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Abstract. We provide a quick proof of the following known result: the Sobolev space associated

with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure,

is Hilbert. Our new approach relies upon the properties of the Alberti–Marchese decomposability

bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable

on compactly-supported smooth functions, then the reference measure is absolutely continuous

with respect to the Lebesgue measure.

Introduction

In recent years, the theory of weakly differentiable functions over an abstract metric measure

space (X, d, µ) has been extensively studied. Starting from the seminal paper [6], several (essen-

tially equivalent) versions of Sobolev space W 1,2(X, d, µ) have been proposed in [13, 4, 12]. The

definition we shall adopt in this paper is the one via test plans and weak upper gradients, which

has been introduced by L. Ambrosio, N. Gigli and G. Savaré in [4]. In general, W 1,2(X, d, µ) is a

Banach space, but it might be non-Hilbert: for instance, consider the Euclidean space endowed

with the `∞-norm and the Lebesgue measure. Those metric measure spaces whose associated

Sobolev space is Hilbert – which are said to be infinitesimally Hilbertian, cf. [9] – play a very

important role. We refer to the introduction of [11] for an account of the main advantages and

features of this class of spaces.

The aim of this manuscript is to provide a quick proof of the following result (cf. Theorem 2.3):

(Rd, dEucl, µ) is infinitesimally Hilbertian for any Radon measure µ ≥ 0 on Rd, (?)

where dEucl(x, y) := |x− y| stands for the Euclidean distance on Rd. This fact has been originally

proven in [10], but it can also be alternatively considered as a special case of the main result in [8].

The approach we propose here is more direct and is based upon the differentiability theorem [1]

for Lipschitz functions in Rd with respect to a given Radon measure, as we are going to describe.

Let µ ≥ 0 be any Radon measure on Rd. G. Alberti and A. Marchese proved in [1] that it is

possible to select the maximal measurable sub-bundle V (µ, ·) of TRd – called the decomposability

bundle of µ – along which all Lipschitz functions are µ-a.e. differentiable. This way, any given

Lipschitz function f : Rd → R is naturally associated with a gradient∇AMf , which is an L∞-section

of V (µ, ·). Being ∇AM a linear operator, its induced Dirichlet energy functional EAM on L2(µ) is a

quadratic form. Hence, the proof of (?) presented here follows along these lines:

a) The maximality of V (µ, ·) ensures that the curves selected by a test plan π on (Rd, dEucl, µ)

are ‘tangent’ to V (µ, ·), namely, γ̇t ∈ V (µ, γt) for (π ⊗ L1)-a.e. (γ, t). See Lemma 2.1.
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b) Given any Lipschitz function f : Rd → R, we can deduce from item a) that the modulus

of the gradient ∇AMf is a weak upper gradient of f ; cf. Proposition 2.2.

c) Since Lipschitz functions with compact support are dense in energy in W 1,2(Rd, dEucl, µ)

– cf. Theorem 1.3 below – we conclude from b) that the Cheeger energy ECh is the lower

semicontinuous envelope of EAM. This grants that ECh is a quadratic form, thus accordingly

the space (Rd, dEucl, µ) is infinitesimally Hilbertian. See Theorem 2.3 for the details.

Finally, by combining our techniques with a structural result for Radon measures in the Euclidean

space by De Philippis–Rindler [7], we eventually prove (in Theorem 3.5) the following claim:

The Sobolev norm ‖ · ‖W 1,2(Rd,dEucl,µ) is closable on C∞c -functions =⇒ µ� Ld.

Cf. Definition 3.1 for the notion of closability we are referring to. This result solves a conjecture

that has been posed by M. Fukushima (according to V.I. Bogachev [5, Section 2.6]).

Acknowledgements. The second and third named authors acknowledge the support by the

Academy of Finland, projects 274372, 307333, 312488, and 314789.

1. Preliminaries

1.1. Sobolev calculus on metric measure spaces. By metric measure space (X, d, µ) we mean

a complete, separable metric space (X, d) together with a non-negative Radon measure µ 6= 0.

We denote by LIP(X) the space of all real-valued Lipschitz functions on X, whereas LIPc(X)

stands for the family of all elements of LIP(X) having compact support. Given any f ∈ LIP(X),

we shall denote by lip(f) : X→ [0,+∞) its local Lipschitz constant, which is defined as

lip(f)(x) :=

{
limy→x

∣∣f(x)− f(y)
∣∣/d(x, y)

0

if x ∈ X is an accumulation point,

otherwise.

The metric space (X, d) is said to be proper provided its bounded, closed subsets are compact.

To introduce the notion of Sobolev space W 1,2(X, d, µ) that has been proposed in [4], we first

need to recall some terminology. The space C
(
[0, 1],X

)
of all continuous curves in X is a complete,

separable metric space if endowed with the sup-distance d∞(γ, σ) := max
{
d(γt, σt)

∣∣ t ∈ [0, 1]
}

.

We say that γ ∈ C
(
[0, 1],X

)
is absolutely continuous provided there exists a function g ∈ L1(0, 1)

such that d(γs, γt) ≤
∫ t
s
g(r) dr holds for all s, t ∈ [0, 1] with s < t. The metric speed |γ̇| of γ,

defined as |γ̇t| := limh→0 d(γt+h, γt)/|h| for L1-a.e. t ∈ [0, 1], is the minimal integrable function (in

the L1-a.e. sense) that can be chosen as g in the previous inequality; cf. [2, Theorem 1.1.2]. A test

plan over (X, d, µ) is a Borel probability measure π on C
(
[0, 1],X

)
, concentrated on absolutely

continuous curves, such that the following properties are satisfied:

• Bounded compression. There exists Comp(π) > 0 such that (et)∗π ≤ Comp(π)µ holds

for all t ∈ [0, 1], where et : C
(
[0, 1],X

)
→ X stands for the evaluation map γ 7→ et(γ) := γt.

• Finite kinetic energy. It holds that
∫∫ 1

0
|γ̇t|2 dtdπ(γ) < +∞.

Let f : X → R be a given Borel function. We say that G ∈ L2(µ) is a weak upper gradient of f

provided for any test plan π on (X, d, µ) it holds that f ◦ γ ∈W 1,1(0, 1) for π-a.e. γ and that∣∣(f ◦ γ)′t
∣∣ ≤ G(γt) |γ̇t| for (π ⊗ L1)-a.e. (γ, t).

The minimal such function G (in the µ-a.e. sense) is called the minimal weak upper gradient of f

and is denoted by |Df | ∈ L2(µ).
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Definition 1.1 (Sobolev space [4]). The Sobolev space W 1,2(X, d, µ) is defined as the family of

all those functions f ∈ L2(µ) that admit a weak upper gradient G ∈ L2(µ). We endow the vector

space W 1,2(X, d, µ) with the Sobolev norm ‖f‖2W 1,2(X,d,µ)
:= ‖f‖2L2(µ) +

∥∥|Df |∥∥2

L2(µ)
.

The Sobolev space
(
W 1,2(X, d, µ), ‖ · ‖W 1,2(X,d,µ)

)
is a Banach space, but in general it is not a

Hilbert space. This fact motivates the following definition, which has been proposed by N. Gigli:

Definition 1.2 (Infinitesimal Hilbertianity [9]). We say that a metric measure space (X, d, µ) is

infinitesimally Hilbertian provided its associated Sobolev space W 1,2(X, d, µ) is a Hilbert space.

Let us define the Cheeger energy functional ECh : L2(µ)→ [0,+∞] as

ECh(f) :=

{
1
2

∫
|Df |2 dµ

+∞
if f ∈W 1,2(X, d, µ),

otherwise.
(1.1)

It holds that the metric measure space (X, d, µ) is infinitesimally Hilbertian if and only if ECh

satisfies the parallelogram rule when restricted to W 1,2(X, d, µ), i.e.,

ECh(f + g) + ECh(f − g) = 2ECh(f) + 2ECh(g) for every f, g ∈W 1,2(X, d, µ). (1.2)

Furthermore, we define the functional Elip : L2(µ)→ [0,+∞] as

Elip(f) :=

{
1
2

∫
lip2(f) dµ

+∞
if f ∈ LIPc(X),

otherwise.
(1.3)

Given any f ∈ LIPc(X), it holds that f ∈W 1,2(X, d, µ) and |Df | ≤ lip(f) in the µ-a.e. sense. This

ensures that the inequality ECh ≤ Elip is satisfied. Actually, ECh is the L2(µ)-relaxation of Elip:

Theorem 1.3 (Density in energy [3]). Let (X, d, µ) be a metric measure space, with (X, d) proper.

Then ECh is the L2(µ)-lower semicontinuous envelope of Elip, i.e., it holds that

ECh(f) = inf lim
n→∞

Elip(fn) for every f ∈ L2(µ),

where the infimum is taken among all sequences (fn)n ⊆ L2(µ) such that fn → f in L2(µ).

1.2. Decomposability bundle. Let us denote by Gr(Rd) the set of all linear subspaces of Rd.
Given any V,W ∈ Gr(Rd), we define the distance dGr(V,W ) as the Hausdorff distance in Rd

between the closed unit ball of V and that of W . Hence,
(
Gr(Rd), dGr

)
is a compact metric space.

Theorem 1.4 (Decomposability bundle [1]). Let µ ≥ 0 be a given Radon measure on Rd. Then

there exists a µ-a.e. unique Borel mapping V (µ, ·) : Rd → Gr(Rd), called the decomposability

bundle of µ, such that the following properties hold:

i) Any function f ∈ LIP(Rd) is differentiable at µ-a.e. x ∈ Rd with respect to V (µ, x), i.e.,

there exists a Borel map ∇AMf : Rd → Rd such that ∇AMf(x) ∈ V (µ, x) for all x ∈ Rd and

lim
V (µ,x)3v→0

f(x+ v)− f(x)−∇AMf(x) · v
|v|

= 0 for µ-a.e. x ∈ Rd. (1.4)

ii) There exists a function f0 ∈ LIP(Rd) such that for µ-a.e. point x ∈ Rd it holds that f0 is

not differentiable at x with respect to any direction v ∈ Rd \ V (µ, x).

We refer to ∇AMf as the Alberti–Marchese gradient of f . It readily follows from (1.4) that ∇AMf

is uniquely determined (up to µ-a.e. equality) and that for every f, g ∈ LIP(Rd) it holds that

∇AM(f ± g)(x) = ∇AMf(x)±∇AMg(x) for µ-a.e. x ∈ Rd. (1.5)
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Remark 1.5. Theorem 1.4 was actually proven under the additional assumption of µ being a

finite measure. However, the statement depends only on the null sets of µ, not on the measure µ

itself. Therefore, in order to obtain Theorem 1.4 as a consequence of the original result in [1], it

is sufficient to replace µ with the following Borel probability measure on Rd:

µ̃ :=

∞∑
j=1

µ|Bj(x̄)

2jµ
(
Bj(x̄)

) , for some x̄ ∈ spt(µ).

Observe, indeed, that the measure µ̃ satisfies µ� µ̃� µ. �

Remark 1.6. Given any function f ∈ LIP(Rd), it holds that∣∣∇AMf(x)
∣∣ ≤ lip(f)(x) for µ-a.e. x ∈ Rd. (1.6)

Indeed, fix any point x ∈ Rd such that f is differentiable at x with respect to V (µ, x). Then for

all v ∈ V (µ, x) \ {0} it holds that ∇AMf(x) · v = |v| limh↘0

(
f(x+ hv)− f(x)

)
/|hv| ≤ |v| lip(f)(x)

by (1.4), thus accordingly
∣∣∇AMf(x)

∣∣ = sup
{
∇AMf(x) · v

∣∣ v ∈ V (µ, x), |v| ≤ 1
}
≤ lip(f)(x). �

2. Universal infinitesimal Hilbertianity of the Euclidean space

The objective of this section is to show that the Euclidean space is universally infinitesimally

Hilbertian, meaning that it is infinitesimally Hilbertian when equipped with any Radon measure;

cf. Theorem 2.3 below. The strategy of the proof we are going to present here is based upon the

structure of the decomposability bundle described in Subsection 1.2.

First of all, we prove that any given test plan over the weighted Euclidean space is ‘tangent’,

in a suitable sense, to the Alberti–Marchese decomposability bundle:

Lemma 2.1. Let µ ≥ 0 be a given Radon measure on Rd. Let π be a test plan on (Rd, dEucl, µ).

Then for π-a.e. γ it holds that

γ̇t ∈ V (µ, γt) for L1-a.e. t ∈ [0, 1].

Proof. Let f0 be an L-Lipschitz function as in ii) of Theorem 1.4. Set B ⊆ C
(
[0, 1],Rd

)
× [0, 1] as

B :=
{

(γ, t)
∣∣∣ γ and f0 ◦ γ are differentiable at t, and γ̇t /∈ V (µ, γt)

}
.

It can be easily shown that B is Borel measurable. We can assume that γ is absolutely continuous

(since by definition a test plan is concentrated on absolutely continuous curves); in particular, also

f0 ◦γ is absolutely continuous, and thus both γ and f0 ◦γ are differentiable L1-almost everywhere.

In particular, we are done if we can prove that (π ⊗ L1)(B) = 0.

Call Bt :=
{
γ
∣∣ (γ, t) ∈ B

}
for every t ∈ [0, 1]. Moreover, G stands for the set of all x ∈ Rd such

that f0 is not differentiable at x with respect to any direction v ∈ Rd\V (µ, x). Thus, µ(Rd\G) = 0

by Theorem 1.4. We claim that the inclusion et(Bt) ⊆ Rd \ G holds for every t ∈ [0, 1]. Indeed,

for every γ ∈ Bt one has that∣∣∣∣f0(γt + hγ̇t)− f0(γt)

h
− (f0 ◦ γ)′t

∣∣∣∣ ≤ ∣∣∣∣f0(γt + hγ̇t)− f0(γt+h)

h

∣∣∣∣+

∣∣∣∣f0(γt+h)− f0(γt)

h
− (f0 ◦ γ)′t

∣∣∣∣
≤ L

∣∣∣∣γt+h − γth
− γ̇t

∣∣∣∣+

∣∣∣∣f0(γt+h)− f0(γt)

h
− (f0 ◦ γ)′t

∣∣∣∣,
so by letting h → 0 we conclude that f0 is differentiable at γt in the direction γ̇t, i.e., γt /∈ G.

Therefore, we conclude that π(Bt) ≤ π
(
e−1
t (Rd \G)

)
≤ Comp(π)µ(Rd \G) = 0 for all t ∈ [0, 1].

This grants that (π ⊗ L1)(B) = 0 by Fubini theorem, whence the statement follows. �

As a consequence of Lemma 2.1, we can readily prove that the modulus of the Alberti–Marchese

gradient of a given Lipschitz function is a weak upper gradient of the function itself:
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Proposition 2.2. Let µ ≥ 0 be a Radon measure on Rd. Let f ∈ LIPc(Rd) be given. Then the

function |∇AMf | ∈ L2(µ) is a weak upper gradient of f .

Proof. Let π be any test plan over (Rd, dEucl, µ). We claim that for π-a.e. γ it holds

(f ◦ γ)′t = ∇AMf(γt) · γ̇t for L1-a.e. t ∈ [0, 1]. (2.1)

Indeed, for (π ⊗ L1)-a.e. (γ, t) we have that f is differentiable at γt with respect to V (µ, γt) and

that γ̇t ∈ V (µ, γt); this stems from item i) of Theorem 1.4 and Lemma 2.1. Hence, (1.4) yields

∇AMf(γt) · γ̇t = lim
h↘0

f(γt + hγ̇t)− f(γt)

h
= lim
h↘0

f(γt+h)− f(γt)

h
= (f ◦ γ)′t,

which proves the claim (2.1). In particular, for π-a.e. curve γ it holds∣∣(f ◦ γ)′t
∣∣ ≤ ∣∣∇AMf(γt)

∣∣ |γ̇t| for L1-a.e. t ∈ [0, 1].

Given that |∇AMf | ∈ L2(µ) by (1.6), we conclude that |Df | ≤ |∇AMf | holds in the µ-a.e. sense. �

We are now in a position to prove the universal infinitesimal Hilbertianity of the Euclidean

space, as an immediate consequence of Proposition 2.2 and of the linearity of ∇AM:

Theorem 2.3 (Infinitesimal Hilbertianity of weighted Rd). Let µ ≥ 0 be a Radon measure on Rd.

Then the metric measure space (Rd, dEucl, µ) is infinitesimally Hilbertian.

Proof. First of all, let us define the Alberti–Marchese energy functional EAM : L2(µ)→ [0,+∞] as

EAM(f) :=

{
1
2

∫
|∇AMf |2 dµ

+∞
if f ∈ LIPc(Rd),
otherwise.

Since |Df | ≤ |∇AMf | ≤ lip(f) holds µ-a.e. for any f ∈ LIPc(Rd) by Proposition 2.2 and (1.6), we

have that ECh ≤ EAM ≤ Elip, where ECh and Elip are defined as in (1.1) and (1.3), respectively.

In view of Theorem 1.3, we deduce that ECh is the L2(µ)-lower semicontinuous envelope of EAM.

Thanks to the identities in (1.5), we also know that EAM satisfies the parallelogram rule when

restricted to LIPc(Rd), which means that

EAM(f + g) + EAM(f − g) = 2EAM(f) + 2EAM(g) for every f, g ∈ LIPc(Rd). (2.2)

Fix f, g ∈W 1,2(Rd, dEucl, µ). Let us choose any two sequences (fn)n, (gn)n ⊆ LIPc(Rd) such that

• fn → f and gn → g in L2(µ),

• EAM(fn)→ ECh(f) and EAM(gn)→ ECh(g).

In particular, observe that fn+ gn → f + g and fn− gn → f − g in L2(µ). Therefore, it holds that

ECh(f + g) + ECh(f − g) ≤ lim
n→∞

(
EAM(fn + gn) + EAM(fn − gn)

) (2.2)
= 2 lim

n→∞

(
EAM(fn) + EAM(gn)

)
= 2ECh(f) + 2ECh(g).

By replacing f and g with f + g and f − g, respectively, we conclude that the converse inequality

is verified as well. Consequently, the Cheeger energy ECh satisfies the parallelogram rule (1.2),

thus W 1,2(Rd, dEucl, µ) is a Hilbert space. This completes the proof of the statement. �

Remark 2.4. As a byproduct of the proof of Theorem 2.3, we see that for all f ∈W 1,2(Rd, dEucl, µ)

there exists a sequence (fn)n ⊆ LIPc(Rd) such that fn → f and |∇AMfn| → |Df | in L2(µ). �

Example 2.5. Given an arbitrary Radon measure µ on Rd, it might happen that

|Df | 6= |∇AMf | for some f ∈ LIPc(Rd).
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For instance, consider the measure µ := L1|C on R, where C ⊆ R is any Cantor set of positive

Lebesgue measure. Since the support of µ is totally disconnected, one has that every f ∈ L2(µ) is

a Sobolev function with |Df | = 0. However, it holds V (µ, x) = R for L1-a.e. x ∈ C by Rademacher

theorem, whence for any f ∈ LIP(R) we have that ∇AMf(x) = f ′(x) for L1-a.e. x ∈ C. �

3. Closability of the Sobolev norm on smooth functions

The aim of this conclusive section is to address a problem that has been raised by M. Fukushima

(as reported in [5, Section 2.6]). Namely, we provide a (negative) answer to the following question:

Does there exist a singular Radon measure µ on R2 for which the Sobolev norm ‖ · ‖W 1,2(R2,dEucl,µ)

is closable on compactly-supported smooth functions (in the sense of Definition 3.1 below)?

Actually, we are going to prove a stronger result: Given any Radon measure µ on Rd that is

not absolutely continuous with respect to L d, it holds that ‖ · ‖W 1,2(Rd,dEucl,µ) is not closable on

compactly-supported smooth functions. Cf. Theorem 3.5 below.

Let f ∈ C∞c (Rd) be given. Then we denote by ∇f : Rd → Rd its classical gradient. Note that

the identity |∇f | = lip(f) holds. Given a Radon measure µ on Rd, it is immediate to check that

∇AMf(x) = πx
(
∇f(x)

)
for µ-a.e. x ∈ Rd, (3.1)

where πx : Rd → V (µ, x) stands for the orthogonal projection map. We denote by L2
µ(Rd,Rd) the

space of all (equivalence classes, up to µ-a.e. equality, of) Borel maps v : Rd → Rd with |v| ∈ L2(µ).

It holds that L2
µ(Rd,Rd) is a Hilbert space if endowed with the norm v 7→

( ∫
|v|2 dµ

)1/2
.

Definition 3.1 (Closability of the Sobolev norm on smooth functions). Let µ be a Radon measure

on Rd. Then the Sobolev norm ‖ · ‖W 1,2(Rd,dEucl,µ) is closable on compactly-supported smooth

functions provided the following property is verified: if a sequence (fn)n ⊆ C∞c (Rd) satisfies fn → 0

in L2(µ) and ∇fn → v in L2
µ(Rd,Rd) for some element v ∈ L2

µ(Rd,Rd), then it holds that v = 0.

In order to provide some alternative characterisations of the above-defined closability property,

we need to recall the following improvement of Theorem 1.3 in the weighted Euclidean space case:

Theorem 3.2 (Density in energy of smooth functions [10]). Let µ be a Radon measure on Rd.

Then ECh is the L2(µ)-lower semicontinuous envelope of the functional

L2(µ) 3 f 7−→

{
1
2

∫
|∇f |2 dµ

+∞
if f ∈ C∞c (Rd),
otherwise.

Lemma 3.3. Let µ be a Radon measure on Rd. Then the following conditions are equivalent:

i) The Sobolev norm ‖ · ‖W 1,2(Rd,dEucl,µ) is closable on compactly-supported smooth functions.

ii) The functional Elip – see (1.3) – is L2(µ)-lower semicontinuous when restricted to C∞c (Rd).

iii) The identity |Df | = |∇f | holds µ-a.e. on Rd, for every function f ∈ C∞c (Rd).

Proof.

i) =⇒ ii) Fix any f ∈ C∞c (Rd) and (fn)n ⊆ C∞c (Rd) such that fn → f in L2(µ). We claim that∫
|∇f |2 dµ ≤ lim

n→∞

∫
|∇fn|2 dµ. (3.2)

Without loss of generality, we may assume the right-hand side in (3.2) is finite. Therefore, we can

find a subsequence (fnk)k of (fn)n and an element v ∈ L2
µ(Rd,Rd) such that limk

∫
|∇fnk |2 dµ =

limn

∫
|∇fn|2 dµ and ∇fnk ⇀ v in the weak topology of L2

µ(Rd,Rd). By virtue of Banach–Saks

theorem, we can additionally require that ∇f̃k → v in the strong topology of L2
µ(Rd,Rd), where we

set f̃k := 1
k

∑k
i=1 fni ∈ C∞c (Rd) for all k ∈ N. Since f̃k − f → 0 in L2(µ) and ∇(f̃k − f)→ v−∇f
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in L2
µ(Rd,Rd), we deduce from i) that v = ∇f . Consequently, we have that ∇fn ⇀ ∇f in the

weak topology of L2
µ(Rd,Rd), thus proving (3.2) by semicontinuity of the norm. In other words,

it holds that Elip(f) ≤ limn Elip(fn), which yields the validity of item ii).

ii) =⇒ iii) Let f ∈ C∞c (Rd) be given. Theorem 3.2 yields existence of a sequence (fn)n ⊆ C∞c (Rd)
such that fn → f and |∇fn| → |Df | in L2(µ). Therefore, item ii) ensures that

1

2

∫
|∇f |2 dµ = Elip(f) ≤ lim

n→∞
Elip(fn) = lim

n→∞

1

2

∫
|∇fn|2 dµ =

1

2

∫
|Df |2 dµ.

Since |Df | ≤ |∇f | holds µ-a.e. on Rd, we conclude that |Df | = |∇f |, thus proving item iii).

iii) =⇒ i) We argue by contradiction: suppose that there exists a sequence (fn)n ⊆ C∞c (Rd) such

that fn → 0 in L2(µ) and ∇fn → v in L2
µ(Rd,Rd) for some v ∈ L2

µ(Rd,Rd) \ {0}. Fix any k ∈ N
such that ‖∇fk−v‖L2

µ(Rd,Rd) ≤ 1
3‖v‖L2

µ(Rd,Rd). In particular, ‖∇fk‖L2
µ(Rd,Rd) ≥ 2

3‖v‖L2
µ(Rd,Rd). Let

us define gn := fk − fn ∈ C∞c (Rd) for every n ∈ N. Since gn → fk in L2(µ) and ∇gn → ∇fk − v
in L2

µ(Rd,Rd) as n→∞, we conclude that

‖∇fk‖L2
µ(Rd,Rd) ≥

2

3
‖v‖L2

µ(Rd,Rd) >
1

3
‖v‖L2

µ(Rd,Rd) ≥ ‖∇fk − v‖L2
µ(Rd,Rd) = lim

n→∞
‖∇gn‖L2

µ(Rd,Rd),

whence Elip(fk) > limn Elip(gn). This contradicts the lower semicontinuity of Elip on C∞c (Rd).
Consequently, item i) is proven. �

The last ingredient we need is the following result proven by G. De Philippis and F. Rindler:

Theorem 3.4 (Weak converse of Rademacher theorem [7]). Let µ be a Radon measure on Rd.

Suppose all Lipschitz functions f : Rd → R are µ-a.e. differentiable. Then it holds that µ� Ld.

We are finally in a position to prove the following statement concerning closability:

Theorem 3.5 (Failure of closability for singular measures). Let µ ≥ 0 be a given Radon measure

on Rd. Suppose that µ is not absolutely continuous with respect to the Lebesgue measure Ld. Then

the Sobolev norm ‖ · ‖W 1,2(Rd,dEucl,µ) is not closable on compactly-supported smooth functions.

Proof. First of all, Theorem 3.4 grants the existence of a Lipschitz function f : Rd → R and a

Borel set P ⊆ Rd such that µ(P ) > 0 and f is not differentiable at any point of P . Recalling

Theorem 1.4, we then see that V (µ, x) 6= Rn for µ-a.e. x ∈ P . Therefore, we can find a compact

set K ⊆ P and a vector v ∈ Rd such that µ(K) > 0 and v /∈ V (µ, x) for µ-a.e. x ∈ K. Now pick

any g ∈ C∞c (Rd) such that ∇g(x) = v holds for all x ∈ K. Then Proposition 2.2 and (3.1) yield

|Dg|(x) ≤ |∇AM g|(x) =
∣∣πx(∇g(x)

)∣∣ =
∣∣πx(v)

∣∣ < |v| = |∇g|(x) for µ-a.e. x ∈ K,

thus accordingly ‖ · ‖W 1,2(Rd,dEucl,µ) is not closable on compactly-supported smooth functions by

Lemma 3.3. Hence, the statement is achieved. �

Remark 3.6. The converse of Theorem 3.5 might fail. For instance, the measure µ described in

Example 2.5 is absolutely continuous with respect to L1, but the Sobolev norm ‖ · ‖W 1,2(R,dEucl,µ)

is not closable on compactly-supported smooth functions as a consequence of Lemma 3.3. �
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