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Abstract

We study the stability of a sequence of integral functionals on
divergence-free matrix valued fields following the direct methods of
Γ-convergence. We prove that the Γ-limit is an integral functional on
divergence-free matrix valued fields. Moreover, we show that the Γ-
limit is also stable under volume constraint and various type of bound-
ary conditions.

1 Introduction

In the setting of continuum mechanics and electromagnetism it is interesting
to consider variational models involving integral functionals depending on
fields which satisfy a differential constraint.

In many applications the constraint of being a solenoidal field is of par-
ticular interest. This is the type of functionals we have in mind:

F (U,Ω) =





∫

Ω
f(x,U) dx U ∈ Lp(Ω;Md×n), Div U = 0 in Ω

+∞ otherwise,

(1.1)

where the function f is a Carathéodory function satisfying the following
growth condition

α‖Σ‖p − 1
α
≤ f(x,Σ) ≤ β(‖Σ‖p + 1) , (1.2)

for every x ∈ Ω and Σ ∈ Md×n, and Div U denotes the differential constraint
which acts on a d×n matrix valued function by computing the divergence of
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each row. Functionals of this type arise naturally from problems in elasticity
or, more generally by duality, from problems depending on gradient fields,
as for instance in the study of bounds for effective properties of composite
materials (see for instance [12], [13], [14]).

The problem of characterizing the lower semicontinuity and the relax-
ation for functionals of type (1.1) has been addressed by [8] and [5] in the
context of A-quasi convexity; i.e., for more general differential constraints
AU = 0, where A is a first order linear partial differential operator of con-
stant rank (see Murat [10] and Tartar [15]).

The particular case A = div (with d = 1) has been considered in [11]. In
[5] it is also proved an homogenization result in terms of Γ-convergence of
functionals

Fε(U,Ω) =





∫

Ω
f
(x

ε
, U

)
dx U ∈ Lp(Ω;RN ), AU = 0 in Ω

+∞ otherwise

(1.3)

with a general first order differential operator A of constant rank.
The approach in [5] is very general and is given in terms of Young mea-

sures. A key argument relies on a result of decomposition of converging
sequences due to [8] in the spirit of the equintegrability result of Acerbi and
Fusco [2] and Fonseca, Müller and Pedregal [9].

Our aim is to show that in case of divergence free field this approach can
be simplified and a more explicit construction can be given. Our method
is based on a localization and representation technique and can be used
more generally for the study of Γ-convergence of an arbitrary sequence of
functionals of type (1.1) and not only in case of homogenization. In order to
use a representation argument, as usual, it is essential to prove the additivity
and the inner regularity of the limit functional with respect to the domain.
To this end the main difficulty is to glue two divergence free fields by keeping
the divergence constraint. We do this by modifying the fields in a nonlocal
manner by means of an auxiliary system of partial differential equations.
This construction implicitly is done in abstract in [5] and [8], however we
believe that it can be interesting to give it explicitly. In particular, the
explicit construction permits to deal with additional constraints as boundary
conditions.

The plan of the paper is the following. In Section 2 we briefly recall the
notions of Div-quasi convexity and Γ-convergence and we state the main
result of the paper.

Section 3 is devoted to the main step in our proof, the so called funda-
mental estimate, that permits to prove, in Section 4, the compactness and
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integral representation results and analyze, in Section 5, various boundary
value problems.

Finally, we conclude showing that the special case of homogenization can
be obtained as a particular case of our general Γ-convergence result.

2 Notation, preliminaries and the main result

Let Ω be a bounded open subset of Rn. Let Σ ∈ Md×n, where Md×n stands
for the space of d × n real matrices, we denote ‖Σ‖ =

∑d
i=1 |(Σ)i|, where

(Σ)i is the ith row of Σ and |(Σ)i| its euclidean norm. We use (z)i also to
denote the ith component of a vector z. The notation Σ · a stands for the
matrix Σ ∈ Md×n that acts on the vector a ∈ Rn while 〈·, ·〉 denotes the
scalar product between two vectors. Finally, we define Div Σ : Ω 7→ Rd such
that

(Div Σ)i = div(Σ)i

for every i = 1, · · · , d.

Our aim is to study the asymptotic behaviour of sequences of integral
functionals on divergence free matrix valued fields of the following type

Fj(U) =





∫

Ω
fj(x,U) dx U ∈ Lp(Ω;Md×n), Div U = 0 in Ω

+∞ otherwise,

(2.4)

where fj : Ω×Md×n 7→ [0,∞) is a sequence of Borel functions satisfying the
following conditions:

∃α, β > 0 such that α‖Σ‖p − 1
α
≤ fj(x,Σ) ≤ β(‖Σ‖p + 1) (2.5)

for every j ∈ N, x ∈ Ω and Σ ∈ Md×n;

|fj(x,Σ1)− fj(x,Σ2)| ≤ ω(‖Σ1 − Σ2‖,Σ1, Σ2) (2.6)

for every j ∈ N, x ∈ Ω and Σ1,Σ2 ∈ Md×n, with

ω(‖Σ1 − Σ2‖, Σ1,Σ2) = γ ‖Σ1 − Σ2‖(‖Σ1‖p−1 + ‖Σ2‖p−1 + 1)

for a given γ > 0.
The notion of convergence, that we will use for {Fj}, is the, by now

classic, notion of Γ-convergence introduced by De Giorgi. Together with
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a compactness result for sequences with equibounded energies this is the
suitable notion in order to get convergence of minima and minimizing se-
quences (for a comprehensive study of Γ-convergence see for instance [7] or
[3]). Therefore in view of the a priori bound (2.5) the natural topology use
in the study of the Γ-limit of {Fj} is the weak Lp topology.

Our main result is that the class of functionals of the type (1.1) is closed
under the Γ-convergence with respect to the weak Lp convergence. Namely,
we show that given the sequence of functionals defined by (2.4) there exist
a subsequence (still labelled with {Fj}) and a functional F of the same
type, such that for every U ∈ Lp(Ω,Md×n), with Div U = 0, the following
conditions are satisfied:

i) for every sequence {Uj}, with Div Uj = 0, converging to U weakly in
Lp we have

F (U) ≤ lim inf
j→+∞

Fj(Uj);

ii) there exists a sequence {Uj}, with Div Uj = 0, converging to U weakly
in Lp such that

F (U) ≥ lim sup
j→+∞

Fj(Uj).

It is well known that a Γ-limit with respect to a given topology is always
lower semicontinuous in that topology. The lower semicontinuity and the
relaxation have been characterized in [8] and [5] in the general case of integral
functionals satisfying a differential constraint given by a first order linear
partial differential operator A of constant rank (see Murat [10] and Tartar
[15]).

In the particular case of divergence constraint the necessary and sufficient
condition for the lower semicontinuity of functionals of type (1.1) is given
by the Div-quasi convexity of f(x, ·) for a.e. x ∈ Ω. We say that a function
g : Md×n 7→ R, satisfying α‖Σ‖p − 1/α ≤ g(Σ) ≤ β(‖Σ‖p + 1) for some
α, β > 0, is Div -quasi convex if for every Σ ∈ Md×n

g(Σ) = inf
{∫

Q
g(Σ + V (x)) dx : V ∈ Lp

#,Div (Q;Md×n),
∫

Q
V dx = 0

}
,

where

Lp
#,Div (Q;Md×n) = {U ∈ Lp

loc(R
n,Md×n) : Q-periodic, Div U = 0 in Rn} ,

and Q denotes the unit cube in Rn.
A necessary condition for the Div-quasi convexity is given by the rank-

(n − 1) convexity (see [8], Proposition 3.4). Here we say that a function
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g : Md×n 7→ R (d ≥ n) is rank-(n − 1) convex if for all Σ1, Σ2 ∈ Md×n such
that rank (Σ1 − Σ2) ≤ (n− 1)

g(tΣ1 + (1− t)Σ2) ≤ tg(Σ1) + (1− t)g(Σ2) (2.7)

for all t ∈ (0, 1).

Remark 2.1 If d < n the notion of rank-(n − 1) convexity coincides with
convexity.

Moreover, if d = 1 the div-quasi convexity reduces to convexity. In this
case, the relaxation of a functional of the form (1.1) is represented by the
convex envelope of f with respect to the second variable; i.e., the div-quasi
convex envelope Qdivf(x, ·) coincides with f∗∗(x, ·) (see [5] and [11] and also
Remark 3.5 (iv) in [8]).

Our main result can be stated as follows.

Theorem 2.2 For any sequence of functionals {Fj} defined by (2.4) and
satisfying (2.5) and (2.6) there exist a subsequence {Fjk

} and a Borel func-
tion ϕ : Ω × Md×n 7→ [0,+∞), Div-quasi convex in the second variable,
satisfying the condition

α‖Σ‖p − 1
α
≤ ϕ(x,Σ) ≤ β(1 + ‖Σ‖p) (2.8)

such that {Fjk
} Γ-converges with respect to the weak Lp topology to

F (U) =





∫

Ω
ϕ(x,U) dx U ∈ Lp(Ω;Md×n), Div U = 0 in Ω

+∞ otherwise.

(2.9)

Remark 2.3 Note that we assume the Lipschitz condition (2.6) in order to
simplify the argument, but this is not at all restrictive. Indeed in the study
of the Γ-limit of {Fj} it is always possible to assume that Fj are lower semi-
continuous with respect to the weak Lp topology (if not we can replace the
sequence {Fj} with the sequence of the corresponding relaxed functionals).
Thus, in view of the characterization of the lower semicontinuous functionals,
we may always assume that {fj} are Div -quasi convex, hence rank-(n− 1)
convex. This implies that the growth condition fj(x,Σ) ≤ β(1 + ‖Σ‖p) is
sufficient to conclude the Lipschitz condition

|fj(x,Σ1)− fj(x,Σ2)| ≤ γ ‖Σ1 − Σ2‖(‖Σ1‖p−1 + ‖Σ2‖p−1 + 1)

for every Σ1, Σ2 ∈ Md×n and x ∈ Ω with γ depending on β and p (see e.g.
[4] Remark 4.13 (iii)).
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For the proof of Theorem 2.2 we will use the classical strategy of localiza-
tion and integral representation. To this end it is convenient to introduce an
explicit dependence of our functionals on the domain. We denote by A(Ω)
the family of all open subsets of Ω and for every j ∈ N we consider the
functionals Fj : Lp(Ω,Md×n)×A(Ω) → R given by

Fj(U,A) =





∫

A
fj(x,U) dx U ∈ Lp(Ω;Md×n), Div U = 0 in Ω

+∞ otherwise .

(2.10)

Let us finally recall that this strategy also requires the characterization of
the Γ-convergence in terms of the lower and upper Γ-limit, i.e.,

F ′(U,A) = Γ- lim inf
j→+∞

Fj(U,A) = inf
{
lim inf
j→+∞

Fj(Uj , A) : Uj ⇀ U
}
,

and

F ′′(U,A) = Γ- lim sup
j→+∞

Fj(U,A) = inf
{
lim sup
j→+∞

Fj(Uj , A) : Uj ⇀ U
}

.

Thus the equality F ′(U,A) = F ′′(U,A) is equivalent to the existence of the
Γ-limit F (U,A) = Γ-limj→+∞ Fj(U,A).

In the sequel the letter c will denote a positive constant, independent of
the parameters under consideration, whose value may vary from line to line.

3 The Fundamental Estimate

In this section we prove the main tool for our Γ-convergence result: the
fundamental estimate.

Proposition 3.1 (Fundamental Estimate) Let p > 1 and let {Fj} be
a sequence of functionals defined by (2.10) and satisfying conditions (2.5)
and (2.6). For every σ > 0, for all A,A′, B ∈ A(Ω) with A′ ⊂⊂ A and
dist (A′, B \ A) > 0, for every Uj ⇀ U and Vj ⇀ U in Lp(Ω;Md×n) with
Div Uj = Div Vj = Div U = 0, there exists a sequence {Wj} ⊆ Lp(Ω;Md×n),
with Div Wj = 0, weakly converging to U in Lp(Ω;Md×n) such that

Fj(Wj , A
′ ∪B) ≤ Fj(Uj , A) + Fj(Vj , B) + σ + o(1) (3.1)

as j → +∞.
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Proof. Let δ = dist (A′, ∂A), we fix N ∈ N. For any k ∈ {1, · · · , N} we
define the set

Ak = {x ∈ A : Ndist (x,A′) < kδ}
and A0 = A′. Let ϕk be a cut-off function between Ak−1 and Ak; i.e.,
ϕk ∈ C∞

0 (Ak) and ϕk = 1 on Ak−1. In general Div (ϕkUj + (1−ϕk)Vj) 6= 0,
but we can modify ϕkUj + (1− ϕk)Vj adding a non local perturbation such
that the new sequence is divergence free. More precisely, we define

(W k
j )i = ϕk(Uj)i + (1− ϕk)(Vj)i + |D(gk

j )i|p′−2D(gk
j )i

for i = 1, · · · , d, where gk
j : Ω → Rd is the solution of the Neumann system





−div
(
|D(gk

j )i|p′−2D(gk
j )i

)
= 〈(Uj − Vj)i, Dϕk〉 on Ω

∂(gk
j )i

∂ν
= 0 on ∂Ω i = 1, · · · , d

∫

Ω
gk
j dx = 0 ,

(3.2)

where ν is the outer normal on ∂Ω and 1/p + 1/p′ = 1. If p′ < 2 we use the
convention

|D(gk
j )i|p′−2D(gk

j )i =





|D(gk
j )i|p′−2D(gk

j )i if |D(gk
j )i| > 0

0 if |D(gk
j )i| = 0 .

Note that (Uj − Vj) ·Dϕk = Div (ϕkUj + (1−ϕk)Vj) and the solution of
(3.2) exists in view of the fact that

∫

Ω
〈(Uj − Vj)i, Dϕk〉 dx =

∫

∂Ω
〈(Vj)i, ν〉 dHn−1 = 0

for every i = 1, · · · , d, since Div Vj = 0. Hence, by (3.2) we have that
Div W k

j = 0.
By (2.5) and (2.6), we get that

∫

A′∪B
fj(x,W k

j ) dx

≤
∫

A′∪B
fj(x, ϕkUj + (1− ϕk)Vj) dx +

∫

A′∪B
ωk

j (x) dx

=
∫

A′∪(B∩Ak−1)
fj(x,Uj) dx +

∫

B\Ak

fj(x, Vj) dx
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+
∫

A′∪B
ωk

j (x) dx +
∫

Ck∩B
fj(x, ϕkUj + (1− ϕk)Vj) dx

≤ Fj(Uj , A) + Fj(Vj , B) +
∫

A′∪B
ωk

j (x) dx

+
∫

Ck∩B
β + β2p−1(‖Uj‖p + ‖Vj‖p) dx , (3.3)

where Ck = Ak \Ak−1 and

ωk
j (x) = ω(

d∑

i=1

|D(gk
j )i|p′−1,W k

j , (ϕkUj + (1− ϕk)Vj)) .

We now choose k such that the last term of the inequality (3.3) is small.
Indeed, since {Uj} and {Vj} are bounded in Lp(Ω;Md×n), we note that

N∑

k=1

∫

Ck∩B
β + β2p−1(‖Uj‖p + ‖Vj‖p) dx

≤
∫

(A∩B)\A′
β + β2p−1(‖Uj‖p + ‖Vj‖p) dx ≤ c̃

and therefore there exists kj ∈ {1, · · · , N} such that
∫

Ckj
∩B

β + β2p−1(‖Uj‖p + ‖Vj‖p) dx

≤ 1
N

∫

(A∩B)\A′
β + β2p−1(‖Uj‖p + ‖Vj‖p) dx ≤ c̃

N
. (3.4)

With this choice of kj , we define

Wj := W
kj

j gj := g
kj

j ϕj := ϕkj ωj = ω
kj

j .

Summarizing, we have

(Wj)i = ϕj(Uj)i + (1− ϕj)(Vj)i + |D(gj)i|p′−2D(gj)i

for i = 1, · · · , d, where ϕj ∈ C∞
0 (A) is a cut-off function between A′ and A

and gj is the solution of the Neumann system




−∆p′(gj)i = 〈(Uj − Vj)i, Dϕj〉 on Ω

∂(gj)i

∂ν
= 0 on ∂Ω i = 1, · · · , d

∫

Ω
gj dx = 0 ,

(3.5)
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where 1/p + 1/p′ = 1, ∆p′u = div(|Du|p′−2Du) and ν is the outer normal
on ∂Ω.

From (3.3), in view of (3.4), for every σ > 0, if we fix N ∈ N such that
c̃/N < σ, we get

Fj(Wj , A
′ ∪B) ≤ Fj(Uj , A) + Fj(Vj , B) + σ +

∫

A′∪B
ωj(x) dx .

It remains to prove that

lim
j→∞

(∫

A′∪B
ωj(x) dx

)
= 0 . (3.6)

By (3.5) and by Hölder’s and Poincaré’s inequalities, since {Uj} and {Vj}
are bounded in Lp(Ω;Md×n), we have that

∫

Ω
|D(gj)i|p′ dx =

∫

Ω
〈(Uj − Vj)i, Dϕj〉 (gj)i dx

≤
(∫

Ω
|〈(Uj − Vj)i, Dϕj〉|p dx

)1/p(∫

Ω
|(gj)i|p′ dx

)1/p′

≤ c
(∫

Ω
|D(gj)i|p′ dx

)1/p′

for every i = 1, · · · , d. It follows that {gj} is bounded in the Sobolev space
W 1,p′(Ω;Md×n) and, up to a subsequence, it converges strongly in Lp′(Ω;Md×n).
Moreover, since ϕj varies in the finite set {ϕ1, · · · , ϕN}, all converging subse-
quences of {ϕj} are stationary and thus, since (Uj−Vj) ⇀ 0 in Lp(Ω;Md×n),
we deduce that

lim
j→∞

∫

Ω
‖Dgj‖p′ dx = 0 . (3.7)

and hence the strong convergence of {gj} to zero in W 1,p′(Ω;Md×n). Since

ωj(x) ≤ c ‖Dgj‖p′−1(1 + ‖Uj‖p−1 + ‖Vj‖p−1 + ‖Dgj‖) ,

by Hölder’s inequality we have that
∫

Ω
ωj(x) dx ≤ c

(∫

Ω
‖Dgj‖p′ dx +

(∫

Ω
‖Dgj‖p′ dx

)1/p)
;

which, in view of (3.7), gives (3.6).
Finally, by the strong convergence of {gj} and the fact that {ϕj} varies

in a finite set of functions, we also deduce that Wj ⇀ U in Lp(Ω;Md×n).
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Remark 3.2 Using the fundamental estimate, by classical arguments, it
is possible to prove that the Γ-liminf, F ′(U, ·), and the Γ-limsup, F ′′(U, ·),
are inner regular increasing set functions and, in particular, F ′′(U, ·) is also
subadditive (see e.g. [4] Propositions 11.5 and 11.6).

In view of the future application of the fundamental estimate to the
study of the stability of the Γ-convergence under average conditions (see
Proposition 5.1 and Remark 5.2) it is convenient to note the following fact.

Remark 3.3 We can restate the fundamental estimate adding a condition
on the average. More precisely, for every σ > 0, for all A,A′, B ∈ A(Ω) with
A′ ⊂⊂ A and dist (A′, B \A) > 0, taking {Uj}, {Vj} and U as in Proposition
3.1, we can construct a sequence {Wj} such that





Wj ⇀ U in Lp(Ω;Md×n)

Div Wj = 0

−
∫

Ω
Wj dx = −

∫

Ω
U dx

(3.8)

and
Fj(Wj , A

′ ∪B) ≤ Fj(Uj , A) + Fj(Vj , B) + σ + o(1) (3.9)

as j → +∞. The sequence {Wj} is explicitly given by

(Wj)i := ϕj(Uj)i + (1− ϕj)(Vj)i + |D(gj)i|p′−2D(gj)i − (mj)i , (3.10)

for i = 1, · · · , d, where ϕj ∈ C∞
0 (A) is a cut-off function between A′ and A,

gj is the solution of the Neumann system (3.5) and mj ∈ Md×n, given by

(mj)i := −
∫

Ω

(
ϕj(Uj)i + (1− ϕj)(Vj)i + |D(gj)i|p′−2D(gj)i − (U)i

)
dx

for i = 1, · · · , d, converges to zero as j → +∞.

4 Compactness and Integral Representation

In this section we prove that any sequence {Fj} of functionals of the form
(2.10) is compact with respect to the Γ-convergence (Proposition 4.1) and
that the Γ-limit can be represented as an integral functional of the same
form (Theorem 4.2).
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We recall that the compactness of the Γ-convergence is well known in case
of separable metric spaces (see e.g. [4] Theorem 7.9). Since we are studying
the Γ-convergence in the Lp-space with respect to the weak topology, we
cannot make use directly of this result.

The proof of the existence of a subsequence {Fjk
(·, R)} which Γ-converges

to the functional F (·, R) for every R ∈ R(Ω) (union of open cubes contained
in Ω and with vertices in Qn) is due to Braides, Fonseca and Leoni (see [5]
Lemma 5.3). Fixed R ∈ R(Ω), they essentially use the fact that since p > 1,
the dual of Lp(R;Md×n) is separable and hence the space

lB = {V ∈ Lp(R;Md×n) : ‖V ‖Lp ≤ l} ,

with l ∈ N, endowed with the weak topology is metrizable. They consider
the metric dl which generates the Lp- weak topology in lB and apply the
compactness result for separable metric spaces to the sequence of function-
als {Fj(·, R)} restricted to the space (lB ∩ {Div = 0}, dl). By a recursive
procedure on l and a diagonalization process they prove that there exists a
subsequence jk such that {Fjk

(·, R)} Γ-converges for every R ∈ R(Ω).
In the following proposition we show that, using the fundamental esti-

mate (Proposition 3.1), we can easily extend this compactness result from
R(Ω) to every open set A ∈ A(Ω).

Proposition 4.1 (Compactness) Let {Fj} be a sequence of functionals
defined by (2.10). Then there exists a subsequence {Fjk

} such that the Γ-
limit

F (U,A) = Γ- lim
k→+∞

Fjk
(U,A)

exists for all U ∈ Lp(Ω;Md×n) with Div U = 0 and A ∈ A(Ω). Moreover,
F (U, ·) is the restriction of a Borel measure to A(Ω).

Proof. Consider the family R(Ω) of all finite unions of open cubes
contained in Ω and with vertices in Qn. By Lemma 5.3 in [5], there exists a
subsequence {jk} such that the Γ-limit

F (U,R) = Γ- lim
k→+∞

Fjk
(U,R)

exists for all R ∈ R(Ω) and U ∈ Lp(Ω;Md×n) with Div U = 0.
Now the extension of the Γ-convergence of Fjk

(U, ·) to every open set
A ∈ A(Ω) is a consequence of the inner regularity of F ′(U, ·) and F ′′(U, ·)
(see Remark 3.2) taking into account that if B ⊂⊂ A ⊆ Ω then there exists
R ∈ R(Ω) such that B ⊂⊂ R ⊂⊂ A.
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Finally, to conclude that F (U, ·) is the restriction of a Borel measure to
A(Ω) it is enough to recall that F (U, ·) is an increasing inner regular set
function, subadditive and superadditive (see Remark 3.2) and then to apply
the Measure property criterion due to De Giorgi and Letta (see Theorem
10.2 in [4]).

Theorem 4.2 (Integral Representation) Let {fj} be a sequence of Bo-
rel functions with fj : Ω×Md×n 7→ [0, +∞) satisfying (2.6) and the growth
condition (2.5). Then, there exist a subsequence jk → +∞ and a Borel
function ϕ : Ω×Md×n 7→ [0,+∞), Div-quasi convex in the second variable,
satisfying the condition

α‖Σ‖p − 1
α
≤ ϕ(x,Σ) ≤ β(1 + ‖Σ‖p) (4.1)

such that {Fjk
}, defined by (2.10), Γ-converges to

F (U,A) =





∫

A
ϕ(x,U) dx U ∈ Lp(Ω;Md×n), Div U = 0 in Ω,

+∞ otherwise ,

(4.2)

for all A ∈ A(Ω).

Proof. By Proposition 4.1 there exists a subsequence {Fjk
} which

Γ-converges to F . Moreover, by (2.5), F (U, ·) can be extended to a Borel
measure on Ω absolutely continuous with respect to the Lebesgue measure.
Hence, it remains to deduce the integral representation (4.2). This will be
done in several steps. The first three steps use standard arguments that we
repeat and adapt to our context for the reader convenience.

Step 1: definition of ϕ.
Let Σ ∈ Md×n, we denote by gΣ ∈ L1(Ω) the density of F (Σ, ·) with respect
to the Lesbegue measure; i.e.,

F (Σ, A) =
∫

A
gΣ(x) dx

for all A ∈ A(Ω). If we define

ϕ(x,Σ) = gΣ(x)

for all x ∈ Ω and Σ ∈ Md×n, by (2.5), we get that

α‖Σ‖p − 1
α
≤ ϕ(x,Σ) ≤ β(1 + ‖Σ‖p)
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for a.e. x ∈ Ω.

Step 2: integral representation on piecewise constant functions.
Let A ∈ A(Ω) and let U ∈ Lp(Ω;Md×n) be a piecewise constant function in
A, with Div U = 0; i.e.,

U |A =
N∑

j=1

χAjΣ
j

where the sets Aj are disjoint open sets with |A \⋃N
j=1 Aj | = 0, Σj ∈ Md×n

for j = 1, · · · , N . By Step 1

F (U,A) =
N∑

j=1

F (U,Aj) =
N∑

j=1

F (Σj , Aj)

=
N∑

j=1

∫

Aj

ϕ(x,Σj) dx =
N∑

j=1

∫

Aj

ϕ(x,U) dx

=
∫

A
ϕ(x,U) dx .

Step 3: rank-(n− 1) convexity of ϕ.
By Step 1 we have that

ϕ(x,Σ) = lim sup
ρ→0+

F (Σ, Bρ(x))
|Bρ(x)|

for all x ∈ Ω and Σ ∈ Md×n. In view of (2.7) we prove the rank-(n − 1)
convexity in the second variable of ϕ if, for Bρ(x) ⊂ Ω, we show that

F (tΣ1 + (1− t)Σ2, Bρ(x)) ≤ tF (Σ1, Bρ(x)) + (1− t)F (Σ2, Bρ(x))

for all t ∈ (0, 1) and for every Σ1 6= Σ2 ∈ Md×n with rank (Σ1−Σ2) ≤ (n−1).
As a consequence of the rank property of Σ1 and Σ2 we have that there

exists a unit vector ν ∈ Rn such that (Σ1 − Σ2) · ν = 0. Hence, if we define
V : Rn 7→ {Σ1, Σ2} as

V (y) =
{

Σ1 y ∈ A1

Σ2 y ∈ A2

with
A1 = {y ∈ Rn : j < 〈y, ν〉 < j + t , j ∈ Zn} ,

A2 = {y ∈ Rn : j + t < 〈y, ν〉 < j + 1 , j ∈ Zn}
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and t ∈ (0, 1), we clearly have Div V = 0. Roughly speaking, A1 ∪ A2 rep-
resents a lamination of Rn with proportion t and 1 − t, respectively, in the
direction orthogonal to ν. We now define Uh(y) = V (hy) for y ∈ Rn. It is
easy to show that

Uh ⇀ (tΣ1 + (1− t)Σ2) weak∗ in L∞, as h →∞ .

Moreover, denoting Ah
1 = (1/h)A1 and Ah

2 = (1/h)A2 we have

χAh
1

⇀ t and χAh
2

⇀ (1− t) weak∗ in L∞, as h →∞ .

By Step 2 and the lower semicontinuity of F we have

F (tΣ1+ (1− t)Σ2, Bρ(x))
≤ lim inf

h→∞
F (Uh, Bρ(x))

= lim inf
h→∞

(∫

Ah
1∩Bρ(x)

ϕ(y, Σ1) dy +
∫

Ah
2∩Bρ(x)

ϕ(y, Σ2) dy
)

= t

∫

Bρ(x)
ϕ(y, Σ1) dy + (1− t)

∫

Bρ(x)
ϕ(y, Σ2) dy

= t F (Σ1, Bρ(x)) + (1− t) F (Σ2, Bρ(x)) ,

which implies that ϕ is rank-(n − 1) convex in the second variable for all
x ∈ Ω. In particular, by (4.1), ϕ is continuous in the second variable (see
Remark 2.3).

Step 4: integral representation on balls.
Let B be an open ball such that B ⊂ Ω and let U ∈ C∞(Ω;Md×n) with
Div U = 0 in Ω. We first show that it is possible to extend the integral rep-
resentation from piecewise constant functions (see Step 2) to C∞-functions
using a suitable approximation of U by piecewise constant divergence free
fields. More precisely, since B is a starshaped domain, by Poincaré Lemma,
there exists a function Φ ∈ C∞(B;Md×N ) with N = n(n− 1)/2, such that

U |B = LΦ ,

for a suitable first order linear differential operator L satisfying DivLψ = 0
for every ψ ∈ C1(B;Md×N ) (e.g. if d = 1 and n = 3 then L = curl and Φ is
the potential vector of U ; i.e., U = curl Φ).

Now Φ can be approximated by a sequence {Φh} of piecewise affine
functions which converges strongly to Φ in W 1,p(B;Md×N ). Hence, {LΦh}
is a sequence of piecewise constant function with DivLΦh = 0 and strongly
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converging to LΦ = U in Lp(B;Md×n). Since F is lower semicontinuous, by
(4.1) and Steps 2 and 3 we get

F (U,B) ≤ lim inf
h→∞

F (LΦh, B) = lim
h→∞

∫

B
ϕ(x,LΦh) dx

=
∫

B
ϕ(x,U) dx .

We now prove the reverse inequality. We define

G(V,B) = F (U + V,B)

where U, V ∈ C∞(Ω;Md×n) with Div U = Div V = 0. Up to now we have
proved that there exists a Carathéodory functions ψ rank-(n− 1) convex in
the second variable and satisfying (4.1) such that

G(V, B) ≤
∫

B
ψ(x, V ) dx . (4.3)

Note that, in (4.3) the equality holds if V is a piecewise constant function.
Hence, since LΦh → U in Lp(B;Md×n) we have

∫

B
ψ(x, 0) dx = G(0, B) = F (U,B)

≤
∫

B
ϕ(x, U) dx = lim

h→∞

∫

B
ϕ(x,LΦh) dx

= lim
h→∞

F (LΦh, B) = lim
h→∞

G(LΦh − U,B)

≤ lim
h→∞

∫

B
ψ(x,LΦh − U) dx =

∫

B
ψ(x, 0) dx

and, in particular,

F (U,B) =
∫

B
ϕ(x,U) dx (4.4)

for all U ∈ C∞(Ω;Md×n), with Div U = 0 in Ω.
It remains to extend the integral representation result on B for C∞-

functions to all Lp-functions by convolution. Let U ∈ Lp(Ω;Md×n) with
Div U = 0 in Ω and let ρj ∈ C∞

c (Rn) such that
∫
Rn ρj dx = 1 and spt ρj ⊂

B(0, 1/j) where 1/j < dist (B,Rn \ Ω). Then ρj ∗ U ∈ C∞(B;Md×n), with
Div (ρj ∗ U) = 0 in B, and

Uj := ρj ∗ U → U in Lp(B;Md×n) .
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By (4.4) we have

F (U,B) ≤ lim inf
j→∞

F (Uj , B) = lim
j→∞

∫

B
ϕ(x,Uj) dx

=
∫

B
ϕ(x,U) dx .

The reverse inequality follows using the previous argument with {ρj ∗U} in
place of {LΦh}.
Step 5: integral representation on A ∈ A(Ω).
Let A ∈ A(Ω), by the Vitali Covering Theorem, there exists a disjoint
sequence {Bj} of closed balls, subsets of A, such that |A \⋃

j Bj | = 0. Since
F is a Borel measure absolutely continuous with respect to the Lesbegue
measure, by Step 4 we have that

F (U,A) =
∑

j

F (U,Bj) =
∑

j

∫

Bj

ϕ(x,U) dx

=
∫

A
ϕ(x,U) dx

which gives the integral representation of F for every open set A ∈ A(Ω).
Finally, by the lower-semicontinuity of F , we have that ϕ is also Div -

quasi convex which concludes the proof.

5 Boundary conditions and volume constraints

In this section we study the stability of the Γ-convergence result, obtained
in Section 4, under average, periodicity and boundary conditions. The main
tool is again the fundamental estimate that allows us to modify the optimal
sequence for the Γ-limit in a new sequence that matches additional condi-
tions. This study is also motivated by the possible application of our general
Γ-convergence result to the case of homogenization (see Section 6).

We recall that

Lp
#,Div (Q;Md×n) = {U ∈ Lp

loc(R
n,Md×n) : Q-periodic, Div U = 0 in Rn} ,

where Q denotes the unit cube in Rn.

Proposition 5.1 (Average and Periodicity condition) Let {Fj} be a
sequence of functionals defined by (2.10) and satisfying the conditions (2.5),
(2.6), such that

F (U,Q) = Γ- lim
j→+∞

Fj(U,Q)
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for all U ∈ Lp(Q;Md×n) with Div U = 0 in Q. Then, the sequence of func-
tionals

Gj(U,Q) =





Fj(U,Q) U ∈ Lp
#,Div (Q;Md×n), −

∫

Q
U dx = m

+∞ otherwise

Γ-converges to

G(U,Q) =





F (U,Q) U ∈ Lp
#,Div (Q;Md×n), −

∫

Q
U dx = m

+∞ otherwise

with m ∈ Md×n.

Proof. Let U ∈ Lp
#,Div (Q;Md×n), with −∫Q U dx = m. By the Γ-

convergence of {Fj(·, Q)} to F (·, Q), there exists a sequence {Uj} weakly
converging to U in Lp(Q;Md×n), with Div Uj = 0, such that

G(U,Q) = F (U,Q) = lim
j→∞

Fj(Uj , Q) .

Let K be a compact set and A′ ∈ A(Q) such that K ⊂ A′ ⊂⊂ Q. By
Remark 3.3 with Vj = U , A = Q and B = Q \K, there exists a sequence
{Wj}, defined as in (3.10), such that





Wj ⇀ U in Lp(Q;Md×n)

Wj ∈ Lp
#,Div (Q;Md×n) , −

∫

Q
Wj dx = −

∫

Q
U dx = m

and
Fj(Wj , Q) ≤ Fj(Uj , Q) + Fj(U,Q \K) + σ + o(1)

as j → +∞. Note that, the periodicity of the sequence {Wj} follows from the
periodicity assumption on U . By (2.5), we can choose K such that Fj(U,Q\
K) ≤ σ. Then

Gj(Wj , Q) = Fj(Wj , Q) ≤ Fj(Uj , Q) + 2σ + o(1) ,

and hence

lim sup
j→∞

Gj(Wj , Q) ≤ lim
j→∞

Fj(Uj , Q) + 2σ = G(U,Q) + 2σ .
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By the arbitrariness of σ we get the limsup inequality; i.e.,

Γ- lim sup
j→+∞

Gj(U,Q) ≤ G(U,Q)

The liminf inequality is trivially satisfied since

Γ- lim inf
j→+∞

Gj(U,Q) ≥ Γ- lim inf
j→+∞

Fj(U,Q)

for every U ∈ Lp
#,Div (Q;Md×n) with −∫Q U dx = m.

Remark 5.2 (Average conditions) Clearly, reasoning as in Proposition
5.1, we can also prove that given {Fj} as above, the sequence of functionals

Gj(U,A) =





Fj(U,A) U ∈ Lp(A;Md×n), Div U = 0, −
∫

A
U dx = m

+∞ otherwise

Γ-converges to

G(U,A) =





F (U,A) U ∈ Lp(A;Md×n), Div U = 0, −
∫

A
U dx = m

+∞ otherwise

with m ∈ Md×n and A ∈ A(Ω).

We conclude this section by considering a natural boundary condition for
this problem. Recall that for every U ∈ Lp(Ω,Md×n), satisfying Div U = 0 in
Ω, it is possible to define the normal trace U · ν on ∂Ω, whenever ∂Ω is Lip-
schitz regular. In particular, the trace belongs to the space W

− 1
p
,p(∂Ω,Rd)

(see e.g. [1] and [16]).

Proposition 5.3 (Boundary condition) Let {Fj} be a sequence of func-
tionals defined by (2.10) and satisfying the conditions (2.5), (2.6) such that

F (U,A) = Γ- lim
j→+∞

Fj(U,A)

for all U ∈ Lp(A;Md×n) with Div U = 0 in A and A ∈ A(Ω) with Lipschitz
boundary. Then, for every g ∈ W

− 1
p
,p(∂Ω,Rd) the sequence of functionals

Gj(U,A) =





Fj(U,A) U ∈ Lp(A;Md×n), Div U = 0, U · ν = g on ∂A

+∞ otherwise
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Γ-converges to

G(U,A) =





F (U,A) U ∈ Lp(A;Md×n), Div U = 0, U · ν = g on ∂A

+∞ otherwise

where ν is the outer normal on ∂A.
In particular, for every U ∈ Lp(A;Md×n), with Div U = 0, there exists

a sequence {Wj} ⊆ Lp(Rn;Md×n) weakly converging to 0 in Lp(Rn;Md×n)
such that Div Wj = 0 in Rn, Wj = 0 in Rn \A,

∫
A Wj dx = 0 and

F (U,A) = lim
j→+∞

Fj(U + Wj , A) .

Proof. Let U ∈ Lp(A;Md×n) with Div U = 0 on A and U · ν = g
on ∂A. By assumption there exists a sequence {Uj} ⊆ Lp(A;Md×n) weakly
converging to U in Lp(A;Md×n), with Div Uj = 0, such that

G(U,A) = F (U,A) = lim
j→∞

Fj(Uj , A) .

Let K be a compact set and A′ ∈ A(Ω) such that K ⊂ A′ ⊂⊂ A. Reasoning
as in the proof of the fundamental estimate (with Vj = U and B = A \K)
we can show that for every σ > 0 there exists a sequence {W̃j} such that

Fj(W̃j , A) ≤ Fj(Uj , A) + Fj(U,A \K) + σ + o(1)

as j → +∞, where




(W̃j)i = ϕj(Uj)i + (1− ϕj)(U)i + |D(gj)i|p′−2D(gj)i i = 1, · · · , d

W̃j ⇀ U in Lp(A;Md×n)

W̃j · ν = U · ν on ∂A

Div W̃j = 0 on A ,

(5.5)

ϕj ∈ C∞
0 (A) is a suitable cut-off function between A′ and A and gj is the

solution of the Neumann system




−∆p′(gj)i = 〈(Uj − U)i, Dϕj〉 on A

∂(gj)i

∂ν
= 0 on ∂A i = 1, · · · , d

∫

A
gj dx = 0 ,
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Note that if a vector field v : A → Rn satisfies div v = 0 in A and 〈v, ν〉 = 0
on ∂A, then

∫
A v dx = 0. In fact, applying the divergence theorem to the

function (x)i v, where (x)i is the ith component of x for every i = 1, · · · , n,
we get

∫

A
(v)idx =

∫

A
div ((x)i v) dx =

∫

∂A
(x)i〈v, ν〉 dHn−1 = 0 .

Then, as a consequence of (5.5), we have that
∫

A
W̃j dx =

∫

A
U dx . (5.6)

By (2.5), we can choose K such that Fj(U,A \K) ≤ σ and hence

Gj(W̃j , A) = Fj(W̃j , A) ≤ Fj(Uj , A) + 2σ + o(1) .

By the arbitrariness of σ, we get the limsup inequality

Γ- lim sup
j→∞

Gj(U,A) ≤ G(U,A) .

The liminf inequality is trivially satisfied since

Γ- lim inf
j→+∞

Gj(U,Q) ≥ Γ- lim inf
j→+∞

Fj(U,Q) ;

hence, we get the Γ-convergence result.
Note that, in particular, we have proved that for every U ∈ Lp(A;Md×n),

with Div U = 0 in A, there exists a sequence {W̃j} as in (5.5) such that

lim
j→+∞

Fj(W̃j , A) = F (U,A) .

We now define Wj = W̃j−U . Since Wj ·ν = 0 on ∂A we can extend it equal
to zero outside A keeping the divergence constraint in Rn. Hence, we can
rewrite

lim
j→+∞

Fj(U + Wj , A) = F (U,A) ,

where, by (5.5) and (5.6), {Wj} ⊆ Lp(Rn;Md×n) satisfies the following prop-
erties 




Wj ⇀ 0 in Lp(Rn;Md×n)

Div Wj = 0 in Rn

Wj = 0 in Rn \A ,

∫

A
Wj dx = 0 .
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6 Homogenization

We can apply our general Γ-convergence result to the case of homogeniza-
tion. In this section we propose an alternative proof to the one due to
Braides, Fonseca and Leoni in [5] of the homogenization formula describ-
ing the integrand function ϕ.

Theorem 6.1 Let f : Rn×Md×n 7→ [0, +∞) be a Borel function, Q-periodic
in the first variable, satisfying (2.5) and (2.6) with f in place of fj. Let us
consider the family of functionals {Fε} defined by

Fε(U,Ω) =





∫

Ω
f

(
x

ε
, U

)
dx U ∈ Lp(Ω;Md×n), Div U = 0 in Ω

+∞ otherwise .

Then, we have

Γ- lim
ε→0

Fε(U,Ω) =
∫

Ω
fhom(U) dx ,

for every U ∈ Lp(Ω,Md×n) with Div U = 0 in Ω, where fhom : Md×n 7→
[0,+∞) is a Div -quasi convex function described by the following homoge-
nization formula

fhom(Σ) = lim
t→+∞

1
tn

inf
{∫

tQ
f(x,Σ + V (y)) dy : V ∈ Lp

#,Div (tQ;Md×n),
∫

tQ
V dy = 0

}

for every Σ ∈ Md×n with Q = (−1/2, 1/2)n.
Moreover, if d = 1 then fhom is convex and it is given by the cell-problem

formula

fhom(ξ) = inf
{∫

Q
f(y, ξ + v(y)) dy : v ∈ Lp

#,div (Q;Rn),
∫

Q
v dy = 0

}

for every ξ ∈ Rn.

Proof. We recall that, by Theorem 4.2, for every sequence {εj} con-
verging to 0 there exist a subsequence of {εj} (not relabeled) and a function
ϕ : Ω×Md×n 7→ [0, +∞), Div -quasi convex in the second variable, such that

Γ- lim
j→+∞

Fεj (U,A) =
∫

A
ϕ(x,U) dx (6.7)

21



for all U ∈ Lp(Ω;Md×n) with Div U = 0 in Ω and A ∈ A(Ω).

Step 1: ϕ does not depend on x.
It is sufficient to prove that if Σ ∈ Md×n, y, z ∈ Rn and ρ > 0 then

Γ- lim
j→+∞

Fεj (Σ, Bρ(y)) = Γ- lim
j→+∞

Fεj (Σ, Bρ(z)) .

The proof that follows is a classical argument in homogenization. We briefly
repeat it for the reader convenience (see e.g. [4] Proposition 14.3). By Propo-
sition 5.3 there exists a sequence Uj ⇀ 0 in Lp(Rn;Md×n), with Div Uj = 0
in Rn and Uj = 0 in Rn \Bρ(y), such that

Γ- lim
j→+∞

Fεj (Σ, Bρ(y)) = lim
j→∞

Fεj (Σ + Uj , Bρ(y)) .

Let
(τj)i = εj

[zi − yi

εj

]
, Vj(x) = Uj(x− τj)

for i = 1, · · · , n, then

Fεj (Σ + Vj , τj + Bρ(y)) = Fεj (Σ + Uj , Bρ(y)) .

Moreover, Vj = 0 in Rn \
(
τj + Bρ(y)

)
, with Div Vj = 0 and Vj ⇀ 0 in

Lp(Brρ(z);Md×n) for r > 1. Hence,

Γ- lim
j→+∞

Fεj (Σ, Bρ(z))

≤ Γ- lim
j→+∞

Fεj (Σ, Brρ(z))

≤ lim inf
j→+∞

Fεj (Σ + Vj , Brρ(z))

≤ lim inf
j→+∞

Fεj (Σ + Uj , Bρ(y)) + β(1 + ‖Σ‖p) |Brρ \Bρ|
= Γ- lim

j→+∞
Fεj (Σ, Bρ(y)) + β(1 + ‖Σ‖p) |Brρ \Bρ| .

Passing to the limit as r → 1 we have that

Γ- lim
j→+∞

Fεj (Σ, Bρ(z)) ≤ Γ- lim
j→+∞

Fεj (Σ, Bρ(y)) .

By symmetry we obtain the reverse inequality.

Step 2 : asymptotic formula.
We first prove that the following limit exists

lim
t→+∞ inf

{ 1
tn

∫

tQ
f(y, Σ + V (y)) dy : V ∈ Lp(tQ;Md×n),

Div V = 0, V · ν = 0 ∂(tQ)
}
. (6.8)
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Fixed Σ ∈ Md×n, for t > 0 we define

gt =
1
tn

inf
{∫

tQ
f(y, Σ + V (y)) dy : V ∈ Lp(tQ;Md×n),

Div V = 0, V · ν = 0 ∂(tQ)
}

;

hence, there exists Vt ∈ Lp(tQ;Md×n), with Div Vt = 0 and Vt · ν = 0 on
∂(tQ), such that

1
tn

∫

tQ
f(y, Σ + Vt(y)) dy ≤ gt +

1
t

.

Let s > t, we denote by I = {i ∈ Zn : 0 ≤ ([t] + 1)|(i)j | < (s/2) , j =
1, · · · , n} and we define the function

Vs(x) =





Vt(x− i) if x ∈ i + tQ , i ∈ I

0 otherwise ,

and the set Qs = sQ\⋃i∈I

(
i+tQ

)
. Note that Vs ∈ Lp(sQ;Md×n), Div Vs = 0

and Vs · ν = 0 on ∂(sQ); moreover,

gs ≤ 1
sn

∫

sQ
f(x,Σ + Vs(x)) dx

=
1
sn

(∑

i∈I

∫

tQ+i
f(x,Σ + Vt(x− i)) dx +

∫

Qs

f(x,Σ) dx
)

≤ 1
sn

(∑

i∈I

∫

tQ
f(y, Σ + Vt(y)) dy + c |Qs|

)

≤ tn

([t] + 1)n

(
gt +

1
t

)
+ c

|Qs|
sn

,

where |Qs| denotes the Lesbegue measure of Qs. Taking first the limsup as
s → +∞ and then the liminf as t → +∞ we get

lim sup
s→+∞

gs ≤ lim inf
t→+∞ gt ,

which concludes the proof of the existence of the limit in (6.8).
Since ϕ is Div -quasi convex we have

ϕ(Σ) = inf
{∫

Q
ϕ(Σ + V (y)) dy : V ∈ Lp

#,Div (Q;Md×n),
∫

Q
V dy = 0

}
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≤ inf
{∫

Q
ϕ(Σ + V (y)) dy : V ∈ Lp(Q;Md×n),

Div V = 0, V · ν = 0 on ∂Q
}

≤ ϕ(Σ),

where the last inequality is obtained choosing as test function V = 0. Hence,
by (6.7), Proposition 5.3, (6.8) and the convergence of the minimum prob-
lems assured by the Γ-convergence, we have that

ϕ(Σ) = inf
{∫

Q
ϕ(Σ + V (y)) dy : V ∈ Lp(Q;Md×n),

Div V = 0, V · ν = 0 on ∂Q
}

= lim
j→∞

inf
{∫

Q
f
( x

εj
, Σ + V (x)

)
dx : V ∈ Lp(Q;Md×n),

Div V = 0, V · ν = 0 on ∂Q
}

= lim
t→+∞

1
tn

inf
{∫

tQ
f(y, Σ + V (y)) dy : V ∈ Lp(tQ;Md×n),

Div V = 0, V · ν = 0 on ∂(tQ)
}

.

Step 3 : Γ-convergence of the whole family {Fε}.
From Step 2 we can, in particular, deduce that ϕ does not depend on {εj};
hence, the whole family {Fε} Γ-converges; i.e.,

Γ- lim
ε→0

Fε(U,A) =
∫

A
ϕ(U) dx

for all U ∈ Lp(Ω;Md×n), with Div U = 0 in Ω, and A ∈ A(Ω).

Step 4 : homogenization formula.
We finally prove that ϕ coincides with

fhom(Σ) := lim
t→+∞

1
tn

inf
{∫

tQ
f(y, Σ + V (y)) dy : V ∈ Lp

#,Div (tQ;Md×n),
∫

tQ
V dy = 0

}

for every Σ ∈ Md×n, with Q = (−1/2, 1/2)n. By Step 2 the inequality
ϕ(Σ) ≥ fhom(Σ) is trivial. We then deal with the reverse inequality.
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For every Σ ∈ Md×n we define

f t
hom(Σ) =

1
tn

inf
{∫

tQ
f(y, Σ+V (y)) dy : V ∈ Lp

#,Div (tQ;Md×n),
∫

tQ
V dy = 0

}
.

For t > 0, let Vt ∈ Lp
#,Div (tQ;Md×n) with

∫
tQ Vt dy = 0 such that

1
tn

∫

tQ
f(y, Σ + Vt(y)) dy ≤ f t

hom(Σ) +
1
t

.

We extend Vt by periodicity to the whole Rn and define Vj(x) := Vt(x/εj).
Then Vj ⇀ 0 in Lp(Q;Md×n), as j → +∞, and Div Vj = 0. Moreover, by
Step 3 we may fix εj = 1/jt; hence,

ϕ(Σ) ≤ lim inf
j→+∞

∫

Q
f
( x

εj
, Σ + Vj(x)

)
dx

= lim inf
j→+∞

1
(jt)n

∫

jtQ
f(y, Σ + Vt(y)) dy

=
1
tn

∫

tQ
f(y, Σ + Vt(y)) dy

≤ f t
hom(Σ) +

1
t

.

Passing to the limit as t tends to +∞ we get the reverse inequality which
concludes the proof of the homogenization formula.

Step 5 : homogenization formula for d = 1.
If d = 1, then ϕ coincides with

fhom(ξ) := inf
{∫

Q
f(y, ξ + v(y)) dy : v ∈ Lp

#,div (Q;Rn),
∫

Q
v dy = 0

}

for every ξ ∈ Rn.
In fact, by Step 4 we have that

ϕ(ξ) = lim
t→+∞

1
tn

inf
{∫

tQ
f(y, ξ + v(y)) dy : v ∈ Lp

#,div (tQ;Rn),
∫

tQ
v dy = 0

}
;

hence, the inequality ϕ(ξ) ≤ fhom(ξ) is trivial.
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We fix εj = 1/j. By Step 3 and Proposition 5.1 there exists a sequence
{uj} ⊆ Lp

#,div (Q;Rn) weakly converging to 0 in Lp(Q;Rn) with div uj = 0
and

∫
Q uj dx = 0 such that

ϕ(ξ) = lim
j→+∞

∫

Q
f(jx, ξ + uj) dx .

By Remark 2.1 and Proposition 5.1 we have that

inf
{∫

jQ
f∗∗(y, ξ + v(y)) dy : v ∈ Lp

#,div (jQ;Rn),
∫

jQ
v dy = 0

}

= inf
{∫

jQ
f(y, ξ + v(y)) dy : v ∈ Lp

#,div (jQ;Rn),
∫

jQ
v dy = 0

}
(6.9)

for every j ∈ N. Hence, by (6.9), we have that

ϕ(ξ) = lim
j→∞

1
jn

inf
{∫

jQ
f(y, ξ + v(y)) dy : v ∈ Lp

#,div (jQ;Rn),
∫

jQ
v dy = 0

}

= lim
j→∞

1
jn

inf
{∫

jQ
f∗∗(y, ξ + v(y)) dy : v ∈ Lp

#,div (jQ;Rn),
∫

jQ
v dy = 0

}
. (6.10)

Fix η > 0 and consider vj ∈ Lp
#,div (jQ;Rn), with

∫
jQ vj dy = 0, such that

∫

jQ
f∗∗(y, ξ + vj(y)) dy ≤ inf

{∫

jQ
f∗∗(y, ξ + v(y)) dy : v ∈ Lp

#,div (jQ;Rn),
∫

jQ
v dy = 0

}
+ η . (6.11)

We now define the convex combination

v]
j(y) =

1
jn

∑

i∈Ij

vj(y + i)

where Ij = {0, · · · , (j−1)}n. The sequence {v]
j} is Q-periodic with div v]

j = 0
and

∫
Q v]

j dy = 0. Then, we get

∫

jQ
f∗∗(y, ξ + vj(y)) dy =

∑

i∈Ij

1
jn

∫

jQ
f∗∗(y, ξ + vj(y + i)) dy
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≥
∫

jQ
f∗∗(y, ξ + v]

j(y)) dy = jn
∫

Q
f∗∗(y, ξ + v]

j(y)) dy

≥ jn inf
{∫

Q
f∗∗(y, ξ + v(y)) dy : v ∈ Lp

#,div (Q;Rn),
∫

Q
v dy = 0

}

= jn fhom(ξ) .

By (6.10), (6.11) and by the arbitrariness of η, passing to the limit as
j → +∞, we prove that ϕ(ξ) ≥ fhom(ξ) which concludes the proof of the
homogenization formula for d = 1.
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