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Abstract

We consider the sliding mode control (SMC) problem for a diffuse interface tumor
growth model coupling a Cahn-Hilliard equation with a reaction-diffusion equation
perturbed by a maximal monotone nonlinearity. We prove existence and regularity
of strong solutions and, under further assumptions, a uniqueness result. Then, we
show that the chosen SMC law forces the system to reach within finite time a sliding
manifold that we chose in order that the tumor phase remains constant in time.
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1 Introduction

The study of tumor growth dynamics has recently become a major issue in applied math-
ematics and numerical simulations of diffuse interface models have been carried out in
several papers, e.g., [6,10,12,13,19,21,25–29]; nonetheless, a rigorous mathematical anal-
ysis of the resulting systems of PDEs is still in its infancy. Recently, the authors of [47]
consider a continuum diffuse interface model of multispecies tumor growth using the Cahn-
Hilliard framework. Moreover, let us quote [20,30,31,33,34,38,42], where chemotaxis and
transport effects was introduced and rigorous sharp interface limits was obtained.

In the present contribution we consider the sliding mode control problem for a tumor
growth model consisting of a Cahn-Hilliard equation coupled with a reaction-diffusion
equation:

∂tϕ−∆µ = (γ1σ − γ2)p(ϕ) a.e. in Q = Ω× (0, T ), (1.1)

µ = `∂tϕ−∆ϕ+ ξ + π(ϕ) + µS a.e. in Q, (1.2)

∂tσ −∆σ + ζ = −γ3σp(ϕ) + γ4(σs − σ) + g a.e. in Q, (1.3)
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ζ(t) ∈ ρ Sign(aσ(t) + bϕ(t) + η∗) for a.e. t ∈ (0, T ), (1.4)

ξ ∈ β(ϕ) a.e. in Q, (1.5)

where Ω is the domain where the evolution takes place and T is some final time. The
function ϕ is an health status indicator: ϕ = 1 and ϕ = 0 represent the tumor phase
and the healthy phase, respectively. The function µ is the chemical potential, while σ is
the concentration of the nutrient for the tumor cells (e.g., oxygen or glucose). Beside, µS
is a given smooth function, ` is a viscosity coefficient, while γi for i = 1, · · · , 4 denotes
the positive constant proliferation rate, apoptosis rate, nutrient consumption rate, and
nutrient supply rate, respectively. The terms γ1p(ϕ)σ, γ2p(ϕ) and γ3p(ϕ)σ model the
proliferation of tumor cells, the death of tumor cells and the depletion of nutrient, respec-
tively. We assume that γi, i = 1, 2, 3, are positive parameters and π is a positive, bounded
and Lipschitz continuous function. Finally, σs denotes the nutrient concentration in the
vasculature while γ4(σs−σ) represents the supply of nutrient from the blood vessels. The
term ξ + π(ϕ), appearing in (1.2), represents the derivative of a double-well potential W
defined as the sum

W = β̂ + π̂, (1.6)

where
β̂ : R −→ [0,+∞] is proper, l.s.c. and convex with β̂(0) = 0, (1.7)

π̂ : R→ R, π̂ ∈ C1(R) with π := π̂′ Lipschitz continuous. (1.8)

Since β̂ is proper, l.s.c. and convex, the subdifferential ∂β̂ =: β is well defined and is
a maximal monotone graph. For a comprehensive discussion of the theory of maximal
monotone operators, we refer, e.g., to [1, 5].

In our system we consider the maximal monotone operator ρ Sign, where ρ ∈ (0,+∞)
is a parameter and Sign : L2(Ω) =: H 7→ 2H is defined by Sign(v) = v/‖v‖, if v 6= 0,
while Sign(v) = B1(0), if v = 0, where B1(0) is the closed unit ball of H. The aim of
introducing such a feedback law in (1.3) is to obtain a sliding mode control (SMC) on the
system: this technique is one of the most important approaches to the design of robust
controllers for nonlinear complex dynamics (see, e.g., [2,22–24,35,40–42,44,45,48]). The
design procedure of a SMC system is a two-stage process. The first phase is to choose
a set of sliding manifolds such that the original system restricted to the intersection of
them has a desired behavior. The second step is to design a SMC law that forces a
linear combination of the system trajectories to reach the sliding surface −η∗ in a finite
time. Sliding mode controls are useful in many applications: we cite [7,37,46] concerning
the control of semilinear PDE systems and the recent contribution [3], where a sliding
mode approach is applied for the first time to phase field systems of Caginalp type. We
also mention the analysis developed in [8, 16–18]: in particular, the second contribution
is devoted to a conserved phase field system with a SMC feedback law for the internal
energy in the temperature equation.

Other approaches to the problem of control for tumor growth models are possible,
even if a few mathematical results are presently available on this subject in the literature.
In the recent papers [11, 14, 32] the authors consider the problem of finding first order
necessary optimality conditions for the minimization of a cost functional, forcing the
phase to approach the desired target in the best possible way by means of a control
variable representing the concentration of cytotoxic drugs or the supply of a nutrient.
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The main advantage of sliding mode control is that it strengthens the trajectories of the
system to reach the sliding surface and keep it on it in a pointwise way, while, in general,
within the classical optimal control theory (cf., e.g., [14, 32]), one can get just necessary
optimality conditions and the control is nonlocal in space and/or in time.

The above system is complemented by homogeneous Neumann boundary conditions
for σ and ϕ, for a Dirichlet boundary condition for µ,

∂νσ = ∂νϕ = 0, µ = 0 on Σ := ∂Ω× (0, T ). (1.9)

This choice looks reasonable from the modeling point of view: the Dirichlet boundary
condition for µ allows for the free flow of cells across the outer boundary. In particular,
let us refer to [4] and [47] where similar conditions are imposed on a chemical potential
in a different framework. Finally, initial conditions on σ and ϕ are prescribed:

σ(0) = σ0, ϕ(0) = ϕ0 in Ω. (1.10)

The paper is organized as follows. In the next two sections, we list our assumptions,
state the problem in a precise form and present our results. The last seven sections are
devoted to the corresponding proofs. Section 4, 5, 6 and 7 deal with well-posedness, while
regularity and uniqueness of the solution are proved in in Sect. 8 and Sect. 9, respectively.
Finally, the existence of the sliding mode is proved in Sect. 10.

2 Preliminary assumptions

2.1 Initial statements

We assume Ω ⊆ R3 to be open, bounded, connected, of class C1 and we write |Ω| for its
Lebesgue measure. Moreover, Γ and ∂ν still stand for the boundary of Ω and the outward
normal derivative, respectively. Given a finite final time T > 0, for every t ∈ (0, T ] we set

Qt = (0, t)× Ω, Q = QT , (2.1)

Σt = (0, t)× Γ, Σ = ΣT . (2.2)

In the following, we set for brevity:

H = L2(Ω), V = H1(Ω), V0 = H1
0 (Ω), W = {u ∈ H2(Ω) : ∂νu = 0 on ∂Ω}, (2.3)

with usual norms ‖ ·‖H , ‖ ·‖V and inner products (·, ·)H , (·, ·)V , respectively. The symbols
V ∗ and V ∗0 denotes the dual space of V and V ∗0 , respectively, while the pair 〈·, ·〉V ∗,V
and 〈·, ·〉V ∗0 ,V0 represents the duality pairing between V ∗ and V , and between V ∗ and V ∗0 ,
respectively. Moreover, we identify H with its dual space.

2.2 The potential W

We introduce the potential W as the sum

W = β̃ + π̃, (2.4)
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where
β̃ : R −→ [0,+∞] is proper, l.s.c. and convex with β̃(0) = 0, (2.5)

π̃ : R→ R, π̃ ∈ C1(R) with π := π̃′ Lipschitz continuous. (2.6)

Since β̃ is proper, l.s.c. and convex, the subdifferential β := ∂β̃ is well defined. We denote
by D(β) and D(β̃) the effective domains of β and β̃, respectively, and also assume that
int(D(β)) 6= ∅. Thanks to these assumptions, β is a maximal monotone graph. Moreover,
as β̃ takes its minimum in 0, we have that 0 ∈ β(0). Now, we introduce the operator B,
i.e., the realization of β in L2(Q) in the following way:

B : L2(Q) −→ L2(Q) (2.7)

ξ ∈ B(ϕ)⇐⇒ ξ(x, t) ∈ β(ϕ(x, t)) for a.e. (x, t) ∈ Q. (2.8)

We notice that
β = ∂β̃, B = ∂Φ, (2.9)

where
Φ : L2(Q) −→ (−∞,+∞] (2.10)

Φ(u) =

{ ∫
Q
β̃(u) if u ∈ L2(Q) and β̃(u) ∈ L1(Q),

+∞ elsewhere, with u ∈ L2(Q).
(2.11)

2.3 The operator Sign

We consider the maximal monotone operator

Sign : H −→ 2H (2.12)

Sign(v) =

{ v
‖v‖ if v 6= 0,

B1(0) if v = 0,
(2.13)

where B1(0) is the closed unit ball of H. The operator Sign is the subdifferential of the
map ‖ · ‖ : H → R. Moreover,

0 ∈ Sign(0). (2.14)

and it is trivial to prove that, denoting by ρ ∈ (0,+∞) a positive parameter, there exists
a positive constant CA > 0 such that

‖v‖H ≤ CA(1 + ‖η‖H) for every η ∈ H, v ∈ ρ Sign(η). (2.15)

3 Setting of the problem and results

We consider

γi ∈ [0,+∞), for i = 1, 2, 3, ρ, `, σs, γ4, a ∈ (0,+∞), b ∈ R, (3.1)

η∗ ∈ W, σS ∈ L2(0, T ;H), g ∈ L2(0, T ;H), µΓ ∈ L2(0, T ;H1/2(Γ)), (3.2)

ϕ0, σ0 ∈ V, β̃(ϕ0) ∈ L1(Ω), (3.3)
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π : R −→ [0,+∞) is a bounded and Lipschitz continuous function (3.4)

We also assume that

∃ CB > 0 such that |β′(r)| ≤ CB(1 + |r|2) for every r ∈ D(β′). (3.5)

Then, we introduce the harmonic extension µS of µΓ defined as the unique solution to the
problem

µS(t) ∈ H1(Ω), −∆µS(t) = 0 in D′(Ω), µS(t)|Γ = µΓ(t) for a.a. t ∈ (0, T ). (3.6)

We look for a triplet (σ, ϕ, µ) satisfying at least the regularity requirements

σ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.7)

ϕ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.8)

µ ∈ L∞(0, T ;V0) ∩ L2(0, T ;H2(Ω)), (3.9)

and solving the Problem (P ) defined as

∂tϕ−∆µ = (γ1σ − γ2)p(ϕ) a.e. in Q, (3.10)

µ = `∂tϕ−∆ϕ+ ξ + π(ϕ) + µS a.e. in Q, (3.11)

∂tσ −∆σ + ζ = −γ3σp(ϕ) + γ4(σs − σ) + g a.e. in Q, (3.12)

ζ(t) ∈ ρ Sign(aσ(t) + bϕ(t) + η∗) for a.e. t ∈ (0, T ), (3.13)

ξ ∈ β(ϕ) a.e. in Q, (3.14)

∂νσ = ∂νϕ = 0, µ = 0 on Σ, (3.15)

σ(0) = σ0, ϕ(0) = ϕ0 in Ω. (3.16)

Theorem 3.1 (Existence) Assume (2.5)–(2.6), (2.14)–(2.15) and (3.1)–(3.6). Then
Problem (P ) defined in (3.10)–(3.16) has at least a solution (σ, ϕ, µ) satisfying (3.7)–
(3.9).

Theorem 3.2 (Regularity) Let (2.5)–(2.6), (2.14)–(2.15) and (3.1)–(3.6) hold. Denot-
ing by β0(ϕ0) the element of the range of β having minimum modulus and assuming, in
addition, that

σ0, ϕ0 ∈ W, µS ∈ H1(0, T ;H), (3.17)

then Problem (P ) defined in (3.10)–(3.16) has at least a solution (σ, ϕ, µ) such that

σ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.18)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (3.19)

µ ∈ L∞(0, T ;V0) ∩ L2(0, T ;H2(Ω)). (3.20)

Theorem 3.3 (Uniqueness) Assume (2.5)–(2.6), (2.14)–(2.15) and (3.1)–(3.6). If b =
0, then the solution of Problem (P ) stated by (3.10)–(3.16) is unique.
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Let us remark that we guarantee the uniqueness of the solution only if b = 0. On the
other hand, if b 6= 0, it turns out to be difficult to obtain a uniqueness result because a
monotonicity argument can not be applied in the proof.

Theorem 3.4 (Sliding mode control) Let (2.5)–(2.6), (2.14)–(2.15), (3.1)–(3.6) and
(3.17)–(5.17) hold and

g ∈ L∞(0, T,H), κ(t) ∈ Sign(aσ(t) + bϕ(t) + η∗) for a.e. t ∈ (0, T ). (3.21)

We assume, in addition, that at least one among (3.5) and the following condition

the regularity properties (3.17) hold and D(β) = D(β′) = R (3.22)

is satisfied. Then, for some ρ∗ > 0 and for every ρ > ρ∗, there exists a solution (σ, ϕ, µ)
to Problem (P ) (see (3.10)–(3.16)) and a time T ∗ such that, for every t ∈ [T ∗, T ]

aσ(t) + bϕ(t) = −η∗ a.e. in Ω. (3.23)

We observe that, if a = 0, the feedback control term κ defined in (3.21) depends only
on the evolution of ϕ and the SMC low can be obtained as in [15].

4 Moreau-Yosida regularization of the operators

Yosida regularization of Sign. Let us introduce the operator Signε : H → H as the
Yosida regularization at level ε > 0 of the operator Sign. For ε > 0 we define

Signε : H −→ H, Signε =
I − (I + ε Sign)−1

ε
, (4.1)

where I denotes the identity operator. Note that Signε is Lipschitz continuous and max-
imal monotone, with Lipschitz constant 1/ε, and satisfies the following properties. De-
noting by Jε = (I + ε Sign)−1 the resolvent operator, for all δ > 0 we have that

Signε η ∈ Sign(Jεη), (4.2)

(Signε)δ = Signε+δ, (4.3)

‖ Signε η‖H ≤ ‖ Sign0 η‖H , (4.4)

lim
ε→0
‖ Signε η‖H = ‖ Sign0 η‖H , (4.5)

where Sign0 η is the element of the range of Sign η having minimum norm. We also point
out a key property of Signε, which is a consequence of (2.15):

‖v‖H ≤ CA(1 + ‖η‖H) for all η ∈ H, v ∈ Signε η. (4.6)

Indeed notice that 0 ∈ Sign(0) and 0 ∈ I(0): consequently, for every ε > 0, 0 ∈ (I +
ε Sign)(0). This fact implies that Jε(0) = 0. Since Sign is a maximal monotone operator,
Jε is a contraction. Then, from (2.15) and (4.2), it follows that

‖ Signε η‖H ≤ CA(‖Jεη‖H + 1)
≤ CA(‖Jεη − Jε0‖H + ‖Jε0‖H + 1)
≤ CA(‖η‖H + 1).
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Finally, we observe that Signε(v) is the gradient at v of the C1 functional ‖ · ‖H,ε defined
as

‖v‖H,ε := min
w∈H
{ 1

2ε
‖w − v‖2

H + ‖w‖H} =

∫ ‖v‖H
0

min {s/ε, 1} ds for every v ∈ H. (4.7)

We also recall that

Signε(v) =
v

max {ε, ‖v‖H}
for every v ∈ H. (4.8)

Moreau-Yosida regularization of β and β̃. We introduce the Yosida regularization
of β. For every ε > 0 we define

βε : R −→ R, βε =
I − (I + εβ)−1

ε
. (4.9)

We remark that βε is Lipschitz continuous with Lipschitz constant 1/ε and satisfies the
following properties. Denoting by Rε = (I + εβ)−1 the resolvent operator, for all δ > 0
and for every ϕ ∈ D(β) we have that

βε(ϕ) ∈ β(Rεϕ), (4.10)

(βε)δ = βε+δ, (4.11)

|βε(ϕ)| ≤ |β0(ϕ)|, (4.12)

lim
ε→0

βε(ϕ) = β0(ϕ), (4.13)

where β0(ϕ) is the element of the range of β having minimum modulus. For ε > 0, we
also introduce β̃ε : R→ [0,+∞] as the standard Moreau-Yosida regularization of β̃

β̃ε := min
y∈R

{
β̃(x) +

1

2ε
|x− y|

}
(4.14)

and we recall that, for every ϕ ∈ D(β̃),

β̃ε(ϕ) ≤ β̃(ϕ). (4.15)

Moreover, βε is the Frechet derivative of β̃ε. Then, for every ϕ1, ϕ2 ∈ D(β̃), we have that

β̃ε(ϕ2) = β̃ε(ϕ1) +

∫ ϕ2

ϕ1

βε(s) ds. (4.16)

5 The approximating problem (Pτ )

In order to prove Theorem 3.1, we first introduce a backward finite differences scheme.
Assume that N is a positive integer and let Z be any normed space. By fixing the time
step

τ = T/N, N ∈ N,
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we introduce the interpolation maps from ZN+1 into either L∞(0, T ;Z) or W 1,∞(0, T ;Z).
For (z0, z1, . . . , zN) ∈ ZN+1, we define the piecewise constant functions zτ and the piece-
wise linear functions ẑτ , respectively:

zτ ∈ L∞(0, T ;Z), z((i+ s)τ) = zi+1,

ẑτ ∈ W 1,∞(0, T ;Z), ẑ((i+ s)τ) = zi + s(zi+1 − zi), (5.1)

if 0 < s < 1 and i = 0, . . . , N − 1. By a direct computation, we have that

‖zτ − ẑτ‖L∞(0,T ;Z) = max
i=0,... ,N−1

‖zi+1 − zi‖Z = τ‖∂tẑτ‖L∞(0,T ;Z), (5.2)

‖zτ − ẑτ‖2
L2(0,T ;Z) =

τ

3

N−1∑
i=0

‖zi+1 − zi‖2
Z =

τ 2

3
‖∂tẑτ‖2

L2(0,T ;Z), (5.3)

‖zτ − ẑτ‖2
L∞(0,T ;Z) ≤

N−1∑
i=0

τ 2

∥∥∥∥zi+1 − zi
τ

∥∥∥∥2

Z

≤ τ‖∂tẑτ‖2
L2(0,T ;Z). (5.4)

Now, we introduce the approximating problem (Pτ ). We set

gi :=
1

τ

∫ iτ

(i−1)τ

g(s) ds, for i = 1, . . . , N , (5.5)

µiS :=
1

τ

∫ iτ

(i−1)τ

µS(s) ds, for i = 1, . . . , N , (5.6)

and we look for a triplet (στ , ϕτ , µτ ) satisfying at least the regularity requirements

στ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (5.7)

ϕτ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (5.8)

µτ ∈ L∞(0, T ;V0) ∩ L2(0, T ;H2(Ω)), (5.9)

and solving the approximating problem (Pτ ):

ϕi − ϕi−1

τ
−∆µi = (γ1σ

i−1 − γ2)p(ϕi−1), (5.10)

µi = `
ϕi − ϕi−1

τ
−∆ϕi + ξi + π(ϕi)− µiS , (5.11)

σi − σi−1

τ
−∆σi + ζ i = −γ3σ

i−1p(ϕi−1) + γ4(σs − σi−1) + gi, (5.12)

ζ i(t) ∈ ρ Signτ (aσ
i(t) + bϕi(t) + η∗), (5.13)

ξi ∈ βτ (ϕi), (5.14)

∂νσ
i = ∂νϕ

i = 0, µi = 0 on Σ, (5.15)

σ0 = σ0, ϕ0 = ϕ0 in Ω, (5.16)

where βτ is the Yosida regularization of β at level τ . If at least one of the conditions
(3.5)–(3.22) hold and

∃ ξ0 ∈ β(ϕ0) a.e. in Ω : ξ0 ∈ H =⇒ lim
τ↘0

βτ (ϕ) = β0(ϕ0) in H, (5.17)

then the solution of (Pτ ) is unique.
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6 A priori estimates on (Pτ )

In the remainder of the paper we often owe to the Hölder inequality and to the elementary
Young inequalities in performing our a priori estimates. For every x, y > 0, α ∈ (0, 1) and
δ > 0 there hold

xy ≤ αx
1
α + (1− α)y

1
1−α , (6.1)

xy ≤ δx2 +
1

4δ
y2. (6.2)

Moreover, we also use the inequality deduced from the compactness of the embedding
V ⊂ H ⊂ V ∗ (see [43, Lemma 8, p. 84]): for all δ > 0 there exists a constant K > 0 such
that

‖z‖H ≤ δ‖z‖V +K‖z‖V ∗ for all z ∈ H. (6.3)

In the following, the symbol c stands for different positive constants which depend only
on |Ω|, on the final time T , on the shape of the nonlinearities and on the constants and
the norms of the functions involved in the assumptions of our statements.

First a priori estimate. We sum (5.10), (5.11) and (5.12) tested by τµi, (ϕi − ϕi−1)
and τσi, respectively. Then, we sum up for i = 1, . . . , n and obtain that

`τ
n∑
i=1

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

+ τ
n∑
i=1

‖∇µi‖2
H +

n∑
i=1

(
∇ϕi,∇(ϕi − ϕi−1)

)
H

+
n∑
i=1

(
β(ϕi), ϕi−ϕi−1

)
H

+
n∑
i=1

(
σi, σi−σi−1

)
H

+τ
n∑
i=1

‖σi‖2
H =

n∑
i=1

(
−π(ϕi), ϕi−ϕi−1

)
H

+τ
n∑
i=1

(
(γ1σ

i−1 − γ2)p(ϕi−1), µi
)
H
− τ

n∑
i=1

(
ζ i, σi

)
H
−

n∑
i=1

(
µiS , ϕ

i − ϕi−1
)
H

−τ
n∑
i=1

γ3

(
σi−1p(ϕi−1), σi

)
H

+ τ

n∑
i=1

γ4

(
σs − σi−1, σi

)
H

+ τ

n∑
i=1

(
gi, σi

)
H
. (6.4)

Now, the third and the fifth term on the left hand side of (6.4) can be rewritten as

n∑
i=1

(
∇ϕi,∇(ϕi − ϕi−1)

)
H

=
1

2
‖∇ϕn‖2

H −
1

2
‖∇ϕ0‖2

H +
n∑
i=1

1

2
‖∇(ϕi − ϕi−1)‖2

H , (6.5)

n∑
i=1

(
σi, (σi − σi−1)

)
H

=
1

2
‖σn‖2

H −
1

2
‖σ0‖2

H +
n∑
i=1

1

2
‖σi − σi−1‖2

H . (6.6)

Recalling that β is the subdifferential of β̃, for the fourth term on the left hand side of
(6.4) we have that

n∑
i=1

(
β(ϕi), ϕi − ϕi−1

)
H
≥
∫

Ω

β̃(ϕn)−
∫

Ω

β̃(ϕ0). (6.7)
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Moreover, due to the Lipschitz continuity of π, the first term on the right hand side of
(6.4) can be estimated as follows

n∑
i=1

(
− π(ϕi), ϕi − ϕi−1

)
H
≤ τ

n∑
i=1

Cπ(1 + ‖ϕi‖H)

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥
H

≤ `τ

2

n∑
i=1

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

+ τc

n∑
i=1

(1 + ‖ϕi‖2
H). (6.8)

By applying the Young inequality and the Poincaré inequality to the second term on the
right hand side of (6.4), we obtain that

τ
n∑
i=1

(
(γ1σ

i−1 − γ2)p(ϕi−1), µi
)
H
≤ τ

4cp

n∑
i=1

‖µi‖2
H + τ

n∑
i=1

‖σi−1‖2
H + c

≤ τ

4

n∑
i=1

‖∇µi‖2
H + τc

(
1 +

n∑
i=1

‖σi−1‖2
H

)
, (6.9)

while, using (4.6) and the Young inequality to estimate the third term on the right hand
side of (6.4), we infer that

−τ
n∑
i=1

(
ζ i, σi

)
H
≤ τ

n∑
i=1

CA(1 + ‖aσi + bϕi + η∗‖H)‖σi‖H

≤ τc
n∑
i=1

(
‖σi‖2

H + ‖ϕi‖2
H + 1

)
. (6.10)

Finally, due to (3.1)–(3.4), by applying the Young inequality to the last four terms on the
right hand side of (6.4), we have that

−
n∑
i=1

(
µiS , ϕ

i−ϕi−1
)
H
≤ 1

4cp

n∑
i=1

‖(ϕi−ϕi−1)‖2
H +c ≤ 1

4

n∑
i=1

‖∇(ϕi−ϕi−1)‖2
H +c, (6.11)

−τ
n∑
i=1

γ3

(
σi−1p(ϕi−1), σi

)
H
≤ τc

(
1 +

n∑
i=1

‖σi‖2
H +

n∑
i=1

‖σi−1‖2
H

)
, (6.12)

τ

n∑
i=1

γ4

(
σs − σi−1, σi

)
H
≤ τc

(
1 + ‖σi‖2

H + ‖σi−1‖2
H

)
, (6.13)

τ
n∑
i=1

(
gi, σi

)
H
≤ τ

n∑
i=1

‖gi‖2
H + τ

n∑
i=1

‖σi‖2
H ≤ τc

(
1 +

n∑
i=1

‖σi‖2
H

)
. (6.14)

Consequently, using (6.5)–(6.14), from (6.4) we infer that,

`

2
τ

n∑
i=1

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

+
τ

4

n∑
i=1

‖∇µi‖2
H +

1

2
‖∇ϕn‖2

H +
1

4

n∑
i=1

‖∇(ϕi − ϕi−1)‖2
H

+‖β̃(ϕn)‖L1(Ω) +
1

2
‖σn‖2

H +
n∑
i=1

1

2
‖σi − σi−1‖2

H + τ
n∑
i=1

‖∇σi‖2
H ≤

1

2
‖∇ϕ0‖2

H
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+‖β̃(ϕ0)‖L1(Ω) +
1

2
‖σ0‖2

H + τc

(
1 +

n∑
i=1

(
‖σi‖2

H + ‖σi−1‖2
H + ‖ϕi‖2

H + ‖ϕi−1‖2
H

))
. (6.15)

whence, using (3.3) and applying the Gronwall lemma, we conclude that

‖∂tϕ̂τ‖L2(0,T ;H) + ‖ϕτ‖L∞(0,T ;V ) ≤ c, (6.16)

‖µτ‖L2(0,T ;V0) ≤ c, (6.17)

‖β̃(ϕτ )‖L∞(0,T ;L1(Ω)) ≤ c, (6.18)

‖στ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c, (6.19)

and, due to the sublinear growth of Sign τ stated by (4.6),

‖ζτ‖L∞(0,T ;H) ≤ c. (6.20)

Finally, by comparison in (5.10), we have that

‖µτ‖L2(0,T ;H2(Ω)∩V0) ≤ c. (6.21)

Second a priori estimate. We test (5.12) by (σi − σi−1) and sum up for i = 1, . . . , n.
We obtain that

τ
n∑
i=1

∥∥∥∥σi − σi−1

τ

∥∥∥∥2

H

+
n∑
i=1

(
∇σi,∇(σi − σi−1)

)
H

=
n∑
i=1

(
ζ i, σi − σi−1

)
H

−γ3

n∑
i=1

(
σi−1p(ϕi−1), σi − σi−1

)
H

+ γ4

n∑
i=1

(
σs − σi−1 + gi, σi − σi−1

)
H
. (6.22)

We observe that the second term on the left hand side of (6.22) can be rewritten as

n∑
i=1

(
∇σi,∇(σi − σi−1)

)
H

=
1

2
‖∇σn‖2

H −
1

2
‖∇σ0‖2

H +
n∑
i=1

1

2
‖∇(σi − σi−1)‖2

H . (6.23)

Moreover, using (3.4), (6.16)–(6.20) and the Young inequality, the three terms on the
right hand side of (6.22) can be estimated as follows:

n∑
i=1

(
ζ i, σi − σi−1

)
H
≤

n∑
i=1

‖ζ i‖2
H +

n∑
i=1

‖σi − σi−1‖2
H ≤ c, (6.24)

−γ3

n∑
i=1

(
σi−1p(ϕi−1), σi − σi−1

)
H
≤

n∑
i=1

‖σi−1p(ϕi−1)‖2
H +

n∑
i=1

‖σi − σi−1‖2
H ≤ c, (6.25)

γ4

n∑
i=1

(
σs−σi−1 +gi, σi−σi−1

)
H
,≤

n∑
i=1

‖σs−σi−1 +gi‖2
H +

n∑
i=1

‖σi−σi−1‖2
H ≤ c. (6.26)

Due to (3.3), (6.23)–(6.26), from (6.22) we infer that

τ
n∑
i=1

∥∥∥∥σi − σi−1

τ

∥∥∥∥2

H

1

2
‖∇σn‖2

H +
n∑
i=1

1

2
‖∇(σi − σi−1)‖2

H ≤ c.
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Then, we conclude that

‖∂tσ̂τ‖L2(0,T ;H) + ‖στ‖L∞(0,T ;V ) ≤ c, (6.27)

whence, by comparison in (5.10) and (5.12), respectively, we infer that

‖ϕτ‖L2(0,T ;W ) ≤ c, (6.28)

‖στ‖L2(0,T ;W ) ≤ c, (6.29)

‖µτ‖L2(0,T ;H2(Ω)∩V0) ≤ c. (6.30)

Third a priori estimate. We test (5.11) by τβτ (ϕ
i) and sum up for i = 1, . . . , n. We

obtain that

τ
n∑
i=1

‖βτ (ϕi)‖2
H + τ

n∑
i=1

β′τ (ϕ
i)|∇ϕi|2 = −`

n∑
i=1

(
βτ (ϕ

i), ϕi − ϕi−1
)
H

+τ
n∑
i=1

(
βτ (ϕ

i), µi
)
H
− τ

n∑
i=1

(
βτ (ϕ

i), π(ϕi)
)
H
− τ

n∑
i=1

(
βτ (ϕ

i), µiS

)
H
. (6.31)

Due to the monotonicity of βτ , the last term on the left hand side of (6.31) is nonnegative.
Moreover, by applying the Young inequality to the four term on the right hand side of
(6.31) and using (3.3) and (6.16), we have that

−τ`
n∑
i=1

(
βτ (ϕ

i), ϕi − ϕi−1
)
H
≤ τ

5

n∑
i=1

‖βτ (ϕi)‖2
H + c, (6.32)

τ
n∑
i=1

(
βτ (ϕ

i), µi
)
H
≤ τ

5

n∑
i=1

‖βτ (ϕi)‖2
H + c, (6.33)

−τ
n∑
i=1

(
βτ (ϕ

i), π(ϕi)
)
H
≤ τ

5

n∑
i=1

‖βτ (ϕi)‖2
H + c, (6.34)

−τ
n∑
i=1

(
βτ (ϕ

i), µiS

)
H
≤ τ

5

n∑
i=1

‖βτ (ϕi)‖2
H + c. (6.35)

Due to (6.32)–(6.35), from (6.31) we infer that

τ

5

n∑
i=1

‖βτ (ϕi)‖2
H ≤ c, (6.36)

whence we conclude that

‖βτ (ϕ)‖L2(0,T ;H) ≤ c, (6.37)

and, by comparison in (5.11),

‖ϕ‖L2(0,T ;W ) ≤ c. (6.38)
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Summary of the a priori estimates. Let us collect the previous estimates. From
(6.16)–(6.20)(6.21), (6.27)–(6.28) and (6.37)–(6.38) we conclude that there exists a con-
stant c > 0, independent of τ , such that

‖ϕτ‖L∞(0,T ;V )∩L2(0,T ;W ) ≤ c, (6.39)

‖∂tϕ̂τ‖L2(0,T ;H) ≤ c, (6.40)

‖στ‖L∞(0,T ;V )∩L2(0,T ;W ) ≤ c, (6.41)

‖∂tσ̂τ‖L2(0,T ;H) ≤ c, (6.42)

‖µτ‖L∞(0,T ;V0)∩L2(0,T ;H2(Ω)) ≤ c, (6.43)

‖ξτ )‖L2(0,T ;H) ≤ c, (6.44)

‖ζτ )‖L∞(0,T ;H) ≤ c. (6.45)

7 Passage to the limit as τ ↘ 0

Based on available results (cf., e.g., [9]), it turns out that there exists a solution (στ , ϕτ , µτ )
of (Pτ ) satisfying the regularity requirements (5.7)–(5.9). In this section we pass to the
limit as τ ↘ 0 and prove that the limit of subsequences of solutions (στ , ϕτ , µτ ) for (Pτ )
yields a solution (σ, ϕ, µ) of (P ).

Thanks to (6.39)–(6.45) and to the well-known weak or weak* compactness results,
we deduce that, at least for a subsequence of τ ↘ 0, there exist seven limit functions σ,
σ̂, ϕ, ϕ̂, µ, ζ, and ξ such that

στ ⇀
∗ σ in L∞(0, T ;V ) ∩ L2(0, T ;W ), (7.1)

σ̂τ ⇀
∗ σ̂ in H1(0, T ;H), (7.2)

τ σ̂τ ⇀
∗ 0 in H1(0, T ;H), (7.3)

ϕτ ⇀
∗ ϕ in L∞(0, T ;V ) ∩ L2(0, T ;W ), (7.4)

ϕ̂τ ⇀
∗ ϕ̂ in H1(0, T ;H), (7.5)

τϕ̂τ ⇀
∗ 0 in H1(0, T ;H), (7.6)

µτ ⇀ µ in L∞(0, T ;V0) ∩ L2(0, T ;H2(Ω)), (7.7)

ζτ ⇀
∗ ζ in L∞(0, T ;H), (7.8)

ξτ ⇀ ξ in L2(0, T ;H). (7.9)

First, we observe that σ = σ̂. Indeed, thanks to (5.3) and (7.1)–(7.3), we have that

‖στ − σ̂τ‖L2(0,T ;H) ≤
τ√
3
‖∂tσ̂τ‖L2(0,T ;H) ≤ cτ,

and consequently στ − σ̂τ → 0 strongly in L2(0, T ;H). Similarly, thanks to (5.3) and
(7.4)–(7.6), we check that ϕ = ϕ̂. Next, in view of the convergences in (7.1)–(7.2), (7.4)–
(7.5) and owing to the strong compactness lemma stated in [43, Lemma 8, p. 84], we have
that

σ̂τ → σ in C0([0, T ];H), (7.10)

ϕ̂τ → ϕ in C0([0, T ];H), (7.11)
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whence, due to the Lipschitz continuity of π, we have that

π(ϕτ )→ π(ϕ) in L∞(0, T ;H).

Now, we check that ξ = β(ϕ): due to the weak convergence of ξτ and to the strong
convergence of ϕ̂τ ensured by (7.9) and (7.11), respectively, we have that

lim sup
τ↘0

∫ T

0

∫
Ω

β(ϕτ )ϕτ = lim
τ↘0

∫ T

0

〈β(ϕτ ), ϕτ 〉 =

∫ T

0

〈ξ, ϕ〉 =

∫ T

0

∫
Ω

ξϕ,

so that a standard tool for maximal monotone operators (cf., e.g., [1, Lemma 1.3, p. 42])
ensure that ξ = β(ϕ). With an analogous strategy, we check that ζ = ρ Sign(aσ+bϕ+η∗).
We set

ητ = aστ + bϕτ + η∗.

Due to the convergences (7.10)–(7.11), we have that

ητ → η := aσ + bϕ+ η∗ in L2(0, T ;H), (7.12)

whence, thanks to the weak convergence of ζτ ensured by (7.8), we infer that

lim sup
τ↘0

∫ T

0

∫
Ω

ζτητ = lim
τ↘0

∫ T

0

〈ζτ , ητ 〉 =

∫ T

0

〈ζ, η〉 =

∫ T

0

∫
Ω

ζη,

so that, applying [1, Lemma 1.3, p. 42], we conclude that ζ = ρ Sign(aσ + bϕ + η∗). At
this point, using (7.1)–(7.9) and passing to the limit in (5.10), (5.11) and (5.12), we arrive
at (3.10), (3.11) and (3.12), respectively. Therefore, the existence of solution to problem
(P ) stated by Theorem 3.1 is proved.

8 Regularity

This section is devoted to the proof of Theorem 3.2.

First regularity estimate. We consider the approximating problem (Pτ ) stated by
(5.10)–(5.16) and we assume, in addition, (3.17)–(5.17). Taking into account (6.39)–
(6.45), we take the difference between the equation (5.11) written in the steps i and
i− 1, respectively, and we add the resultant expression tested by (ϕi − ϕi−1) with (5.10)
multiplied by (µi − µi−1). Taking the sum for i = 2, · · · , n we infer that

1

2
‖∇µn‖2

H+
n∑
i=2

τ 2

2

∥∥∥∥∇µi − µi−1

τ

∥∥∥∥2

H

+
`

2

∥∥∥∥ϕn − ϕn−1

τ

∥∥∥∥2

H

+
`

2

n∑
i=2

∥∥∥∥ϕi − ϕi−1

τ
−ϕ

i−1 − ϕi−2

τ

∥∥∥∥2

H

+
n∑
i=2

τ

∥∥∥∥∇ϕi − ϕi−1

τ

∥∥∥∥2

H

+
n∑
i=2

(
βτ (ϕ

i)− βτ (ϕi−1)

τ
,
ϕi − ϕi−1

τ

)
H

≤ 1

2
‖∇µ1‖2

H +
`

2

∥∥∥∥ϕ1 − ϕ0

τ

∥∥∥∥2

H

−
n∑
i=2

(
π(ϕi)− π(ϕi−1)

τ
,
ϕi − ϕi−1

τ

)
H
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+
n∑
i=2

τ

∥∥∥∥µiS − µi−1
S

τ

∥∥∥∥
H

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥
H

+

∫
Ω

(γ1σ
n−1 − γ2)p(ϕn−1)µn −

∫
Ω

(γ1σ
1 − γ2)p(ϕ1)µ1

−
n−1∑
i=1

[
(γ1σ

i − γ2)p(ϕi)− (γ1σ
i−1 − γ2)p(ϕi−1)

]
µi. (8.1)

Due to (6.40) and the Lipschitz continuity of π, the third term on the right hand side of
(8.1) can be estimated as follows

−
n∑
i=2

(
π(ϕi)− π(ϕi−1)

τ
,
ϕi − ϕi−1

τ

)
H

≤ c
n∑
i=2

τ

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

≤ c. (8.2)

We also observe that the last term on the left hand side of (8.1) is nonnegative due to the
monotonicity of βτ . Moreover, using the Young inequality and recalling (3.6) and (6.40),
for the fourth term on the right hand side of (8.1) we have that

n∑
i=2

τ

∥∥∥∥µiS − µi−1
S

τ

∥∥∥∥
H

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥
H

≤
n∑
i=2

τ 2

∥∥∥∥µiS − µi−1
S

τ

∥∥∥∥2

H

+
n∑
i=2

∥∥∥∥ϕi − ϕi−1

τ

∥∥∥∥2

H

≤ c, (8.3)

while, due to to the boundedness of p, using the Young inequality and (6.39)–(6.43), the
fifth, the sixth and the seventh term, can be estimated as follows:∫

Ω

(γ1σ
n−1 − γ2)p(ϕn−1)µn ≤ c

(
1 +

∫
Ω

|σn−1|2 +

∫
Ω

|µn|2
)
≤ c,

−
∫

Ω

(γ1σ
1 − γ2)p(ϕ1)µ1 ≤ c

(
1 +

∫
Ω

|σ1|2 +

∫
Ω

|µ1|2
)
≤ c,

−
n−1∑
i=1

[
(γ1σ

i − γ2)p(ϕi)− (γ1σ
i−1 − γ2)p(ϕi−1)

]
µi ≤ c

(
1 +

n−1∑
i=1

‖σi‖2
H +

n−1∑
i=1

‖µi‖2
H

)
≤ c.

In order to estimate te first two terms on the right hand side of (8.1), we write the
equations (5.10) and (5.11) for i = 1 and we obtain that

ϕ1 − ϕ0

τ
−∆µ1 = (γ1σ

0 − γ2)p(ϕ0) + g1, (8.4)

µ1 = `
ϕ1 − ϕ0

τ
−∆ϕ1 + ξ1 + π(ϕ1) + µ1

S . (8.5)

Then, adding (8.4) and (8.5) tested by µ1 and (ϕ1 − ϕ0)/τ , respectively, and integrating
over Ω, we obtain that

‖∇µ1‖2
H + `

∥∥∥∥ϕ1 − ϕ0

τ

∥∥∥∥2

H

+ τ

∥∥∥∥∇ϕ1 − ϕ0

τ

∥∥∥∥2

H

+

∫
Ω

(ξ1 − ξ0)

(
ϕ1 − ϕ0

τ

)

=

∫
Ω

[
(γ1σ0 − γ2)p(ϕ0) + g1

]
µ1 +

∫
Ω

(∆ϕ0 − ξ0 − π(ϕ0) + µ0
S)

(
ϕ1 − ϕ0

τ

)
. (8.6)
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Now, we observe that the third term on the left hand side of (8.6) is nonnegative, while the
two terms on the right hand side of (8.6) can be estimated using (3.1)–(3.6), (3.17)–(5.17),
(6.39)–(6.44) and the Young inequality:∫

Ω

[
(γ1σ0 − γ2)p(ϕ0) + g1

]
µ1 ≤ c(1 + ‖σ0‖2

H + ‖µ1‖2
H) ≤ c, (8.7)

∫
Ω

(∆ϕ0 − ξ0 − π(ϕ0) + µ0
S)

(
ϕ1 − ϕ0

τ

)
≤ `

2

∥∥∥∥ϕ1 − ϕ0

τ

∥∥∥∥2

H

+ c
(

1 + ‖ϕ0‖2
W + ‖ξ0‖2

H

)
≤ `

2

∥∥∥∥ϕ1 − ϕ0

τ

∥∥∥∥2

H

+ c. (8.8)

Then we obtain that

‖∇µ1‖2
H +

`

2

∥∥∥∥ϕ1 − ϕ0

τ

∥∥∥∥2

H

+ τ

∥∥∥∥∇ϕ1 − ϕ0

τ

∥∥∥∥2

H

≤ c,

whence the first and the second term of the right hand side of (8.1) are bounded by a
positive constant. Combining the above estimates with (8.1), we infer that

1

2
‖∇µn‖2

H +
n∑
i=2

τ 2

2

∥∥∥∥∇µi − µi−1

τ

∥∥∥∥2

H

+
`

2

∥∥∥∥ϕn − ϕn−1

τ

∥∥∥∥2

H

+
`

2

n∑
i=2

∥∥∥∥ϕi − ϕi−1

τ
− ϕi−1 − ϕi−2

τ

∥∥∥∥2

H

+
n∑
i=2

τ

∥∥∥∥∇ϕi − ϕi−1

τ

∥∥∥∥2

H

≤ c, (8.9)

whence, recalling (6.39)–(6.45), we conclude that

‖ϕ̂τ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L2(0,T ;W ) ≤ c. (8.10)

Second regularity estimate. We test (5.11) by −∆ϕi. Integrating over Ω, we obtain
that

‖∆ϕi‖2
H +

∫
Ω

β′τ (ϕ
i)|∇ϕi|2 ≤

∫
Ω

∇ϕi · ∇µi − `
∫

Ω

∇
(
ϕi − ϕi−1

τ

)
· ∇ϕi

−
∫

Ω

π′(ϕi)|∇ϕi|2 +

∫
Ω

∇µiS · ∇ϕi. (8.11)

Using (6.39)–(6.45), (8.10) and the Young inequality, we have that∫
Ω

∇ϕi · ∇µi ≤ ‖ϕi‖2
V + ‖µi‖2

V ≤ c, (8.12)

−`
∫

Ω

∇
(
ϕi − ϕi−1

τ

)
· ∇ϕi ≤

∥∥∥∥∇ϕi − ϕi−1

τ

∥∥∥∥2

H

+ `2‖ϕi‖2
V ≤ c, (8.13)

−
∫

Ω

π′(ϕi)|∇ϕi|2 ≤ Cπ‖ϕi‖2
V ≤ c, (8.14)∫

Ω

∇µiS · ∇ϕi ≤ ‖µiS‖2
V + ‖µi‖2

V ≤ c. (8.15)

Then, combining (8.11) with the above estimates (8.12)–(8.15), we infer that ‖∆ϕi‖H ≤ c,
whence we conclude that

‖ϕτ‖L∞(0,T ;W ) ≤ c. (8.16)
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Conclusion. Due to (8.10) and (8.16), passing to the limit as τ ↘ 0 in (Pτ ) (see
(5.10)–(5.16)), we infer that

σ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (8.17)

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (8.18)

µ ∈ L∞(0, T ;V0) ∩ L2(0, T ;H2(Ω)), (8.19)

whence Theorem 3.2 is completely proved.

9 Uniqueness

9.1 Uniqueness - Problem (P)

Assuming b = 0 and integrating (3.10) over (0, t), we obtain that

ϕ−∆(1 ∗ µ) = ϕ0 + {1 ∗ [(γ1σ − γ2)p(ϕ)]}. (9.1)

Let (σi, ϕi, µi), i = 1, 2, be two solutions of Problem (P ) (see (3.10)–(3.16)). We take
the difference between (9.1) written for (σi, ϕi, µi), i = 1, 2, respectively, and test the
resultant equation by (µ1 − µ2). Then, we take the difference between (3.11) written for
(σi, ϕi, µi), i = 1, 2, respectively, and test the resultant equation by (ϕ1−ϕ2). Finally, we
take the difference between (3.12) written for (σi, ϕi, µi), i = 1, 2, respectively, and test
the resultant equation by (σ1 − σ2). Summing up, integrating over Qt and setting

σ := σ1 − σ2, ϕ := ϕ1 − ϕ2, µ := µ1 − µ2,

we obtain that

1

2

∫
Ω

|∇(1 ∗ µ)(t)|2 +
`

2

∫
Ω

|ϕ(t)|2 +

∫
Qt

|∇ϕ|2 +

∫
Qt

(ξ1 − ξ2)(ϕ1 − ϕ2) +
1

2

∫
Ω

|σ(t)|2

+
1

2

∫
Ω

|∇σ(t)|2 +
1

a

∫
Qt

(
ρ Sign(aσ1 + η∗)− ρ Sign(aσ2 + η∗)

)(
(aσ1 + η∗)− (aσ2 + η∗)

)
+γ4

∫
Qt

|σ|2 = −
∫
Qt

(
π(ϕ1)− π(ϕ2)

)
(ϕ1 − ϕ2)− γ3

∫
Qt

(
σ1p(ϕ1)− σ2p(ϕ2)

)(
σ1 − σ2

)
−
∫
Qt

{1 ∗ [(γ1σ1 − γ2)p(ϕ1)− (γ1σ2 − γ2)p(ϕ2)]}µ. (9.2)

We observe that the fourth and the seventh term on the left hand side of (9.2) are
nonnegative due to the monotonicity of β and Sign, respectively. Due to the Lipschitz
continuity of π, the first term on the right hand side of (9.2) can be estimated as follows:

−
∫
Qt

(
π(ϕ1)− π(ϕ2)

)
(ϕ1 − ϕ2) ≤ c

∫ t

0

‖ϕ(s)‖2
H ds. (9.3)
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Since V ↪→ L4(Ω), using (3.7), the Hölder inequality, the Poincaré inequality and the
Young inequality, the second term on the right hand side of (9.2) can be estimated as
follows:

−γ3

∫
Qt

(
σ1p(ϕ1)− σ2p(ϕ2)

)(
σ1 − σ2

)

≤ c

∫
Qt

|σ|2p(ϕ1) + c

∫
Qt

|σ2||p(ϕ1)− p(ϕ2)||σ|

≤ c‖p‖∞
∫ t

0

‖σ(s)‖2
H ds+ c

∫ t

0

‖σ2(s)‖L4(Ω)‖ϕ(s)‖L4(Ω)‖σ(s)‖L2(Ω) ds

≤ c

∫ t

0

‖σ(s)‖2
H ds+

1

2

∫ t

0

‖ϕ(s)‖V ds+ c‖σ2‖L∞(0,T ;V )

∫ t

0

‖σ(s)‖2
H ds

≤ c

∫ t

0

‖σ(s)‖2
H ds+

1

2

∫ t

0

‖ϕ(s)‖V ds. (9.4)

Integrate by parts the last term on the right hand side of (9.2), we obtain that

−
∫
Qt

{1 ∗ [(γ1σ1 − γ2)p(ϕ1)− (γ1σ2 − γ2)p(ϕ2)]}µ

= −
∫

Ω

{1 ∗ [(γ1σ1(t)− γ2)p(ϕ1(t))− (γ1σ2 − γ2)p(ϕ2(t))]}(1 ∗ µ)(t)

+

∫
Qt

[(γ1σ1 − γ2)p(ϕ1)− (γ1σ2 − γ2)p(ϕ2)](1 ∗ µ)

≤ −
∫

Ω

[1 ∗ (γ1σp(ϕ1))](1 ∗ µ)(t)−
∫

Ω

{1 ∗ [(γ1σ2 − γ2)(p(ϕ1)− p(ϕ2))]}(1 ∗ µ)(t)

+

∫
Qt

γ1σp(ϕ1)(1 ∗ µ) +

∫
Qt

(γ1σ2 − γ2)(p(ϕ1)− p(ϕ2))(1 ∗ µ) (9.5)

Now, we estimate every term on the right hand side of (9.5), separately, using (3.7),
the Hölder inequality, the Poincaré inequality, the Young inequality and the continuous
immersion V ↪→ L4(Ω). For the first term on the right hand side of (9.5) we have that

−
∫

Ω

[1 ∗ (γ1σp(ϕ1))](t)(1 ∗ µ)(t) ≤ |γ1|‖p‖∞
∫

Ω

(1 ∗ |σ|)(t)(1 ∗ µ)(t)

≤ 1

8
‖(1 ∗ µ)(t)‖2

H + c

∥∥∥∥∥
∫ t

0

|σ(s)| ds

∥∥∥∥∥
2

H

≤ 1

8
‖(1 ∗ µ)(t)‖2

H + c

∫ t

0

‖σ(s)‖2
H ds, (9.6)

while, for the second term on the right hand side of (9.5) we obtain that

−
∫

Ω

{1 ∗ [(γ1σ2 − γ2)(p(ϕ1)− p(ϕ2))]}(1 ∗ µ)(t) (9.7)
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≤ ‖1 ∗ [(γ1σ2 − γ2)(p(ϕ1)− p(ϕ2))](t)‖L4/3(Ω)‖(1 ∗ µ)(t)‖L4(Ω)

≤

(
‖p′‖∞

∫ t

0

‖(γ1σ2(s)− γ2)|ϕ(s)|‖L4/3(Ω)

)
‖(1 ∗ µ)(t)‖L4(Ω)

≤ 1

8
‖∇(1 ∗ µ)(t)‖2

H + c

[∫ t

0

(∫
Ω

(σ2 + 1)4/3|ϕ|4/3
)3/4]2

≤ 1

8
‖∇(1 ∗ µ)(t)‖2

H + c

[∫ t

0

‖|σ2(s)|+ 1‖L4(Ω)‖ϕ(s)‖L2(Ω) ds

]2

≤ 1

8
‖∇(1 ∗ µ)(t)‖2

H + c

∫ t

0

‖|σ2(s)|+ 1‖2
L4(Ω)‖ϕ(s)‖2

L2(Ω) ds

≤ 1

8
‖∇(1 ∗ µ)(t)‖2

H + c
(

1 + ‖σ2‖2
L∞(0,T ;V )

)(∫ t

0

‖ϕ(s)‖2
H ds

)

≤ 1

8
‖∇(1 ∗ µ)(t)‖2

H + c

(∫ t

0

‖ϕ(s)‖2
H ds

)
. (9.8)

Beside, the third term on the right hand side of (9.5) can be estimated as follows:∫
Qt

γ1σp(ϕ1)(1∗µ) ≤ |γ1|‖p‖∞
∫
Qt

|σ||(1∗µ)| ≤ c

∫ t

0

(
‖σ(s)‖2

H +‖(1∗µ)(s)‖2
H

)
ds, (9.9)

while, for the last term on the right hand side of (9.5) we have that∫
Qt

(γ1σ2 − γ2)(p(ϕ1)− p(ϕ2))(1 ∗ µ)

≤ c‖p′‖∞
∫
Qt

(|σ2|+ 1)|ϕ||1 ∗ µ|

≤ c

∫
Qt

(|σ2|+ 1)|ϕ||1 ∗ µ|

≤ c

∫ t

0

(‖σ2(s)‖L4(Ω) + 1)‖ϕ(s)‖L2(Ω)‖(1 ∗ µ)(s)‖L4(Ω) ds

≤ c

∫ t

0

(‖σ2(s)‖V + 1)‖ϕ(s)‖H‖(1 ∗ µ)(s)‖V ds

≤ c

(∫ t

0

(
‖ϕ(s)‖2

H + ‖(1 ∗ µ)(s)‖2
V

)
ds

)
. (9.10)

Combining (9.6)–(9.10) with (9.5), (9.3) and (9.3), from (9.2) we infer that

1

4

∫
Ω

|∇(1 ∗ µ)(t)|2 +
`

2

∫
Ω

|ϕ(t)|2 +

∫
Qt

|∇ϕ|2 +
1

2

∫
Ω

|σ(t)|2 +
1

2

∫
Ω

|∇σ(t)|2 + γ4

∫
Qt

|σ|2

≤ c

∫ t

0

(
‖ϕ(s)‖2

V + ‖σ(s)‖2
H + ‖(1 ∗ µ)(s)‖2

H

)
ds, (9.11)

Then, by applying the Gronwall lemma, we conclude that the left hand side of (9.11) is
null, whence σ = ϕ = µ = 0 a.e. in Q.
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9.2 Uniqueness - Problem (Pε)

Assuming (3.5), we consider the Problem (Pε) obtained from (3.10)–(3.16) by replacing
the operators Sign and β by their Yosida regularizations (see (4.1) and (4.9)), respectively,
and we denote by (σε, ϕε, µε) its solution. Then, we make a change of variable and set

η = aσ + bϕ+ η∗, η0 = aσ0 + bϕ0 + η∗, ηε = aσε + bϕε + η∗, (9.12)

where (σ, ϕ, µ) is a solution of Problem (P ) stated by (3.10)–(3.16). With this change of
variable, we obtain the following system:

∂tϕε −∆µε =
(γ1

a
(ηε − bϕε − η∗)− γ2

)
p(ϕε) a.e. in Q, (9.13)

µε = `∂tϕε −∆ϕε + ξε + π(ϕε) + µS a.e. in Q, (9.14)

∂tηε −∆ηε + ζε = b∂tϕε − b∆ϕε −∆η∗ − γ3(ηε − bϕε − η∗)p(ϕε)

+γ4(aσS − ηε + bϕε + η∗) + ag, a.e. in Q, (9.15)

ζε(t) ∈ ρ Signε(ηε(t)) for a.e. t ∈ (0, T ), (9.16)

ξε ∈ βε(ϕε) a.e. in Q, (9.17)

∂νηε = ∂νϕε = 0, µε = 0 on Σ, (9.18)

ηε(0) = η0, ϕε(0) = ϕ0 in Ω. (9.19)

Let (ηε,i, ϕε,i, µε,i), i = 1, 2, be two solutions of the system (9.13)–(9.19). We take the
difference between (9.13) written for (ηε,i, ϕε,i, µε,i), i = 1, 2, respectively, and test the
resultant equation by (µε,1 − µε,2). Then, we take the difference between (9.14) written
for (ηε,i, ϕε,i, µε,i), i = 1, 2, respectively, and test the resultant equation by ∂t(ϕε,1 −
ϕε,2). Finally, we take the difference between (9.15) written for (ηε,i, ϕε,i, µε,i), i = 1, 2,
respectively, and test the resultant equation by (ηε,1−ηε,2). Summing up, integrating over
Qt, exploiting the cancellation of the suitable corresponding terms, and setting

ηε := ηε,1 − ηε,2, ϕε := ϕε,1 − ϕε,2, µε := µε,1 − µε,2,

we obtain that∫
Qt

|∇µε|+ `

∫
Qt

|∂tϕε|2 +
1

2
‖ϕε(t)‖2

V +
1

2
‖ηε(t)‖2

H +

∫
Qt

|∇ηε|2 +

∫
Qt

ζεηε

≤
∫
Qt

γ1

a
(ηε − bϕε)p(ϕε,1)µε +

∫
Qt

(
γ1

a
(ηε,2 − bϕε,2 − η∗)− γ2

)(
p(ϕε,1)− p(ϕε,2)

)
µε

−
∫
Qt

(
βε(ϕε,1) + π(ϕε,1)− ϕε,1 − βε(ϕε,2)− π(ϕε,2) + ϕε,2

)
∂tϕε

−γ3

∫
Qt

(ηε,2 − bϕε,2 − η∗)(p(ϕε,1)− p(ϕε,2))ηε − γ3

∫
Qt

(ηε − bϕε)p(ϕε,1)ηε

+b

∫
Qt

∂tϕεηε + b

∫
Qt

∇ϕε · ∇ηε + γ4

∫
Qt

(bϕε − ηε)ηε. (9.20)
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We notice that the last term on the left hand side of (9.20) is nonnegative, due to the
monotonicity of Signε. Beside, using (3.18)–(3.20), the Poincaré inequality and the Young
inequality, the first term and the last four terms on on the right hand side of (9.20) can
be estimated as follows:∫

Qt

γ1

a
(ηε − bϕε)p(ϕε,1)µε ≤ c‖p‖∞

∫ t

0

(
‖ηε(s)‖H + ‖ϕε(s)‖H

)
‖µε(s)‖H ds

≤ c

∫ t

0

(
‖ηε(s)‖H + ‖ϕε(s)‖H

)
‖∇µε(s)‖H ds

≤ c

∫ t

0

(
‖ηε(s)‖2

H + ‖ϕε(s)‖2
H

)
ds+

1

4

∫
Qt

|∇µε|2, (9.21)

and, with an analogous technique,

−γ3

∫
Qt

(ηε − bϕε)p(ϕε,1)ηε ≤ c‖p‖∞
∫
Qt

(|ηε|+ |ϕε|)|ηε|

≤ c

∫ t

0

(
‖ηε(s)‖2

H + ‖ϕε(s)‖2
H

)
ds, (9.22)

b

∫
Qt

∂tϕεηε ≤
`

4

∫
Qt

|∂tϕε|2 + c

∫ t

0

‖ηε(s)‖2
H ds, (9.23)

b

∫
Qt

∇ϕε · ∇ηε ≤
1

4

∫
Qt

|∇ηε|+ c

∫ t

0

‖ϕε(s)‖2
V ds, (9.24)

γ4

∫
Qt

(bϕε − ηε)ηε ≤ c

∫ t

0

(
‖ηε(s)‖2

H + ‖ϕε(s)‖2
H

)
ds. (9.25)

Moreover, due to (3.18)–(3.20), the Hölder inequality, the Poincaré inequality, the Young
inequality and the continuous immersion V ↪→ L4(Ω), for the second term on the right
hand side of (9.20) we have that∫

Qt

(
γ1

a
(ηε,2 − bϕε,2 − η∗)− γ2

)(
p(ϕε,1)− p(ϕε,2)

)
µε

≤ c‖p′‖∞
∫
Qt

(|ηε,2|+ |ϕε,2|+ |η∗|)|ϕε||µε|+ c‖p′‖∞
∫
Qt

|ϕε||µε|

≤ c

∫ t

0

(‖ηε,2(s)‖L4(Ω) + ‖ϕε,2(s)‖L2(Ω) + 1)‖ϕε(s)‖L2(Ω)‖µε(s)‖L4(Ω) ds

+c

∫ t

0

‖ϕε(s)‖2
H ds+

1

8

∫
Qt

|∇µε(s)|2

≤ c

∫ t

0

(‖ηε,2(s)‖V + ‖ϕε,2(s)‖H + 1)‖ϕε(s)‖H‖∇µε(s)‖H ds

+c

∫ t

0

‖ϕε(s)‖2
H ds+

1

8

∫
Qt

|∇µε(s)|2 ≤
1

4

∫
Qt

|∇µε|2 + c

∫ t

0

‖ϕε(s)‖2
H ds, (9.26)
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and, with an analogous strategy, for the fourth term on the right hand side of (9.20) we
obtain that

−γ3

∫
Qt

(ηε,2 − bϕε,2 − η∗)(p(ϕε,1 − p(ϕε,2)ηε ≤ c‖p′‖∞
∫
Qt

(|ηε,2|+ |ϕε,2|+ |η∗|)|ϕε||ηε|

≤ c

∫ t

0

(‖ηε,2(s)‖L4(Ω) + ‖ϕε,2(s)‖L2(Ω) + 1)‖ϕε(s)‖L2(Ω)‖ηε(s)‖L4(Ω) ds

≤ c

∫ t

0

(‖ηε,2(s)‖V + ‖ϕε,2(s)‖H + 1)‖ϕε(s)‖H‖ηε(s)‖H ds

≤ c

∫ t

0

‖ϕε(s)‖H‖∇ηε(s)‖H ds ≤ 1

4

∫
Qt

|∇ηε|+ c

∫ t

0

‖ϕε(s)‖2
H ds. (9.27)

Finally, recalling (3.5) and the continuous immersion V ↪→ L6(Ω), the third term on the
right hand side of (9.20) can be estimated as follow:

−
∫
Qt

(
βε(ϕε,1) + π(ϕε,1)− ϕε,1 − βε(ϕε,2)− π(ϕε,2) + ϕε,2

)
∂tϕε

≤ c

∫
Qt

(
|β′ε(ϕε,1)|+ |β′ε(ϕε,2)|+ 1

)
|ϕε||∂tϕε| ≤ c

∫
Qt

(
|ϕε,1|2 + |ϕε,2|2 + 1

)
|ϕε||∂tϕε|

≤ c

∫ t

0

‖|ϕε,1(s)|2 + |ϕε,2(s)|2 + 1‖L3(Ω)‖ϕε(s)‖L6(Ω)‖∂tϕε‖L2(Ω) ds

≤ `

4

∫
Qt

|∂tϕε|2 + c

∫ t

0

‖|ϕε,1(s)|2 + |ϕε,2(s)|2 + 1‖2
L3(Ω)‖ϕε(s)‖2

V ds

≤ `

4

∫
Qt

|∂tϕε|2 + c

∫ t

0

(∫
Ω

(
|ϕε,1(s)|6 + |ϕε,2(s)|6 + 1

))2/3

‖ϕε(s)‖2
V ds

≤ `

4

∫
Qt

|∂tϕε|2 + c

∫ t

0

(
‖ϕε,1(s)‖L6(Ω) + ‖ϕε,2(s)‖L6(Ω) + 1

)4

‖ϕε(s)‖2
V ds

≤ `

4

∫
Qt

|∂tϕε|2 + c

∫ t

0

(
‖ϕε,1‖L∞(0,T ;V ) + ‖ϕε,2‖L∞(0,T ;V ) + 1

)4

‖ϕε(s)‖2
V ds

≤ `

4

∫
Qt

|∂tϕε|2 + c

∫ t

0

‖ϕε(s)‖2
V ds. (9.28)

Thanks to (9.21)–(9.28), from (9.20), we infer that

1

2

∫
Qt

|∇µε|+
`

2

∫
Qt

|∂tϕε|2 +
1

2
‖ϕε(t)‖2

V +
1

2
‖ηε(t)‖2

H +
1

2

∫
Qt

|∇ηε|2

≤ c

∫ t

0

(
‖ηε(s)‖2

H + ‖ϕε(s)‖2
V

)
ds, (9.29)

whence, by applying the Gronwall lemma, we conclude that the left hand side of (9.29)
is null. Then, ηε = ϕε = µε = 0 a.e. in Q.
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10 Sliding mode control

The argument we use in the proof of Theorem 3.4 relies in the following Lemma (see [2,
Lemma 4.1, p. 20]).

Lemma 10.1 Let a0, b0, ψ0, ρ ∈ R be such that

a0, b0, ψ0 ≥ 0 and ρ > a2
0 + 2b0 + 2

ψ0

T
. (10.1)

Let ψ : [0, T ]→ [0,+∞) be an absolutely continuous function satisfying ψ(0) = ψ0 and

ψ′ + ρ ≤ a0ρ
1/2 + b0 a.e. in the set P := {t ∈ (0, T ) : ψ(t) > 0}. (10.2)

Then, the following conditions hold true:

1. If ψ0 = 0, then ψ vanishes identically.

2. If ψ0 > 0, then there exists T ∗ ∈ (0, T ) satisfying T ∗ ≤ 2ψ0/(ρ− a2
0− 2b0) such that

ψ is strictly decreasing in (0, T ∗) and ψ vanishes in [T ∗, T ].

10.1 Sliding mode estimates

With the same change of variable used in (9.12), under the assumptions of Theorem 3.4,
Problem (Pε) (see (9.13)–(9.19)) can be rewritten as

∂tϕε −∆µε =
(γ1

a
(ηε − bϕε − η∗)− γ2

)
p(ϕε) a.e. in Q, (10.3)

µε = `∂tϕε −∆ϕε + ξε + π(ϕε) + µS a.e. in Q, (10.4)

∂tηε −∆ηε + ρκε = wε a.e. in Q, (10.5)

κε(t) ∈ Signε(ηε(t)) for a.e. t ∈ (0, T ), (10.6)

ξε ∈ βε(ϕε) a.e. in Q, (10.7)

∂νηε = ∂νϕε = 0, µε = 0 on Σ, (10.8)

ηε(0) = η0, ϕε(0) = ϕ0 in Ω, (10.9)

where

wε := b∂tϕε− b∆ϕε−∆η∗−γ3(ηε− bϕε−η∗)p(ϕε)+γ4(aσS−ηε+ bϕε+η∗)+ag. (10.10)
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First estimate. We test (10.3), (10.4) and (10.5) by µε, ∂tϕε and ηε, respectively.
Adding the corresponding equations and integrating over Qt, we obtain that∫

Qt

|∇µε|2 + `

∫
Qt

|∂tϕε|2 +
1

2

∫
Ω

|∇ϕε(t)|2 +

∫
Ω

β̃ε(ϕε(t)) +

∫
Ω

π̃(ϕε(t))

+
1

2

∫
Ω

|ηε(t)|2 +

∫
Qt

|∇ηε|2 + a

∫
Qt

ρκεηε =
1

2

∫
Ω

|∇ϕ0|2 +

∫
Ω

β̃ε(ϕ0)|2 +

∫
Ω

π̃(ϕ0)

+
1

2

∫
Ω

|η0|2 +

∫
Qt

µS∂tϕε + b

∫
Qt

∂tϕεηε + b

∫
Qt

∇ϕε · ∇µε −
∫
Qt

∆η∗ηε

−γ3

∫
Qt

|ηε|2p(ϕε) + bγ3

∫
Qt

ϕεηεp(ϕε) + γ3

∫
Qt

η∗ηεp(ϕε) + γ4a

∫
Qt

σSηε

−γ4

∫
Qt

|ηε|2 + γ4b

∫
Qt

ϕεηε + γ4

∫
Qt

η∗ηε + a

∫
Qt

gηε. (10.11)

We observe that the first four terms on the right hand side of (10.11) are bounded, due
to (3.3). Moreover, thanks to the monotonicity of the operator Signε, the last term on
the left hand side of (3.3) is nonnegative. Finally, the other terms on the right hand side
of (3.3) can be estimated using (3.1)–(3.4) and the Young inequality:∫

Qt

µS∂tϕε ≤
`

4

∫
Qt

|∂tϕε|2 + c, (10.12)

b

∫
Qt

∂tϕεηε ≤
`

4

∫
Qt

|∂tϕε|2 + c

∫
Qt

|ηε|2, (10.13)

b

∫
Qt

∇ϕε · ∇µε ≤
1

2

∫
Qt

|∇µε|2 + c

∫
Qt

|∇ϕε|2, (10.14)

∫
Qt

(
bγ3p(ϕε) + γ4b

)
ϕεηε ≤ c

(∫
Qt

|ϕε|2 +

∫
Qt

|ηε|2
)
, (10.15)

∫
Qt

(
−∆η∗+ag+γ3p(ϕε)(−ηε+η∗) +γ4(aσS−ηε+η∗)

)
ηε ≤ c

(∫
Qt

|ηε|2 + 1

)
, (10.16)

whence, from (10.11) we infer that

1

2

∫
Qt

|∇µε|2 +
`

4

∫
Qt

|∂tϕε|2 +
1

2

∫
Ω

|∇ϕε(t)|2 +

∫
Ω

β̃ε(ϕε(t)) +

∫
Ω

π̃(ϕε(t))

+
1

2

∫
Ω

|ηε(t)|2 +

∫
Qt

|∇ηε|2 ≤ c

(∫
Qt

|ϕε|2 +

∫
Qt

|∇ϕε|2 +

∫
Qt

|ηε|2 + 1

)
. (10.17)

Now, we apply the Gronwall lemma and, by comparison in (10.3), we conclude that

‖µε‖L2(0,T ;W ) ≤ c, (10.18)

‖ϕε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c, (10.19)

‖ηε‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (10.20)
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Second estimate. We derive (10.4) with respect to time. Then, we add the resultant
equation tested by ∂tϕε with (10.3) tested by ∂tµε. Integrating over Qt, we obtain that

1

2

∫
Ω

|∇µε(t)|2 +
`

2

∫
Ω

|∂tϕε(t)|2 +

∫
Qt

|∇∂tϕε|2 +

∫
Qt

β′(ϕε)|∂tϕε|2

=
1

2

∫
Ω

|∇µ0|2 +
`

2

∫
Ω

|∂tϕε(0)|2 −
∫
Qt

π′(ϕε)|∂tϕε|2 −
∫
Qt

∂tµS∂tϕε

+

∫
Qt

(γ1

a
(ηε − bϕε − η∗)− γ2

)
p(ϕε)∂tµε. (10.21)

We observe that the first term on the right hand side of (10.21) is bounded due to (3.17).
Then, we estimate each term of the right hand side of (10.21), separately: due to (10.19)
and the Lipschitz continuity of π, we have that

−
∫
Qt

π′(ϕε)|∂tϕε|2 ≤ c

∫
Qt

|∂tϕε|2 ≤ c. (10.22)

Moreover, thanks to (3.17) and (10.19), using the Young inequality we obtain that

−
∫
Qt

∂tµS∂tϕε ≤
∫
Qt

|∂tµS |2 +

∫
Qt

|∂tϕε|2 ≤ c. (10.23)

In order to estimate the second term on the right hand side of (10.21), we add (10.3)
written for t = 0 and tested by ∂tϕε(0) with (10.4) written for t = 0 and tested by µ0.
Integrating the resultant equation over Ω, we obtain that

1

2

∫
Ω

|∇µ0|2 + `

∫
Ω

|∂tϕε(0)|2 =

∫
Ω

(
∆µ0 − ξ0 − π(ϕ0)− µS

)
∂tϕε(0)

+

∫
Ω

(γ1

a
(η0 − bϕ0 − η∗)− γ2

)
p(ϕ0)µ0. (10.24)

Due to (3.17), applying the Young inequality to every term on the right hand side of
(10.24), we have that ∫

Ω

(
∆µ0 − ξ0 − π(ϕ0)− µS

)
∂tϕε(0)

≤ `

2

∫
Ω

|∂tϕε(0)|2 + c(1 + ‖µ0‖2
W + ‖ξ0‖2

H + ‖ϕ0‖2
V ) ≤ `

2

∫
Ω

|∂tϕε(0)|2 + c, (10.25)

while∫
Ω

(γ1

a
(η0 − bϕ0 − η∗)− γ2

)
p(ϕ0)µ0 ≤

1

4

∫
Ω

|∇µ0|2 + c(1 + ‖η0‖2
H + ‖ϕ0‖2

H)

≤ 1

4

∫
Ω

|∇µ0|2 + c. (10.26)

Combining (10.24) with (10.25)–(10.26) we infer that

`

2

∫
Ω

|∂tϕε(0)|2 ≤ c, (10.27)
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whence, the second term on the right hand side of (10.21) is bounded. Finally, integrating
by parts the last term on the the right hand side of (10.21), we infer that∫
Qt

(γ1

a
(ηε − bϕε − η∗)− γ2

)
p(ϕε)∂tµε =

∫
Ω

(γ1

a
(ηε(t)− bϕε(t)− η∗)− γ2

)
p(ϕε(t))µε(t)

−
∫

Ω

(γ1

a
(η0 − bϕ0 − η∗)− γ2

)
p(ϕ0)µ0 −

∫
Qt

γ1

a
(∂tηε − b∂tϕε)p(ϕε)µε

−
∫
Qt

(γ1

a
(ηε − bϕε − η∗)− γ2

)
p′(ϕε)∂tϕεµε. (10.28)

Now, using (3.17), (10.18)–(10.20) and the Young inequality, the right hand side of (10.28)
can be estimated as follows:∫

Ω

(γ1

a
(ηε(t)−bϕε(t)−η∗)−γ2

)
p(ϕε(t))µε(t) ≤

1

4

∫
Ω

|µε(t)|2+c ≤ 1

4

∫
Ω

|∇µε(t)|2, (10.29)

−
∫

Ω

(γ1

a
(η0 − bϕ0 − η∗)− γ2

)
p(ϕ0)µ0 ≤ ‖µε‖2

H + c(‖η0‖2
H + ‖ϕ0‖2

H) ≤ c, (10.30)

−
∫
Qt

γ1

a
(∂tηε − b∂tϕε) ≤ c

(∫
Qt

|∂tηε|2 +

∫
Qt

|∂tϕε|2
)
≤ c, (10.31)

−
∫
Qt

(γ1

a
(ηε − bϕε − η∗)− γ2

)
p′(ϕε)∂tϕεµε

≤ c

∫
Qt

(γ1

a
(ηε − bϕε − η∗)− γ2

)2

|∂tϕε|2 +

∫
Qt

|µε|2 ≤ c+

∫
Qt

|µε|2. (10.32)

Combining (10.29)–(10.32) with (10.28) and (10.21), we infer that

1

4

∫
Ω

|∇µε(t)|2 +
`

2

∫
Ω

|∂tϕε(t)|2 +

∫
Qt

|∇∂tϕε|2 +

∫
Qt

β′(ϕε)|∂tϕε|2

≤ c

(
1 +

∫ t

0

(
‖µε(s)‖2

V + ‖∂tϕε(s)‖2
H

)
ds

)
, (10.33)

whence, applying the Gronwall lemma, we conclude that

‖ϕε‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;V ) ≤ c, (10.34)

and, by comparison in (10.3), we also infer that

‖µε‖L∞(0,T ;W ) ≤ c. (10.35)
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Third estimate. We test (10.4) by ξε. Integrating over Qt, we obtain that∫
Qt

|ξε|2 + `

∫
Ω

β̃ε(ϕε(t)) +

∫
Qt

β′ε(ϕε)|∇ϕε|2

= `

∫
Ω

β̃ε(ϕ0)−
∫
Qt

π(ϕε)ξε +

∫
Qt

µSξε +

∫
Qt

µεξε. (10.36)

We notice that the second term on the left hand side of (10.36) is nonnegative, due to the
monotonicity of βε. Moreover, the first term on the right hand side of (10.36) is bounded,
due to (3.3), while the last three terms on the right hand side of (10.36) can be estimated
using (10.18)–(10.20) and the Young inequality:

−
∫
Qt

π(ϕε)ξε = −
∫
Qt

(π(ϕε)− π(ϕ0))ξε −
∫
Qt

π(ϕ0)ξε

≤ Cπ

∫
Qt

|ϕε − ϕ0||ξε|+
∫
Qt

|π(ϕ0)||ξε|

≤ 1

4

∫
Qt

|ξε|2 + c

∫
Qt

|ϕε|2 + c

≤ 1

4

∫
Qt

|ξε|2 + c. (10.37)

Besides, with an analogous technique, we obtain that∫
Qt

µSξε ≤
1

4

∫
Qt

|ξε|2 + c

∫
Qt

|µS |2 ≤
1

4

∫
Qt

|ξε|2 + c, (10.38)∫
Qt

µεξε ≤
1

4

∫
Qt

|ξε|2 + c

∫
Qt

|µε|2 ≤
1

4

∫
Qt

|ξε|2 + c. (10.39)

Due to (10.37)–(10.39), from (10.36) we obtain that

1

4

∫
Qt

|ξε|2 + `

∫
Ω

β̃ε(ϕε(t)) ≤ c, (10.40)

whence we conclude that
‖ξε‖L2(0,T ;H) ≤ c. (10.41)

Finally, by comparison in (10.4), we obtain that

‖ϕε‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ c. (10.42)

Fourth estimate. We fix t ∈ (0, T ) and test (10.4) by −∆ϕε(t). Integrating the resul-
tant equation over Ω, we obtain that∫

Ω

|∆ϕε(t)|2 +

∫
Ω

β′ε(ϕε(t))|∇ϕε(t)|2 =

∫
Ω

∇µε(t) · ∇ϕε(t)−
∫

Ω

π′(ϕε(t))|∇ϕε(t)|2

+

∫
Ω

µS(t)∆ϕε(t) + `

∫
Ω

∂tϕε(t)∆ϕε(t). (10.43)
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We observe that the second integral of the left hand side of (10.43) is nonnegative, due
to the monotonicity of β′ε. Moreover, due to (10.35) and (10.42), applying the Young
inequality to every term on the right hand side of (10.43), we have that∫

Ω

∇µε(t) · ∇ϕε(t) ≤ ‖µε‖2
L∞(0,T ;V ) + ‖ϕε‖2

L∞(0,T ;V ) ≤ c, (10.44)

−
∫

Ω

π′(ϕε(t))|∇ϕε(t)|2 ≤ c‖ϕε‖2
L∞(0,T ;V ) ≤ c. (10.45)

Besides, we have that∫
Ω

µS(t)∆ϕε(t) ≤
1

4

∫
Ω

|∆ϕε(t)|2 + c‖µS‖2
L∞(0,T ;V ) ≤

1

4

∫
Ω

|∆ϕε(t)|2 + c, (10.46)

`

∫
Ω

∂tϕε(t)∆ϕε(t) ≤
1

4

∫
Ω

|∆ϕε(t)|2 + c‖ϕε‖2
W 1,∞(0,T ;H) ≤

1

4

∫
Ω

|∆ϕε(t)|2 + c. (10.47)

Combining (10.43) with (10.44)–(10.47), we obtain that

1

2

∫
Ω

|∆ϕε(t)| ≤ c, (10.48)

whence we infer that

‖ϕε‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) ≤ c. (10.49)

Finally, due to (10.18)–(10.20), (10.35) and (10.49), by comparison in (10.10), we conclude
that

‖wε‖L∞(0,T ;H) ≤ c. (10.50)

Fifth estimate. We test (10.5) by ∂tηε. Integrating over Qt, we obtain that∫
Qt

|∂tηε|2 +
1

2

∫
Ω

|∇ηε(t)|2 + aρ

∫
Qt

κε∂tηε =
1

2

∫
Ω

|∇η0|2 +

∫
Qt

wε∂tηε. (10.51)

The first term on the right hand side of (10.51) is bounded thanks to (3.17), while the
second term can be estimated using (10.49)–(10.50) and the Young inequality:∫

Qt

wε∂tηε ≤
1

2

∫
Qt

|∂tηε|2 + c

∫
Qt

|wε|2 ≤
1

2

∫
Qt

|∂tηε|2 + c. (10.52)

Finally, due to the properties of the operator Signε stated by (2.12) and (4.7), the second
term on the left hand side of (10.51) can be rewritten as

aρ

∫
Qt

κε∂tηε = a(ρ‖ηε(t)‖H − ρ‖η0‖H). (10.53)

Combining (10.51) with (10.52)–(10.53), we have that

1

2

∫
Qt

|∂tηε|2 +
1

2

∫
Ω

|∇ηε(t)|2 + aρ‖ηε(t)‖H ≤ c(1 + ρ), (10.54)
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whence
‖ηε‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c(1 + ρ1/2). (10.55)

Then, combining (10.34)–(10.35) with (10.55), we conclude that

∂tηε −∆ηε + ρκε = wε, (10.56)

with
‖wε‖L∞(0,T ;H) ≤ c(1 + ρ1/2). (10.57)

10.2 Existence of sliding mode

In order to prove the existence of sliding mode, we fix the constant c appearing in (10.57)
and set

ρ∗ := c2 + 2c+
2

T
‖aσ0 + bϕ0 + η∗‖H (10.58)

and assume ρ > ρ∗. We also set

ψε(t) := ‖ηε(t)‖H for t ∈ [0, T ]. (10.59)

By assuming h ∈ (0, T ) and t ∈ (0, T − h), we multiply (10.56) by κε = Signε(ηε) and
integrate over (t, t+ h)× Ω. We have that∫ t+h

t

(∂tηε(s), κε(s))H ds+

∫ t+h

t

∫
Ω

∇ηε · ∇κε + ρ

∫ t+h

t

‖κε(s)‖2
H ds

=

∫ t+h

t

(wε(s), κε(s))H ds. (10.60)

Recalling that Signε(v) is the gradient at v of the C1 functional ‖ · ‖H,ε, from (4.7)–(4.8)
we deduce that

(∂tηε(s), κε(s))H =
d

dt

∫ ψε(t)

0

min {s/ε, 1} ds for a.a. t ∈ (0, T ).

Then, for the first term on the left hand side of (10.60) we have that∫ t+h

t

(∂tηε(s), κε(s))H ds =

∫ ψε(t+h)

ψε(t)

min {s/ε, 1} ds.

We also notice that (4.8) implies that

∇ηε(t) · ∇κε(t) =
|∇ηε(t)|2

max {ε, ‖ηε(t)‖H}
≥ 0 a.e. in Ω, for a.e. t ∈ (0, T ),

whence the second integral on the left hand side of (10.60) is nonnegative. Moreover, as
‖κε(s)‖H ≤ 1 for every s (see (2.13)) and (10.57) holds, we infer from (10.60) that∫ ψε(t+h)

ψε(t)

min {s/ε, 1} ds+ ρ

∫ t+h

t

‖κε(s)‖2
H ds ≤ hc(ρ1/2 + 1). (10.61)
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At this point, we let ε ↘ 0. Due to the strong convergences of σε and ϕε ensured by
(10.18)–(10.20) and by [43, Lemma 8, p. 84], at least for a subsequence, we have that

ηε → η in C0([0, T ];H). (10.62)

Besides, using standard weak, weakstar and compactness results, from (10.61) we infer
that

κε ⇀
∗ κ in L∞(0, T ;H). (10.63)

Then, taking the limit as ε↘ 0 in (10.61) and denoting by

ψ(t) := ‖η(t)‖H for t ∈ [0, T ], (10.64)

we obtain that

ψ(t+ h)− ψ(t) + ρ

∫ t+h

t

‖κ(s)‖2
H ds

≤ lim
ε↘0

∫ ψε(t+h)

ψε(t)

min {s/ε, 1} ds+ ρ lim inf
ε↘0

∫ t+h

t

‖κε(s)‖2
H ds ≤ hc(ρ1/2 + 1) (10.65)

for every h ∈ (0, T ) and t ∈ (0, T −h). Finally, we multiply (10.65) by 1/h and let h tend
to zero. We conclude that

ψ′(t) + ρ‖κ(t)‖2
H ≤ c(ρ1/2 + 1) for a.a. t ∈ (0, T ). (10.66)

As ‖κ(t)‖H = 1 if ‖η(t)‖H > 0 (see (2.13)), we can apply Lemma 10.1 with a0 = b0 = c
and we observe that our condition ρ > ρ∗ completely fits the assumptions by (10.58).
Thus, we find T ∗ ∈ [0, T ) such that η(t) = 0 for every t ∈ [T ∗, T ].
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