INTEGRAL REPRESENTATION FOR ENERGIES IN LINEAR ELASTICITY
WITH SURFACE DISCONTINUITIES

VITO CRISMALE, MANUEL FRIEDRICH, AND FRANCESCO SOLOMBRINO

ABsTRACT. In this paper we prove an integral representation formula for a general class of energies
defined on the space of generalized special functions of bounded deformation (GSBDP) in arbitrary
space dimensions. Functionals of this type naturally arise in the modeling of linear elastic solids
with surface discontinuities including phenomena as fracture, damage, surface tension between
different elastic phases, or material voids. Our approach is based on the global method for relaxation
devised in [I4] and a recent Korn-type inequality in GSBDP [20]. Our general strategy also allows
to generalize integral representation results in SBDP, obtained in dimension two [28], to higher
dimensions, and to revisit results in the framework of generalized special functions of bounded
variation (GSBVP).

1. INTRODUCTION

Integral representation results are a fundamental tool in the abstract theory of variational limits
by I'-convergence or in relaxation problems (see [32]). The topic has attracted widespread attention
in the mathematical community over the last decades, with applications in various contexts, such as
homogenization, dimension reduction, or atomistic-to-continuum approximations. In this paper we
contribute to this topic by proving an integral representation result for a general class of energies
arising in the modeling of linear elastic solids with surface discontinuities.

Integral representation theorems have been provided with increasing generality, ranging from func-
tionals defined on Sobolev spaces [II, 17, 18, 19 B3, 48] to those defined on spaces of functions
of bounded variation [12] 22 80} [14], in particular on the subspace SBV of special functions of
bounded variation [I3], 15, [16] and on piecewise constant functions [2]. In recent years, this analysis
has been further improved to deal with functionals and variational limits on GSBV? (generalized
special functions of bounded variation with p-integrable bulk density), which is the natural energy
space for the variational description of many problems with free discontinuities, see among others
[6, (7, [8, 91 211, 37, 41]. A very general method for dealing with all the abovementioned classes of func-
tionals, the so-called global method for relaxation, has been developed by BOUCHITTE, FONSECA,
LEONI, AND MASCARENHAS in [13] [I4]. It essentially consists in comparing asymptotic Dirichlet
problems on small balls with different boundary data depending on the local properties of the func-
tions and allows to characterize energy densities in terms of cell formulas.

When coming to the variational description of rupture phenomena in general linearly elastic ma-
terials, however, the functional setting to be considered becomes weaker. Indeed, problems need to
be formulated in suitable subspaces of functions of bounded deformation (BD functions) for which
the distributional symmetrized gradient is a bounded Radon measure.
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In the mathematical description of linear elasticity, the elastic properties are determined by the
elastic strain. For a solid in a (bounded) reference configuration 2 C R¢, whose displacement field
with respect to the equilibrium is u: £2 — R%, the elastic strain is given by the symmetrized gradient
e(u) = £(Vu+ (Vu)T). In standard models, the corresponding linear elastic energy is a suitable
quadratic form of e(u), possibly depending on the material point, see e.g. [38), Section 2.1]. However,
this is often generalized to the case of p-growth for a power p > 1 [45], Sections 10, 11]. The presence
of surface discontinuities is related to several dissipative phenomena, such as cracks, surface tension
between different elastic phases, or internal cavities. In the energetic description, this is represented
by a term concentrated on the jump set J,. This set is characterized by the property that for x € J,,,
when blowing up around z, the jump set approximates a hyperplane with normal v, (z) € S~! and
the displacement field is close to two suitable values u*(x), u~(z) € R? on the two sides of the
material with respect to this hyperplane.

Prototypical examples of functionals described above are energies which are controlled from above
and below by suitable multiples of

/Q () P de + / e ) e (1)

where [u](z) = u™(z) — u~(z) denotes the jump opening, or which are controlled by multiples of
Griffith’s energy [44]

/ le(uw) [P dz + H4 (T, N 2). (2)
2

Whereas in case the energy space is be given by SBDP, a subspace of BD, problems with control
of type are naturally formulated on generalized special functions of bounded deformation GSBDP,
introduced by DAL Maso [31]. (We refer to Section [3.1] for more details.) The only available integral
representation result in this context is due to CONTI, FOCARDI, AND IURLANO [28] who considered
variational functionals controlled locally in terms of in dimension d = 2. Let us mention that the
behavior is quite different if linear growth on the symmetrized gradient is assumed (corresponding to
p = 1), as suited for the description of plasticity. In that case, representation results in the framework
of BD have been obtained, for instance, in [10, [36] and [23] (see also [33], [47], containing essential
tools for the proof).

The goal of the present article is twofold: we generalize the results of [28] for energies with control
of type to arbitrary space dimensions and, more importantly, we extend the theory to encompass
also problems of the form , which are most relevant from an applicative viewpoint. Indeed, already
in dimension two, the extension of [28] to the case where only a control of type is available is no
straightforward task. This is a fundamental difference with respect to the BV -theory where problems
for generalized functions of bounded variation can be reconducted to SBV by a perturbation trick
(see for instance [21]): one considers a small perturbation of the functional, depending on the jump
opening, to represent functionals on SBVP. Then, by letting the perturbation parameter vanish and
by truncating functions suitably, the representation can be extended to GSBVP. Unfortunately, the
trick of reducing problem to is not expedient in the linearly elastic context and does not allow
to deduce an integral representation result in GSBD? from the one in SBDP. This is mainly due to
the fact that, given a control only on the symmetrized gradient, it is in principle not possible to use
smooth truncations to decrease the energy up to a small error.

Let us also remark that, while in the majority of integral representation results in BV and BD
the L'-topology was considered, this is not the right choice when only a lower bound of the form
is at hand. Indeed, in this case, the available compactness results [27, [3I] have been established with
respect to the topology of the convergence in measure. This latter is also the topology where recently
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an integral representation result for the subspace PR({2) of piecewise rigid functions has been proved
in [43].

In our main result (Theorem , we prove an integral representation for variational functionals
F: GSBDP(£2) x B(£2) — [0,400) (B(£2) denoting the Borel subsets of 2) that satisfy the standard
abstract conditions to be Borel measures in the second argument, lower semicontinuous with respect
to convergence in measure, and local in the first argument. Moreover, we require control of type (2},
localized to any B € B(£2).

Let us comment on the proof strategy. We follow the general approach of the global method for
relazation provided in [I3] [14] for variational functionals in BV. The proof strategy recovers the
integral bulk and surface densities as blow-up limits of cell minimization formulas. The steps to be
performed are the following;:

e one first shows that, for fixed u € GSBDP({2), the set function F(u,-) is asymptotically
equivalent to its minimum mz(w, -) over competitors attaining the same boundary conditions
as u. With this we mean that the two quantities have the same Radon-Nikodym derivative
with respect to p = L] o+H 7, n0 (Lernma;

e one then proves that the Radon-Nikodym derivative dm’drii"“) only depends on zq, the value
u(xp), and the (approximate) gradient Vu(z) at a Lebesgue point zp, while at a jump point
xo it is uniquely determined by the one-sided traces u™(zg), u™ (zo) and the normal vector

Vu(z0) to Jy, in o (Lemmas [4.2] and [£.3).

When dealing with all of the abovementioned issues, a key ingredient is given by a Korn-type inequality
for special functions of bounded deformation, established recently by CAGNETTI, CHAMBOLLE, AND
ScARDIA [20], which generalizes a two-dimensional result in [28] (see also [39]) to arbitrary dimension.
It provides a control of the full gradient in terms of the symmetrized gradient, up to an exceptional
set whose perimeter has a surface measure comparable to that of the discontinuity set. In particular,
this estimate is used to approximate the function u with functions u., which have Sobolev regularity
in a ball (around a Lebesgue point), or in half-balls oriented by the jump normal (around a jump
point), and which converge to the purely elastic competitor u(zo) + Vu(zo)(- — xo), or the two-
valued function with values u™(zg) and u™(zg), respectively. This is done in Lemmas and
respectively, and is used for proving Lemmas and Let us mention that this application of the
Korn-type inequality is similar to the one in dimension two [28] (with the topology of convergence in
measure in place of L'), and constitutes the counterpart of the SBV-Poincaré inequality [34] used in
the SBV-case [13].

In contrast to [28], the Korn inequality is also used in the proof of Lemma [4.1} at this point,
one needs to show that functions of the form v® := >" vy ps approximate u in the topology of the

convergence in measure, where B? is a fine cover of a given set with disjoint balls of radius smaller
than § and v{ denote minimizers for mz(u, BY). In [28], the lower bound in (I} allows to control
the distributional symmetrized gradient Ew which along with a scaling argument and the classical
Korn-Poincaré inequality in BD (see [49, Theorem 2.2]) shows that v? is close to u on each BY. (In
[13], the SBV-Poincaré inequality is used.) Our weaker lower bound of the form , however, calls
for novel arguments and we use the Korn-type inequality to show that vf are close to u in L? up to
exceptional sets w) whose volumes scale like §(F (u, BY) + u(BY)).

We also point out that, if instead a control of the type is assumed, the arguments leading
to Theorem can be successfully adapted to extend the result for functionals on SBDP? (see [2§])
to arbitrary space dimensions, see Theorem This is done by exploiting the stronger blow-up
properties of SBD functions. We note that, in principle, this result could be also obtained by
adapting the arguments in [28] to higher dimension by employing the Korn inequality [20]. We however
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preferred to give a self-contained proof of Theorem which requires only slight modifications of
the arguments used for Theorem [2.1] and nicely illustrates the differences between SBD? and its
generalized space.

For a related purpose, we endow our paper with an appendix were we discuss how our arguments
can also provide a direct proof for integral representation results on GSBV? if a local control on the
full deformation gradient of the form

/ [VulP dz +H*H (T, 1 02)
(7

is given, see Theorem In particular, no perturbation or truncation arguments are needed in the
proof. Therefore, we believe that this provides a new perspective and a slightly simpler approach to
integral representation results in GSBVP without necessity of the perturbation trick discussed before,
relying on the SBV result. Let us, however, mention that in [2I] a more general growth condition
from above is considered: dealing with such a condition would instead require a truncation method
in the proof.

The paper is organized as follows. In Section [2] we present our main integral representation result
in GSBDP. Section [3]is devoted to some preliminaries about the function space. In particular, we
present the Korn-type inequality established in [20] and prove a fundamental estimate. Section
contains the general strategy and the proof of Lemma[.1] The identifications of the bulk and surface
density (Lemmas[4.2]and [4.3) are postponed to Sections[5|and [6] respectively. In Section[7]we describe
the modifications necessary to obtain the SBDP-case. Finally, in Appendix [A] we explain how our
method can be used to establish an integral representation result in GSBVP.

2. THE INTEGRAL REPRESENTATION RESULT

In this section we present our main result. We start with some basic notation. Let £2 ¢ R? be
open, bounded with Lipschitz boundary. Let A({2) be the family of open subsets of {2, and denote by
B(£2) the family of Borel sets contained in £2. For every z € R% and ¢ > 0 we indicate by B.(z) C R?
the open ball with center = and radius €. For z, y € R? we use the notation z - y for the scalar
product and |z| for the Euclidean norm. Moreover, we let S4~1 := {2 € R%: |2| = 1} and we denote
by M%*? the set of d x d matrices. The m-dimensional Lebesgue measure of the unit ball in R is
indicated by 7, for every m € N. We denote by £¢ and H* the d-dimensional Lebesgue measure and
the k-dimensional Hausdorff measure, respectively.

For definition and properties of the space GSBDP({2), 1 < p < oo, we refer the reader to [31].
Some relevant properties are collected in Section [3] below. In particular, the approximate gradient is
denoted by Vu (it is well-defined, see Lemma and the (approximate) jump set is denoted by J,,
with corresponding normal v, and one-sided limits ™ and u~. We also define e(u) = 1 (Vu+(Vu)T).

We consider functionals F: GSBDP({2) x B(£2) — [0, +00) with the following general assumptions:

(Hy) F(u,-) is a Borel measure for any u € GSBDP({2),

(Hz) F(-,A) is lower semicontinuous with respect to convergence in measure on {2 for any A €
A(£2),

(Hs) F(-, A) is local for any A € A(£2), in the sense that if u,v € GSBDP(2) satisfy u = v a.e. in
A, then F(u, A) = F(v, A),

(H4) there exist 0 < a < 8 such that for any v € GSBDP({2) and B € B({2) we have

a</B le(u)[P dz + H (T B)> < F(u,B) < 5(/3(1 + Je(w)[P) da + H (T, B)>.
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We now formulate the main result of this article addressing integral representation of functionals F
satisfying (H;)—(Hy). To this end, we introduce some further notation: for every u € GSBDP({2)
and A € A(£2) we define

myr(u, A) = vEGSlngP(Q) {F(v,A): v=u in a neighborhood of 9A}. (2.1)

For xg € 2, up € RY, and ¢ € M?4*? we introduce the functions £, 4, ¢: R? — R? by
éiﬁo,uuf(x) = uo + E(I - .TJQ). (2'2)
Moreover, for 2y € 2, a,b € R%, and v € S*~! we introduce Ugy,a,bw ' R? — R¢ by
a if (x —xg)-v >0,
Uagapla) = 4 G 20)
b if (x —xp)-v <O.

In this paper, we will prove the following result.

(2.3)

Theorem 2.1 (Integral representation in GSBDP). Let 2 C R? be open, bounded with Lipschitz
boundary and suppose that F: GSBDP(§2) x B(§2) — [0, +00) satisfies (Hy)—(Hy). Then

F(u,B) = /B f(z,u(z), Vu(z)) dz +/ g(z,ut (@), 0 (x), vy () dH ()

JuNB
for allw € GSBDP(S2) and B € B({2), where f is given by

m]-'(gzo,uo’iv Be(xo))

f(x07 Ug, g) = lim S(l)lp ’Ydfd (24)
e—
for all o € 2, ug € R, ¢ € M4%4 and g is given by
g
xXo,a vV BE
g(xg,a,b,v) = limsup M (g 0., (z0)) (2.5)

a1
e—0 Yd—1€
for all zg € 2, a,b € RY, and v € S¥1.

Remark 2.2. We proceed with some remarks on the result.

(i) In general, if f is not convex in &, in spite of the growth conditions (H,), the functional may fully
depend on Vu and not just on the symmetric part e(u). We refer to [28, Remark 4.14] for an example
in this direction.

(i) As F is lower semicontinuous on WP, the integrand f is quasiconvex [46]. Since F is lower
semicontinuous on piecewise rigid functions, the integrand g is BD-elliptic [42] (at least if one can
ensure, for instance, that g has a continuous dependence in z). A fortiori, g is BV -elliptic [3].
(iii) If the functional F additionally satisfies F(u+a, A) = F(u, A) for all affine functions a: R? — R4
with e(a) = 0, then there are two functions f: £ x M?%¢ — [0, +00) and g: 2 x R% x S=1 — [0, +-00)
such that

FwB) = [ fle@)der [ gle b)) @),

B Ju.NB

where [u](z) == ut(z) — u™ ().
(iv) A variant of the proof shows that, in the minimization problems (2.4)—(2.5), one may replace balls
B. (o) by cubes Q¥(xo) with sidelength e, centered at zo, and two faces orthogonal to v = v, (o).
(v) An analogous result holds on the space GSBVP(§2;R™) for m € N. We refer to Appendix [A| for
details.

We will additionally discuss the minor modifications needed in order to deal with functionals
F: SBDP(£2) x B(§2) — [0, +00) satisfying (H;)—-(Hs) and
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) there exist 0 < @ < § such that for any v € SBDP({2) and B € B({2) we have
/ epars [ pans) < 7 ) < o [ aslewpars [ aphan).
B JuNB

In this case, SBDP(£2) (see Subsection [3.1) is the natural energy space for 7. Furthermore, sequences
of competitors with bounded energy, which are converging in measure, are additionally L'-convergent
if we assume (HY}), due to the classical Korn-Poincaré inequality in BD (see [49, Theorem 2.2]).
Hence, in this latter case, (Hs) is equivalent to requiring lower semicontinuity with respect to the
L'-convergence. The statement of the result in this setting, as well as of the changes needed in the
proofs, will be given in Section [7]

3. PRELIMINARIES

We start this preliminary section by introducing some further notation. For E C R%, ¢ > 0, and
zo € R we set

E. 4, =0 +e(E — x0). (3.1)

The diameter of F is indicated by diam(E). Given two sets E1, E; C R?, we denote their symmetric
difference by E1AE,. We write xg for the characteristic function of any E C R?, which is 1 on E
and 0 otherwise. If F is a set of finite perimeter, we denote its essential boundary by 0*F, see [5],
Definition 3.60]. We denote the set of symmetric and skew-symmetric matrices by Mf;n‘f and Mgﬁéi,
respectively.

3.1. BD and GBD functions. Let U C R? be open. A function v € L' (U; R?) belongs to the space
of functions of bounded deformation, denoted by BD(U), if the distribution Ev := 2(Dv + (Dv)T)
is a bounded M‘Siyxn‘f—valued Radon measure on U, where Dv = (Djv,...,Dg4v) is the distributional
differential. It is well known (see [4,49]) that for v € BD(U) the jump set J, is countably (H¢~!,d—1)
rectifiable, and that
Ev = E% + E¢v + Ev,

where E%v is absolutely continuous with respect to £¢, Ev is singular with respect to £¢ and such
that |Ev|(B) = 0 if H4~1(B) < oo, while E/v is concentrated on .J,. The density of E%v with respect
to L is denoted by e(v).

The space SBD(U) is the subspace of all functions v € BD(U) such that E°v = 0. For p € (1, 00),
we define SBD?(U) := {v € SBD(U): e(v) € LP(U;ME%Y), H*"1(J,) < oo}. For a complete
treatment of BD and SBD functions, we refer to to [4, [11] [49].

The spaces GBD(U) of generalized functions of bounded deformation and GSBD(U) C GBD(U)
of generalized special functions of bounded deformation have been introduced in [31] (cf. [31, Def-
initions 4.1 and 4.2]). We recall that every v € GBD(U) has an approzimate symmetric gradient

e(v) € LY(U; ngﬁg) and an approrimate jump set .J, which is still countably (H%~! d—1) rectifiable
(cf. [31} Theorem 9.1, Theorem 6.2]).

The notation for e(v) and J,, which is the same as that one in the SBD case, is consistent: in

fact, if v lies in SBD(U), the objects coincide (up to negligible sets of points with respect to £¢ and

H41 respectively). For x € J, there exist v (), v~ (z) € R? and v,(z) € S¥~! such that
lim e LY ({y € B(2): £ (y— ) vu(z) > 0} N {lv —v5(x)| > ¢}) =0 (3.2)
€
for every ¢ > 0, and the function [v] := v+ —v~: J, — R? is measurable. For 1 < p < oo, the space
GSBDP(U) is given by
GSBDP(U) := {v € GSBD(U): e(v) € LP(U;M%%), HI=1(J,) < oo}

sym
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Any function v € GSBD(U) with [v] integrable belongs to SBD(U), as follows from [26, Theorem 2.9]
for Av = Ev (see [26, Remark 2.5]). This corresponds to the following proposition.

Proposition 3.1. If v € GSBDP(U) is such that [v] € L*(J,;R?), then v € SBD?(U).

If U has Lipschitz boundary, for each v € GBD(U) the traces on 90U are well defined (see [31]
Theorem 5.5]), in the sense that for H?l-a.e. x € U there exists tr(v)(x) € R? such that

Elig(l) e LY U N B.(z) N {|v — tr(v)(z)] > 0}) =0 for all g > 0. (3.3)

3.2. Korn’s inequality and fundamental estimate. In this subsection we discuss two important
tools which will be instrumental for the proof of Theorem We start by the following Korn
and Korn-Poincaré inequalities in GSBD for functions with small jump sets, see [20, Theorem 1.1,
Theorem 1.2]. In the following, we say that a: R? — R? is an infinitesimal rigid motion if a is affine
with e(a) = 2(Va+ (Va)T) = 0.

Theorem 3.2 (Korn inequality for functions with small jump set). Let 2 C R? be a bounded
Lipschitz domain and let 1 < p < +o00. Then there exists a constant ¢ = c¢(§2,p) > 0 such that for all
u € GSBDP((2) there is a set of finite perimeter w C {2 with

HITY W) < eHITH (L), LYw) < e(HITH(T,)) M @D (3.4)
and an infinitesimal rigid motion a such that
lu = allLr(2\w) + IVu = Va| Lo (o\w) < clle(u)l () (3.5)
Moreover, there exists v € WLP((2;RY) such that v=u on 2\ w and
le()l[zr(2) < clle(u)llzr(a)-

Note that the result is indeed only relevant for functions with sufficiently small jump set, as other-
wise one can choose w = £2, and ([3.3) trivially holds. Note that, in [20], £%(w) < ¢(H41(J,))¥/ (4=
has not been shown, but it readily follows from H4~1(9*w) < ¢H4~1(J,) by the isoperimetric in-
equality.

Remark 3.3 (Almost Sobolev regularity, constants, and scaling invariance). (i) More precisely, in
[20] it is proved that there exists v € WP(£2;R?) such that v = u on 2\ w and |le(v)|r(0) <
clle(w)]| e (r2), whence by Korn’s and Poincaré’s inequality in WP (£2;R%) we get
lv = allLr2) + [IVv = Val|Lr(2) < clle(w)|rr (o)
for an infinitesimal rigid motion a. This directly implies (3.5)), see [20, Theorem 4.1, Theorem 4.4].
(ii) Given a collection of bounded Lipschitz domains ({2;);, which are related through bi-Lipschitzian

homeomorphisms with Lipschitz constants of both the homeomorphism itself and its inverse bounded
uniformly in &, in Theorem we can choose a constant ¢ uniformly for all £2;, see [20, Remark 4.2].

(iii) Recall (3.1). Consider a bounded Lipschitz domain 2, ¢ > 0, and zo € R%. Then for each
u € GSBDP(S2. ,,) we find w C (2 , and a rigid motion a such that
Hd_l(a*w) S CHd_l(Ju), ﬁd(w) S C(Hd—l(Ju))d/(dfl)
and
e M lu = allLr(@. \w) + IIVu = Vall oo . \0) < Clle@)llzre. )
where C' = C(£2,p) > 0 is independent of e. This follows by a standard rescaling argument.

From Theorem one can also deduce that for v € GSBDP({2) the approzimate gradient Vu
exists L£%a.e. in £2, see [20, Corollary 5.2].
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Lemma 3.4 (Approximate gradient). Let 2 C R? be open, bounded with Lipschitz boundary, let

1 <p< +oo, and u € GSBDP(82). Then for L%-a.e. xo € (2 there exists a matriz in M?>?, denoted

by Vu(xo), such that

lu(z) — u(zo) — Vu(zo)(x — 9)|
|z — o]

lim 5*d£d({x € B.(zp):

e—0

>Q}):0forallg>0.

We point out that the result in Lemma has already been obtained in [40] for p = 2, as a
consequence of the embedding GSBD?(§2) C (GBV (£2))%, see [40], Theorem 2.9].

To control the affine mappings appearing in Theorem we will make use of the following
elementary lemma on affine mappings, see, e.g., [43] Lemma 3.4] or [29, Lemmas 4.3] for similar
statements. (It is obtained by the equivalence of norms in finite dimensions and by standard rescaling
arguments.)

Lemma 3.5. Let 1 < p < +oo, let xg € R, and let R,0 > 0. Let a: R? — R be affine, defined by
a(r) = Ax+b forx € R, and let E C Br(xo) C R? with LY(E) > 0L%(Bgr(xo)). Then, there exists
a constant ¢y > 0 only depending on p and 6 such that

3 5d —1-4
lallr(Br(zo)) < Vi B? llallLe(Br(zo)) < collallze(s), |A] < coR™ "7 lall Lo ().
We now proceed with another consequence of Theorem [3.2]

Corollary 3.6. Let £2 C R? be a bounded Lipschitz domain and let 1 < p < +o0o. Then there exists
a constant C = C(§2,p) > 0 such that for all w € GSBDP(2) with trace tr(u) =0 on 012 (see (3.3))
there is a set of finite perimeter w C R with

HIV O w) < CHYH(T,),  LYw) < C(HT(J,)Y D (3.6)
such that

lull Lo (2\0) + [[VUl| Lr(2\0) < Clle(w)] e (s)- (3.7)

Proof. We start by choosing a bounded Lipschitz domain 2’ ¢ R? with 2 cc '. Each u €
GSBDP(£2) with tr(u) = 0 on 912 can be extended to a function & € GSBDP(2') by &= 0on 2\ 2
such that J; = J,. We first note that it is not restrictive to assume that

d / 1
H-1(T,) < (%C\Q))(d " (3.8)

where ¢ = ¢(£2/,p) > 0 is the constant of Theorem In fact, otherwise we could take w = {2 and
the statement would be trivially satisfied since (3.7) is clearly trivial and for (3.6) we use that

LA\ 2)

acy d—1)/d
E(Q\Q))( )/’ Ed(Q)gC -

2c
for a sufficiently large constant C' > 0 depending only on {2 and (2’

Now, consider a function u satisfying (3.8). We apply Theoremon 4 € GSBDP({2') and obtain
aset w C 2’ C R? satisfying (3.4) as well as an infinitesimal rigid motion a such that

HL(9*0) < C(

||17, — a,”Lp(_Q/\w) + ||V’(~j, - vaHLP(Q/\w) < C”e(ﬂ)”Lp(Q/) = CHe(U)HLp(_Q). (39)
In particular, & = 0 on '\ {2 implies
lallze 2\ (2uw)) < clle(u)|lLr(2)- (3.10)

By (3.4) and (3.8) we get L(w) < 1£4(2'\ 2). In view of (3.10), we apply Lemma on E =
'\ (2Uw) with R = diam(£2') and § = 1L4(2'\ 2)/7aR? to get

lallr oy < cllallnr@n(euwy) < clle(w)llir o),
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and, in a similar fashion, [Va| < c|e(u)||zr(2), where ¢ > 0 depends on {2, 2, and p. Then, (3.7)
follows from (3.9)), the triangle inequality, and the fact that v = @ on (2. O

We conclude this subsection with another important tool in the proof of the integral representation,
namely a fundamental estimate in GSBDP.

Lemma 3.7 (Fundamental estimate in GSBDP). Let 2 C R? be open, bounded with Lipschitz
boundary, and let 1 < p < 4+oo. Let n > 0 and let A, A’ A" € A(f2) with A’ CC A. For every
functional F satisfying (Hy), (Hs), and (Hy) and for every u € GSBDP(A), v € GSBDP(A") there
ezists a function p € C(RY;[0,1]) such that w := @u + (1 — p)v € GSBDP(A' U A") satisfies

(i) Fw, A UA") < (1+n)(F(u,A)+ Fv,A")) + Mlu— v||ZL’P((A\A,)mA/,) + LA U A",

(i) w=uonA andw=1v on A"\ A, (3.11)

where M = M(A, A, A" ,p,n) > 0 depends only on A, A', A" p,n, but is independent of u and v.

Moreover, if for £ > 0 and zo € R? we have A, 4, AL ch7A’E’ 2y C 12, then
M (Ac g, AL 2gs Ad 0y pom) = € PM(A, A", A p,m), (3.12)

where we used the notation introduced in (3.1)).
The same statement holds if F satisfies (H}), u € SBDP(A), and v € SBDP(A").

In the statement above, we intend that |lu — ”H]Zp((A\A/)mA”) =4ooifu—v¢g LP((A\A)NA").

Proof. The proof follows the lines of [I6, Proposition 3.1]. Choose k € N such that
3p-1g é}

k > max { _
non
Let Ay,...,Arr1 be open subsets of R? with A’ CC Ay CC ... CC Apyy CC A. Fori=1,...,klet
i € C8°(Ai41;10,1]) with ¢; = 1 in a neighborhood V; of A;.

Consider u € GSBDP?(A) and v € GSBDP(A”). We can clearly assume that u—v € LP((A\ A')N
A") as otherwise the result is trivial. We define the function w; = @;u+(1—p;)v € GSBDP(A'UA"),
where u and v are extended arbitrarily outside A and A”, respectively. Letting T; = A” N (A;41\ A;)
we get by (H;) and (Hs)

F(wi, AU A") < F(u, (A UA") N Vi) + F(v, A" \ supp(ys)) + F (wi, T;)
< Flu, A) + F(v, A7) + F(wi, T). (3.14)

(3.13)

For the last term, we compute using (H4) (® denotes the symmetrized vector product)

Flws, T, </3/ (1+ le(w)|P) dz + BHE (T, NT))
<8 / 1+ Jpie() + (1 — gi)e(v) + Vi © (u— v)|P) + BHE(Ju U Jy) N TS)

< BLYT;) 4 3P~ 1,8/ WP+ e()|P + [Vl lu — v[P) + BH(J N T) + RN (J,NT)

<3 Ba N (F(u, Th) + F(u, Th)) + 37 BIVeilZllu = vl 7, g,y + BLUT).

Notice that we can obtain the same estimate also if F satisfies (H)), v € SBDP(A), and v €
SBDP(A"). (We refer to |16, Proof of Proposition 3.1] for details.) Consequently, recalling (3.13)
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and using (H;) we find iy € {1,...,k} such that
k
1
]:(in?To EZ wlle) <77(]:(U A)+]:( A”))—’—MHU’ UHLP((A\A')QA” +77[’d((A\A) AH)

where M := 37718k~ max;—1 1 ||Vp;|E. This along with (3.14) concludes the proof of (3.11)
by setting w = w;,. To see the scaling property (3.12), it sufﬁces to use the cut-off functions
05 € C°((Ait1)e.wo; [0,1]) e = 1,..., K, defined by ¢5(x) = ¢i(zo + (x — z0)/e) for € (Ait1)e,z,-
This concludes the proof. ([

4. THE GLOBAL METHOD

This section is devoted to the proof of Theorem which is based on three ingredients. First,
we show that F is equivalent to mx (see (2.1)) in the sense that the two quantities have the same
Radon-Nikodym derivative with respect to u := L% o+H* | s, n0-

Lemma 4.1. Suppose that F satisfies (H)~(Hy). Let u € GSBDP($2) and u = L] o+H |, ne-
Then for p-a.e. zog € {2 we have

lim F(u, Be(xp)) ~ lim myx(u, Be(xg))
=0 u(Be(xo))  ==0  p(Be(wo))
We prove this lemma in the final part of this section. The second ingredient is that, asymptotically

as € — 0, the minimization problems mz(u, B:(xo)) and m].-( b, B. (o)) coincide for L%-a.e.
xo € §2, where we write ubulk = Ly u(zo), Vu(zo) for brevity, see

Lemma 4.2. Suppose that F satisfies (Hy) and (H3)—(Hy) and let w € GSBDP(£2). Then for L%-a.e.
zo € 2 we have
mr (u, Bz (20)) m (tigy", Be(20))

lim —— = lim sup p
=0 Yd€ e—=0 Yd€

(4.1)

We defer the proof of Lemma to Section The third ingredient is that, asymptotically
as £ — 0, the minimization problems myz(u, Bz(z¢)) and mz (a5, B. ( )) coincide for H4 L-a.e.

£
xg € Jy, where we write 50" 1= Uyy u+ (20),u (20),vu(z0) LOT brevity, see

Lemma 4.3. Suppose that F satisfies (Hy) and (Hz)—(Hy) and let u € GSBDP(£2). Then for He~!-
a.e. xg € J, we have

B surf’ B
lim —mf(u, ;(TO)) = lim sup m (5, . 1( )) (4.2)
e—=0 Yd—1E7 e—0 Yd—1€
We defer the proof of Lemma [£:3] to Section [6], and now proceed to prove Theorem
Proof of Theorem[2.1, 'We need to show that for L%a.e. xy € 2 one has
dF(u,-
df(jd )(xo) = f(xo,u(xo),Vu(xo)), (4.3)
where f was defined in (2.4), and that for H9 '-a.e. g € J, one has
d‘F(u7 ) _
m(ﬁo) = g(zo, u™ (x0), u™ (0), vu(x0)), (4.4)

where g was defined in (2.5]).
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By Lemma 4.1/ and the fact that lim._,o(v4e%) ' u(B:(20)) = 1 for L%a.e. 2y € 2 we deduce
dF(u,-) F(u, Be(x0)) . mz(u, B:(zg)) . mgz(u, Bs(xp))
e T T ) T R T aBewe) S e >

for L%-a.e. xg € 2. Then, ([{.3) follows from (2.4) and Lemma By Lemma and the fact that
lime 0 (ya—18?"1) "1 u(Be(mg)) = 1 for Hi L-ae. 79 € J, we deduce

dF (u,-) . F(u,Be(xo)) .. mg(u,Be(xo)) . mz(u, Be(wo))
a1, P T B B ) R aBuee) e et
for Hi 1-a.e. zg € J,. Now, (@.4) follows from (2.5) and Lemma O

In the remaining part of the section we prove Lemma We basically follow the lines of [13] 14} 28],
with the difference that the required compactness results are more delicate due to the weaker growth

condition from below (see (H4)) compared to [13| [14], 28]. We start with some notation. For 6 > 0
and A € A(£2), we define

m‘sf(u, A) = inf { Zoo mxr(u, B;): B; C A pairwise disjoint balls, diam(B;) < ¢,

_ s U7, 1) o),

where, as before, = L] o+HY™ | j,ne. As m%(u, A) is decreasing in §, we can also introduce

m3(u, A) = lim m(u, A). (4.5)

Lemma 4.4. Let F satisfy (Hy), (Hz)~(Hy). Let u € GSBDP(R2) and pp = LY o+H g, ne- If
F(u, A) = m¥(u, A) for all A € A(R2), then for p-a.e. xo € 2 we have

lim F(u, Be(x0)) — lim mxr(u, B:(20))

2 uB o) e pl(Ba(eo))
Proof. The statement follows by repeating exactly the arguments in [28, Proofs of Lemma 4.2 and

Lemma 4.3|. Note that the assumption F(u, A) = m’(u, A) enters the proof at the very end of [28|
Proof of Lemma 4.3] and replaces the application of [28, Lemma 4.1]. |

In view of Lemma [£.4] in order to see that F and my have the same Radon-Nikodym derivative
with respect to u, it remains to show the following.

Lemma 4.5. Suppose that F satisfies (Hy)—(Hy) and let w € GSBDP(2). Then, for all A € A(£2)
there holds F(u, A) = m’(u, A).

Proof. We follow the lines of the proof of [28, Lemma 4.1] focusing on the necessary adaptions due to
the weaker growth condition from below (see (Hy4)) compared to [28]. For each ball B C A we have
my(u, B) < F(u, B) by definition. By (H;) we get m%-(u, A) < F(u, A) for all § > 0. This shows
m’(u, A) < F(u, A), cf. [{5).

We now address the reverse inequality. We fix A € A(§2) and 6 > 0. Let (B?); be balls as in the
definition of m%(u, A) such that

ZC: mr(u, BY) < m%(u, A) + 0. (4.6)
By the definition of mz, we find v € GSBDP(B?) such that v = u in a neighborhood of B¢ and
F(v}, B)) < mz(u, BY) + 0LY(B]). (4.7)
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We define
n o0
o = Zi:l U?XB? +UX o for n e N, v = Zi:l U?XBg + ux g, (4.8)

where NO™ := 2\ !, BY and N§ := 22\ U2, BS. By construction, we have that each v®" lies in
GSBDP(2) and that sup,, ¢y ([|e(v®™)|| o (0)+HE (Jysn)) < 400 by [@6)-(E7) and (Hy). Moreover,
v?™ — v pointwise a.e. in 2. Then, [27, Theorem 1.1] yields v € GSBDP(2).

Z F(®, BY) + F(u, N, N A) < Zzl (mr(u, BY) + 6L4(BY))
< mf(u, A) +6(1+ LYA)), (4.9)

where we also used the fact that u(NJ N A) = F(u, N; N A) = 0 by the definition of (B?); and (Hy).
For later purpose, we also note by (H4) that this implies

le() 1} 54y + M (Jus N A) < @7 (m(u, A) +6(1 + LY(A))). (4.10)

We now claim that v® — u in measure on A. To this end, we apply Remark (iii) and Corollary
on each BY for the function u — v and we get sets of finite perimeter w) C B? such that

i) (L)' < on (T, u ) N BY),
(i) llu = o1 oy < Ol 55, + @I, 5y (4.11)

for a constant C > 0 only depending on p. Here, we used that diam(B?) < ¢ and the fact that
(u — v5)LBs€ GSBDP(B?) with trace zero on 9B?. We define v: [0, +00) — [0,+00) by ¥(t) =

min{t?, 1} and observe that v — u in measure on A is equivalent to S t(Ju— v?)dr — 0as § — 0.
In view of (| ., we compute

/A llu—vl)de =" /B Yl —vfdo < > (=0, oy + £7@D)). (412)

By ({.11)(ii) and the fact that the balls (B?); are pairwise disjoint we get

S =12, sy < OO (o) By + o)) (4.13)

As wf C Bf; and diam(B‘-S) < 6, we further get by (4.11)(i)
ST L) <Y )N < AU (1, U ) N A). (4.14)
Now, comblnlng )-(4.14) and using (4.10), we find [, ¥(Ju — v°|)dz — 0 as § — 0. With this,
using (Hy), (£5), and (4.9) we get the required inequality m’ (u, A) > F(u, A) in the limit as 6 — 0.
This concludes the proof. ([l
Proof of Lemma[{.1 The combination of Lemma 4] and Lemma [£.5] yields the result. O

To conclude the proof of Theorem [2.1] it remains to prove Lemmas[d.2)and [£:3] This is the subject
of the following two sections.
5. THE BULK DENSITY

This section is devoted to the proof of Lemma [£.2] We start by analyzing the blow-up at points
with approximate gradient. The latter exists for £%a.e. point in 2 by Lemma
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Lemma 5.1 (Blow-up at points with approximate gradient). Let u € GSBD?({2). Let 6 € (0,1).
For L%-a.e. g € 12 there exists a family u. € GSBDP(B.(xy)) such that

(i) ue = u in a neighborhood of OB (xo), lirr%) sf(dH)Ld({uE #u}) =0,
e—

(ii) lim e (@+P) / |ue () — u(zo) — Vu(zo)(z — I0)|pdx =0,
B(1_6)<(z0)

e—0

e—0

(iii) lim s_d/B o) |e(ue)(x) — e(u)(x0)|pdac =0,

(iv) lim e~ dHIN(T, ) =0. (5.1)

Proof. Let xg € {2 be such that

(i) lim g_d/B ( )‘e(u)(w) - e(u)(xo)‘p dz =0,

e—0
(if) lim e™*H(Ju N Be(20)) =0,

[u(z) — u(zo) — Vu(zo)(z — 20)|
|x — x|

(iii) lim s*d£d<{x € B.(z0):

e—0

> Q}) =0forall p>0. (5.2)

These properties hold for £%-a.e. 2y € 2 by Lemma and the facts that |e(u)[P € L'(£2) and J, is
(R, d—1) rectifiable. We use again the notation @™ = l, 40 Gu(ze) = u(2o) + Vu(zo)(- — o) for
brevity, see (2.2]).

Fix 6 > 0. We apply Theoremand Remark (1) for the function u—u2"™ on the set B(;_g)-(zo)
to obtain a set of finite perimeter w. C B(1_g).(wo), a function v. € W'P(B(_g)(20); RY) with

Ve = U — ﬂ';(‘)“k in B(1_¢)-(70) \ we, and an infinitesimal rigid motion a. such that

(i) HIY(0*w.) < cHY (T, N Be(x0)), L wz) < e(H¥H(J, N Be(x))) ¥ @),
(i) [Jve = acllzr(Bu_). @o)) < celle(w — a0 )| Lo (B, (z0))»
(lll> He(UE)HLP(B(lfe)E(Io)) <c ||e(u - ﬂl;glk)HLP(BE(mo))a (53)

where ¢ > 0 depends only on p, cf. also Remark [3.3{iii). We directly note by (5.2)(ii) and (5.3)(i)
that

lim e~ 4/@=1 () = 0. (5.4)
e—0
We define u. € GSBDP(B.(zg)) as
Ue = UXB, (s0)\Ba—oyo(z0) T (Ve + Uy IXBs_oye (o) (5:5)

and proceed by confirming the properties stated in ([5.1). Notice that, by construction, u. = w in
B.(x0) \we. First, (5.1)(i) follows directly from the fact that w. C B(;_g)-(20), as well as (5.4)—(5.5).

Moreover, (5.3)(i) and (5.2)(ii) imply (5.1)(iv). As for (5.1)(iii), we notice that by (5.3)(iii) and
(5.2) (i) we have

e—0

lim E*d/ le(ve)(z)|Pdz =0.
B1-6)<(z0)

Since, by a direct computation, e(uc)(z) — e(u)(xo) = e(v:)(x) for x € B_g)-(x0), see (5.5), in
combination with (5.2)(i) we obtain (5.1 (iii). It therefore remains to prove ([5.1))(ii).



14 VITO CRISMALE, MANUEL FRIEDRICH, AND FRANCESCO SOLOMBRINO

To thls end, fix ¢ > 0 and define & := {z € B<(20): |u(z) — a}™ ()| > ge}. In view of (5.2)(iii)
and (| , we can choose gy > 0 sufficiently small such that for all 0 < ¢ < g9 we have

L (w: Ude) < LLYB_p)e(x0)). (5.6)

By the definition of &. and the fact that UE =u— ™  in B1_g)-(z0) \ we, we have |ve(x)| < e for
all z € B1_g)-(wo) \ (we U,). Hence, (ii) and the triangle inequality give

laclln (B, gy (mo\ etz = cep|| (= 2" Mo (5. () + CL (Be(0)) <"
where C' > 0 depends only on p. By (5.6) and Lemma [3.5| we get
||as||1£p(3(178)5(10)) < CEP” (u— abUIk)HLp(B (o)) T Cﬁd(Bs(xO))Qp5p~

Therefore, by using also (5.2) (i), we derive limsup,_,,e~ d“’)HaEHQP(B(FG) (o)) < Cradl. As 0> 0
was arbitrary, we get

lim e~ (@+P) / |as|? dx = 0. (5.7)
e—=0 B (17 )
(1—-0)e(To

Now, (5.2)(i) and (5.3))(ii) give that

. —(d+ —d —buk —
35%5 ( p)HUe - aEHiP(B(l,Q)E(xO)) <ce Ye(u— )HLP(B (o)) — 0.
As u. — ub““‘ = ve in B(1_g)-(20), this shows (ii) by (5.7] . O

We are now in a position to prove Lemma

Proof of Lemma[{.3. It suffices to prove (1)) for points z € {2 where the statement of Lemma
holds and we have lim. 0~ %u(B.(z0)) = 7a. This holds true for L%a.e. g € 2. Then also
lim, 0 e~ %mz(u, B-(70)) € R exists, see Lemma As before, we write ab™* = u(zo) + Vu(zo)(- —
xg) for shorthand.

Step 1 (Inequality “<” in (4.1)): We fix n > 0 and 6 > 0. Choose z. € GSBDP(B(1_3p)c(70)) with

Ze = ﬂ};glk in a neighborhood of 9B(;_3¢).(70) and

]:(ZE7B(1739)€( )) < m]:( bulk B(l 36)6(330)) +€d+1' (58)

We extend z. to a function in GSBDP(B (z0)) by setting z. = ub™* outside B(1_s9)-(w0). Let (ue)e
be the family given by Lemma[5.1] We apply Lemma[3.7 on 2. (1n place of u) and u. (in place of v)
for 7 as above and the sets

A/ = Bl gg(xo) A= B1 9(1‘0) AH = B1 (.130) \31_49(330). (59)

By (3.11)—(3.12) there exist functions w. € GSBDP(B.(x¢)) such that w. = u. on B.(x0)\B(1-g)- (7o)
and

M
‘F(wEa BE(:L'O)) S (1 + 77) (]:(25’ AS,IO) + ‘F(U&Alslzo)) P ”ZE - ue”iP((A\A/)S,IO) + ‘Cd(BE(xO))na
(5.10)

where M > 0 depends on 6 and 7, but is independent of €. Here and in the following, we use notation
(3.1). In particular, we have w. = u. = u in a neighborhood of 0B.(z¢) by (5.1)(i). By (5.1)(ii),
(5.9), and the fact that z. = ﬂbu“‘ outside B(;_39)-(z0) we find

. —d —d bulk

;13% e (@+P)|| 5, — u5||Lp((A\A,) ) = hg% e (4P ||y, — HLP(B(1 oe(@0)) = =0. (5.11)

This along with (5.10) shows that there exists a sequence (p.). C (0,+00) with p. — 0 such that
F(we, Be(xg)) < (1 +1n) (.F(zs, Ac zo) + F(ue, A’E'mo)) +e%pe + vqen. (5.12)
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On the one hand, by using that z. = ab™™* on B(x0) \ B(1-30)(r0) C A ,,, (H1), (Hy), and (5.8)
we compute

A F ’ B E F —gulk’ A”z
lim sup F(Zsa y EJO) < lim sup (ZE 1 d?’e) (.TO)) + lim sup M
e—0 &) e—0 9 e—0 3
~bulk B
< timsup 275 Bazs0e (o)) gty (o agy] (14 o) (o))
e—0 €

< (1-36)¢ lin,lsgp m}-(u?‘ij’)stl (z0)) + B4 [L— (1 —40)%] (1 + |e(u)(zo)[P),
(5.13)

where in the last step we substituted (1 — 36)e by &’. On the other hand, by (H4) and (5.9) we also
find

Flue, AZ,) < B (1 +le(u)[P) + BHTH(Ju, N AL,,)

. &,Zo
As,xo

< 7aeB (1= (1= 40)"] (1 + 277 |e(u)(20)[") + 27 Blle(ue) — e(w) @)1 5, oy + BH (Ju)-
By (5.1))(iii),(iv) this implies

]:(uE? Ag,:vo)

lim sup g < Bra[l—(1—46)"] (1 + 27" e(u)(z0)[?). (5.14)

e—0

Recall that w. = u in a neighborhood of OB, (z(). This along with (5.12)—(5.14) and p. — 0 yields

. mx(u, B (o)) . F(we, Be(x0))
lim._.o T < limsup,_,, —’ngd
mf(ﬂl;glk, B:(z0))

'Ydffd
+2(1+n)B8[1— (1 —40)%] (1 + 2" e(u) (o) ") + .

Passing to 1,6 — 0 we obtain inequality “<” in (4.1)).

< (1+41n) (1 -30)"limsup,_,,

Step 2 (Inequality “>” in ([d.1)): We fix n, § > 0 and let (u.). be again the family from Lemma[5.1]
By (5.1)(i) and Fubini’s Theorem, for each € > 0 we can find s, € (1 — 46,1 — 36)e such that

(i) 611_% e H ({u # u.} NOB;_(20)) = 0,
(i) H"((Ju U Ju) NOBs (m9)) =0 for all e > 0. (5.15)
We consider z. € GSBDP(B;_(x)) such that z. = u in a neighborhood of dB;_(xg), and
F(2e, Bs_(w0)) < mz(u, Bs_(20)) + 4L (5.16)
We extend z. to a function in GSBDP(B.(x¢)) by setting
ze = u: in Be(zo) \ Bs. (20)- (5.17)

We apply Lemma [3.7/on z (in place of u) and u2"™* (in place of v) for the sets indicated in (5.9). By
(B-11)—(3.12) there exist functions w. € GSBDP(B:(x)) such that w. = a2 on B.(x0)\ B1—g)- (o)
and

—bu M —bu
F(we, B:(20)) < (1+41n) (}—(Zs’As,ro) +-7:(U13):01k’A/s,,ro)) + ET)HZE *U.‘iolkHZ«A\A/)E,m) +Ed(Bs(QEO))n-
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By (5.17) and the choice of s. we get that z. = u. outside B(1_3p)- (o). Thus, similar to Step 1, cf.
(5.11) and (5.12), we find a sequence (p.). C (0,+00) with p. — 0 such that

F(we, Be(xo)) < (1 +77)(f(zew45 wo) + F gy, ALL,)) +€dpa+7d8d77- (5.18)

Let us now estimate the terms in . We get by (Hy), (Hy), - , and the choice of s,
that

F(ze, Ac zy) < mz(u, Bs, (0)) + et! 4+ BHd_l (({“ #ucpUJy U dy, ) NOBs, (370)) + ]:<u€7A/elzo)

(5.19)
Therefore, by (5.14)), (5.15), and the fact that s. < (1 — 36)e we derive
A x ;Bs _
lim sup Lda"]) < (s./e)*lim sup mf(u—dE(xo)) + Bya [1— (1 —460)%] (14277 e(u)(zo)[?)
e—0 3 e—0 s¢

< (1-36)lim sup M + Bva [l — (1 —40)"] (1 + 2 e(u)(zo)[P).
o (5.20)

Estimating F(ub"*, A7, ) as in (5.13), with (5.18)—(5.20) and p. — 0 we then obtain

]:(w , Be(0)) : mr(u, Be (1))

Eg—de < (14n) (1 —30)limsup,_,, E—de
+2(1+m)Bya [~ (1= 40)7 (1+ 27 fe(u) (o) ") + van.

Passing to 7,60 — 0 and recalling that w. = a2"'" in a neighborhood of dB.(z() we derive

m bulk B F B B B
lim sup 7 < (0)) < limsup (U)E,—Z(Qjo)) < lim sup %;(Io)) = lim MS(IO))_
e—0 'YdE e—0 Yd€ e—0 YdE e—0 Y€

This shows inequality “>" in (4.1) and concludes the proof. O

lim sup
e—0

6. THE SURFACE DENSITY

This section is devoted to the proof of Lemma We start by analyzing the blow-up at
jump points. In the following, for any zy € J, we adopt the notation ﬂfc‘fff for the function

Uz ut (o) u— (20) v (w0)» S€€ (2.3)), With 1, (20) € S?1 and u*(z) € R? being the approximate normal
to J,, and the traces on both sides of J,, at xo, respectively. Recall also notation (3.1)).

Lemma 6.1 (Blow-up at jump points). Let u € GSBDP(£2) and € (0,1). For H? '-a.e. 29 € J,
there exists a family u. € GSBDP(B.(x)) such that

(i) we =u in a neighborhood of OB:(xy), lir% e L {u. # u}) =0,
e—

e—0

(ii) lim g~(@-1+p) / |ue(z) — a3 da = 0,
B1-6)<(z0)

(ii) lim e~ (d—1) g4d— Y Ju. NE. o) = Hd_l(ﬂo NE) for all Borel sets E C Bi(xo),

e—0

e—0

(iv) lim e~V ‘e(ug)(x)‘p dz =0, (6.1)
Be(w0)

where Iy denotes the hyperplane passing through xo with normal v, (xo).

Proof. We start by using the fact that J, is (H9',d—1) rectifiable and the blow-up properties of
GSBDP functions. Arguing as in, e.g., [24, Proof of Theorem 2], [25, Proof of Theorem 1.1], [28]
Lemma 3.4], we infer that for H? l-a.e. 79 € J, there exist € > 0, v, (z¢) € ST, uT(z9) € R, and
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a hypersurface I" which is a graph of a function h defined on Iy, being C'* and Lipschitz, such that
xg € I', Iy is tangent to I in g, I' N B.(xg) separates B.(z() in two open connected components
BI'#(z) for each € < , and

(i) lim e‘(d‘l)Hd_l((JuAF) N B.(z0)) = 0,

lim e~V HIY I NE. ) =HI (IIoNE) for all Borel sets E C B (x),

e—0

(ii) lim e~ (4=Y / le(u)[P dz = 0,
e—0 BE(IU)

(iii) hmos L {x € Be(wo): |u— us‘"f| > 0}) =0 forall o> 0. (6.2)
e—

In particular, (ii) follows from the fact that |e(u)|P € L*(£2) and (iii) from (3.2). Then, since IIj is
tangent to I in xg, I'N B (o) is the graph of a Lipschitz function h. defined on a subset of 11, with
Lipschitz constant L. such that lim._.o L. = 0. Therefore, it holds that

lim e~?£4(BI* (20) ABZ (20)) = 0, (6.3)
e—0

where BF (z0) := {y € B.(20): £ (y — %0) - vu(z0) > 0}. By this and Fubini’s Theorem, for each
£ >0 we can find s. € (1 — 6,1 — £)e such that
lim 5_(d_1)£d((Bg’i(mo)ABsi(:vo)) N OB, (xo)) = 0. (6.4)

e—0
For any € > 0, we apply Theorem [3.2] and Remark B-3(i) on w in the two connected components
BI'*%(z) for e < 2. This gives two functions v¥ € Wl’p(Bri(xo) R?), two sets of finite perimeter
w c Bl i(330) and two infinitesimal rigid motions aF such that

(i) vF=u in BLF (o) \ W,
(i) HOHO"WE) < HTH T N BIF(20),  LUwF) < e(HTN (T 0 BEE ()Y,
(iii) || G ”LP(B[f(xo)) < 05||€(U)||Lp(35i($0))7
(iv) |[VoE w;ﬂmww)) < clle(w) | o= (ay) - (6.5)

where ¢ > 0 is independent of e. (See Remark [3.3[ii),(iii) and recall that the Lipschitz constant of
h. vanishes as e — 0.) By the Sobolev extension theorem we extend v to 9F € WP (B,_(z0); R?),
and (6.5))(iii),(iv) along with the linearity of the extension operator yield

e M0E — aZ |l Lo(B.. o)) + IVOE = VaZ |l Lo(s.. o)) < clle()ll 1o 5o (4g)) (6.6)
( (z0))

where, as before, the constant is independent of e. (Here, we used again the properties of the functions
he recalled below (6.2]).) We define u. € GSBDP(B.(xg)) as

f}j in Bst (z0),

Ue 1= D in B;_(xo), (6.7)

€
U in Be(z0) \ Bs.(z0),
where BZ (z¢) is defined below (6.3). We now prove the properties in (6.1). First, by definition
we have that u. = w in a neighborhood of 0B.(z¢). By B(Fl’fe)a(xo )n F = (), . ., and
(6.5) (i), (ii) we obtain lim._,0 e~ L% ({u. # u}) = 0. This concludes (6.1))(i). Moreover, (6.2)(ii) and
(6.6)) imply (6.1))(iv). By definition of u. and (6.5) (i) it holds that

Ju. C (IIoN Bs_(%0)) U (Ju N (Bz(20) \ Bs. (20))) U0 w Ud*w; U ((BL* (20) ABE (70)) N9Bs. (20)).
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We now show (6.1)(iii). Concerning the "<” inequality, for a fixed Borel set E C Bj(zo) we have
to estimate the measure of the intersection with E. ,, and any of the five sets in the right-hand side
above: it holds that 7~ (IIo N B,_(x0) N Ee g,) = €4 ' 1" (ITIy N B,_j-(x0) N E) for any € > 0 by
rescaling, that lim._q [~ (" DHI(J, N (Ez 4, \ Bs_(%0))) — H~! (ITo N (E \ By, /-(20)))| = 0 by
(6-2) (i), while the last three terms are estimated by (6.5)(ii) and (6.4). To see the converse, we first
apply [27, Theorem 1.1] to the functions u. (g + e-), which converge in measure to a5 in B;(0) by

(6.2), (6.3), and (6.5)) (ii). Then we scale back to B.(z¢). Hence, ([6.1)(iii) holds.

It remains to prove (6.1))(ii). We notice that this easily follows from

. —(d—1+p) + _ =surf|p _
g1_1’)r(1)€ /Bi( laz — uqy [P do = 0. (6.8)
Se m0)
In fact, (6.2) (ii) and give that
im e (d—1+p) ot _ aE P dy =
21_13(135 /Bi ( |07 —aF |Pdx = 0. (6.9)
s (wo)

Then, , , the triangle inequality, s > (1 — 6)e, and (6.7) imply (6.1)(ii).

Therefore, let us now confirm (6.8)). We only address the “+” case, for the “-” case is analogous. We
first observe that by (6.2))(iii), (6.3), and a diagonal argument, we may find a sequence (g.). C (0, 400)
with lim._,g o = 0 such that the sets

wF == {x € Bu(x0): |u(z) —u*(z0)| > 0-} N BL* (o)

satisfy
o —dpd )
811_1%5 LY @) =0. (6.10)
In view of (6.5))(i),(iii), we have that
e = aZ Wl ot wopr) < cEle@llo(prs gy (6.11)

Then, by (6.11)), the definition of &F, and the triangle inequality we get that

5 4
[u™ (o) — a;HLp(BS{“E’Jr(IO)\(ij@,g)) < 05‘|€(U)||LP(B§+($0)) + Y E7 e (6.12)

By (6:2)(i), (6.3), (6.5)(ii), and we obtain L4 (w UwF) < $LYBLF(xg)) for e sufficiently
small. Then, by Lemma we have that vae¥/P||ut (z0) — aZ || (B.(xy)) IS less or equal than the
right-hand side of , up to multiplication with a constant. This along with (ii), p>1, and
the fact that o. — 0 implies

tim [ (50) — @ |1, (o) = O (613)
Let us consider AT € M%*¢ and b € R such that af (z) = AL (v — 2¢) +bF. Then follows by
lim e| AT |P = 0, (6.14a)
e—0
lime 7 [bF — ut(zo)| = 0. (6.14D)
e—0

So we are left to prove (6.14) which corresponds to [28, equations (3.18)-(3.19)]. The proof goes in
the same way with slight modifications that we indicate below. For fixed § > 0 small, by (6.2))(ii)
there exists £ > 0, depending on ¢, such that

g~(@-1) / le(u)[Pdz < 67 for all e < & (6.15)
BE(IO)
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For & < £ < &, we set ¢}, := min{2*&, ¢} and adopt the notation k in place of &4 in the subscripts. We

then obtain
—1

_1 _a p=1

laj — a:—&-l”Lm(Bjk @) S a e " llaj — ag+1||LP(B£E’:(m0)\(w,:er,:r+l)) Scdg” . (6.16)

In fact, the first inequality follows from (6.5)(ii) and Lemma and the second one from (6.11]),

(6.15), and the triangle inequality. Similarly, employing (6.5)(i),(iv) in place of (6.11)), and recalling
Val = A;f we obtain

AF — AF, | <coe?. (6.17)

At this stage, (6.14)) follow exactly as in [28]: for k beingAthe first index such that e = ¢, recalling

£ = ¢ and summing (6.17) gives &|AZ|P < §(|A%| + Z:;é |Af — Af )P < co? + cé|A%|p. The

right-hand side vanishes as € — 0 and § — 0, and this proves (6.14a)). Moreover, summing (6.16)

(and since b — b | < |lajf — aLlHLW(B;k (xg))) We Obtain [bf —bF| < cde7 forall 0 <& <e. By

1—p ~ ~
passing to the limit as & — 0 together with (6.13)), we get e 7 |u™(zg) — bF| < ¢ for e < & = £(6).
Thus, (6.14b) follows by the arbitrariness of § > 0, concluding the proof. (]

Remark 6.2 (Construction of u.). We point out that our definition of u. in (6.7) differs from the
corresponding constructions in [I3, Lemma 3] and [28, Lemma 3.4] in order to fix a possible flaw
contained in these proofs. Roughly speaking, in our notation, in [13| 28], u. on B,_(xo) is defined as

v in Bi""(ajo)7
u =
: - in Bfg’f(mo).

Then, instead of one needs to check lim, e~ (4=1+P) Jor# (2 laz — @2 [P dz = 0. This, how-

(6.18)

Ve

o
ever, is in general false if liminf._,g e~ (@~ 1*P) £4(BI'* (20) AB(z0)) > 0 (which is clearly possible).
Let us also remark that, in contrast to our construction, (6.18) allows to prove an estimate of the
form

lim e~ @Dy, \ J,) =0, (6.19)

e—0

see [13, Equation (24)] and [28, Lemma 3.4(i)]. It is not clear to us if it is possible that for u,. satisfying
the fundamental blow-up property (6.1)(ii) one may still have an estimate of the form (6.19). The
latter, however, is not needed for our proofs.

We now proceed with the proof of Lemma [4.3

Proof of Lemmal[{.3 The proof follows the same strategy of the proof of Lemma [£.2] We fix z( € J,
such that the statement of Lemma holds at z¢ and lim._,q a*(dfl)u(BE(xo)) = 74-1- This is
possible for H% '-a.e. 29 € J,. Then also lim. 0 e~ Ymz(u, B.(zo)) € R exists, see Lemma
We prove (4.2)) for xq of this type.

Step 1 (Inequality “<” in (4.2)): We fix n, 6 > 0, and consider z. € GSBDP(B(1_39)-(x0)) with

ze = 3™ in a neighborhood of dB(1_3¢).(20) and

F (2, B(1-30)c (%0)) < mz (@™, B3y (20)) + . (6.20)

We extend z. to a function in GSBDP(B.(xg)) by setting z. = a5 outside B(1_39)- (o). Let (uc)e
be the family given by Lemma As in the proof of Lemma we apply Lemma on z. (in
place of u) and u. (in place of v) for 7 fixed above and the sets

A= 31720(%)7 A= 3179(%), A = Bl(iﬂo) \ 31740($0)~
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Recalling notation (3.1) and (3.11)—(3.12), we find w. € GSBDP(B.(z¢)) such that w. = wu. on
B.(20) \ B(1-6)e(20) and

M
F(we, B(20)) < (1+1n) (]'—(25, Aey) + }—(ustls/,zo)) + ET,”ZE - us”gp((A\A/)s,mo) + Ed(Be(ﬂfo))ﬂ,
(6.21)

where M > 0 depends on 6 and 7, but is independent of . In particular, we have w. = u. = w in a
neighborhood of dB.(zo) by (6.1)(i). By (6.1)(ii) and the fact that z. = a5"" outside B(1_30)- (o)
we find

lim e~ (@4714P)| 2,
e—0

Inserting this in (6.21)), we find that, for a suitable sequence (p.). C (0,+0o0) with p. — 0,
F(we, Be(0)) < (14 1) (Flze; Acywg) + Flue, AL,,)) + " pe + 7ae™n. (6.22)

We now evaluate the first terms in the right-hand side of (6.22): since z. = ub* on B.(wo) \
B1_36)c(0) C AL, by (Hi), (Hs), and (6.20) we have

lim E_(d_1+p) ||U5 _ ,asurf

Iis =0.
=50 o WLP(B(1_g)e(z0))

— Ug HIZ‘p((‘A\Al)E,zO) =

A F(ze, B(1_30)e F as‘”f,A”
lim sup W < lim sup (z (;je) (o)) + lim sup w
e—0 £ e—0 9 e—0 3
m —surf B
< lim sup }-(umo ’ d—(11 39)5(I0)) + 67_ld—1(A// N IIy)
e—0 3
m ﬂsurf7B5 T
< (1 —360)*1lim sup A Z;dfl (0)) + Bya—1(1— (1 —40)71),  (6.23)
e—0

where, as in Lemma we denote by Il the hyperplane passing through zy with normal v, ().

By (H4) and (6.1)(iii),(iv) we get

y Flus ALy,) _ Jay, (O le(ue)?) dz y HI~L(T,. N AL, )
msup ———— 1m su - + lim su .
a—>0p Bed=1 B e—)Op gd-1 e—>0p gd-1
=74-1(1— (1 —49)*71). (6.24)

Collecting (6.22]), (6.23)), (6.24), and recalling p. — 0, as well as the fact that w. = u in a neighborhood
of B (x0), we obtain

lim m].-(u, BE(.’E()» < lim sup ]:(wm Bs((EO))
e=0  yg_pedl T &0 Ya—1€971
m}_(ﬂsurf Be(x()))

xo

< (14+mn)(1-30 d_llimsup
( 77)( ) e—0 ’Yd71€d*1

Passing to the limit as 7,0 — 0 we conclude inequality “<” in (4.2]).
Step 2 (Inequality “>" in (4.2)) ): We fix n, 6 > 0 and let, as in Step 1, (uc). be the family given by

Lemma [6.1] By (6.1)(i) and Fubini’s Theorem, for each ¢ > 0 we can find s. € (1 — 46,1 — 36)e such
that

+2(14n)B (11— (1—40)71).

(i) lim e @ DU ({u # u.} N OB, (20)) = 0,
(i) H"((JuUJu) NOBs (z9)) =0 for all e > 0. (6.25)
We consider z. € GSBDP(B;_(x)) such that z. = u in a neighborhood of dB;_(xg), and
F(2, Bs.(20)) < mz(u, B (20)) + €% (6.26)



INTEGRAL REPRESENTATION IN LINEAR ELASTICITY WITH SURFACE DISCONTINUITIES 21

We extend z. to a function in GSBDP(B.(xo)) by setting
ze = ue in Be(xg) \ Bs, (o). (6.27)

We apply Lemmanfor ze (in place of u), @ S“rf (in place of v), and for the sets A, A’, B as in Step 1,
in correspondence to . By (3.11] - - there exists w. € GSBDP(B.(xg)) such that w. = us‘”f on
Be(z0) \ B(1—¢)c(0), and

F(we, Be(zo)) <(1+ 7])(]:(257145,10) + F(u ;lérva/elaco)) + g”ze - SuerLp((A\A ) + LY(Be(0))1-
We observe that z. = u. outside B _3¢c(z0), by and the choice of s.. Then, as done in Step 1,
we may employ (6.1) (ii). This gives us a sequence (p.). C (0,+00) with p. — 0 as € — 0 such that
F(we, Be(w0)) < (1 + n) (F(2e; Acra) + Flug AL L)) + ad_lpg + 72 . (6.28)
We estimate the first terms in . We get by (Hy), (Hy), (6.26)(6.27), and the choice of s. that
F(ze, Acny) < m;(u,Bss(xo))—FE +,8”Hd "(({u# ua}UJouuE)ﬂaBsg(xo))—|—]-'(u5,A;’w0) (6.29)
By , , and the fact that s. < (1 — 30)e we thus deduce that

E?'AEZL’ . 7BS —
limsup% < hmsupw —l—ﬁ’yd,l(l — (1 —46)¢ 1)

e—0 e—0
w + B (1—(1—40)%1),  (6.30)

< (1—360)%"limsup

e—0
and, similarly to (6.23)),
]:'(ﬂsurf A" )

. X ) E,T
lim sup 0 0

v TS Bya—1(1—(1—4)""). (6.31)

Collecting (6.28]), (6.30), (6.31) and using p. — 0 we derive

.F(wegyufi(xo)) <(1+ "7)((1 _ 39)d—1 lim sup m]—‘(qj;d?f(xo)) + 25’7d—1(1 —(1- 49)(1—1)).

e—0

lim sup
e—0

surf

Finally, recalling that w. = uj)

6 > 0 we obtain

in a neighborhood of 0B.(z¢), and using the arbitrariness of 7,

m surf B F B B B
lim sup 7 Uy — 1( ) < lim sup Flwe, Be(20)) d( T ) < lim sup m(u, Be (o)) 2(3100» = lim mr(u, Be (o)) ;-:(9;?0))_
e—0 Yd—-1€ £—0 Yd—1€ e—0 Yd—1€% €20 Yg—1E89T
This shows “>” in (4.2) and concludes the proof. O

7. THE SBDP CASE

This section is devoted to the analysis of the integral representation result for F: SBDP(2) x
B(£2) — [0, +00) satisfying (H;)—-(Hs) and (H)). This case has been addressed, for d = 2, in [28].
On the one hand, the arguments there could be now generalized to general dimension by virtue of
Theorem On the other hand, as we are going to show, the result can also be obtained with minor
changes of our more general strategy.

We start by pointing out that, under (H)), only competitors in SBDP may have finite energy. In
fact, in view of Proposition in the present setting definition (2.1) reads as

mpg(u, A) = vesggp(n) {F(v,A): v=u in a neighborhood of 0A} . (7.1)

Then, the following integral representation result holds.
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Theorem 7.1 (Integral representation in SBDP). Let 2 C RY be open, bounded with Lipschitz
boundary and suppose that F: SBDP(§2) x B(§2) — [0, +00) satisfies (H1)—(Hs) and (H)). Then

F(u,B) = / f(z,u(z), Vu(z)) dz +/ g(z,ut(z),u (z), vu(2)) dH " (2)
B JuNB
for allw € SBDP((2) and B € B({2), where f is given by
Lag ug.e, B
f(.%'o,Uo,f) = hmsup m]:( = 07€d E(xO))
e—0 Yd€
for all o € 2, ug € RY, £ € M4 and y 1.6 as in , and g is given by
xro,a V?B
g(xo,a,b,v) = limsup M (Ue.a., d_ls(xO))
e—=0 Yd—1€
for all zg € 2, a,b € RY, v € S, and ugy 00, as in [2.3).

The remainder of this section is devoted to the proof of Theorem [7.1] which follows along the lines
of the proof of Theorem [2.1] devised in Section [d] First, the analogue of Lemma [£.1] holds essentially
with the same proof.

Lemma 7.2. Suppose that F satisfies (Hy)—(Hs) and (H)). Let w € SBDP(£2) and let p =
LY o+H¥ Y 7. nn. Then for p-a.e. xo € 2 we have

lim F(u, Be(zp)) ~ lim mx(u, Be(xg))
=0 u(Be(zo)) =0 p(B:(0))

Proof. One can follow the same argument used to prove Lemma [4.1] through Lemmas [4.4) and

First, we remark that [28, Lemma 4.2] is proved under the assumptions (H}) and u € SBDP?({2),
hence it can be used in Lemma [4.4]

Concerning Lemma as the lower bound of (H}) is stronger than the one of (Hy), the GSBD
compactness result [27, Theorem 1.1] is still applicable. First, this shows v € GSBDP(§2). Addi-
tionally, , (H),), and Proposition imply that the function v° belongs indeed to SBDP(f2).
The rest of the proof remains unchanged, upon noticing that, under assumption (H}), still
holds. O

We now address the adaptions necessary for the bulk density. When v € SBDP({2), we show that
the approximating sequence constructed in Lemma [5.1] satisfies some additional properties.

Lemma 7.3. Let u € SBD?(R2). Let 6 € (0,1). For L%a.e. g € §2 there exists a family u. €
SBD?(B.(x0)) such that (5.1)) holds, and additionally

(i) lim e (@+D / |ue —u|dz =0,
BE(IU)

e—0

e—0

(i) lim e™¢ /J [ue]|dH = 0. (7.2)

ug

Proof. Since u € SBD($2), for L%-a.e. x it holds that
lim e~ ¢ / [u]] dHI =0, (7.3)
e=0 JuNB<(z0)

and (see [4, Theorem 7.4]) that

lim ¢~ (¢+1) / ’u - ﬂbuu“ dz =0, (7.4)
BE(IO)

x
e—0 0
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where for brev1ty we again let @™ = £, (20) Vu(zo). Hence, with Fubini’s Theorem we can fix
se € (1—0,1—%)e so that HI~ 1(] N 0B, (z0)) = 0 and
lim e~ / lu—ub™| dH = 0. (7.5)
e—0 8355 ('1"0)

We can now perform the same construction as in with s, in place of (1 —0)e. Notice that in this
case u. € SBDP(B.(o)). By arguing exactly as in the proof of Lemma/[5.1] we derive (5.1) (i), (iii), (iv)
while (ii) holds in B,_(x¢) and a fortiori in B(;_g.(zo). In particular, this in comblnatlon with
Holder’s inequality, (7.4), and u = u. in Be(zg) \ Bs_ () yields (7.2)(i).

To see (7.2) (ii), observe that, since s. /e is bounded from above and from below, (5.1))(i),(iii), the
fact that uc|p,_(ny)€ W' (Bs. (20); R?) (see (5.5)), and Korn’s inequality imply that

(o + 82°) — ﬂ?;’lk(ﬂfo + 5¢°)

Se

— 0 in WP (By(0);R?) .

Hence, by the trace inequality and by scaling back to Bs_(xg), we obtain

lim s (d— 1)/ L
e—0 aBSE (10) Se

With this, (7.5, and the fact that s./e is bounded from below we then have

lim g_d/ ’us — u‘ dHt =0
e—0 8B, (z0)

Hence, we get by construction of u. and ([7.3) that

Ue — —bulk‘ de 1_

lim s_d/ [ue]| dHIL = lim e~ / [u]| dHEt =0,
e—0 Ju. €0 JuN(Be (20)\Bs, (0))
which concludes the proof. O

With the above lemma at our disposal, we can deduce the asymptotic equivalence of the minimiza-
tion problems ([7.1)) for u and a‘;glk = Lag u(wo), Vulwo)-

Lemma 7.4. Suppose that F satisfies (Hy), (H3), and (H}). Let u € SBDP(2). Then for L%-a.e.
o € §2 we have

lim m(u, Be (0)) = lim sup mf(ﬂgslk’BE(xo)).

s 7.6
e—0 Yag* e—0 Yae? (7.6)

Proof. We argue as in the proof of Lemma@

For the ”<” inequality, take u. satisfying (5.1)) and (| , and perform the same construction as in
Lemma (Observe that the fundamental estlmate also holds in this case, see Lemma [3.7}) Notice
that, in this case, we have by (H}) and (5.9) that

Flue AL, <8 [ (4 le(wa)p) do+ 5 (1+ [[uc]) dH?.
AL JueNAL
Thus, using (5.1)(iii),(iv) and (7.2))(ii), we still get (5.14), and may deduce inequality “<” in (7.6]).
For the “>” inequality, we start by observing that, if u. also satisfies ((7.2), in addition to (5.15))
we may require that

lim E_d/ lut — u;‘ dH4" ! =0, (7.7)
OBS (wo)

e—0
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where u_Z and u* indicate the inner and outer traces at 0Bs_(z0), respectively. We also have that
(5.14) holds, as seen in the previous step. We then perform the same construction as in Lemma
In this case, inequality (5.19)) is replaced by

F(2ey Ac zy) < mp(u, By, (20)) + e + BHT ({u # ue} U J, U Ju.) N OB, (x0))

+0 |uJr —u;| dH1 + Fue, AL ).
0B, (z0)
so that, using (5.14), (5.15), (7.7), and the fact that s, < (1 —36)ec we are still in a position to deduce
(5.20). The rest of the argument remains unchanged and we obtain inequality “>" in (7.6). |

Similar changes have to be performed also for the surface density. We first deduce the analogue
of Lemma We again set ﬂfc‘érf = Uggut (20),u- (z0),wvu(zo) 10T brevity, see (2.3). We also recall the
notation in (3.1).

Lemma 7.5. Let w € SBDP(2) and 6 € (0,1). For H% '-a.e. zg € J, there exists a family
ue € SBDP(B:(x9)) such that (6.1) holds, and additionally

(i) lim s*d/ |ue —u|dz =0, (7.8)
Be(wo)

e—=0

X
e—0 0

(i) lim e~ / [ue]| dHIY = |[@S2F)| HE L (ITy N E)  for all Borel sets E C B (x),
Jue NEe o
where Iy denotes the hyperplane passing through xo with normal v, (xo).

Proof. Since u € SBD(S2), for H? '-a.e. zg € J, it holds that

e—0

lim g—d/ lu— a3 | de = 0. (7.9)
Bs(x())

Hence, by Fubini’s Theorem we find s. € (1 —6,1 — g)s such that (6.4) holds, we have H4~1(J, N
0B;_(x0)) =0, and

T
e—0 0

lim ¢~ (4= / lu— a2 [ dH = 0. (7.10)
9B, (o)

We can now perform the same construction as in (6.7)) and derive (6.1). In particular, this in combi-
nation with Holder’s inequality, p > 1, (7.9), and u = u. in B.(x0) \ Bs_.(x0) yields (7.8)(i).

To see (7.8))(ii), observe that, since s./e is bounded from above and from below, (6.1)(ii),(iv),
p > 1, the fact that u.|p= (, € WhP(BE (z0); RY) (see (6.7)), and Korn’s inequality imply that

/1(3 (20)—20) |ue (o + sey) — T [P dy +/ |V e (0 + sey) [P dy — 0.
Se xo)—To

sa 1 (BE (z0)—20)

+
Se

Hence, by the trace inequality and by scaling back to Bi (z0), we obtain

e—0

lim s.~(¢=1 / |u€ — ui(x0)| dH* 1 =0.
OBZ (zo)

Since s /e is bounded from below, we then get that

e—0

lim sf(dfl)/ ue — ui(:ro)| dH¥ 1 =0. (7.11)
OB (z0)
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Given a Borel set £ C Bi(z), we define £° = E'N B: (o) for every £ > 0. Then by (6.7) and (7.11)
we get

lim (5_(d_1) /J i |[ue]| AHATY — |[@ST)| 1A (1 N E5)> =0. (7.12)
Uzﬂ g,zo

e—0

By (|7.10) and (7.11) we also have
lim a_(d_l)/ ‘u; - u+| dHI! =0,
aBSE (TO)

e—0

where u_ and v indicate the inner and outer traces at 0B;_(z0), respectively. Hence, by construction
of uc in (6.7) and since u € SBD({2), we obtain

g (=0 [ ]| AR — ([ ) 1O (Mo 0 (B E9)) )
Jue N(E\E®)e 2

e—0

= limy (704D / [l @ — ([ 7 (1o 0 (B B)) = 0.
JuN(BE\E®)< 2o

e—=0

Combining with (7.12)), this concludes the proof of (7.8)(ii). O

With this lemma at hand, we can address the equivalence of minimization problems for the surface
scaling.

Lemma 7.6. Suppose that F satisfies (H1), (Hz), and (H}). Let u € SBDP(£2). Then for H' 1-a.e.
o € J, we have

m (a5, B (1))

Jimg (W Be(@o)) _ o o

7.13
e=0  yg_iedl e—0 Ya—18471 ( )

Proof. We argue as in the proof of Lemma [{.3]

For the "<" inequality, take u. satisfying (6.1) and (|7.8), and perform the same construction as
in Lemma The estimates (6.22) and (6.23]) continue to hold, provided one replaces § with the
larger constant B(1 + |[@5™*f]|). Then, with (H}), (6.1)(iii),(iv), and (7.8)(ii) we get

‘F(U’E? A/SI,I())

lim sup 7= < B(1 + ([ ])ra1 (1 - (1 - 40)"7), (7.14)

e—0

which is the analogue of (6.24]). This is enough to derive inequality “<” in (7.13).

For the reverse one, take again u. satisfying (6.1)) and (7.8). Then, by (7.8))(i), in addition to ([6.25])
we may also require that

e—0

lim (41 / [ut —uz | dHT =0, (7.15)
0Bs, (z0)

where uZ and u™ indicate the inner and outer traces at 9B;_(xo), respectively. We perform the same
construction as in Lemma In this case, inequality (6.29) is replaced by

F(ze, As,ro) < mg(u, Bs, (w0)) + et + ﬂtHdil (({U #ucpUJ, U Jus) N OBs, (zO))
+ B |u+—u;| dHd1 + Fue, AL ).
0B, (z0)
so that, using (6.25), (7.14), (7.15), and the fact that s. < (1 — 30)e we deduce that
F(zes Ac )

ed—1

< (1= 30 timsup BB ) s (1 (- 40

e—0

lim sup
e—0
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Then one concludes exactly in the same way, upon replacing 8 in (6.31) with the larger constant

B+ |[@3y])- 0

Proof of Theorem[7.1] The result follows from Lemmas [74], and arguing exactly as in the

proof of Theorem [2.1] O
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APPENDIX A. THE GSBVP CASE

In this section we briefly remark that the strategy devised in this paper allows also to establish
an integral representation result in the space GSBVP(£2;R™) for m € N. We consider functionals
F: GSBVP(£2;R™) x B(£2) — [0,+00) with the following general assumptions:

(Hy) F(u,-) is a Borel measure for any u € GSBVP(£2; R™),

(Hy) F(-, A) is lower semicontinuous with respect to convergence in measure on 2 for any A €
A(£2),

(H3) F(-,A) is local for any A € A({2), in the sense that if u,v € GSBVP(£2;R™) satisfy u = v
a.e. in A, then F(u, A) = F(v, A),

(Hy4) there exist 0 < a < 8 such that for any v € GSBVP?(£2;R™) and B € B({2) we have

a(/B IVl dz + HE Y (T 0 B)) < F(u,B) < 5(/3(1 + V) de + 1O (T, 0 B)).

In this setting, we replace definition (2.1 by

mgr(u, A) = veGSBi\Bllf(Q;R’") {F(v,A): v=u in aneighborhood of 9A}. (A1)
Moreover, as in (2.2)—(2.3), we define the functions £y, y,¢(z) = uo + £(z — x0) and gy, (z) = a
on {(z —x9) - v > 0} and Uy, ap(r) = b on {(z —z0) - v < 0} for zg € 2, ug € R™, & € M™*4,
a,beR™, and v € S 1.

Theorem A.1 (Integral representation in GSBVP). Let 2 C R? be open, bounded with Lipschitz
boundary, let m € N, and suppose that F: GSBVP(2;R™) x B(§2) — [0,4+00) satisfies (Hy)—(Hy).
Then
FB) = [ ), Vu@)dot [ glot @ @) i z)
B J.NB

for all w € GSBVP(2;R™) and B € B(12), where [ is given by

Ly uo 65 Be
f(@o,uo, §) = limsup m (b, 0.fr (o)) A2)
e—0 YdE
for all xg € 2, up e R™, £ € med7 and g is given by
z0,a,b,v> Be
g(xo0,a,b,v) = limsup 7 (tay.a., L (o)) (A.3)
e—0 Yd—1€

for all zg € 2, a,b € R™, and v € S 1,
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We point out that integral representation results in GSBVP have been used in several contributions,
see e.g. [6, [7, 8, [ 2T), [37]. They all rely on [I3] along with a perturbation and truncation argument
as follows: first, one considers the regularization F,(u) := F(u) + JfJu |[u]] dHIL, restricted to
u € SBVP(2;R™). Then, the assumptions of the integral representation result in SBV? [I3] are
satisfied and one obtains a representation of F,. In a second step, this representation is extended
to GSBVP by a truncation argument which allows to approximate GSBV?P functions by SBV?
functions. Eventually, by sending ¢ — 0, an integral representation result for the original functional
can be obtained. We refer to [21, Theorem 4.3, Theorem 5.1] for details on this procedure. (We notice
that in [2I] a more general growth condition from above is allowed in the surface energy density, cf.
[21], assumption (1.4)], analogous to the one in (H})). With our result at hand, this method can be
considerably simplified since no perturbation and truncation arguments are needed.

For the proof we need the following Poincaré-type inequality, which can be directly deduced from
Theorem [3.2

Theorem A.2 (Poincaré inequality for functions with small jump set). Let 2 C R? be a bounded
Lipschitz domain and let 1 < p < +00. Then there exists a constant ¢ = ¢(£2,p,m) > 0 such that for
all w € GSBVP(2;R™) there is a set of finite perimeter w C 2 with

HTHO"w) < AHTH (), L4Yw) < e(HTH ()@Y
and v € WHP(£2;R™) such that v=u on 2\ w and
IVl o) < el Vullze(a)- (A4)
In particular, for all w € GSBVP(£2;R™) there is a constant b € R™ such that

lu — bl r(2\0) < cl|Vul|Le(0)-

Proof. Tt suffices to consider the case m = 1 and to prove (A.4). This can be obtained for instance
by applying Theorem to the function @: 2 — R? defined as @ := (u,0,...,0) and using the
Sobolev-Korn inequality to get Vv on the left-hand side. O

Proof of Theorem[A 1 We follow the proof of Theorem and only indicate briefly the necessary
adaptions. First, we observe that a version of the fundamental estimate in Lemma [3.7 holds true in
GSBVP(£2;R™) by repeating the proof with (Hy) in place of (Hy). (We refer also to [16, Proposi-
tion 3.1].) Recall that the result follows by combining Lemmas and

Lemma [{-1: The result is proved via Lemmas [{.4] and The proof of Lemma [£.4] is the same,
up to using the growth condition (Hy) instead of (Hy). (We also refer to [I3, Lemma 6] for the
corresponding argument in SBV?.) In the proof of Lemma due to the (stronger) lower bound in
(H4) and Ambrosio’s compactness theorem in GSBV?P (see [3, Theorem 4.36]), one can ensure that
the function v% defined in now belongs to GSBVP(§2;R™). Then, the result follows with the
same argument, up to using Theorem in place of Theorem

Lemma [[.3; With the fundamental estimate in GSBV? at hand, we can follow the proof of
Lemma (4.2 for each u € GSBVP(§2;R™) with (Hy4) instead of (Hy). The family (u.). is defined as in
Lemma (see (5.5)) using Theorem in place of Theorem [3.2} First, u. € GSBV?(B.(z0); R™)
since u € GSBVP(£2;R™), and u, LB<179)E(IO)€ Wl’p(B(l,g)E(xo);Rm). Observing that

e—0

lim E_d/ |Vu(z) — Vu(xo)’p dz =0 (A.5)
BE(IO)
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for L%-a.e. zg € 2 (as Vu € LP(2;M™*?)) and using (A.4), we further get

lim s*d/ |Vue(z) — Vu(x0)|p dz = 0.
B1-6)<(z0)

e—0

With (5.5, and using again ((A.5), we deduce that (5.1))(iii) can be improved to

lim s*d/ |Vue(z) — Vu(x0)|p dz = 0.
BE(I())

e—0

This adaption is enough to redo the proof of Lemma [£.2]in the present situation.
Lemma [4.5: Here, we can follow the proof of Lemma [4.3] for each u € GSBVP(2;R™) with (H,)

instead of (H4), and Theorem in place of Theorem [3.2] The family (u.). defined in Lemma
needs to satisfy u. € GSBVP(B(z0); R™) and (6.1))(iv) needs to be improved to

e—0

lim e*<d*1>/ |Vue|" dz = 0. (A.6)
BE(ZL'O)

First, we use (6.7) to see that u. € GSBVP(B.(xo); R™). Arguing as in the proof of (6.1))(iv), with
Theorem at hand, we obtain

e—0

lim e~ (@=1) / |[Vu|P dz = 0.
B (0)

This along with lim._,q e~ (¢=1 st(ﬂ?o) |VulP dz = 0 for Hi 1-a.e. 9 € J, and (6.7) concludes the
proof of (A.6). |
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