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Abstract

These lecture notes aim at giving the details presented in the short course (6h) given in Cetraro,
in the CIME School about MFG of June 2019. The topics which are covered concern first-order
MFG with local couplings, and the main goal is to prove that minimizers of a suitably expressed
global energy are equilibria in the sense that a.e. trajectory solves a control problem with a running
cost depending on the density of all the agents. Both the case of a cost penalizing high densities and
of an L∞ constraint on the same densities are considered. The details of a construction to prove that
minimizers actually define equilibria are presented under a boundedness assumption of the running
cost, which is proven in the relevant cases.

1 Introduction and modeling
The theory of Mean Field Games was introduced around 2006 at the same time by Lasry and Lions,
[23, 24, 25], and by Caines, Huang and Malhamé, [21], in order to describe the evolution of a popu-
lation of rational agents, each one choosing (or controlling) a path in a state space, according to some
preferences which are affected by the presence of other agents nearby in a way physicists call mean-
field effect. The evolution is described through a Nash equilibrium in a game with a continuum of
players. This can be interpreted as a limit as N → ∞ of a game with N indistinguishable players, each
one having a negligible effect as N → ∞ on the mean-field. The class of games we consider, called
Mean Field Games (MFG for short), are very particular differential games: typically, in a differential
game the role of the time variable is crucial since if a player decides to deviate from a given strategy
(a notion which is at the basis of the Nash equilibrium definition), the other can react to this change,
so that the choice of a strategy is usually not defined as the choice of a path, but of a function selecting
a path according to the information the player has at each given time. Yet, when each player is con-
sidered as negligible, any deviation he/she performs will have no effect on the other players, so that
they will not react. In this way we have a static game where the space of strategies is a space of paths.
Because of indistinguishability, the main tool to describe such equlibria will be the use of measures
on paths, and in this setting we will use the terminology of Lagrangian equilibria. In fluid mechanics,
indeed, the Lagrangian formulation consists in “following” each particle and providing for each of
them the corresponding trajectories. On the other hand, fluid mechanics also uses another language,
the so-called Eulerian formulation, where certain quantities, and in particular the density and the ve-
locity of the particles, are given as a function of time and space. MFG equilibria can also be described
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through a system of PDEs in Eulerian variables, where the key ingredients are the density ρ and the
value function ϕ of the control problem solved by each player, the velocity v(t, x) of the agents at (t, x)
being, by optimality, related to the gradient ∇ϕ(t, x).

The MFG theory is now studied by may scholars in many countries, with a quickly growing set of
references. For a general overview of the theory, it is possible to refer to the 6-years course given by
P.-L. Lions at Collège de France, for which videorecording is available in French ([28]) or to the lecture
notes by P. Cardaliaguet [9], based on the same course. In the present lecture notes we will only be
concerned with a sub-class of MFG, those which are deterministic, have a variational structure, and are
in some sense congestion games, where the cost for an agent passing through a certain point depends,
in an increasing way, on the density ρ(t, x) at such a point. We will also see a variant of this class of
problems where the penalization on ρ is replaced by a constraint on it (of the form ρ(t, x) ≤ 1, for
instance), which does not fit exactly this framework but shares most of the ideas and the properties.
The topic of this course and these lecture notes were already presented in [5], so that there will be some
superposition with such a survey paper, but in these notes we will focus on some more particular cases
so as to be able to provide more technical details and proofs. Moreover, not all regularity results were
available when [5] was written, and some proofs are simplified here.

1.1 A coupled system of PDEs
Let us describe in a more precise way the simplest MFG models and the sub-class that we consider.
First, we look at a population of agents moving inside a domain Ω (which can be a bounded domain
in Rd or, for instance, the flat torus Td := Rd/Zd. . . ), and we suppose that every agent chooses his own
trajectory solving a minimization problem

min
∫ T

0

(
|x′(t)|2

2
+ h(t, x(t))

)
dt + Ψ(x(T )),

with given initial point x(0). The mean-field effect will be modeled through the fact that the function
h(t, ·) depends on the density ρt of the agents at time t. The dependence of the cost on the velocity
x′ could of course be more general than a simple quadratic function, but in all these lecture notes we
will focus on the quadratic case (some results that we present could be generalized, while for some
parts of the analysis, in particular the regularity obtained via optimal transport methods, the use of the
quadratic cost is important).

For the moment, we consider the evolution of the density ρt as an input, i.e. we suppose that
agents know it. Hence, we can suppose the function h to be given, and we want to study the above
optimization problem. The main tool to analyze it, coming from optimal control theory, is the value
function. The value function ϕ is in this case defined via

ϕ(t0, x0) := min
{∫ T

t0

(
|x′(t)|2

2
+ h(t, x)

)
dt + Ψ(x(T )), x : [t0,T ]→ Ω, x(t0) = x0

}
(1)

and it has some important properties. Firs, it solves the Hamilton-Jacobi equation

(HJ)

−∂tϕ + 1
2 |∇ϕ|

2 = h,
ϕ(T, x) = Ψ(x)

(in the viscosity sense, but we will not pay attention to this technicality, so far); second, the optimal
trajectories x(t) can be computed using ϕ, since they are the solutions of

x′(t) = −∇ϕ(t, x(t)).
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Now if we call v the velocity field which advects the density ρ (which means that ρ is the density
of a bunch of particles each following a trajectory x(t) solving x′(t) = vt(x(t))), fluid mechanics tells
us that the pair (ρ, v) solves the continuity equation

(CE) ∂tρ + ∇ · (ρv) = 0

in the weak sense, together with no-flux boundary conditions ρv ·n = 0, modeling the fact that no mass
enters or exits Ω.

In MFG we look for an equilibrium in the sense of Nash equilibria: a configuration where no player
would spontaneously decide to change his choice if he/she assumes that the choices of the others are
fixed. This means that we can consider the densities ρt as an input, compute h[ρ], then compute the
optimal trajectories through the (HJ) equation, then the solution of (CE) and get new densities as an
output: we have an equilibrium if and only if the output densities coincide with the input. This means
solving the following coupled (HJ)+(CE) system: the function ϕ solves (HJ) with a right-hand side
depending on ρ, which on turn evolves according to (CE) with a velocity field depending on ∇ϕ(t, x).

−∂tϕ +
|∇ϕ|2

2 = h[ρ]
∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T, x) = Ψ(x), ρ(0, x) = ρ0(x).

(2)

To be more general, it is possible to conside a stochastic case, where agents follow controlled
stochastic differential equations of the form dXt = αt dt +

√
2νdWt and minimize

E

[∫ T

0

(
1
2
α2

t + h[ρt](Xt)
)

dt + Ψ(X(T ))
]
.

In this case, a Laplacian appears both in the (HJ) and in the (CE) equations:−∂tϕ − ν∆ϕ +
|∇ϕ|2

2 − h[ρ] = 0
∂tρ − ν∆ρ − ∇ · (ρ∇ϕ) = 0.

(3)

1.2 Questions and difficulties
Let us be precise now about the kind of questions that one would like to attack, at the interface between
mathematical analysis and modeling.

From the analysis and PDE point of view, the most natural questions to ask in MFG is the existence
(and possibly the uniqueness and the regularity properties) of the solutions of systems like the above
ones. This is an Eulerian question, as the objects which are involved, the density and the velocity, which
is related to the value function, are defined for time-space points (t, x). This question can be intuitively
attacked via fixed points methods: given ρ, compute h[ρ], ϕ, then the solution of the evolution equation
on ρ, thus getting a new density evolution ρ̃, and look for ρ̃ = ρ. Yet, this requires strong continuity
properties of this sequence of operators (and, by the way, uniqueness of those solutions if we want the
operators to be univalued) which corresponds to uniqueness, regularity, and stability properties of the
solutions of the corresponding PDEs. These properties are not always easy to get, but can be usually
obtained when

• either we have ν > 0 in System (3), i.e. the equations are parabolic and the regularization effect
of the Laplacian provides the desired estimates (this applies quite easily to the present quadratic

3



case, where a change-of-variable u = e−ϕ/2 transforms the Hamilton-Jacobi equation of (3) into
a linear parabolic equation; the general case is harder and require to use uniqueness and stability
properties which are valid for the Fokker-Planck equations under milder regularity assumptions,
and which have been recently proven in [36]);

• or the correspondence ρ 7→ h[ρ] is strongly regularizing (in particular this happens for non-local
operators of the form h[ρ](x) =

∫
η(x−y) dρ(y) for a smooth kernel η). Indeed, if h is guaranteed

to be smooth, then ϕ satisfies semiconcavity properties implying BV estimates on the drift ∇ϕ;
this, in turn, provides uniqueness and stability for the continuity equation thanks to the DiPerna
Lions theory [16] (this is more or less the point of view presented in [9]).

One of the main interesting cases which is left out is the case where ν = 0 and h[ρ] = g ◦ ρ (the local
case, where h at a point directly depends only on ρ at the same point). Whenever g is an increasing
function this is a very natural model to describe aversion to overcrowding and recalls in a striking way
the models about Wardrop equilibria (see [45, 14, 15]).

From the point of view of modeling and game theory, the other natural question is to provide the
existence of an equilibrium in the sense of finding which trajectories are followed by each players (or,
since players are considered to be indistinguishable, just finding a measure on possible trajectories).
This is on the contrary a Lagrangian question, as individual trajectories are involved. The unknown is
then a probability measure on a suitable space of paths, which induces measures ρt at each instant of
time. From these measures we deduce the function h(t, ·), which is an ingredient for the optimization
problem solved by every agent. The goal is then to choose such a probability on paths so that a.e. path
is optimal for the cost built upon the function h which is induced by such probability. Again, there is a
difficulty in the local case with ν = 0. Indeed, if ρt(·) is just the density of a measure, it is defined only
a.e. and so will be h(t, ·). Hence, there will be no meaning in integrating it on a path, unless we choose
a precise representative, which is a priori arbitrary unless ρt is continuous. Of course this difficulty
does not exist whenever h is defined via convolution, and in many cases it can also be overcome in the
local case for ν > 0 since parabolic equations have a regularization effect and one can expect ρt to be
smooth.

For both the Eulerian and the Lagrangian question, an answer comes from a variational interpreta-
tion: it happens that a solution to the equilibrium system (2) can be found by an overall minimization
problem as first outlined in the seminal work by Lasry and Lions [24]. This allows to prove existence
of a solution in a suitable sense, and the optimality conditions go in the direction of a Lagrangian
equilibrium, as we will see in Section 2.2 and 2.3.

2 Variational formulation
As we said, solutions to the equilibrium system (2) can be found by an overall minimization problem.

The description that we give below will be focused on the case h[ρ](x) = V(x) + g(ρ(x)), where we
identify the measure ρ with its density w.r.t. the Lebesgue measure on Ω. The function V : Ω→ R+ is
a potential taking into account different local costs of different points in Ω.

For the variational formulation, we consider all the possible population evolutions, i.e. pairs (ρ, v)
satisfying ∂tρ + ∇ · (ρv) = 0 (note that this is the Eulerian way of describing such a movement; in
Section 2.2 we will see how to express it in a Lagrangian language) and we minimize the following
energy

A(ρ, v) :=
∫ T

0

∫
Ω

(
1
2
ρt |vt |

2 + ρtV + G(ρt)
)

dx dt +

∫
Ω

Ψ dρT ,
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where G is the anti-derivative of g, i.e. G′(s) = g(s) for s ∈ R+ with G(0) = 0. We fix by convention
G(s) = +∞ for ρ < 0. Note in particular that G is convex, as its derivative is the increasing function g.

The above minimization problem recalls, in particular when V = 0, the Benamou-Brenier dynamic
formulation for optimal transport (see [4]). The main difference with the Benamou-Brenier problem is
that here we add to the kinetic energy a congestion cost G; also note that usually in optimal transport
the target measure ρT is fixed, and here it is part of the optimization (but this is not a crucial difference).
Finally, note that the minimization of a Benamou-Brenier energy with a congestion cost was already
present in [8] where the congestion term was used to model the motion of a crowd with panic.

As is often the case in congestion games, the quantityA(ρ, v) is not the total cost for all the agents.
Indeed, the term

∫ ∫
1
2ρ|v|

2 is exactly the total kinetic energy, and the last term
∫

Ψ dρT is the total
final cost, as well as the cost

∫
V dρt exactly coincides with the total cost enduced by the potential V;

yet, the term
∫

G(ρ) is not the total congestion cost, which should be instead
∫
ρg(ρ). This means that

the equilibrium minimizes an overall energy (we have what is called a potential game), but not the total
cost; this gives rise to the so-called price of anarchy.

Another important point is the fact that the above minimization problem is convex, which was by
the way the key idea of [4]. Indeed, the problem is not convex in the variables (ρ, v), because of the
product term ρ|v|2 in the functional and of the product ρv in the differential constraint. But if one
changes variable, defining w = ρv and using the variables (ρ,w), then the constraint becomes linear
and the functional convex. We will write Ā(ρ,w) for the functionalA(ρ, v) written in these variables.
The important point for convexity is that the function

R × Rd 3 (s,w) 7→


|w|2
2s if s > 0,

0 if (s,w) = (0, 0),
+∞ otherwise

is convex (and it is actually obtained as sup{as + b · w : a + 1
2 |b|

2 ≤ 0}).

2.1 Convex duality
In order to convince the reader of the connection between the minization of A(ρ, v) (or of Ā(ρ,w))
and the equilibrium system (2), we will use some formal argument from convex duality. A rigorous
equivalence between optimizers and equilibria will be, instead, presented in the Lagrangian framework
in Section 2.3.

In order to formally produce a dual problem to minA, we wil use a min-max exchange procedure.
First, we write the constraint ∂tρ + ∇ · (ρv) = 0 in weak form, i.e.∫ T

0

∫
Ω

(ρ∂tφ + ∇φ · ρv) +

∫
Ω

φ0ρ0 −

∫
Ω

φTρT = 0 (4)

for every function φ ∈ C1([0,T ]×Ω) (note that we do not impose conditions on the values of φ on ∂Ω,
hence this is equivalent to completing (CE) with a no-flux boundary condition ρv · n = 0). Equation
(4) requires, in order to make sense, that we give a meaning at ρt for every instant of time t (and in
particular for t = T ), which is possible because whenever the kinetic term is finite then the curve ρt is
a(n absolutely) continuous curve in the space of measures (continuous for the weak convergence, and
absolutely continuous for the W2 Wasserstein distance, see Section 4.1). However, we do not insist on
this now, as the presentation stays quite formal.

Using (4) , we can re-write our problem as
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min
ρ,v
A(ρ, v) + sup

φ

∫ T

0

∫
Ω

(ρ∂tφ + ∇φ · ρv) +

∫
Ω

φ0ρ0 −

∫
Ω

φTρT ,

since the sup in φ takes value 0 if the constraint is satisfied and +∞ if not. We now switch the inf and
the sup and get

sup
φ

∫
Ω

φ0ρ0 + inf
ρ, v

∫
Ω

(Ψ − φT )ρT +

∫ T

0

∫
Ω

(
1
2
ρt |vt |

2 + ρtV + G(ρt) + ρ∂tφ + ∇φ · ρv
)

dx dt.

First, we minimize w.r.t. v, thus obtaining v = −∇φ (on {ρt > 0}) and we replace 1
2ρ|v|

2 + ∇φ · ρv with
− 1

2ρ|∇φ|
2. Then we get, in the double integral,

inf
ρ
{G(ρ) − ρ(−V − ∂tφ +

1
2
|∇φ|2)} = − sup

ρ
{pρ −G(ρ)} = −G∗(p),

where we set p := −V−∂tφ+ 1
2 |∇φ|

2 and G∗ is defined as the Legendre transform of G. Then, we observe
that the minimization in the final cost simply gives as a result 0 if Ψ ≥ φT (since the minimization is
only performed among positive ρT ) and −∞ otherwise. Hence we obtain a dual problem of the form

sup
{
−B(φ, p) :=

∫
Ω

φ0ρ0 −

∫ T

0

∫
Ω

G∗(p) : φT ≤ Ψ, −∂tφ +
1
2
|∇φ|2 = V + p

}
.

Note that the condition G(s) = +∞ for s < 0 implies G∗(p) = 0 for p ≤ 0. This in particular means
that in the above maximization problem one can suppose p ≥ 0 (indeed, replacing p with p+ does not
change the G∗ part, but improves the value of φ0, considered as a function depending on p). The choice
of using two variables (φ, p) connected by a PDE constraint instead of only φ is purely conventional,
and it allows for a dual problem which has a sort of symmetry w.r.t. the primal one. Also the choice of
the sign is conventional and due to the computation that we will perform later (in particular in Section
4).

Now, standard arguments in convex duality would allow to say that optimal pairs (ρ, v) are obtained
by looking at saddle points ((ρ, v), (φ, p)), provided that there is no duality gap between the primal and
the dual problems, and that both problems admit a solution. This would mean that, whenever (ρ, v)
minimizesA, then there exists a pair (φ, p), solution of the dual problem, such that

• v minimizes 1
2ρ|v|

2 + ∇φ · ρv, i.e. v = −∇φ ρ-a.e. This gives (CE): ∂tρ − ∇ · (ρ∇φ) = 0.

• ρ minimizes G(ρ) − pρ, i.e. g(ρ) = p if ρ > 0 or g(ρ) ≥ p if ρ = 0 (in particular, when we have
g(0) = 0, we can write g(ρ) = p+); this gives (HJ): −∂tφ + 1

2 |∇φ|
2 = V + g(ρ) on {ρ > 0} (as the

reader can see, there are some subtleties where the mass ρ vanishes;).

• ρT minimizes (Ψ − φT )ρT among ρT ≥ 0. But this is not a condition on ρT , but rather on φT : we
must have φT = Ψ on {ρT > 0}, otherwise there is no minimizer. This gives the final condition
in (HJ).

This provides an informal justification for the equivalence between the equilibrium and the global
optimization. It is only informal because we have not discussed whether we have or not duality gaps
and whether or not the maximization in (φ, p) admits a solution. Moreover, even once these issues
are clarified, what we will get will only be a very weak solution to the coupled system (CE)+(HJ).
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Nothing guaranteees that this solution actually encodes the individual minimization problem of each
agent. This will be clarified in Section 2.3 where a Lagrangian point of view will be presented.

However, let us first give the duality result which can be obtained from a suitable application of
Fenchel-Rockafellar’s Theorem, and for which details are presented, in much wider generality, in [11].

Theorem 2.1. Set D = {(φ, p) ∈ C1([0,T ] × Ω) × C0([0,T ] × Ω) : −∂tφ + 1
2 |∇φ|

2 = V + p, φT ≤ Ψ}

and P = {(ρ, v) : ∂tρ+∇ · (ρv) = 0, ρ0 = ρ0}, where the continuity equation on (ρ, v) is satisfied in the
sense of (4) and (ρt)t is a continuous curve of probability measures on Ω, with vt ∈ L2(ρt) for every t.
We then have

min{A(ρ, v) : (ρ, v) ∈ P} = sup{−B(φ, p) : (φ, p) ∈ D}.

Note that in the above theorem we called D and P the domains in the dual and primal problems
respectively, with the standard confusion between dual and primal (officially it is the problem on mea-
sures which should be the dual of that on functions, and not viceversa) which is often done when we
prefer to call “primal” the first problem that we meet and which is the main object of our analysis.

It is important to observe that the above theorem does not require the assumption on the growth
rate of the Hamiltonian and of the congestion function G, which translate into this quadratic case into
“G(s) ≤ C(sq + 1) for an exponent q < 1 + 2/d”, which is present in the paper [11]. This restriction
was required in order to find a suitable relaxed solution to the dual problem, which has in general no
solution in D. This result is the object of the following theorem, where we omit this condition on
q, since it has been later removed in more recent papers. Indeed, [12] was the first paper where this
assumption disappears, for second-order MFG with possibly degenerate diffusion (which include the
first-order case; also refer to [19], where duality was used for regularity purposes, which explicitly
focuses on the first-order case).

Theorem 2.2. Set D̃ = {(φ, p) ∈ BV([0,T ] × Ω) ×M([0,T ] × Ω) : −∂tφ + 1
2 |∇φ|

2 ≤ V + p, φT ≤ Ψ}.
We then have

min{A(ρ, v) : (ρ, v) ∈ P} = max{−B(φ, p) : (φ, p) ∈ D̃}

and the max on the right hand side is attained.

A disambiguation is needed, when speaking of BV functions, about the final condition φT ≤ Ψ.
Indeed, a BV function could have a jump exactly at t = T and hence its pointwise value at the final time
is not well-defined. The important point is that, if φ(T−) does not satisfy the required inequality, but
φ(T ) is required to satisfy it, then a jump is needed, i.e. a singular part of the measure p concentrated
at {t = T }, and this part will be considered in the dual cost (this is particularly important when the cost
G∗ in the dual problem has linear growth, and singular parts are allowed, which will be the case for the
density-constrained case of Section 5).

However, most of these notes will not make use of this refined duality, both because we want to
consider cases where the growth rate of G does not satisfy this inequality and because we will need to
use (in Section 3) smooth test functions and apply the duality. For this sake, it will be more convenient
to choose almost-maximizers (φ, p) ∈ C1 ×C0 rathen then maximizers with limited regularity.

We finish this section with a last variant, inspired by the crowd motion model of [30]. We would
like to consider a variant where, instead of adding a penalization g(ρ), we impose a capacity constraint
ρ ≤ 1. How to give a proper definition of equilibrium? A first, naive, idea, would be the following:
when (ρt)t is given, every agent minimizes his own cost paying attention to the constraint ρt(x(t)) ≤ 1.
But if ρ already satisfies ρ ≤ 1, then the choice of only one extra agent will not violate the constraint
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(since we have a non-atomic game), and the constraint becomes empty. As already pointed out in [39],
this cannot be the correct definition.

In [39] an alternative model is formally proposed, based on the effect of the gradient of the pressure
on the motion of the agents, but this model is not variational, and no solution has been proven to exist
in general in its local and deterministic form.

A different approach to the question of density constraints in MFG was presented in [13]: the idea
is to start from the the variational problem

min
{∫ T

0

∫
Ω

(
1
2
|vt |

2 + V
)

dρt +

∫
Ω

Ψ dρT : ρ ≤ 1
}
.

This means that we use G = I[0,1], i.e. G(s) = 0 for s ∈ [0, 1] and +∞ otherwise. The dual problem can
be computed and we obtain

sup
{∫

Ω

φ0ρ0 −

∫ T

0

∫
Ω

p+ : φT ≤ Ψ, −∂tφ +
1
2
|∇φ|2 = V + p

}
(note that this problem is also obtained as the limit m → ∞ of g(ρ) = ρm; indeed the functional

1
m+1

∫
ρm+1 Γ-converges to the constraint ρ ≤ 1 as m→ ∞).

By looking at the primal-dual optimality conditions, we get again v = −∇φ and φT = Ψ, but the
optimality of ρ means

0 ≤ ρ < 1⇒ p = 0, ρ = 1⇒ p ≥ 0.

This gives the following MFG system
−∂tϕ +

|∇ϕ|2

2 = V + p,
∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T, x) = Ψ(x), ρ(0, x) = ρ0(x),
p ≥ 0, ρ ≤ 1, p(1 − ρ) = 0.

(5)

It is important to understand that p is a priori just a measure on [0,T ] × Ω, since it has a sign (and
distributions with a sign are measures) and it is penalized in terms of its L1 norm. Indeed, even
if Theorem 2.2 is stated exactly by taking p in the space of measures, in general according to the
function G∗ it is possible to obtain extra summability (if G has growth of order q then one obtains
p ∈ Lq′ ). Here, instead, since G∗ is linear we do not obtain more than measure bounds. This means
that ϕ is not better than a BV function, and in particular it could have jumps. From the first equation
in System (5) and the positivity of p we see that ϕ could have a jump at time t = T in the sense that
ϕ(T−) > ϕ(T ) = Ψ. Hence, an alternative way to write the same system is to remove the possible
singular part of p concentrated on t = T but consider as a final value for ϕ the value that it takes at T−.
In this way, we can re-write System (5) as

−∂tϕ +
|∇ϕ|2

2 = V + p,
∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T, x) = Ψ(x) + P(x), ρ(0, x) = ρ0(x),
p ≥ 0, ρ ≤ 1, p(1 − ρ) = 0,
P ≥ 0, P(1 − ρT ) = 0.

(6)
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Formally, by looking back at the relation between (HJ) and optimal trajectories, we can guess that
each agent solves

min
∫ T

0

(
|x′(t)|2

2
+ h(t, x(t))

)
dt + Ψ̃(x(T )), (7)

where h = p + V and Ψ̃ = Ψ + P. Here p and P are pressures arising from the incompressibility
constraint ρ ≤ 1 and only present in the saturated zone {ρ = 1}, but they finally act as prices paid by the
agents to travel through saturated regions. From the economical point of view this is meaningful: due
to a capacity constraint, the most attractive regions develop a positive price to be paid to pass through
them, and this price is such that, if the agents keep it into account in their choices, then their mass
distribution will indeed satisfy the capacity constraints.

This problem of course presents the same difficulties of the case where congestion is penalized and
not constrained: what does it mean to integrate p on a path if p is only a measure? We will see later on
a technique to get rid of this diffulty, following an idea by Ambrosio and Figalli ([2]) for applications to
the incompressible Euler equation, but this techniques requires at least that p is a sufficiently integrable
function. In these notes, we will present Ambrosio and Figalli’s ideas in the case where h is L∞,
insisting on he simplifaction that it brings, and in Section 5 we will provide indeed an L∞ regularity
result on both p and P. In the original paper on density-constrained MFG, [13], the L∞ regularity
result on p was not available, and suitable regularity results of the form p ∈ L2

t BVx were proven via a
technique similar to that used in Section 3 of these notes. Since we have L2

t BVx ⊂ L2
t Ld/(d−1)

x , this BV
regularity result was enough to apply, at least to a certain extent, the theory developed in [2].

2.2 Lagrangian formulation
We present now an alternative point of view for the overall minimization problem presented in the
previous sections. As far as now, we only looked at an Eulerian point of view, where the motion of
the population is described by means of its density ρ and of its velocity field v. The Lagrangian point
of view would be, instead, to describe the motion by describing the trajectory of each agent. Since
the agents are supposed to be indistinguishable, then we just need to determine, for each possible
trajectory, the number of agents following it (and not their names. . . ); this means looking at a measure
on the set of possible paths.

Set C = H1([0,T ]; Ω); this will be the space of possible paths that we use. In general, absolutely
continuous paths would be the good choice, but we can restrict our attention to H1 paths because of
the kinetic energy term that we have in our minimization. We define the evaluation maps et : C → Ω,
given for every t ∈ [0,T ] by et(ω) = ω(t). Also, we define the kinetic energy functional K : C → R
given by

K(ω) =
1
2

∫ T

0
|ω′|2(t) dt.

We endow the space C with the uniform convergence (and not the strong H1 convergence, so that we
have compactness of the sublevel sets of K). For notational simplicity, we will also often write KΨ for
the kinetic energy augmented by a final cost: KΨ(ω) := K(ω) + Ψ(ω(T )); similarly, we will denote by
KΨ,h the same quanity when also a running cost is included: KΨ,h(ω) := KΨ(ω) +

∫ T
0 h(t, ω(t)) dt.

Proposition 2.3. Suppose (ρ, v) satisfies the continuity equation ∂tρ+∇·(ρv) = 0 and
∫ T

0

∫
Ω
ρ|v|2 < ∞.

Then there exist a representative of ρ such that t 7→ ρt is weakly continuous, and a probability measure
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Q ∈ P(C) such that ρt = (et)#Q and∫
C

K(ω) dQ(ω) ≤
1
2

∫ T

0

∫
Ω

ρ|v|2.

Conversely, if we have ρt = (et)#Q for a probability measure Q ∈ P(C) with
∫
C

K(ω) dQ(ω) < ∞,
then t 7→ ρt is weakly continuous and there exists a time-dependent family of vector fields vt ∈ L2(ρt)
such that ∂tρ + ∇ · (ρv) = 0 and

1
2

∫ T

0

∫
Ω

ρ|v|2 ≤
∫
C

K(ω) dQ(ω).

The above proposition comes from optimal transport theory and we will discuss a more refined
version of it in Section 4. Its proof can be found combining, for instance, Theorems 5.14 and 5.31 in
[40]. It allows to re-write the minimization problem

min {A(ρ, v) : ∂tρ + ∇ · (ρv) = 0} ,

in the following form:

min
{

J(Q) :=
∫
C

K dQ +

∫ T

0
G((et)#Q) dt +

∫
Ω

Ψ d(eT )#Q, Q ∈ P(C), (e0)#Q = ρ0

}
, (8)

where G : P(Ω)→ R is defined through

G(ρ) =


∫

(V(x)ρ(x) + G(ρ(x))) dx if ρ � Ld,

+∞ otherwise.

The functional G is a typical local functional defined on measures (see [6]). It is lower-semicontinuous
w.r.t. weak convergence of probability measures provided lims→∞G(s)/s = +∞ (which is the same as
lims→∞ g(s) = +∞), see, for instance, Proposition 7.7 in [40].

Under these assumptions, it is easy to prove, by standard semicontinuity arguments in the space
P(C), that a minimizer of (8) exists. We summarize this fact, together with the corresponding optimal-
ity conditions, in the next proposition. The optimality conditions are obtained by standard convex per-
turbations: if Q̄ is an optimizer and Q a competitor with finite energy, then one sets Qε := (1−ε)Q̄+εQ
and differentiates the cost w.r.t. ε at ε = 0. The idea is just that a point optimizes a convex functional
on a convex set if and only if it optimizes its linearization around itself.

Proposition 2.4. Suppose that Ω is compact, that G is a convex and superlinear function, and that V
and Ψ are continuous functions on Ω. Then Problem (8) admits a solution Q̄.

Moreover, Q̄ is a solution if and only if for any other competitor Q ∈ P(C) with J(Q) < +∞ with
(e0)#Q = ρ0 we have

Jh(Q) ≥ Jh(Q̄),

where JΨ,h is the linear functional

JΨ,h(Q) =

∫
K dQ +

∫ T

0

∫
Ω

h(t, x) d(et)#Q +

∫
Ω

Ψ d(eT )#Q,

the function h being defined through ρt = (et)#Q̄ and h(t, x) = V(x) + g(ρt(x)).
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Remark 1. The above optimality condition and its interpretation in terms of equilibria (see below),
as well as the efinition of the functional via an antiderivative, strongly recall the setting of continuous
Wardrop equilibria, studied in [14] (see also [15] for a survey of the theory). Indeed, in [14] a traffic in-
tensity iQ (a positive measure on Ω) is associated with each measure Q on C, and we define a weighted
length on curves ω using iQ as a weighting factor. We then prove that the measure Q which minimizes
a suitable functional minimizes its linearization, which in turn implies that the same Q is concentrated
on curves which are geodesic for this weighted length, depending on Q itself. Besides some technical
details about the precise mathematical form of the functionals, the main difference between Wardrop
equilibria (which are traditionally studied in a discrete framework on networks, see [45]) and MFG is
the fact that Wardrop’s setting is static: in such a traffic notion we consider a continuous traffic flow,
where some mass is constantly injected somewhere in the domain, and at the same time constantly
absorbed somewhere else (see Chapter 4 of [40] for other models of this form).

We now consider the functional JΨ,h. Note that the function h is obtained from the densities ρt,
which means that it is well-defined only a.e. However, the integral

∫ T
0

∫
Ω

h(t, x) d(et)#Q is well-defined
and does not depend on the representative of h, since J(Q) < +∞ implies that the measures (et)#Q are
absolutely continuous for a.e. t. Hence, this functional is well-defined for h ≥ 0 measurable.

Formally, we can also write∫ T

0

∫
Ω

h(t, x) d(et)#Q =

∫
C

dQ
∫ T

0
h(t, ω(t)) dt

and hence we get

JΨ,h(Q) =

∫
C

dQ(ω)
(
K(ω) +

∫ T

0
h(t, ω(t)) dt + Ψ(ω(T ))

)
=

∫
C

KΨ,h dQ.

It is then tempting to interpret the optimality conditions on Q̄ stated in Proposition 2.4 by considering
that they can only be satisfied if Q̄-a.e. curve ω satisfies

K(ω)+

∫ T

0
h(t, ω(t)) dt+Ψ(ω(T )) ≤ K(ω̃)+

∫ T

0
h(t, ω̃(t)) dt+Ψ(ω̃(T )) for every ω̃ s.t. ω̃(0) = ω(0).

(9)
This would be exactly the equilibrium condition in the MFG. Indeed, the MFG equilibrium con-

dition can be expressed in Lagrangian language in the following way: find Q such that, if we define
ρt = (et)#Q̄ and h(t, x) = V(x) + g(ρt(x)), then Q is concentrated on minimizers of KΨ,h for fixed initial
point.

Yet, there are two objections to this way of arguing. The first concers the fact that the functional
KΨ,h does indeed depend on the representative of h that we choose and it looks suspicious that such an
equilibrium statement could be true independently of the choice of the representative. Moreover, the
idea behind the optimality in (9) would be to choose a measure Q concentrated on optimal, or almost
optimal, curves starting from each point, and there is no guarantee that such a measure Q satisfies
J(Q) < +∞.

The approach that we present in Section 2.3 below, due to Ambrosio and Figalli ([2]) and first
applied to MFG in [13] for the case of MFG with density constraints, is a way to rigorously overcome
these difficulties. The goal is to find a suitably chosen representative ĥ of h so that we can prove that if
Q̄ minimizes JΨ,h, then it is concentrated on curves minimizing KΨ,ĥ.We develop here this theory under
the assumption h ∈ L∞, while the original proofs were more general, but required some technicalities
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that we will briefly adress in a comment. We will explain in which points the L∞ assumption allows
to obtain cleaner and more powerful results. Morevoer, we insist that we are allowed to stick to this
more restrictive setting because we will see, in Sections 4 and 5, that we do have h ∈ L∞ in the cases
of interest for us.

2.3 Optimality conditions on the level of single agent trajectories
In this section we consider a measurable function h : [0,T ] × Ω → R and we suppose that h is upper-
bounded by a constant H0, i.e. h ≤ H0 a.e. As far as lower bounds are concerned, all the section is
written supposing h ∈ L1([0,T ] ×Ω), but it is not difficult to adapt it to the case where h (or, rather, its
negative part) is only a measure. Let us define then

hr(t, x) :=
?

B(x,r)
h(t, y) dy if B(x, r) ⊂ Ω

and then

ĥ(t, x) :=

lim supr→0 hr(t, x) if x < ∂Ω,

H0 if x ∈ ∂Ω.

First, we observe that ĥ is a representative of h, in the sense that we have h = ĥ a.e. (in the case where
h is a measure then hr is defined as ht(B(x, r))/Ld(B(x, r)) and ĥ is a representative of the absolutely
continuous part of h). Indeed, a.e. point in Ω is a Lebesgue point for h, so that the above lim sup is
indeed a limit and equal to h, and the boundary where the definition is not given as a limsup is supposed
to be negligible. In some sense, we will obtain the desired result by writing estimates involving hr and
passing to the limit as r → 0.

Proposition 2.5. Suppose that Q̄ minimizes JΨ,h among measures with J(Q) < +∞ and suppose that
G is a convex function with polynomial growth, that Ψ is a continuous function and that Ω is a smooth
domain. Define ĥ as above and suppose that (et)#Q is absolutely continuous for a.e. t. Then Q̄ is
concentrated on curves ω such that

KΨ,ĥ(ω) ≤ KΨ,ĥ(ω̃) for every ω̃ s.t. ω̃(0) = ω(0).

Proof. The proof is an adaptation of those proposed in [2, 13].
Consider a countable set D ⊂ H1

�([0,T ]), where H1
�([0,T ]) is the Hilbert space of H1 functions on

[0,T ], valued in Rd, and vanishing at t = 0 (but not necessarily at t = T ), dense in H1
�([0,T ]) for the H1

norm,. Also consider a curve γ ∈ D, a vector y ∈ B(0, 1) ⊂ Rd, a number r > 0, and a cut-off function
η ∈ C1([0,T ]), with η(0) = 0, and η > 0 on (0,T ], with η(T ) = 1. Consider a Borel subset E ⊂ C, with
E ⊂ {ω : ω(t) + γ(t) + B(0, r) ⊂ Ω for every t} and define a map S : C → C as follows

S (ω) =

ω + γ + rηy if ω ∈ E
ω if ω < E.

Defining Q = S #Q̄ we can easily see that we have J(Q) < +∞ (we use here the polynomial growth
of G, since the density of (et)#Q can be decomposed as the sum of two densities with finite value for
G, and we need a bound for the sum, which is not available, for instance, for convex functions with
exponential growth).
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Comparing JΨ,h(Q) to JΨ,h(Q̄) and erasing, by linearity, the common terms (those coming from the
integration on Ec) we get∫

E
KΨ(S (ω)) dQ̄(ω)+

∫∫
h(t, ·+γ(t)+rη(t)y) d(et)#(Q̄1E) ≥

∫
E

KΨ(ω) dQ̄(ω)+
∫∫

h(t, ·) d(et)#(Q̄1E).

The first parameter we get rid of is the parameter y, as we take the average among possible y ∈
B(0, 1). It is important to note that we have?

B(0,1)
K(ω + rηy) dy = K(ω) + O(r2)

(by symmetry, there is no first-order term in r, even if this is not important and we would only need
terms tending to 0 as r → 0, independently of their order) and to use the definition of hr (and, by
analogy, of Ψr) in order to obtain∫

E

(
KΨr (ω + γ) + O(r2)

)
dQ̄(ω) +

∫∫
hrη(t)(t, · + γ(t)) d(et)#(Q̄1E) ≥

≥

∫
E

KΨ(ω) dQ̄(ω) +

∫∫
h(t, ·) d(et)#(Q̄1E).

Now, we observe that h = ĥ a.e. together with (et)#Q̄ � Ld (Ld being the Lebesgue measure) allow
to replace, in the right hand side, h with ĥ. Moreover, we rewrite some terms using the following
equalities ∫∫

hrη(t)(t, · + γ(t)) d(et)#(Q̄1E) =

∫
E

dQ̄(ω)
∫

hrη(t)(t, ω(t) + γ(t)) dt∫∫
ĥ(t, ·) d(et)#(Q̄1E) =

∫
E

dQ̄(ω)
∫

ĥ(t, ω(t)) dt

We then use the arbitrariness of E, thus obtaining the following fact: for Q̄ a.e. ω s.t. ω(t) + γ(t) +

B(0, r) ⊂ Ω for every t we have

KΨr (ω + γ) + O(r2) +

∫ T

0
hrη(t)(t, ω(t) + γ(t)) dt ≥ KΨ(ω) +

∫ T

0
ĥ(t, ω(t)) dt.

This result is true for a.e. curve for fixed γ, while we would like to obtain inequalities which are valid
on a full-measure set which is the same for every γ. This explains the use of the dense set D. On the
same full-measure set this inequality is true for every γ ∈ D, since D is countable. Then, using the
density of D and the continuity, for fixed r > 0, of all the quantities on the left-hand side, we obtain the
following: for Q̄ a.e. ω and for every γ ∈ H1

�([0,T ]) s.t. ω(t) + γ(t) + B(0, 2r) ⊂ Ω for every t we have

KΨr (ω + γ) + O(r2) +

∫ T

0
hrη(t)(t, ω(t) + γ(t)) dt ≥ KΨ(ω) +

∫ T

0
ĥ(t, ω(t)) dt. (10)

In order to obtain this result every γ ∈ H1
�([0,T ]) is approximated by a sequence γk ∈ D, with both

H1 and uniform convergence, so that we have |γk − γ| ≤ r (which explains the condition ω(t) + γ(t) +

B(0, 2r) ⊂ Ω with a different radius now): the kinetic term K(ω + γk) passes to the limit because of
strong H1 convergence, while the integral term passes to the limit via dominated convergence (if h is
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bounded from above and below, otherwise we use a Fatou’s lemma with a limsup, since we have at
least h ≤ H0), since each function hrη(t)(t, ·) is continuous, and they are all bounded above by a same
constant. This is a first point where we use the L∞ upper bound h ≤ H0. Indeed, if we do not have a
suitable bound on h, the L∞ norm of hrη(t) could explose as t → 0 since η(t) → 0 (and, unfortunately,
it is not possible in general to guarantee integrablity in time of this bound if we want η ∈ H1).

Inequality (10) is true for fixed r > 0, but taking a countable sequence tending to 0 we can pass
to the limit as r → 0 on a full-measure set, thus obtaining the following: for Q̄ a.e. ω and for every
γ ∈ H1

�([0,T ]) s.t. ω(t) + γ(t) ∈ Ω̊ for every t we have

KΨ(ω + γ) +

∫ T

0
ĥ(t, ω(t) + γ(t)) dt ≥ KΨ(ω) +

∫ T

0
ĥ(t, ω(t)) dt.

Also this limit uses h ≤ H0 as an assumption to apply Fatou’s lemma with limsup (we need to upper
bound the terms with hrη(t)). Of course some integrability on the curve of the maximal function of h
would be enough, but this is a much trickier condition (see below in Remark 3). Note that on the left
hand side we used the continuity of Ψ.

This shows optimality of a.e. ω compared to every curve lying in the interior of the domain Ω.
In order to handle curves touching ∂Ω, let us take a family of maps ζδ : Ω → Ω̊ with the following
properties: Lip(ζδ) → 1 as δ → 0, |ζδ(x) − x| ≤ Cδ for every x ∈ Ω, and ζδ(x) = x if d(x, ∂Ω) ≥ δ. We
just observe now that, for a given curve ω : [0,T ]→ Ω, we have

KΨ,ĥ(ζδ ◦ ω) ≤ Lip(ζδ)2K(ω) + Ψ(ω(T )) +

∫ T

0
ĥ(t, ω(t)) dt

+|Ψ(ζδ(ω(T )) − Ψ(ω(T )| + H0|{t : 0 < d(ω(t), ∂Ω) < δ}| → KΨ,ĥ(ω).

Again we used h ≤ H0 < ∞. As a result, we obtain that Q̄-a.e. curve ω optimizes KΨ,ĥ in the class of
H1 curves staying in Ω and sharing the same starting point. �

Remark 2. The proof can be easily adapted to the case where the function Ψ is not continuous but only
bounded, but we need in this case to suppose that (eT )#Q̄ is absolutely continuous. It is then possible to
treat Ψ exactly as h, replacing it with its representative Ψ̂. This will be useful in the density-constrained
case where Ψ is replaced by a new function Ψ + P.

Remark 3. Both in [2] and [13] h is not required to be bounded, but the statement is slightly different
and makes use of the Maximal function Mh := supr hr. The result which is obtained is the optimality
of Q̄-a.e. curve in the class of curves ω̃ with

∫
Mh(t, ω̃(t)) dt < +∞, and moreover the result is local

in time (perturbations are only allowed to start from t0 > 0). Besides this small technicality about
locality in time, the optimality which is obtained is only useful if there are many curves ω̃ satisfying
this integrability condition on Mh. A typical statement is then “for Q-a.e. curve ω̃ this is the case”,
but it is not straightforward for which measure Q should one require this. Again, the typical approach
is to prove that this is the case for all measures Q with J(Q) < +∞ (which are in some sense the
relevant measures for this problem, and this corresponds to some integrability property of the densities
ρt := (et)#Q). In this case, we can compute∫ ∫

Mh(t, ω(t)) dt dQ(ω) =

∫
dt

∫
Ω

Mh(t, x) d(et)#Q.

We would like to guarantee that every Q with J(Q) < +∞ is such that
∫ ∫

Mh(t, ω(t)) dt dQ(ω) < ∞.
Since we know that G((et)#Q) is integrable, it is enough to guarantee G∗(Mh) ∈ L1. In the case where
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G(s) ≈ sq (hence g(s) ≈ sq−1 we need Mh ∈ Lq′ . Since in this case we know ρ ∈ Lq, then h ≈ g(ρ) ∈ Lq′

and this implies Mh ∈ Lq′ from standard theorems in harmonic analysis, as soon as q′ > 1.

As we can see, the analysis of these equilibrium conditions motivates a deeper study of regularity
issues, for several reasons. Indeed, in order to apply the previous considerations it would be important
to obtain upper bounds on h[ρ]; when this is not possible, at least obtaining higher integrability (in
particular when we only know h ∈ L1, passing to L1+ε would be crucial) would be important in order
to deal with the integrability of Mh. Higher integrability can sometimes be obtained via higher-order
estimates (proving BV or Sobolev estimates). More generally, better regularity on ρ (or on the dual
variable ϕ) could give “better” solutions to the (HJ) equation (instead of just a.e. solutions).

This is why in the next sections we will see some regularity techniques. In Section 3 we will
prove Sobolev results on the optimal density ρ which are interesting in themselves, and also imply
higher integrability. Then in Section 4 we will see how to directly obtain L∞ results with a different
technique. Finally, Section 5 is devoted to the density-constrained case: for this case, [13] presented a
non-trivial variant of the technique used here in section 3 and obtained BV estimates on the pressure,
which implied that the pressure is a function belonging to a certain Lq space, q > 1: here, instead,
we will present the approach of [27] which provides p ∈ L∞ (yet, we will choose an easier proof, not
available in [27]).

3 Regularity via duality
We present here a technique to prove Sobolev regularity results for the optimal density ρ. This tech-
nique, based on duality, is inspired from the work of [7], and has been applied to MFG in [13]. It is
actually very general, and [41] shows how it can be used to prove (or re-prove) many regularity results
in elliptic equations coming from convex variational problems.

We start from a lemma related to the duality results of Section 2.1.

Lemma 3.1. For any (φ, p) ∈ D and (ρ, v) ∈ P we have

B(φ, p) +A(ρ, v) =

∫
Ω

(Ψ − φT ) dρT +

∫ T

0

∫
Ω

(G(ρ) + G∗(p) − ρp) dx dt +
1
2

∫ T

0

∫
Ω

ρ|v + ∇φ|2 dx dt.

Proof. We start from

B(φ, p) +A(ρ, v) =

∫ T

0

∫
Ω

(
1
2
ρ|v|2 + G(ρ) + G∗(p) + Vρ

)
dx dt +

∫
Ω

Ψ dρT −

∫
Ω

φ0 dρ0. (11)

Then we use ∫
Ω

Ψ dρT −

∫
Ω

φ0 dρ0 =

∫
Ω

(Ψ − φT ) dρT +

∫
Ω

φT dρT −

∫
Ω

φ0 dρ0

and ∫
Ω

φT dρT −

∫
Ω

φ0 dρ0 =

∫ T

0

∫
Ω

(−φ∇ · (ρv) + ρ∂tφ) dx dt

=

∫ T

0

∫
Ω

(
∇φ · (ρv) + ρ

(
1
2
|∇φ|2 − (p + V)

))
dx dt.

If we insert this into (11) we get the desired result. �
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It is important to stress that we used the fact that φ is C1 since (ρ, v) only satisfies (CE) in a
weak sense, i.e. tested against C1 functions. The same computations above would not be possible for
(φ, p) ∈ D̃.

The regularity proof will come from the previous computations applied to suitable translations in
space and/or time.

In order to simplify the exposition, we will suppose that Ω = Td is the d-dimensional flat torus,
which avoids boundary issues. To handle the case of a domain Ω with boundary, we refer to the
computations in [41] which suggest how to adapt the method below. Finally, for simplicity, we will
only prove in this paper local results in (0,T ), so that also the time boundary does not create difficulties.

Here is the intuition behind the proof in this spatially homogeneous case. First, we use Lemma 3.1
to deduce

B(φ, p) +A(ρ, v) ≥
∫ T

0

∫
Ω

(G(ρ) + G∗(p) − ρp) dx dt

(since the other terms appearing in Lemma 3.1 are positive). Then, let us suppose that there exist two
function J, J∗ : R→ R and a positive constant c0 > 0 such that for all a, b ∈ R we have

G(a) + G∗(b) ≥ ab + c0|J(a) − J∗(b)|2. (12)

Remark 4. Of course, this is always satisfied by taking J = J∗ = 0, but there are less trivial cases. For
instance, if G(ρ) = 1

qρ
q for q > 1, then G∗(p) = 1

q′ q
r′ , with q′ = q/(q − 1) and

1
q
|a|q +

1
q′
|b|q

′

≥ ab +
1

2 max{q, q′}
|aq/2 − bq′/2|2,

i.e. we can use J(a) = aq/2 and J∗(b) = bq′/2. Another easy case to consider is the one where
G′′ ≥ c0 > 0. In this case we can choose J = Id and J∗ = (G∗)′.

We wish to show that if (ρ, v) is a minimizer of A then J(ρ) ∈ H1
loc((0,T ) × Ω). Should B admit

a C1 minimizer φ (more precisely, a pair (φ, p)), then by the Duality Theorem 2.1, we would have
B(φ, p) +A(ρ, v) = 0. Using Lemma 3.1, we get J(ρ) = J∗(p). If we manage to show that ρ̃(t, x) :=
ρ(t + η, x + δ) with a corresponding velocity field ṽ satisfies

A(ρ̃, ṽ) ≤ A(ρ, v) + C(|η|2 + |δ|2) (13)

for small η ∈ R, δ ∈ Rd, then we would have

C(|η|2 + |δ|2) ≥ A(ρ̃, ṽ) + B(φ, p) ≥ c||J(ρ̃) − J∗(p)||2L2 .

Using then J∗(p) = J(ρ), we would get

C(|η|2 + |δ|2) ≥ c||J(ρ̃) − J(ρ)||2L2 ,

which would mean that J(ρ) is H1 as we have estimated the squared L2 norm of the difference between
J(ρ) and its translation by the squared length of the translation. Of course, there are some technical
issues that need to be taken care of, for instance ρ̃ is not even well-defined (as we could need the value
of ρ outside [0,T ] × Ω), does not satisfy the initial condition ρ̃(0) = ρ0, we do not know if B admits a
minimizer, and we do not know whether (13) holds.

To perform our analysis, let us fix t0 < t1 and a cut-off function ζ ∈ C∞c (]0,T [) with ζ ≡ 1 on
[t0, t1]. Let us define ρη,δ(t, x) := ρ(t + ζ(t)η, x + ζ(t)δ),

vη,δ(t, x) := v(t + ζ(t)η, x + ζ(t)δ)(1 + ζ′(t)η) − ζ′(t)δ.
(14)
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It is easy to check that the pair (ρη,δ, vη,δ) satisfies the continuity equation together with the initial
condition ρη,δ(0) = ρ0. Therefore it is an admissible competitor inA for any choice of (η, δ). We may
then consider the function

M : R × Rd → R, M(η, δ) := A(ρη,δ, vη,δ).

The key point here is to show that M is C1,1.

Lemma 3.2. Suppose V ∈ C1,1. Then, the function (η, δ) 7→ M(η, δ) defined above is also C1,1.

Proof. We have

A(ρη,δ, vη,δ) =

∫ T

0

∫
Td

1
2
ρη,δ|vη,δ|2 dx dt +

∫ T

0

∫
Td

V dρη,δ +

∫ T

0

∫
Td

G(ρη,δ) dx dt +

∫
Td

Ψ(x) dρη,δT .

Since ρη,δ(T, x) = ρ(T, x), the last term does not depend on (η, δ). For the other terms, we use the
change-of-variable

(s, y) = (t + ζ(t)η, x + ζ(t)δ)

which is a C∞ diffeomorphism for small η. Then we can write∫ T

0

∫
Td

(
G(ρη,δ(x, t)) + V(x)ρη,δ(x, t)

)
dx dt =

∫ T

0

∫
Td

(G(ρ(y, s)) + V(y − ζ(t)δ)ρ(y, s)) dx dt

=

∫ T

0

∫
Td

(G(ρ(y, s))V(y − ζ(t)δ)ρ(y, s)) K(η, δ, s) dy ds,

where K(η, δ, s) is a smooth Jacobian factor (which does not depend on y since the change of variable
is only a translation in space). Hence, this term depends smoothly on (η, δ), with the same regularity
as that of V .

We also have∫ T

0

∫
Td
ρη,δ|vη,δ|2 dx dt =

∫ T

0

∫
Td
ρ(s, y)|(1 + ηζ′(t))v(s, y) − δζ′(t)|2 dx dt

=

∫ T

0

∫
Td
ρ(s, y)|(1 + ηζ′(t(η, s)))v(s, y) − δζ′(t(η, s))|2K(η, δ, s) dy ds,

where K(η, δ, s) is the same Jacobian factor as before, and t(η, s) is obtained by inversing, for fixed
η > 0, the relation s = t + ηζ′(t), and is also a smooth map. Hence, this term is also smooth. �

We can now apply the previous lemma to the estimate we need.

Proposition 3.3. There exists a constant C, independent of (η, δ), such that for |η|, |δ| ≤ 1, we have

|M(η, δ) − M(0, 0)| = |A(ρη,δ, vη,δ) −A(ρ, v)| ≤ C(|η|2 + |δ|2).

Proof. We just need to use Lemma 3.2 and the optimality of (ρ, v). This means that M achieves its
minimum at (η, δ) = (0, 0), therefore its first derivative must vanish at (0, 0) and we may conclude
by a Taylor expansion, using boundedness of the second derivatives (as a consequence of the C1,1

regularity). �

With this result in mind, we may easily prove the following
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Theorem 3.4. If (ρ, v) is a solution to the primal problem minA, if Ω = Td and if J satisfies (12), then
J(ρ) satisfies, for every t0 < t1,

||J(ρ(· + η, · + δ)) − J(ρ)||2L2([t0,t1]×Td) ≤ C(|η|2 + |δ|2)

(where the constant C depends on t0, t1 and on the data), and hence is of class H1
loc(]0,T [×Td)).

Proof. Let us take a minimizing sequence (φn, pn) for the dual problem, i.e. φn ∈ C1, pn + V =

−∂tφn + 1
2 |∇φn|

2 and

B(φn, pn) ≤ inf
(φ,p)∈F

B(φ, p) +
1
n
.

We use ρ̃ = ρη,δ and ṽ = vη,δ as in the previous discussion. Using first the triangle inequality and
then Lemma 3.1 we have (where the L2 norme denotes the norm in L2((0,T ) × Td))

c0||J(ρη,δ) − J(ρ)||2L2 ≤ 2c0(||J(ρη,δ) − J∗(pn)||2L2 + ||J(ρ) − J∗(pn)||2L2 )

≤ 2(B(φn, pn) +A(ρη,δ, vη,δ) + B(φn, pn) +A(ρ, v)),

hence
||J(ρη,δ) − J(ρ)||2L2 ≤ C(B(φn, pn) +A(ρ, v)) + C(|η|2 + |δ|2) ≤

C
n

+ C(|η|2 + |δ|2).

Letting n go to infinity and restricting the L2 norm to [t0, t1] × Td gives the claim. �

Remark 5. If one restricts to the case η = 0, then it is also possible to use a cut-off function ζ ∈
C∞c (]0,T ]) with ζ(T ) = 1, as we only perform space translations. In this case, however, the final cost∫
Td Ψ(x) dρη,δT depends on δ, and one needs to assume Ψ ∈ C1,1 to prove M ∈ C1,1. This allows to

deduce H1 regularity in space, local in time far from t = 0, i.e. J(ρ) ∈ L2
loc(]0,T ]; H1(Td)).

A finer analysis of the behavior at t = T also allows to extend the above H1 regularity result in
space time till t = T , but needs extra tools (in particular defining a suitable extension of ρ for t > T ).
This is developed in [37]. Moreover, it is also possible to obtain regularity results till t = 0, under
additional assumptions on ρ0 and at the price of some extra technical work, as it is done in [19].
Remark 6. From J(ρ) = J∗(p), the above regularity result on ρ can be translated into a corresponding
regularity result on p whenever an optimal pair (φ, p) exists (even if the dual problem is stated in D̃: we
could indeed prove that there exists a maximizing sequence composed of smooth functions, satisfying
suitable H1 bounds, which would imply the same regularity for the maximizer of the relaxed dual
problem).
Remark 7. When G(ρ) = ρq, q > 1, the above H1 result can be applied to ρq/2 and combined with the
Sobolev injection H1 ⊂ L2∗ . This shows that we have ρ ∈ Lq̃

loc((0,T )×Ω) for an exponent q̃ > q, given
by q(d + 1)/(d− 1) in dimension d > 1 (and any exponent q̃ < ∞ if d = 1). This is a better integrability
than just Lq, which came from the finiteness of the functional. The exponent has been computed using
the Sobolev injection in dimension d + 1, the dimension of (0,T ) × Ω. If we distinguish the behavior
in time and space, just using J(ρ) ∈ L2

t H1
x , we get ρ ∈ L2

t Lqd/(d−2)
x for d > 2, ρ ∈ L2

t Lq̃
x for any q̃ < ∞ in

dimension d = 2, and L2
t L∞x in dimension d = 1.

Finally, we finish this section by underlining the regularity results in the density-constrained case
([13]): the same kind of strategy, but with many more technical issues, which follow the same scheme
as in [7] and [1], and the result is much weaker. Indeed, it is only possible to prove in this case
p ∈ L2

loc((0,T ); BV(Td)) (exactly as in [1]). Even if very weak, this result is very important in what it
gives higher integrability on p, which was a priory only supposed to be a measure and this allows to
get the necessary summability of the maximal function that we briefly mentioned in Section 2.3.
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4 Regularity via OT, time discretization, and flow interchange
In this section we will interpret the Eulerian variational forumulation as the search for an optimal curve
in the Wasserstein space, i.e. the space of probability measures endowed with a particular distance
coming from optimal transport. This will lead to a very efficient time discretization on which we are
able to perform suitable computations providing strong bounds.

4.1 Tools from Optimal Transport and Wasserstein spaces
The space P(Ω) of probability measures on Ω can be endowed with the Wasserstein distance: if µ and
ν are two elements of P(Ω), the 2-Wasserstein distance W2(µ, ν) between µ and ν is defined via

W2(µ, ν) :=

√
min

{∫
Ω×Ω

|x − y|2 dγ(x, y) : γ ∈ P(Ω ×Ω) and (πx)#γ = µ, (πy)#γ = ν

}
. (15)

In the formula above, πx and πy : Ω × Ω → Ω stand for the projections on respectively the first and
second component of Ω × Ω. If T : X → Y is a measurable application and µ is a measure on X, then
the image measure of µ by T , denoted by T#µ, is the measure defined on Y by (T#µ)(B) = µ(T−1(B))
for any measurable set B ⊂ Y . For general results about optimal transport, the reader might refer to
[44, 3], or [40].

The Wasserstein distance admits a dual formulation, the dual variables being the so-called Kan-
torovich potentials. The main properties of these potentials, in the case which is of interest to us, are
summarized in the proposition below. We restrict to the cases where the measures have a strictly pos-
itive density a.e., as in this particular case the potentials are unique (up to a global additive constant).
The proof of these results can be found, for instance, in [40, Chapters 1 and 7].

Proposition 4.1. Let µ, ν ∈ P(Ω) be two absolutely continuous probability measures with strictly
positive density. Then there exists a unique (up to adding a constant to ϕ and subtracting it from ψ)
pair (ϕ, ψ) of Kantorovich potentials satisfying the following properties.

1. The squared Wasserstein distance W2
2 (µ, ν) can be expressed as

1
2

W2
2 (µ, ν) =

∫
Ω

ϕµ +

∫
Ω

ψν.

2. The ”vertical” derivative of W2
2 (·, ν) at µ is ϕ: if µ̃ ∈ P(Ω) is any probability measure, then

lim
ε→0

1
2 W2

2 ((1 − ε)µ + εµ̃, ν) − 1
2 W2

2 (µ, ν)
ε

=

∫
Ω

ϕ(µ̃ − µ).

3. The potentials ϕ and ψ are one the c-transform of the other, meaning that we haveϕ(x) = infy∈Ω
|x−y|2

2 − ψ(y)
ψ(y) = infx∈Ω

|x−y|2

2 − ϕ(x).

4. There holds (Id−∇ϕ)#µ = ν and the transport plan γ := (Id, Id−∇ϕ)#µ is optimal in the problem
(15). We also say that the map x 7→ x − ∇ϕ(x) is the optimal transport map from µ to ν.

19



The function ϕ (resp. ψ) is called the Kantorovich potential from µ to ν (resp. from ν to µ).

We will denote by Γ the space of absolutely continuous curves from [0, 1] to P(Ω) endowed with
the Wasserstein distance W2.

Definition 4.2. We say that a curve ρ is absolutely continuous if there exists a function a ∈ L1([0, 1])
such that, for every 0 6 t 6 s 6 1,

W2(ρt, ρs) 6
∫ s

t
a(r) dr.

We say that ρ is 2−absolutely continuous if the function a above can be taken in L2([0, 1])

This space will be equipped with the distance dΓ of the uniform convergence, i.e.

dΓ(ρ1, ρ2) := max
t∈[0,1]

W2(ρ1
t , ρ

2
t ).

The main interest of the notion of absolute continuity for curves in the Wasserstein space lies in the
following theorem, which we recall without proof (but we refer to [3] or to Chapter 5 in [40]).

Theorem 4.3. For ρ ∈ Γ the quantity

|ρ̇t | := lim
h→0

W2(ρt+h, ρt)
h

exists and is finite for a.e. t. Moreover, we have the following

• if ρ ∈ Γ is a 2-absolutely continuous curve, there exists for a.e. t a vector field vt ∈ L2(ρt) such
that ||vt ||L2(ρt) ≤ |ρ̇t | and such that the continuity equation ∂tρ+∇· (ρv) = 0 holds in distributional
sense;

• if ρ ∈ Γ is such that there exists a family of vector fields vt ∈ L2(ρt) satisfying
∫ T

0

∫
Ω
|vt |

2 dρt dt <
+∞ and ∂tρ + ∇ · (ρv) = 0, then ρ is a 2-absolutely continuous curve and ||vt ||L2(ρt) ≥ |ρ̇t | for a.e.
t.

Finally, we can represent
∫ 1

0 |ρ̇t |
2 dt in various ways such as

∫ 1

0
|ρ̇t |

2 dt = sup
N>2

sup
06t1<t2<...<tN61

N∑
k=2

W2
2 (ρtk−1 , ρtk )
tk − tk−1

(16)

= min
{∫ 1

0

∫
Ω

|vt |
2 dρt dt : ∂tρ + ∇ · (ρv) = 0

}
. (17)

Observe that the kinetic energy in (16) is exactly the same quantity appearing in Section 2.3.

4.2 Discretization in time of variational MFG and optimality conditions
We first start from the observation that the above tools from optimal transport theory allow to re-write
the variational problem defining MFG equilibria into the following form

min
{∫ T

0

1
2
|ρ̇t |

2 dt +

∫ T

0
G(ρt) dt +

∫
Ω

Ψ dρT : ρ : [0,T ]→ P(Ω), ρ0 = ρ0

}
.
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A useful approximation can be obtained via time-discretization: we fix a time step τ = T/N and
we look for a sequence ρ0 = ρ0, ρ1, . . . , ρN solving

min

N−1∑
k=0

W2
2 (ρk, ρk+1)

2τ
+ τG(ρk)

 +

∫
Ω

Ψ dρN

 .
If ρ0, ρ1, . . . , ρN solves the above minimization problem then, for each 0 < k < N, the measure ρk

solves

min
W2

2 (ρ, ρk−1)
2τ

+
W2

2 (ρ, ρk+1)
2τ

+ τG(ρ) : ρ ∈ P(Ω)
 ,

i.e. it solves a minimization problem similar to what we see in the JKO scheme for gradient flows (see
[22, 3, 42]), which would be of the form

min
W2

2 (ρ, ρk−1)
2τ

+ G(ρ)
 .

By the way, for k = N, we have a true JKO-style problem with one only Wasserstein distance.
From this similarity with the JKO scheme, we are lead to apply techniques which have been pre-

viously applied to this other setting, and in particular the notion of flow interchange, developed in
[31].

Consider the functional Fm(ρ) :=
∫

Fm(ρ(x)) dx, where Fm(s) := sm. The important point about
this functional, if we suppose Ω to be convex, is that it is a geodesically convex functional on the W2
Wasserstein space (see [32]). This means that it is convex along constant-speed geodesic interpolations
inW2(Ω). Consider now (ρs)s be the gradient flow of Fm(ρ), i.e. a solution of ∂sρ−∇·(ρ∇(F′m(ρ))) = 0,
with initial datum at s = 0 equal to the optimal ρ at step k. From the EVI definition of gradient flows
([3]) and the geodesic convexity of Fm we obtain the following inequality, valid for every ν

d
ds

W2
2 (ρs, ν)

2
≤ Fm(ν) − Fm(ρs).

We can also compute
d
ds
G(ρs) = −

∫
∇(g(ρs) + V) · ∇(F′m(ρs)) dρs.

On the other hand, the optimality of ρk implies that the derivative of the sum of the Wasserstein terms
and of the G term should be non-negative, which provides∫

∇(g(ρk) + V) · ∇(F′m(ρk)) dρk ≤
Fm(ρk+1) − 2Fm(ρk) + Fm(ρk−1)

τ2 .

Let us start from the easier case V = 0: in this case we get

0 ≤
∫

g′(ρk)F′′m(ρk)ρk |∇ρk |
2 ≤

Fm(ρk+1) − 2Fm(ρk) + Fm(ρk−1)
τ2 .

This shows that k 7→ Fm(ρk) is (discretely) convex. If ρ0 ∈ Lm, and if for some reason we suppose
ρT ∈ Lm, then, after passing to the limit τ → 0, we deduce a uniform bound on ||ρt ||Lm . This also
works for m = ∞. This was essentially a result proven by P.-L. Lions in his course ([28], lecture of
of November 27, 2009), in a more general setting (still with no x-dependence, but with more general
Hamiltonians than the quadratic one).
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Note that the case where ρT is prescribed is known under the name of planning problem (see,
for instance, [35, 34, 20]) but is out of the scopes of these notes. When, instead, we have a final
penalization, the same flow interchange technique provides∫

∇Ψ · ∇(F′m(ρN)) dρN ≤
Fm(ρN−1) − Fm(ρN)

τ
.

After an integration by parts, using ∇(F′m(ρN))ρN = m(m − 1)ρm−1
N ∇ρN = (m − 1)∇(Fm(ρN)), and

assuming Ψ ∈ C1,1 and ∂Ψ/∂n ≥ 0 on ∂Ω, we obtain

Fm(ρN) ≤ Fm(ρN−1) + τ(m − 1)
∫

Fm(ρN)∆Ψ,

i.e.
(1 −Cτ)Fm(ρN) ≤ Fm(ρN−1), for C = (m − 1)||(∆Ψ)+||L∞ . (18)

This shows that not only k 7→ Fm(ρk) is convex, but that we control its final derivative. From a
continuous point of view, it is as if we had a function u ≥ 0, with u′′ ≥ 0 and u′(T ) ≤ Cu(T ). This is
not enough to provide a bound on u(T ) as, for instance, all functions of the form u(t) = λ(1−C(T − t))+

satisfy these assumptions (note by the way that, in case CT > 1, we also have u(0) = 0, which shows
that adding an assumption on the initial data would not be enough). Yet, we can obtain u(T ) ≤ 2C

∫ T
0 u.

This can be, for instance, applied to the case where the two functionals G and Fm have the same order
of growth: G ≈ Fm. From the finiteness of the integral of Fm we would deduce in this case a uniform
bound for Fm(ρT ) and, if Fm(ρ0) < ∞, a uniform bound in time.

However, we are able, following the non-trivial computations in [26], to obtain much more.
To give an idea of the method, let us stick to the case V = 0 and let us impose a very stringent

assumption on the congestion function g. We will suppose g′(s) ≥ cs−1 an assumption which is
satisfied in the entropy case G(s) = s log s. We will see that the important assumption is indeed the
inequality g′(s) ≥ csα for α ≥ −1. The idea is to exploit the positive term

∫
g′(ρk)F′′m(ρk)ρk |∇ρk |

2. In
this case we have ∫

g′(ρk)F′′m(ρk)ρk |∇ρk |
2 ≥ c

∫
ρm−2

k |∇ρk |
2 = c||∇(ρm/2

k )||2L2 .

We then apply the Sobolev injection of H1 into Lβ, for an exponent 2β > 2. This allows, for instance,
to write

||(ρm/2
k )||2L2β ≤ C||∇(ρm/2

k )||2L2 + C
∫

ρm
k

for a suitable constant C. As the last term in the right hand side is just Fm(ρk), we obtain a bound on
Fmβ(ρk) in terms of Fm(ρk) and of its second variation in k. The idea is then to apply Moser’s iteration
on exponents m j ≈ β j. This is delicate, since in order to take care of the second derivative in time
(even if it is discrete) we need to integrate in time, and the integral (sum over k in the discrete setting)
in time of the L2β norms raised to the power 2 is not the L2β norm in time-space. This can be dealt with
using the fact that all the functionals Fm are convex in time, which allows to obtain reversed Jensen
inequalities: if a function u ≥ 0 is convex, indeed, we have(∫ T2

T1

u(t) dt
)1/β

≤
(T2 − T1)1β

ε

∫ T2+ε

T1−ε

u1/β(t) dt.
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This allows hence to obtain an estimate of the form(∫ ∫ T2

T1

Fmβ(ρ(t)) dt
)1/β

≤ C(m, ε)
∫ T2+ε

T1−ε

Fm(ρ(t)) dt

and, choosing suitable values of ε = εm and exploiting the polynomial behaviour of C(m, ε) in m and
ε−1, it is possible to iterate this estimate in the spirit of the work of Moser [33] for elliptic regularity,
thus obtaining an estimate on ||ρ||L∞([T1,T2]×Ω in terms of

∫
[T1−ε,T2+ε]×Ω

G(ρ) dx dt.
Even if the computations are less straightforward it is not difficult to see that the assumption g′(s) ≥

cs−1 can be replaced by a more general one where we use g′(s) ≥ csα for an exponent α ≥ −1, and that
it is enough, in order to obtain L∞ bounds, that this inequality is satisfied for s ≥ s0 (see [26]).

The situation is trickier when there is an exterior potential V . In this case we have∫
g′(ρk)F′′m(ρk)ρk |∇ρk |

2 ≤
Fm(ρk+1) − 2Fm(ρk) + Fm(ρk−1)

τ2 −

∫
(∇V · ∇ρk)F′′m(ρk)ρk.

The new term needs to be estimated in terms of V and Fm, which can be done in two possible ways.
Either we integrate by parts, as we did for the final cost Ψ, and suppose V ∈ C1,1 and ∂V/∂n ≥ 0, in
which case we use ∇ρkF′′m(ρk)ρk = (m − 1)∇(Fm(ρ) and we get

−

∫
(∇V · ∇ρk)F′′m(ρk)ρk ≤ (m − 1)

∫
(∆V)Fm(ρk),

or we use a Young inequality:

−

∫
(∇V · ∇ρk)F′′m(ρk)ρk ≤

1
2

∫
|∇V |2F′′m(ρk)ρ2

k +
1
2

∫
|∇ρk |

2F′′m(ρk).

The first term in the right-hand side can be bounded by Cm2Fm(ρk) as soon as V is Lipschitz contin-
uous, and the second can be bounded in terms of

∫
g′(ρk)F′′m(ρk)ρk |∇ρk |

2 as soon as g′(ρ) ≥ ρα with
α ≥ −1. We will see in the statement of Theorem 4.4 that this computation (only assuming V to be
Lipschitz) can only be exploited for L∞ regularity under some very restrictive assumptions.

However, a difficulty arising in this case is that k 7→ Fm(ρk) is no more convex. From a continuous
point of view, we do not have anymore a time-dependent function u with u′′ ≥ 0, but rather a solution
of u′′+ω2u ≥ 0, for a constant ω depending on m. Differently from convexity, in general this inequality
cannot provide bounds, if we think that functions of the form u(t) = λ sinωt solve the equality case
for any λ, on intervals of the form [0,T ], T = kπ/ω. Hence, this inequality can only provide bounds
on short intervals of time, smaller than π/ω. In particular, when doing Moser’s iterations, we need to
divide every interval into smaller ones; since the reverse Jensen inequality requires to enlarge these
intervals, there will be many new integrals on overlapping intervals. As a result, this will bring to a
larger multiplicative constant depending on m (since ω also depends on m, and the parameter εm in the
enlargement of the intervals also depends on m) in the estimates. This is not a problem as soon as the
dependence is polynomial.

A final remark about the case where g′s) ≥ sα but α < −1. This case is called in [26] “weak
congestion”. In this case, we only have a control of Fm in terms of Fβ(m+1+α). Thus we must start the
iterative procedure with a value m such that m < β(m + 1 + α), i.e. we must impose a priori some
Lm regularity on ρ (with an exponent m which depends on α and β, the latter depending itself only on
the dimension of the ambient space). Such a regularity can be obtained, for instance, by assuming that
ρ0 (which is fixed) is in Lm(Ω) and that T is small enough. Indeed, if this is the case, the boundary
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condition (18) combined with the interior estimate u′′ +ω2u ≥ 0 show that if T is small enough (given
the potentials and the congestion function f ), the Lm norm of ρ on [0,T ] ×Ω must be bounded.

We do not develop all the details,which are very technical, here but we summarize here below the
L∞ results which can be found in [26]. The results are based on the above estimates obtained in the
time-discrete setting, together with a suitable use of the limit τ→ 0.

Theorem 4.4. Consider a running cost of the form h[ρ] = V(x) + g(ρ). Suppose that the inequality
g′(s) ≥ sα is satisfied for every s ≥ s0. Then, we have:

• If V is Lipschitz, α ≥ −1, and s0 = 0 then ρ ∈ L∞loc((0,T ) ×Ω).

• The same result holds if s0 > 0 but V ∈ C1,1 and ∂V/∂n ≥ 0.

• These results extend to (0,T ] if Ψ ∈ C1,1 and ∂Ψ/∂n ≥ 0.

• If α < −1, then the same results, for V,Ψ ∈ C1,1, ∂V/∂n ≥ 0 and ∂Ψ/∂n ≥ 0, are true if we
already know ρ ∈ Lm0 ((0,T ) × Ω) for m0 > d|α + 1|/2. This is true in particular if ρ0 ∈ Lm0 and
T is small enough.

It is now straightforward to apply the L∞ bounds on ρ to obtain boundedness from above of h[ρ],
and then apply the content of Section 2.3 in order to transform the optimality into a the equilibrium
condition characterizing optimal tranjectories in MFG.

5 Density-constrained Mean Field Games
In this section we are concerned with the model presentd in [13] (but, compared to such a paper, we will
restrict to the case where the cost is quadratic in the velocity): the variational problem to be considered
is

min
{∫ T

0

∫
Ω

(
1
2
|vt |

2 + V
)

dρt dt +

∫
Ω

Ψ dρT : ρ ≤ 1
}
.

This can be translated into

min
{∫ T

0

1
2
|ρ̇t |

2 dt +

∫ T

0
G(ρt) dt +

∫
Ω

Ψ dρT : ρ : [0,T ]→ P(Ω), ρ0 = ρ0

}
,

where G is a very degenerate functional:

G(ρ) :=


∫

V dρ if ρ ≤ 1,
+∞ if not.

We already discussed that this provides the following MFG system

−∂tϕ +
|∇ϕ|2

2 = V + p,
∂tρ − ∇ · (ρ∇ϕ) = 0,
ϕ(T, x) = Ψ(x) + P(x), ρ(0, x) = ρ0(x),
p ≥ 0, ρ ≤ 1, p(1 − ρ) = 0,
P ≥ 0, P(1 − ρT ) = 0.

(19)
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and that the running cost of every agent is in the end V + p (note that this is coherent with the general
formula V + G′(ρ), where the derivative G′ = g should be replaced here by a generic element of the
subdifferntial ∂G). Note that in this case we also have an effect on the final cost, where Ψ is replaced
by Ψ + P. This can be interpreted in two ways. In general, we did not put any density penalization at
final time (i.e. the final cost is not of the form Ψ+g(ρT ) but only of the form Ψ), but here the constraint
ρT ≤ 1 is also present on the final density, and lets its subdifferential appear. On the other hand, we
can consider that the constraint ρt ≤ 1 for all t < T is enough to impose the same (by continuity in
the Wasserstein space of the curve t 7→ ρt) for t = T , so that in the final cost functional we can omit
the constraint part. If we interpret this in this way, how can we justify the presence of a final cost P?
the answer comes from the fact that the natural regularity for the pressure p, which is supposed to be
positive, is being a positive measure (since distributions with a sign are measures, and also because
in the dual problem p is penalized in a L1 sense). Hence, the extra cost P represents the singular part
of p concentrated on t = T . What we will prove in this section is that we have p ∈ L∞([0,T ] × Ω)
and P ∈ L∞(Ω), thus decomposing the pressure into a bounded density in time-space and a bounded
density at the final time.

This problem can also be discretized in the same way as in Section 4, and this discretization tech-
nique will be the one which will rigorously provide the estimates we look for. Yet, before looking at
the details, we prefer first to give an heuristic derivation of the main idea in continuous time. The key
point will consist in proving ∆(V + p) ≥ 0 on {p > 0}. To do this, we consider System (19), and denote
by Dt := ∂t−∇ϕ·∇ the convective derivative. The idea is to look at the quantity −Dtt(log ρ). Indeed, the
continuity equation in (19) can be rewritten Dt(log ρ) = ∆ϕ. On the other hand, taking the Laplacian of
the Hamilton-Jacobi equation, it is easy to get, dropping a positive term, −Dt(∆ϕ) 6 ∆(p + V). Hence,

−Dtt(log ρ) 6 ∆(p + V). (20)

Then, we observe that log ρ is maximal where ρ = 1, hence we have −Dtt(log ρ) > 0. This implies
∆p > −∆V on {p > 0}, Let us say that the strategy of looking at the convective derivative of log ρ
was already used by Loeper [29] to study a similar problem (related to the reconstruction of the early
universe). Moreover, also in [29] the rigorous proof was done by time-discretization.

As the tools which are required to study the L∞ regularity are much less technical than for the
density-penalized case, we will develop here more details. In particular, we will write here the opti-
mality conditions for the discrete problems and see that quantities acting like a pressure appear. For
the convergence of these quantities to the true pressures p and P, we refer to [27], whose results are
also recalled in Section 5.3.

Some regularity will be needed in order to be able to correctly perform our analysis. In particular,
we will assume that ρ̄0 is smooth and strictly positive and that V and Ψ are C2 function. We will also
add a small entropy penalization to the term G, thus considering

Gλ(ρ) =:=


∫

V dρ + λ
∫
ρ log ρ if ρ ≤ 1,

+∞ if not

and we will also add the same entropy penalization to the final cost, thus solving

min

N−1∑
k=0

W2
2 (ρk, ρk+1)

2τ
+ τGλ(ρk)

 +

∫
Ω

Ψ dρN + λ

∫
Ω

ρN log ρn dx

 .
Yet, all the estimates that we establish will not depend on the smoothness of ρ̄0,V and Ψ or on the
value of λ.
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5.1 Optimality conditions and regularity of p

In this subsection, we fix N ≥ 1 and k ∈ {1, 2, . . . ,N −1} a given instant of time. We will fix an optimal
sequence (ρ0 = ρ0, ρ1, . . . ρN and set ρ̄ := ρk; we also denote µ := ρk−1 and ν := ρk+1. From the same
consideration of the previous section, we know that ρ̄ is a minimizer, among all probability measures
with density bounded by 1, of

ρ 7→
W2

2 (µ, ρ) + W2
2 (ρ, ν)

2τ
+ τGλ(ρ)

Lemma 5.1. The density ρ̄ is strictly positive a.e.

Proof. The proof is based on the fact that the derivative of the function s 7→ s log s at s = 0 is −∞, so
that minimizers avoid the value ρ = 0. It can be obtained following the procedure in [40, Lemma 8.6],
or of [26, Lemma 3.1], as the construction done in these proofs preserves the constraint of having a
density smaller than 1. �

Proposition 5.2. Let us denote by ϕµ and ϕν the Kantorovich potentials for the transport from ρ̄ to µ
and ν respectively (this potentials are unique up to additive constants because ρ̄ > 0). There exists
p ∈ L1(Ω), positive, such that {p > 0} ⊂ {ρ̄ = 1} and a constant C such that

ϕµ + ϕν

τ2 + V + p + λ log(ρ̄) = C a.e. (21)

Moreover p and log(ρ̄) are Lipschitz continuous.

Proof. Let ρ̃ ∈ P(Ω) such that ρ̃ ≤ 1. We define ρε := (1 − ε)ρ̄ + ερ̃ and use it as a competitor. Clearly
ρε 6 1, i.e. it is an admissible competitor. We will obtain the desired optimality conditions comparing
the cost of ρε to that of ρ. Using Proposition 4.1, as ρ̄ > 0, the Kantorovich potentials ϕµ and ϕν are
unique (up to a constant) and

lim
ε→0

W2
2 (µ, ρε) −W2

2 (µ, ρ̄) + W2
2 (ρε, ν) −W2

2 (ρ̄, ν)
2τ2 =

∫
Ω

ϕµ + ϕν

τ
(ρ̃ − ρ̄).

The term involving V is straightforward to handle as it is linear. The only remaining term is the one
involving the entropy. For this term (following, for instance, the reasoning in [26, Proposition 3.2]),
we can obtain the inequality

lim sup
ε→0

∫
ρε log ρε −

∫
ρ̄ log ρ̄

ε
6

∫
Ω

log(ρ̄)(ρ̃ − ρ̄).

Putting the pieces together, we see that
∫

Ω
u (ρ̃ − ρ̄) > 0 for any ρ̃ ∈ P(Ω) with ρ̃ 6 1, provided that u

is defined by

u :=
ϕµ + ϕν

τ2 + V + λ log(ρ̄)

It is known, analogously to [30, Lemma 3.3], that this leads to the existence of a constant C such that
ρ̄ = 1 on {u < C}
ρ̄ 6 1 on {u = C}
ρ̄ = 0 on {u > C}

(22)
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Specifically, C is defined as the smallest real C̃ such thatLd({u 6 C̃}) > 1, and it is quite straightforward
to check that this choice works. Note that the case {u > C} can be excluded by Lemma 5.1. We then
define the pressure p as p = (C − u)+, thus (21) holds. It satisfies p > 0, and ρ̄ < 1 implies p = 0.

It remains to answer the question of the Lipschitz regularity of p and log(ρ̄). Notice that p is
positive, and non zero only on {ρ̄ = 1}. On the other hand, log(ρ̄) 6 0 and it is non zero only on
{ρ̄ < 1}. Hence, one can write

p =

(
C −

ϕµ + ϕν

τ2 + V
)
+

and log(ρ̄) = −
1
λ

(
C −

ϕµ + ϕν

τ2 + V
)
−

. (23)

Given that the Kantorovich potentials and V are Lipschitz, it implies the Lipschitz regularity for p and
log(ρ̄). �

Let us note that ϕµ and ϕν have additional regularity properties, even though this regularity heavily
depends on τ.

Lemma 5.3. The Kantorovich potentials ϕµ and ϕν belong to C2,α(Ω̊)∩C1,α(Ω) and p ∈ C2,α({p > 0}).

Proof. If k ∈ {2, . . . ,N}, thanks to Proposition 5.2 (applied in k − 1 and k + 1), we know that µ and
ν have a Lipschitz density and are bounded from below. Using the regularity theory for the Monge
Ampère-equation [44, Theorem 4.14], we can conclude that ϕµ and ϕν belong to C2,α(Ω̊) ∩C1,α(Ω).

Once we have the regularity of ϕµ + ϕν, as we were supposing V ∈ C2, we get C2,α regularity for
p+λ log ρ̄, which in turns implies the same regularity for p = (p+λ log ρ̄)+ in the open set {p > 0}. �

Theorem 5.4. We have the following L∞ estimate:

p ≤ max V −min V.

Proof. First we will prove that, on the open set {p > 0}, we have ∆(p + V) ≥ 0.
In order to do this, we consider the (optimal) transport map from ρ̄ to µ given by Id − ∇ϕµ, and

similarly for ν. Let us define the following quantity:

D(x) := −
log(µ(x − ∇ϕµ(x))) + log(ν(x − ∇ϕν(x))) − 2 log(ρ̄(x))

τ2 .

Notice that if ρ̄(x) = 1, then by the constraint µ(x − ∇ϕµ(x)) 6 1 and ν(x − ∇ϕν(x)) 6 1 the quantity
D(x) is positive. On the other hand, using (Id − ∇ϕµ)#ρ̄ = µ and the Monge-Ampère equation, for all
x ∈ Ω̊ there holds

µ(x − ∇µϕµ(x)) =
ρ̄(x)

det(I − D2ϕµ(x))
,

and a similar identity holds for ϕν. Hence the quantity D(x) is equal, for all x ∈ Ω̊, to

D(x) =
log(det(I − D2ϕµ(x))) + log(det(I − D2ϕν(x)))

τ2 .

Diagonalizing the matrices D2ϕµ,D2ϕν and using the convexity inequality log(1 − y) 6 −y, we end up
with

D(x) 6 −
∆(ϕµ(x) + ϕν(x))

τ2 .

This shows that, on the region {p > 0}, we have the desired inequality ∆(p + V) ≥ 0, thanks to (21).
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We want now to determine where does p + V attain its maximum. Because of subharmonicity this
should be on the boundary of {p > 0}. This boundary is composed by points on ∂Ω and by points
where p = 0.

To handle the boundary ∂Ω, recall that∇ϕµ is continuous up to the boundary and that x−∇ϕµ(x) ∈ Ω

for every x ∈ Ω as (Id − ∇ϕµ)#ρ̄ = µ. Given the convexity of Ω, it implies ∇ϕµ(x) · nΩ(x) > 0 for every
point x ∈ ∂Ω, where nΩ(x) is the corresponding outward normal vector. This translates, applying this
first to ϕµ and then to ϕν, into ∇(p + V)(x) · nΩ(x) ≤ 0. We are then in this situation: a certain function
u satisfies ∆u ≥ 0 in the interior of a domain (which is here {p > 0}) and ∂u/∂n ≤ 0 on a part of the
boundary. By applying an easy maximum principle to uε := u+εv where v is a fixed harmonic function
with ∂v/∂n < 0 on the same part of the boundary shows that the maximum of u is attained on the other
part of the boundary (we prefer not to evoke Hopf’s lemma as we do not want to discuss the regularity
of ∂Ω, and we do not need the strong maximum principle). We then deduce that the maximum of p+V
is attained on {p = 0}.

This easily implies
max
{p>0}

p + min
{p>0}

V ≤ max
{p>0}

(p + V) ≤ max
{p=0}

V,

which gives the claim. �

Remark 8. The same proof actually shows the stronger inequality p + V ≤ max V .

5.2 Optimality conditions and regularity of P

We look now at the optimality conditions satisfied by ρN . The situation is even simple than the one
in Section 5.1. Set ρ̄ := ρN and µ := ρN−1. We can see that ρ̄ is a minimizer, among all probability
measures with density bounded by 1, of

ρ 7→
W2

2 (µ, ρ)
2τ

+

∫
Ω

Ψ dρ + λ

∫
Ω

ρ log(ρ) dx.

This time, we will assume that Ψ is smooth, but the estimates on P will not depend on its smooth-
ness. As most of the arguments are the same as in Section 5.1 we resume the results in just two
statements.

Proposition 5.5. The optimal ρ̄ is strictly positive a.e.. Denoting by ϕµ the Kantorovich potential for
the transport from ρ̄ to µ (which is unique up to additive constants), there exists P ∈ L1(Ω), positive,
such that {p > 0} ⊂ {ρ̄ = 1} and a constant C such that

ϕµ

τ
+ Ψ + P + λ log(ρ̄) = C a.e. (24)

Moreover ϕµ ∈ C2,α(Ω̊) ∩C1,α(Ω), P and log(ρ̄) are Lipschitz continuous, and P ∈ C2,α({P > 0}).

Proof. The proof is just an adaptation of those of Lemma 5.1, Proposition 5.2, and Lemma 5.3. �

Theorem 5.6. We have the following L∞ estimate:

P ≤ max Ψ −min Ψ.

Proof. The proof is just an adaptation of that of Theorem 5.4, defining now

D(x) := −
log(µ(x − ∇ϕµ(x))) − log(ρ̄(x))

τ
. �
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Another useful result concerns the H1 regularity of P. This results could have also be obtained
in the case of p, and improves the result of [13] (since it consists in L∞t H1

x regularity under the only
assumption V ∈ H1 compared to L2

t BVx for V ∈ C1,1, but in [13] more general cost functions (with
non-quadratic Hamiltonians) were also considered. Anyway, it is only for P that we will use it.

Theorem 5.7. Suppose Ψ ∈ H1(Ω). We then have P ∈ H1(Ω) and∫
Ω

|∇P|2 ≤
∫

Ω

|∇Ψ|2.

Proof. In the proof of Theorem 5.6, which is based on that of Theorem 5.4, we also obtained ∆(Ψ+P) ≥
0 on {P > 0}. By multiplyng times P and integrating by parts, we obtain∫

Ω

|∇P|2 ≤ −
∫

Ω

∇Ψ · ∇P, (25)

from which the claim follows. �

Remark 9. From the inequality (25) wa can also obtain
∫
|∇P|2 +

∫
|∇(P + Ψ)|2 ≤

∫
|∇Ψ|2, which is a

stronger result.

5.3 Approximation and conclusions
We now want to explain how to deduce results on the continuous-time pressure p from the estimates
that we detailed in the discrete case. We fix a, integer number N > 1 and take τ = T/N as a time step.
We will build an approximate value function φN together with an approximate pressure pN which will
converge, as N → +∞, to a pair which solves the (continuous) dual problem.

Let us start from the solution of the discrete problem ρ̄N := (ρ̄N
0 , ρ̄

N
1 , . . . , ρ̄

N
N). For any k ∈

{0, 1, . . . ,N − 1}, we choose (ϕN
k , ψ

N
k ) a pair of Kantorovich potential between ρ̄N

k and ρ̄N
k+1, such choice

being unique up to an additive constant.We then know that there exist a pressure pN
k and PN , positive

and Lipschitz, and constants CN
k and CN such thatψN

k−1+ϕN
k

τ2 + VN + pN
k + λN log(ρ̄N

k ) = CN
k k ∈ {1, 2, . . . ,N − 1},

ψN
k−1
τ

+ ΨN + PN + λN log(ρ̄N
k ) = CN k = N.

(26)

We define the following value function, defined on the whole interval [0,T ] which can be thought
as a function which looks like a solution of what could be called a discrete dual problem.

Definition 5.8. Let φN the function defined as follows. The ”final” value is given by

φN(T−, ·) := Ψ + PN . (27)

Provided that the value φN((kτ)−, ·) is defined for some k ∈ {1, 2, . . . ,N}, the value of φN on ((k −
1)τ, kτ) ×Ω is defined by

φN(t, x) := inf
y∈Ω

(
|x − y|2

2(kτ − t)
+ φN((kτ)−, y)

)
. (28)

If k ∈ {1, 2, . . . ,N − 1}, the function φN has a temporal jump at t = kτ defined by

φN((kτ)−, x) := φN((kτ)+, x) + τ
(
VN + pN

k

)
(x) (29)
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We now also define a measure π ∈ M([0,T ] × Ω) which will play the role of the continuous
pressure.

Definition 5.9. Let πN be the positive measures on [0,T ] × Ω defined in the following way: for any
test function a ∈ C([0, 1] ×Ω), we set∫

[0,1]×Ω

a dπN := τ

N−1∑
k=1

∫
Ω

a(kτ, ·)pN
k +

∫
Ω

a(T, ·)PN .

In other words, πN is a sum of singular measures corresponding to the jumps of the value function
φN .

Provided that we set φN(0−, ·) = φN(0+, ·) and φN(T +, ·) = ΨN , the following equation holds in the
sense of distributions on [0, 1] ×Ω:

−∂tφ
N +

1
2
|∇φN |2 6 πN + V (30)

It is then possible to prove the following (see Section 4 in [27]).

Theorem 5.10. The sequence (φN , πN) is bounded in
(
BV([0,T ] ×Ω) ∩ L2([0,T ]; H1(Ω))

)
×M([0,T ]×

Ω) and converges, up to subsequences, to a pair (φ̄, π̄) ∈ D̃, the convergence being in the sense of
distributions. This limit pair (φ̄, π̄) ∈ D̃ is optimal in the relaxed dual problem. When the functions
pN

k and PN are uniformly bounded in L∞ then the measure π̄ is the sum of an L∞ density (w.r.t. the
space-time Lebesgue measureLd+1) p on [0,T ]×Ω and of a singular part on t = T with an L∞ density
(with respect to the space Lebesgue measure Ld) P, and we can write System (19). Moreover, φ̄ is the
value function of the value function of an optimization problem of the form (1) for a running cost given
by V̂ + p and a final cost given by Ψ̂ + P.

Remark 10. The reader can obeserve that we obtain here the existence of an optimal pair (φ, π) ∈ D̃, as
in Theorem 2.2. This was already proven in [13] without passing through the discrete approximation.

It remains to be convinced that the optimal measure Q in the Lagrangian problem, in the present
case of density constraints, optimizes a functional of the form JΨ,h. This was obtained in the density-
penalized case by differentiating along perturbations Qε but here the additional term in h is not obtained
as a derivative of G(ρ) but comes from the constraint and is in some sense a Lagrange multiplier (and
a similar term appears at t = T ). This makes the proof more difficult, but we can obtain the desired
result by using the duality.

Theorem 5.11. Suppose that (φ, π) is an optimal pair in the relaxed dual problem and that π decom-
poses into a density p ∈ L1([0,T ] × Ω) and a singular measure on {t = T } with a density P ∈ L1(Ω).
Then we have

• for every measure Q ∈ P(C) such that (et)#Q is uniformly L∞ and (e0)#Q = ρ0, we have
JΨ+P,V+p(Q) ≥

∫
φ(0+)dρ0,

• if Q̄ is optimal in (8) for the density-constrained problem (i.e. when G = I[0,1]), then we have
JΨ+P,V+p(Q̄) =

∫
φ(0+)dρ0,

In particular Q̄ optimizes JΨ+P,V+p among measures on curves such that (et)#Q is uniformly L∞ and,
when Ψ + P and V + p are L∞, it is concentrated on curves optimizing KΨ̂+P,V̂+p.
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Proof. In order to prove the first statement, we consider a pairs of functions φ ∈ C1([0,T ] × Ω) and
h ∈ C0([0,T ] ×Ω) such that −∂tφ + 1

2 |∇φ|
2 ≤ h. We then have

Jφ(T ),h(Q) =

∫
dQ(γ)

(∫ T

0

(
1
2
|γ′(t)|2 + h(t, γ(t))

)
dt + φ(T, γ(T ))

)
and for every curve γ, using −∂tφ + 1

2 |∇|
2 ≤ h and 1

2 |γ
′(t)|2 + 1

2 |∇φ(t, γ(t))|2 ≥ −∇φ(t, γ(t)) · γ′(t), we
have ∫ T

0

(
1
2
|γ′(t)|2 + h(t, γ(t))

)
dt + φ(T, γ(T )) ≥

∫ T

0

d
dt
φ(t, γ(t)) dt + φ(T, γ(T )) = φ(0, γ(0)).

This would be sufficient to prove the desired inequality if we had enough regularity. The same in-
equality in the case of the optimal relaxed function φ together with h = V + p can be obtained if we
regularize by space-time convolution. Let us consider a convolution kernel η supported in [0, 1] × B1,
and use convolutions with rescaled versions of this kernel ηδ(t, x) = δ−(d+1)η(t/δ, x/δ), so that we do
not need to look at times t < 0. On the other hand, this requires first to extend φ for t > T , and it can
be done by taking φ(t, x) = Ψ(x) + P(x) for every t > T . As a consequence, one should also extend
h := V + p, and in this case we use h(t, x) := 1

2 |∇(Ψ + P)|2, which belongs to L1 thanks to Theorem
5.7 (this explains why we prefer to do an asymmetric convolution looking at the future and not at the
past, since we do not know whether φ0 ∈ H1 or not). It is then necessary to extend φ and h outside
Ω as well, for space convolution. As we assumed that the boundary of Ω is smooth, there exists a C1

map R, defined on a neighborhood of Ω and valued into Ω, such that its jacobian DR(x) has a deter-
minant bounded from below and from above close to ∂Ω and its operator norm ||DR(x)|| tends to 1 as
d(x, ∂Ω) → 0 (a typical example is the reflection map when Ω = {x1 > 0}, possibly composed with a
diffeomorphism which rectifies the boundary). Then, It is enough to define φ̃ε(t, x) := φ((1 + ε)t,R(x))
and h̃ε(t, x) := (1 + ε)h((1 + ε)t,R(x)) and take φε := ηδ ∗ φ̃ε and hε := ηδ ∗ h̃ε, for a suitable choice
δ = δε, provided δε is such that ||DR(x)|| ≤

√
1 + ε for x such that d(x, ∂Ω) ≤ δε. In this way we obtain

smooth functions (φε, hε) such that −∂φε + 1
2 |∇φε|

2 ≤ hε. This allows to write

Jφε(T ),hε (Q) ≥
∫

φε(0) dρ0.

We then need to pass to the limit as ε → 0. We have hε → h in L1 which, together with the L∞ bound
on (et)#Q, allows to deal with the h-term. The kinetic term does not depend on h, and we are only left
to consider the terms with φε(T ) and φε(0): since φ is a BV function, these functions converge in L1(Ω)
to φ(0+) and φ(T +) = Ψ + P, respectively, which provides the desired inequality.

We are now left to prove that we have equality if we choose Q = Q̄, the optimal measure on curves.
For this, we use the equality between the primal and the dual problem (knowing that the value of the
primal can be expressed either in its Eulerian formulation or in its Lagrangian one). We then have∫

C

KΨ,V dQ̄ =

∫
φε(0) dρ0 −

∫
[0,T ]×Ω

dπ =

∫
φε(0)dρ0 −

∫
[0,T ]×Ω

p −
∫

Ω

P.

We then use the fact that we have, by primal-dual optimality conditions (which can also be seen in
System (19)), pt(1 − ρt) = 0 and P(1 − ρT ) = 0, where ρt = (et)#Q̄. Then we obtain∫

C

KΨ,V dQ̄ =

∫
φε(0) dρ0

∫
[0,T ]×Ω

p d(et)#Q̄ −
∫

Ω

P d(eT )#Q̄,

which can be re-written in terms of JΨ+P,V+p and gives the claim. �
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et Industrielles, 137–157.

[44] C. Villani Topics in Optimal Transportation. Graduate Studies in Mathematics, AMS, (2003).

[45] J. G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng. 2 (1952),
325-378.

34


