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ABSTRACT. This paper is concerned with the compactness of metrics of the disk
with prescribed Gaussian and geodesic curvatures. We consider a blowing-up se-
quence of metrics and give a precise description of its asymptotic behavior. In par-
ticular, the metrics blow-up at a unique point on the boundary and we are able to
give necessary conditions on its location. It turns out that such conditions depend
locally on the Gaussian curvatures but they depend on the geodesic curvatures
in a nonlocal way. This is a novelty with respect to the classical Nirenberg prob-
lem where the blow-up conditions are local, and this new aspect is driven by the
boundary condition.

1. INTRODUCTION

Let (Σ, g) denote a compact surface Σ equipped with a certain metric g. The
classical Kazdan-Warner problem (see [5, 32]) consists of determining whether a
prescribed function K is the Gaussian curvature of a new metric g̃ conformal to
g. If g̃ = eug and K, Kg are respectively the Gaussian curvatures relative to these
metrics, then the following relation holds:

(1.1) −∆gu+ 2Kg(x) = 2K(x)eu in Σ.

Hence the Kazdan-Warner problem reduces to solving this equation.

The problem of prescribing the Gaussian curvature on the standard sphere S2 is
particularly delicate and receives the name of Nirenberg problem. This question
has been addressed by a large number of papers (see for instance [1, 8, 10, 11, 13,
14, 16, 30, 27, 28, 26, 42, 45]), some of whom are commented below. For instance,
an obstruction to existence was found by Kazdan and Warner ([32]). On the other
hand, if K has antipodal symmetry (i.e. K(−x) = K(x)) and it is somewhere pos-
itive then there exists a solution, see [40]. Other results under symmetry assump-
tions are given in [13]. In [42] solutions of (1.1) have been found as the asymptotic
limit of a suitable flow. This problem is also related to a hyperbolic version of the
Christoffel problem, see [22].
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A related and significant issue in this kind of problems is the study of compact-
ness of solutions, starting from [7, 36]. Roughly speaking, given {un} a sequence
of solutions, we desire to find conditions that allow us to pass to the limit. By
regularity, it is enough to show L∞ boundedness. This problem is typically stud-
ied by means of a blow-up analysis, which determines whether the sequence un is
uniformly bounded or may blow-up. After rescaling, a blowing-up sequence of so-
lutions resembles locally a limit entire solution, and such solutions are classified in
[15]. In particular this implies a quantization result for general Liouville equations,
see [36].

Being more specific, let us consider the problem:

(1.2) −∆un + 2 = 2Kn(x)eun in S2,

where Kn converges in C2 sense to a strictly positive function K(x). Observe that
if Kn = 1, the problem is invariant by the group of conformal maps of the sphere,
which is not compact. In the non-constant case, this invariance is lost but concen-
tration of solutions may still occur. This is the so-called “bubbling phenomena”;
the solutions concentrate all their mass around a certain singular point.

Not only the asymptotic behavior of the sequence is relevant, but also the loca-
tion of the point of concentration. It has been shown ([12, 8]) that if the sequence
un is blowing-up, then the point of concentration satisfies:

(1.3) ∇K(p) = 0, ∆K(p) = 0.

As a consequence, if those conditions are never satisfied for any point p ∈ S2,
one concludes compactness for (1.2). This result is also a key point in the proof of
existence of solutions for the Nirenberg problem, which was given for the first time
in [10] via a variational argument and revisited under a different approach in [30].

If Σ is a surface with boundary, one usually imposes boundary conditions. A
natural geometric problem consists in prescribing also the geodesic curvature of
the boundary; in this way we are led to the problem:

(1.4)
{
−∆u+ 2Kg = 2Keu in Σ,
∂u
∂ν + 2hg = 2heu/2 on ∂Σ,

where ν is the outward normal vector to ∂Σ. Here hg is the geodesic curvature of
∂Σ under the metric g, and h is the geodesic curvature to be prescribed for the new
metric g̃ = eug.

In the literature there are some results on the latter problem. The case of constant
K, h has been considered in [6], where the author used a parabolic flow to obtain
solutions in the limit. Some classification results for the half-plane are also available
in [23, 37, 46]. The case of nonconstant curvatures was addressed for the first time
in [17], but the results there are partial and in some of them an unknown Lagrange
multiplier appears in the equation.

In [39] the case of surfaces topologically different from the disk is studied when
K < 0. In that paper a new type of blow-up phenomenon appears, where length
and area diverge. In the existence results the authors exploit the variational for-
mulation of the problem and solutions are obtained by minimization and min-max
techniques. For more general mean field problems with boundary terms a quanti-
zation result has been recently given in [4].
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The case of the disk Σ = D can be seen as a natural generalization of the Niren-
berg problem. Indeed, the effect of the noncompact group of conformal maps of
the disk plays a fundamental role. The problem becomes:

(1.5)

{ −∆u = 2Keu in D,
∂u

∂ν
+ 2 = 2heu/2 on ∂D.

Integrating (1.5) and applying the Gauss-Bonnet Theorem, one obtains

(1.6)
ˆ
D
Keu +

ˆ
∂D
heu/2 = 2π,

which implies that K or h must be positive somewhere.
Some works have also addressed problem (1.5). For example, the case h = 0 has

been treated in [11] (see also [24]), while the case K = 0 has been considered in
[9, 35, 38]. If K = 0 a blow-up analysis has been performed in [25], and in [19] a
new approach is given under mild conditions on the function h.

Up to our knowledge, the only result on (1.5) for non-constant curvatures is [18].
In that paper an existence result for (1.5) with positive symmetric curvatures is
given, in the spirit of the aforementioned result of Moser ([40]).

The aim of this paper is to provide a complete blow-up analysis of problem (1.5)
for non-constant functions K, h. We emphasize that we do not impose any sign
restriction on the functions K and h. We are interested in the precise asymptotic
behavior of blowing-up solutions, but also on the location of the point of concen-
tration, which turns out to be located on ∂D. Indeed, we shall find an analogue of
the conditions in (1.3) for equation (1.5). Such conditions involve both curvatures
K and h, and studying their interaction is the original motivation of this work. It
turns out that the blow-up point p depends on K in a local way but it depends on
h in a nonlocal fashion. Indeed the 1/2 laplacian of h appears which, as is well
known, depends on all values of h on ∂D. This was rather unexpected, at least for
us, since the original problem is local in nature.

Being more specific, our main result is the following:

Theorem 1.1. Let un be a sequence of solutions of the problem

(1.7)

{ −∆un = 2Kne
un in D,

∂un
∂ν

+ 2 = 2hne
un/2 on ∂D,

where Kn → K in C2(D) and hn → h in C2(∂D) as n→ +∞. Assume moreover that un
is blowing-up, namely, sup{un} → +∞, with bounded global mass,

(1.8)
ˆ
D
eun +

ˆ
∂D
eun/2 ≤ C.

Then there exists a unique point p ∈ ∂D such that
i) If K(p) ≤ 0 then h(p) >

√
−K(p).

ii) There exists an → p so that

un(z) = uan(z) + ψn(z),

uan(z) := 2 log

{
2φ̂n(1− |an|2)

φ̂2
n|1− anz|2 + k̂n|z − an|2

}
,
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with

φ̂n := φn

(
an
|an|

)
, k̂n := Kn

(
an
|an|

)
,

where

(1.9) φn(z) := hn(z) +
√
hn(z)2 +Kn(z).

Moreover, the error term ψn satisfies:

‖ψn‖C0,α(D) → 0 for any α ∈ (0, 1/2).

iii) Let H denote the harmonic extension of h, that is,{
∆H = 0 in D,
H = h on ∂D.

Define:

(1.10) Φ(z) := H(z) +
√
H(z)2 +K(z),

which, by i), is positive and well defined at least in a neighborhood of p. Then:

(1.11) ∇Φ(p) = 0.

Let us observe that condition (1.11) above is equivalent to:

hτ (p) = −Kτ (p)

2Φ(p)
, (−∆)1/2h(p) = −Kν(p)

2Φ(p)
.

Here τ denotes the tangent vector to ∂D at p. As a consequence we obtain a
compactness criterion: if such a point p does not exist, then the sequence un is
bounded from above and it is precompact. As mentioned before, this criterion
involves local terms on K, h, but also the half-laplacian of h at the blow-up point.

Observe that if K = 0, then h(p) > 0 and condition iii) reads as hτ (p) = 0,
(−∆)1/2h(p) = 0 (in other words, ∇H(p) = 0). Instead, if h = 0 then K(p) > 0 and
we obtain that ∇K(p) = 0. Even these particular results were not known in the
literature.

The proof of Theorem 1.1 involves a quite detailed blow-up analysis. Indeed one
needs good global estimates on the blow-up sequence, and not only local estimates
around the blow-up point. By a suitable rescaling, we can pass to a limit problem
posed in a half-plane, whose solutions have been classified. But for a global es-
timate one needs to make use of the conformal group of the disk and make this
approach match with the previous rescaling argument.

In our proofs we have to bypass several technical difficulties since no assumption
on the sign ofK, h is made; the possible compensation of terms gives some troubles
when passing to the limit. In general this can be very problematic, see [20, 21]. We
are able to overcome these difficulties by exploiting the finite mass assumption and
using some ideas from [39].

Remarks 1.2.
(1) Condition (1.8) has a clear geometric interpretation: both the area and the length

are assumed to be bounded. This hypothesis is necessary for Theorem 1.1 to hold.
Otherwise, a different phenomenon blow-up could appear, as has been shown in
[39] for K < 0.
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Observe that if K > 0 and h > 0, assumption (1.8) is automatically satisfied by
(1.6). We are able to give other conditions ensuring (1.8), see Proposition 6.2. This
proposition is a consequence of the isoperimetric inequality and a classical length
bound due to Toponogov ([44]). Indeed we will show that (1.8) holds if one of the
curvatures is identically equal to 0 and the other one is strictly positive.

(2) As commented above, condition (1.11) is an analogue of (1.3) for problem (1.7). It
is to be expected that one can use it to give existence results for equation (1.5). This
will be pursued in a future work.

(3) Condition (1.11) admits a variational interpretation, see Remark 5.4.

The rest of the paper is organized as follows. In Section 2 we collect and prove
some preliminary results. In particular the limit problems in the disk, in the plane
and in the half-plane are considered, together with a Pohozaev-type identity. In
Section 3 we start the blow-up analysis and we prove i) of the Theorem 1.1. This
analysis is refined in Section 4 by giving a precise description of the asymptotic be-
havior of un: namely, assertion ii) of Theorem 1.1. In Section 5 we give the proof of
condition iii) in Theorem 1.1. A final Appendix contains some asymptotic compu-
tations and also Proposition 6.2, where conditions for the validity of (1.8) are given.
6.

Notations.
Let us fix some notations. The metric distance between two points z1, z2 ∈ D will

be written as dist(z1, z2). We will denote an open ball centered at a point p ∈ D of
radius r > 0 as

Br(p) := {z ∈ D : dist(z, p) < r}.

At any point z = (x, y) ∈ ∂D we fix a tangent vector τ(x, y) = (−y, x) or, in
complex notation, τ(z) = iz. We will use the following notation for some subsets
of Br(p) ⊂ R2:

B+
r (p) :=

{
z = (x, y) ∈ R2 : dist(z, p) < r, y ≥ 0

}
;

Γr(p) :=
{

(x, y) ∈ ∂B+
r (p) : y = 0

}
;

∂+Br(p) := ∂B+
r (p) \ Γr(p).

The same notions will be used in R2 with its underlying metric.
In the estimates we will denote C as a positive constant, independent of the

parameters, that may vary from line to line. If some dependence respect to certain
parameters must be pointed out, we will indicate it in the subscript, such as Cε or
Cε,δ.

Acknowledgment: The authors thank J. A. Gálvez for several conversations and
for his help in preparing Proposition 6.2.

2. PRELIMINARIES

In this section we collect and derive some useful results which will be used later
on.
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2.1. The limit problem in the disk. We are devoted to the properties of the limit
problem:

(2.1)

{ −∆v = 2K0e
v in D,

∂v

∂ν
+ 2 = 2h0e

v/2 on ∂D,

where K0, h0 are real constants. The content of this section is rather known, but we
have not been able to find a specific reference.

Let us introduce the group of conformal maps of the disk, namely:

(2.2) G := {eiθfa : D→ D; θ ∈ [0, 2π), fa(z) =
a+ z

1 + az
, a ∈ D}.

It is well-known that problem (2.1) is conformally invariant, i.e., given a solution
v of (2.1) and f ∈ G, then:

vf (z) := v(f(z)) + 2 log |f ′(z)|,
is also a solution of the same problem. In the next lemma we show that the unique
solutions of (2.1) are those coming from conformal maps from the disk to the stan-
dard surfaces with constant curvatures.

Lemma 2.1. Problem (2.1) admits a solution if and only if:

(2.3) either K0 > 0 or K0 ≤ 0 and h0 >
√
−K0.

In such case, all solutions are determined by the formula

(2.4) va(z) := 2 log

{
2φ0(1− |a|2)

φ2
0|1− az|2 +K0|z − a|2

}
,

where φ0 := h0 +
√
h2

0 +K0, and a ∈ D.

Proof. If K0 6= 0, by considering the function v + log |K0|, we pass to a problem
with K0 = ±1. Then, we can restrict ourselves to the cases K0 = ±1 or K0 = 0.
Observe that under the metric g = evdz, D has constant gaussian curvature equal to
K0. Hence it is locally isometric to compact subdomains of S2, H2 or R2, depending
on the case K0 = 1, K0 = −1, or K0 = 0, respectively.

Observe also that ∂D has constant geodesic curvature equal to h0, and this prop-
erty translates via the local isometry. Since D is simply connected, we conclude
that the local isometry is a global one. In ther words, we have a global isometry
Υ : D→ U , where U is a subdomain of either S2, H2 or R2, with geodesic curvature
equal to h0.

Observe that if the ambient domain is R2, then h0 needs to be strictly positive.
Moreover, in H2 such domains are bounded only if h0 > 1. As a consequence we
obtain (2.3).

In other words, U is a disk in either S2, H2 or R2 and, by composing with a
symmetry, we can assume that:

U =



{
(x1, x2, x3) ∈ S2 : x3 ≥ h0√

1+h2
0

}
if K0 = 1,

{
(x1, x2) ∈ H2 :

√
x2

1 + x2
2 ≤ h0 −

√
h2

0 − 1
}

if K0 = −1,

{
(x1, x2) ∈ R2 :

√
x2

1 + x2
2 ≤ 1/h0

}
if K0 = 0.
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Above we have expressed H2 via coordinates in the Poincaré disk.
On the other hand, the identity map I : (D, dz)→ (D, evdz) is clearly a conformal

map. As a consequence, the composition Υ ◦ I : (D, dz) → U is a conformal map.
Those maps are classified, and hence the conformal factor ev is given by one of
those maps. This gives the expression (2.4). �

Remark 2.2. In particular, there exists a unique solution to (2.1) satisfying the extra con-
dition: ˆ

D
xev(z) = 0,

ˆ
D
yev(z) = 0,

which is just the solution given in (2.4) for a = 0, that is:

(2.5) v0(z) = 2 log

{
2φ0

φ2
0 +K0|z|2

}
.

Next lemma addresses the question of nondegeneracy of such solution:

Lemma 2.3. Let us consider the linearized problem:

(2.6)

{ −∆ψ = 2K0e
v0ψ in D,

∂ψ

∂ν
= h0e

v0/2ψ on ∂D,

where v0 is given in (2.5). Then the vector space of solutions of (2.6) is spanned by the
functions:

ψ1(z) :=
x

φ2
0 +K0|z|2

, ψ2(z) :=
y

φ2
0 +K0|z|2

,

where φ0 := h0 +
√
h2

0 +K0. In particular, a solution of (2.6) satisfying the extra as-
sumptions: ˆ

D
xev0(z)ψ(z) = 0,

ˆ
D
yev0(z)ψ(z) = 0,

must be necessarily equal to 0.

Proof. We show the proof only in the case K0 = 1, the other cases being analogous.
As shown in the previous lemma, (D, ev0dz) is isomorphic to a spherical cap in S2,
given by U = {(x1, x2, x3) ∈ S2 : x3 ≥ h0√

1+h2
0

}. Via that conformal map, problem

(2.6) becomes:

(2.7)

{ −∆ψ = 2ψ in U,
∂ψ

∂ν
= h0ψ on ∂U .

As it is well known, the coordinate functions x, y are generators of the vector
space of solutions of that problem. Via the conformal map, this translates into ψ1,
ψ2. �

Next lemma is a standard regularity result:

Lemma 2.4. Let ψ be a solution of

(2.8)

{ −∆ψ = c(z) in D,
∂ψ

∂ν
= d(z) on ∂D.

Then for any q > 1 there exists Cq > 0 such that

‖ψ‖W 1+1/q,q(D) ≤ Cq(‖c‖Lq(D) + ‖d‖Lq(∂D)).
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The next result is a quantitive version of the nondegeneracy result stated in
Lemma 2.3.

Lemma 2.5. For any q > 1 there exists Cq > 0 such that the following holds: for any
solution ψ of the nonhomogeneous linearized problem

(2.9)

{ −∆ψ = 2K0e
v0ψ + c(z) in D,

∂ψ

∂ν
= h0e

v0/2ψ + d(z) on ∂D,

satisfying

(2.10)
ˆ
D
xev0(z)ψ(z) = 0,

ˆ
D
yev0(z)ψ(z) = 0,

we have that
‖ψ‖W 1+1/q,q(D) ≤ Cq(‖c‖Lq(D) + ‖d‖Lq(∂D)).

Proof. Consider the solution ψn to the problem{ −∆ψn = 2K0e
v0ψn + cn(z) in D,

∂ψn
∂ν

= h0e
v0/2ψn + dn(z) on ∂D.

We assume that the solutionsψn are reasonably smooth, otherwise one can argue by
density. Reasoning by contradiction, suppose that there exists cn, dn and solutions
ψn with

‖cn‖Lq(D) + ‖dn‖Lq(∂D) = 1, ‖ψn‖W 1+1/q,q(D) → +∞.
Define ψ̃n := ‖ψn‖−1

W 1+1/q,q(D)
ψn. Up to a subsequence, we can assume that ψ̃n ⇀ ψ̃0

in W 1+1/q,q(D). Clearly, by compactness,

2K0e
v0ψ̃n +

cn
‖ψn‖W 1+1/q,q(D)

→ 2K0e
v0ψ̃0 in Lq(D),

2h0e
v0/2ψ̃n +

dn
‖ψn‖W 1+1/q,q(D)

→ 2h0e
v0/2ψ̃0 in Lq(∂D).

By Lemma 2.4 we conclude ψ̃n → ψ̃0 inW 1+1/q,q(D). In particular, ‖ψ̃0‖W 1+1/q,q(D) =

1. Moreover, if ψn satisfy (2.10), so it does ψ̃0. By Lemma 2.3 we conclude that
ψ̃0 = 0, a contradiction. �

2.2. The limit problem in the plane and the half-plane. As it is well known, the
study of blowing-up solutions of a nolinear PDE can be put in relation with limit
problems in the entire space or in half-spaces. The classification of the finite mass
solutions of Liouville problems was first made in [15] in the whole space R2, and is
rather known. Indeed, the unique solutions of the problem:

(2.11) −∆v = 2K0e
v in R2,

ˆ
R2

ev < +∞,

are given by the expression:

(2.12) v(x) = 2 log

{
2λ

K0λ2 + |x− x0|2

}
, x0 ∈ R2, λ > 0.

All those solutions are known to satisfy the quantization property:

(2.13) K0

ˆ
R2

ev = 4π.
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Since our problem considers a boundary condition, we will also be interested in
this paper in the solutions of the problem posed in the halfplane: that is, given real
constants K0, h0, the problem

(2.14)

{ −∆v = 2K0e
v in R2

+,

∂v
∂ν = 2h0e

v
2 on ∂R2

+,

ˆ
R2

+

ev +

ˆ
∂R2

+

ev/2 < +∞.

It is known (see [37, 46]) that (2.14) is solvable for any K0 > 0, and also if K0 ≤ 0
and h0 >

√
−K0. In any case, any solution is given by the expression:

(2.15) v(w1, w2) = 2 log

{
2λ

K0λ2 + (w1 − w0)2 + (w2 + λh0)2

}
, w0 ∈ R, λ > 0,

that satisfies

(2.16) h0

ˆ
∂R2

+

ev/2 = β, K0

ˆ
R2

+

ev = 2π − β,

where β is given by

(2.17) β := 2π
h0√

h2
0 +K0

.

2.3. Kazdan-Warner type conditions. In this subsection we state and prove the
Kazdan-Warner conditions for problem (1.5). There is a version already available
for boundary problems in this way, posed in the half-sphere, see [26]. To keep
the paper self-contained we give our own version of it, which suits for our later
purposes.

Let us recall the following Pohozaev-type identity, depending on an arbitrary
field F .

Lemma 2.6. Let u be a solution of (1.5). Then, given any vector field F : D → R2, there
holds: ˆ

∂D
[2Keu(F · ν) + (2heu/2 − 2)(∇u · F )− |∇u|

2

2
F · ν]

=

ˆ
D

[2eu(∇K · F +K ∇ · F ) +DF (∇u,∇u)−∇ · F |∇u|
2

2
].

Proof. The proof follows by multiplying the equation (1.5) by∇u·F and integrating
by parts (see for instance [39, Lemma 5.5]). �

From this we can obtain the following Kazdan-Warner identity.

Proposition 2.7. If u is a solution of (1.5) thenˆ
D
eu∇K · F = 4

ˆ
∂D
hτe

u/2y,

where F (x, y) := (1− x2 + y2,−2xy) (with complex notation, F (z) = 1− z2).

Proof. The idea is to consider the variation along the conformal transformations
(see (2.2)) that keep fixed the point p = (1, 0). This corresponds to

fλ(z) :=
λ+ z

1 + λz
,
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with λ ∈ (−1, 1). By taking into account the invariance of (2.1), we define

vλ(z) := u(fλ(z)) + 2 log(|f ′λ(z)|).

In order to study its variation with respect to λ we compute first

F (z) :=
d

dλ
fλ(z)

∣∣∣∣
λ=0

=
1− z2

(1 + λz)2

∣∣∣∣
λ=0

= 1− z2 = (1− x2 + y2,−2xy),

where we have used the standard notation z = x+ iy. From these identities we can
conclude that

d

dλ
vλ(z)

∣∣∣∣
λ=0

= ∇u · F − 4x.

Hence, we test in the problem with∇u ·F −4x. We first multiply it by∇u ·F , which
is just to insert F in Lemma 2.6. Observe that on ∂D, F is a tangential vector field,
and F · τ = −2y, where τ(x, y) = (−y, x). Moreover, since F is holomorphic, the
Cauchy-Riemann conditions yield

DF (∇u,∇u)−∇ · F |∇u|
2

2
= 0.

Then, we obtain

(2.18)
ˆ
∂D

(2heu/2 − 2)(−2y)uτ =

ˆ
D

2eu(∇K · F − 4xK).

We now multiply (1.5) by 4x and integrate to obtain

8

ˆ
D
Keux = 4

ˆ
D
ux − 4

ˆ
∂D
x∇u · ν = 4

ˆ
D
ux − 4

ˆ
∂D
x(2heu/2 − 2)

= 4

ˆ
D
ux + 4

ˆ
∂D
y(2hτe

u/2 + heu/2uτ ).

(2.19)

Observe also that, integrating by parts,

(2.20)
ˆ
∂D
yuτ = −

ˆ
∂D
xu = −

ˆ
D
ux.

Putting together (2.18), (2.19) and (2.20) we conclude. �

Remark 2.8. The same equality holds by interchanging the roles of x and y, if we also
change orientation τ → −τ .

Remark 2.9. Let us observe that the Kazdan-Warner identity given in Proposition 2.7 can
be written as ˆ

D
eu(1 + x2 + y2)2∇K · ∇T = −8

ˆ
∂D
hτTτe

u/2,

where T (x, y) = x/(1 + x2 + y2). As a consequence, if ∇K · ∇T , hτTτ are both positive
(or negative), then (1.5) does not admit any solution. This is a typical Kazdan-Warner type
obstruction; in the case of the semisphere, this was observed in [26, Theorem 1].
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3. A BLOW–UP ANALYSIS

In this section we begin the blow-up analysis given in Theorem 1.1. The main
goal here is to give a proof of the Proposition 3.1 below.

Under the assumptions of Theorem 1.1, define:

(3.1) un(z̃n) := max
D

un(z)→ +∞.

We also define the singular set of the blowing-up sequence as in [7]:

(3.2) S := {p ∈ D : ∃ zn ∈ D, zn → p such that un(zn)→ +∞},
By (3.1), up to a subsequence, we can assume that z̃n → p ∈ S as n→ +∞.
The main result of this section is the following:

Proposition 3.1. Under the assumptions of Theorem 1.1, S = {p} ⊂ ∂D and, up to a
subsequence,

un → −∞ locally uniform in D \ {p},

(3.3) hne
un/2 ⇀ βδp and Kne

un ⇀ (2π − β)δp,

in the sense of measures, where

(3.4) β := 2π
h(p)√

h2(p) +K(p)
.

Moreover,

(3.5) un(z) = 2 log

{
2φn(p)(1− |ζn|2)

φ2
n(p)|1− ζnz|2 +Kn(p)|z − ζn|2

}
+O(1),

where z ∈ D, the function φn is defined in (1.9) and ζn ∈ D, ζn → p.

This proposition is a first step in order to conclude the asymptotics of Theorem
1.1. In next section we will give a more accurate description (passing from O(1) of
(3.5) to o(1)). This will be needed in order to conclude the necessary conditions on
the point p in Section 5.

Proposition 3.1 will follow from the next result, which addresses more general
Liouville-type equations:

Proposition 3.2. Let un be a sequence of solutions of the problems

(3.6)

 −∆un + 2K̂n = 2Kne
un in D,

∂un
∂ν

+ 2ĥn = 2hne
un/2 on ∂D,

where Kn → K, K̂n → K̂ in C2(D) and hn → h, ĥn → ĥ in C2(∂D) as n → +∞.
Assume moreover sup{un} → +∞, but it has bounded global mass:

(3.7)
ˆ
D
eun +

ˆ
∂D
eun/2 ≤ C.

Then the singular set S is finite. Moreover,
i) If p ∈ S \ ∂D, then K(p) > 0;

ii) If p ∈ S ∩ (∂D) and K(p) ≤ 0, then h(p) >
√
−K(p);

iii) un → −∞ locally uniformly in D \ S ;
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iv)

(3.8) Kne
un ⇀

∑
p∈S\(∂D)

4πδp +
∑

p∈S∩∂D
γpδp,

and

(3.9) hne
un/2 ⇀

∑
p∈S∩∂D

γ′pδp,

where γp + γ′p = 2π and

(3.10) γp := 2π
h(p)√

h2(p) +K(p)
.

Remark 3.3. Proposition 3.2 holds true also for domains with boundary different from the
disk, as well as for 2-manifolds with boudaries, with the obvious modifications in the proofs.
However, since the goal of the paper is the study of the case of the disk, we have preferred a
statement in this setting.

First of all, let us introduce a minimal mass lemma, which is just a version for the
case of boundaries of a well-known lemma by Brezis and Merle ([7], see Theorem 1
and Corollary 3).

Lemma 3.4. Under the assumptions of Proposition 3.2, let p ∈ D and r > 0 such that
Br(p) ⊂ D. If

(3.11)
ˆ
Br(p)

K+
n e

un ≤ ε < 2π,

then u+
n is uniformly bounded in L∞(B r

2
(p)).

If, instead, p ∈ ∂D and

(3.12)
ˆ
Br(p)∩D

K+
n e

un ≤ ε < π

2
,

ˆ
Br(p)∩∂D

h+
n e

un
2 ≤ ε < π

2
,

then u+
n is uniformly bounded in L∞(B r

2
(p) ∩ D).

A proof of the previous result can be found in [4, Lemma 2.4].

As a consequence of this lemma, the set S (defined in (3.2)) must be finite. More-
over:

(3.13) Kne
un ⇀

∑
p∈S∩D

αpδp +
∑

p∈S∩∂D
γpδp + Ψ,

and

(3.14) hne
un/2 ⇀

∑
p∈S∩∂D

γ′pδp + Ψ′,

where αp ≥ 2π, γp ≥ π
2 or γ′p ≥ π

2 , Ψ ∈ L1(D)∩L∞loc(D\S),Ψ′ ∈ L1(∂D)∩L∞loc(∂D\S).

Taking into account (3.7), for any point p ∈ S ∩ D we have:

2π ≤
ˆ
Br(p)

K+
n e

un ≤
ˆ
Br(p)

(
K+
n (p) + r‖∇K+

n ‖L∞(Br(p))

)
eun

≤ C(K+
n (p) + r‖∇K+

n ‖L∞).
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By choosing r > 0 sufficiently small we conclude that K(p) > 0, so that i) of Propo-
sition 3.2 holds.

Let us now point out that, outside the set S we can assume that eun is uniformly
bounded. Via a Green representation formula (or via local regularity estimates for
the Neumann problem) one can deduce that un has bounded oscillation far from S:
being more specific,

(3.15) |un(z1)− un(z2)| ≤ C ∀z1, z2 ∈ D \
⋃
p∈S

Br(p),

for some r > 0 fixed.

3.1. Proof of Proposition 3.2. The proof of Proposition 3.2 is the result of a more
detailed study of the behavior of un around the singular points. We shall focus
on the boundary points, since the theory for interior blow-up points is much more
developed (see for instance [34, 36]).

Consider hence a point p ∈ S ∩ ∂D and a neighborhood of it which does not
intersect any other singular point. Via a conformal map, we can pass to a problem
in a half-ball. Let us be more specific, and assume without loss of generality that
p = (1, 0). By the Möbius transformation

f1 : R2
+ −→ D
w 7−→ z = i−w

w+i .

we can map a semiball B+
1 (0) ⊂ R2

+ into the right half disk, where the point p
corresponds to the origin. Consider the transformation

vn(w) := un(f1(w)) + 2 log |f ′1(w)| = un(f1(w)) + 2 log
2

|w + i|2
.

Then vn satisfies the problem

(3.16)

 −∆vn + 2K̂n = 2Kne
vn in B+

r0(0),

∂vn
∂ν + 2ĥn = 2hne

vn
2 on Γr0(0) := (−r0, r0)× {0},

for some r0 > 0 small, where S = {0}. Here the functions K̂n, ĥn, Kn and hn come
from the original data composed with the transformation f1: for the sake of clarity
we keep the same notation. Besides, by (3.1), there exists a sequence {wn} ⊂ B+

r0(0)
such that

(3.17) vn(wn) = max
B+
r0

(0)

vn(w)→ +∞, wn → 0.

Notice that wn may not match f1(z̃n).

The following selection process has been applied many times in the literature
starting from [36] (see in particular Lemma 4). The case with boundary have been
treated in [39, Lemma 7.4], to which we refer for details (see also [3]).

Lemma 3.5. There exists a finite number of sequences Σn := {wn1 , . . . , wn` , ŵn1 , . . . ŵnk} →
0 and positive sequences εn1 , . . . , ε

n
` → 0, ε̂n1 , . . . ε̂

n
k → 0 such that

a) vn(wni ) = max{vn(w), w ∈ Bεni (wni ) ∩ R2
+} for i = 1, . . . , `,

b) ε̂ni ≤ dist(ŵni ,Γr0(0)) and vn(ŵni ) = max{vn(w), w ∈ Bε̂ni (ŵni )} for i =
1, . . . , k,
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c) If K(0) ≤ 0 then k = 0 and h(0) >
√
−K(0).

d)
´
B+
r (0)Kne

vn +
´

Γr(0) hne
vn/2 → 2π`+ 4πk.

e) vn → −∞ uniformly in compact sets of B+
r (0) \ {0}.

The points wni represent points of local maxima for which the rescaled problem
converge to a limit problem posed in a half-plane (2.14), whereas for the points ŵni
the limit problem is posed in the entire plane (2.11). The restrictions in c) come
from the obstructions to the existence of solutions for those problems. Moreover,
the mass quantization in d) comes from (2.13) and (2.16).

Remark 3.6. In the analysis performed in [39, Lemma 7.4] only the points wni appear.
This is because in that paper K is strictly negative and hence no solutions in the entire
plane exist. However, the main point in the arguments of [39] is to show that the terms´
B+
r (0)Kne

vn ,
´

Γr(0) hne
vn/2 do not give any contribution apart from that coming from

their corresponding limit problems. That proof depends on the decay of the limit solutions
(2.15) and (2.12), and works equally well in our framework.

Let us point out that the coefficients γ, γ′ of the expansions (3.13) and (3.14) (we
omit the dependence on p) satisfy:

(3.18) γ := lim
r→0

lim
n→+∞

ˆ
B+
r (0)

Kne
vn ,

(3.19) γ′ := lim
r→0

lim
n→+∞

ˆ
Γr(0)

hne
vn/2.

Next we prove the quantization of this values using a proper Pohozaev type iden-
tity and the previous asymptotic estimates.

Lemma 3.7. Let γ and γ′ given in (3.18) and (3.19). Then

γ + γ′ = 2π.

Proof. Applying a Pohozaev type identity in B+
r (0) for 0 < r < r0 with r0 fixed in

(3.16), as Lemma 2.6 with F = w, we have thatˆ
∂B+

r (0)
[2Kne

vn(w · ν) + (2hne
vn/2 − 2ĥn)(∇vn · w)− |∇vn|

2

2
w · ν] dw

=

ˆ
B+
r (0)

[2evn(∇Kn · w + 2Kn) + 2K̂n∇vn · w] dw.

If we divide ∂B+
r = ∂+Br ∪ Γr, we immediately obtainˆ

∂B+
r (0)

[2Kne
vn(w · ν) + (2hne

vn/2 − 2ĥn)(∇vn · w)− |∇vn|
2

2
w · ν] dw

=

ˆ
∂+Br(0)

[2rKne
vn + (2hne

vn/2 − 2ĥn)(∇vn · w)− |∇vn|
2

2
r] dw

+

ˆ
Γr(0)

(2hne
vn/2 − 2ĥn)∂1vnw1 dw,

where we have used the notationw = w1+iw2. Taking into account that |∇Kn| ≤ C
uniformly in B+

r (0), then

(3.20)
ˆ
B+
r (0)

(∇Kn · w)evn dw ≤ r
ˆ
B+
r (0)
|∇Kn|evn dw = O(r).
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On the other hand, integrating by parts
ˆ

Γr(0)
2hne

vn/2∇vn · w dw = 4
[
hne

vn/2w1

](r,0)

w=(−r,0)
− 4

ˆ
Γr(0)

∇hn · w evn/2 dw

− 4

ˆ
Γr(0)

hne
vn/2 dw.

Again, since |∇hn| ≤ C, we have

(3.21)
ˆ

Γr(0)
∇hn · w evn/2 dw = O(r).

Moreover, by Lemma 3.5, e), we deduce that

(3.22)
[
hne

vn/2w1

](r,0)

w=(−r,0)
→ 0,

ˆ
∂+Br(0)

Kne
vnr dw → 0, as n→ +∞.

By Green representation formula,

∇vn(w) =
1

π

ˆ
B+
r (0)

w − z
|w − z|2

2Kn(z)evn(z)dz

+
1

π

ˆ
Γr(0)

w − z
|w − z|2

2hn(z)evn(z)/2dz +O(r),

and, using (3.13) and (3.14),

∇vn(w)→ ∇G =
2

π
(γ + γ′)

w

|w|2
+O(r) outside the origin,

ˆ
∂+Br(0)

∇vn · w dw →
ˆ
∂+Br(0)

∇G · w dw = O(r),

ˆ
Br(0)

∇vn · w dw →
ˆ
Br(0)

∇G · w dw = O(r),

ˆ
∂+Br(0)

|∇vn|2

2
r dw →

ˆ
∂+Br(0)

|∇G|2

2
r dw = 2(γ + γ′)2 1

π
+O(r).

Plugging the expressions above we arrive at

2(γ + γ′)2 1

π
= 4(γ + γ′) +O(r),

giving the desired conclusion. �

Observe that the previous lemma, together with Lemma 3.5, d), implies that ` = 1
and k = 0. Moreover, by (2.17),

γ = 2π
h(0)

h2(0) +K(0)
.

This finishes the proof of Proposition 3.2.
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3.2. Proof of Proposition 3.1. We finally turn our attention back to problem (1.7).
In this specific case we first show that the singular set is formed by a unique point
located at ∂D.

Lemma 3.8. The blow–up set S = {p} ⊂ ∂D.

Proof. By (1.6) we know ˆ
D
Kne

un +

ˆ
∂D
hne

un/2 = 2π.

Furthermore, Proposition 3.2 implies thatˆ
D
Kne

un +

ˆ
∂D
hne

un/2 → 4πN + 2πM,

with N = |S ∩D| and M = |S ∩ ∂D|, meaning the cardinals of those sets. Thus, the
only possibility is N = 0, M = 1. �

Next, we establish global pointwise estimates of the bubbling sequence around
0. This type of estimate was first derived by Y.Y. Li in [34] by the method of moving
planes. Another argument was given by Bartolucci-Chen-Lin-Tarantello in [2] for
singular problems, which is more suited to our framework (see also Section 4.2. in
[43] for details). Since this argument is rather standard for Liouville’s type prob-
lems, we will be sketchy.

Lemma 3.9. If K(p) ≤ 0, then h(p) >
√
−K(p). Moreover, the solutions vn of (3.16)

satisfy:

(3.23)

vn(w1, w2) = 2 log

{
2λn

Kn(0)λ2
n + (w1 − w1,n)2 + (w2 − w2,n + hn(0)λn)2

}
+O(1),

in B+
r0(0) where wn = (w1,n, w2,n)→ 0 defined in (3.17) and:

(3.24) λn :=
2δn

Kn(0) + h2
n(0)

with δn := e−
vn(wn)

2 .

Proof. Define the rescaled function

ṽn(w) := vn(wn + δnw) + 2 log δn,

that satisfies the problem

(3.25)


−∆ṽn = 2Kn(wn + δnw)eṽn in B+

r0/δn

(
−wn
δn

)
,

∂ṽn
∂ν = 2hn(wn + δnw)e

ṽn
2 on Γr0/δn

(
−wn
δn

)
,

where

B+
r0/δn

(
−wn
δn

)
:=

{
(w1, w2) ∈ Br0/δn

(
−wn
δn

)
: w2 ≥ −

wn
δn

}
,

Γr0/δn

(
−wn
δn

)
:= (−r0/δn, r0/δn)×

{
−wn
δn

}
.

By simplicity we assume −wn
δn
→ q = 0. Thus, by the Harnack inequality (see for

instance [31]):

(3.26) ṽn is uniformly bounded in L∞loc(R2
+),
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and

(3.27) ṽn → v0 in C2
loc(R2

+),

where v0 is the entire solution of the problem

(3.28)


−∆v0 = 2K(0)ev0 in R2

+,

∂v0
∂ν = 2h(0)e

v0
2 on ∂R2

+,

v0(0) = 0,

with ˆ
R2

+

ev0 +

ˆ
∂R2

+

ev0/2 < C.

According to Subsection 2.2, if K(0) ≤ 0, then h(0) >
√
−K(0). Moreover, v0 takes

the form:

(3.29) v0(w1, w2) = 2 log

{
2λ0

K(0)λ2
0 + w2

1 + (w2 + λ0h(0))2

}
,

where λ0 := 2
K(0)+h(0)2 > 0. In addition, we have that

(3.30) |wn| ≤ Cδn.

We are now concerned with the global O(1) estimate. By the analysis in [39,
Lemma 7.4] (see in particular Step 4), we conclude that for every ε there exists
Rε > 1 such that

(3.31) ṽn(w) ≤ (4− ε) log |w|+ Cε, for |w| ≥ 2Rε.

Taking into account (3.15) and (3.27), by Green representation formula one has
that

ṽn(w) +
Mn

π
log |w| = 1

π

ˆ
B+
r0/δn

(
−wn
δn

) log

(
|w||z|
|w − z|

)
2Kn(wn + δnz)e

ṽn(z) dz

+
1

π

ˆ
Γr0/δn

(
−wn
δn

) log

(
|w||z|
|w − z|

)
2hn(wn + δnz)e

ṽn(z)
2 dz + Ψn,

where Ψn is uniformly bounded in B+
r0/δn

(
−wn
δn

)
and Mn is defined as

Mn :=

ˆ
B+
r0

(0)
2Kne

vn +

ˆ
Γr0 (0)

2hne
vn
2

=

ˆ
B+
r0/δn

(
−wn
δn

) 2Kn(wn + δnw)eṽn +

ˆ
Γr0/δn

(
−wn
δn

) 2hn(wn + δnw)e
ṽn
2 .

We can estimate the expression above using the asymptotic behavior given by (3.31)
in order to conclude that

(3.32)
∣∣∣∣ṽn(w) +

Mn

π
log |w|

∣∣∣∣ = O(1) for 3 ≤ |w| ≤ r0

δn
.

See Lemma 4.2.4. in [43] for further details on the computations of the logarithmic
terms.

Finally, using a Pohozaev type identity in B+
−δn log δn

(0) one can obtain that

(3.33) |Mn − 4π| = O
(
| log δn|−1

)
.
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We refer the reader to Lemma 4.2.5. in [43] for more details.

Combining (3.26), (3.27), (3.32) and (3.33), we conclude∣∣∣∣ṽn(w1, w2)− 2 log

{
2λ0

K(0)λ2
0 + w2

1 + (w2 + h(0)λ0)2

}∣∣∣∣ ≤ C, in B+
r0/δn

(0).

Using the definition of ṽn and (3.17), scaling back to vn we obtain (3.23). �

We now conclude the proof of Proposition 3.1 by showing the estimate (3.5). We
transform properly the solution of (3.16) into a solution in the set

D :=

{
z = x+ iy ∈ D : x >

1− r0

1 + r0

}
.

In order to do that, note that

un(z) = vn(f−1
1 (z)) + 2 log

2

|z + 1|2

where f−1
1 is a Möbius transformation, inverse of f1, namely

f−1
1 : D −→ R2

+

z 7−→ w = i1−z
z+1 ,

that is,

un(z) = 2 log


4λn[

Kn(0)λ2
n +

(
2y
|z+1|2 − w1,n

)2
+
(

1−|z|2
|z+1|2 − w2,n + hn(0)λn

)2
]
|z + 1|2

 .

To complete the proof, define a sequence ζn as

ζn :=

(
1− λn

φ2
n(p) +Kn(p)

φn(p)

)
p.

Taking into account (3.24), observe that ζn → p as n→ +∞ and |ζn| < 1. Moreover,
(3.30) holds by the choice of ζn. Considering the function

(3.34) ũn(z) := 2 log

{
2φn(p)(1− |ζn|2)

φ2
n(p)|1− ζnz|2 +Kn(p)|z − ζn|2

}
,

where z ∈ D, it can be proved that

|ũn(z)− un(z)| = O(1),

that is,
un(z) = ũn(z) +O(1), z ∈ D.

We finally extend the previous expression to the whole disk. Letting z ∈ D and
z1 ∈ D, by (3.15) and (3.34) we obtain that∣∣∣∣un(z)− 2 log

{
2φn(p)(1− |ζn|2)

φ2
n(p)|1− ζnz|2 +Kn(p)|z − ζn|2

}∣∣∣∣
≤
∣∣∣∣un(z1)− 2 log

{
2φn(p)(1− |ζn|2)

φ2
n(p)|1− ζnz|2 +Kn(p)|z − ζn|2

}∣∣∣∣+ |un(z)− un(z1)|

≤ C,
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that gives the desired conclusion.

4. ESTIMATE OF THE ERROR TERM

Proposition 4.1. Under the assumptions of Theorem 1.1, there exist an ∈ D such that,
defining

vn(z) := un(fan(z)) + 2 log
1− |an|2

|1 + anz|2
,

with fa(z) := a+z
1+az , there holds:

a) vn solves the problem

(4.1)

 −∆vn = 2Kn(fan(z))evn(z) in D,
∂vn
∂ν

+ 2 = 2hn(fan(z))evn(z)/2 on ∂D,

b)
´
D xe

vn(z) dz =
´
D ye

vn(z) dz = 0,
c) an → p where p ∈ ∂D is the blow-up point,
d) vn is uniformly bounded,
e) vn(z) = 2 log

(
2φ̂n

φ̂2
n+k̂n|z|2

)
+ ξn(z), where

φ̂n := φn

(
an
|an|

)
, k̂n := Kn

(
an
|an|

)
,

with φn defined in (1.9) and ‖ξn‖C0,α(D) ≤ C(1− |an|)1−α for any α ∈ (0, 1/2).

Proof. Assertion a) is immediate. In order to prove b), given any continuous func-
tion u we define Γ : D→ R2 as

Γ(a) :=

ˆ
D
zeva(z) dz,

where
va(z) := u(fa(z)) + 2 log |f ′a(z)|.

We claim that there exists a ∈ D such that Γ(a) = 0. Observe that if an → a ∈ ∂D,ˆ
D
zevan (z) dz =

ˆ
D
zeu(fan (z))|f ′an(z)|2 dz =

ˆ
D
f−an(z′)eu(z′) dz′

→ −a
ˆ
D
eu(z′)dz′,

by Lebesgue Theorem. Then, the map Γ can be extended in a continuous way to
the boundary by Γ(a) = −a

´
D e

u(z′) dz′. As a consequence its Brouwer degree is 1
and we conclude the claim.

We now prove c). Assume by contradiction that, up to a subsequence, an → a0 ∈
D, a0 6= p. Observe that fan converges to fa0 uniformly in Bp(r), for small r > 0.
Recall that by Proposition 3.1, Kne

un ⇀ βδp, with p ∈ ∂D. Then

0 =

ˆ
D
zevn(z) dz =

ˆ
D
zeun(fan (z))|f ′an(z)|2 dz =

ˆ
D
f−an(z)eun(z) dz → c0

−a0 + p

1− a0p
,

with c0 6= 0 a constant independent of a, a contradiction.
Hence, let an → p. Taking un as in Proposition 3.1, define

vn(z) := un(fan(z)) + 2 log
1− |an|2

|1 + anz|2
,
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which implies

vn(z) = 2 log

{
2φn(p)(1− |ζn|2)(1− |an|2)

φ2
n(p)|1− ζnan + z(an − ζn)|2 +Kn(p)|an − ζn + z(1− anζn)|2

}
+O(1).

Letting ãn = an−ζn
1−anζn ∈ D we can rewrite the previous expression as

vn(z) = 2 log

{
2φn(p)(1− |ãn|2)

φ2
n(p)|1− ãnz|2 +Kn(p)|z − ãn|2

}
+O(1).

Suppose that ãn → ã ∈ ∂D. Then vn(ãn) → +∞ and evn → 0 locally in D \ {ã}.
However, vn has barycenter 0, which contradicts ã ∈ ∂D. Consequently, |ãn| < 1−ε
uniformly for ε > 0 and vn remains uniformly bounded, what proves d).

We finally prove e). By d) vn is bounded from above and hence the terms

2Kn(fan(z))evn(z), 2hn(fan(z))evn(z)/2,

are bounded in L∞. By Lemma 2.4, vn is bounded in W 1+1/q,q(D) for all q > 1. By
the Sobolev embeddings, vn is bounded in C0,α(D) for all α ∈ (0, 1) and thus, up to
a subsequence, we can assume that vn → v0 in C0,α(D), where v0 is a solution of −∆v0 = 2K(p)ev0(z) in D,

∂v0

∂ν
+ 2 = 2h(p)ev0(z)/2 on ∂D.

Furthermore,
´
D xe

v0(z) dz = 0,
´
D ye

v0(z) dz = 0. Applying Remark 2.2 we conclude
that v0 is given by (2.5).

Denote

ṽn(z) := 2 log

(
2φ̂n

φ̂2
n + k̂n|z|2

)
.

Thus, ξn(z) = vn(z) − ṽn(z), and it converges to 0 in C0,α(D) sense, for any α ∈
(0, 1), by the arguments above. Our aim is to give a quantitative estimate on this
convergence. Observe that ξn satisfies: −∆ξn = 2Kn

(
fan

(
an
|an|

))
eṽnξn + cn(z) in D,

∂ξn
∂ν = 2hn

(
fan

(
an
|an|

))
eṽn/2ξn + dn(z), on ∂D.

with

cn(z) := 2

[
Kn(fan(z))−Kn

(
fan

(
an
|an|

))]
evn

+ 2Kn

(
fan

(
an
|an|

))
eṽn(eξn − 1− ξn),

dn(z) := 2

[
hn(fan(z))− hn

(
fan

(
an
|an|

))]
evn/2

+ 2hn

(
fan

(
an
|an|

))
eṽn/2(eξn/2 − 1− ξn/2).

By the mean value theorem,∣∣∣∣Kn(fan(z))−Kn

(
fan

(
an
|an|

))∣∣∣∣ ≤ C ∣∣∣∣fan(z)− fan
(
an
|an|

)∣∣∣∣ ,
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(
fan

(
an
|an|

))∣∣∣∣ ≤ C ∣∣∣∣fan(z)− fan
(
an
|an|

)∣∣∣∣ ,
and applying Proposition 6.1 we obtainˆ
D

∣∣∣∣fan(z)− fan
(
an
|an|

)∣∣∣∣q ≤ C(1−|an|)q,
ˆ
∂D

∣∣∣∣fan(z)− fan
(
an
|an|

)∣∣∣∣q ≤ C(1−|an|),

for any 1 < q < 2.
Since ξn → 0 uniformly, we have that ‖eξn − 1 − ξn‖Lq ≤ C‖ξn‖L∞‖ξn‖Lq . We

now apply Lemma 2.5, to conclude that

(4.2) ‖ξn‖W 1+1/q,q(D) ≤ Cq(1− |an|)
1/q + on(1)(‖ξn‖Lq(D) + ‖ξn‖Lq(∂D)).

On the other hand, we have that ‖ξn‖Lq(D) + ‖ξn‖Lq(∂D) ≤ C‖ξn‖W 1+1/q,q(D), from
which we obtain, making n large enough, that

‖ξn‖W 1+1/q,q(D) ≤ (Cq + 2)(1− |an|)1/q.

Now it suffices to recall the continuous Sobolev embeddingW 1+1/q,q(D) ⊂ C0,α(D)
for α = 1− 1/q, to conclude the proof of Proposition 4.1. �

4.1. Proof of Theorem 1.1, i) and ii). From the above analysis, i) readily follows.
Moreover, with the notation of Proposition 4.1 it is enough to define

un(z) := vn(f−an(z))− 2 log
1− |an|2

|1 + anz|2
.

to obtain ii). Observe also that

ψn(z) = ξn(f−an(z)),

and |f ′−an(z)| ≤ C(1 − |an|). Hence, the mean value theorem allows us to estimate
the C0,α norm of ψn as

|ψn(z1)− ψn(z2)| = |ξn(f−an(z1))− ξn(f−an(z2))|
≤ C(1− |an|)1−α|f−an(z1)− f−an(z2)|α

≤ C(1− |an|)1−2α|z1 − z2|α.

5. CONCLUSION OF THE PROOF OF THEOREM 1.1

In this section we conclude the proof of the main Theorem 1.1 by showing iii).
Multiplying (1.7) by a proper vector field and integrating drives to a first blow–up
condition.

Proposition 5.1. Let p ∈ S and recall the definition of Φ given in 1.10. Then

(5.1) 2hτ (p) +
Kτ (p)

Φ(p)
= 0,

or, equivalently, Φτ (p) = 0.

Proof. Consider the vector field F : D → R2 defined by F (x, y) = (−y, x). Observe
that F is the tangential vector in ∂D. Applying Lemma 2.6 and integrating by parts
we obtain

(5.2) −2

ˆ
∂D

(un)τ = 4

ˆ
∂D

(hn)τe
un/2 + 2

ˆ
D
∇Kn · Feun ,
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where un is the solution of (1.7) satisfying Theorem 1.1, i), ii). Here the lower index
τ means the tangential derivative, i.e. in the direction of F . Observe that we have
used the facts that∇ · F = 0 and DF (∇un,∇un) = 0.

Reasoning similarly as we did to obtain the distributional convergences (3.3) and
using the quantization of mass given in Proposition 3.1, we immediately get that

(hn)τe
un/2 ⇀ 2π

hτ (p)√
h2(p) +K(p)

δp,

Φne
un ⇀ 2π

1√
h2(p) +K(p)

δp,

where the function Φ is defined in (1.10).
Multiplying and dividing properly by Φn, by the above convergences and the

pointwise estimates on un the right-hand side in the identity (5.2) converges to

(5.3) 8π
hτ (p)√

h2(p) +K(p)
+ 4π

Kτ (p)

Φ(p)
√
h2(p) +K(p)

.

Noticing that ˆ
∂D

(un)τ = 0,

the expression (5.3) vanishes and this implies (5.1). �

Without loss of generality from now on we will suppose p = (1, 0). We can also
assume, by composing with suitable rotations of the functions Kn, hn, that λn ∈ R,
λn → 1. Consider

uλn(x, y) :=2 log

{
2(1− λ2

n)φ̂n

φ̂2
n(1− λnx)2 + φ̂2

n(λny)2 + k̂n(x− λn)2 + k̂ny2

}
,(5.4)

that corresponds to the profile given in Theorem 1.1. Notice that the denominator
of the logarithm is positive as a consequence of the fact

Φ(p)2 +K(p) > 0.

Lemma 5.2. If un = uλn + ψn with uλn given by (5.4) and ‖ψn‖C0,α ≤ C(1− λn)1−2α,
α ∈ (0, 1/2), then

(i)
ˆ
∂D

(hn)τe
un
2 y = e

ψn(p)
2

ˆ
∂D

(hn)τe
uλn

2 y + on(1)(1− λn).

(ii)
ˆ
D

(
(Kn)yxy − (Kn)x(1− x2 + y2)

)
eun

= eψn(p)

ˆ
D2

(
(Kn)yxy − (Kn)x(1− x2 + y2)

)
euλn + on(1)(1− λn),

where on(1) is a quantity that goes to zero as n→∞.

Proof. By definition

e
un
2 = e

uλn
+ψn

2 = e
ψn(p)

2 e
uλn

2 e
ψn−ψn(p)

2 = e
ψn(p)

2 e
uλn

2 (1 +O(ψn − ψn(p))),

and henceˆ
∂D

(hn)τe
un
2 y = e

ψn(p)
2

ˆ
∂D

(hn)τe
uλn

2 y + e
ψn(p)

2

ˆ
∂D

(hn)τe
uλn

2 yO(ψn − ψn(p))︸ ︷︷ ︸
I

.
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Using that ‖ψn‖C0,α ≤ C(1− λn)1−2α, α ∈ (0, 1
2) we get

|I| ≤ C(1− λn)1−2α

ˆ
∂D
e
uλn

2 |y||z − 1|α dz

≤ C(1− λn)2−2α

ˆ
∂D

|y||z − 1|α

φ̂2
n(1− λnx)2 + φ̂2

n(λny)2 + k̂n(x− λn)2 + k̂ny2
dz

≤ C(1− λn)2−2α,

and (i) follows. Likewise,
ˆ
D

(
(Kn)yxy − (Kn)x(1− x2 + y2)

)
eun

= eψn(p)

ˆ
D

(
(Kn)yxy − (Kn)x(1− x2 + y2)

)
euλn

+ eψn(p)

ˆ
D

(
(Kn)yxy − (Kn)x(1− x2 + y2)

)
euλnO(ψn − ψn(p))︸ ︷︷ ︸

II

,

and

|II| ≤ C(1− λn)2−2α

ˆ
D

(|x||y|+ |1− x|+ |y|2)|z − 1|α(1 + λn)

(φ̂2
n(1− λnx)2 + φ̂2

n(λny)2 + k̂n(x− λn)2 + k̂ny2)2
dz

≤ C(1− λn)2−2α,

what proves (ii). �

The next result finishes the proof of Theorem 1.1.

Theorem 5.3. Recall the definition of Φ given in (1.10). Then

(5.5) 2(−∆)1/2h(p) +
Kx(p)

Φ(p)
= 0,

or, in other words, Φν(p) = 0.

Proof. Let un(z) = uλn(z) + ψn(z) be the solution of (1.7) that satisfies Theorem 1.1,
(ii), with uλn defined in (5.4) for λn ∈ (−1, 1). By Proposition 2.7 there holds

(5.6) 2

ˆ
D

(Kn)ye
unxy −

ˆ
D

(Kn)xe
un(1− x2 + y2) = −4

ˆ
∂D

(hn)τe
un/2y,

and, by Lemma 5.2,

2

ˆ
D

(Kn)ye
uλnxy −

ˆ
D

(Kn)xe
uλn (1− x2 + y2)

= −4

ˆ
∂D

(hn)τe
uλn/2y + on(1)(1− λn).

(5.7)
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Let us study first the term in the right hand side. Integrating by parts and substi-
tuting by the precise value of uλn we get

−4

ˆ
∂D

(hn)τe
uλn/2y = −4

ˆ
∂D

(hn − hn(p))τe
uλn/2y

= 4

ˆ
∂D

(hn − hn(p))

(
euλn/2

(uλn)τ
2

y + euλn/2x

)
= 8(1− λ2

n)
φ̂n

φ̂2
n + k̂n

ˆ
∂D

(hn − hn(p))
x(1− λn)2 + 2λn(x− 1)

((1− λn)2 − 2λn(x− 1))2
.

Consider now the left hand side in (5.7). Again integrating by parts and using the
definition of uλn it can be seen that

2

ˆ
D

(Kn)ye
uλnxy −

ˆ
D

(Kn)xe
uλn (1− x2 + y2)

=

ˆ
D

(Kn −Kn(p))
(
(euλn )x(1− x2 + y2)− 2(euλn )yxy − 4xeuλn

)
= −16(1− λ2

n)2φ̂2
n(φ̂2

n + k̂n)

ˆ
D

(Kn −Kn(p))(−λn((1− x)2 + y2) + (1− λn)2x)

(φ̂2
n(1− λnx)2 + φ̂2

n(λny)2 + k̂n(x− λn)2 + k̂ny2)3
.

Calling

In :=

ˆ
∂D

(hn − hn(p))
x(1− λn)2 + 2λn(x− 1)

((1− λn)2 − 2λn(x− 1))2
,

IIn := (1− λn)

ˆ
D

(Kn −Kn(p))(−λn((1− x)2 + y2) + (1− λn)2x)

(φ̂2
n(1− λx)2 + φ̂2

n(λny)2 + k̂n(x− λn)2 + k̂ny2)3
,

the identity (5.7) is equivalent to

(5.8) In = −2(1 + λn)φ̂n(φ̂2
n + k̂n)2IIn + on(1).

We aim to pass to the limit when n→∞ in this expression, that corresponds to the
effect of concentration of the bubble at the point p.

Let ε > 0 fixed. We assume 1− λn < ε, and we compute the limit of In dividing
the integral in three regions: ∂D\Bε(p), ∂D∩ (Bε(p)\B1−λn(p)) and ∂D∩B1−λn(p).
Indeed, if we denote

fn(x, y) :=
x(1− λn)2 + 2λn(x− 1)

((1− λn)2 − 2λn(x− 1))2
,

we write

In =

ˆ
∂D\Bε(p)

(hn − hn(p))fn +

ˆ
∂D∩(Bε(p)\B1−λn (p))

(hn − hn(p))fn

+

ˆ
∂D∩B1−λn (p)

(hn − hn(p))fn

=: I1 + I2 + I3.

Notice that in the region ∂D \ Bε(p) the integral is no longer singular. Thus, for λn
sufficiently close to 1,

|(hn − hn(p))fn| ≤ C‖h‖L∞(∂D) ∈ L1(∂D \Bε(p)),
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where C is a positive constant independent of n. By the Dominated Convergence
Theorem,

lim
n→∞

I1 =

ˆ
∂D\Bε(p)

h(p)− h
2(1− x)

.

On the other hand, due to the evenness of fn with respect to the variable y, I2 can
be written as

I2 =

ˆ
∂D

(hn − hn(p)− (hn)τ (p)y)fnχ∂D∩(Bε(p)\B1−λn (p)),

and using the facts that hn is uniformly bounded in C2(∂D) and |x− 1| = |z−1|2
2 >

(1−λn)2

2 we get

|I2| ≤ C
ˆ
∂D

|y|2|x− 1|
|x− 1|2

χBε(p) ≤ C
ˆ
∂D∩Bε(p)

|z − 1|2|z − 1|2

|z − 1|4
≤ Cε.

Therefore,
lim
n→∞

I2 = O(ε).

Likewise,

|I3| ≤ C
ˆ
∂D∩B1−λn (p)

(1− λn)2(1− λn)2

(1− λn)4
≤ C(1− λn),

where we have used again the evenness of fn with respect to y and that in this
region |1− x| ≤ C(1− λn)2 and |y|2 ≤ C(1− λn)2. Hence,

lim
n→∞

I3 = 0.

We compute now the limit of IIn. Naming

gn(x, y) :=
(−λn((1− x)2 + y2) + (1− λn)2x)(

φ̂2
n(1− λnx)2 + φ̂2

n(λny)2 + k̂n(x− λn)2 + k̂ny2
)3 ,

we split the integral as

IIn = (1− λn)

ˆ
D\Bρ(p)

(Kn −Kn(p))gn + (1− λn)

ˆ
D∩Bρ(p)

(Kn −Kn(p))gn

= II1 + II2.

We first consider the case of D \ Bρ(p). Observe that for 0 < ρ < 1 fixed and
z = (x, y) we have |x− 1| ≥ c(ρ) > 0 for some constant dependent on ρ, and hence

|x− λn| = |x− 1− λn + 1| ≥ |x− 1| − |1− λn| ≥ c(ρ)− |1− λn| ≥
c(ρ)

2

for λn sufficiently close to 1. On the other hand,

(1− λnx)2 ≥ (x− λn)2,

and thus, provided that Φ(p)2 +K(p) > 0, for λn close enough to 1 we have that

|II1| ≤ C(1− λn)‖K‖L∞(D),

with C a positive constant indepedent of n. Thus

lim
n→∞

II1 = 0.
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We finally estimate the term II2. Using that

Kn(x, y)−Kn(p)− (Kn)y(p)y = (Kn)x(p)(x− 1) +O(|z − 1|2),

and the evenness of gn with respect to y we write the integral as

II2 = (1− λn)(Kn)x(p)

ˆ
D∩Bρ(p)

(x− 1)gn + (1− λn)

ˆ
D∩Bρ(p)

O(|z − 1|2)gn

=: II21 + II22.

Making the change of variables

1− x = x̃(1− λn), y = ỹ(1− λn),

we obtain

II21 = (Kn)x(p)

ˆ
(R+×R)∩B ρ

1−λn
(0)

x̃(x̃(1− λn)− 1 + λn(x̃2 + ỹ2)) dỹ dx̃

(φ̂2
n(1 + λnx̃)2 + φ̂2

n(λnỹ)2 + k̂n(1− x̃)2 + k̂nỹ2)3
.

Assume first K(p) > 0. Notice that, since x̃ ≥ 0, (1 + λnx̃)2 ≥ 1 + λ2
nx̃

2, and thus,
for λn close enough to 1,∣∣∣∣ x̃(x̃(1− λn)− 1 + λn(x̃2 + ỹ2))

(φ̂2
n(1 + λnx̃)2 + φ̂2

n(λnỹ)2 + k̂n(1− x̃)2 + k̂nỹ2)3
χ(R+×R)∩B ρ

1−λn
(0)

∣∣∣∣
≤ C x̃(2(x̃2 + ỹ2) + 1)

(Φ(p)2 + Φ(p)2 x̃2

2 +K(p)ỹ2)3
,

that belongs to L1(R+×R). Otherwise, ifK(p) ≤ 0 there holds (for λn close enough
to 1)

φ̂2
n(1 + λnx̃)2 + k̂n(1− x̃)2 = φ̂2

n + k̂n + x̃2(φ̂2
nλ

2
n + k̂n)− 2x̃(−λnφ̂2 + k̂n)

≥ φ̂2
n + k̂n + x̃2(φ̂2

nλ
2
n + k̂n),

since x̃ ≥ 0 and Φ(p)2 + K(p) > 0. Thus, there exists c0 > 0, independent of λn,
such that∣∣∣∣ x̃(x̃(1− λn)− 1 + λn(x̃2 + ỹ2))

(φ̂2
n(1 + λnx̃)2 + φ̂2

n(λnỹ)2 + k̂n(1− x̃)2 + k̂nỹ2)3
χ(R+×R)∩B ρ

1−λn
(0)

∣∣∣∣
≤ c0

x̃(2(x̃2 + ỹ2) + 1)

(1 + x̃2 + ỹ2)3
∈ L1(R+ × R).

Passing to the limit in the integral we conclude

lim
n→∞

II21 = Kx(p)

[ˆ
R+×R

x̃((x̃2 + ỹ2)− 1) dỹ dx̃

(Φ(p)2(1 + x̃)2 + (Φ(p)2 +K(p))ỹ2 +K(p)(1− x̃)2)3

]
=

π

8Φ(p)2(K(p) + Φ(p)2)2
Kx(p).

The above integral in the half-plane has been computed with the help of Mathe-
matica.
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Moreover,

|II22| ≤ C(1− λn)

ˆ
(R+×R)∩B ρ

1−λn
(0)

(x̃2 + ỹ2)|x̃(1− λn)− 1 + λn(x̃2 + ỹ2)| dỹ dx̃
|φ̂2
n(1 + λnx̃)2 + φ̂2

n(λnỹ)2 + k̂n(1− x̃)2 + k̂nỹ2|3

≤ C(1− λn)

ˆ
(R+×R)∩B ρ

1−λn
(0)

(x̃2 + ỹ2)(2(x̃2 + ỹ2) + 1) dỹ dx̃

(1 + x̃2 + ỹ2)3

= O ((1− λn) log(1− λn)) ,

and therefore
lim
n→∞

II22 = 0.

Passing to the limit in (5.8) we getˆ
∂D\Bε(p)

h(p)− h
2(1− x)

+O(ε) = − π

2Φ(p)
Kx(p).

Finally, making ε→ 0,

p.v.
ˆ
∂D

h(p)− h
2(1− x)

= − π

2Φ(p)
Kx(p).

Taking into account the definition of (−∆)1/2 in S1 (see, for instance, [19, Appen-
dix]), we obtain:

2(−∆)1/2h(p) +
Kx(p)

Φ(p)
= 0.

�

Remark 5.4. As we have seen, the point of concentration of a blow-up sequence is a critical
point of the function Φ. This phenomenon has a nice interpretation. Consider the energy
functional associated to (1.5), that is, I : H1(D)→ R,

I(u) :=

ˆ
D

1

2
|∇u|2 − 2Keu +

ˆ
∂D

2u− 4heu/2.

Let us evaluate the energy of the functions uλn defined in (5.4), as λn → 1. Because of the
concentration phenomena, we have

I(uλn) = Ĩ(uλn) + on(1),

where Ĩ is the limit functional related to constant curvatures

Ĩ(u) :=

ˆ
D

1

2
|∇u|2 − 2K(p)eu +

ˆ
∂D

2u− 4h(p)eu/2.

Observe now that Ĩ(uλn) is constant in λn; so, for convenience, we may take λn = 0, that
is,

u0(z) = 2 log

(
2Φ(p)

Φ(p)2 +K(p)|z|2

)
.

Let us compute the terms
ˆ
D

1

2
|∇u0|2 = 8

K(p)2

Φ(p)4
2π

ˆ 1

0

r3 dr

(1 + K(p)
Φ(p)2 r2)2

= 8π

ˆ K(p)

Φ(p)2

0

s ds

(1 + s)2

= 8π

(
log

(
1 +

K(p)

Φ(p)2

)
+

Φ(p)2

Φ(p)2 +K(p)
− 1

)
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ˆ
∂D

2u0 = 8π log
2Φ(p)

Φ(p)2 +K(p)
.

Moreover, we already know the value of the exponential terms, recall (3.3). Then,

Ĩ(u0) = 8π

(
log(2/Φ(p)) +

Φ(p)2

Φ(p)2 +K(p)
− 1

)
− 4π

(
1 +

h(p)

h2(p) +K(p)

)
= −8π + 4π

(
2 log(2/Φ(p)) +

2Φ(p)2

Φ(p)2 +K(p)
− 1− h(p)

h2(p) +K(p)

)
.

By definition 2Φ(p)2

Φ(p)2+K(p)
− 1− h(p)

h2(p)+K(p)
= 0 and hence

Ĩ(u0) = −8π(1 + log(Φ(p)/2)).

6. APPENDIX

Proposition 6.1. Let 1 < q < 2 and an ∈ D with |an| → 1 as n → +∞. There exists
C > 0, independent of n, such that

i)
ˆ
D

∣∣∣∣fan(z)− fan
(
an
|an|

)∣∣∣∣q ≤ C(1− |an|)q,

ii)
ˆ
∂D

∣∣∣∣fan(z)− fan
(
an
|an|

)∣∣∣∣q ≤ C(1− |an|),

where fa(z) := a+z
1+āz .

Proof. By definition of fa(z),∣∣∣∣fan(z)− fan
(
an
|an|

) ∣∣∣∣ =

∣∣∣∣ an + z

1 + anz
− an
|an|

∣∣∣∣ =
(1− |an|)
|an|

∣∣∣∣an − |an|z1 + anz

∣∣∣∣
≤ C(1− |an|)

1

|1 + anz|
,

for |an| sufficiently close to 1. Thus,

(6.1)
ˆ
D

∣∣∣∣fan(z)− fan
(
an
|an|

)∣∣∣∣q ≤ C(1− |an|)q
ˆ
D

1

|1 + anz|q
,

that is singular at z0 = − 1
an

= − an
|an|2 . Notice that |z0| > 1 and therefore z0 /∈ D.

Since 1 < q < 2 we inmediately obtain i).

Let us estimate the integral on ∂D. Notice first that, if z ∈ ∂D, then

|1 + anz| = |z||1 + anz| = |z + an| = |z + an| = dist(z,−an).

Thus, arguing as before we obtainˆ
∂D
|fan(z)−fan

(
an
|an|

)
|q ≤ C(1− |an|)q

ˆ
∂D

1

|1 + anz|q

= C(1− |an|)q
ˆ
∂D

1

dist(z,−an)q
.

(6.2)

Notice that

dist(z,−an) ≥ dist
(
− an
|an|

,−an
)

= 1− |an|.
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We split the integral in two regions,

Σ1 := ∂D \B1

(
− an
|an|

)
, Σ2 := ∂D ∩B1

(
− an
|an|

)
.

If z ∈ Σ1 then there exists c > 0, independent of n, such that dist(z,−an) ≥ c.
Therefore

(6.3)
ˆ

Σ1

1

dist(z,−an)q
≤ c−q|Σ1| ≤ c−q|∂D|.

To analyze the region Σ2 we divide the integral in subintervals in the following
form,

L1 := B(1−|an|)

(
− an
|an|

)
∩ Σ2,

Lj :=

(
Bj(1−|an|)

(
− an
|an|

)
\B(j−1)(1−|an|)

(
− an
|an|

))
∩ Σ2, j = 2, . . . , Jn,

where Jn := d 1
1−|an|e, and

{zj , z̃j} := ∂Bj(1−|an|)

(
− an
|an|

)
∩ Σ2, j = 1, . . . , Jn − 1.

-an

-an ⁄|an|z1

L1

L2

L3

z2

z3

Domain Σ2.

Notice that
|Lj | = 2 arcsin(1− |an|) ≈ 2(1− |an|),

and
dist(z,−an) ≥ 1− |an|, z ∈ L1,

dist(z,−an) ≥ dist(zj−1,−an) ≥ (j − 1)(1− |an|), z ∈ Lj ,

for all j = 2, . . . , Jn. Thus,ˆ
L1

1

dist(z,−an)q
≤ 2|L1|

(1− |an|)q
≤ C(1− |an|)1−q,

ˆ
Lj

1

dist(z,−an)q
≤ C

(j − 1)q
(1− |an|)1−q, j = 2, . . . , Jn.
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Summing up we get
ˆ

Σ2

1

dist(z,−an)q
≤ C(1− |an|)1−q

1 +

Jn∑
j=2

1

(j − 1)q


≤ C(1− |an|)1−q

1 +
+∞∑
j=1

1

jq

 ≤ C(1− |an|)1−q.

(6.4)

Replacing (6.3) and (6.4) in (6.2) we conclude the validity of ii). �

6.1. On the validity of assumption (1.8). We finally discuss some conditions un-
der which condition (1.8) of Theorem 1.1 holds. First of all, by the Gauss-Bonnet
formula (1.6), if K > 0, h > 0 (1.8) is trivially satisfied. In order to find other
conditions ensuring (1.6) let us recall two classical results:

(1) The isoperimetric inequality, in the following version (see for instance [41,
Theorem 4.3, page 1206]):

Let Ω be a simply connected domain in a surface with Gaussian curvature
K. Denote by L the length of its boundary and by A its area. Then,

L2 ≥ 2A

(
2π −

ˆ
Ω
K+

)
.

(2) Toponogov’s length bound: Let Ω be a simply connected domain in a sur-
face with h ≥ 0, where h is the geodesic curvature of its boundary. Assume
that K ≥ k0 for some constant k0 > 0. Then the length of ∂Ω satisfies the
inequality:

L ≤ 2π√
k0
.

A comment is in order here. The result of Toponogov ([44]) applies to do-
mains on complete manifolds with Gaussian curvature bounded from be-
low. Hence an extension of Ω to a complete surface is needed, but this is
indeed possible (see [33]). However, a direct proof can be given, see Theo-
rem 4 of [29]. There the case k0 = 1 is treated, but a simple scaling argument
gives the result for any k0 > 0.

We can now prove the following result:

Proposition 6.2. Let u be a solution of the problem:

(6.5)

{ −∆u = 2Keu in D,
∂u

∂ν
+ 2 = 2heu/2 on ∂D,

for some continuous functions K(x), h(x). Assume that for some δ > 0:
a) either K(x) ≥ 0 and h ≥ δ,
b) or K ≥ δ2 and h ≥ 0.

Then,

(6.6)
ˆ
D
eun +

ˆ
∂D
eun/2 ≤ C,

where the constant C depends only on δ.
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Proof. Assume first a). By (1.6), we already know thatˆ
∂D
heu/2 ≤ 2π ⇒

ˆ
∂D
eu/2 ≤ 2π

δ
.

In order to bound the area term, we apply the isoperimetric inequality to the metric
eug0:

(6.7)
(ˆ

∂D
eu/2

)2

≥ 2

ˆ
D
eu
(

2π −
ˆ
D
K+eu

)
.

Since K ≥ 0 and making use of (1.6), 2π −
´
DK

+eu = 2π −
´
DKe

u =
´
∂D he

u/2.
Hence, (ˆ

∂D
eu/2

)2

≥ 2δ

ˆ
D
eu
ˆ
∂D
eu/2 ⇒

ˆ
D
eu ≤ 1

2δ

ˆ
∂D
eu/2 ≤ π

δ2
.

Assume now b). In this case (1.6) implies thatˆ
D
eu ≤ 2π

δ2
.

In order to bound the boundary term, we apply Toponogov result to the metric
eug0:

ˆ
∂D
eu/2 ≤ 2π

δ
.

�
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