(x)) + F(B, v;Qr(x))

)
(3.50)

for anyQr(x) ⊂ Qr0(x0) and (B, v) ∈ Cm with A∆B ⊂⊂ Qr(x) and supp (u−v) ⊂⊂ Qr(x),
where in the last inequality we used (3.49) and the inequality |A∆B| ≤ |Qr| = 4r2. Let
r > 0 be small enough so that Λr√

π c1
≤ ϑ

2+ϑ , where ϑ := ϑ(τ) ∈ (0, 1) is given by Proposition

3.4. From (3.50) we obtain

F(A, u;Qr(x)) ≤ (1 + ϑ)F(B, v;Qr(x)),

which by the arbitrariness of (B, v) is equivalent to

F(A, u;Qr(x)) ≤ (1 + ϑ)Φ(A, u;Qr(x)). (3.51)

Now we prove (3.48). Let x ∈ J∗A. For simplicity we suppose that x = 0. Assume by
contradiction that for such m ∈ N ∪ {∞}, (A, u) ∈ Cm and for some Qρ ⊂⊂ Qr0(x0) with
ρ ∈ (0, R0) we have

F(A, u;Qρ) < 2c1ςρ.

Then by the nonnegativity of the elastic energy and (2.13),

2c1ςρ > F(A, u;Qρ) ≥
ˆ
Qρ∩∂A

ϕ(x, νA)dH1 ≥ c1H1(Qρ ∩ ∂A)

so that

H1(Qρ ∩ ∂A) < 2ςρ. (3.52)

By (3.52) and (3.51) we can apply Proposition 3.4 and obtain that

F(A, u;Qτρ) ≤ τ2−γF(A, u;Qρ) ≤ 2c1ςτ
2−γρ

Hence,

H1(Qτρ ∩ ∂A) ≤ 2ςτ2−γρ < 2ςτρ,

where we used γ, τ ∈ (0, 1), and by induction

H1(Qτnρ ∩ ∂A) ≤ 2ςτ (2−γ)nρ < 2ςτnρ, n ∈ N.

However, by the choice of x

0 < θ∗(∂A, x) = lim inf
n→+∞

H1(Qτnρ ∩ ∂A)

2τnρ
≤ lim

n→+∞

2c1ςτ
(1−γ)n

2c1
= 0,

a contradiction. This contradiction implies (3.48) for x ∈ J∗A.
Now consider any x ∈ Qr0(x0) ∩ J∗A and ρ ∈ (0, R0) with Qρ(x) ⊂ Qr0(x0), and let us

choose a sequence {Qρk(xk)} of squares with xk ∈ J∗A and ρ1 ≤ ρ2 ≤ . . . ≤ ρ such that

Qρ1(x1) ⊆ Qρ2(x2) ⊆ . . . Qρ(x) and Qρ(x) =
⋃
k

Qρk(xk).
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Notice that xk → x and ρk → ρ. By De Giorgi-Letta Theorem [2, Theorem 1.53], both
maps

O 7→
ˆ
O∩∂∗A

ϕ(x, νA)dH1 + 2

ˆ
O∩(A(0)∪A(1))∩∂A

ϕ(x, νA)dH1

and

O 7→
ˆ
O∩A

C(y)e(u) : e(u)dy,

defined at open sets O ⊂⊂ Ω, uniquely extend to positive Borel measures µ1 and µ2 in Ω.
Therefore, from the continuity of µ1 and µ2 (see e.g. [2, Remark 1.3]) and the validity of
(3.48) with xk and ρk it follows that

F(A, u;Qρ(x)) =µ1(Qρ(x)) + µ2(Qρ(x)) = lim
k→+∞

[µ1(Qρ(xk)) + µ2(Qρk(xk))]

= lim
k→+∞

F(A, u;Qρk(xk)) ≥ lim
k→+∞

(2c2ςρk) = 2c2ςρ.

�

Now we are ready to prove (3.2) and (3.3).

Proof of Theorem 3.1. Let m ∈ N ∪ {∞} and (A, u) be a (Λ,m)-minimizer of F(·, ·; Ω).
We begin by establishing (3.2). Let x ∈ Ω, r ∈ (0,min{1,dist(x, ∂Ω)}), and Qr := Qr(x).
Since (3.2) is trivial if Qr ∩ ∂A = ∅, then we assume that Qr ∩ ∂A 6= ∅ and so E :=
(A \Qr) ∪ ∂Qr ∈ Am. By the (Λ,m)-minimality of (A, u)

F(A, u;Qr) ≤ F(E, u;Qr) + Λ|Qr|.

Hence, by the nonnegativity W(A ∩Qr, u;Qr)ˆ
Qr∩∂A

ϕ(x, νA)dH1 ≤ 2

ˆ
∂Qr

ϕ(x, νQr)dH1 + 4Λr2

and hence (2.13) entails (3.2). In particular, since E∆A ⊂⊂ Qρ for every ρ ∈
(r, dist(x, ∂Ω)), we also have

F(A, u;Qρ) ≤F(E, u;Qρ) + Λ|Qr| = F(E, u;Qρ \Qr) + S(E, u;Qr) + 4Λr2

≤F(E, u;Qρ \Qr) + 2

ˆ
∂Qr

ϕ(x, νQr)dH1 + 4Λr2

≤F(E, u;Qρ \Qr) + 16c2r + 4Λr2

and hence, letting ρ↘ r and using r ≤ 1 we get

F(A, u;Qr) ≤ (16c2 + 4Λ)r. (3.53)

Now assuming that x belongs to the closure of the set {y ∈ Ω ∩ ∂A : θ∗(∂A, y) > 0},
we prove (3.3). For τo := τ0/2, let ςo = ς(τo) ∈ (0, 1) and Ro = R0(1,Λ, c1, τo) > 0 be as
in Proposition 3.5. Then by (3.48),

F(A, u;Qκr) ≥ 2c1ςoκr (3.54)

for κ ∈ (0, 1] and for any square Qr ⊂ Ω with r ∈ (0, Ro). We consider ς∗ := ς(τ∗),
ϑ∗ := ϑ(τ∗), and R∗ := min{R(1,Λ, c1, τ∗), Ro} as given by Proposition 3.4 for τ∗ :=

min{ τ02 ,
(

c1ςo
16c2+4Λ

) 1
1−γ }. By contradiction, if H1(Qr ∩ ∂A) < ς∗r, then by applying (3.51)

with κ = τ∗ we obtain

F(A, u;Qr) ≤ (1 + ϑ∗)Φ(A, u;Qr).

Then by Proposition 3.4,

F(A, u;Qτ∗r) ≤ τ2−γ
∗ F(A, u;Qr)
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so that by (3.54) and (3.53)

τ1−γ
∗ ≥ 2c1ςo

16c2 + 4Λ
,

which is a contradiction. �

4. Compactness and lower-semicontinuity properties

For the convenience of the reader, we divide the prove into several propositions. We
start by showing the compactness of free crystal regions of the sequence of constrained
minimizers {(Am, um)}.

Proposition 4.1. Assume that either v ∈ (0, |Ω|) or S = ∅. There exist mh ↗ +∞,
(Amh , umh) ∈ Cmh and A ∈ Ã such that

(a) for any h ∈ N, (Amh , umh) is a minimizer of F in Cmh with |A| = v such that
∂Amh does not contain isolated points;

(b) sdist(·, ∂Amh)→ sdist(·, ∂A) locally uniformly in R2 as h→∞;
(c) for any x ∈ Ω ∩ ∂A and r ∈ (0,min{R∗,dist(x, ∂Ω)})

c1ς∗
8πc2

≤ H
1(Qr(x) ∩ ∂A)

2r
≤ 2πc2

c1ς∗
, (4.1)

where ς∗ := ς∗(c3, c4) ∈ (0, 1) and R∗ := R∗(c1, c2, c3, c4) > 0 are given in Theorem
3.1.

Proof. By [45, Theorem 2.6] there exists a minimizer (Am, um) ∈ Cm for every m ∈ N.
Without loss of generality we assume that ∂Am does not contain isolated points. In fact, if

∂Am has a isolated point x in A
(0)
m , then Am\{x} ∈ Am and F(Am, um) = F(Am\{x}, um).

Analogously, if ∂Am has an isolated point in A
(1)
m , then there exists r > 0 such that

Br(x) ∩ ∂Am = {x} (and Br(x) ⊂ Am ∪ {x} ∈ Cm). In view of Proposition A.3 the
function um, arbitrarily extended to x belongs to H1

loc(Br(x)), hence, the configuration
(Am ∪ {x}, um) ∈ Cm and satisfies F(Am, um) = F(Am ∪ {x}, um).

In view of Remark 2.5 (Am, um−u0) is a (λ0,m)-minimizer of F(·, ·; Ω). Moreover, since
∂Am does not contain isolated points θ∗(∂Am, x) > 0 for any x ∈ ∂Am, hence by Theorem
3.1 the density estimates (3.2) and (3.3) hold for all x ∈ Ω ∩ ∂Am.

By [45, Proposition 3.1], there exist A ⊂ Ω and a subsequence {(Amh , umh)} such
that sdist(·, ∂Amh) → sdist(·, ∂A) as h → ∞. Consider the sequence µh := H1 ∂Amh of
positive Radon measures. By Theorem 3.1

ς∗
2
≤ µh(Qr(x))

2r
≤ 2πc2

c1
(4.2)

for every x ∈ Ω ∩ ∂Amh and Qr(x) ⊂⊂ Ω with r ∈ (0, R∗). By (2.13), (2.14) and (3.1),

µh(R2) = H1(∂Amh) ≤H1(∂Ω) +
F(Amh , umh) + 2c2H1(Σ)

c1

≤H1(∂Ω) +
F(A1, u1) + 2c2H1(Σ)

c1
,

hence, by compactness, there exist a not relabelled subsequence and a positive Radon
measure µ in R2 such that µh ⇀

∗ µ as h→∞. We claim that

Ω ∩ ∂A ⊆ suppµ ⊆ ∂A.
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Indeed, let x ∈ Ω ∩ ∂A and r ∈ (0,min{dist(x, ∂Ω), R∗}). By the sdist-convergence, there
exists xh ∈ Qr(x) ∩ ∂Amh with xh → x such that Qr/2(xh) ⊂ Qr(x) and hence, by the
weak* convergence and (4.2),

µ(Qr(x)) ≥ lim sup
h→∞

µh(Qr(x)) ≥ lim sup
h→∞

µh(Qr/2(xh)) ≥ ς∗r.

This implies x ∈ suppµ. Conversely, if, by contradiction, there exists x ∈ suppµ \ ∂A,
then we can find r > 0 such that Qr(x) ∩ ∂A = ∅. From the sdist-convergence it follows
that Qr/2(x) ∩ ∂Amh = ∅ for h large enough, and hence,

0 < µ(Qr/2(x)) ≤ lim inf
h→∞

µh(Qr/2(x)) = 0,

which is a contradiction.

From (4.2) it follows that
ς∗
2
≤ µ(Qr(x))

2r
≤ 2πc2

c1
(4.3)

for any x ∈ Ω∩suppµ any r ∈ (0, R∗) with Qr(x) ⊂⊂ Ω. Indeed, let x ∈ Ω∩suppµ and let
R(x) := min{R∗,dist(x, ∂Ω)}. Then by the weak* convergence µh(Qr(x))→ µ(Qr(x)) = 0
for a.e. r ∈ (0, R(x)). In particular, (4.3) holds for a.e. r ∈ (0, R(x)). Since µ is a Radon
measure, (4.3) extends to all r ∈ (0, R(x)) by the left-continuity of the map r 7→ µ(Qr(x)).

From (4.3) and [2, Theorem 2.56] it follows that

ς∗H1 (Ω ∩ suppµ) ≤ µ Ω ≤ 4πc2

c1
H1 (Ω ∩ suppµ). (4.4)

Thus, µ Ω is absolutely continuous with respect toH1 (Ω∩suppµ) andH1(suppµ) <∞.
By (4.4),

H1(∂A) ≤ H1(Ω ∩ ∂A) +H1(∂Ω ∩ ∂A) ≤ 1

ς∗
µ(Ω) +H1(∂Ω) <∞.

Finally let us prove (4.1). Fix any x ∈ Ω ∩ ∂A and let R(x) := min{R∗,dist(x, ∂Ω)}.
Then by (4.4)

ς∗H1(Qr(x) ∩ ∂A)

2r
≤ µ(Qr(x))

2r
≤ 4πc2

c1

H1(Qr(x) ∩ ∂A)

2r
.

This and (4.3) imply

ς∗H1(Qr(x) ∩ ∂A)

2r
≤ 2πc2

c1
and

ς∗
2
≤ 4πc2

c1

H1(Qr(x) ∩ ∂A)

2r
,

and hence, (4.1) follows. �

We notice that by Proposition A.1 the limit set A in Proposition 4.1 is of finite perimeter.
However, a priori, by the arguments of Proposition 4.1, its topological boundary ∂A does
not need to be H1-rectifiable, and so in A. This issue is overcome by introducing the

extended class Ã and the auxiliary model F̃ in Section 2.3.

Corollary 4.2. Let {Amh} and A be as in Proposition 4.1. Then Amh → A in L1(R2) as
h→∞.

Proof. Since H1(∂A) <∞ and Amh
K→ A as h→∞, one has χAmh (x)→ χA(x) as h→∞

for a.e. x ∈ R2. Now Corollary 4.2 follows from the Dominated Convergence Theorem. �

The following result generalizes [40, Theorem 4.2] since it applies to set Γ a priori
not connected and even not necessarily H1-rectifiable), but satisfying uniform density
estimates. Recall that we denote by Γr and Γu the H1-rectifiable and purely unrectifiable
parts of a Borel 1-set Γ.
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Proposition 4.3. Let Γ ⊂ R2 be a Borel set such that H1(Γ) < +∞ and for some
r0, c, C > 0 and for all x ∈ Γ

c ≤ H
1(Qr(x))

2r
≤ C, r ∈ (0, r0). (4.5)

Then for any R > 0 and a.e. x ∈ Γr one has

QR,νΓ(x)(x) ∩ σx,ρ(Γ)
K→ QR,νΓ(x)(x) ∩ Tx (4.6)

and

H1 (σx,ρ(Γ))
∗
⇀ H1 Tx (4.7)

as ρ→ 0, where σx,r is the blow-up map defined in (2.4) and Tx is the generalized tangent
line to Γ at x. Moreover, for any H1-measurable Γ′ ⊂ Γ and H1-a.e. x ∈ [Γ′]r the relations
(4.6) and (4.7) hold with Γ′ in place of Γ.

Proof. By [33, Theorem 3.3], Γr (and hence [Γ′]r) has a approximate tangent line at H1-
a.e. x, therefore, (4.7) follows from [2, Remark 2.80]. To prove (4.6) with Γ choose x ∈ Γ
such that θ(Γ, x) = 1 and Tx exists. Without loss of generality we assume that x = 0 and
νΓ(x) = e2 is the unit normal to Tx. First we prove

σ0,r(Γ)
K→ T0 (4.8)

as r ↘ 0. Indeed, let µr := H1 (σ0,r(Γ)) and µ0 := H1 T0. Given r > 0, since

µr(Qρ(x)) =
H1(Qρr(rx))

r , by (4.5) for all x ∈ σ0,r(Γ) and ρ ∈ (0, r0/r) one has

c ≤ µr(Qρ(x))

2ρ
≤ C. (4.9)

Let rk ↘ 0 be any sequence. By compactness of sets in the Kuratowski convergence,
passing to a further not relabelled subsequence if necessary we suppose that

σ0,rk(Γ)
K→ L (4.10)

for some closed set L ⊂ R2 as k → ∞. We claim that L = T0. If there exists x ∈ T0 \ L,
then for some ρ > 0, Qρ(x) ∩ L = ∅. By (4.10), Qρ/2(x) ∩ σ0,rk(Γ) = ∅ for all large k so
that µrk(Qρ/2(x)) = 0. Then by (4.7)

0 = lim
k→∞

µrk(Qρ/2(x)) ≥ µ0(Qρ/2(x)) ≥ ρ,

a contradiction. If there exists x ∈ L \ T0, then for some Qρ(x) ∩ T0 = ∅ for some ρ > 0
and there exists a sequence xk ∈ σ0,rk(Γ) such that xk → x. Then Qρ/2(xk) ⊂ Qρ(x) for
all large k so that by (4.7) and (4.9),

0 = µ0(Qρ(x)) ≥ lim sup
k→∞

µrk(Qρ(x)) ≥ lim sup
k→∞

µrk(Qρ/2(xk)) ≥ cρ,

a contradiction. Thus, L = T0. Since the sequence rk ↘ 0 is arbitrary, (4.8) follows. Now
(4.6) is obvious.

To prove the assertion for Γ′, fix any x ∈ Γ′ such that θ(Γ, x) = θ(Γ′, x) = 1 and

both generalized tangents TΓ
x and TΓ′

x of Γ and Γ′ exist. Note that TΓ
x = TΓ′

x =: Tx. For
shortness, assume that x = 0 and νΓ(x) = e2. Since in general Γ′ does not satisfy the
uniform density estimates of type (4.5), we cannot argue as above.

Let rk ↘ 0 be arbitrary sequence such that σ0,rk(Γ′) → L for some closed set L ⊂ R2.
Then for every x ∈ L there exists a sequence xk ∈ σ0,rk(Γ′) such that xk → x. Since Γ′ ⊂ Γ

and by (4.8) σ0,rk(Γ)
K→ T0, we have xk ∈ σ0,rk(Γ) and xk → x ∈ T0. Thus, L ⊂ T0. To

prove the converse inclusion, assume that there exists x ∈ T0 \ L. Since L is closed there
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exists r > 0 such that B2r(x)∩L = ∅. As we mentioned in the beginning of the proof, for

µk := H1 (σ0,rk(Γ′)) we have µk
∗→ H1(T0). In particular, for every ρ ∈ (0, r)

lim
k→+∞

µk(Bρ(x)) = H1(Bρ(x) ∩ T0) = 2ρ.

Hence, Bρ(x)∩σ0,rk(Γ′) 6= ∅ for each such ρ and thus, taking a sequence ρn → 0 and using
a diagonal argument we obtain a sequence xn ∈ σ0,rkn

(Γ′) converging to x. So x ∈ L, a
contradiction.

Since rk → 0 is arbitrary, one has σ0,r(Γ
′)

K→ T0 as r → 0. �

Next we turn to the compactness of displacements of the sequence of constrained min-
imizers {(Am, um)}.

Proposition 4.4. Let Amh and A be as in Proposition 4.1. Let {Ei}i∈N be the family
of all connected components of Int(A). There exist a further (not relabelled) subsequence
of {(Amh , uh)}, a sequence {ah} of rigid displacements, a subset N of N, a function v0 ∈
H1(S) and a family {vi ∈ GSBD2(Int(Ei)) ∩H1

loc(Int(Ei) ∪ S)}i∈N such that

|umh + ah| → +∞

a.e. in
⋃
i∈N\N Ei,

umh + ah ⇀ v0χS +
∑
i∈N

viχEi

weakly in H1
loc((∪i∈NEi) ∪ S) (and hence a.e. in (∪i∈NEi) ∪ S),

e(umh)→ e(v0)χS +
∑
i∈N

e(vi)χEi

weakly in L2
loc((∪i∈NEi) ∪ S).

The main difference of our compactness result from [14, Theorem 1.1] is not only that in
our setting we have the set-function coupling, but also we need to select those components
of limiting free crytal region where the displacements diverge and those in which they
don’t. This first requires to actually prove that the behavior is consistent inside each
component of the limiting free-crystal region, which is achieved using [45, Proposition
3.7].

Proof. Since S is connected and Lipschitz, by the Korn-Poincaré inequality and the Rellich-
Kondrachov Theorem there exists a further not relabelled subsequence {umh}, a sequence
{ah} of infinitesimal rigid displacements and v0 ∈ H1(S;R2) such that umh + ah → v0

weakly in H1(S;R2) and a.e. in S.

We define the set N ⊂ N as follows: For each i ∈ N fix some ball Bi ⊂⊂ Ei. Since

Amh
K→ A, there exists h0

i > 0 such that Bi ⊂⊂ Amh for all h > h0
i . By (2.15) and (3.1)

sup
h>h0

i

ˆ
Bi

|e(umh + ah)|2dx ≤ 1

2c3
sup
h>h0

i

ˆ
Amh∪S

C(x)e(umh) : e(umh)dx < +∞,

and thus, by [45, Proposition 3.7] either |umh+ah| → +∞ a.e. in Bi or up to a subsequence,
umh + ah converges a.e. in Bi. By a diagonal argument, we choose a further not relabelled
subsequence {umh} and the subset N of indices i ∈ N such that for every i ∈ N the
sequence wh := umh + ah → vi converges a.e. in Bi as h→ +∞.

We claim that for every i ∈ N there exists vi ∈ H1
loc(Ei;R2)∩GSBD2(Ei;R2) such that

wh → vi weakly in H1
loc(Ei;R2) and a.e. in Ei as h→∞. To prove the claim we fix i ∈ N

and let D ⊂⊂ Ei be an arbitrary connected open set containing Bi. Since sdist(·, ∂Amh)→
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sdist(·, ∂A) locally uniformly in R2, there exists hD > 0 such that D ⊂⊂ Int(Amh) for all
h > hD. Note that wh ∈ H1(D) and

sup
h>hD

ˆ
D
|e(wh)|2dx ≤ C :=

1

2c3
sup
h>hD

ˆ
Amh∪S

C(x)e(umh) : e(umh)dx < +∞, (4.11)

where in the first inequality we used (2.15) and in the second (3.1). Since wh has finite
limit a.e. in Bi ⊂ D, by [45, Proposition 3.7] there exists vDi ∈ H1

loc(D) ∩ GSBD2(D)

and a subsequence {wDh } of {wh} such that wDh → vDi weakly in H1
loc and a.e. in D. Now

choosing a sequence D1 ⊂⊂ D2 ⊂⊂ . . . ⊂⊂ Ei of connected open sets such that Bi ⊂ D1

and Ei = ∪jDj and using a diagonal argument we choose a (not relablled) subsequence
{wh} and vi ∈ H1

loc(Ei) ∩GSBD2
loc(Ei) such that wh → vi weakly in H1

loc(Ei) and a.e. in
Ei. In particular, e(wh)→ e(vi) weakly in L2

loc(Ei) and hence, by convexity and (4.11)ˆ
Dj

|e(vi)|2dx ≤ lim inf
h→+∞

ˆ
Dj

|e(wh)|2dx ≤ C.

Hence, letting j →∞ we get vi ∈ GSBD2(Ei).

Let us now show that by the choice of N, for every j ∈ N\N one has |umh +ah| → +∞
a.e. in Ej as h → +∞. Indeed, by definition, if i /∈ N, then |umh + ah| → +∞ a.e. in
Bi ⊂⊂ Ei. Let D ⊂⊂ Ei be any connected open set containing Bi. As in (4.11) we can
show ‖e(umh + ah)‖2L2(D) is uniformly bounded for all sufficiently large h, and therefore,

by [45, Proposition 4.7] |umh + ah| → +∞ a.e. in D.

Finally, since umh + ah → u weakly in H1
loc((∪i∈NEi) ∪ S), it follows that e(umh) =

e(umh + ah)→ e(u) weakly in L2
loc((∪i∈NEi) ∪ S). �

Proposition 4.4 allows us to define a “limit” displacement.

Proposition 4.5. Let {(Amh , umh)}, {ah}, A, N and {vi}i∈N∪{0} satisfy the assertion of
Proposition 4.4 and let

u := v0χS +
∑
i∈N

viχEi +
∑

j∈N\N

u0χEj ,

where u0 is the displacement defining the mismatch strain M0. Then

lim inf
h→∞

W(Amh , umh) ≥ W(A, u). (4.12)

Proof. Fix arbitrary open set D ⊂⊂ Int(A)∪ S. By Proposition 4.4 umh + ah → u weakly
in L2(D ∩ [(∪i∈NEi) ∪ S]), hence, by the convexity of the elastic energy

lim inf
h→∞

W(Amh , umh) = lim inf
h→∞

ˆ
Amh∪S

W (x, e(umh)−M0)dx

≥ lim inf
h→∞

( ˆ
D∩S

W (x, e(umh)−M0)dx+
∑
j∈N

ˆ
D∩Ei

W (x, e(umh)−M0)dx
)

≥
ˆ
D∩S

W (x, e(u)−M0)dx+
∑
i∈N

ˆ
D∩Ei

W (x, e(u)−M0)dx,

where we recall that M0 = e(u0). Since e(u) −M0 = 0 a.e. in ∪j∈N\NEj , this inequality
can also be rewritten as

lim inf
h→∞

W(Amh , umh) ≥
ˆ
D∩(A∪S)

W (x, e(u)−M0)dx.

Now letting D ↗ Int(A) ∪ S and using |A \ Int(A)| ≤ |∂A| = 0 we get (4.12). �

Now we establish the following “lower semicontinuity” of F(Am, um).
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Proposition 4.6. Let {(Amh , umh)}, A and u be as in Proposition 4.5. Then (Int(A), u) ∈
C̃ and

lim inf
h→∞

S(Amh , umh) ≥ S̃(Int(A), u), (4.13)

where S̃ is defined in (2.12).

We postpone the proof of this proposition after the following auxiliary lemma, needed
to treat the delamination and jumps along the cracks.

Lemma 4.7. Recall the definition of the sets Ir and Q±r from (2.3). Let φ be any norm in
R2. Let {Dk} and {mk} be sequences of subsets of Q4 and of natural numbers, respectively,
satisfying

(a) the number of connected components ∂Dk lying strictly inside Q4 does not exceed
mk;

(b) sdist(·, ∂Dk)→ −dist(·, I4) uniformly in Q4 and

sup
k
H1(Q1 ∩ ∂Dk) < +∞;

(c) there exists a sequence {wk} ⊂ GSBD2(Q4) such that Jwk ⊂ Q1 ∩ ∂Dk and

sup
k

ˆ
Q1

|e(wk)|2dx < +∞;

(d) there exist ξ± ∈ R2 such that

wk → w0 := ξ+χQ−1
+ ξ−χQ+

1 \U∞1
a.e. in Q1 \ U∞1

and

|wk| → +∞ a.e. in U∞1 ,

where U∞1 is either ∅ or Q+
1 .

Then there exists a subsequence {kh} ⊂ N such that for any δ ∈ (0, 1) we can find hδ > 0
for whichˆ

Q1∩∂∗Dkh
φ(νDkh )dH1 + 2

ˆ
Q1∩D(1)

kh
∩∂Dkh

φ(νDkh )dH1 ≥ 2

ˆ
I1

φ(e2)dH1 − δ (4.14)

for all h > hδ.

Before the proof of Lemma 4.7 we recall some notations and results from [14]. Given
ξ ∈ R2 \ {0}, let Πξ := {y ∈ R2 : y · ξ = 0}. For every set B ⊂ R2 and for every y ∈ Πξ we
define

Bξ
y := {t ∈ R : y + tξ ∈ B}.

Moreover, for every u : B → R2 we define ûξy : Bξ
y → R by

ûξy(t) := u(y + tξ) · ξ.

When u ∈ GSBD2(Q1), then ûξy ∈ SBV 2
loc([Q1]ξy) for H1-a.e. πξ(Q1) and for all ξ ∈

R2 \ {0}. In this case we define

Iξy(u) :=

ˆ
[Q1]ξy

|(u̇)ξy|2dt,

where (u̇)ξy is the density of the absolutely continuity part of Dûξy and also

IIξy(u) := |D(τ(u · ξ)ξy)|([Q]ξ1),
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where τ(t) := arctan(t). Recall thatˆ
Πξ

Iξy(u)H1(y) +

ˆ
Πξ

IIξy(u)H1(y) ≤
ˆ
Q1

|e(u)|dx+

ˆ
Q1

|e(u)|2dx+H1(Ju)

(see e.g. [14, Eq. 3.8 and 3.9]).

Proof. The proof is similar to [45, Lemma 4.7]. Since φ is even,

φ(ξ) = sup
η∈R2, φo(η)=1

|ξ · η|, ξ ∈ R2,

where φo is the dual norm of φ. By the compactness of Bφo := {η ∈ R2 : φo(η) = 1}, for
any countable set {ηi} dense in Bφo and for any H1-rectifiable set K ⊂ R2

φ(νK(x)) = sup
i≥1
|νK(x) · ηi| for H1-a.e. x ∈ K.

Hence, by [27, Lemma 6] for any open set U ⊂ R2

ˆ
U∩K

φ(νK)dH1 = sup
k

sup
{ k∑
i=1

ˆ
Ai∩K

|νK ·ηi|dH1 : Ai ⊂⊂ U open and pairwise disjoint
}
.

Moreover, by the area formula for any Borel set Bˆ
B∩K

|νK · ξ|dH1 = |ξ|
ˆ
πξ(B)

H0(K ∩Bξ
y)dH1(y),

where πξ(z) = z −
(
z · ξ|ξ|

) ξ
|ξ| and given y ∈ πξ(B), Bξ

y = π−1
ξ (y) ∩B.

Step 1: There exists an at most countable set Υ ⊂ Bφo such that

lim
k→+∞

H1(πξ(I1) \ πξ(Jwk)) = 0 (4.15)

for any ξ ∈ Bφo \ Υ.
Indeed, let Υ be the set of all ξ ∈ Bφo for which there exists y ∈ πξ(I1) such that

H1(π−1
ξ (y) ∩ ∂Dk) > 0. By assumption (b) and Proposition A.2 the set Υ is at most

countable. Let {wkl} be arbitrary not relabelled subsequence of {wk}. In view of [14, Eq.

3.23] (applied with A = U∞1 ) for any ξ ∈ Bφo \ Υ, ε > 0 and for H1-a.e. y ∈ πξ(Q1) there
exists a further subsequence wklh (possibly depending on ξ, ε and y)

H0(J
[ŵ0]ξy

∩ [Q1 \ U∞1 ]ξy) +H0([∂U∞1 ]ξy) ≤ lim inf
h→+∞

[
H1(J

[wklh
]ξy

) + ε(Iξy(wklh ) + IIξywklh )
]
.

(4.16)

By the definition of w0 and U∞1 , the left-side of (4.16) is equal to 1 for H1-a.e. y ∈ πξ(I1).
Theorefore, for such y and for sufficiently small ε > 0 we have lim inf

h→+∞
H1(J

[wklh
]ξy

) ≥ 1.

Hence, for H1-a.e. y ∈ πξ(I1) the line π−1
ξ (y) intersects Jwklh

for all h and (4.15) follows.

Note that by [45, Proposition 4.6]

lim inf
k→+∞

ˆ
Q1∩Jwk

φ(νJwk )dH1 ≥
ˆ
I1

φ(e2)dH1. (4.17)

Step 2: Now we improve (4.17) by including coefficient 2 on the right-hand side of the
inequality in the presence of a small error term.

We proceed in three substeps. We redefine the displacement wk in the convex envelope
V i
k of each connected component Ki

k of ∂Dk in such a way that ∂V i
k become jump sets

with the left-hand side of (4.14) lowered up to a small error.

Substep 2.1: First we identify {V i
k}.
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Fix any δ ∈ (0, 1). By (b) there exists k1
δ > 0 such that ([−2, 2]× [−2,−δ]) ∪ ([−2, 2]×

[δ, 2]) ⊂ Int(Dk) for any k ≥ k1
δ . Let Fk := Q1∩Dk. Note that ∂Fk ⊂ (Q1∩∂Dk)∪({±1}×

[−δ, δ]) and since Dk ∈ Amk , the number of connected components {Ljk}j≥1 of ∂Fk does
not exceed mk. Note that Fk ⊂ [−1, 1]× [−δ, δ] and

αk :=

ˆ
Q1∩∂∗Ek

φ(νEk)dH1 + 2

ˆ
Q1∩E(1)

k ∩∂Ek
φ(νEk)dH1

≥
ˆ
Q2∩∂∗Fk

φ(νFk)dH1 + 2

ˆ
Q2∩F (1)

k ∩∂Fk
φ(νFk)dH1 − 4δ

=
∑
j≥1

[ ˆ
Q2∩∂∗Fk∩Ljk

φ(νFk)dH1 + 2

ˆ
Q2∩F (1)

k ∩∂Fk∩L
j
k

φ(νFk)dH1
]
− 4δ := α′k. (4.18)

Next repeating the same arguments of Step 1 in the proof of [45, Lemma 4.7] we can
find a family {V i

k}i of at most countably many pairwise disjoint closed convex sets with

non-empty interior such that for each Ljk there exists a unique Vi with Ljk ⊂ V
i
k and

α′k ≥
∑
i≥1

ˆ
∂V ik

φ(νV ik
)dH1 − 6δ (4.19)

see e.g. [45, Eq. 4.34]

Substep 2.2: Now we replace wk with another function vk associated to V i
k . Fix ξ0 ∈ R2

such that the jump set of the function

vk := wkχQ1\∪iV ik
+ ξ0χ∪iV ik

coincide with ∪i∂V i
k (up to a H1-negligible set).

By assumption (b) ∪i∂V i
k

K→ I1 as k → +∞. Moreover, as in Step 1 we can find a

countable set Υ ′ ⊂ Bφo such that by assumption (b) and (4.15)

lim sup
k→+∞

H1(πξ(I1) \ πξ(∪i∂V i
k )) ≤ lim sup

k→+∞
H1(πξ(I1) \ πξ(∂Dk))

≤ lim
k→+∞

H1(πξ(I1) \ πξ(Jwk)) = 0

for all ξ ∈ Bφo \ (Υ ∪ Υ ′). Moreover, by assumption (d) vk → w0 a.e. in Q1 \ U∞1 and
|vk| → +∞ a.e. in U∞1 .

Substep 2.3: By convexity of each V i
k we observe that

lim inf
k→+∞

H0(π−1
ξ (y) ∩ Jvk) ≥ 2 = 2H0(J

[ŵ0]ξy
∩ [Q1 \ U∞1 ]ξy).

for all ξ ∈ Bφo \ (Υ ∪ Υ ′) and H1-a.e. y ∈ πξ. Thus, by repeating the arguments of Step 1
in the proof of [45, Proposition 4.6] we get

lim inf
k→+∞

ˆ
∪i∂V ik

φ(ν∪iV ik
)dH1 = lim inf

k→+∞

ˆ
Jvk

φ(νJvk
)dH1 ≥ 2

ˆ
I1

φ(e2)dH1,

which together with (4.18) and (4.19) implies the assertion of the lemma. �

Now we are ready to prove (4.13).

Proof of Proposition 4.6. For shortness, let

G := Int(A).

We define

ũh := (umh + ah)χAmh
+ ηχΩ\Amh
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and

ũ := uχG + ηχΩ\G

for η ∈ (0, 1)2 such that Ω ∩ ∂∗Amh ⊂ Jũh and Ω ∩ ∂∗G ⊂ Jũ up to an H1-negligible set.
Such η exists by Proposition A.2 in view of the estimate

H1(∂Amh) ≤ S(Amh , umh)

c1
+

2c2H1(∂Ω)

c1
≤ F(A1, u1)

c1
+

2c2H1(∂Ω)

c1
,

which holds for every h ≥ 1. Notice that ũh ∈ GSBD2(Int(Ω ∪ S ∪ Σ)) ∩H1
loc((Ω ∪ S) \

∂Amh), ũ ∈ GSBD2(Int(Ω ∪ S ∪ Σ)) ∩H1
loc((Ω ∪ S) \ ∂G), Jũ ⊂ (Ω ∩ ∂G) ∪ (Σ ∩ Ju) and

H1(Jũh)+

ˆ
Ω
|e(ũh)|2dx ≤ F(Amh , umh)+H1(Σ) ≤M := F(A1, u1)+H1(Σ) <∞ (4.20)

for every h ≥ 1. Moreover, by Proposition 4.4, the definitions of u, ũh and ũ,

ũh → ũ a.e. in [S ∪ (Ω \G)] ∪
⋃
i∈N

Ei (4.21)

and

|ũh| → +∞ a.e. in
⋃

j∈N\N

Ej , (4.22)

where {Ei} and N are provided by Proposition 4.4.

We recall that a priori ∂A, and hence ∂G, does not need to be H1-rectifiable. Therefore,
by [21, Theorem 6.2] Jũ ⊂ (Ω∩∂rG)∪ (Σ∩Ju), where we recall that ∂rG is H1-rectifiable
part of ∂G.

To prove (4.13) we use similar arguments as in [45, Proposition 4.1]. Let g ∈ L∞(Σ ×
{0, 1}) be such that

g(x, s) := ϕ(x, νΣ(x)) + sβ(x)

for which we know by (2.14) that g ≥ 0 and

|g(x, 1)− g(x, 0)| ≤ ϕ(x, νΣ(x)) for a.e. x ∈ Σ. (4.23)

Let µh be the sequence of positive Radon measures defined at Borel sets B ⊂ R2 as

µh(B) :=

ˆ
B∩Ω∩∂∗Amh

ϕ(x, νAmh )dH1 + 2

ˆ
B∩Ω∩(A

(1)
mh
∪A(0)

mh
)∩∂Amh

ϕ(x, νAmh )dH1

+

ˆ
B∩Σ∩A(0)

mh
∩∂Amh

[
ϕ(x, νΣ) + g(x, 1)

]
dH1(x) +

ˆ
B∩Σ\∂Amh

g(x, 0)dH1

+

ˆ
B∩Σ∩∂∗Amh\Jumh

g(x, 1)dH1 +

ˆ
B∩Σ∩Jumh

[
g(x, 0) + ϕ(x, νΣ)

]
dH1

and let µ be the positive measure defined at Borel sets B ⊂ R2 as

µ(B) :=

ˆ
B∩Ω∩∂∗G

ϕ(x, νA)dH1 + 2

ˆ
B∩Ω∩G(1)∩∂G∩Jũ

ϕ(x, νG)dH1

+

ˆ
B∩Σ\∂G

g(x, 0)dH1 +

ˆ
B∩Σ∩∂∗G\Ju

g(x, 1)dH1 +

ˆ
B∩Σ∩Jũ

[
g(x, 0) + ϕ(x, νΣ)

]
dH1.

Since SAũ := G(1) ∩ ∂G ∩ Jũ and Σ ∩ Jũ = Σ ∩ Ju, we have

µh(R2) = S(Amh , umh) +

ˆ
Σ
ϕ(x, νΣ)dH1

and

µ(R2) = S̃(G, u) +

ˆ
Σ
ϕ(x, νΣ)dH1.
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Hence, to establish (4.13) it suffices to prove

lim inf
h→∞

µh(R2) ≥ µ(R2). (4.24)

Since suph µh(R2) < +∞, by compactness, there exists a positive Radon measure µ0 in
R2 such that (up to a subsequence) µh ⇀

∗ µ0 as h→∞. We show

µ0 ≥ µ (4.25)

and we observe that (4.24) immediately follows from (4.25). To establish (4.25) it suffices
to prove

dµ0

dH1 (Ω ∩ ∂∗G)
(x) ≥ ϕ(x, νG(x)) for a.e. x ∈ Ω ∩ ∂∗G, (4.26a)

dµ0

dH1 (Σ ∩ ∂∗G)
(x) ≥ g(x, 1) for a.e. x ∈ Σ ∩ ∂∗G, (4.26b)

dµ0

dH1 (Σ \ ∂G)
(x) ≥ ϕ(x, νΣ(x)) for a.e. x ∈ Σ \ ∂G, (4.26c)

dµ0

dH1 SAũ
(x) ≥ 2ϕ(x, νG(x)) for a.e. x ∈ SAũ , (4.26d)

dµ0

dH1 (Σ ∩ Jũ)
(x) ≥ 2ϕ(x, νΣ(x)) for a.e. x ∈ Σ ∩ Jũ (4.26e)

since g(x, 0) = ϕ(x, νΣ).

The proof of the estimates (4.26a)-(4.26e) follows from similar arguments used in [45,
Proposition 4.1] with special care needed for (4.26d). In fact for (4.26d) we cannot employ
the strategy used for [45, Eq. 4.40c] that was hinged on the uniform bound on the number
of boundary components, which here we do not have. We instead adapt the arguments
employed in [45, Eq. 4.40g] by using Lemma 4.7.

Next we detail the proofs of (4.26a)-(4.26e).

Proof of (4.26a). Note that A = G up to a negligible set. By Corollary 4.2 Amh → A in
L1(R2), thus, the proof of (4.26a) can be done following the arguments of [45, Eq. 4.40a]
using Reshetnyak lower semicontinuity Theorem [2, Theorem 2.38].

Proof of (4.26b). Since Amh → G in L1(R2), we have DχAmh ⇀
∗ DχG. Thus, the proof

of (4.26b) directly follows from [1, Lemma 3.8] (see also the proof of [45, Eq. 4.40d]).

Proof of (4.26c). Let x0 ∈ Σ\∂G and let r0 := dist(x0, ∂G) > 0. Since R2 \ Int(Amh)
K→

R2\Int(A) = R2\G, there exists r1 ∈ (0, r0) such that Br(x0)∩Int(Amh) for any r ∈ (0, r1).
Therefore, for any r ∈ (0, r1)

µh(Br(x0)) =

ˆ
Br(x0)∩Σ∩A(0)

mh
∩∂Amh

[
ϕ(x, νΣ) + g(x, 1)

]
dH1(x) +

ˆ
Br(x0)∩Σ\∂Amh

g(x, 0)dH1

≥
ˆ
Br(x0)∩Σ∩A(0)

mh
∩∂Amh

g(x, 0)dH1(x) +

ˆ
Br(x0)∩Σ\∂Amh

g(x, 0)dH1

=

ˆ
Br(x0)∩Σ

g(x, 0)dH1,

where in the inequality we used (4.23). Thus, taking limsup as h → +∞ and using
µh ⇀

∗ µ0 we get

µ0(Br(x0)) ≥
ˆ
Br(x0)∩Σ

g(x, 0)dH1.

Now (4.26c) follows from the Besicovitch Differentiation Theorem.
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Proofs of (4.26d) and (4.26e). We establish

dµ0

dH1 K
≥ 2φ(x, νK) for H1-a.e. x ∈ K, (4.27)

where

K = SAũ ∪ (Σ ∩ Jũ).

Let x ∈ K be such that θ(K,x) = 1. Then either x ∈ Sũ ⊂ G(1)∩∂rG or x ∈ Σ∩Jũ. By
setting E0 := S and recalling that Int(A) = ∪i∈NEi, in view of Proposition 4.4 we have
one of the following:

(b1) there exists i0 ∈ N such that x ∈ E(1)
i0
∩ ∂rEi0 , θ(E

(1)
i0
∩ ∂rEi0 , x) = 1 and umh +

amh → u a.e. in Ei0 ;
(b2) there exist i0 ∈ N∪{0} and j0 ∈ N\N such that x ∈ ∂∗Ei0∩∂∗Ej0 and umh+amh →

u a.e. in Ei0 and |umh + amh | → ∞ a.e. in Ej0 ;
(b3) there exist i1, i2 ∈ N∪{0} with i1 6= i2 such that x ∈ ∂∗Ei1∩∂∗Ei2 and umh+amh →

u a.e. in Ei1 ∪ Ei2 .

Let L denote the set among E
(1)
i0
∩ ∂rEi0 , ∂∗Ei0 ∩ ∂∗Ej0 and ∂∗Ei1 ∩ ∂∗Ei2 containing x.

Without loss of generality we assume that x ∈ Y ⊂ L, where Y is defined as the set of
points y ∈ L ⊂ ∂A satisfying:

(c1) θ(∂G, y) = θ(∂A, y) = θ(L, y) = 1 and νG(y) = νA(y) = νL(y) exists. If y ∈ Σ,
then additionally, θ(Σ, x) = 1 and νΣ also exists;

(c2) as ρ→ 0 the sets QR,νL(y)∩σρ,x(∂A), QR,νL(x)∩σρ,y(∂G) and QR,νL(y)∩σρ,y(L)

converge QR,νL(y) ∩ Ty in the Kuratowski sense, where R > 0 and Ty is the
generalized tangent line to ∂A at y;

(c3) one-sided traces ũ+(y) and ũ−(y) of ũ w.r.t. L exist and are not equal;

(c4) dµ0

dH1 K
(y) exists and is finite.

In fact, H1(L\Y ) = 0 since for (c1) we notice that Y ⊂ L ⊂ ∂rA and ∂rA is H1-rectifiable,
for (c2) we use Proposition 4.3 by observing that the points of Σ and Ω∩∂A satisfy uniform
density estimates in view of the Lipchitzianity of Σ and Proposition 4.1, respectively, for
(c3) we use [21, Definition 2.4] and the existence of traces of GBD-functions along C1-
manifolds [21, Theorem 6.2] and the fact that being a jump set of ũ, the set K (and
also L) can be covered by at most countably many one-dimensional C1-graphs (up to a
H1-negligible set), and finally for (c4) we use Besicovitch Differentiation Theorem.

Without loss of generality, we assume x = 0, νK(x) = e2, Tx is the x1-axis and e2 is
the outer normal of Ei0 .

Let 4r0 := dist(0, ∂Ω) if 0 ∈ Ω and 4r0 := dist(0, ∂Σ) if 0 ∈ Σ; since Σ is Lipschitz, it
consists of at most countably many open connected components in ∂Ω, and hence, r0 > 0.
By weak convergence,

lim
h→∞

µh(Qr) = µ0(Qr) (4.28)

for a.e. r ∈ (0, r0). By assumption (b3), [21, Definition 2.4] and [21, Remark 2.2] separately
applied to Q+

1 := Q1 ∩ {x2 > 0} and Q1 \Q+
1 we have

lim
r→0

ˆ
Q1

|τ(ũ(rx))− τ(u0(x))|dx = 0, (4.29)

where

u0 := ũ+(0)χQ+
1

+ ũ−(0)χQ1\Q+
1

and

τ(z) = (arctan z1, arctan z2), z = (z1, z2) ∈ R2.
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For every r ∈ (0, r0) let

U∞r := {x ∈ Q1 : lim inf
h→∞

|ũh(rx)| = +∞}.

Unlike the proof of [45, Eq. 4.40g], (4.22) implies that U∞r can have positive measure. By
(4.21) and the Dominated Convergence Theorem

lim
h→∞

ˆ
Q1\U∞r

|τ(ũh(rx))− τ(ũ(rx))|dx = 0. (4.30)

By (c2) applied with R = 8, Proposition 4.3 and (c1)-(c3)

Q8 ∩ σr(∂A)
K→ I8 and H1 (Q8 ∩ σr(∂A))

∗
⇀ H1 I8,

Q8 ∩ σr(L)
K→ I8 and H1 (Q8 ∩ σr(L)))

∗
⇀ H1 I8

as r → 0. Hence, by [45, Proposition A.5]

sdist(·, σr(∂A))→ −dist(·, T0), (4.31a)

sdist(·, σr(∂Ei0))→ −dist(·, T0), (4.31b)

sdist(·, σr(∂[Ei0 ∪ Ej0 ]))→ −dist(·, T0), (4.31c)

sdist(·, σr(∂[Ei1 ∪ Ei2 ]))→ −dist(·, T0) (4.31d)

locally uniformly in Q4 as r → 0. Let

U∞0 =

{
∅ in cases (c1) and (c3),

Q+
1 in case (c2).

By the definitions of Ei0 , Ej0 , Ei1 and Ei2 and (4.31b)-(4.31d)

lim
r→0
|U∞r ∆U∞0 | = 0. (4.32)

Step 1: We choose sequences hk ↗∞ and rk ↘ 0 as follows. By (4.28), (4.29), (4.31a)
and (4.32) for any k ∈ N there exists rk ∈ (0, 1

k ) such that (4.28) holds with r = rk and

‖sdist(·, σrk(∂A)) + dist(·, T0)‖L∞(Q4) <
1

k2
, (4.33a)ˆ

Q1

|τ(ũ(rkx))− τ(u0(x))|dx < 1

k2
, (4.33b)

|U∞rk ∆U∞0 | <
1

k2
. (4.33c)

Given k ≥ 1 and rk, since Amh sdist-converges to A and the function τ is bounded, by
(4.30), (4.33c) and (4.28) we can choose hk such that

1

hkrk
<

1

k
, (4.34a)

‖sdist(·, σrk(∂Amhk ))− sdist(·, σrk(∂A))‖L∞(Q4) <
1

k
, (4.34b)ˆ

Q1\U∞0
|τ(ũhk(rkx))− τ(ũ(rkx))|dx < 1

k
, (4.34c)

µhk(Qrk) ≤ µ0(Qrk) + r2
k. (4.34d)

Notice that by (4.34a), hk →∞ as k →∞.
Let

Dk := σrk(Amhk ∪ S)

and
wk(x) := ũhk(rkx), x ∈ Q1.
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Then the number of connected components of ∂Dk lying strictly inside Q4 does not exceed
mhk , and wk ∈ GSBD2(Q1) with Jwk ⊂ Q1 ∩ ∂Dk. By (4.34b) and (4.33a),

sdist(·, ∂Dk)→ −dist(·, T0) uniformly in Q4 as k →∞.
Moreover, by (4.33b) and (4.34c) wk → u0 a.e. in Q1 \ U∞1 and |wk| → +∞ a.e. in U∞1 .
By the finiteness of

dµ0

H1 L
(0) = lim

k→∞

µ0(Qrk)

2rk
and (4.34d)

H1(Q1 ∩ ∂Dk) =
H1(Qrk ∩ ∂Amhk )

rk
≤ µhk(Qrk)

c1rk
≤ C :=

2

c1

dµ0

H1 L
(0) + 1 (4.35)

for all large k. Moreover, by changing variables as x = rky and using (4.20) we getˆ
Q1

|e(wk)|2dx =

ˆ
Qrk

|e(ũk)|2dy ≤M

for all k; note that the first equality holds only in dimension two.

Fix δ ∈ (0, 1). Since ϕ is uniformly continuous, there exists k0
δ > 0 such that

|ϕ(x, ν)− ϕ(0, ν)| < δ, x ∈ Qrk , ν ∈ S1.

Therefore, by the definitions of Dk and µh, the nonnegativity of g as well as (4.35)

µhk(Qrk)

rk
≥
ˆ
Q1∩∂∗Dk

φ(νDk)dH1 + 2

ˆ
Q1∩D(1)

k ∩∂Dk
φ(νDk)dH1 − 2Cc2δ, (4.36)

where
φ(ν) = ϕ(0, ν).

By Lemma 4.7 applied with sequences {Dk} and {mhk} we find k2
δ > k1

δ such thatˆ
Q1∩∂∗Dk

φ(νDk)dH1 + 2

ˆ
Q1∩D(1)

k ∩∂Dk
φ(νDk)dH1 ≥ 2

ˆ
I1

φ(e2)dH1 − δ.

Thus, by (4.36) and (4.34d) we get

µ0(Qrk)

2rk
+
rk
2
≥
ˆ
I1

φ(e2)dH1 − 2Cc1 + 1

2
δ

for all k > k2
δ . Now letting first k → +∞ and then δ → 0 we get (4.27). �

5. Proof of the main results

The aim of this section is to prove theorems of Section 2.4. We start by showing that

the volume-constraint infima of F in C and of F̃ in C̃ in fact coincide.

Proposition 5.1. Assume hypotheses (H1)-(H3) and let v ∈ (0, |Ω|) or S = ∅. Then

inf
(A,u)∈C, |A|=v

F(A, u) = inf
(A,u)∈C̃, |A|=v

F̃(A, u) = inf
(A,u)∈C̃

F̃λ(A, u) (5.1)

for any λ ≥ λ0, where λ0 is given by [45, Theorem 2.6] and F̃λ is given by (5.17).

Proof. We repeat similar arguments to [45, Section 5]. Note that for any λ > 0

inf
(A,u)∈C, |A|=v

F(A, u) ≥ inf
(A,u)∈C̃, |A|=v

F̃(A, u) ≥ inf
(A,u)∈C̃

F̃λ(A, u). (5.2)

Further we fix any λ ≥ λ0. Recall that from [45] for such λ

inf
(A,u)∈C, |A|=v

F(A, u) = lim
m→+∞

min
(A,u)∈Cm, |A|=v

F(A, u) = lim
m→+∞

min
(A,u)∈Cm

Fλ(A, u),
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where Fλ is given by (2.17). Thus, in view of (5.2) to prove (5.1) it is enough to establish
that for ε > 0 there exists nε ∈ N and (Aε, uε) ∈ Cnε such that

inf
(A,u)∈C̃

F̃λ(A, u) + ε > Fλ(Aε, uε). (5.3)

To prove the existence of nε and (Aε, uε) ∈ Cnε , we repeat essentially the same arguments
of the proof of [45, Eq. 5.4]. For the convenience of the reader we give the detailed proof.

Given ε > 0 let (B1, v1) ∈ C̃ be such that

inf
(A,u)∈C̃

Fλ(A, u) > Fλ(B1, v1)− ε. (5.4)

Since |B1| = |Int(B1)| and Fλ(B1, v1) ≥ Fλ(Int(B1), v1), we may assume that B1 =
Int(B1), i.e., B1 is open.

Step 1: First we remove the jump set Jv1 of v1 on Σ making a hole in Ω. Recall that
by our choice, νΣ is always directed towards Ω. Since Σ is Lipschitz, by the regularity
of H1 Σ, there exists a relatively open set Σ′ ⊂ Σ such that H1(Jv1 \ Σ′) = 0 and
H1(Σ′ \ Jv1) < ε

c2
.

Let r ∈ (0, ε
λH1(Σ)

) be such that

|ϕ(x, ν)− ϕ(y, ν)| < ε

H1(Σ)
(5.5)

whenever |x − y| < 4r. Since Σ is Lipschitz, by Vitaly Covering Lemma we can find an
at most countable family {Qrj ,νΣ(xj)(xj)}j≥1 of disjoint open squares such that xj ∈ Σ,

rj ∈ (0, r), Σ∩Qr,νΣ(xj)(xj) is a graph in νΣ(xj)-direction, Σ crosses two opposite sides of

each Qr,νΣ(xj)(xj) parallel to νΣ(xj) and

H1
(

Σ′ \
⋃
j

Qrj ,νΣ(xj)(xj)
)

= 0. (5.6)

Note that
∑
j
rj < H1(Σ). For each j define

Σj := (Σ ∩Qr,νΣ(xj)(xj)) + ρjνΣ(xj),

where ρj ∈ (0, rj) is such that Σj still connects two vertical sides of Qr,νΣ(xj)(xj) and∑
j ρj <

ε
2c2
. Let Uj be the open set whose boundaries are Σj , Σ ∩Qr,νΣ(xj)(xj) and two

vertical sides of Qr,νΣ(xj)(xj). Note that {Uj}j is a countable family of pairwise disjoint
open sets.

Let B2 := B1 \ ∪jUj and v2 := v1

∣∣∣
B2∪S

. Then using the localized version of S we get

S(B2, v2) ≤S(B1, v1 − u0; Ω \ ∪jUj) +
∑
j

(ˆ
Σj

ϕ(x, νΣ(x))dH1 + 2c2ρj

)
. (5.7)

By (5.5) and the definition of Σj

ˆ
Σj

ϕ(x, νΣ(x))dH1 ≤
ˆ

Σ∩Qr,νΣ(xj)(xj)
ϕ(y, νΣ(y))dH1 +

εH1(Σ ∩Qr,νΣ(xj)(xj))

H1(Σ)
.

Thus summing this inequality in j and using pairwise disjointness of Qr,νΣ(xj)(xj) and

(5.6) we get ∑
j

ˆ
Σj

ϕ(x, νΣ(x))dH1 ≤
ˆ

Σ′
ϕ(y, νΣ(y))dH1 +

εH1(Σ′)

H1(Σ)
.
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Using the definition of Σ′ we obtain∑
j

ˆ
Σj

ϕ(x, νΣ(x))dH1 ≤
ˆ
Jv1

ϕ(y, νΣ(y))dH1 + 2ε.

Inserting this in (5.7) and using the inequality
∑

j ρj <
ε

2c2
we get

S(B2, v2) ≤ S(B1, v1 − u0; Ω \ ∪jUj) +

ˆ
Jv1

ϕ(y, νΣ(y))dH1 + 3ε ≤ S(B1, v1) + 3ε.

Then by the nonnegativity of the elastic energy, for (B2, v2) we get

F̃(B2, v2) ≤ F̃(B1, v1) + 3ε.

Notice that by our construction Σ ∩ Jv2 is H1-negligible, hence by Proposition A.3 v2 ∈
H1

loc(Int(B2 ∪ S ∪ Σ)).

Finally we estimate the volume contribution of B2. Since Uj ⊂ Qr,νΣ(xj)(xj) and rj ≤
r < ε

λH1(Σ)
, using

∑
j rj < H1(Σ) we get

|B1 \B2| ≤
∑
j

|Uj | ≤
∑
j

r2
j ≤ r

∑
j

rj <
ε

λ
.

Therefore,

F̃λ(B1, v1) ≥ F̃λ(B2, v2)− 4ε. (5.8)

Step 2: Let {Ei}i≥1 be all open connected components of B2 (recall that B2 is open).
We remove all sufficiently small connected components of B1. Using the localized versions
of S and W we have

W(B2, v2 − u0; Ω) =
∑
i≥1

W(Ei, v2 − u0; Ω).

Since ∂Ei ∩ ∂Ej ⊂ B(1)
2 ∩ ∂B2 and ϕ(x, ·) is even,

S(B2, v2; Ω) =
∑
i≥1

S(Ei, v2; Ω).

Hence, there exists N1 ∈ N such that the set B3 := ∪N1
i=1Ei satisfies

S(B2, v2; Ω) +W(B2, v2 − u0; Ω) + ε > S(B3, v2; Ω) +W(B3, v2 − u0; Ω),

0 ≤ |B2| − |B3| <
ε

λ
.

Thus,

Fλ(B2, v2) > Fλ(B3, v3)− 2ε, (5.9)

where v3 := v2

∣∣∣
B3

.

Step 3: Let {Fj}j≥1 be all connected components of Ω\B3 such that ∂Fj ⊂ ∂B3 (hence,
Fi are holes in B3). We fill in all sufficiently small holes. Since S(B3, v) < +∞, there
exists N2 ≥ 1 such that∑

i>N2

S(Fi, v3; Ω) +
∑
i>N2

W(Fi, v3 − u0; Ω) < ε,
∑
i>N2

|Fi| <
ε

λ
.

Then the set B4 := B3 ∪ (∪i>N2Fi) and the function v4 := v3χB2∪S + u0χ∪i>N2
Fi satisfies

Fλ(B3, v3) > Fλ(B4, v4)− 2ε. (5.10)

By construction, ∂∗B4 has at most N1 +N2 connected components.

Step 5: Finally we construct (Aε, uε) ∈ Cnε satisfying (5.3) for some nε ∈ N. Let
B5 := Int(B4). Since B4 can have finitely many “substantial” holes B5 ∩ ∂B4 = ∅. In
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particular, if we extend v4 arbitrarily to the set B
(1)
4 ∩ ∂B4 and denote the extension by

v5, then v5 ∈ GSBD2(Int(B5 ∪ S ∪ Σ)) and Jv5 = SB4
v4

up to a H1-negligible set, where

SAu is defined in (2.6). Since v5 = v4 a.e. in B5, by (5.4)-(5.10)ˆ
B5∪S

C(x)e(v5) : e(v5) =W(B4, v4) ≤ F̃(B4, v4) + c2H1(Σ) ≤ C + 9ε,

where C := max{1, inf C̃ F̃} is independent of ε.

By [13, Theorem 1.1] there exists uε ∈ SBV 2(Int(B5 ∪ S ∪ Σ)) ∩ L∞(Int(B5 ∪ S ∪ Σ))
such that Juε is contained in a union Γ of finitely many closed connected pieces of C1-curves
in Int(B5 ∪ S ∪ Σ), uε ∈W 1,∞(Int(B5 ∪ S ∪ Σ)) andˆ

B5∪S
|e(uε)− e(v5)|2dx ≤ ε

4(C + 11ε)(‖C‖∞ + 1)
(5.11)

and
H1(Juε∆Jv5) <

ε

2c2
. (5.12)

Since Jv5 ⊂ B5, we can assume that the squares {Qj}j≥1 of Vitali cover in [13, Eq. 4.3a]

satisfies Qj ⊂⊂ B5. Therefore, we may assume that Γ ⊂ B5. Since H1 Γ is regular,
we may extract finitely many intervals of Γ whose union Γ′ still covers Juε and satisfies
H1(Γ′ \ Juε) < ε

2c2
. Now we define

Aε := B5 \ Γ′.

Recall that both Σ ∩ Jv5 and Σ ∩ Je−ε are H1-negligible. By the definition of B5 and Γ′,

there exists nε ∈ N such that (Aε, uε) ∈ Cnε . By the definition of S̃, B5 and v5 as well as
by (5.12) we have

S̃(B4, v4) =

ˆ
Ω∩∂∗B5

ϕ(x, νB5)dH1 + 2

ˆ
B5∩Jv5

ϕ(x, νJv5 )dH1 +

ˆ
Σ∩∂∗B5

βdH1

≥
ˆ

Ω∩∂∗B5

ϕ(x, νB5)dH1 + 2

ˆ
B5∩Juε

ϕ(x, νJuε )dH
1 +

ˆ
Σ∩∂∗B5

βdH1 − ε.

Thus, by the definition of Aε and Γ′

S̃(B4, v4) ≥
ˆ

Ω∩∂∗Aε
ϕ(x, νAε)dH1 + 2

ˆ
A

(1)
ε ∩Γ′

ϕ(x, νΓ′)dH1 +

ˆ
Σ∩∂∗Aε

βdH1 − 2ε

=S(Aε, uε)− 2ε. (5.13)

Moreover, using the relations |Aε∆B4| = 0 and v4 = v5 a.e. in B5 and Cauchy-Schwartz
inequality for nonnegative symmetric forms we obtain

W(Aε, uε) ≤W(B4, v4) + 2

ˆ
B5∪S

C(x)e(uε) : (e(uε)− e(v5))

≤W(B4, v4) + 2
( ˆ

B5∪S
C(x)e(uε) : e(uε)dx

)1/2
×

×
( ˆ

B5∪S
C(x)(e(uε)− e(v5)) : (e(uε)− e(v5))dx

)1/2
. (5.14)

Similarly,ˆ
B4∪S

C(x)e(uε) : e(uε)dx

≤W(B4, v4) + 2
(
W(B4, v4)

)1/2(ˆ
B5∪S

C(x)(e(uε)− e(v5)) : (e(uε)− e(v5))dx
)1/2

≤(C + 9ε) + 2
√

(C + 9ε)‖C‖∞ ‖e(uε)− e(v5)‖L2 ≤ C + 10ε,
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where in the last inequality we used (5.11). Therefore, by (5.14) and again by (5.11)

W(Aε, uε) ≤W(B4, v4) + 2
√

(C + 10ε)‖C‖∞ ‖e(uε)− e(v5)‖L2 ≤ W(B4, v4) + ε. (5.15)

Now combining (5.13) and (5.15) as well as using |B5| = |Aε| we get

F̃λ(B4, v4) ≥ Fλ(Aε, uε)− 3ε. (5.16)

Since (Aε, uε) ∈ Cnε , by (5.4), (5.8), (5.9), (5.10) and (5.16) we get

inf
(A,u)∈C̃

F̃(A, u) + 12ε ≥ F(Aε, uε),

and (5.3) follows. �

Proposition 5.1 implies that the configuration (A, u) given by Proposition 4.6 is a

volume-constraint minimizer of F̃ in C̃.

Proposition 5.2. Let (A, u) ∈ C̃ be given by Proposition 4.6. Then (Int(A), u) is a

minimizer of F̃ in C̃ under the volume constraint |A| = v. Moreover, let λ0 be as in

Proposition 5.1 and let (Ã, ũ) ∈ C̃ be any volume-constraint minimizer of F̃ . Then (Ã, ũ)

is a minimizer of F̃λ for all λ ≥ λ0, where

F̃λ(B, v) := F̃(B, v) + λ
∣∣|B| − v

∣∣, (B, v) ∈ C̃, λ > 0. (5.17)

Proof. Note that since |Int(A)∆A| = 0 and (Int(A), u) ∈ C̃, by Propositions 4.5, 4.6 and
5.1

F̃(Int(A), u) = inf
(B,v)∈C

F(B, v) = inf
(B,v)∈C̃

F̃(B, v) = inf
(B,v)∈C

F̃λ(B, v)

for all λ ≥ λ0. Thus, (Int(A), u) is a minimizer of both F̃ and F̃λ0 . The same is true for

every minimizer (B, v) of F̃ . �

Theorem 5.3 (Density estimates for minimizers of F̃λ). Given λ > 0, let (A, u) ∈ C̃
be any minimizer of F̃λ(·, ·) in C̃ and let ξ ∈ R2 be such that for the function

ũ := uχA∪S + ξχΩ\A

one has Ω ∩ ∂∗A ⊂ Jũ. Then for any x ∈ Ω and r ∈ (0,dist(x, ∂Ω)),

H1(Qr(x) ∩ Jũ)

r
≤ 16c2 + 4λ

c1
. (5.18)

Moreover, there exist ς∗ = ς∗ ∈ (0, 1) and R∗ > 0 not depending on (A, u) with the
following property. If x ∈ Ω belongs to the closure Jcũ of the set {y ∈ Ω∩Jũ : θ∗(Jũ, y) > 0},
then

H1(Qr(x) ∩ Jũ)

r
≥ ς∗ (5.19)

for any square Qr(x) ⊂⊂ Ω with r ∈ (0,min{R∗, dist(x, ∂Ω)}), and if x ∈ Ω belongs to the
closure Scu of {x ∈ SAu : θ∗(S

A
u , x) > 0}, then

H1(Qr(x) ∩ SAu )

r
≥ ς∗ (5.20)

for any r ∈ (0,min{R∗,dist(x, ∂∗A)}. In particular,

H1(Ω ∩ (Jcũ \ Jũ) = H1(Int(A(1)) ∩ (Scu \ SAu ) = 0. (5.21)
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Proof of Theorem 5.3. As in Remark 2.5 (A, u) is a minimizer of F̃λ if and only if (A, u+

u0) minimizes the
̂̃Fλ(·) := F̃λ(· − u0). Thus, we can introduce the following localized

version of F̃ in open subsets O of Ω which does not see the substrate:

F̃(B, v;O) := S̃(B;O) +W(B, v;O)

where

S̃(B, v;O) :=

ˆ
O∩∂∗B

ϕ(y, νB)dH1 + 2

ˆ
O∩B(1)∩∂B∩Sv

ϕ(y, νB)dH1,

the W(·;O) is given as in (2.9) and SAv is defined as in (2.6). Then the minimality of

(A, u) implies that (A, u+ u0) is a quasi-minimizer of F̃(·;O) in O, namely,

F̃(A, u+ u0;O) ≤ F̃(B, v;O) + λ0|A∆B|

whenever (B, v) ∈ C̃ with A∆B ⊂⊂ O and supp (u + u0 − v) ⊂⊂ O. Now the proof of
the existence of ς∗ and R∗ satisfying (5.18) and (5.19) runs along the same lines of the
proof of Theorem 3.1 for m = ∞, therefore, we do not repeat it here. Note that ς∗ and
R∗ depend only on ci and λ.

Let A◦ := Int(A(1)). We claim that

∂A◦ = ∂∗A.

Indeed, note that A(1) \A◦ ⊂ ∂A(1) = ∂∗A, where in the equality we used ∂∗A = ∂∗A(1) =

∂A(1) see e.g., [52, Eq. 15.3]. Thus, A◦ is also equivalent to A, and hence, ∂∗A◦ = ∂∗A =

∂∗A(1). In particular, ∂A(1) = ∂∗A◦ ⊂ ∂A◦. On the other hand, assume that there exists
x ∈ ∂A◦ \ ∂A(1). Since ∂A(1) is closed, there exists r > 0 such that Br(x) ∩ ∂A(1) = ∅.
Hence, either Br(x) ⊂ Int(A(1)) = A◦ or Br(x) ∩A(1) = ∅. Since A◦ is open and x ∈ ∂A◦,
the inclusion Br(x) ⊂ A◦ is not possible. On the other hand, since A◦ ⊂ A(1) and x ∈ ∂A◦,
the relation Br(x) ∩A(1) = ∅ is also not possible. Thus, ∂A◦ ⊆ ∂A(1).

To prove (5.20) we fix Ω′ ⊂⊂ Ω. We claim that ũ
∣∣
A◦

is a minimizer of Griffith functional

G : GSBD2(Int(A◦ ∪ S ∪ Σ))→ R,

G(v) :=

ˆ
A◦∩Jv

ϕ(x, νJv)dH1 +

ˆ
A◦

C(x)e(v) : e(v)dx

with Dirichlet boundary condition v = ũ = u in A◦\Ω′. Indeed, for every v ∈ GSBD2(A◦)

with ũ = v in A◦ \ Ω′ we define B := A◦ \ Jv. Then (B, v) ∈ C̃ and by the minimality of
(A, u)

G(u)− G(v) = F̃(A, u)− F̃(B, v) ≤ 0.

Since SBv = J
ũ
∣∣
A◦

up to a H1-negligible set, (5.20) directly follows from the density esti-

mates for the jump set of Griffith minimizers (see e.g. [12]) with possibly smaller ς∗ ∈ (0, 1)
and R∗ > 0.

Finally, we prove (5.21) only for SAu , the other being similar. Let Γ := {x ∈ SAu :
θ∗(S

A
u , x) > 0}. Note that Scu = Γ.

We claim that

H1(A◦ ∩ (Γ \ Γ)) = 0. (5.22)

Indeed, let µ := H1 Γ. Then µ(Γ \ Γ) = 0. By the regularity of µ, for every ε > 0 there
exists an open set U ⊂ R2 such that L := A◦∩(Γ\Γ) ⊂ U and µ(U) = H1(U∩Γ) < ε. Note

that Γ ⊂ {y ∈ Ω ∩ Jũ : θ∗(Jũ, x) > 0}, where ũ is given by Theorem 5.3. Hence, for (5.19)
holds for all points of Γ. By the definition of the closure, and Vitali Covering Lemma we
can find at most countable pairwise disjoint family {Bri(xi)}i of closed balls Bri(xi) with

xi ∈ A◦ ∩ Γ, ri ≤ min{R∗, ε,dist(x, ∂A)} such that A◦ ∩ (Γ \ Γ) ⊂ ∪iB5ri(xi). Without
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loss of generality we may assume that Bri(xi) ⊂ U. Since Qri/
√

2(xi) ⊂ Bri(xi) ⊂ Qri(xi),
from the definition of Hausdorff premeasure, (5.19) and disjointness of {Bri(xi)} as well
as the choice of U we obtain

H10ε(A◦ ∩ (Γ \ Γ)) ≤
∑
i≥1

2π(5ri) ≤
10π
√

2

ς∗

∑
i≤1

H1(Qri/
√

2(xi) ∩ Γ)

=
10π
√

2

ς∗
H1
(
∪i Qri/

√
2(xi) ∩ Γ

)
≤ 10π

√
2

ς∗
H1
(
U ∩ Γ

)
<

10π
√

2ε

ς∗
.

Now letting ε→ 0 we get (5.22). �

In the following proposition we construct a “regular” minimizer of F starting from a

minimizer of F̃ in C̃.

Proposition 5.4. Given λ > 0, let (A, u) ∈ C̃ be any minimizer of F̃λ. Define

A′ := Int(A(1)) \ Γ,

where Γ := {x ∈ SAu : θ∗(S
A
u , x) > 0}, and, with a slight abuse of notation, consider u as

defined in A′ ∪ S (and so, also on the L2-negligible set A′ \ Int(A)). Then (A′, u) ∈ C is

such that F̃(A, u) = F(A′, u) and satisfy the following assertions:

(1) A′ is open, θ∗(S
A′
u , x) > 0 for all x ∈ SA′u , |A∆A′| = 0 and uχA∪S = uχA′∪S a.e.

in Ω ∪ S.
(2) The closure of A′(1) ∩ ∂A′ coincide with SA′u and H1(SA′u \ SA

′
u ) = 0.

(3) Let ς∗ and R∗ be given by Theorem 5.3. Then

H1(Qr(x) ∩ ∂A′)
r

≤ 16c2 + 4λ0

c1
(5.23)

for every square Qr(x) ⊂ Ω and

H1(Qr(x) ∩ ∂A′)
r

≥ ς∗ (5.24)

for every Qr(x) ⊂ Ω with for any x ∈ ∂A′ and r ∈ (0, R∗).

Proof. Note that by definition A′ is open and |A′∆A| = 0. Moreover, SA
′

u ⊂ Γ, and by

(5.20) all points of Ω∩Γ satisfy uniform lower density estimates, hence, θ∗(S
A′
u , x) > 0 for

any x ∈ SA′u .
We claim that A′ ∈ A. Indeed, let ũ be given as in Theorem 5.3. By definition

Ω ∩ Jcũ = Ω ∩ ∂A′ and ∂A′ ⊂ Jcũ ∪ Σ, (5.25)

where Jcũ is the closure of the set {x ∈ Jũ : θ∗(Jũ, x) > 0}. Since Jũ is H1-rectifiable,
so is Jcũ in view of (5.21). Therefore, ∂A′ is H1-rectifiable, i.e., A′ ∈ A. Note that by
construction H1(A′ ∩ Jũ) = 0 hence, by Proposition A.3 ũ ∈ H1

loc(A
′) and, since u = ũ

a.e. in A′ it follows that u ∈ H1
loc(A

′).

Since |A∆A′| = 0 and u = u a.e. in A′, it follows that

W(A, u) =W(A′, u).

Moreover, by the definition of Γ and SAu ,

|S(A′, u)− S̃(A, u)| =
ˆ

Int(A(1))∩(Γ\SAu )
ϕ(x, νΓ)dH1 ≤ c2H1(Int(A(1)) ∩ (Γ \ Γ)) = 0,

where in the last equality we used (5.21). Finally, (5.23) and (5.24) follows from (5.25)
and density estimates of Theorem 5.3. �

Now we are ready to prove the existence of global minimizers of F .
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Proof of Theorem 2.6. First we prove the assertion for G = F .
Let (Am, um) ∈ Cm be a minimizer of F satisfying the volume constraint |Am| = v and

let (Amh , umh), and A and u be as in Proposition 4.6. By (3.1), (4.13) and (4.12) we have

inf
(B,v)∈C, |B|=v

F(B, v) = lim
h→+∞

F(Amh , umh) ≥ F̃(Int(A), u).

Since |Int(A)| = v, by Propositions 5.1 and 5.2

inf
(B,v)∈C, |B|=v

F(B, v) = inf
(B,v)∈C̃, |B|=v

F̃λ0(B, v) = F̃λ0(Int(A), u) = F̃(Int(A), u), (5.26)

hence, (Int(A), u) is a minimizer of F̃λ0 in C̃. Then by Proposition 5.4 there exists (A′, u) ∈
C such that

F̃(Int(A), u) = F(A′, u),

and hence, in view of (5.26), (A′, u) is a solution to (2.16).

The proof of the second assertion (i.e., the existence of λ1 for which the set of minimizers
in C of both F and Fλ coincide for all λ ≥ λ1) can be done using the first one and also
following the arguments of [32, Theorem 1.1] and [45, Proposition A.6]. Without loss of
generality we assume that λ1 ≥ λ0, where λ0 is given by Proposition 5.1.

Now we prove Theorem 2.6 for G = F̃ . We have already shown above that the con-
figuration (Int(A), u) given by Proposition 4.6 solves the minimum problem (2.16) with

G = F̃ . In view of (5.1) every volume-constraint minimizer of F̃ also minimizer of F̃λ for all

λ ≥ λ1. To prove the converse assertion, we fix any minimizer (A, u) ∈ C̃ of F̃λ for λ ≥ λ1.

By Proposition 5.4 there exists (A′, u) ∈ C such that |A′| = |A| and F(A′, u) = F̃(A, u).
By the first part of the proof and (5.1) we know that

inf
(B,v)∈C

Fλ(B, v) = inf
(B,v)∈C,|B|=v

F(B, v) = inf
(B,v)∈C̃

F̃λ(B, v) = Fλ(A′, u).

Hence, (A′, u) is the minimizer of Fλ. Since λ ≥ λ1 according to the first part of the proof,
|A′| = v. Hence, |A| = v and (A, u) minimizer of (2.16). �

We are ready now to study the properties of the minimizers of F in C provided by
Theorem 2.6.

Proof of Theorem 2.7. First we properties (1)-(4) the assertion for G = F̃ .
Consider any solution (A, u) ∈ C̃ of (2.16). By Proposition 5.4 there exists a (A′, u) ∈ C

with A′ defined as in (2.18), such that the properties (1)-(4) hold except the conditions

H1(∂A∆∂A′) = 0 and H1(SAu ∆SA
′

u ) = 0 of (1). To prove these two equations it is enough
to observe that

0 = |F(A, u)−F(A′, u)| = 2

ˆ
A(1)∩(∂A∆∂A′)

ϕ(x, νA)dH1

and

0 = |F̃(A, u)− F̃(A′, u)| = 2

ˆ
A(1)∩(SAu ∆SA′u )

ϕ(x, νA)dH1.

Now we assume that G = F and let (A, u) ∈ C be a solution to (2.16). Since (A, u) ∈ C̃,
by Proposition 5.1

inf
(B,v)∈C̃,|B|=v

F̃(B, v) = F(A, u) ≥ F̃(A, u).

Therefore, (A, u) is also a volume-constraint minimizer of F̃ . Thus, applying first part of
the proof we establish that (A′, u) ∈ C satisfies (1)-(4).
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Finally, notice that if E ⊂ A′ is a connected component of A′ with H1(∂E∩Σ\Ju) = 0,
then for (A′, v) with v = uχ(A∪S)\E + (u0 + a)χE , where a is any rigid displacement, we
have

S(A′, u) ≥ S(A′, v)

and

W(A′, u) ≥ W(A′, v), (5.27)

where in (5.27) equality holds if and only of u = u0 +a in E. Therefore, by the minimality
of (A′, u) it follows that u = u0 + a in E. It remains to prove

|E| ≥ 4π
( c1

λ0

)2
. (5.28)

Consider the competitor (A′ \ E, u) ∈ C. By minimality and Theorem 2.6, Fλ1(A′, u) ≤
Fλ1(A′ \E, u), so that by (5.27) and the additivity of the surface energy, S(E, u) ≤ λ1|E|.
Then by (2.13) and the isoperimetric inequality in R2

λ1|E| ≥ c1H1(∂E) ≥ c1

√
4π|E|1/2.

Hence, (5.28) follows. �

Appendix A.

We include in this section auxiliary results used in the paper for the convenience of the

Reader. We begin by a property satisfied by the free-crystal regions in A and Ã.

Proposition A.1. Let A ⊂ R2 be a bounded L2-measurable set with H1(∂A) < +∞. Then
A is a set of finite perimeter in R2.

Proof. Since A∆Int(A) ⊂ A \ Int(A) = ∂A, we have |A∆Int(A)| ≤ |∂A| = 0, and hence,
it suffices to prove that the open set E := Int(A) has finite perimeter in R2. Note that by
construction, ∂E ⊂ ∂A and H1(∂E) ≤ H1(∂A) < +∞.

We divide the proof of E ∈ BV (R2, {0, 1}) into three steps.

Step 1. We claim that if E is simply connected, then E ∈ BV (R2; {0, 1}). Indeed,
in this case ∂E is a connected compact set with H1(∂E) ≤ H1(∂A) < +∞ and by [33,
Lemma 3.12] it contains a closed curve Γ enclosing E. Since H1(Γ) < +∞, it is rectifiable
in the sense of [33, Section 3.2]: its length H1(Γ) is well-approximated by the length of
closed polygonal curves πk whose vertices lie on Γ, i.e., H1(πk) → H1(Γ). Let Ek be the

set enclosed by πk and observe that πk
K→ Γ. Since Ek are Lipschitz sets, they are sets

of finite perimeter and P (Ek) = H1(πk) ≤ H1(Γ) + 1 for large k. Since E is open, for
every x ∈ E there exists a ball Br(x) ⊂ E and by the Kuratowski convergence of πk
to Γ, it follows that Br(x) ⊂ Ek for large k, and hence χEk(x) = χE(x) = 1. Similarly,

χEk(x) = χE(x) = 0 for every x ∈ R2\E provided k is large enough. Therefore, χEk → χE
a.e. in R2 and hence, Ek → E in L1(R2). Now by the L1-lower semicontinuity of perimeter
(see [52, Proposition 12.15]), E is a set of finite perimeter.

Step 2. We claim that if E is connected, then E ∈ BV (R2; {0, 1}). Indeed, let E′ be
the smallest simply connected open set containing E (basically, E′ is contructed by filling
in all “holes” in E) and let

F := E′ \ E
be the union of all holes. Since ∂E′ ⊂ ∂E and H1(∂E) ≤ H1(∂A) < +∞, by Step 1
E′ ∈ BV (R2; {0, 1}). Observing E = E′ \ F , to conclude this step it is enough to prove
that F has finite perimeter. Since every open set in R2 is a union of at most countably
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many connected components†, we have F = ∪jFj , where {Fj} are open, connected and
Fi ∩ Fj = ∅ for i 6= j. Since E is connected, each Fj is simply connected, and hence, by
Step 1 Fj ∈ BV (R2; {0, 1}). Moreover, the set ∂Fi ∩ ∂Fj , i 6= j, can have at most one
point. Indeed, otherwise, by the definition of F and the connectedness of E we could find
a curve γ ⊂ ∂Fi ∩ ∂Fj ∩ ∂E with H1(γ) > 0, which contradicts the equality E = Int(E).
Therefore, observing ∂F =

⋃
∂Fj ⊂ ∂E, we obtain∑

j

P (Fj) ≤
∑
j

H1(∂Fj) = H1
(⋃

j

∂Fj

)
= H1(∂F ) ≤ H1(∂E) < +∞.

Thus, F =
⋃
j Fj has finite perimeter in R2.

Step 3. Now we prove that E ∈ BV (R2; {0, 1}) (without assuming any extra con-
nectedness assumption). Let {Ej} be the family of connected components of E. Since
H1(∂Ej) ≤ H1(∂E) < +∞, by Step 2 Ej ∈ BV (R2; {0, 1}). Therefore, since ∂E = ∪j∂Ej
we obtain that∑
j

P (Ej) ≤
∑
j

H1(∂Ej) ≤ H1
(⋃

j

∂Ej

)
+
∑
i<j

H1(∂Ei∩∂Ej) ≤ 2H1
(⋃

j

∂Ej

)
= 2H1(∂E),

and hence, by the finiteness of H1(∂E), the set E = ∪jEj has finite perimeter in R2. �

The following proposition, which is based on [52, Proposition 2.16], is used throughout
the paper.

Proposition A.2. Let K ⊂ R2 be such that H1(K) < +∞ and let {Et}t∈Υ be a family of
sets parametrized by t ∈ Υ such that

H1(K ∩ Et ∩ Es) = 0 (A.1)

and H1(K ∩ Et) > 0. Then Υ is at most countable.

Proof. The proof runs along the lines of the proof of [52, Proposition 2.16]. For j ∈ N let
Υj ⊂ Υ be the set of all t ∈ Υ such that H1(K ∩Et) > 1

j . Then by (A.1) Υj cannot contain

more than jH1(K) elements. Since Υ = ∪jΥj , the set Υ is at most countable. �

We finally state a regularity property of GSBD functions with Hd−1-negligible jump.

Proposition A.3. Let U ⊂ Rd be a connected bounded open set and u ∈ GSBD2(U) be
such that Hd−1(Ju) = 0. Then u ∈ H1

loc(U).

Proof. Indeed, for r > 0 let Q := x0 + (−r, r)d ⊂ U be any cube centered at x ∈ U and let
0 < θ′′ < θ′ < 1. For shortness, write Q′ := x0 + (−θ′r, θ′r)d and Q′′ := x0 + (−θ′′r, θ′′r)d.
By [11, Proposition 3.1 (1)] (see also [10, Theorem 1.1]) there exists a L2-measurable set
ω ⊂ Q′ and a rigid displacement a : Rd → Rd such that |ω| ≤ c∗rHd−1(Ju) = 0 andˆ

Q′
|u− a|

2d
d−1dx =

ˆ
Q′\ω
|u− a|

2d
d−1dx ≤ c∗r2

( ˆ
Q
|e(u)|2

) d
d−1

,

where c∗ depends only on d. Hence, u ∈ L
2d
d−1

loc (Q). Next, fix any mollifier ρ1 ∈ C∞(Br(0))
with ρε ∈ C∞c (B(θ′−θ′′)ε), where ρε(x) := ρ1(x/ε), ε ∈ (0, r). By [11, Proposition 3.1] there
exists p > 0 depending on n and ε such thatˆ

Q′′
|e(u ∗ ρε)− e(u) ∗ ρε|2dx ≤ c

(Hd−1(Ju)

rd−1

)p ˆ
Q
|e(u)|2dx = 0,

†This property easily follows by fact that we can always choose in each connected component a different
point with rational coordinates
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where c depends on n, ρ1 and ε. Hence,

e(u ∗ ρε) = e(u) ∗ ρε a.e. in Q′′. (A.2)

Recall that u ∗ ρε ∈ C∞(Q′′). Since e(u) ∈ L2(Q), e(u) ∗ ρε ∈ C∞(Q′′) ∩ L2(Q′′) in
particular, e(u ∗ ρε) ∈ C∞(Q′′) ∩ L2(Q′′). By Poincaré-Korn inequality u ∗ ρε ∈ H1(Q′′).
Since e(u) ∗ ρε → e(u) in L2(Q′′) as ε→ 0, in view of (A.2) there exists ε0 > 0 such that

‖e(u ∗ ρε)‖L2(Q′′) ≤ ‖e(u)‖L2(Q′′) + 1 for all ε ∈ (0, ε0).

Moreover, by Poincaré-Korn inequality for any ε ∈ (0, ε0) there exists a rigid displacement
aε such that

‖u ∗ ρε − aε‖H1(Q′′) ≤ C‖e(u ∗ ρε)‖L2(Q′′) ≤ C(‖e(u)‖L2(Q′′) + 1),

where C is the Poincaré-Korn constant for a cube. Thus, the family {u ∗ ρε}ε is uniformly
bounded in H1(Q′′). Since u ∗ ρε → u in L2(Q′′), there exists a rigid displacement a
such that aε → a in L2(Q′′). Then u ∗ ρε − aε weakly converges to u − a in H1(Q′′), i.e.,
u − a ∈ H1(Q′′). Since a is linear and θ′′ is arbitrary, u ∈ H1

loc(Q). Now covering U with
finitely many cubes of edgelength 2r we get u ∈ H1

loc(U). �
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