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Abstract. In this paper we prove an integral representation formula for a general class of energies
de�ned on the space of generalized special functions of bounded deformation (GSBDp) in arbitrary
space dimensions. Functionals of this type naturally arise in the modeling of linear elastic solids
with surface discontinuities including phenomena as fracture, damage, surface tension between
di�erent elastic phases, or material voids. Our approach is based on the global method for relaxation
devised in [14] and a recent Korn-type inequality in GSBDp [20]. Our general strategy also allows
to generalize integral representation results in SBDp, obtained in dimension two [28], to higher
dimensions, and to revisit results in the framework of generalized special functions of bounded
variation (GSBV p).

1. Introduction

Integral representation results are a fundamental tool in the abstract theory of variational limits
by Γ -convergence or in relaxation problems (see [32]). The topic has attracted widespread attention
in the mathematical community over the last decades, with applications in various contexts, such as
homogenization, dimension reduction, or atomistic-to-continuum approximations. In this paper we
contribute to this topic by proving an integral representation result for a general class of energies
arising in the modeling of linear elastic solids with surface discontinuities.

Integral representation theorems have been provided with increasing generality, ranging from func-
tionals de�ned on Sobolev spaces [1, 17, 18, 19, 33, 48] to those de�ned on spaces of functions
of bounded variation [12, 22, 30, 14], in particular on the subspace SBV of special functions of
bounded variation [13, 15, 16] and on piecewise constant functions [2]. In recent years, this analysis
has been further improved to deal with functionals and variational limits on GSBV p (generalized
special functions of bounded variation with p-integrable bulk density), which is the natural energy
space for the variational description of many problems with free discontinuities, see among others
[6, 7, 8, 9, 21, 37, 41]. A very general method for dealing with all the abovementioned classes of func-
tionals, the so-called global method for relaxation, has been developed by Bouchitté, Fonseca,

Leoni, and Mascarenhas in [13, 14]. It essentially consists in comparing asymptotic Dirichlet
problems on small balls with di�erent boundary data depending on the local properties of the func-
tions and allows to characterize energy densities in terms of cell formulas.

When coming to the variational description of rupture phenomena in general linearly elastic ma-
terials, however, the functional setting to be considered becomes weaker. Indeed, problems need to
be formulated in suitable subspaces of functions of bounded deformation (BD functions) for which
the distributional symmetrized gradient is a bounded Radon measure.
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In the mathematical description of linear elasticity, the elastic properties are determined by the
elastic strain. For a solid in a (bounded) reference con�guration Ω ⊂ Rd, whose displacement �eld
with respect to the equilibrium is u : Ω → Rd, the elastic strain is given by the symmetrized gradient
e(u) = 1

2 (∇u + (∇u)T). In standard models, the corresponding linear elastic energy is a suitable
quadratic form of e(u), possibly depending on the material point, see e.g. [38, Section 2.1]. However,
this is often generalized to the case of p-growth for a power p > 1 [45, Sections 10, 11]. The presence
of surface discontinuities is related to several dissipative phenomena, such as cracks, surface tension
between di�erent elastic phases, or internal cavities. In the energetic description, this is represented
by a term concentrated on the jump set Ju. This set is characterized by the property that for x ∈ Ju,
when blowing up around x, the jump set approximates a hyperplane with normal νu(x) ∈ Sd−1 and
the displacement �eld is close to two suitable values u+(x), u−(x) ∈ Rd on the two sides of the
material with respect to this hyperplane.

Prototypical examples of functionals described above are energies which are controlled from above
and below by suitable multiples of

ˆ
Ω

|e(u)|p dx+

ˆ
Ju∩Ω

(1 + |[u]|) dHd−1, (1)

where [u](x) = u+(x) − u−(x) denotes the jump opening, or which are controlled by multiples of
Gri�th's energy [44] ˆ

Ω

|e(u)|p dx+Hd−1(Ju ∩Ω). (2)

Whereas in case (1) the energy space is be given by SBDp, a subspace of BD, problems with control
of type (2) are naturally formulated on generalized special functions of bounded deformation GSBDp,
introduced by Dal Maso [31]. (We refer to Section 3.1 for more details.) The only available integral
representation result in this context is due to Conti, Focardi, and Iurlano [28] who considered
variational functionals controlled locally in terms of (1) in dimension d = 2. Let us mention that the
behavior is quite di�erent if linear growth on the symmetrized gradient is assumed (corresponding to
p = 1), as suited for the description of plasticity. In that case, representation results in the framework
of BD have been obtained, for instance, in [10, 36] and [23] (see also [35, 47], containing essential
tools for the proof).

The goal of the present article is twofold: we generalize the results of [28] for energies with control
of type (1) to arbitrary space dimensions and, more importantly, we extend the theory to encompass
also problems of the form (2), which are most relevant from an applicative viewpoint. Indeed, already
in dimension two, the extension of [28] to the case where only a control of type (2) is available is no
straightforward task. This is a fundamental di�erence with respect to the BV -theory where problems
for generalized functions of bounded variation can be reconducted to SBV by a perturbation trick
(see for instance [21]): one considers a small perturbation of the functional, depending on the jump
opening, to represent functionals on SBV p. Then, by letting the perturbation parameter vanish and
by truncating functions suitably, the representation can be extended to GSBV p. Unfortunately, the
trick of reducing problem (2) to (1) is not expedient in the linearly elastic context and does not allow
to deduce an integral representation result in GSBDp from the one in SBDp. This is mainly due to
the fact that, given a control only on the symmetrized gradient, it is in principle not possible to use
smooth truncations to decrease the energy up to a small error.

Let us also remark that, while in the majority of integral representation results in BV and BD
the L1-topology was considered, this is not the right choice when only a lower bound of the form (2)
is at hand. Indeed, in this case, the available compactness results [27, 31] have been established with
respect to the topology of the convergence in measure. This latter is also the topology where recently
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an integral representation result for the subspace PR(Ω) of piecewise rigid functions has been proved
in [43].

In our main result (Theorem 2.1), we prove an integral representation for variational functionals
F : GSBDp(Ω)×B(Ω)→ [0,+∞) (B(Ω) denoting the Borel subsets of Ω) that satisfy the standard
abstract conditions to be Borel measures in the second argument, lower semicontinuous with respect
to convergence in measure, and local in the �rst argument. Moreover, we require control of type (2),
localized to any B ∈ B(Ω).

Let us comment on the proof strategy. We follow the general approach of the global method for
relaxation provided in [13, 14] for variational functionals in BV . The proof strategy recovers the
integral bulk and surface densities as blow-up limits of cell minimization formulas. The steps to be
performed are the following:

• one �rst shows that, for �xed u ∈ GSBDp(Ω), the set function F(u, ·) is asymptotically
equivalent to its minimum mF (u, ·) over competitors attaining the same boundary conditions
as u. With this we mean that the two quantities have the same Radon-Nikodym derivative
with respect to µ := LdbΩ+Hd−1bJu∩Ω (Lemma 4.1);

• one then proves that the Radon-Nikodym derivative dmF (u,·)
dµ only depends on x0, the value

u(x0), and the (approximate) gradient ∇u(x0) at a Lebesgue point x0, while at a jump point
x0 it is uniquely determined by the one-sided traces u+(x0), u−(x0) and the normal vector
νu(x0) to Ju in x0 (Lemmas 4.2 and 4.3).

When dealing with all of the abovementioned issues, a key ingredient is given by a Korn-type inequality
for special functions of bounded deformation, established recently by Cagnetti, Chambolle, and
Scardia [20], which generalizes a two-dimensional result in [28] (see also [39]) to arbitrary dimension.
It provides a control of the full gradient in terms of the symmetrized gradient, up to an exceptional
set whose perimeter has a surface measure comparable to that of the discontinuity set. In particular,
this estimate is used to approximate the function u with functions uε, which have Sobolev regularity
in a ball (around a Lebesgue point), or in half-balls oriented by the jump normal (around a jump
point), and which converge to the purely elastic competitor u(x0) + ∇u(x0)(· − x0), or the two-
valued function with values u−(x0) and u+(x0), respectively. This is done in Lemmas 5.1 and 6.1,
respectively, and is used for proving Lemmas 4.2 and 4.3. Let us mention that this application of the
Korn-type inequality is similar to the one in dimension two [28] (with the topology of convergence in
measure in place of L1), and constitutes the counterpart of the SBV -Poincaré inequality [34] used in
the SBV -case [13].

In contrast to [28], the Korn inequality is also used in the proof of Lemma 4.1: at this point,
one needs to show that functions of the form vδ :=

∑
vδi χBδi approximate u in the topology of the

convergence in measure, where Bδi is a �ne cover of a given set with disjoint balls of radius smaller
than δ and vδi denote minimizers for mF (u,Bδi ). In [28], the lower bound in (1) allows to control
the distributional symmetrized gradient Eu which along with a scaling argument and the classical
Korn-Poincaré inequality in BD (see [49, Theorem 2.2]) shows that vδi is close to u on each Bδi . (In
[13], the SBV -Poincaré inequality is used.) Our weaker lower bound of the form (2), however, calls
for novel arguments and we use the Korn-type inequality to show that vδi are close to u in Lp up to
exceptional sets ωδi whose volumes scale like δ(F(u,Bδi ) + µ(Bδi )).

We also point out that, if instead a control of the type (1) is assumed, the arguments leading
to Theorem 2.1 can be successfully adapted to extend the result for functionals on SBDp (see [28])
to arbitrary space dimensions, see Theorem 7.1. This is done by exploiting the stronger blow-up
properties of SBD functions. We note that, in principle, this result could be also obtained by
adapting the arguments in [28] to higher dimension by employing the Korn inequality [20]. We however
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preferred to give a self-contained proof of Theorem 7.1, which requires only slight modi�cations of
the arguments used for Theorem 2.1 and nicely illustrates the di�erences between SBDp and its
generalized space.

For a related purpose, we endow our paper with an appendix were we discuss how our arguments
can also provide a direct proof for integral representation results on GSBV p, if a local control on the
full deformation gradient of the formˆ

Ω

|∇u|p dx+Hd−1(Ju ∩Ω)

is given, see Theorem A.1. In particular, no perturbation or truncation arguments are needed in the
proof. Therefore, we believe that this provides a new perspective and a slightly simpler approach to
integral representation results in GSBV p without necessity of the perturbation trick discussed before,
relying on the SBV result. Let us, however, mention that in [21] a more general growth condition
from above is considered: dealing with such a condition would instead require a truncation method
in the proof.

The paper is organized as follows. In Section 2 we present our main integral representation result
in GSBDp. Section 3 is devoted to some preliminaries about the function space. In particular, we
present the Korn-type inequality established in [20] and prove a fundamental estimate. Section 4
contains the general strategy and the proof of Lemma 4.1. The identi�cations of the bulk and surface
density (Lemmas 4.2 and 4.3) are postponed to Sections 5 and 6, respectively. In Section 7 we describe
the modi�cations necessary to obtain the SBDp-case. Finally, in Appendix A we explain how our
method can be used to establish an integral representation result in GSBV p.

2. The integral representation result

In this section we present our main result. We start with some basic notation. Let Ω ⊂ Rd be
open, bounded with Lipschitz boundary. Let A(Ω) be the family of open subsets of Ω, and denote by
B(Ω) the family of Borel sets contained in Ω. For every x ∈ Rd and ε > 0 we indicate by Bε(x) ⊂ Rd
the open ball with center x and radius ε. For x, y ∈ Rd, we use the notation x · y for the scalar
product and |x| for the Euclidean norm. Moreover, we let Sd−1 := {x ∈ Rd : |x| = 1} and we denote
by Md×d the set of d × d matrices. The m-dimensional Lebesgue measure of the unit ball in Rm is
indicated by γm for every m ∈ N. We denote by Ld and Hk the d-dimensional Lebesgue measure and
the k-dimensional Hausdor� measure, respectively.

For de�nition and properties of the space GSBDp(Ω), 1 < p < ∞, we refer the reader to [31].
Some relevant properties are collected in Section 3 below. In particular, the approximate gradient is
denoted by ∇u (it is well-de�ned, see Lemma 3.4) and the (approximate) jump set is denoted by Ju
with corresponding normal νu and one-sided limits u+ and u−. We also de�ne e(u) = 1

2 (∇u+(∇u)T).

We consider functionals F : GSBDp(Ω)×B(Ω)→ [0,+∞) with the following general assumptions:

(H1) F(u, ·) is a Borel measure for any u ∈ GSBDp(Ω),
(H2) F(·, A) is lower semicontinuous with respect to convergence in measure on Ω for any A ∈

A(Ω),
(H3) F(·, A) is local for any A ∈ A(Ω), in the sense that if u, v ∈ GSBDp(Ω) satisfy u = v a.e. in

A, then F(u,A) = F(v,A),
(H4) there exist 0 < α < β such that for any u ∈ GSBDp(Ω) and B ∈ B(Ω) we have

α

(ˆ
B

|e(u)|p dx+Hd−1(Ju ∩B)

)
≤ F(u,B) ≤ β

(ˆ
B

(1 + |e(u)|p) dx+Hd−1(Ju ∩B)

)
.
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We now formulate the main result of this article addressing integral representation of functionals F
satisfying (H1)�(H4). To this end, we introduce some further notation: for every u ∈ GSBDp(Ω)
and A ∈ A(Ω) we de�ne

mF (u,A) = inf
v∈GSBDp(Ω)

{F(v,A) : v = u in a neighborhood of ∂A}. (2.1)

For x0 ∈ Ω, u0 ∈ Rd, and ξ ∈Md×d we introduce the functions `x0,u0,ξ : Rd → Rd by
`x0,u0,ξ(x) = u0 + ξ(x− x0). (2.2)

Moreover, for x0 ∈ Ω, a, b ∈ Rd, and ν ∈ Sd−1 we introduce ux0,a,b,ν : Rd → Rd by

ux0,a,b,ν(x) =

{
a if (x− x0) · ν > 0,

b if (x− x0) · ν < 0.
(2.3)

In this paper, we will prove the following result.

Theorem 2.1 (Integral representation in GSBDp). Let Ω ⊂ Rd be open, bounded with Lipschitz
boundary and suppose that F : GSBDp(Ω)× B(Ω)→ [0,+∞) satis�es (H1)�(H4). Then

F(u,B) =

ˆ
B

f
(
x, u(x),∇u(x)

)
dx+

ˆ
Ju∩B

g
(
x, u+(x), u−(x), νu(x)

)
dHd−1(x)

for all u ∈ GSBDp(Ω) and B ∈ B(Ω), where f is given by

f(x0, u0, ξ) = lim sup
ε→0

mF (`x0,u0,ξ, Bε(x0))

γdεd
(2.4)

for all x0 ∈ Ω, u0 ∈ Rd, ξ ∈Md×d, and g is given by

g(x0, a, b, ν) = lim sup
ε→0

mF (ux0,a,b,ν , Bε(x0))

γd−1εd−1
(2.5)

for all x0 ∈ Ω, a, b ∈ Rd, and ν ∈ Sd−1.

Remark 2.2. We proceed with some remarks on the result.

(i) In general, if f is not convex in ξ, in spite of the growth conditions (H4), the functional may fully
depend on ∇u and not just on the symmetric part e(u). We refer to [28, Remark 4.14] for an example
in this direction.

(ii) As F is lower semicontinuous on W 1,p, the integrand f is quasiconvex [46]. Since F is lower
semicontinuous on piecewise rigid functions, the integrand g is BD-elliptic [42] (at least if one can
ensure, for instance, that g has a continuous dependence in x). A fortiori, g is BV -elliptic [3].

(iii) If the functional F additionally satis�es F(u+a,A) = F(u,A) for all a�ne functions a : Rd → Rd
with e(a) = 0, then there are two functions f : Ω×Md×d → [0,+∞) and g : Ω×Rd×Sd−1 → [0,+∞)
such that

F(u,B) =

ˆ
B

f
(
x, e(u)(x)

)
dx+

ˆ
Ju∩B

g
(
x, [u](x), νu(x)

)
dHd−1(x),

where [u](x) := u+(x)− u−(x).

(iv) A variant of the proof shows that, in the minimization problems (2.4)�(2.5), one may replace balls
Bε(x0) by cubes Qνε (x0) with sidelength ε, centered at x0, and two faces orthogonal to ν = νu(x0).
(v) An analogous result holds on the space GSBV p(Ω;Rm) for m ∈ N. We refer to Appendix A for
details.

We will additionally discuss the minor modi�cations needed in order to deal with functionals
F : SBDp(Ω)× B(Ω)→ [0,+∞) satisfying (H1)�(H3) and
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(H′4) there exist 0 < α < β such that for any u ∈ SBDp(Ω) and B ∈ B(Ω) we have

α
(ˆ

B

|e(u)|p dx+

ˆ
Ju∩B

(1+|[u]|) dHd−1
)
≤ F(u,B) ≤ β

( ˆ
B

(1+|e(u)|p) dx+

ˆ
Ju∩B

(1+|[u]|) dHd−1
)
.

In this case, SBDp(Ω) (see Subsection 3.1) is the natural energy space for F . Furthermore, sequences
of competitors with bounded energy, which are converging in measure, are additionally L1-convergent
if we assume (H′4), due to the classical Korn-Poincaré inequality in BD (see [49, Theorem 2.2]).
Hence, in this latter case, (H2) is equivalent to requiring lower semicontinuity with respect to the
L1-convergence. The statement of the result in this setting, as well as of the changes needed in the
proofs, will be given in Section 7.

3. Preliminaries

We start this preliminary section by introducing some further notation. For E ⊂ Rd, ε > 0, and
x0 ∈ Rd we set

Eε,x0
:= x0 + ε(E − x0). (3.1)

The diameter of E is indicated by diam(E). Given two sets E1, E2 ⊂ Rd, we denote their symmetric
di�erence by E14E2. We write χE for the characteristic function of any E ⊂ Rd, which is 1 on E
and 0 otherwise. If E is a set of �nite perimeter, we denote its essential boundary by ∂∗E, see [5,

De�nition 3.60]. We denote the set of symmetric and skew-symmetric matrices by Md×d
sym and Md×d

skew,
respectively.

3.1. BD and GBD functions. Let U ⊂ Rd be open. A function v ∈ L1(U ;Rd) belongs to the space
of functions of bounded deformation, denoted by BD(U), if the distribution Ev := 1

2 (Dv + (Dv)T)

is a bounded Md×d
sym -valued Radon measure on U , where Dv = (D1v, . . . ,Ddv) is the distributional

di�erential. It is well known (see [4, 49]) that for v ∈ BD(U) the jump set Jv is countably (Hd−1, d−1)
recti�able, and that

Ev = Eav + Ecv + Ejv,

where Eav is absolutely continuous with respect to Ld, Ecv is singular with respect to Ld and such
that |Ecv|(B) = 0 if Hd−1(B) <∞, while Ejv is concentrated on Jv. The density of Eav with respect
to Ld is denoted by e(v).

The space SBD(U) is the subspace of all functions v ∈ BD(U) such that Ecv = 0. For p ∈ (1,∞),
we de�ne SBDp(U) := {v ∈ SBD(U) : e(v) ∈ Lp(U ;Md×d

sym), Hd−1(Jv) < ∞}. For a complete
treatment of BD and SBD functions, we refer to to [4, 11, 49].

The spaces GBD(U) of generalized functions of bounded deformation and GSBD(U) ⊂ GBD(U)
of generalized special functions of bounded deformation have been introduced in [31] (cf. [31, Def-
initions 4.1 and 4.2]). We recall that every v ∈ GBD(U) has an approximate symmetric gradient
e(v) ∈ L1(U ;Md×d

sym) and an approximate jump set Jv which is still countably (Hd−1, d−1) recti�able
(cf. [31, Theorem 9.1, Theorem 6.2]).

The notation for e(v) and Jv, which is the same as that one in the SBD case, is consistent: in
fact, if v lies in SBD(U), the objects coincide (up to negligible sets of points with respect to Ld and
Hd−1, respectively). For x ∈ Jv there exist v+(x), v−(x) ∈ Rd and νv(x) ∈ Sd−1 such that

lim
ε→0

ε−dLd
(
{y ∈ Bε(x) : ± (y − x) · νv(x) > 0} ∩ {|v − v±(x)| > %}

)
= 0 (3.2)

for every % > 0, and the function [v] := v+ − v− : Jv → Rd is measurable. For 1 < p <∞, the space
GSBDp(U) is given by

GSBDp(U) := {v ∈ GSBD(U) : e(v) ∈ Lp(U ;Md×d
sym), Hd−1(Jv) <∞}.



INTEGRAL REPRESENTATION IN LINEAR ELASTICITY WITH SURFACE DISCONTINUITIES 7

Any function v ∈ GSBD(U) with [v] integrable belongs to SBD(U), as follows from [26, Theorem 2.9]
for Av = Ev (see [26, Remark 2.5]). This corresponds to the following proposition.

Proposition 3.1. If v ∈ GSBDp(U) is such that [v] ∈ L1(Jv;Rd), then v ∈ SBDp(U).

If U has Lipschitz boundary, for each v ∈ GBD(U) the traces on ∂U are well de�ned (see [31,
Theorem 5.5]), in the sense that for Hd−1-a.e. x ∈ ∂U there exists tr(v)(x) ∈ Rd such that

lim
ε→0

ε−dLd
(
U ∩Bε(x) ∩ {|v − tr(v)(x)| > %}

)
= 0 for all % > 0. (3.3)

3.2. Korn's inequality and fundamental estimate. In this subsection we discuss two important
tools which will be instrumental for the proof of Theorem 2.1. We start by the following Korn
and Korn-Poincaré inequalities in GSBD for functions with small jump sets, see [20, Theorem 1.1,
Theorem 1.2]. In the following, we say that a : Rd → Rd is an in�nitesimal rigid motion if a is a�ne
with e(a) = 1

2 (∇a+ (∇a)T) = 0.

Theorem 3.2 (Korn inequality for functions with small jump set). Let Ω ⊂ Rd be a bounded
Lipschitz domain and let 1 < p < +∞. Then there exists a constant c = c(Ω, p) > 0 such that for all
u ∈ GSBDp(Ω) there is a set of �nite perimeter ω ⊂ Ω with

Hd−1(∂∗ω) ≤ cHd−1(Ju), Ld(ω) ≤ c(Hd−1(Ju))d/(d−1) (3.4)

and an in�nitesimal rigid motion a such that

‖u− a‖Lp(Ω\ω) + ‖∇u−∇a‖Lp(Ω\ω) ≤ c‖e(u)‖Lp(Ω). (3.5)

Moreover, there exists v ∈W 1,p(Ω;Rd) such that v = u on Ω \ ω and

‖e(v)‖Lp(Ω) ≤ c‖e(u)‖Lp(Ω).

Note that the result is indeed only relevant for functions with su�ciently small jump set, as other-
wise one can choose ω = Ω, and (3.5) trivially holds. Note that, in [20], Ld(ω) ≤ c(Hd−1(Ju))d/(d−1)

has not been shown, but it readily follows from Hd−1(∂∗ω) ≤ cHd−1(Ju) by the isoperimetric in-
equality.

Remark 3.3 (Almost Sobolev regularity, constants, and scaling invariance). (i) More precisely, in
[20] it is proved that there exists v ∈ W 1,p(Ω;Rd) such that v = u on Ω \ ω and ‖e(v)‖Lp(Ω) ≤
c‖e(u)‖Lp(Ω), whence by Korn's and Poincaré's inequality in W 1,p(Ω;Rd) we get

‖v − a‖Lp(Ω) + ‖∇v −∇a‖Lp(Ω) ≤ c‖e(u)‖Lp(Ω)

for an in�nitesimal rigid motion a. This directly implies (3.5), see [20, Theorem 4.1, Theorem 4.4].

(ii) Given a collection of bounded Lipschitz domains (Ωk)k which are related through bi-Lipschitzian
homeomorphisms with Lipschitz constants of both the homeomorphism itself and its inverse bounded
uniformly in k, in Theorem 3.2 we can choose a constant c uniformly for all Ωk, see [20, Remark 4.2].

(iii) Recall (3.1). Consider a bounded Lipschitz domain Ω, ε > 0, and x0 ∈ Rd. Then for each
u ∈ GSBDp(Ωε,x0

) we �nd ω ⊂ Ωε,x0
and a rigid motion a such that

Hd−1(∂∗ω) ≤ CHd−1(Ju), Ld(ω) ≤ C
(
Hd−1(Ju)

)d/(d−1)
and

ε−1‖u− a‖Lp(Ωε,x0\ω) + ‖∇u−∇a‖Lp(Ωε,x0\ω) ≤ C‖e(u)‖Lp(Ωε,x0 ),
where C = C(Ω, p) > 0 is independent of ε. This follows by a standard rescaling argument.

From Theorem 3.2, one can also deduce that for u ∈ GSBDp(Ω) the approximate gradient ∇u
exists Ld-a.e. in Ω, see [20, Corollary 5.2].
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Lemma 3.4 (Approximate gradient). Let Ω ⊂ Rd be open, bounded with Lipschitz boundary, let
1 < p < +∞, and u ∈ GSBDp(Ω). Then for Ld-a.e. x0 ∈ Ω there exists a matrix in Md×d, denoted
by ∇u(x0), such that

lim
ε→0

ε−dLd
({
x ∈ Bε(x0) :

|u(x)− u(x0)−∇u(x0)(x− x0)|
|x− x0|

> %
})

= 0 for all % > 0.

We point out that the result in Lemma 3.4 has already been obtained in [40] for p = 2, as a
consequence of the embedding GSBD2(Ω) ⊂ (GBV (Ω))d, see [40, Theorem 2.9].

To control the a�ne mappings appearing in Theorem 3.2, we will make use of the following
elementary lemma on a�ne mappings, see, e.g., [43, Lemma 3.4] or [29, Lemmas 4.3] for similar
statements. (It is obtained by the equivalence of norms in �nite dimensions and by standard rescaling
arguments.)

Lemma 3.5. Let 1 ≤ p < +∞, let x0 ∈ Rd, and let R, θ > 0. Let a : Rd → Rd be a�ne, de�ned by
a(x) = Ax+ b for x ∈ Rd, and let E ⊂ BR(x0) ⊂ Rd with Ld(E) ≥ θLd(BR(x0)). Then, there exists
a constant c0 > 0 only depending on p and θ such that

‖a‖Lp(BR(x0)) ≤ γ
1
p

d R
d
p ‖a‖L∞(BR(x0)) ≤ c0‖a‖Lp(E), |A| ≤ c0R−1−

d
p ‖a‖Lp(E).

We now proceed with another consequence of Theorem 3.2.

Corollary 3.6. Let Ω ⊂ Rd be a bounded Lipschitz domain and let 1 < p < +∞. Then there exists
a constant C = C(Ω, p) > 0 such that for all u ∈ GSBDp(Ω) with trace tr(u) = 0 on ∂Ω (see (3.3))
there is a set of �nite perimeter ω ⊂ Rd with

Hd−1(∂∗ω) ≤ CHd−1(Ju), Ld(ω) ≤ C(Hd−1(Ju))d/(d−1) (3.6)

such that

‖u‖Lp(Ω\ω) + ‖∇u‖Lp(Ω\ω) ≤ C‖e(u)‖Lp(Ω). (3.7)

Proof. We start by choosing a bounded Lipschitz domain Ω′ ⊂ Rd with Ω ⊂⊂ Ω′. Each u ∈
GSBDp(Ω) with tr(u) = 0 on ∂Ω can be extended to a function ũ ∈ GSBDp(Ω′) by ũ = 0 on Ω′ \Ω
such that Jũ = Ju. We �rst note that it is not restrictive to assume that

Hd−1(Ju) ≤
(Ld(Ω′ \Ω)

2c

)(d−1)/d
, (3.8)

where c = c(Ω′, p) > 0 is the constant of Theorem 3.2. In fact, otherwise we could take ω = Ω and
the statement would be trivially satis�ed since (3.7) is clearly trivial and for (3.6) we use that

Hd−1(∂∗Ω) ≤ C
(Ld(Ω′ \Ω)

2c

)(d−1)/d
, Ld(Ω) ≤ CL

d(Ω′ \Ω)

2c

for a su�ciently large constant C > 0 depending only on Ω and Ω′.

Now, consider a function u satisfying (3.8). We apply Theorem 3.2 on ũ ∈ GSBDp(Ω′) and obtain
a set ω ⊂ Ω′ ⊂ Rd satisfying (3.4) as well as an in�nitesimal rigid motion a such that

‖ũ− a‖Lp(Ω′\ω) + ‖∇ũ−∇a‖Lp(Ω′\ω) ≤ c‖e(ũ)‖Lp(Ω′) = c‖e(u)‖Lp(Ω). (3.9)

In particular, ũ = 0 on Ω′ \Ω implies

‖a‖Lp(Ω′\(Ω∪ω)) ≤ c‖e(u)‖Lp(Ω). (3.10)

By (3.4) and (3.8) we get Ld(ω) ≤ 1
2L

d(Ω′ \ Ω). In view of (3.10), we apply Lemma 3.5 on E =

Ω′ \ (Ω ∪ ω) with R = diam(Ω′) and θ = 1
2L

d(Ω′ \Ω)/γdR
d to get

‖a‖Lp(Ω′) ≤ c‖a‖Lp(Ω′\(Ω∪ω)) ≤ c‖e(u)‖Lp(Ω),
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and, in a similar fashion, |∇a| ≤ c‖e(u)‖Lp(Ω), where c > 0 depends on Ω, Ω′, and p. Then, (3.7)
follows from (3.9), the triangle inequality, and the fact that u = ũ on Ω. �

We conclude this subsection with another important tool in the proof of the integral representation,
namely a fundamental estimate in GSBDp.

Lemma 3.7 (Fundamental estimate in GSBDp). Let Ω ⊂ Rd be open, bounded with Lipschitz
boundary, and let 1 < p < +∞. Let η > 0 and let A,A′, A′′ ∈ A(Ω) with A′ ⊂⊂ A. For every
functional F satisfying (H1), (H3), and (H4) and for every u ∈ GSBDp(A), v ∈ GSBDp(A′′) there
exists a function ϕ ∈ C∞(Rd; [0, 1]) such that w := ϕu+ (1− ϕ)v ∈ GSBDp(A′ ∪A′′) satis�es

(i) F(w,A′ ∪A′′) ≤ (1 + η)
(
F(u,A) + F(v,A′′)

)
+M‖u− v‖pLp((A\A′)∩A′′) + ηLd(A′ ∪A′′),

(ii) w = u on A′ and w = v on A′′ \A, (3.11)

where M = M(A,A′, A′′, p, η) > 0 depends only on A,A′, A′′, p, η, but is independent of u and v.
Moreover, if for ε > 0 and x0 ∈ Rd we have Aε,x0 , A

′
ε,x0

, A′′ε,x0
⊂ Ω, then

M(Aε,x0
, A′ε,x0

, A′′ε,x0
, p, η) = ε−pM(A,A′, A′′, p, η), (3.12)

where we used the notation introduced in (3.1).

The same statement holds if F satis�es (H′4), u ∈ SBDp(A), and v ∈ SBDp(A′′).

In the statement above, we intend that ‖u− v‖pLp((A\A′)∩A′′) = +∞ if u− v /∈ Lp((A \A′) ∩A′′).

Proof. The proof follows the lines of [16, Proposition 3.1]. Choose k ∈ N such that

k ≥ max
{3p−1β

ηα
,
β

η

}
. (3.13)

Let A1, . . . , Ak+1 be open subsets of Rd with A′ ⊂⊂ A1 ⊂⊂ . . . ⊂⊂ Ak+1 ⊂⊂ A. For i = 1, . . . , k let
ϕi ∈ C∞0 (Ai+1; [0, 1]) with ϕi = 1 in a neighborhood Vi of Ai.

Consider u ∈ GSBDp(A) and v ∈ GSBDp(A′′). We can clearly assume that u− v ∈ Lp((A \A′)∩
A′′) as otherwise the result is trivial. We de�ne the function wi = ϕiu+(1−ϕi)v ∈ GSBDp(A′∪A′′),
where u and v are extended arbitrarily outside A and A′′, respectively. Letting Ti = A′′ ∩ (Ai+1 \Ai)
we get by (H1) and (H3)

F(wi, A
′ ∪A′′) ≤ F(u, (A′ ∪A′′) ∩ Vi) + F(v,A′′ \ supp(ϕi)) + F(wi, Ti)

≤ F(u,A) + F(v,A′′) + F(wi, Ti). (3.14)

For the last term, we compute using (H4) (� denotes the symmetrized vector product)

F(wi, Ti) ≤ β
ˆ
Ti

(1 + |e(wi)|p) dx+ βHd−1(Jwi ∩ Ti)

≤ β
ˆ
Ti

(1 + |ϕie(u) + (1− ϕi)e(v) +∇ϕi � (u− v)|p) + βHd−1((Ju ∪ Jv) ∩ Ti)

≤ βLd(Ti) + 3p−1β

ˆ
Ti

(
|e(u)|p + |e(v)|p + |∇ϕi|p|u− v|p

)
+ βHd−1(Ju ∩ Ti) + βHd−1(Jv ∩ Ti)

≤ 3p−1βα−1
(
F(u, Ti) + F(v, Ti)

)
+ 3p−1β‖∇φi‖p∞‖u− v‖

p
Lp(Ti)

+ βLd(Ti).

Notice that we can obtain the same estimate also if F satis�es (H′4), u ∈ SBDp(A), and v ∈
SBDp(A′′). (We refer to [16, Proof of Proposition 3.1] for details.) Consequently, recalling (3.13)
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and using (H1) we �nd i0 ∈ {1, . . . , k} such that

F(wi0 , Ti0) ≤ 1

k

k∑
i=1

F(wi, Ti) ≤ η
(
F(u,A)+F(v,A′′)

)
+M‖u−v‖pLp((A\A′)∩A′′) +ηLd((A\A′)∩A′′),

where M := 3p−1βk−1 maxi=1,...,k ‖∇ϕi‖p∞. This along with (3.14) concludes the proof of (3.11)
by setting w = wi0 . To see the scaling property (3.12), it su�ces to use the cut-o� functions
ϕεi ∈ C∞0 ((Ai+1)ε,x0 ; [0, 1]) i = 1, . . . , k, de�ned by ϕεi (x) = ϕi(x0 + (x − x0)/ε) for x ∈ (Ai+1)ε,x0 .
This concludes the proof. �

4. The global method

This section is devoted to the proof of Theorem 2.1 which is based on three ingredients. First,
we show that F is equivalent to mF (see (2.1)) in the sense that the two quantities have the same
Radon-Nikodym derivative with respect to µ := LdbΩ+Hd−1bJu∩Ω .

Lemma 4.1. Suppose that F satis�es (H1)�(H4). Let u ∈ GSBDp(Ω) and µ = LdbΩ+Hd−1bJu∩Ω.
Then for µ-a.e. x0 ∈ Ω we have

lim
ε→0

F(u,Bε(x0))

µ(Bε(x0))
= lim
ε→0

mF (u,Bε(x0))

µ(Bε(x0))
.

We prove this lemma in the �nal part of this section. The second ingredient is that, asymptotically
as ε → 0, the minimization problems mF (u,Bε(x0)) and mF (ūbulkx0

, Bε(x0)) coincide for Ld-a.e.
x0 ∈ Ω, where we write ūbulkx0

:= `x0,u(x0),∇u(x0) for brevity, see (2.2).

Lemma 4.2. Suppose that F satis�es (H1) and (H3)�(H4) and let u ∈ GSBDp(Ω). Then for Ld-a.e.
x0 ∈ Ω we have

lim
ε→0

mF (u,Bε(x0))

γdεd
= lim sup

ε→0

mF (ūbulkx0
, Bε(x0))

γdεd
. (4.1)

We defer the proof of Lemma 4.2 to Section 5. The third ingredient is that, asymptotically
as ε → 0, the minimization problems mF (u,Bε(x0)) and mF (ūsurfx0

, Bε(x0)) coincide for Hd−1-a.e.
x0 ∈ Ju, where we write ūsurfx0

:= ux0,u+(x0),u−(x0),νu(x0) for brevity, see (2.3).

Lemma 4.3. Suppose that F satis�es (H1) and (H3)�(H4) and let u ∈ GSBDp(Ω). Then for Hd−1-
a.e. x0 ∈ Ju we have

lim
ε→0

mF (u,Bε(x0))

γd−1εd−1
= lim sup

ε→0

mF (ūsurfx0
, Bε(x0))

γd−1εd−1
. (4.2)

We defer the proof of Lemma 4.3 to Section 6, and now proceed to prove Theorem 2.1.

Proof of Theorem 2.1. We need to show that for Ld-a.e. x0 ∈ Ω one has

dF(u, ·)
dLd

(x0) = f
(
x0, u(x0),∇u(x0)

)
, (4.3)

where f was de�ned in (2.4), and that for Hd−1-a.e. x0 ∈ Ju one has

dF(u, ·)
dHd−1bJu

(x0) = g
(
x0, u

+(x0), u−(x0), νu(x0)
)
, (4.4)

where g was de�ned in (2.5).



INTEGRAL REPRESENTATION IN LINEAR ELASTICITY WITH SURFACE DISCONTINUITIES 11

By Lemma 4.1 and the fact that limε→0(γdε
d)−1µ(Bε(x0)) = 1 for Ld-a.e. x0 ∈ Ω we deduce

dF(u, ·)
dLd

(x0) = lim
ε→0

F(u,Bε(x0))

µ(Bε(x0))
= lim
ε→0

mF (u,Bε(x0))

µ(Bε(x0))
= lim
ε→0

mF (u,Bε(x0))

γdεd
<∞

for Ld-a.e. x0 ∈ Ω. Then, (4.3) follows from (2.4) and Lemma 4.2. By Lemma 4.1 and the fact that
limε→0(γd−1ε

d−1)−1µ(Bε(x0)) = 1 for Hd−1-a.e. x0 ∈ Ju we deduce

dF(u, ·)
dHd−1bJu

(x0) = lim
ε→0

F(u,Bε(x0))

µ(Bε(x0))
= lim
ε→0

mF (u,Bε(x0))

µ(Bε(x0))
= lim
ε→0

mF (u,Bε(x0))

γd−1εd−1
<∞

for Hd−1-a.e. x0 ∈ Ju. Now, (4.4) follows from (2.5) and Lemma 4.3. �

In the remaining part of the section we prove Lemma 4.1. We basically follow the lines of [13, 14, 28],
with the di�erence that the required compactness results are more delicate due to the weaker growth
condition from below (see (H4)) compared to [13, 14, 28]. We start with some notation. For δ > 0
and A ∈ A(Ω), we de�ne

mδ
F (u,A) = inf

{∑∞

i=1
mF (u,Bi) : Bi ⊂ A pairwise disjoint balls, diam(Bi) ≤ δ,

µ
(
A \

⋃∞
i=1

Bi

)
= 0
}
,

where, as before, µ = LdbΩ+Hd−1bJu∩Ω . As mδ
F (u,A) is decreasing in δ, we can also introduce

m∗F (u,A) = lim
δ→0

mδ
F (u,A). (4.5)

Lemma 4.4. Let F satisfy (H1), (H3)�(H4). Let u ∈ GSBDp(Ω) and µ = LdbΩ+Hd−1bJu∩Ω. If
F(u,A) = m∗F (u,A) for all A ∈ A(Ω), then for µ-a.e. x0 ∈ Ω we have

lim
ε→0

F(u,Bε(x0))

µ(Bε(x0))
= lim
ε→0

mF (u,Bε(x0))

µ(Bε(x0))
.

Proof. The statement follows by repeating exactly the arguments in [28, Proofs of Lemma 4.2 and
Lemma 4.3]. Note that the assumption F(u,A) = m∗F (u,A) enters the proof at the very end of [28,
Proof of Lemma 4.3] and replaces the application of [28, Lemma 4.1]. �

In view of Lemma 4.4, in order to see that F and mF have the same Radon-Nikodym derivative
with respect to µ, it remains to show the following.

Lemma 4.5. Suppose that F satis�es (H1)�(H4) and let u ∈ GSBDp(Ω). Then, for all A ∈ A(Ω)
there holds F(u,A) = m∗F (u,A).

Proof. We follow the lines of the proof of [28, Lemma 4.1] focusing on the necessary adaptions due to
the weaker growth condition from below (see (H4)) compared to [28]. For each ball B ⊂ A we have
mF (u,B) ≤ F(u,B) by de�nition. By (H1) we get mδ

F (u,A) ≤ F(u,A) for all δ > 0. This shows
m∗F (u,A) ≤ F(u,A), cf. (4.5).

We now address the reverse inequality. We �x A ∈ A(Ω) and δ > 0. Let (Bδi )i be balls as in the
de�nition of mδ

F (u,A) such that∑∞

i=1
mF (u,Bδi ) ≤mδ

F (u,A) + δ. (4.6)

By the de�nition of mF , we �nd v
δ
i ∈ GSBDp(Bδi ) such that vδi = u in a neighborhood of ∂Bδi and

F(vδi , B
δ
i ) ≤mF (u,Bδi ) + δLd(Bδi ). (4.7)
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We de�ne

vδ,n :=
∑n

i=1
vδi χBδi + uχNδ,n0

for n ∈ N, vδ :=
∑∞

i=1
vδi χBδi + uχNδ0 , (4.8)

where Nδ,n
0 := Ω \

⋃n
i=1B

δ
i and Nδ

0 := Ω \
⋃∞
i=1B

δ
i . By construction, we have that each vδ,n lies in

GSBDp(Ω) and that supn∈N(‖e(vδ,n)‖Lp(Ω)+Hd−1(Jvδ,n)) < +∞ by (4.6)�(4.7) and (H4). Moreover,

vδ,n → vδ pointwise a.e. in Ω. Then, [27, Theorem 1.1] yields vδ ∈ GSBDp(Ω).

F(vδ, A) =
∑∞

i=1
F(vδi , B

δ
i ) + F(u,Nδ

0 ∩A) ≤
∑∞

i=1

(
mF (u,Bδi ) + δLd(Bδi )

)
≤mδ

F (u,A) + δ(1 + Ld(A)), (4.9)

where we also used the fact that µ(Nδ
0 ∩A) = F(u,Nδ

0 ∩A) = 0 by the de�nition of (Bδi )i and (H4).
For later purpose, we also note by (H4) that this implies

‖e(vδ)‖pLp(A) +Hd−1(Jvδ ∩A) ≤ α−1
(
mδ
F (u,A) + δ(1 + Ld(A))

)
. (4.10)

We now claim that vδ → u in measure on A. To this end, we apply Remark 3.3(iii) and Corollary 3.6
on each Bδi for the function u− vδi and we get sets of �nite perimeter ωδi ⊂ Bδi such that

(i)
(
Ld(ωδi )

)(d−1)/d ≤ CHd−1((Ju ∪ vδ) ∩Bδi ),
(ii) ‖u− vδi ‖

p

Lp(Bδi \ωδi )
≤ Cδp

(
‖e(u)‖p

Lp(Bδi )
+ ‖e(vδ)‖p

Lp(Bδi )

)
, (4.11)

for a constant C > 0 only depending on p. Here, we used that diam(Bδi ) ≤ δ and the fact that
(u − vδ)bBδi ∈ GSBDp(Bδi ) with trace zero on ∂Bδi . We de�ne ψ : [0,+∞) → [0,+∞) by ψ(t) =

min{tp, 1} and observe that vδ → u in measure on A is equivalent to
´
A
ψ(|u− vδ|) dx→ 0 as δ → 0.

In view of (4.8), we computeˆ
A

ψ(|u− vδ|) dx =
∑∞

i=1

ˆ
Bδi

ψ(|u− vδi |) dx ≤
∑∞

i=1

(
‖u− vδi ‖

p

Lp(Bδi \ωδi )
+ Ld(ωδi )

)
. (4.12)

By (4.11)(ii) and the fact that the balls (Bδi )i are pairwise disjoint we get∑∞

i=1
‖u− vδi ‖

p

Lp(Bδi \ωδi )
≤ Cδp

(
‖e(u)‖pLp(A) + ‖e(vδ)‖pLp(A)

)
. (4.13)

As ωδi ⊂ Biδ and diam(Bδi ) ≤ δ, we further get by (4.11)(i)∑∞

i=1
Ld(ωδi ) ≤ γ

1/d
d δ

∑∞

i=1

(
Ld(ωδi )

)(d−1)/d ≤ γ1/dd CδHd−1
(
(Ju ∪ Jvδ) ∩A

)
. (4.14)

Now, combining (4.12)�(4.14) and using (4.10), we �nd
´
A
ψ(|u − vδ|) dx → 0 as δ → 0. With this,

using (H2), (4.5), and (4.9) we get the required inequality m∗F (u,A) ≥ F(u,A) in the limit as δ → 0.
This concludes the proof. �

Proof of Lemma 4.1. The combination of Lemma 4.4 and Lemma 4.5 yields the result. �

To conclude the proof of Theorem 2.1, it remains to prove Lemmas 4.2 and 4.3. This is the subject
of the following two sections.

5. The bulk density

This section is devoted to the proof of Lemma 4.2. We start by analyzing the blow-up at points
with approximate gradient. The latter exists for Ld-a.e. point in Ω by Lemma 3.4.
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Lemma 5.1 (Blow-up at points with approximate gradient). Let u ∈ GSBDp(Ω). Let θ ∈ (0, 1).
For Ld-a.e. x0 ∈ Ω there exists a family uε ∈ GSBDp(Bε(x0)) such that

(i) uε = u in a neighborhood of ∂Bε(x0), lim
ε→0

ε−(d+1)Ld({uε 6= u}) = 0,

(ii) lim
ε→0

ε−(d+p)
ˆ
B(1−θ)ε(x0)

∣∣uε(x)− u(x0)−∇u(x0)(x− x0)
∣∣p dx = 0,

(iii) lim
ε→0

ε−d
ˆ
Bε(x0)

∣∣e(uε)(x)− e(u)(x0)
∣∣p dx = 0,

(iv) lim
ε→0

ε−dHd−1(Juε) = 0. (5.1)

Proof. Let x0 ∈ Ω be such that

(i) lim
ε→0

ε−d
ˆ
Bε(x0)

∣∣e(u)(x)− e(u)(x0)
∣∣p dx = 0,

(ii) lim
ε→0

ε−dHd−1(Ju ∩Bε(x0)) = 0,

(iii) lim
ε→0

ε−dLd
({
x ∈ Bε(x0) :

|u(x)− u(x0)−∇u(x0)(x− x0)|
|x− x0|

> %
})

= 0 for all % > 0. (5.2)

These properties hold for Ld-a.e. x0 ∈ Ω by Lemma 3.4 and the facts that |e(u)|p ∈ L1(Ω) and Ju is
(Hd−1, d−1) recti�able. We use again the notation ūbulkx0

= `x0,u0,∇u(x0) = u(x0) +∇u(x0)(· −x0) for
brevity, see (2.2).

Fix θ > 0. We apply Theorem 3.2 and Remark 3.3(i) for the function u−ūbulkx0
on the setB(1−θ)ε(x0)

to obtain a set of �nite perimeter ωε ⊂ B(1−θ)ε(x0), a function vε ∈ W 1,p(B(1−θ)ε(x0);Rd) with

vε = u− ūbulkx0
in B(1−θ)ε(x0) \ ωε, and an in�nitesimal rigid motion aε such that

(i) Hd−1(∂∗ωε) ≤ cHd−1(Ju ∩Bε(x0)), Ld(ωε) ≤ c(Hd−1(Ju ∩Bε(x0)))d/(d−1),

(ii) ‖vε − aε‖Lp(B(1−θ)ε(x0)) ≤ c ε‖e(u− ū
bulk
x0

)‖Lp(Bε(x0)),

(iii) ‖e(vε)‖Lp(B(1−θ)ε(x0)) ≤ c ‖e(u− ū
bulk
x0

)‖Lp(Bε(x0)), (5.3)

where c > 0 depends only on p, cf. also Remark 3.3(iii). We directly note by (5.2)(ii) and (5.3)(i)
that

lim
ε→0

ε−d
2/(d−1)Ld(ωε) = 0. (5.4)

We de�ne uε ∈ GSBDp(Bε(x0)) as

uε := uχBε(x0)\B(1−θ)ε(x0) + (vε + ūbulkx0
)χB(1−θ)ε(x0), (5.5)

and proceed by con�rming the properties stated in (5.1). Notice that, by construction, uε = u in
Bε(x0)\ωε. First, (5.1)(i) follows directly from the fact that ωε ⊂ B(1−θ)ε(x0), as well as (5.4)�(5.5).
Moreover, (5.3)(i) and (5.2)(ii) imply (5.1)(iv). As for (5.1)(iii), we notice that by (5.3)(iii) and
(5.2)(i) we have

lim
ε→0

ε−d
ˆ
B(1−θ)ε(x0)

|e(vε)(x)|p dx = 0 .

Since, by a direct computation, e(uε)(x) − e(u)(x0) = e(vε)(x) for x ∈ B(1−θ)ε(x0), see (5.5), in
combination with (5.2)(i) we obtain (5.1)(iii). It therefore remains to prove (5.1)(ii).
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To this end, �x % > 0 and de�ne ω̂ε := {x ∈ Bε(x0) : |u(x)− ūbulkx0
(x)| > %ε}. In view of (5.2)(iii)

and (5.4), we can choose ε0 > 0 su�ciently small such that for all 0 < ε ≤ ε0 we have

Ld(ωε ∪ ω̂ε) ≤ 1
2L

d(B(1−θ)ε(x0)). (5.6)

By the de�nition of ω̂ε and the fact that vε = u− ūbulkx0
in B(1−θ)ε(x0) \ ωε, we have |vε(x)| ≤ %ε for

all x ∈ B(1−θ)ε(x0) \ (ωε ∪ ω̂ε). Hence, (5.3)(ii) and the triangle inequality give

‖aε‖pLp(B(1−θ)ε(x0)\(ωε∪ω̂ε)) ≤ Cε
p‖e(u− ūbulkx0

)‖pLp(Bε(x0))
+ CLd(Bε(x0))%pεp,

where C > 0 depends only on p. By (5.6) and Lemma 3.5 we get

‖aε‖pLp(B(1−θ)ε(x0))
≤ Cεp‖e(u− ūbulkx0

)‖pLp(Bε(x0))
+ CLd(Bε(x0))%pεp.

Therefore, by using also (5.2)(i), we derive lim supε→0 ε
−(d+p)‖aε‖pLp(B(1−θ)ε(x0))

≤ Cγd%
p. As % > 0

was arbitrary, we get

lim
ε→0

ε−(d+p)
ˆ
B(1−θ)ε(x0)

|aε|p dx = 0. (5.7)

Now, (5.2)(i) and (5.3)(ii) give that

lim
ε→0

ε−(d+p)‖vε − aε‖pLp(B(1−θ)ε(x0))
≤ c ε−d‖e(u− ūbulkx0

)‖pLp(Bε(x0))
= 0 .

As uε − ūbulkx0
= vε in B(1−θ)ε(x0), this shows (5.1)(ii) by (5.7). �

We are now in a position to prove Lemma 4.2.

Proof of Lemma 4.2. It su�ces to prove (4.1) for points x0 ∈ Ω where the statement of Lemma 5.1
holds and we have limε→0 ε

−dµ(Bε(x0)) = γd. This holds true for Ld-a.e. x0 ∈ Ω. Then also
limε→0 ε

−dmF (u,Bε(x0)) ∈ R exists, see Lemma 4.1. As before, we write ūbulkx0
= u(x0)+∇u(x0)(·−

x0) for shorthand.

Step 1 (Inequality �≤� in (4.1)): We �x η > 0 and θ > 0. Choose zε ∈ GSBDp(B(1−3θ)ε(x0)) with

zε = ūbulkx0
in a neighborhood of ∂B(1−3θ)ε(x0) and

F
(
zε, B(1−3θ)ε(x0)

)
≤mF

(
ūbulkx0

, B(1−3θ)ε(x0)
)

+ εd+1. (5.8)

We extend zε to a function in GSBDp(Bε(x0)) by setting zε = ūbulkx0
outside B(1−3θ)ε(x0). Let (uε)ε

be the family given by Lemma 5.1. We apply Lemma 3.7 on zε (in place of u) and uε (in place of v)
for η as above and the sets

A′ = B1−2θ(x0), A = B1−θ(x0), A′′ = B1(x0) \B1−4θ(x0). (5.9)

By (3.11)�(3.12) there exist functions wε ∈ GSBDp(Bε(x0)) such that wε = uε onBε(x0)\B(1−θ)ε(x0)
and

F(wε, Bε(x0)) ≤ (1 + η)
(
F(zε, Aε,x0) + F(uε, A

′′
ε,x0

)
)

+
M

εp
‖zε − uε‖pLp((A\A′)ε,x0 ) + Ld(Bε(x0))η,

(5.10)

whereM > 0 depends on θ and η, but is independent of ε. Here and in the following, we use notation
(3.1). In particular, we have wε = uε = u in a neighborhood of ∂Bε(x0) by (5.1)(i). By (5.1)(ii),
(5.9), and the fact that zε = ūbulkx0

outside B(1−3θ)ε(x0) we �nd

lim
ε→0

ε−(d+p)‖zε − uε‖pLp((A\A′)ε,x0 ) = lim
ε→0

ε−(d+p)‖uε − ūbulkx0
‖pLp(B(1−θ)ε(x0))

= 0. (5.11)

This along with (5.10) shows that there exists a sequence (ρε)ε ⊂ (0,+∞) with ρε → 0 such that

F(wε, Bε(x0)) ≤ (1 + η)
(
F(zε, Aε,x0

) + F(uε, A
′′
ε,x0

)
)

+ εdρε + γdε
dη. (5.12)
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On the one hand, by using that zε = ūbulkx0
on Bε(x0) \ B(1−3θ)ε(x0) ⊂ A′′ε,x0

, (H1), (H4), and (5.8)
we compute

lim sup
ε→0

F(zε, Aε,x0)

εd
≤ lim sup

ε→0

F(zε, B(1−3θ)ε(x0))

εd
+ lim sup

ε→0

F(ūbulkx0
, A′′ε,x0

)

εd

≤ lim sup
ε→0

mF (ūbulkx0
, B(1−3θ)ε(x0))

εd
+ β γd

[
1− (1− 4θ)d

]
(1 + |e(u)(x0)|p)

≤ (1− 3θ)d lim sup
ε′→0

mF (ūbulkx0
, Bε′(x0))

(ε′)d
+ β γd

[
1− (1− 4θ)d

]
(1 + |e(u)(x0)|p),

(5.13)

where in the last step we substituted (1− 3θ)ε by ε′. On the other hand, by (H4) and (5.9) we also
�nd

F(uε, A
′′
ε,x0

) ≤ β
ˆ
A′′ε,x0

(1 + |e(uε)|p) + βHd−1(Juε ∩A′′ε,x0
)

≤ γdεdβ
[
1− (1− 4θ)d

]
(1 + 2p−1|e(u)(x0)|p) + 2p−1β‖e(uε)− e(u)(x0)‖pLp(Bε(x0))

+ βHd−1(Juε).

By (5.1)(iii),(iv) this implies

lim sup
ε→0

F(uε, A
′′
ε,x0

)

εd
≤ β γd

[
1− (1− 4θ)d

]
(1 + 2p−1|e(u)(x0)|p). (5.14)

Recall that wε = u in a neighborhood of ∂Bε(x0). This along with (5.12)�(5.14) and ρε → 0 yields

limε→0
mF (u,Bε(x0))

γdεd
≤ lim supε→0

F(wε, Bε(x0))

γdεd

≤ (1 + η) (1− 3θ)d lim supε→0

mF (ūbulkx0
, Bε(x0))

γdεd

+ 2(1 + η)β
[
1− (1− 4θ)d

]
(1 + 2p−1|e(u)(x0)|p) + η.

Passing to η, θ → 0 we obtain inequality �≤� in (4.1).

Step 2 (Inequality �≥� in (4.1)): We �x η, θ > 0 and let (uε)ε be again the family from Lemma 5.1.
By (5.1)(i) and Fubini's Theorem, for each ε > 0 we can �nd sε ∈ (1− 4θ, 1− 3θ)ε such that

(i) lim
ε→0

ε−dHd−1
(
{u 6= uε} ∩ ∂Bsε(x0)

)
= 0,

(ii) Hd−1
(
(Ju ∪ Juε) ∩ ∂Bsε(x0)

)
= 0 for all ε > 0. (5.15)

We consider zε ∈ GSBDp(Bsε(x0)) such that zε = u in a neighborhood of ∂Bsε(x0), and

F(zε, Bsε(x0)) ≤mF (u,Bsε(x0)) + εd+1. (5.16)

We extend zε to a function in GSBDp(Bε(x0)) by setting

zε = uε in Bε(x0) \Bsε(x0). (5.17)

We apply Lemma 3.7 on zε (in place of u) and ūbulkx0
(in place of v) for the sets indicated in (5.9). By

(3.11)�(3.12) there exist functions wε ∈ GSBDp(Bε(x0)) such that wε = ūbulkx0
on Bε(x0)\B(1−θ)ε(x0)

and

F(wε, Bε(x0)) ≤ (1 +η)
(
F(zε, Aε,x0

) +F(ūbulkx0
, A′′ε,x0

)
)

+
M

εp
‖zε− ūbulkx0

‖pLp((A\A′)ε,x0 ) +Ld(Bε(x0))η.



16 VITO CRISMALE, MANUEL FRIEDRICH, AND FRANCESCO SOLOMBRINO

By (5.17) and the choice of sε we get that zε = uε outside B(1−3θ)ε(x0). Thus, similar to Step 1, cf.
(5.11) and (5.12), we �nd a sequence (ρε)ε ⊂ (0,+∞) with ρε → 0 such that

F(wε, Bε(x0)) ≤ (1 + η)
(
F(zε, Aε,x0

) + F(ūbulkx0
, A′′ε,x0

)
)

+ εdρε + γdε
dη. (5.18)

Let us now estimate the terms in (5.18). We get by (H1), (H4), (5.16)�(5.17), and the choice of sε
that

F(zε, Aε,x0
) ≤mF (u,Bsε(x0)) + εd+1 + βHd−1

(
({u 6= uε} ∪ Ju ∪ Juε) ∩ ∂Bsε(x0)

)
+ F(uε, A

′′
ε,x0

).
(5.19)

Therefore, by (5.14), (5.15), and the fact that sε ≤ (1− 3θ)ε we derive

lim sup
ε→0

F(zε, Aε,x0)

εd
≤ (sε/ε)

d lim sup
ε→0

mF (u,Bsε(x0))

sdε
+ β γd

[
1− (1− 4θ)d

]
(1 + 2p−1|e(u)(x0)|p)

≤ (1− 3θ)d lim sup
ε→0

mF (u,Bε(x0))

εd
+ β γd

[
1− (1− 4θ)d

]
(1 + 2p−1|e(u)(x0)|p).

(5.20)

Estimating F(ūbulkx0
, A′′ε,x0

) as in (5.13), with (5.18)�(5.20) and ρε → 0 we then obtain

lim sup
ε→0

F(wε, Bε(x0))

εd
≤ (1 + η) (1− 3θ)d lim supε→0

mF (u,Bε(x0))

εd

+ 2(1 + η)β γd
[
1− (1− 4θ)d

]
(1 + 2p−1|e(u)(x0)|p) + γdη.

Passing to η, θ → 0 and recalling that wε = ūbulkx0
in a neighborhood of ∂Bε(x0) we derive

lim sup
ε→0

mF (ūbulkx0
, Bε(x0))

γdεd
≤ lim sup

ε→0

F(wε, Bε(x0))

γdεd
≤ lim sup

ε→0

mF (u,Bε(x0))

γdεd
= lim
ε→0

mF (u,Bε(x0))

γdεd
.

This shows inequality �≥� in (4.1) and concludes the proof. �

6. The surface density

This section is devoted to the proof of Lemma 4.3. We start by analyzing the blow-up at
jump points. In the following, for any x0 ∈ Ju we adopt the notation ūsurfx0

for the function

ux0,u+(x0),u−(x0),νu(x0), see (2.3), with νu(x0) ∈ Sd−1 and u±(x0) ∈ Rd being the approximate normal
to Ju and the traces on both sides of Ju at x0, respectively. Recall also notation (3.1).

Lemma 6.1 (Blow-up at jump points). Let u ∈ GSBDp(Ω) and θ ∈ (0, 1). For Hd−1-a.e. x0 ∈ Ju
there exists a family uε ∈ GSBDp(Bε(x0)) such that

(i) uε = u in a neighborhood of ∂Bε(x0), lim
ε→0

ε−dLd({uε 6= u}) = 0,

(ii) lim
ε→0

ε−(d−1+p)
ˆ
B(1−θ)ε(x0)

∣∣uε(x)− ūsurfx0

∣∣p dx = 0,

(iii) lim
ε→0

ε−(d−1)Hd−1(Juε ∩ Eε,x0) = Hd−1(Π0 ∩ E) for all Borel sets E ⊂ B1(x0),

(iv) lim
ε→0

ε−(d−1)
ˆ
Bε(x0)

∣∣e(uε)(x)
∣∣p dx = 0, (6.1)

where Π0 denotes the hyperplane passing through x0 with normal νu(x0).

Proof. We start by using the fact that Ju is (Hd−1, d−1) recti�able and the blow-up properties of
GSBDp functions. Arguing as in, e.g., [24, Proof of Theorem 2], [25, Proof of Theorem 1.1], [28,
Lemma 3.4], we infer that for Hd−1-a.e. x0 ∈ Ju there exist ε > 0, νu(x0) ∈ Sd−1, u±(x0) ∈ Rd, and
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a hypersurface Γ which is a graph of a function h de�ned on Π0, being C
1 and Lipschitz, such that

x0 ∈ Γ , Π0 is tangent to Γ in x0, Γ ∩ Bε(x0) separates Bε(x0) in two open connected components
BΓ,±ε (x0) for each ε < ε, and

(i) lim
ε→0

ε−(d−1)Hd−1((Ju4Γ ) ∩Bε(x0)) = 0,

lim
ε→0

ε−(d−1)Hd−1(Γ ∩ Eε,x0
) = Hd−1(Π0 ∩ E) for all Borel sets E ⊂ B1(x0),

(ii) lim
ε→0

ε−(d−1)
ˆ
Bε(x0)

|e(u)|p dx = 0,

(iii) lim
ε→0

ε−dLd
(
{x ∈ Bε(x0) : |u− ūsurfx0

| > %}
)

= 0 for all % > 0. (6.2)

In particular, (ii) follows from the fact that |e(u)|p ∈ L1(Ω) and (iii) from (3.2). Then, since Π0 is
tangent to Γ in x0, Γ ∩Bε(x0) is the graph of a Lipschitz function hε de�ned on a subset of Π0, with
Lipschitz constant Lε such that limε→0 Lε = 0. Therefore, it holds that

lim
ε→0

ε−dLd
(
BΓ,±ε (x0)4B±ε (x0)

)
= 0, (6.3)

where B±ε (x0) := {y ∈ Bε(x0) : ± (y − x0) · νu(x0) > 0}. By this and Fubini's Theorem, for each
ε > 0 we can �nd sε ∈ (1− θ, 1− θ

2 )ε such that

lim
ε→0

ε−(d−1)Ld
((
BΓ,±ε (x0)4B±ε (x0)

)
∩ ∂Bsε(x0)

)
= 0. (6.4)

For any ε > 0, we apply Theorem 3.2 and Remark 3.3(i) on u in the two connected components
BΓ,±sε (x0) for ε < ε. This gives two functions v±ε ∈ W 1,p(BΓ,±sε (x0);Rd), two sets of �nite perimeter

ω±ε ⊂ BΓ,±sε (x0), and two in�nitesimal rigid motions a±ε such that

(i) v±ε = u in BΓ,±sε (x0) \ ω±ε ,

(ii) Hd−1(∂∗ω±ε ) ≤ cHd−1(Ju ∩BΓ,±ε (x0)), Ld(ω±ε ) ≤ c
(
Hd−1(Ju ∩BΓ,±ε (x0))

)d/(d−1)
,

(iii) ‖v±ε − a±ε ‖Lp(BΓ,±sε (x0))
≤ c ε‖e(u)‖Lp(BΓ,±ε (x0))

,

(iv) ‖∇v±ε −∇a±ε ‖Lp(BΓ,±sε (x0))
≤ c‖e(u)‖Lp(BΓ,±ε (x0))

, (6.5)

where c > 0 is independent of ε. (See Remark 3.3(ii),(iii) and recall that the Lipschitz constant of
hε vanishes as ε→ 0.) By the Sobolev extension theorem we extend v±ε to v̂±ε ∈ W 1,p(Bsε(x0);Rd),
and (6.5)(iii),(iv) along with the linearity of the extension operator yield

ε−1‖v̂±ε − a±ε ‖Lp(Bsε (x0)) + ‖∇v̂±ε −∇a±ε ‖Lp(Bsε (x0)) ≤ c‖e(u)‖Lp(BΓ,±ε (x0))
, (6.6)

where, as before, the constant is independent of ε. (Here, we used again the properties of the functions
hε recalled below (6.2).) We de�ne uε ∈ GSBDp(Bε(x0)) as

uε :=


v̂+ε in B+

sε(x0),

v̂−ε in B−sε(x0),

u in Bε(x0) \Bsε(x0),

(6.7)

where B±sε(x0) is de�ned below (6.3). We now prove the properties in (6.1). First, by de�nition

we have that uε = u in a neighborhood of ∂Bε(x0). By BΓ,±(1−θ)ε(x0) ∩ Γ = ∅, (6.2)(i), (6.3), and
(6.5)(i),(ii) we obtain limε→0 ε

−dLd({uε 6= u}) = 0. This concludes (6.1)(i). Moreover, (6.2)(ii) and
(6.6) imply (6.1)(iv). By de�nition of uε and (6.5)(i) it holds that

Juε ⊂
(
Π0∩Bsε(x0)

)
∪
(
Ju∩ (Bε(x0)\Bsε(x0))

)
∪∂∗ω+

ε ∪∂∗ω−ε ∪
((
BΓ,±ε (x0)4B±ε (x0)

)
∩∂Bsε(x0)

)
.
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We now show (6.1)(iii). Concerning the �≤� inequality, for a �xed Borel set E ⊂ B1(x0) we have
to estimate the measure of the intersection with Eε,x0 and any of the �ve sets in the right-hand side

above: it holds that Hd−1
(
Π0 ∩Bsε(x0) ∩ Eε,x0

)
= εd−1Hd−1(Π0 ∩Bsε/ε(x0) ∩ E) for any ε > 0 by

rescaling, that limε→0 |ε−(d−1)Hd−1
(
Ju ∩ (Eε,x0

\ Bsε(x0))
)
− Hd−1

(
Π0 ∩ (E \ Bsε/ε(x0))

)
| = 0 by

(6.2)(i), while the last three terms are estimated by (6.5)(ii) and (6.4). To see the converse, we �rst
apply [27, Theorem 1.1] to the functions uε(x0 + ε·), which converge in measure to ūsurfx0

in B1(0) by
(6.2), (6.3), and (6.5)(ii). Then we scale back to Bε(x0). Hence, (6.1)(iii) holds.

It remains to prove (6.1)(ii). We notice that this easily follows from

lim
ε→0

ε−(d−1+p)
ˆ
B±sε (x0)

|a±ε − ūsurfx0
|p dx = 0. (6.8)

In fact, (6.2)(ii) and (6.6) give that

lim
ε→0

ε−(d−1+p)
ˆ
B±sε (x0)

|v̂±ε − a±ε |p dx = 0. (6.9)

Then, (6.8), (6.9), the triangle inequality, sε ≥ (1− θ)ε, and (6.7) imply (6.1)(ii).

Therefore, let us now con�rm (6.8). We only address the �+� case, for the �-� case is analogous. We
�rst observe that by (6.2)(iii), (6.3), and a diagonal argument, we may �nd a sequence (%ε)ε ⊂ (0,+∞)
with limε→0 %ε = 0 such that the sets

ω̂+
ε := {x ∈ Bε(x0) : |u(x)− u+(x0)| > %ε} ∩BΓ,+sε (x0)

satisfy

lim
ε→0

ε−dLd(ω̂+
ε ) = 0. (6.10)

In view of (6.5)(i),(iii), we have that

‖u− a+ε ‖Lp(BΓ,+sε (x0)\ω+
ε ) ≤ c ε‖e(u)‖Lp(BΓ,+ε (x0))

. (6.11)

Then, by (6.11), the de�nition of ω̂+
ε , and the triangle inequality we get that

‖u+(x0)− a+ε ‖Lp(BΓ,+sε (x0)\(ω+
ε ∪ω̂+

ε )) ≤ c ε‖e(u)‖Lp(BΓ,+ε (x0))
+ γ

1
p

d ε
d
p %ε. (6.12)

By (6.2)(i), (6.3), (6.5)(ii), and (6.10) we obtain Ld(ω+
ε ∪ ω̂+

ε ) ≤ 1
2L

d(BΓ,+sε (x0)) for ε su�ciently

small. Then, by Lemma 3.5 we have that γdε
d/p‖u+(x0) − a+ε ‖L∞(Bε(x0)) is less or equal than the

right-hand side of (6.12), up to multiplication with a constant. This along with (6.2)(ii), p ≥ 1, and
the fact that %ε → 0 implies

lim
ε→0
‖u+(x0)− a+ε ‖L∞(Bε(x0)) = 0. (6.13)

Let us consider A+
ε ∈Md×d

skew and b+ε ∈ Rd such that a+ε (x) = A+
ε (x−x0) + b+ε . Then (6.8) follows by

lim
ε→0

ε|A+
ε |p = 0, (6.14a)

lim
ε→0

ε
1−p
p |b+ε − u+(x0)| = 0. (6.14b)

So we are left to prove (6.14) which corresponds to [28, equations (3.18)-(3.19)]. The proof goes in
the same way with slight modi�cations that we indicate below. For �xed δ > 0 small, by (6.2)(ii)
there exists ε̂ > 0, depending on δ, such that

ε−(d−1)
ˆ
Bε(x0)

|e(u)|p dx ≤ δp for all ε ≤ ε̂. (6.15)
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For ε̃ < ε < ε̂, we set εk := min{2kε̃, ε} and adopt the notation k in place of εk in the subscripts. We
then obtain

‖a+k − a
+
k+1‖L∞(B+

εk
(x0))

≤ cγ−
1
p

d ε
− dp
k ‖a

+
k − a

+
k+1‖Lp(BΓ,+sεk

(x0)\(ω+
k ∪ω

+
k+1))

≤ c δ ε
p−1
p

k . (6.16)

In fact, the �rst inequality follows from (6.5)(ii) and Lemma 3.5, and the second one from (6.11),
(6.15), and the triangle inequality. Similarly, employing (6.5)(i),(iv) in place of (6.11), and recalling
∇a+εk = A+

k we obtain

|A+
k −A

+
k+1| ≤ c δ ε

− 1
p

k . (6.17)

At this stage, (6.14) follow exactly as in [28]: for k̂ being the �rst index such that εk̂ = ε, recalling

ε̃ = ε0 and summing (6.17) gives ε̃|A+
ε̃ |p ≤ ε̃(|A+

k̂
| +

∑k̂−1
k=0 |A

+
k − A

+
k+1|)p ≤ c δp + c ε̃|A+

k̂
|p. The

right-hand side vanishes as ε̃ → 0 and δ → 0, and this proves (6.14a). Moreover, summing (6.16)

(and since |b+k − b
+
k+1| ≤ ‖a

+
k − a

+
k+1‖L∞(B+

εk
(x0))

) we obtain |b+ε̃ − b+ε | ≤ c δ ε
p−1
p for all 0 < ε̃ ≤ ε. By

passing to the limit as ε̃ → 0 together with (6.13), we get ε
1−p
p |u+(x0) − b+ε | ≤ c δ for ε < ε̂ = ε̂(δ).

Thus, (6.14b) follows by the arbitrariness of δ > 0, concluding the proof. �

Remark 6.2 (Construction of uε). We point out that our de�nition of uε in (6.7) di�ers from the
corresponding constructions in [13, Lemma 3] and [28, Lemma 3.4] in order to �x a possible �aw
contained in these proofs. Roughly speaking, in our notation, in [13, 28], uε on Bsε(x0) is de�ned as

uε =

{
v+ε in BΓ,+sε (x0),

v−ε in BΓ,−sε (x0).
(6.18)

Then, instead of (6.8) one needs to check limε→0 ε
−(d−1+p) ´

BΓ±sε (x0)
|a±ε − ūsurfx0

|p dx = 0. This, how-

ever, is in general false if lim infε→0 ε
−(d−1+p)Ld

(
BΓ,±ε (x0)4B±ε (x0)

)
> 0 (which is clearly possible).

Let us also remark that, in contrast to our construction, (6.18) allows to prove an estimate of the
form

lim
ε→0

ε−(d−1)Hd−1(Juε \ Ju) = 0, (6.19)

see [13, Equation (24)] and [28, Lemma 3.4(i)]. It is not clear to us if it is possible that for uε satisfying
the fundamental blow-up property (6.1)(ii) one may still have an estimate of the form (6.19). The
latter, however, is not needed for our proofs.

We now proceed with the proof of Lemma 4.3.

Proof of Lemma 4.3. The proof follows the same strategy of the proof of Lemma 4.2. We �x x0 ∈ Ju
such that the statement of Lemma 6.1 holds at x0 and limε→0 ε

−(d−1)µ(Bε(x0)) = γd−1. This is
possible for Hd−1-a.e. x0 ∈ Ju. Then also limε→0 ε

−(d−1)mF (u,Bε(x0)) ∈ R exists, see Lemma 4.1.
We prove (4.2) for x0 of this type.

Step 1 (Inequality �≤� in (4.2)): We �x η, θ > 0, and consider zε ∈ GSBDp(B(1−3θ)ε(x0)) with

zε = ūsurfx0
in a neighborhood of ∂B(1−3θ)ε(x0) and

F
(
zε, B(1−3θ)ε(x0)

)
≤mF

(
ūsurfx0

, B(1−3θ)ε(x0)
)

+ εd. (6.20)

We extend zε to a function in GSBDp(Bε(x0)) by setting zε = ūsurfx0
outside B(1−3θ)ε(x0). Let (uε)ε

be the family given by Lemma 6.1. As in the proof of Lemma 4.2, we apply Lemma 3.7 on zε (in
place of u) and uε (in place of v) for η �xed above and the sets

A′ = B1−2θ(x0), A = B1−θ(x0), A′′ = B1(x0) \B1−4θ(x0).
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Recalling notation (3.1) and (3.11)�(3.12), we �nd wε ∈ GSBDp(Bε(x0)) such that wε = uε on
Bε(x0) \B(1−θ)ε(x0) and

F(wε, Bε(x0)) ≤ (1 + η)
(
F(zε, Aε,x0

) + F(uε, A
′′
ε,x0

)
)

+
M

εp
‖zε − uε‖pLp((A\A′)ε,x0 ) + Ld(Bε(x0))η,

(6.21)

where M > 0 depends on θ and η, but is independent of ε. In particular, we have wε = uε = u in a
neighborhood of ∂Bε(x0) by (6.1)(i). By (6.1)(ii) and the fact that zε = ūsurfx0

outside B(1−3θ)ε(x0)
we �nd

lim
ε→0

ε−(d−1+p)‖zε − uε‖pLp((A\A′)ε,x0 ) = lim
ε→0

ε−(d−1+p)‖uε − ūsurfx0
‖pLp(B(1−θ)ε(x0))

= 0.

Inserting this in (6.21), we �nd that, for a suitable sequence (ρε)ε ⊂ (0,+∞) with ρε → 0,

F(wε, Bε(x0)) ≤ (1 + η)
(
F(zε, Aε,x0

) + F(uε, A
′′
ε,x0

)
)

+ εd−1ρε + γdε
dη. (6.22)

We now evaluate the �rst terms in the right-hand side of (6.22): since zε = ūbulkx0
on Bε(x0) \

B(1−3θ)ε(x0) ⊂ A′′ε,x0
, by (H1), (H4), and (6.20) we have

lim sup
ε→0

F(zε, Aε,x0)

εd−1
≤ lim sup

ε→0

F(zε, B(1−3θ)ε(x0))

εd−1
+ lim sup

ε→0

F(ūsurfx0
, A′′ε,x0

)

εd−1

≤ lim sup
ε→0

mF (ūsurfx0
, B(1−3θ)ε(x0))

εd−1
+ βHd−1(A′′ ∩Π0)

≤ (1− 3θ)d−1 lim sup
ε→0

mF (ūsurfx0
, Bε(x0))

εd−1
+ β γd−1

(
1− (1− 4θ)d−1

)
, (6.23)

where, as in Lemma 6.1, we denote by Π0 the hyperplane passing through x0 with normal νu(x0).
By (H4) and (6.1)(iii),(iv) we get

lim sup
ε→0

F(uε, A
′′
ε,x0

)

βεd−1
≤ lim sup

ε→0

´
A′′ε,x0

(1 + |e(uε)|p) dx

εd−1
+ lim sup

ε→0

Hd−1(Juε ∩A′′ε,x0
)

εd−1

= γd−1
(
1− (1− 4θ)d−1

)
. (6.24)

Collecting (6.22), (6.23), (6.24), and recalling ρε → 0, as well as the fact that wε = u in a neighborhood
of ∂Bε(x0), we obtain

lim
ε→0

mF (u,Bε(x0))

γd−1εd−1
≤ lim sup

ε→0

F(wε, Bε(x0))

γd−1εd−1

≤ (1 + η)(1− 3θ)d−1 lim sup
ε→0

mF (ūsurfx0
, Bε(x0))

γd−1εd−1
+ 2(1 + η)β

(
1− (1− 4θ)d−1

)
.

Passing to the limit as η, θ → 0 we conclude inequality �≤� in (4.2).

Step 2 (Inequality �≥� in (4.2)): We �x η, θ > 0 and let, as in Step 1, (uε)ε be the family given by
Lemma 6.1. By (6.1)(i) and Fubini's Theorem, for each ε > 0 we can �nd sε ∈ (1− 4θ, 1− 3θ)ε such
that

(i) lim
ε→0

ε−(d−1)Hd−1
(
{u 6= uε} ∩ ∂Bsε(x0)

)
= 0,

(ii) Hd−1
(
(Ju ∪ Juε) ∩ ∂Bsε(x0)

)
= 0 for all ε > 0. (6.25)

We consider zε ∈ GSBDp(Bsε(x0)) such that zε = u in a neighborhood of ∂Bsε(x0), and

F(zε, Bsε(x0)) ≤mF (u,Bsε(x0)) + εd. (6.26)
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We extend zε to a function in GSBDp(Bε(x0)) by setting

zε = uε in Bε(x0) \Bsε(x0). (6.27)

We apply Lemma 3.7 for zε (in place of u), ūsurfx0
(in place of v), and for the sets A, A′, B as in Step 1,

in correspondence to ε. By (3.11)�(3.12), there exists wε ∈ GSBDp(Bε(x0)) such that wε = ūsurfx0
on

Bε(x0) \B(1−θ)ε(x0), and

F(wε, Bε(x0)) ≤(1 + η)
(
F(zε, Aε,x0

) + F(ūsurfx0
, A′′ε,x0

)
)

+
M

εp
‖zε − ūsurfx0

‖pLp((A\A′)ε,x0 ) + Ld(Bε(x0))η.

We observe that zε = uε outside B(1−3θ)ε(x0), by (6.27) and the choice of sε. Then, as done in Step 1,
we may employ (6.1)(ii). This gives us a sequence (ρε)ε ⊂ (0,+∞) with ρε → 0 as ε→ 0 such that

F(wε, Bε(x0)) ≤ (1 + η)
(
F(zε, Aε,x0) + F(ūsurfx0

, A′′ε,x0
)
)

+ εd−1ρε + γd ε
d η. (6.28)

We estimate the �rst terms in (6.28). We get by (H1), (H4), (6.26)�(6.27), and the choice of sε that

F(zε, Aε,x0
) ≤mF (u,Bsε(x0))+εd+βHd−1

(
({u 6= uε}∪Ju∪Juε)∩∂Bsε(x0)

)
+F(uε, A

′′
ε,x0

). (6.29)

By (6.24), (6.25), and the fact that sε ≤ (1− 3θ)ε we thus deduce that

lim sup
ε→0

F(zε, Aε,x0
)

εd−1
≤ lim sup

ε→0

mF (u,Bsε(x0))

εd−1
+ β γd−1

(
1− (1− 4θ)d−1

)
≤ (1− 3θ)d−1 lim sup

ε→0

mF (u,Bε(x0))

εd−1
+ β γd−1

(
1− (1− 4θ)d−1

)
, (6.30)

and, similarly to (6.23),

lim sup
ε→0

F(ūsurfx0
, A′′ε,x0

)

εd−1
≤ β γd−1

(
1− (1− 4θ)d−1

)
. (6.31)

Collecting (6.28), (6.30), (6.31) and using ρε → 0 we derive

lim sup
ε→0

F(wε, Bε(x0))

εd−1
≤ (1 + η)

(
(1− 3θ)d−1 lim sup

ε→0

mF (u,Bε(x0))

εd−1
+ 2βγd−1

(
1− (1− 4θ)d−1

))
.

Finally, recalling that wε = ūsurfx0
in a neighborhood of ∂Bε(x0), and using the arbitrariness of η,

θ > 0 we obtain

lim sup
ε→0

mF (ūsurfx0
, Bε(x0))

γd−1εd−1
≤ lim sup

ε→0

F(wε, Bε(x0))

γd−1εd−1
≤ lim sup

ε→0

mF (u,Bε(x0))

γd−1εd−1
= lim
ε→0

mF (u,Bε(x0))

γd−1εd−1
.

This shows �≥� in (4.2) and concludes the proof. �

7. The SBDp case

This section is devoted to the analysis of the integral representation result for F : SBDp(Ω) ×
B(Ω) → [0,+∞) satisfying (H1)�(H3) and (H′4). This case has been addressed, for d = 2, in [28].
On the one hand, the arguments there could be now generalized to general dimension by virtue of
Theorem 3.2. On the other hand, as we are going to show, the result can also be obtained with minor
changes of our more general strategy.

We start by pointing out that, under (H′4), only competitors in SBDp may have �nite energy. In
fact, in view of Proposition 3.1, in the present setting de�nition (2.1) reads as

mF (u,A) = inf
v∈SBDp(Ω)

{F(v,A) : v = u in a neighborhood of ∂A} . (7.1)

Then, the following integral representation result holds.
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Theorem 7.1 (Integral representation in SBDp). Let Ω ⊂ Rd be open, bounded with Lipschitz
boundary and suppose that F : SBDp(Ω)× B(Ω)→ [0,+∞) satis�es (H1)�(H3) and (H′4). Then

F(u,B) =

ˆ
B

f
(
x, u(x),∇u(x)

)
dx+

ˆ
Ju∩B

g
(
x, u+(x), u−(x), νu(x)

)
dHd−1(x)

for all u ∈ SBDp(Ω) and B ∈ B(Ω), where f is given by

f(x0, u0, ξ) = lim sup
ε→0

mF (`x0,u0,ξ, Bε(x0))

γdεd

for all x0 ∈ Ω, u0 ∈ Rd, ξ ∈Md×d, and `x0,u0,ξ as in (2.2), and g is given by

g(x0, a, b, ν) = lim sup
ε→0

mF (ux0,a,b,ν , Bε(x0))

γd−1εd−1

for all x0 ∈ Ω, a, b ∈ Rd, ν ∈ Sd−1, and ux0,a,b,ν as in (2.3).

The remainder of this section is devoted to the proof of Theorem 7.1 which follows along the lines
of the proof of Theorem 2.1 devised in Section 4. First, the analogue of Lemma 4.1 holds essentially
with the same proof.

Lemma 7.2. Suppose that F satis�es (H1)�(H
′
3) and (H′4). Let u ∈ SBDp(Ω) and let µ =

LdbΩ+Hd−1bJu∩Ω. Then for µ-a.e. x0 ∈ Ω we have

lim
ε→0

F(u,Bε(x0))

µ(Bε(x0))
= lim
ε→0

mF (u,Bε(x0))

µ(Bε(x0))
.

Proof. One can follow the same argument used to prove Lemma 4.1 through Lemmas 4.4 and 4.5.

First, we remark that [28, Lemma 4.2] is proved under the assumptions (H′4) and u ∈ SBDp(Ω),
hence it can be used in Lemma 4.4.

Concerning Lemma 4.5, as the lower bound of (H′4) is stronger than the one of (H4), the GSBD
compactness result [27, Theorem 1.1] is still applicable. First, this shows vδ ∈ GSBDp(Ω). Addi-
tionally, (4.9), (H′4), and Proposition 3.1 imply that the function vδ belongs indeed to SBDp(Ω).
The rest of the proof remains unchanged, upon noticing that, under assumption (H′4), (4.10) still
holds. �

We now address the adaptions necessary for the bulk density. When u ∈ SBDp(Ω), we show that
the approximating sequence constructed in Lemma 5.1 satis�es some additional properties.

Lemma 7.3. Let u ∈ SBDp(Ω). Let θ ∈ (0, 1). For Ld-a.e. x0 ∈ Ω there exists a family uε ∈
SBDp(Bε(x0)) such that (5.1) holds, and additionally

(i) lim
ε→0

ε−(d+1)

ˆ
Bε(x0)

|uε − u|dx = 0,

(ii) lim
ε→0

ε−d
ˆ
Juε

|[uε]|dHd−1 = 0 . (7.2)

Proof. Since u ∈ SBD(Ω), for Ld-a.e. x0 it holds that

lim
ε→0

ε−d
ˆ
Ju∩Bε(x0)

|[u]|dHd−1 = 0, (7.3)

and (see [4, Theorem 7.4]) that

lim
ε→0

ε−(d+1)

ˆ
Bε(x0)

∣∣u− ūbulkx0

∣∣dx = 0, (7.4)
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where for brevity we again let ūbulkx0
= `x0,u(x0),∇u(x0). Hence, with Fubini's Theorem we can �x

sε ∈ (1− θ, 1− θ
2 )ε so that Hd−1(Ju ∩ ∂Bsε(x0)) = 0 and

lim
ε→0

ε−d
ˆ
∂Bsε (x0)

∣∣u− ūbulkx0

∣∣dHd−1 = 0 . (7.5)

We can now perform the same construction as in (5.5) with sε in place of (1−θ)ε. Notice that in this
case uε ∈ SBDp(Bε(x0)). By arguing exactly as in the proof of Lemma 5.1, we derive (5.1)(i),(iii),(iv)
while (ii) holds in Bsε(x0) and a fortiori in B(1−θ)ε(x0). In particular, this in combination with
Hölder's inequality, (7.4), and u = uε in Bε(x0) \Bsε(x0) yields (7.2)(i).

To see (7.2)(ii), observe that, since sε/ε is bounded from above and from below, (5.1)(ii),(iii), the
fact that uεbBsε (x0)∈W 1,p(Bsε(x0);Rd) (see (5.5)), and Korn's inequality imply that

uε(x0 + sε·)− ūbulkx0
(x0 + sε·)

sε
→ 0 in W 1,p

(
B1(0);Rd

)
.

Hence, by the trace inequality and by scaling back to Bsε(x0), we obtain

lim
ε→0

s−(d−1)ε

ˆ
∂Bsε (x0)

1
sε

∣∣uε − ūbulkx0

∣∣ dHd−1 = 0 .

With this, (7.5), and the fact that sε/ε is bounded from below we then have

lim
ε→0

ε−d
ˆ
∂Bsε (x0)

∣∣uε − u∣∣dHd−1 = 0 .

Hence, we get by construction of uε and (7.3) that

lim
ε→0

ε−d
ˆ
Juε

|[uε]|dHd−1 = lim
ε→0

ε−d
ˆ
Ju∩(Bε(x0)\Bsε (x0))

|[u]|dHd−1 = 0,

which concludes the proof. �

With the above lemma at our disposal, we can deduce the asymptotic equivalence of the minimiza-
tion problems (7.1) for u and ūbulkx0

= `x0,u(x0),∇u(x0).

Lemma 7.4. Suppose that F satis�es (H1), (H3), and (H′4). Let u ∈ SBDp(Ω). Then for Ld-a.e.
x0 ∈ Ω we have

lim
ε→0

mF (u,Bε(x0))

γdεd
= lim sup

ε→0

mF (ūbulkx0
, Bε(x0))

γdεd
. (7.6)

Proof. We argue as in the proof of Lemma 4.2.

For the �≤� inequality, take uε satisfying (5.1) and (7.2), and perform the same construction as in
Lemma 4.2. (Observe that the fundamental estimate also holds in this case, see Lemma 3.7.) Notice
that, in this case, we have by (H′4) and (5.9) that

F(uε, A
′′
ε,x0

) ≤ β
ˆ
A′′ε,x0

(1 + |e(uε)|p) dx+ β

ˆ
Juε∩A′′ε,x0

(1 + |[uε]|) dHd−1 .

Thus, using (5.1)(iii),(iv) and (7.2)(ii), we still get (5.14), and may deduce inequality �≤� in (7.6).

For the �≥� inequality, we start by observing that, if uε also satis�es (7.2), in addition to (5.15)
we may require that

lim
ε→0

ε−d
ˆ
∂Bsε (x0)

∣∣u+ − u−ε ∣∣ dHd−1 = 0, (7.7)
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where u−ε and u+ indicate the inner and outer traces at ∂Bsε(x0), respectively. We also have that
(5.14) holds, as seen in the previous step. We then perform the same construction as in Lemma 4.2.
In this case, inequality (5.19) is replaced by

F(zε, Aε,x0
) ≤mF (u,Bsε(x0)) + εd+1 + βHd−1

(
({u 6= uε} ∪ Ju ∪ Juε) ∩ ∂Bsε(x0)

)
+ β

ˆ
∂Bsε (x0)

∣∣u+ − u−ε ∣∣ dHd−1 + F(uε, A
′′
ε,x0

),

so that, using (5.14), (5.15), (7.7), and the fact that sε ≤ (1−3θ)ε we are still in a position to deduce
(5.20). The rest of the argument remains unchanged and we obtain inequality �≥� in (7.6). �

Similar changes have to be performed also for the surface density. We �rst deduce the analogue
of Lemma 6.1. We again set ūsurfx0

= ux0,u+(x0),u−(x0),νu(x0) for brevity, see (2.3). We also recall the
notation in (3.1).

Lemma 7.5. Let u ∈ SBDp(Ω) and θ ∈ (0, 1). For Hd−1-a.e. x0 ∈ Ju there exists a family
uε ∈ SBDp(Bε(x0)) such that (6.1) holds, and additionally

(i) lim
ε→0

ε−d
ˆ
Bε(x0)

|uε − u|dx = 0, (7.8)

(ii) lim
ε→0

ε−(d−1)
ˆ
Juε∩Eε,x0

|[uε]|dHd−1 = |[ūsurfx0
]|Hd−1(Π0 ∩ E) for all Borel sets E ⊂ B1(x0),

where Π0 denotes the hyperplane passing through x0 with normal νu(x0).

Proof. Since u ∈ SBD(Ω), for Hd−1-a.e. x0 ∈ Ju it holds that

lim
ε→0

ε−d
ˆ
Bε(x0)

∣∣u− ūsurfx0

∣∣ dx = 0 . (7.9)

Hence, by Fubini's Theorem we �nd sε ∈ (1 − θ, 1 − θ
2 )ε such that (6.4) holds, we have Hd−1(Ju ∩

∂Bsε(x0)) = 0, and

lim
ε→0

ε−(d−1)
ˆ
∂Bsε (x0)

∣∣u− ūsurfx0

∣∣dHd−1 = 0 . (7.10)

We can now perform the same construction as in (6.7) and derive (6.1). In particular, this in combi-
nation with Hölder's inequality, p > 1, (7.9), and u = uε in Bε(x0) \Bsε(x0) yields (7.8)(i).

To see (7.8)(ii), observe that, since sε/ε is bounded from above and from below, (6.1)(ii),(iv),
p > 1, the fact that uεbB±sε (x0)

∈W 1,p(B±sε(x0);Rd) (see (6.7)), and Korn's inequality imply that

ˆ
s−1
ε (B±sε (x0)−x0)

|uε(x0 + sεy)− ūsurfx0
|p dy +

ˆ
s−1
ε (B±sε (x0)−x0)

|∇yuε(x0 + sεy)|p dy → 0 .

Hence, by the trace inequality and by scaling back to B±sε(x0), we obtain

lim
ε→0

sε
−(d−1)

ˆ
∂B±sε (x0)

∣∣uε − u±(x0)
∣∣ dHd−1 = 0 .

Since sε/ε is bounded from below, we then get that

lim
ε→0

ε−(d−1)
ˆ
∂B±sε (x0)

∣∣uε − u±(x0)
∣∣ dHd−1 = 0 . (7.11)
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Given a Borel set E ⊂ B1(x0), we de�ne Eε = E ∩B sε
ε

(x0) for every ε > 0. Then by (6.7) and (7.11)
we get

lim
ε→0

(
ε−(d−1)

ˆ
Juε∩Eεε,x0

|[uε]|dHd−1 − |[ūsurfx0
]|Hd−1(Π0 ∩ Eε)

)
= 0 . (7.12)

By (7.10) and (7.11) we also have

lim
ε→0

ε−(d−1)
ˆ
∂Bsε (x0)

∣∣u−ε − u+∣∣dHd−1 = 0,

where u−ε and u+ indicate the inner and outer traces at ∂Bsε(x0), respectively. Hence, by construction
of uε in (6.7) and since u ∈ SBD(Ω), we obtain

lim
ε→0

(
ε−(d−1)

ˆ
Juε∩(E\Eε)ε,x0

|[uε]|dHd−1 − |[ūsurfx0
]|Hd−1(Π0 ∩ (E \ Eε))

)
= lim
ε→0

(
ε−(d−1)

ˆ
Ju∩(E\Eε)ε,x0

|[u]|dHd−1 − |[ūsurfx0
]|Hd−1(Π0 ∩ (E \ Eε))

)
= 0 .

Combining with (7.12), this concludes the proof of (7.8)(ii). �

With this lemma at hand, we can address the equivalence of minimization problems for the surface
scaling.

Lemma 7.6. Suppose that F satis�es (H1), (H3), and (H′4). Let u ∈ SBDp(Ω). Then for Hd−1-a.e.
x0 ∈ Ju we have

lim
ε→0

mF (u,Bε(x0))

γd−1εd−1
= lim sup

ε→0

mF (ūsurfx0
, Bε(x0))

γd−1εd−1
. (7.13)

Proof. We argue as in the proof of Lemma 4.3.

For the "≤" inequality, take uε satisfying (6.1) and (7.8), and perform the same construction as
in Lemma 4.3. The estimates (6.22) and (6.23) continue to hold, provided one replaces β with the
larger constant β(1 + |[ūsurfx0

]|). Then, with (H′4), (6.1)(iii),(iv), and (7.8)(ii) we get

lim sup
ε→0

F(uε, A
′′
ε,x0

)

εd−1
≤ β(1 + |[ūsurfx0

]|)γd−1
(
1− (1− 4θ)d−1

)
, (7.14)

which is the analogue of (6.24). This is enough to derive inequality �≤� in (7.13).

For the reverse one, take again uε satisfying (6.1) and (7.8). Then, by (7.8)(i), in addition to (6.25)
we may also require that

lim
ε→0

ε−(d−1)
ˆ
∂Bsε (x0)

∣∣u+ − u−ε ∣∣ dHd−1 = 0, (7.15)

where u−ε and u+ indicate the inner and outer traces at ∂Bsε(x0), respectively. We perform the same
construction as in Lemma 4.3. In this case, inequality (6.29) is replaced by

F(zε, Aε,x0) ≤mF (u,Bsε(x0)) + εd + βHd−1
(
({u 6= uε} ∪ Ju ∪ Juε) ∩ ∂Bsε(x0)

)
+ β

ˆ
∂Bsε (x0)

∣∣u+ − u−ε ∣∣ dHd−1 + F(uε, A
′′
ε,x0

),

so that, using (6.25), (7.14), (7.15), and the fact that sε ≤ (1− 3θ)ε we deduce that

lim sup
ε→0

F(zε, Aε,x0
)

εd−1
≤ (1− 3θ)d−1 lim sup

ε→0

mF (u,Bε(x0))

εd−1
+ β(1 + |[ūsurfx0

]|) γd−1
(
1− (1− 4θ)d−1

)
.
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Then one concludes exactly in the same way, upon replacing β in (6.31) with the larger constant
β(1 + |[ūsurfx0

]|). �

Proof of Theorem 7.1. The result follows from Lemmas 7.2, 7.4, and 7.6, arguing exactly as in the
proof of Theorem 2.1. �
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Appendix A. The GSBV p case

In this section we brie�y remark that the strategy devised in this paper allows also to establish
an integral representation result in the space GSBV p(Ω;Rm) for m ∈ N. We consider functionals
F : GSBV p(Ω;Rm)× B(Ω)→ [0,+∞) with the following general assumptions:

(H1) F(u, ·) is a Borel measure for any u ∈ GSBV p(Ω;Rm),
(H2) F(·, A) is lower semicontinuous with respect to convergence in measure on Ω for any A ∈

A(Ω),
(H3) F(·, A) is local for any A ∈ A(Ω), in the sense that if u, v ∈ GSBV p(Ω;Rm) satisfy u = v

a.e. in A, then F(u,A) = F(v,A),
(H4) there exist 0 < α < β such that for any u ∈ GSBV p(Ω;Rm) and B ∈ B(Ω) we have

α

(ˆ
B

|∇u|p dx+Hd−1(Ju ∩B)

)
≤ F(u,B) ≤ β

(ˆ
B

(1 + |∇u|p) dx+Hd−1(Ju ∩B)

)
.

In this setting, we replace de�nition (2.1) by

mF (u,A) = inf
v∈GSBV p(Ω;Rm)

{F(v,A) : v = u in a neighborhood of ∂A} . (A.1)

Moreover, as in (2.2)�(2.3), we de�ne the functions `x0,u0,ξ(x) = u0 + ξ(x− x0) and ux0,a,b,ν(x) = a
on {(x − x0) · ν > 0} and ux0,a,b,ν(x) = b on {(x − x0) · ν < 0} for x0 ∈ Ω, u0 ∈ Rm, ξ ∈ Mm×d,
a, b ∈ Rm, and ν ∈ Sd−1.

Theorem A.1 (Integral representation in GSBV p). Let Ω ⊂ Rd be open, bounded with Lipschitz
boundary, let m ∈ N, and suppose that F : GSBV p(Ω;Rm) × B(Ω) → [0,+∞) satis�es (H1)�(H4).
Then

F(u,B) =

ˆ
B

f
(
x, u(x),∇u(x)

)
dx+

ˆ
Ju∩B

g
(
x, u+(x), u−(x), νu(x)

)
dHd−1(x)

for all u ∈ GSBV p(Ω;Rm) and B ∈ B(Ω), where f is given by

f(x0, u0, ξ) = lim sup
ε→0

mF (`x0,u0,ξ, Bε(x0))

γdεd
(A.2)

for all x0 ∈ Ω, u0 ∈ Rm, ξ ∈Mm×d, and g is given by

g(x0, a, b, ν) = lim sup
ε→0

mF (ux0,a,b,ν , Bε(x0))

γd−1εd−1
(A.3)

for all x0 ∈ Ω, a, b ∈ Rm, and ν ∈ Sd−1.
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We point out that integral representation results inGSBV p have been used in several contributions,
see e.g. [6, 7, 8, 9, 21, 37]. They all rely on [13] along with a perturbation and truncation argument
as follows: �rst, one considers the regularization Fσ(u) := F(u) + σ

´
Ju
|[u]|dHd−1, restricted to

u ∈ SBV p(Ω;Rm). Then, the assumptions of the integral representation result in SBV p [13] are
satis�ed and one obtains a representation of Fσ. In a second step, this representation is extended
to GSBV p by a truncation argument which allows to approximate GSBV p functions by SBV p

functions. Eventually, by sending σ → 0, an integral representation result for the original functional
can be obtained. We refer to [21, Theorem 4.3, Theorem 5.1] for details on this procedure. (We notice
that in [21] a more general growth condition from above is allowed in the surface energy density, cf.
[21, assumption (1.4)], analogous to the one in (H′4)). With our result at hand, this method can be
considerably simpli�ed since no perturbation and truncation arguments are needed.

For the proof we need the following Poincaré-type inequality, which can be directly deduced from
Theorem 3.2.

Theorem A.2 (Poincaré inequality for functions with small jump set). Let Ω ⊂ Rd be a bounded
Lipschitz domain and let 1 < p < +∞. Then there exists a constant c = c(Ω, p,m) > 0 such that for
all u ∈ GSBV p(Ω;Rm) there is a set of �nite perimeter ω ⊂ Ω with

Hd−1(∂∗ω) ≤ cHd−1(Ju), Ld(ω) ≤ c(Hd−1(Ju))d/(d−1)

and v ∈W 1,p(Ω;Rm) such that v = u on Ω \ ω and

‖∇v‖Lp(Ω) ≤ c‖∇u‖Lp(Ω). (A.4)

In particular, for all u ∈ GSBV p(Ω;Rm) there is a constant b ∈ Rm such that

‖u− b‖Lp(Ω\ω) ≤ c‖∇u‖Lp(Ω).

Proof. It su�ces to consider the case m = 1 and to prove (A.4). This can be obtained for instance
by applying Theorem 3.2 to the function ū : Ω → Rd de�ned as ū := (u, 0, . . . , 0) and using the
Sobolev-Korn inequality to get ∇v on the left-hand side. �

Proof of Theorem A.1. We follow the proof of Theorem 2.1 and only indicate brie�y the necessary
adaptions. First, we observe that a version of the fundamental estimate in Lemma 3.7 holds true in
GSBV p(Ω;Rm) by repeating the proof with (H4) in place of (H4). (We refer also to [16, Proposi-
tion 3.1].) Recall that the result follows by combining Lemmas 4.1, 4.2, and 4.3.

Lemma 4.1: The result is proved via Lemmas 4.4 and 4.5. The proof of Lemma 4.4 is the same,
up to using the growth condition (H4) instead of (H4). (We also refer to [13, Lemma 6] for the
corresponding argument in SBV p.) In the proof of Lemma 4.5, due to the (stronger) lower bound in
(H4) and Ambrosio's compactness theorem in GSBV p (see [5, Theorem 4.36]), one can ensure that
the function vδ de�ned in (4.8) now belongs to GSBV p(Ω;Rm). Then, the result follows with the
same argument, up to using Theorem A.2 in place of Theorem 3.2.

Lemma 4.2: With the fundamental estimate in GSBV p at hand, we can follow the proof of
Lemma 4.2 for each u ∈ GSBV p(Ω;Rm) with (H4) instead of (H4). The family (uε)ε is de�ned as in
Lemma 5.1 (see (5.5)) using Theorem A.2 in place of Theorem 3.2. First, uε ∈ GSBV p(Bε(x0);Rm)
since u ∈ GSBV p(Ω;Rm), and uεbB(1−θ)ε(x0)∈W 1,p(B(1−θ)ε(x0);Rm). Observing that

lim
ε→0

ε−d
ˆ
Bε(x0)

∣∣∇u(x)−∇u(x0)
∣∣p dx = 0 (A.5)
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for Ld-a.e. x0 ∈ Ω (as ∇u ∈ Lp(Ω;Mm×d)) and using (A.4), we further get

lim
ε→0

ε−d
ˆ
B(1−θ)ε(x0)

∣∣∇uε(x)−∇u(x0)
∣∣p dx = 0.

With (5.5), and using again (A.5), we deduce that (5.1)(iii) can be improved to

lim
ε→0

ε−d
ˆ
Bε(x0)

∣∣∇uε(x)−∇u(x0)
∣∣p dx = 0.

This adaption is enough to redo the proof of Lemma 4.2 in the present situation.

Lemma 4.3: Here, we can follow the proof of Lemma 4.3 for each u ∈ GSBV p(Ω;Rm) with (H4)
instead of (H4), and Theorem A.2 in place of Theorem 3.2. The family (uε)ε de�ned in Lemma 6.1
needs to satisfy uε ∈ GSBV p(Bε(x0);Rm) and (6.1)(iv) needs to be improved to

lim
ε→0

ε−(d−1)
ˆ
Bε(x0)

∣∣∇uε∣∣p dx = 0. (A.6)

First, we use (6.7) to see that uε ∈ GSBV p(Bε(x0);Rm). Arguing as in the proof of (6.1)(iv), with
Theorem A.2 at hand, we obtain

lim
ε→0

ε−(d−1)
ˆ
B±sε (x0)

|∇uε|p dx = 0.

This along with limε→0 ε−(d−1)
´
Bε(x0)

|∇u|p dx = 0 for Hd−1-a.e. x0 ∈ Ju and (6.7) concludes the

proof of (A.6). �
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