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Abstract. We study compressible and incompressible nonlinear elasticity variational problems in a gen-
eral context. Our main result gives a sufficient condition for an equilibrium to be a global energy minimizer,
in terms of convexity properties of the pressure in the deformed configuration. We also provide a convex
relaxation of the problem together with its dual formulation, based on measure-valued mappings, which
coincides with the original problem under our condition.
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1. Introduction

In this article, we study a problem of calculus of variations of the form

(1.1) min
u

"ˆ
Ω

�
W p∇uq � F puq

	
dLΩ � Φpu#LΩq; u : Ω Ñ D and u � g on BΩ

*

where the unknown, u : Ω � Rd Ñ D � Rk, is a vector-valued function representing the deformation of
an elastic solid when d � k. The data consists of the boundary values fixed by a function g : BΩ Ñ BD;
a potential energy F : Ω�D Ñ R; and the hyper-elastic stored energy W : Ω� Rk�d Ñ R (dependence
on x P Ω is suppressed in our notation for (1.1) and what follows). The functional Φ is convex on the
set of finite nonnegative measures over D. We let LΩ denote the Lebesgue measure restricted to Ω and
u#LΩ is the push-forward image measure of LΩ by u.

The first example is the incompressibility constraint, imposed by

Φincpµq �

#
0 µ � LD
�8 otherwise.

When d � k, any u with u#LΩ � LD will be called incompressible, and if such a u is sufficiently
differentiable and injective then equivalently the Jacobian equation detp∇uq � 1 holds on Ω. We will
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also consider integral function of the density, that is

(1.2) Φpµq �

$&
%
ˆ
D
φ

�
dµ

dLD



dLD if µ ! LD

�8 otherwise.

where φ : r0,�8q Ñ R is a convex function. As shown in Section 1.2, this will correspond to the energy
of compressible deformations in nonlinear elasticity.

The presence of Φ composed with the image measure of u makes problem (1.1) nonlinear and non-
convex. However, we will provide a sufficient condition for a solution of the Euler-Lagrange equation of
(1.1) to be the unique global minimizer of (1.1). Moreover, we will see that under this assumption the
problem in fact coincides with a convex relaxation built on measure valued mappings.

First, let us motivate this study. Though we will mainly deal with examples where d � k, that is Ω
and D lie in the same Euclidean space, our results also apply to d � k. In particular, the case k � 1
shares some connections with hydrodynamics [9]. Problem (1.1) appears at least in two contexts.

1.1. Optimal transport. If Ω � D and W � 0 (and we omit the boundary conditions) while Φ � Φinc
and F px, uq � �fpxq � u, then the problem reads

max
u

"ˆ
Ω
f � udLΩ; u#LΩ � LΩ

*
,

and one recovers the problem of polar factorization studied by Brenier [5, 7]. In this case, provided f#LΩ
does not charge small sets, then f can be uniquely written f � p∇ωq � u where ω is convex and u is a
solution of the problem. Actually, ∇ω is the unique gradient of a convex function mapping f#LΩ onto
LΩ.

Hence Problem (1.1) can be seen as an optimal transport problem to which one adds a gradient
penalization. Such problems have been considered in the PhD thesis of Louet [24] which in particular
studies in great details the existence of a solution. What we have here can be seen as a simplified version
of their problem: we only look at Φpu#LΩq while they consider Φpu#αq with α P MpΩq possibly singular.
However, the result that we have (solutions of the Euler-Lagrange equations are global minimizers under
appropriate conditions) was not addressed at all in their work.

1.2. Non Linear elasticity. In nonlinear elasticity theory, one is led to consider problem of the form

(1.3) min
u

"ˆ
Ω

�
W p∇uq � hpdet ∇uq � F puq

	
dLΩ; u � g on BΩ

*
,

where k � d and u : Ω Ñ D is the deformation of an elastic solid. The functions W and h are assumed
to be convex, in such a way that C ÞÑW pCq � hpdetCq is a polyconvex function on the set of matrices.
The function hptq usually tends to �8 when t Ñ 0, and a limit case is when hptq � �8 for all t but
t � 1, which implies that u#LΩ � LD and u is incompressible.

By a change of variable formula, this problem falls into our framework. Let us define the function φh
by φhpsq � hps�1qs and the functional

Φhpµq �

$&
%
ˆ
D
φh

�
dµ

dLD



dLD if µ ! LD

�8 otherwise.

which we already introduced in (1.2). Then, for injective u we can writeˆ
Ω
hpdet ∇uqdLΩ � Φhpu#LΩq.
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To justify this, we can note that dLD
du#LΩ

� u � detp∇uq and calculate

Φhpu#LΩq �

ˆ
D
φh

�
du#LΩ

dLD



dLD �

ˆ
D
h

�
dLD

du#LΩ



du#LΩ �

ˆ
Ω
hpdet ∇uq dLΩ.

The function φh is convex (hence the functional Φh is also convex on the set of measures) provided h is
convex, since we can write it as a supremum of convex functions:

φhpsq � sup
r
pr � sh�prqq

(with h� being the Legendre transform of h). The now classical work of Ball [2], guarantees conditions
on W and h such that minimizers exist in a class of weakly differentiable Sobolev functions. Further
regularity of these minimizers remains unknown as a major unsolved problem.

One may ask why in (1.1) we have prescribed the codomain, D, along with the boundary conditions,
whereas in the problem of elasticity, (1.3), one only prescribes the boundary conditions. For the suf-
ficiently regulary nonsingular deformations of elasticity, f � g on BΩ implies fpΩq � gpΩq � D; see
Theorem 5.5-2 of [14]. However, in the sequel we work with (1.1) and we allow for less regular and more
singular maps, thus we prescribe the codomain as an additional constraint.

The question of uniqueness of solutions to the equilibrium equations, as well as whether they are
global minimizers is an open question in calculus of variations [3, 4], with counterexamples for some
special cases. Examples inspired from the theory of elasticity will be discussed in Section 4. We can
already highlight some insight from this theory:


 To get uniqueness of equilibrium, one needs to restrict to pure displacement on the boundaries,
that is, only Dirichlet boundary conditions as we have done here.


 There are situations where allowing discontinuous deformations can result in multiple equilibria
that all are global minimizers. Superlinear growth of C ÞÑ W pCq or stronger seems necessary to
avoid the phenomenon of cavitation and guarantee uniqueness.


 If the domain Ω is not simply connected, it may be possible to construct examples with infinitely
many local minima (hence solutions of the equilibrium equations) but only one global minimizer
[26].

Our main result is that any solution of the equilibrium equations which is smooth and small in a certain
sense (namely the pressure, expressed in the deformed configuration must be λ-convex with λ not too
negative) is the unique global minimizer (but there may be other local minima). It can be seen as a
partial answer to [3, Problem 8].

In the rest of this article, we first state rigorously the problem and derive the Euler-Lagrange equations.
Then we state our sufficiency condition for being a global minimizer and we prove it. We provide examples
to discuss the sharpness of the result. Eventually we introduce a convex relaxation based on measure
valued mappings which coincides with the original problem under the same smallness assumption on the
pressure. This last part does not provide new results on the original problem but we think is interesting
on its own and relates to the parallel work of [1], which was the starting point of our study.

2. Existence of minimizers and optimality conditions

2.1. Notation and the variational problem of interest. Let Ω � Rd and D � Rk be open and
bounded domains with Lipschitz boundaries. We denote by respectively LΩ and LD the Lebesgue measure
restricted to Ω and D. The set of finite Radon measures on a metric space X is denoted by MpXq and we
endow it with the topology of weak* convergence. The set of positive Radon measures on X is denoted
by M�pXq.
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If T : X Ñ Y and α P MpXq we denote by T#α P MpY q the push-forward of the measure α by T ,
that is the measure defined by T#αpBq � αpT�1pBqq for any Borel set B in Y . We often make use of
the change of variables, that if T : X Ñ Y is α measureable and g is continuous on Y thenˆ

X
g � T dα �

ˆ
Y
g dT#α.

The notation |x| stands for the Euclidean norm of x if x is a vector, and the Frobenius norm (also
known as the Hilbert-Schmidt norm) if x is a matrix.

For the data of the problem, letW : Ω�Rk�d Ñ R be a Carathéodory function satisfying the coercivity
and boundedness assumptions

1
C
p|H|p � 1q ¤W pHq ¤ Cp|H|p � 1q

for some C ¡ 0 and p ¡ 1, and we assume that H ÞÑW pHq is convex almost everywhere on Ω. We take
g : BΩ Ñ BD for the boundary condition, which we assume extends to a function on Ω with gpΩq � D,
and F a Carathéodory function satisfying for all u : Ω Ñ D,ˆ

Ω
|F puq|dLΩ   �8

and u ÞÑ F puq is convex.
Remark 2.1. Not to overburden notations, we suppress the dependence on x of W and F in the present
article. For instance, an expression like W p∇uq means W px,∇upxqq while F puq � F px, upxqq.

We denote by W 1,p
g pΩ, Dq the set of Sobolev functions u PW 1,ppΩ,Rkq such that the trace of u on BΩ

is g and the range of u remains in D. We let D̄ � D Y BD and we take Φ : M�pD̄q Ñ RY t�8u to be
convex, bounded below and lower semi-continuous.
Definition 2.2. We define the energy E : W 1,ppΩ,Rkq Ñ RY t�8u as

Epuq �

ˆ
Ω

�
W p∇uq � F puq

	
dLΩ � Φpu#LΩq.

The problem with penalization of the image measure we are looking at is
(2.1) inf

 
Epuq; u PW 1,p

g pΩ, Dq
(
.

As noted in Proposition 2.3 below, it is also possible to include the additional constraint that u is
injective on Ω.

Note that it is not obvious that there exists at least one admissible competitor in (2.1), or more
generally that there exists a smooth map u : Ω Ñ D such that u#α � β, being α and β two measures
on Ω and D respectively. If Ω � D is connected and has a smooth boundary, and α and β have smooth
densities bounded from below and above with respect to the Lebesgue measure, one can use [15, Theorem
1.1]. In such a case, Dirichlet boundary conditions can be prescribed. The result is easy to extend to
Ω � D if there exists a smooth diffeomorphism between Ω and D which has g as boundary value. If Ω
and D are convex with a smooth boundary one can take instead u to be the optimal transport map for
the quadratic cost. This map u is smooth [11, 12, 28] under slightly weaker smoothness assumptions on
Ω, D, α and β compared to [15, Theorem 1.1], but then Dirichlet boundary conditions cannot prescribed.
In the compressible case of Φh, existence is easier to get, as we just need a smooth u : Ω Ñ D with
prescribed boundary conditions and det ∇u bounded from below and above. In any case, once existence
of a competitor is known then existence of a minimizer of E follows easily.
Proposition 2.3. Assume for p ¡ 1 that there exists u P W 1,p

g pΩ, Dq such that Φpu#LΩq   �8. Then
there exists a global minimizer of E in W 1,p

g pΩ, Dq. If p ¡ d, then the result holds with the additional
constraint that u is injective.
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Proof. It comes from the direct method of calculus of variations. As Φ is bounded from below, with the
coercivity of W it is easy to show that any minimizing sequence punqnPN is bounded in W 1,ppΩ,Rkq. Up
to extraction of a subsequence, punqnPN converges to u weakly in W 1,ppΩ,Rkq, strongly in LppΩ,Rkq and
almost everywhere. The latter convergence implies that limn un#LΩ � u#LΩ in the weak* topology.
Then all the terms of E are lower semi-continuous so the limit u is a global minimizer. In the case
that we include the constraint that u is injective, weak compactness still holds for injective functions in
W 1,p
g pΩ, Dq when p ¡ d using the result of [13]. �

We now wish to further compare our result with the classical results of nonlinear elasticity. Indeed, the
problem (2.1) is equivalent to the nonlinear elasticity problem (1.3) when p ¡ d and Φ has the form of Φinc
or Φh. We consider a convex, lower semicontinuous function h : R Ñ RY t�8u such limtÑ0 hptq � �8
and h is bounded from below, for which Φh is convex, lower semicontinuous and bounded below.

Lemma 2.4. We suppose that g is smooth, injective and orientation preserving. Let u P C1pΩ̄,Rkq with
u � g on BΩ and detp∇uq ¡ 0 on Ω. Then Φincpu#LΩq   �8 if and only if det ∇u � 1 everywhere on
Ω. Similarly, there holds ˆ

Ω
hpdet ∇uq dLΩ � Φhpu#LΩq.

Proof. If u P C1pΩ̄,Rkq with u � g on BΩ with detp∇uq ¡ 0, then u is injective and upΩq � D by Theorem
5.5-2 in [14]. The pushforward measure is given by du#LΩ

dLD
� |detp∇uq|�1 � u�1, and the equivalences

follow from the calculation of Section 1.2. �

2.2. Optimality conditions. Now we turn to the derivation of the optimality condition. To that extent,
we will rely on the notion of the subdifferential of Φ in the sense of convex analysis.

For any ω P CpD̄q, we define the Legendre transform of Φ as

Φ�pωq � sup
µPMpD̄q

ˆ
D
ω dµ� Φpµq.

We say that ω P CpD̄q belongs to the subdifferential of Φ at µ, and we write ω P BΦpµq, if Φ�pωq �´
ω dµ� Φpµq.

Example 2.5. In the case where

Φhpµq �

ˆ
D
φh

�
dµ

dLD



dLD

with φhpsq � hps�1qs for a smooth and convex h, and if µ has a smooth density w.r.t. LD with
dµ
dLD

¥ δ ¡ 0 on D, then BΦhpµq consists of the single element

ω � φ1h

�
dµ

dLD



.

Written in terms of u and h, if u P C1pΩ̄, D̄q smooth and invertible, then the subdifferential BΦhpu#LΩq
consists of the single element

ω �
�
� h1pdet ∇uq detp∇uq � hpdet ∇uq

�
� u�1.

Example 2.6. As another important case, let Φinc be defined by

Φincpµq �

#
0 if µ � LD
�8 otherwise,

then Φ�
incpωq �

´
D ω dLD and any ω P CpD̄q belongs to BΦincpLDq.
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Now we claim that the strong form of the Euler Lagrange equations may be expressed as

(2.2)
#

∇ �DW p∇uq �DF puq � p∇ωq � u
ω P BΦpu#LΩq,

where DW and DF represent the differential with respect to their second argument, that is the one
in Rdk and Rk respectively. The function ω P BΦpu#LΩq is an unknown: it can be interpreted as the
Lagrange multiplier associated to the penalization by Φpu#LΩq, or, in short, as a pressure. Note that
BΦpu#LΩq � H implies that Φpu#LΩq   �8.

Definition 2.7. Provided that ∇ω is well defined, we say that (2.2) holds weakly if for all v PW 1,p
0 pΩ,Rkq,ˆ

Ω

�
∇v : DW p∇uq � v �

�
DF puq � p∇ωq � u

�	
dLΩ � 0.

Later we will consider the case ω is λ-convex where ∇ω will be defined as a measurable selection of the
subdifferential of ω.

In the case of Φ � Φh for ω P BΦpu#LΩq we have

p∇ωq � u � �detp∇uq∇u�J∇h1pdet ∇uq,

which agrees with what one obtains through the direct variation of u with integration by parts and the
identity that ∇ � detp∇uq∇u�J � 0.

Remark 2.8. In elasticity theory the equilibirum equations are not usually written in this way. Indeed
if we introduce p � ω � u and S � DW p∇uq the second Piola-Kirchoff stress tensor then (2.2) can be
written

∇ � S �DF puq � ∇u�J∇p on Ω.
Alternatively, we introduce the Cauchy stress T � S p∇uqJ�u�1, in which case the equilibrium equations
are simply

(2.3) ∇ � T �DF puq � u�1 � ∇ω on D.

The assumption of our main theorem will be about ω, that is about the pressure in deformed configuration.

Let us justify that (2.2) are indeed the Euler Lagrange equations in the case where the solution is
smooth. Indeed, the existence of a pressure is guaranteed when u is sufficiently smooth, following the
arguments of [23]. Results can also be attained for small forces as in [22]. In some cases this argument
can be weakened to obtain a distributional solution; see the arguments of [16].

By common abuse of notation, in the proposition below and its proof we identify a measure on D with
its density w.r.t. LD. Moreover, we will say that Φ : M�pD̄q Ñ R Y t�8u is regular if it is a convex,
bounded from below, lower semi continuous function which coincides with its lower semi continuous
envelope of when restricted to measures with a smooth density. Specifically, for every µ P M�pD̄q with
Φpµq   �8, we assume that there exists a sequence pµnqnPN of measures in W j,rpDq with jr ¡ d such
that Φpµnq converges to Φpµq when nÑ �8. If Φ is either Φinc or Φh for a smooth and convex h then
it is clearly regular.

Proposition 2.9. Assume that Φ is regular. We suppose that BΩ, BD, g,W,F are smooth, and u P
W 1,p
g pΩ, Dq is a local minimizer of Epuq such that 0   u#LΩ P W j�1,rpDq, the Cauchy stress satisfies

T P W j,rpD,Rdkq, DF puq � u�1 P W j�1,rpD,Rkq for j P N, 1   r   �8, and rj ¡ d. Then there exists
ω PW j,rpDq X BΦpu#LΩq such that (2.2) holds weakly and (2.3) holds strongly on D.

Proof. Let µ � u#LΩ, in particular µ PW j�1,rpDq.
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We start by proving the existence of the pressure ω. We consider variations of the form u� v � u for
v : D Ñ Rk with v � 0 on BD. We define G : v ÞÑ pu� v � uq#LD. We let

Ẽpvq �

ˆ
Ω

�
W p∇pu� v � uqq � F pu� v � uq

�
dLΩ.

The problem to minimize Ẽpvq subject to Gpvq � µ has a local minimum at v � 0. Linearizing the
constraint, we have for z P C1pD̄q,

xz,DGpvqqy �
d
dt

ˆ
D
z dpu� t q � uq#LΩ

���
t�0

�
d

dt

ˆ
D
z � p� � t qq dµ

���
t�0

�

ˆ
D

∇z � q dµ.

The map DGpvq : W j�1,r
0 pDq ÑW j,rpDq, which can be expressed as

DGpvqq � �∇ � pq µq ,

is continuous, making G C1, and has closed range as a composition of the divergence operator and
multiplication by a positive function inW j�1,rpDq. The range ofDGpvq consists of functions inW j�1,rpDq
that integrate to zero.

Thus by the Lagrange multiplier theorem there exists ω PW�j,rpDq with
´
D ω dµ � 0 such that

0 � DẼp0qq � xω,DGp0qqy

for all q PW j�1,r
0 pD,Rkq; see [30, §4.14 Proposition 1] with fpvq � Ẽpvq, Gpvq � Gpvq,X �W j�1,r

0 pD,Rkq
and Y � tz PW j,rpDq;

´
D z dLD � 0u.

As DẼp0qq �
´
D

�
�∇ � T �DF puq � u�1� � q dµ and xω,DGp0qqy �

´
∇ω � q dµ in the distribution

sense, it then follows from µ ¡ 0 on D that ∇ω P W j�1,rpD,Rkq thus ω P W j,rpDq � CpD̄q and (2.3)
holds. Changing variables back to Ω we have that (2.2) holds, at least weakly, except it remains to check
that ω P BΦpµq.

We now suppose that ω is not in the subdifferential of BΦpµq. Therefore there is ν P MpD̄q and a ¡ 0
such that ˆ

D
ω dν � Φpνq ¥ a�

ˆ
D
ω dµ� Φpµq � a� Φpµq.

By regularity of Φ and continuity of ω, we can take ν in W j,rpDq. By convexity of Φ we deduce that for
all t P r0, 1s,

Φpp1� tqµ� tνq ¤ �at� Φpµq � t

ˆ
D
ω dν.

By the implicit function theorem and previous linearization argument (see [30] §4.8 Theorem 4.E with
F pw, vq � Gpvq � w, Y � W j�1,r

0 pD,Rkq and X � Z � tz P W j,rpDq;
´
D z dLD � 0u), we find

qt PW
j�1,rpD,Rkq for sufficiently small t such that pu� qt �uq#LΩ � tν�p1� tqµ and DGp0q 9q0 � ν�µ

where 9q0 is the temporal derivative of q evaluated at t � 0. We can write

Epu� qt � uq � Ẽpqtq � Φpp1� tqµ� tνq ¤ Ẽpqtq � at� Φpµq � t

ˆ
D
ω dν,

and there is equality if t � 0. The derivative of the right hand side at t � 0 is

d
dt

�
Ẽpqtq � at� Φpµq � t

ˆ
D
ω dν


����
t�0

� �a�DẼp0q 9q0 �

ˆ
D
ω dν

� �a� xω,DGp0q 9q0yW j,qpDq �

ˆ
D
ω dν � �a�

ˆ
D
ω dpν � µq �

ˆ
D
ω dν � �a.

Hence by taking t small enough we see that Epu� qt � uq   Epuq, which contradicts the local optimality
of u. �
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3. Global optimality

Now let us turn to conditions guaranteeing that a solution of (2.2) is a global minimizer of the problem.
We start with an easy observation.

Proposition 3.1. Let u PW 1,p
g pΩ, Dq with Φpu#LΩq   �8 and assume that there exists ω P BΦpu#LΩq

such that u is a (unique) global minimizer of

(3.1) v ÞÑ

ˆ
Ω

�
W p∇vq � F pvq � ωpvq

	
dLΩ

over W 1,p
g pΩ, Dq. Then u is a (unique) minimizer of the energy E introduced in Definition 2.2.

Proof. Indeed, we can write by definition of BΦpu#LΩq that for any competitor v,

Epvq �

ˆ
Ω

�
W p∇vq � F pvq

	
dLΩ � Φpv#LΩq

¥

ˆ
Ω

�
W p∇vq � F pvq

	
dLΩ �

ˆ
D
ω dpv#LΩq � Φ�pωq

�

ˆ
Ω

�
W p∇vq � F pvq � ωpvq

	
dLΩ � Φ�pωq

¥

ˆ
Ω

�
W p∇uq � F puq � ωpuq

	
dLΩ � Φ�pωq(3.2)

�

ˆ
Ω

�
W p∇uq � F puq

	
dLΩ � Φpu#LΩq � Epuq(3.3)

where the second inequality (3.2) is the assumption on u and the last equality (3.3) comes from ω P
BΦpu#LΩq. �

Then we just notice that (2.2) are also the Euler-Lagrange equations for (3.1). Hence justifying global
optimality for (3.1) is enough to yield global optimality of our original problem. The first result is that
convexity of ω implies global optimality of an equilibrium u.

Theorem 3.2. Let u P W 1,p
g pΩ, Dq and assume that there exists ω P BΦpu#LΩq such that ω can be

extended to a convex function on Rk and (2.2) holds weakly (where ∇ω can be any measurable selection
of the subdifferential of ω). Then u is a global minimizer of the energy E defined in (2.2). Moreover, if
ω, F , or W is strictly convex, then u is the unique global minimizer of E.

Proof. We just use Proposition 3.1 by noticing that (3.1) is a convex (respectively, strictly convex)
problem provided that ω is convex (respectively, one of ω, F , or W is strictly convex), and that (2.2)
are the Euler Lagrange equation for (3.1). Indeed, a solution of the Euler-Lagrange equations of a
convex (respectively, strictly convex) problem is a global minimizer (respectively, the unique global
minimizer). �

Remark 3.3. In the case where W pCq � 1
2 |C|

2 is quadratic, Φ � Φinc while F � 0 then for small u the
linearized version of our Problem (1.1) are nothing else than the Stokes equations which read$'&

'%
∆u � ∇p in Ω
∇ � u � 0 in Ω
u � g on BΩ,

and to make the link with our notation we would take p � ω. As p is harmonic if it is not constant then
it cannot be convex. In particular, Theorem 3.2 will not apply in a situation without exterior forces, at
least for the linearized problem.
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If we restrict to uniformly convex energies, we can relax the convexity assumption on the pressure. We
recall that a function f : Rk Ñ R is λ convex if and only if y ÞÑ fpyq � λ

2 |y|
2 is a convex function.

Theorem 3.4. Assume that W is λW convex and F is λF convex. Let λ1pΩq ¡ 0 the first eigenvalue of
the Dirichlet Laplacian on Ω.

Let u PW 1,p
g pΩ, Dq for p ¥ 2 and assume that there exists ω P BΦpu#LΩq such that ω can be extended

in a λ-convex function on Rk with λ ¥ �λWλ1pΩq � λF and (2.2) holds weakly (where ∇ω can be
any measurable selection of the subdifferential of ω). Then u is the unique minimizer of the energy E
introduced in Definition 2.2. Moreover, if λ ¡ �λWλ1pΩq � λF , u is the unique minimizer of E.

Proof. Thanks to Proposition 3.1, we just need to study the problem (3.1). We know that the function
W is λW -convex. Combining this with the definition of λ1pΩq, it is clear that for any v belonging to
W 1,p
g pΩ, Dq (in particular u� v vanishes on BΩ)ˆ

Ω

�
W p∇vq � F pvq

	
�

ˆ
Ω

�
W p∇uq � F puq

	
dLΩ

¥

ˆ
Ω

�
�∇ � pDW p∇uqqpv � uq �DF puq � pv � uq �

λF
2 |v � u|2 �

λW
2 |∇v �∇u|2

	
dLΩ

¥

ˆ
Ω

�
�∇ � pDW p∇uqqpv � uq �DF puq � pv � uq �

λF � λWλ1pΩq
2 |v � u|2

	
dLΩ.

Hence by adding the functional
´
ωpvqdLΩ we see that the problem (3.1) is pλF � λWλ1pΩq � λq convex,

which yields global optimality (if λ ¥ �λWλ1pΩq � λF ) and uniqueness (if λ ¡ �λWλ1pΩq � λF ) for
solutions of the Euler-Lagrange equations (2.2). �

As a corollary, we deduce a local optimality result.

Corollary 3.5. Assume that W is λW -convex with λW ¡ 0 and that Φ is either Φinc or Φh. We restrict
to the case Ω � D.

Let pu, ωq be a smooth solution of the equilibirum equations (2.2) with u being one to one. Then there
exists r ¡ 0 such that for every Ω̃ smooth connected subset of Ω of diameter bounded by r, the function
u|Ω̃ is the global maximizer of (2.1) with source domain Ω̃, target domain upΩ̃q and boundary conditions
u|BΩ̃.

Proof. With the assumption that Φ is either Φinc or an integral function of the density, one can notice
that ω|Ω̃ P BΦpu|Ω̃ #LΩ̃q provided that ω P BΦpu#LΩq.

Thus, to apply Theorem 3.4, we just need to notice that λ1pΩ̃q goes to �8 when the diameter of Ω̃
goes to 0, and that every smooth function is locally λ-convex for some finite λ. �

Corollary 3.5 highlights that, to prove that a smooth solution of the equilibrium equations is not a
global minimizer, one cannot rely only on a local perturbation. To build a competitor with smaller energy
than a critical point, the global shape of Ω and/or D must be used.

4. Examples

4.1. Affine deformations. Assume that u : Ω Ñ D is an affine mapping and that Φ is either Φinc or
an integral function of the density Φh, and F � 0. Then it is clear that BΦpu#LΩq contains a constant
function ω. As u clearly satisfies

∇ � pDW p∇uqq � p∇ωq � u � 0,
and that ω is convex, we can apply Theorem 3.2.

In conclusion, if u is an affine mapping, then it is a global minimizer of the Problem (2.1) with boundary
conditions u|BΩ. Moreover, if W is strictly convex, it is the unique global minimizer.
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In [19] a stronger result is proved with an additional assumption on Ω: namely that under the as-
sumption that Ω is star-shaped and D has the same dimension than Ω, any solution of the equilibrium
equations (2.2) with affine boundary conditions is an affine map. Moreover, the authors can allow for W
to be any quasiconvex function.

4.2. Perturbation of the identity with exterior force. For simplicity let W be quadratic and we
restrict to Φ to be Φinc the incompressibility constraint. We take Ω � D and consider the boundary
conditions imposed by gεpxq � x � εg for g P C3,αpΩ̄q. We take F puq � �∇ψ � u for ψ P C3,αpΩ̄q,
which is strictly convex. Then the identity is a global minimizer for ε � 0 and the pressure is given by
ωpyq � ψpyq. By the implicit function theorem and analysis of the linearized Stokes equation, we conclude
that for some ε1 ¡ 0 there exists a continuous path of solution uε P C3,αpΩ,Rkq and ωε P C2,αpΩ,Rkq for
ε P r0, ε1q. In particular we can select ε1 ¡ 0 so that ωε remains strictly convex and thus Theorem 3.2
implies uε remains the unique global minimum. The recent results of [18] show that the local argument
can be extended globally by means of a topological degree. The solutions remain a global minimum until
ωε loses the convexity imparted by ψ.

4.3. Pure torsion of a cylinder. In this example let’s take for simplicity W quadratic and (not for
simplicity) we restrict to Φ to be Φinc the incompressibility constraint. Let’s take Ω � D � Bp0, 1q �
r0, 1s � R3 a cylinder. A point x P R3 will be written x � pxh, zq P R2 � R. We will denote by
Rθ : R2 Ñ R2 the rotation by an angle θ.

Let a be a parameter. We consider the mapping ua : Ω Ñ Ω defined by

uapxh, zq �

�
Razxh
z



,

that is each horizontal slice is rotated by an angle proportional to z. This mapping always satisfies
u#LΩ � LΩ. Moreover, a straightforward computation leads to

∆uapxh, zq �
�
�a2Razxh

0



� p∇ωaq � uapxh, zq

provided we define ωapxh, zq � �a2

2 |xh|
2. In other words, ua satisfies the equilibrium equations (2.2).

This is not a surprise, actually ua satisfies the equilibrium equations for much more general W as it is
a well undestood result in elasticity theory, see for instance [17, Section 3.3]. We make the following
observations.

• If a is small enough, than ua is the unique global minimizer of (2.1) with boundary conditions
ua|BΩ. This is a direct consequence of Theorem 3.4.

• If a is large enough, than ua is not a global minimizer of the auxiliary problem (3.1) with boundary
conditions g � ua|BΩ. Indeed, for any displacement q P W 1,2

0 pΩ,R3q with nontrivial horizontal
component, qh, the auxiliary energy of ua � εq will decrease for sufficiently large a asˆ

Ω

�1
2
��∇ua � ε∇q

��2 � ωa
�
ua � εq

�	
dLΩ �

ˆ
Ω

�1
2
��∇ua��2 � ωa

�
ua
�	

dLΩ

� ε2
ˆ

Ω

�1
2
��∇q��2 � a2

2
��qh��2	dLΩ,

where the cancellation of the cross terms occurred as ua is a solution of the equilibrium equation
(2.2). For sufficiently small ε, if u is bounded then ua � εq PW 1,2

g pΩ, Dq.
• It remains unclear whether there are any other solutions to the equilibrium equations (2.2) and

if ua is the global minimum of Problem (3.1) with boundary conditions ua|BΩ for all a.
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4.4. Multiple local minima. Our result provides global minimality but does not prevent the existence
of local minimizers or other equilibria. In particular, in [26] the following example is studied.

The authors take Ω � D � tx P R2 : 0   r1 ¤ |x| ¤ r2u � R2 an annulus and as boundary
conditions g they take the identity. The energy Φ is Φinc enforcing the incompressibility condition. The
identity map is the unique global minimizer of (2.1). However, if SN �W 1,p

g pΩ, Dq is the set of mappings
u PW 1,p

g pΩ, Dq such that a.e. radius is mapped by u to a curve of index N , then SN is connected for the
W 1,ppΩ, Dq topology. In particular, the energy E admits a local minimizer on every SN .

5. A convex relaxation

The proofs of Theorems 3.2 and 3.4 rely on convexity arguments: the problem (3.1) is convex under
some assumptions on W and the pressure ω. However, the problem (3.1) depends on ω, that is on the
solution. In this section, we present a natural convex relaxation of the original problem which can be
formulated in a very general context. Then, under the assumption of λ convexity on ω, we show that
this convex relaxation is tight.

Our result is reminiscent of Brenier’s works (for instance [6, 10]), where he did something similar:
taking a non convex problem, formulating a convex relaxation, and finding assumptions on solutions of
the original problem guaranteeing that they are also solutions of the relaxed problem.

Our relaxation relies on a definition of Dirichlet energy for measure valued mappings proposed by
Brenier 20 years ago [8] and investigated more recently by the third author [21].

An alternative convex relaxation of the problem has been given in [1] that uses a measure on the set
Ω�D � R� � Rdk, where the last two arguments correspond to distributions for detp∇uq and ∇u. The
dual problem they derive results in an unknown k, that relates to the Legendre transform of ω in our
work. In the convex formulation we present here, the pressure of the deformed configuration, ω, appears
in a manner entirely analogous to the dual Kantorovich potential of optimal transport. Let us also
mention [25] which tackles convex relaxation of polyconvex problems of calculus of variations with the
use of currents, allowing more general energies than the present work but without any tightness result.

5.1. The (primal) convex problem. The idea is to replace u : Ω Ñ D by a transport plan π P
M�pΩ̄ � D̄q whose marginals are LΩ and µ respectively. If we do that, the potential term and the
penalization on the image measure of u are easily translated: what we have gained is that the measure
µ � u#LΩ is replaced by µ � projD#π a linear expression in π. What is less obvious is what to do with
the term involving the gradient of u.

To that extent, we extend J P MpΩ̄� D̄,Rdkq which is interpreted as the “flux” of the transport plan
π. Namely, we will enforce the “generalized continuity equation”

(5.1) ∇Ωπ �∇D � J � 0,

and the stored energy will be replaced by

(5.2)
¨

Ω�D
W

�
dJ
dπ



dπ

which is a jointly convex function of π and J . We explain below in Lemma 5.3 how to embed our original
problem into this convex relaxation.

Specifically, we say that a nonnegative measure π P M�pΩ̄ � D̄q and a matrix valued measure J P
MpΩ�D,Rdkq satisfy the generalized continuity equation with boundary conditions g if and only if for
all ϕ P C1pΩ̄� D̄,Rdq there holds

(5.3)
¨

Ω�D
∇Ω � ϕ dπ �

¨
Ω�D

∇Dϕ : dJ �
ˆ
BΩ
ϕpgq � nΩ dσ,
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where ϕpgqpxq � ϕpx, gpxqq, nΩ is the outward unit normal and σ is the surface area measure of Ω. This
is the weak form of (5.1) with the boundary conditions being given by πpx, �q � δgpxq for x P BΩ.

Definition 5.1. We say that a triple pπ, J, µq where π P M�pΩ̄�D̄q, J P MpΩ̄�D̄,Rdkq and µ P M�pD̄q
is admissible if the marginals of π are LΩ and µ respectively and if pπ, Jq satisfy (5.3) the generalized
continuity equation with boundary conditions g.
For any admissible triple pπ, J, µq, we define its (relaxed) energy by

Erpπ, J, µq �

¨
Ω�D

�
W

�
dJ
dπ



� F

�
dπ � Φpµq.

This energy is convex and the set of admissible triples is a convex set: we have precisely built these
objects for that purpose.

Remark 5.2. As proved in [21], in the case where W pCq � 1
2 |C|

2 is quadratic this energy admits a metric
formulation.

Let us denote by W2 the quadratic Wasserstein distance on M�pD̄q, extended to �8 if the two
measures do not have the same total mass (see for instance [29][27, Chapter 5] for a definition). We fix
π P M�pΩ̄ � D̄q whose first marginal is LΩ and we denote by pπxqxPΩ its disintegration with respect to
the first component, in particular πx P M�pD̄q for a.e. x P Ω. If D is convex, [21, Theorem 3.26] yields

min
J

¨
Ω�D

1
2

����dJdπ

����
2

dπ � lim
εÑ0

Cd

¨
Ω�Ω

W2
2 pπx, πx1q

2εd�2 1|x�x1|¤ε dx dx1,

where the infimum is taken over all J P MpΩ̄ � D̄,Rdkq such that pπ, Jq satisfy (5.3) and Cd is a
dimensional constant.

The right hand side in the equation above can be interpreted as a metric definition of the Dirichlet
energy [20] for the mapping x ÞÑ πx valued in M�pD̄q endowed with the distance W2.

The relaxed energy is a convex relaxation of our original energy in the following sense.

Lemma 5.3. Let u PW 1,p
g pΩ, Dq be given. We define µu � u#LΩ, and we define πu and Ju by,¨

Ω�D
adπu �

ˆ
Ω
apx, upxqq dLΩpxq and

¨
Ω�D

B dJu �
ˆ

Ω
Bpx, upxqq : ∇upxq dLΩpxq,

for any test functions a P CpΩ̄ � D̄q and B P CpΩ̄ � D̄,Rdkq. Then pπu, Ju, µq is admissible and
Erpπu, Ju, µuq � Epuq.

We leave the proof as an exercise to the reader, see [21, Proposition 5.2] where it is written explicitly.
Note that it could be written πu � δuLΩ and Ju � ∇u δuLΩ.

5.2. The dual problem. Let us write the dual1 of the problem above. It can be guessed by a formal
inf � sup exchange analogous to what was done in [8] and [21]. The absence of duality gap could be
obtained via Fenchel-Rockafellar theorem as written in [21], however we will not need it hence we will
not prove it. Dual attainment is an open question.

There will be three dual variables: a Lagrange multiplier ϕ for the generalized continuity equation,
and then two Lagrange multipliers ψ, ω for the marginal constraints on π.

Definition 5.4. We say that a triple pϕ,ψ, ωq where ϕ P C1pΩ̄ � D̄,Rdq, ψ P CpΩ̄q and ω P CpD̄q is
admissible if for all x, y P Ω�D,
(5.4) ψpxq � ωpyq � F px, yq ¥ ∇Ω � ϕpx, yq �W �

�
x,∇Dϕpx, yq

�
.

1As always in optimal transport, we perpetuate the confusion as the dual should be rather called primal: measures are
the dual of continuous functions and not the other way around.
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For any admissible triple pϕ,ψ, ωq, we define its (relaxed) dual energy by

E�
r pϕ,ψ, ωq �

ˆ
BΩ
ϕpgq � nΩ dσ �

ˆ
Ω
ψ dLΩ � Φ�pωq.

Remark 5.5. In the case where there is no integral energy, that is we take ϕ � 0, and if Φ � Φinc, then
our dual problem is exactly Kantorvich dual problem [27, Chapter 1] for the cost �F .

Proposition 5.6 (Weak duality). Let pπ, J, µq be admissible for the primal problem and pϕ,ψ, ωq admis-
sible for the dual problem. Then

Erpπ, J, µq ¥ E�
r pϕ,ψ, ωq

and equality holds if and only if$''&
''%

∇Dϕpx, yq � DW

�
x,

dJ
dπ px, yq



for π-a.e. px, yq P Ω�D,

equality holds in (5.4) for π-a.e. px, yq P Ω�D,

ω P BΦpµq.

Proof. Let’s compute the difference: we take pπ, J, µq admissible for the primal problem and pϕ,ψ, ωq
admissible for the dual problem. Then

Erpπ, J, µq � E�
r pϕ,ψ, ωq

�

¨
Ω�D

�
W

�
dJ
dπ



� F

�
dπ � Φpµq �

ˆ
BΩ
ϕpgq � nΩ dσ �

ˆ
Ω
ψ dLΩ � Φ�pωq

¥

¨
Ω�D

�
W

�
dJ
dπ



� F

�
dπ �

ˆ
Ω
ψ dLΩ �

ˆ
D
ω dµ�

ˆ
BΩ
ϕpgq � nΩ dσ

�

¨
Ω�D

�
W

�
dJ
dπ



� F � ψ � ω

�
dπ �

ˆ
BΩ
ϕpgq � nΩ dσ,

where we have used the definition of Φ� and then the assumption that the marginals of π are LΩ and µ.
Using the generalized continuity equation and integrating the constraint (5.4) with respect to π,¨

Ω�D

�
W

�
dJ
dπ



� F � ψ � ω

�
dπ �

ˆ
BΩ
ϕpgq � nΩ dσ

�

¨
Ω�D

�
W

�
dJ
dπ



� F � ψ � ω �∇Ω � ϕ�∇Dϕ : DW

�
dJ
dπ


�
dπ

¥

¨
Ω�D

�
W

�
dJ
dπ



�W �

�
∇Dϕ

�
�∇Dϕ : DW

�
dJ
dπ


�
dπ.

Eventually, using the definition of W � we get
Erpπ, J, µq � E�

r pϕ,ψ, ωq ¥ 0.
Tracking back all the inequalities, we deduce the necessary and sufficient conditions for the absence of
duality gap. �

5.3. A particular solution for the dual. So far, putting together Lemma 5.3 and Proposition 5.6, we
have

sup
pϕ,ψ,ωq admissible

E�
r pϕ,ψ, ωq ¤ min

pπ,J,µq admissible
Erpπ, J, µq ¤ min

uPW 1,p
g pΩ,Dq

Epuq.

To prove that everything boils down to a big equality, it is sufficient to provide one competitor in the
dual which matches Epuq.
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We handle this for the case of the Dirichlet energy, for which we can extend the result to λ convex
pressure as in Theorem 3.4. We recall that λ1pΩq ¡ 0 is the first eigenvalue of the Dirichlet Laplacian
on Ω.

Proposition 5.7. Let W pCq � 1
2 |C|

2 and assume F is smooth and λF convex in its second variable.
We suppose that u is a smooth solution of the Euler-Lagrange equation (2.2) for some ω P BΦpu#LΩq.
Assume ω is λ-convex with λ ¡ �λ1pΩq � λF . Then there exists pϕu, ψu, ωuq admissible such that

E�
r pϕu, ψu, ωuq � Epuq.

Proof. Recall that if we define pπu, Ju, µuq as in Lemma 5.3 we just need to prove that E�
r pϕu, ψu, ωuq �

Erpπu, Ju, µuq
We take ωu � ω. In particular ωu P BΦpµuq.
We choose ε ¡ 0 such that λ�λ1pΩq�λF ¡ ε. Let w P C1pΩ̄,Rdq be a function such that ∇�w�|w|2  

�λ1pΩq� ε: see Lemma 5.9 below for the existence of such a w. We define ϕu, which is valued in Rd and
that we see as a row vector as

ϕupx, yq � yJ∇upxq � |upxq � y|2

2 wpxqJ.

Without the quadratric term (that is if w � 0) we retrieve the solution proposed by Brenier in [8] for the
case where there is no constraint on µ, that is Φ � 0. This quadratic term will be crucial to go from ω
convex to ω that is λ-convex. Taking the derivative of ϕu w.r.t. y and evaluating at y � upxq, we get

∇Dϕupx, upxqq � ∇upxq

which exactly reads as

∇Dϕupx, yq � DW

�
dJu
dπu

px, yq



for πu-a.e. px, yq P Ω�D.

It remains to choose the function ψu such that the constraint (5.4) is satisfied. Let us compute the
right hand side of (5.4): we find

∇Ω � ϕupx, yq �
1
2 |∇Dϕupx, yq|

2

(5.5)

� yJ∆upxq � p∇ � wqpxq
|y � upxq|2

2 � pupxq � yqJ∇upxqwpxq � 1
2
��∇upxq � wpxqpupxq � yqJ

��2
� yJ∆upxq � 1

2 |∇upxq|
2 �

1
2
�
∇ � wpxq � |wpxq|2

�
|y � upxq|2

¤ yJ∆upxq � 1
2 |∇upxq|

2 �
�λ1pΩq � ε

2 |y � upxq|2,

where the last inequality derives from the way w was chosen and is an equality if y � upxq. Notice that
some cancellation of the cross term occurred because of the quadratic structure of the problem. Given
this computation, we define

ψupxq � �ωu
�
upxq

�
� F px, upxqq � p∇ωuq

�
upxq

�
� upxq �DF px, upxqq � upxq �

1
2 |∇upxq|

2.
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To see if (5.4) is satisfied we compute

ψupxq � ωupyq � F px, yq �∇Ω � ϕupx, yq �
1
2 |∇Dϕupx, yq|

2

¥ ωupyq � F px, yq � ωupupxqq � F px, upxqq � p∇ωuq
�
upxq

�
� upxq �DF px, upxqq � upxq

� yJ∆upxq � λ1pΩq � ε

2 |y � upxq|2

� ωupyq � F px, yq � ωu
�
upxq

�
� F px, upxqq �

�
p∇ωuq

�
upxq

�
�DF px, upxqq

�
�
�
y � upxq

�
�
λ1pΩq � ε

2 |y � upxq|2

¥
λ� λF � λ1pΩq � ε

2 |y � upxq|2.

In this computation, the equality derives from the equilibrium equations (2.2) and the last inequality
comes from the pλ � λF q-convexity of y ÞÑ ωpyq � F px, yq. But ε was chosen in such a way that
λ � λF � λ1pΩq � ε ¡ 0 hence pϕu, ψu, ωuq satisfies (5.4) and there is equality if and only if y � upxq,
that is on the support of πu. �

Remark 5.8. The cancellation that occurred in (5.5) is crucial to get the results and is what would
break down if we replaced the Dirichlet energy by

´
ΩW p∇uqdLΩ with W convex. However, in the

case that ω is convex with general energy, we obtain the same result as Proposition 5.7 by choosing
ϕupx, yq � yJDW

�
∇upxq

�
.

During the proof we have used the following lemma, which relies on a standard change of variables in
nonlinear elliptic equations.

Lemma 5.9. Let λ ¡ �λ1pΩq. Then there exists w P C8pΩ̄,Rdq such that

∇ � w � |w|2   λ

everywhere on Ω.

Proof. We will look rather for z P C8pΩ̄q such that

∆z � |∇z|2   λ

as we can always take w � ∇z. To that extent, let f a smooth strictly positive function such that
∆f ¤ λf . This is always possible by mollifying the first eigenvalue of the Dirichlet Laplacian on Ω. Then
defining z � ln f works as we leave the reader to check. �

5.4. Another proof of Theorem 3.4. We can give another proof of Theorem 3.4 for the Dirichlet
energy, that is, when W pCq � 1

2C
2, relying on this convex relaxation.

Proof of Theorem 3.4. Let u be a smooth solution of the Euler-Lagrange equation (2.2) for some ω P
BΦpu#LΩq. We assume ω is λ-convex with λ ¡ �λ1pΩq � λF .

Let pϕu, ψu, ωuq be the optimal solution of the dual problem built in the proof of Proposition 5.7. For
any competitor v PW 1,2

g pΩ, Dq there holds

Epvq ¥ Erpπv, Jv, µvq ¥ E�
r pϕu, ψu, ωuq � Epuq

where we have used successively Lemma 5.3, Proposition 5.6 and then Proposition 5.7. Moreover, if there
is equality then by Proposition 5.6 the constraint (5.4) (with pϕu, ψu, ωuq) must be an equality on the
support of πv, that is for y � vpxq. However we have seen in the proof of Proposition 5.6 that equality
happens only for y � upxq. This yields u � v. �
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