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Abstract

We study an evolutive model for electrical conduction in biological tissues, where
the conductive intra-cellular and extracellular spaces are separated by insulating
cell membranes. The mathematical scheme is an elliptic problem, with dynamical
boundary conditions on the cell membranes. The problem is set in a �nely mixed
periodic medium. We show that the homogenization limit u0 of the electric poten-
tial, obtained as the period of the microscopic structure approaches zero, solves the
equation

�div
�
�0rxu0 +A0

rxu0 +

tZ

0

A1(t� �)rxu0(x; �) d� �F(x; t)
�
= 0 ;

where �0 > 0 and the matrices A0, A1 depend on geometric and material properties,
while the vector function F keeps trace of the initial data of the original problem.
Memory e�ects explicitly appear here, making this elliptic equation of non standard
type.
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1 Introduction

We consider a model for the electrical conduction in a medium composed
of two di�erent conductive phases, separated by a dielectric interface. This
physical framework can be applied to electrical conduction in biological tissues,
where one of the phases is the extracellular space, the other one is the intra-
cellular space, and the interface is the cell membrane. Our model is designed
to investigate the response of biological tissues to the injection of electrical
currents in the radio-frequency range, that is the Maxwell�Wagner interfacial
polarization e�ect (see [4]). This e�ect is relevant in clinical applications like
electric tomography and body composition (see [3]).

The mathematical scheme consists in partial di�erential equations of elliptic
type prescribed in each phase, complemented with suitable boundary condi-
tions at the interface, and at the boundary of the spatial domain. The unknown
function is here the electric potential.

Since the problem evolves in time, we have a family of elliptic problems
parametrized by time; but the dependence of the unknown on time is not
merely parametrical. Indeed, due to the resistive/capacitive behavior of the
interface, the potential jumps across the interface, and the jump satis�es a
dynamical condition.

On the other hand, also in view of the applications we have in mind, we assume
that the two phases are �nely mixed with a microscopic periodic structure,
so that the problem contains a small parameter ", coinciding with the period
of the microstructure. We investigate the homogenization limit of the electric
potential u" when we let " ! 0, in order to obtain a macroscopic model for
the limiting potential u0.

1.1 Main result

Let
 be a bounded open connected set ofRN ,N � 2. Let Y = (0; 1)N , and let
E1 � Y be an open set made of a �nite number of connected components whose
closures do not intersect one another, or @Y . We assume that E2 = Y n E1 is
a connected set. For each " > 0, we de�ne the intra-cellular space 
"

1
as the

part of the periodic lattice "z + "E1, z 2 Z, which is compactly contained
in 
. The extracellular space 
"

2
is de�ned as 
 n 
"

1, and � " = @
"
1
will

represent the cell membranes. We assume that � " and @
 are smooth. Note
that � " \ @
 = ?, and that 
"

2
is connected, so that we are in the setting of

[5].

We look at the homogenization limit as "! 0 of the problem for u"(x; t) (here
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the operators div and r act only with respect to the space variable x)

� div(�1ru") = 0 ; in 
"
1
; (1.1)

� div(�2ru") = 0 ; in 
"
2
; (1.2)

�1ru
(int)
" � � = �2ru

(out)
" � � ; on � "; (1.3)

�

"

@

@t
[u"] +

�

"
[u"] = �2ru

(out)
" � � ; on � "; (1.4)

[u"](x; 0) = S"(x) ; on � "; (1.5)

u"(x; t) = 0 ; on @
. (1.6)

The notation in (1.1)�(1.4), (1.6), means that the indicated equations are in
force in the relevant spatial domain for 0 < t < T . Here �1, �2, � > 0 and
� � 0 are constants, and � is the normal unit vector to � " pointing into 
"

2
.

Since u" is not in general continuous across � " we have set

u(int)
" := trace of u"j
"

1
on � "; u(out)

" := trace of u"j
"
2
on � ".

We also denote
[u"] := u(out)

" � u(int)
" :

Similar conventions are employed for other quantities; we also set

� = �1 in 
"
1
, � = �2 in 
"

2
.

The initial data S" satis�es

S"(x) = "S1

�
x;
x

"

�
+ "2S2

�
x;
x

"

�
+ o("2) ;

where kS1k1, kS2k1 < 1, S1(x; y), S2(x; y) are continuous in x, uniformly
with respect to y 2 @E1 (mod Z), and Y -periodic in y, for all x 2 
. The
dependence of S1, S2 on the variable y = x=" is introduced in order to take
fully into account the e�ect of the microscopic structure in the homogenized
problem.

Here u"j
"
i
2 H1(
"

i ), and (1.1)�(1.6) are solved in a standard weak sense.

For the sake of simplicity we have taken zero Dirichlet data in (1.6), but more
realistic nonhomogeneous data are treated with the same approach, leading
to the same limiting equation (see [1]).

Theorem 1 Under the previous assumptions, u" ! u0 weakly in L2(
) as

" ! 0, and the limiting potential u0 2 H1

o (
) solves in the sense of distribu-

tions the equation

� div

0
@�0rxu0 + A0rxu0 +

tZ
0

A1(t� �)rxu0(x; �) d� �F(x; t)

1
A = 0 (1.7)
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where the matrices A0, A1 and the vector function F are de�ned in (2.34),
(2.35), and �0 > 0 is de�ned in (2.23).

In next Section in order to identify the limit function, we make use of the
Laplace transform (see [7]). More precisely, we �rst obtain the limit equa-
tion of the Laplace transform of problem (1.1)�(1.6), which gives a stationary
scheme resembling a scheme studied by [5] in the context of linear elastic-
ity. Then, we achieve the homogenized equation (1.7), applying the inverse
Laplace transform to the stationary limit equation.

2 Derivation of the homogenized equation

Multiplying (1.1), (1.2) by u" and integrating by parts we arrive for all 0 <
t < T to the energy estimate

tZ
0

Z



�jru"j
2 dx d� +

�

2"

Z
� "

[u"]
2(x; t) d� +

�

"

tZ
0

Z
� "

[u"]
2 d� d� =

�

2"

Z
� "

S2

" (x) d� :

(2.1)
Since j� "jN�1 � 1=", the right hand side of (2.1) is stable as " ! 0 if
S" = O("), motivating our assumptions on S". This uniform estimate, to-
gether with a Poincaré-type inequality for functions with jumps (see [5], [1])
yield an uniform L2 bound for u", which in turn implies weak L2 convergence
of a subsequence of u" to a limit u0; in the following we still denote such a
subsequence by u".

One may check that the Laplace transforms

U"(x; s) =

1Z
0

e�stu"(x; t) dt ;

are well de�ned for s 2 C, where Re (s) is assumed to be large enough, and
that the U" converge weakly to

eU0(x; s) =

1Z
0

e�stu0(x; t) dt : (2.2)

As customary when employing Laplace transforms, we assume that u" and all
other functions depending on t identically vanish for t < 0. Let us calculate

1Z
0

e�st
@

@t
[u"] dt = �S"(x) + s[U"] :
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Then the problem solved by U" is

� div(�rU") = 0 ; in 
"
1
, 
"

2
; (2.3)

[�rU" � �] = 0 ; on � "; (2.4)

~�

"
[U"] =

�

"
S"(x) + �2rU

(out)
" � � ; on � "; (2.5)

U"(x; t) = 0 ; on @
, (2.6)

where ~� = ~�(s) = �s+ �.

Existence of solutions to this problem follows from a standard application of
Lax-Milgram theorem; the same applies to the cell problems stated below.

In order to identify the limiting problem we apply the classical two-scale ap-
proach (see [2]), and consider the asymptotic expansion in powers of "

U"(x; s) = U0(x; y; s) + "U1(x; y; s) + "2U2(x; y; s) + : : : ;

where y = x=" is the microscopic variable. Here U0, U1 and U2 are periodic in
y 2 Y , and U1, U2 have zero integral average over Y . Then

rU" =
1

"
ryU0 +

�
rxU0 +ryU1

�
+ "

�
rxU1 +ryU2

�
+ : : : :

A similar decomposition of �U" can be easily found. On substituting these
expansions in the problem (2.3)�(2.6), one �nds the boundary problems solved
by U0, U1 and U2 in the period cell Y . The term U0 satis�es

���y U0 = 0 ; in E1, E2; (2.7)

[�ryU0 � �] = 0 ; on � ; (2.8)

~�[U0] = �2ryU
(out)
0 � � ; on � . (2.9)

As a consequence, U0 = U0(x; s), a piece of information which we use below;
in particular we stress that [U0] = 0. Next, we look at U1, solving

���y U1 = 0 ; in E1, E2; (2.10)

[�ryU1 � �] = �[�rxU0 � �] ; on � ; (2.11)

~�[U1] = �S1 + �2ryU
(out)
1 � � + �2rxU0 � � ; on � . (2.12)

It is convenient to separate in U1 the contributions of U0 and of the initial
data S1; i.e., we write

U1(x; y; s) = �X (y; s) � rxU0(x; s) + S(x; y; s) :
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Here the (transformed) cell functions Xh satisfy for h = 1, . . . , N ,

���y Xh = 0 ; in E1, E2; (2.13)

[�(ryXh � eh) � �] = 0 ; on � ; (2.14)

~�[Xh] = �2(ryX
(out)
h � eh) � � ; on � , (2.15)

where fehg is the standard basis in RN . As usual, the Xh are assumed: i) to
be periodic in Y ; ii) to have zero integral average over Y . Moreover S, besides
ful�lling requirements i) and ii), must satisfy

���y S = 0 ; in E1, E2; (2.16)

[�ryS � �] = 0 ; on � ; (2.17)

~�[S] = �S1(x; y) + �2ryS
(out) � � ; on � . (2.18)

The limiting equation will be obtained as a compatibility condition necessary
for the solvability of the problem for U2

���y U2 = ��x U0 + 2�
@2U1

@xj@yj
; in E1, E2; (2.19)

[�ryU2 � �] = �[�rxU1 � �] ; on � ; (2.20)

~�[U2] = �S2 + �2ryU
(out)
2 � � + �2rxU

(out)
1 � � ; on � . (2.21)

Indeed, after straightforward calculations, we arrive at

�0�x U0 =
Z
Y

��x U0 dy =
Z
�

[�rxU1 � �] d�

= div

0
@� Z

�

� 
 [�X ] d�rxU0 +
Z
�

[�S]� d�

1
A ; (2.22)

where

�0 = jE1j�1 + jE2j�2 ; (2.23)

and 
 denotes the standard tensor product.

We can prove that for large enough Re s, equation (2.22), complemented
with homogeneous Dirichlet boundary conditions, has a unique solution U0 2
H1

o (
), which is holomorphic in s. For s 2 R problem (2.3)�(2.6) is similar to
the one of [5]. However, the inhomogeneous term in (2.5), due to the initial
data S" and leading to the source term in (2.22), was not present there. It is
possible, anyway, to apply the techniques of [5] to obtain that, for s 2 R, the
sequence fU"g converges to the function U0. Hence, by unique holomorphic
extension, we conclude that U0 = eU0, where eU0 has been de�ned in (2.2), and
that the whole sequence U" converges to U0.

6



In order to obtain the limiting equation in the variable space (x; t), it is only
left to anti-transform (2.22); this is best done by splitting

X (y; s) = �0(y) + X 1(y; s) ;

where

���y �
0

h = 0 ; in E1, E2; (2.24)

[�(ry�
0

h � eh) � �] = 0 ; on � ; (2.25)

[�0h] = 0 ; on � . (2.26)

Moreover

���y X
1

h = 0 ; in E1, E2; (2.27)

[�ryX
1

h � �] = 0 ; on � ; (2.28)

~�[X 1

h ] = �2(ry�
0 (out)
h � eh) � � + �2ryX

1 (out)
h � � ; on � . (2.29)

Denote by L�1 the inverse Laplace transform. We have

L�1

0
@Z

�

� 
 [�X 1](y; s) d�rxU0(x; s)

1
A

=

tZ
0

� Z
�

� 
 [�L�1(X 1)](y; t� �) d�
�
rxu0(x; �) d� :

Note that the existence of the inverse Laplace transforms appearing above
follows from standard estimates of X 1 (a similar remark applies to L�1(S)
below). De�ne �1 = L�1(X 1); then it can be easily checked that

�[�1h(y; 0)] = �2(ry�
0 (out)
h � eh) � � ;

�1h = T ([�1h(�; 0)]) :

Here the transform T (g) is de�ned by T (g) = v, where v is the solution to

���y v = 0 ; in E1, E2; (2.30)

[�ryv � �] = 0 ; on � ; (2.31)

�
@

@t
[v] + �[v] = �2ryv

(out) � � ; on � ; (2.32)

[v](y; 0) = g(y) ; on � ; (2.33)

here v is a periodic function in Y , such that
R
Y v dy = 0. The problem (2.30)�

(2.33) is parabolic in the abstract sense of [6], chapter 7.

By means of similar reasoning, one �nds that

L�1(S(x; �; �)) = T (S1(x; �)) :
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Therefore u0 solves (1.7), where the matrices A0 and A1 are de�ned by

A0 =
Z
�

� 
 [�]�0 d� ; A1(t) =
Z
�

� 
 [��1](t) d� ; (2.34)

and
F(x; t) =

Z
�

[�T (S1(x; �))](y; t)� d� : (2.35)

The matrices A0 and A1 are symmetric, and �0I +A0 is positive de�nite (see
[1]).

3 Remarks on the T transform

The T transform can be rewritten in a more expressive way by introducing
the operator

C(g) = ��2rv
(out) � � ;

where v solves the elliptic problem (2.30), (2.31), complemented with [v](y) =
g(y) on � , and is periodic in Y , with zero average there. C is self-adjoint in
H1=2(� ), and C+� is coercive for � > 0 [1]. Let fwng be a complete orthonor-
mal system of eigenfunctions of C in L2(� ), and let f�ng be the corresponding
sequence of non negative eigenvalues. It is known (see [6], chapter 7) that

[T (g)](y; t) =
1X
n=0

e�
�+�n
�

twn(y)
Z
�

g(z)wn(z) d� : (3.1)

Indeed, one may formally write (2.32) as

�
@

@t
[T (g)] + �[T (g)] = �C

�
[T (g)]

�
:

Note that the �n, wn depend only on the geometry of E1, and on the conduc-
tivities �1, �2. On the other hand, through the representation formula (3.1),
the �n, wn enter the homogenized constitutive functions in (1.7). Therefore it
is hoped that reconstruction of the constitutive functions in (1.7) may lead
to gain some knowledge on the morphology and properties of the biological
tissue.
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