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Abstract. In the recent paper [2], it was proved that the closure of the planar diffeomorphisms

in the Sobolev norm consists of the functions which are non-crossing (NC), i.e., the functions

which can be uniformly approximated by continuous one-to-one functions on the grids. A deep

simplification of this property is to consider curves instead of grids, so considering functions

which are non-crossing on lines (NCL). Since the NCL property is way easier to check, it would

be extremely positive if they actually coincide, while it is only obvious that NC implies NCL.

We show that in general NCL does not imply NC, but the implication becomes true with the

additional assumption that det(Du) > 0 a.e. , which is a very common assumption in nonlinear

elasticity.

1. Introduction

In the framework of nonlinear elasticity, it is important to consider functions which are

Sobolev limits of diffeomorphisms, since all these functions are meaningful deformations. Notice

that such planar limits, at least for p < 2, are not necessarily continuous, and they can fail both

to be injective and to be surjective. In fact, some area can be shrunken to a point, or vice versa

a point can be stretched to a positive area (these are the so-called cavitations, around which the

function behaves like x 7→ x/|x|). On the other hand, it is clear that not every Sobolev function

can be the limit of diffeomorphisms. In particular, this is not possible for a function which is

“very far” from being invertible. In order to give a precise description of this kind of functions,

Müller and Spector ([3], see also the earlier work of Šverák [4]) in the 1990’s introduced the notion

of INV functions, see Definition 2.1. Roughly speaking, a function satisfies the INV property if,

for any ball B in the domain, points which are inside (resp., outside) B are sent inside (resp.,

outside) the image of ∂B. Since of course any diffeomorphism enjoys the INV property, and

this property is preserved under Sobolev limits, then every limit of diffeomorphisms is an INV

function. A natural conjecture would have been that INV functions in fact coincide with the

closure of diffeomorphisms, but it has recently been shown that it is not so, and this closure is

made by the non-crossing (NC) functions, see Definition 2.2. Roughly speaking, a function u is

said to be non-crossing if for any one-dimensional “grid” G inside the domain it is possible to

find a continuous, injective function on G which is arbitrarily close in the uniform sense to u.

Only for simplicity of notations, we restrict our attention to functions which map the unit

square Q = [−1, 1]2 on the unit square Q = [−1, 1]2, and which coincide with the identity on the

boundary. The characterisation of the Sobolev closure of diffeomorphims is then the following

(see [2, Theorem A and B]).
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Theorem 1.1. Let D be the family of the diffeomorphisms of Q onto Q which coincide with

the identity on the boundary. For any 1 ≤ p < +∞, a W 1,p function u : Q →Q is a weak W 1,p

limit of a sequence in D if and only if it is a strong W 1,p limit of a sequence in D, and if and

only if it is a non-crossing function.

A drawback of this characterisation is that the non-crossing property is not simple to check

in particular around the vertices of a grid. The property becomes extremely simpler to check

if one only considers non self-intersecting curves, so completely avoiding the troubles that may

occur around vertices. In doing so, one finds a weaker property, that we call non-crossing on

lines (NCL), see Definition 2.3.

Since this property is much simpler, it would be very nice if it actually coincides with the

NC property. The goal of this paper is precisely to study whether or not this is true, and we

are able to give a precise answer. In Section 3 we will show that this is not true in general, in

fact the NCL property does not even imply the weaker INV property. On the bright side, in

Section 4 we show that this becomes true for functions u such that det(Du) > 0 a.e. . This is a

very common property in the non-linear elasticity, which is often taken for granted. Indeed, a

function u for which this property is false maps a set of positive measure onto a null set, thus

some mass “disappears”, and this is often not admitted. In addition, such a function has an

infinite elastic energy under most models.

2. Definition of NC, NCL and INV maps

This section is devoted to present the definition of the NC, the NCL, and the INV maps,

and to set some notation.

As usual, for every x ∈ R2 and r > 0 we denote by B(x, r) the disk centered at x and with

radius r, and for brevity we write Br in place of B(0, r). For every function u ∈W 1,1(Q;Q), we

call Nu the set of the discontinuity points of u. For a generic Sobolev function u, Nu is a Borel,

negligible set. If u is an INV function, the set Nu is actually H 1-negligible (see [2, Lemma 2.5]).

Definition 2.1 (INV functions). Let u : Q → Q be a W 1,1 function. We say that u is an

INV function if the following holds. Let B(x, r) ⊂⊂ Q be any ball such that the restriction

of u to the circle S = ∂B(x, r) is W 1,1, so in particular u(S) is a continuous, closed curve,

possibly self-crossing. Let moreover z ∈ Q\Nu be a point such that u(z) /∈ u(S), so in particular

z /∈ S. Then, if z /∈ B(x, r) the point u(z) has degree 0 with respect to the curve u(S), while if

z ∈ B(x, r) the point u(z) has non-zero degree with respect to the same curve.

The above definition may seem quite technical at first glance, but in fact it is very reasonable.

It is basically saying that every point which is contained “inside” a curve has an image which is

“inside” the image of the curve, and every point which is outside has image outside the image

of the curve, in the sense of degree. In other words, “what is inside remains inside, and what is

outside remains outside”.

Definition 2.2 (NC functions). Let u : Q → Q be a Sobolev map for which the set Nu of the

discontinuity points of u is H 1-negligible and which equals the identity on ∂Q. We say that
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u is a non-crossing (NC) function if the following holds. Let Γ ⊆ Q \ Nu be a finite union of

injective, Lipschitz curves such that any two curves have either empty intersection or a single

intersection point, and in this case both curves have a tangent vector at the intersection point,

and the two vectors are not parallel, and moreover all these intersection points between the curves

are different. Then, for every ε > 0 there exists a continuous and injective function v : Γ→Q,

coinciding with the identity on ∂Q∩ Γ, such that ‖v − u‖L∞(Γ) < ε.

Also the definition of the NC functions is rather clear. One does not ask the function to be

injective, but to be uniformly close to an injective function on every “grid” Γ. It is also simple

to realize the reason for the name. Namely, the simplest possibility for a function not to fulfill

the definition, is that two disjoint curves on Q have images which are two crossing curves on

Q. Notice that, if this happens, then the property of Definition 2.2 already fails for a set Γ

made by a single curve. In turn, of course the above property is radically simpler to state and to

check if one restricts himself to the case of a single, Lipschitz, injective curve, instead of finitely

many ones which might intersect each other. Also because, clearly, the vertices of the grid (i.e.,

the intersection points between the different curves) are the most delicate points to treat when

checking the validity of the NC property. As a consequence, the following definition is quite

natural.

Definition 2.3 (NCL functions). Let u : Q →Q be a Sobolev map for which the set Nu of the

discontinuity points of u is H 1-negligible and which equals the identity on ∂Q. We say that the

function u is non-crossing on lines (NCL) if for every injective, Lipschitz curve γ ⊆ Q\Nu and

for every ε > 0 there exists a continuous and injective function v : γ → Q, coinciding with the

identity on ∂Q∩ γ, such that ‖u− v‖L∞(γ) < ε.

While the NCL property is much simpler and more natural than the NC one, it is the

latter which characterises the closure of the diffeomorphisms in the Sobolev norm, thanks to

Theorem 1.1. As a consequence, property NCL is in fact useless, unless it coincides with NC.

In other words, if NCL implies NC (the other implication is obvious), then it is a very good

simplification of the characterisation given by Theorem 1.1. On the contrary, if NCL is strictly

weaker than NC, then it is a property which is easy to check but of no use at all. In the next

two sections we will notice that in general NCL does not imply NC, and not even INV; but NCL

implies (so, it is equivalent to) NC in the physically relevant case of functions u ∈ W 1,p(Q;Q)

for which detDu > 0 almost everywhere.

We conclude this section by recalling the pointwise notion of Sobolev functions, in the sense

of multifunctions. This is a useful tool, which allows to define in a precise way the “generalised

image” of every (not almost every!) point.

Definition 2.4. Let u ∈ W 1,1(Q;Q). For every x ∈ Q and every ε > 0, we denote by D(x, ε)

the collection of the open, Lipschitz sets D ⊂⊂ B(x, ε) such that the restriction of u to ∂D is

continuous. For every such set D ∈ D(x, ε), we also set

U(D) :=
{
P ∈Q : deg(P , u ∂D) 6= 0

}
∪ u(∂D) .
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Finally, we call generalised image of x through u the set

umulti(x) :=
{
P ∈Q : ∃ εn ↘ 0, Dn ∈ D(x, εn), P n ∈ U(Dn) : P = lim

n→∞
P n

}
.

Notice that umulti(x) is a non-empty closed set, which is defined for every x ∈ Q. The

resulting umulti : Q → 2Q is then a multi-valued function. Notice that for every continuity

point x ∈ Q the set umulti(x) reduces to the sole u(x).

Remark 2.5. Observe that we can always assume without loss of generality that the function u

equals the identity not only on the boundary Q, but also on a small neighborhood of it. Indeed,

we can extend u as the identity on a slightly bigger square and then make a homothety.

3. The NCL property does not imply INV nor NC

This section is devoted to show that the NCL property is not equivalent to the NC one, and

in fact it does not even imply INV. In the next section, we will see that NCL becomes equivalent

to NC under the additional assumption that detDu > 0 a.e. .

The whole section consists in presenting and discussing the counterexample, which is an

NCL and not an INV function u : B2 → B2. We start describing u on B2 \ B1. Calling

P = (−1, 0) and S = [0, 1]× {0}, the properties which are important are that the restriction of

u on B2 \B1 is a diffeomorphism onto B2 \ S, and that

u(x) = x ∀x ∈ ∂B2 , u(x) = (1, 0) ∀x ∈ ∂B1 \ P .

Notice that such a function exists, and it can be constructed in W 1,p(B2\B1) for every 1 ≤ p < 2.

One can easily imagine this function as a diffeomorphism which is the identity on ∂B2, and which

shrinks the circle ∂B1 onto the segment S, compressing the whole ∂B1 \ P to the point (1, 0).

As a consequence, the generalised image of the point P is the whole segment S.

Let us now pass to describe the function u on B1 \B1/2. For every 0 ≤ ε ≤ 1/2, the image

under u of the circle ∂B1−ε is the segment [0, 1− 2ε]×{0}. More precisely, for every 0 ≤ θ ≤ 2π

we set

u
(

(1− ε) cos θ, (1− ε) sin θ)
)

=

(
1− 2ε

2πε
|π − θ| ∧ 1, 0

)
. (3.1)

Notice that the function u is still continuous outside the point P (actually, an obvious modifi-

cation would allow to take u smooth outside P ). In particular, |Du(x)| ≈ 1
|x−P | for x near P ,

and by a simple use of polar coordinates centred at P we have∫
B(P, 1

4
)
|Du(x)|p ≈

∫ 1
4

0
r1−p <∞

for all p < 2. Further, since far away from P the derivative |Du| is uniformly bounded, we

have u ∈ W 1,p(B2 \ B1/2) for any 1 ≤ p < 2. Roughly speaking, the images of the circles ∂Br

with radii r between 1 and 1/2 are shorter and shorter segments, passing from the whole S,

corresponding to the radius r = 1, to the single point (0, 0), corresponding to the radius r = 1/2.

Finally, the function u on B1/2 is simply defined as

u(x) =
(
1− 2|x|, 0) ,
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that is, every circle Br with 0 ≤ r ≤ 1/2 is sent on a single point, which moves from (0, 0) to

(1, 0) while r decreases from 1/2 to 0.

By construction, for any 1 ≤ p < 2 we have that

u ∈W 1,p(B2) , u(x) = x ∀x ∈ ∂B2 , u ∈ C(B2 \ {P}) .

Moreover, we have that

u is not an INV function . (3.2)

Indeed, for every 1/2 < r < 1 the function u is continuous on ∂Br. Nevertheless, the origin

(0, 0) is contained inside each of the disks Br, and u(0, 0) = 1 has zero degree with respect to

the curve u ∂Br.

To conclude the example, we have to show that u satisfies the NCL property, and this will

take the rest of the section. Since u is continuous on B2 \ {P}, we fix an injective, Lipschitz

curve γ : [0, 1]→ B2 \ {P} and some ε > 0. Our goal is to define a function ϕ : [0, 1]→ B2 such

that

ϕ is continuous and injective , ‖ϕ− u ◦ γ‖L∞([0,1]) < ε . (3.3)

By the continuity of u on B2 \ {P} (and by v · w denoting the usual scalar product), without

loss of generality we can assume that

γ ∈ C∞([0, 1]) , γ(0) ∪ γ(1) ∈ ∂B2 , γ′(t) · γ(t) 6= 0 ∀ t ∈ γ−1(∂B1) . (3.4)

The last assumption implies that, whenever it meets the circle ∂B1, the curve γ is actually

entering in the disk B1, or exiting from it. As a consequence, there exists some N ∈ N and

points 0 < a1 < b1 < a2 < b2 < · · · < aN < bN < 1 such that

γ−1(B1) = ∪Ni=1(ai, bi) ,

while u−1(∂B1) only consists precisely of the union of the points ai and bi. By compactness

and (3.4), it is possible to select δ � ε so that γ([0, 1]) ∩ ∂B1+δ consists of 2N points 0 < a−1 <

b+1 < a−2 < b+2 < · · · < a−N < b+N < 1, with (ai, bi) ⊂⊂ (a−i , b
+
i ) for every 1 ≤ i ≤ N , see a

possible example in Figure 1, left. For any such 1 ≤ i ≤ N , we define

P1

P3

Q2

Q1

B1+δ

B1
P2

P

Q3

Q1

S+ P 3

Q2

P 2

P 1
Q3

Cδ

Figure 1. Example of a possible curve γ near B1 and image under ϕ of the

intervals (a−i , ai) and (bi, b
+
i ).
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Pi = γ(a−i ) , Qi = γ(b+i ) , P i = u(Pi) , Qi = u(Qi) .

Since u is injective outside of B1, the Pi’s and the Qi’s are 2N distinct points in ∂Bi \ {P}, and

the chords PiQi are all disjoint. Notice that by construction, up to take δ small enough, the

Hausdorff distance between Cδ := u(B1+δ) and the segment S is dH(Cδ,S) � ε, as well as the

distance between each of the points P i, Qi and the point (1, 0) –keep in mind that u shrinks

the whole ∂B1 \ {P} on the point (1, 0).

Let us now start constructing the function ϕ. First of all, we let ϕ = u ◦ γ on the set

[0, 1] \ ∪Ni=1(a−i , b
+
i ). Of course, where it has been already defined, ϕ satisfies (3.3).

We now pass to define ϕ on the union U of the intervals [a−i , ai] and [bi, b
+
i ]. To do so, we let

δ′ � δ be a constant such that the open rectangle S+ = (0, 1)× (−δ′, δ′) is compactly contained

in Cδ. Moreover, we select 2N distinct points P̃ i, Q̃i on the segment {1} × (−δ′, δ′), which is

the right side of S+, in such a way that the order of the points γ(ai) and γ(bi) on ∂B1 \ {P})
is the same as the order of the points P̃ i, Q̃i on the segment {1} × (−δ′, δ′). It is then possible

to define ϕ as a continuous, injective function on U in such a way that for every 1 ≤ i ≤ N

ϕ(a−i ) = P i , ϕ(ai) = P̃ i , ϕ(bi) = Q̃i , ϕ(b+i ) = Qi ,

and that

ϕ(U) ⊆ Cδ \ S+ , ϕ(U \ ∪Ni=1{ai, bi}) ⊆ (Cδ)◦ \ S+ , dH
(
ϕ(U), (1, 0)

)
� ε .

It is still true that, where it has been already defined, ϕ satisfies (3.3). The situation is depicted

in Figure 1, right.

To conclude, we have to define ϕ in each interval [ai, bi]. To do so, we recall that u is

continuous on B2 \ {P} and that u(B1) = S. As a consequence, for every 1 ≤ i ≤ N we have

u
(
γ([ai, bi])

)
= [`i, 1]× {0}

for some 0 ≤ `i < 1. Since, as noticed before, all the chords PiQi are disjoint, then for every

1 ≤ i, j ≤ N with i 6= j the two segments P̃ iQ̃i and P̃ jQ̃j are either disjoint or contained into

one other. We have the following property.

Lemma 3.1. Let 1 ≤ i, j ≤ N be two distinct indices such that P̃ iQ̃i ⊆ P̃ jQ̃j. Then, `j ≤ `i.

Proof. If `j = 0 there is nothing to prove, so we assume that `j > 0. Since, by (3.1), u(x) = (0, 0)

for every x ∈ ∂B1/2, as well as for every x ∈ [−1,−1/2] × {0}, the assumption `j > 0 implies

that γ((aj , bj)) is a continuous curve inside B1 with endpoints Pj and Qj which divides B1 in

two parts, one of which contains both P and the ball B1/2, while the other contains the curve

γ((ai, bi)), since γ is injective.

As a consequence, for any point R ∈ γ((ai, bi)), the segment joining R with the origin

intersects γ((aj , bj)). Let then R be any point in γ((ai, bi)), and let θ ∈ [0, 2π] and 0 ≤ ε < 1/2

be such that R =
(
(1−ε) cos θ, (1−ε) sin θ

)
. There exists some ε < ε′ < 1/2 such that the point

R′ =
(
(1 − ε′) cos θ, (1 − ε′) sin θ

)
belongs to γ((aj , bj)). Keeping in mind (3.1), we derive that

u(R′) is on the left of u(R). Since R ∈ γ((ai, bi)) is generic, the thesis follows. �
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Let us now proceed with our definition. We let δ′′ � δ′ be a constant much smaller than the

distance between any two points in the set
{
P̃ i, Q̃i, 1 ≤ i ≤ N

}
. Then, we define N distinct

constants ˜̀
i so that for every i one has |˜̀i − `i| < δ′′ and in addition, whenever P̃ iQ̃i ⊆ P̃ jQ̃j ,

one has ˜̀
j < ˜̀

i. This is possible thanks to Lemma 3.1. Now, for every 1 ≤ i ≤ N we select

ci ∈ (ai, bi) so that u1(γ(ci)) = `i, where we write u = (u1, u2). Keep in mind that u2 ◦ γ ≡ 0

on the intervals [ai, bi]. And finally, we select δ′′′ � δ′′ so that, for every 1 ≤ i ≤ N , one has

(ci − 2δ′′′, ci + 2δ′′′) ⊂⊂ (ai, bi) and u1 ◦ γ(ci − 2δ′′′, ci + 2δ′′′) ⊂⊂ [˜̀i − δ′′, ˜̀
i + δ′′].

We are now in position to define ϕ on the intervals [ai, bi]. Let us fix 1 ≤ i ≤ N , and keep

in mind that

u1(γ(ai)) = u1(γ(bi)) = 1 = ϕ1(ai) = ϕ1(bi) .

Let us assume for a moment, just to fix the ideas, that ϕ2(ai) > ϕ2(bi), that is, the point P̃ i is

above Q̃i. In the interval [ai, ci− 2δ′′′], we let then ϕ be the function such that ϕ1 = u1 ◦ γ, and

ϕ2 is affine with ϕ2(ci− 2δ′′′) = ϕ2(ai)− δ′′. Similarly, in the interval [ci + 2δ, bi] we let ϕ be the

function such that ϕ1 = u1 ◦ γ, and ϕ2 is affine with ϕ2(ci + 2δ) = ϕ2(bi) + δ′′. In words, in the

interval [ai, ci − 2δ′′′] (resp., [ci + 2δ′′′, bi]) the function ϕ is behaving exactly as u horizontally,

while vertically it is slowly going down (resp., up). Then, in the interval [ci − 2δ′′′, ci − δ′′′], as

well as in the interval [ci + δ′′′, ci + 2δ′′′], the function ϕ is affine with

ϕ(ci − δ′′′) =
(
˜̀
i, ϕ2(ai)− 2δ′′

)
, ϕ(ci + δ′′′) =

(
˜̀
i, ϕ2(bi) + 2δ′′

)
.

And finally, in the interval [ci − δ′′′, ci + δ′′′], the function ϕ is affine, hence its image is the

vertical segment {˜̀i} × [ϕ2(bi) + 2δ′′, ϕ2(ai)− 2δ′′]. The construction of ϕ in the interval [ai, bi]

is depicted in Figure 2. If P̃ i is below Q̃i, so ϕ2(ai) < ϕ2(bi), the definition of ϕ is exactly the

same, except that the second coordinate of ϕ is slowly increasing from ai to bi, instead of slowly

decreasing.

δ′′

δ′′

δ′′

Q̃i

P̃ i˜̀
i

δ′′

Figure 2. Construction of the function v in the interval [ai, bi].

It is easy to observe that, in the whole [0, 1], the constructed function ϕ satisfies (3.3).

Hence, we have proved that u is an NCL function, so by (3.2) our example is concluded.

Remark 3.2. The example that we presented in this section is an NCL function which is not

INV, thus also not NC. It is also possible to provide a function which is both NCL and INV, but

still not NC. For instance, this is what happens to the function presented in [2, Section 5.2]. It

is already proved there that such function is INV and not NC. The proof that it is also NCL is
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very similar to what we have done in this section, in particular for that function the analogous

of Lemma 3.1 holds.

4. The NCL property together with detDu > 0 a.e. implies NC

This section is devoted to show that, under the assumption that detDu > 0 a.e., the

properties NC and NCL are equivalent. Since the NC property clearly implies the NCL one, we

basically have to show that if the determinant of Du is strictly positive almost everywhere then

NCL is a sufficient condition to get NC. The result is then the following one.

Theorem 4.1 (NCL and detDu > 0 a.e. =⇒ NC). Let u ∈ W 1,1(Q;Q) be an NCL function

coinciding with the identity on ∂Q and such that detDu > 0 a.e. . Then, u is also NC.

Remark 4.2. Notice that the assumption that the function u coincides with the identity on

∂Q is just made for simplicity. Of course, given any bi-Lipschitz bijection Φ : R2 → R2, it

is completely equivalent to consider functions in W 1,1(Q; Φ(Q)) which coincide with Φ on the

boundary.

To show this result, we need to introduce the concept of good starting grid and good arrival

grid. These concepts were already used in [2], our definition is a bit simpler since we do not

need here all the properties which were needed there.

Definition 4.3 (Good starting and arrival grids). Let u ∈ W 1,1(Q;Q) be a Sobolev function,

let Nu be the set of its discontinuity points, and let γ : [0, 1] → Q \ Nu be a Lipschitz curve.

We say that γ is an admissible curve if γ(t) is a Lebesgue point for Du for H 1-a.e. t, and the

curve u ◦ γ belongs to W 1,1([0, 1];Q).

Given K ∈ N, we call K-grid the set G = G (K) defined as

G (K) =
K⋃
i=0

[0, 1]× {i/K} ∪
K⋃
j=0

{j/K} × [0, 1] ⊆ Q ,

and we say that the grid G = G (K) is a good starting grid if each segment contained in G is

an admissible curve.

Given a good starting grid G = G (K), a small constant η � 1/K, and some coordinates

0 = x0 < x1 < x2 · · · , xN = 1 and 0 = y0 < y1 < y2 · · · < yM = 1 with xn+1 − xn < η and

ym+1 − ym < η for every 0 ≤ n < N and 0 ≤ m < M , we say that

G̃ =
N⋃
n=1

{xn} × [0, 1] ∪
M⋃
m=0

[0, 1]× {ym} ⊆Q (4.1)

is a good arrival grid associated with G and with side-length η if u−1(G̃ ) ∩ G ∩ Q◦ is done by

finitely many points, each of which is a Lebesgue point of Du and not a vertex of the grid G ,

and moreover for any such point P ∈ u−1(G̃ )∩G ∩Q◦ the point P = u(P ) is not a vertex of the

grid G̃ and, calling τ ∈ S1 the direction of the side of G containing P , the tangential derivative

Dτ (P ) is not parallel to the side of G̃ containing P .
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An important fact is that good arrival grids always exist. More precisely, we have the

following property, whose proof is a simple variant of the proof of [2, Lemma 3.6].

Lemma 4.4. Let u ∈ W 1,1(Q;Q), let G = G (K) be a good starting grid, let Σ ⊆ G be a H 1-

negligible set, and let η � 1/K be fixed. Then, there exists a good arrival grid G̃ associated with

G , with side-length η, and such that u−1(G̃ ) ∩ Σ = ∅.

Proof. Let us call A the set of vertices of G , i.e. the points (p/K, q/K) with 1 ≤ p, q ≤ K − 1,

and let A1 and A2 be the horizontal and the vertical projection of u(A). Notice that A1 (resp.,

A2) is a finite set of abscissae (resp. ordinates), since A is a finite set and u is continuous at

any of its points.

Let now γ be a horizontal or vertical segment contained in G , with both endpoints in ∂Q.

Let us define Bγ the set of points of γ which are not Lebesgue points for Du, or which belong

to Σ. By definition, Bγ is a H 1-negligible subset of γ. Since the restriction of u to γ belongs

to W 1,1, also u(Bγ) ⊆Q is H 1-negligible, hence so are also its projections B1
γ and B2

γ .

Let then C1
γ (resp., C2

γ) the set of points P in γ \ Bγ such that the first (resp., second)

component of Dτu(P ) is zero, where τ is the direction of γ, so either (1, 0) or (0, 1). The sets

C1
γ and C2

γ need not to be negligible. Nevertheless, the first projection C1
γ of u(C1

γ) is H 1-

negligible, as well as the second projection C2
γ of u(C2

γ). This is a very standard fact, the easy

proof can be found for instance in [2, Lemma 3.6].

We call now B1 (resp., B2, C1, C2) the union of the sets B1
γ (resp., B2

γ , C1
γ , C2

γ) for all

the horizontal and vertical segments γ contained in G . Since these segments are finitely many,

we have

H 1(B1) = H 1(B2) = H 1(C1) = H 1(C2) = 0 .

Let now take any x ∈ (0, 1)\ (A1∪B1∪C1), and take some point P ∈ u−1({x}× [0, 1])∩G .

Since x /∈ A1 the point P is not a vertex of G , thus there is only one segment γ contained in G

and with endpoints in ∂Q which contains P . Since x /∈ (B1
γ ∪C1

γ), the point P does not belong

to Σ and it is a Lebesgue point for Du, and Dτu(P ) has a non-zero first component, being τ

again the direction of the segment γ. This means that P is the unique point of u−1({x}× [0, 1])

in a suitably small neighborhood of P in γ, hence the set u−1({x} × [0, 1]) ∩ G is finite.

We can then select numbers 0 = x0 < x1 < x2 · · · < xN−1 < xN = 1 such that no xi

belongs to A1 ∪B1 ∪C1, except x0 and xN , and such that xi+1 − xi < η for every 0 ≤ i < N .

By construction, the set

D = G ∩
N−1⋃
i=1

u−1
(
{xi} × (0, 1)

)
is finite, and since u is continuous on every point of G we deduce that also D = u(D) is finite.

The very same argument as before implies that for any y ∈ (0, 1) \ (A2 ∪B2 ∪C2) the set

u−1([0, 1] × {y}) ∩ G is finite. Hence, we can select numbers 0 = y0 < y1 < y2 · · · < yM−1 <

yM = 1 such that no yj belongs to A1∪B1∪C1, except y0 and yM , that yj+1−yj < η for every

0 ≤ j < M , and also that no yj belongs to the second projection of the finite set D.
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Using the coordinates {xi} and {yi} to define the grid G̃ as in (4.1), the fact that G̃ is a

good arrival grid associated to G and with side-length η is true by constrution. In particular,

the fact that the points of G̃ ∩ u(G )∩Q◦ are not vertices of G̃ is true because the yj have been

chosen not to belong to the second projection of D. �

A simple but fundamental technical fact needed to prove Theorem 4.1 is the following.

Lemma 4.5. Let u ∈W 1,1(Q;Q) be an NCL function, coinciding with the identity on ∂Q, and

let x 6= y ∈ Q\Nu be two Lebesgue points for Du with detDu(x) > 0 and detDu(y) > 0. Then,

u(x) 6= u(y).

Proof. Let us assume, by contradiction, that u(x) = u(y). Moreover, without loss of generality

and for simplicity of notation, let us assume that u(x) = u(y) = (0, 0) ∈ Q. For brevity of

notation we write Mx = Du(x) and My = Du(y), and we set

ωx(z) = u(x) +Mx(z − x) , ωy(z) = u(y) +My(z − y) .

Since detMx 6= 0 and detMy 6= 0, and since Nu is H 1-negligible and it does not contain x nor

y, then up to a small rotation we can assume that

ω−1
x

(
{0} × R

)
∪ ω−1

y

(
R× {0}

)
⊆ R2 \ Nu . (4.2)

Observe that ω−1
x ({0}×R) and ω−1

y (R×{0}) are two lines passing through x and y respectively.

Since x is a Lebesgue point for Du, it is simple to observe that

∀ ε ∃ r̄ = r̄(ε) < dist(x, ∂Q) : ∀ r < r̄, ‖u− ωx‖L∞(B(x,r)) < εr , (4.3)

see for instance [1, Lemma 4.3], or [?, Lemma 4.2] for mappings of bounded variation.

Since detMx > 0, we have ε1 := min{Mx(v)|, |v| = 1} > 0. Let now ` � 1 be fixed, and

let us consider the segment V = {0} × [−`, `] ∈ Q and the corresponding V = ω−1
x (V ), which

is a segment centered at x on which u is continuous by (4.2). The estimate (4.3) yields that, if

` < ε1r̄(ε1/2) ,

then

‖u− ωx‖L∞(V ) ≤
`

2
. (4.4)

The very same argument applied to y in place of x implies that, up to decrease ` if necessary,

calling H = [−`, `]× {0} ∈ Q and H = ω−1
y (H) we have that H is a segment centered at y on

which u is continuous, and

‖u− ωy‖L∞(H) ≤
`

2
. (4.5)

Again up to decrease `, we can assume that V and H are two disjoint segments, since they are

arbitrarily short and centered at the two distinct points x and y.

Let then γ : [0, 1] → Q \ Nu be any Lipschitz curve whose image contains both V and H.

Since u is NCL, there exists a continuous and injective curve ϕ : [0, 1]→Q such that

‖u ◦ γ − ϕ‖L∞[0,1] <
`

2
,

and this is clearly a contradiction with (4.4) and (4.5). �
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We are now in position to prove Theorem 4.1.

Proof of Theorem 4.1. Let u ∈W 1,1(Q;Q) be an NCL function coinciding with the identity on

∂Q and with detDu > 0 a.e. . To prove that u is an NC function, we take a collection Γ of

curves as in Definition 2.2 and ε > 0, and we have to find some continuous and injective function

v : Γ→Q, coinciding with the identity on Γ ∩ ∂Q, and such that ‖v − u‖L∞(Γ) < ε. We divide

the proof in three steps.

Step I. Reduction to the case Γ = G (K).

In this first step, we observe that it is enough to consider the case when Γ = G (K). In the next

steps we will prove the claim in this case.

First of all, since Γ is a finite union of Lipschitz curves not intersecting Nu, there is a bi-

Lipschitz bijection Φ : Q → Q such that Φ(Γ) ⊆ G (K) for a sufficiently large K. If we call

u = u ◦ Φ−1, we clearly have that u ∈ W 1,1(Q;Q) is an NCL function coinciding with Φ−1 on

∂Q and satisfying detDu > 0 a.e. . Notice that Φ(Γ) does not intersect Nu. As a consequence,

since Nu is H 1-negligible, it is possible to modify Φ so to get the additional property that the

whole G (K) does not intersect Nu. Assuming then that the claim is true for the special case

when Γ = G (K), and keeping in mind Remark 4.2 we can find a function v : G (K)→Q which

is continuous, injective, coincides with Φ−1 on ∂Q, and

‖v − u‖L∞(G (K)) < ε .

We can then define v = v ◦ Φ. This is a continuous, injective function defined on Φ−1(G (K)),

which coincides with the identity on ∂Q, and which satisfies

‖v − u‖L∞(Φ−1(G (K))) = ‖v − u‖L∞(G (K)) < ε .

Since Φ−1(G (K)) ⊇ Γ, we conclude the thesis.

Step II. Reduction to the case H 1(G (K) ∩ Σ+) = 0.

We have to show the result in the special case when Γ = G (K). In this step, we further reduce

ourselves to the case when G (K) is a good starting grid and G (K)∩Σ+ is H 1-negligible, where

Σ+ ⊆ Q is the set of points x ∈ Q such that either x is not a Lebesgue point for Du, or

detDu(x) = 0. Keep in mind that |Σ+| = 0 by assumption, hence for a.e. s ∈ [0, 1] and for a.e.

t ∈ [0, 1] we have

H 1
(
{s} × [0, 1] ∩ Σ+

)
= 0 , H 1

(
[0, 1]× {t} ∩ Σ+

)
= 0 ,

u ∈W 1,1
(
{s} × [0, 1]

)
, u ∈W 1,1

(
[0, 1]× {t}

)
,(

{s} × [0, 1]
)
∩Nu = ∅ ,

(
[0, 1]× {t}

)
∩Nu = ∅ .

(4.6)

As a consequence, we can find 0 = s0 < s1 < s2 · · · < sK = 1 and 0 = t0 < t1 < t2 · · · < tK = 1,

with every si (resp., tj) arbitrarily close to i/K (resp., j/K), such that (4.6) is true for every

s = si and every t = tj . Since G (K) ∩ Nu = ∅, we can select these {si}’s and {tj}’s in such

a way that the restriction of u to any horizontal or vertical segment of G (K) is arbitrarily

close to its restriction in the corresponding horizontal segment [0, 1] × {tj} or vertical segment

{si} × [0, 1]. The thesis follows then immediately under the assumption that the claim is true

when Γ = G (K), G (K) is a good starting grid, and H 1(G (K) ∩ Σ+) = 0.



12 D. CAMPBELL, A. PRATELLI, AND E. RADICI

Step III. The case when Γ = G (K) and H 1(G (K) ∩ Σ+) = 0.

Thanks to Step I and Step II, we can now conclude the proof by only considering the special

case in which Γ = G (K) is a good starting grid and H 1(Σ+ ∩ G (K)) = 0.

Lemma 4.4 with Σ = Σ+ ∩ G (K) provides us with a good arrival grid G̃ associated with

G and with side-length η < ε/
√

2. Let us call 0 = x0 < x1 < x2 · · · , xN = 1 and 0 = y0 <

y1 < y2 · · · < yM = 1 the coordinates associated with G̃ as in (4.1). Keep in mind that the set

G ∩ u−1(G̃ ) ∩ Q◦ is finite and none of its points belongs to Σ. Let us then consider the finite

set made by G ∩ u−1(G̃ ) ∩ Q◦ together with all the points of the form (p/K, q/K) with either

p ∈ {0, K} and 0 ≤ q ≤ K, or q ∈ {0, K} and 0 < p < K, and let us call P1, P2, . . . , PH its

elements. Moreover, let us call P i = u(Pi) their images. Notice that the points P i’s are well

defined because every Pi belongs to G (K), so it is a continuity point of u, and in particular

P i = Pi for all the points Pi which are on ∂Q. Observe also that the points P i’s are all distinct

by Lemma 4.5 and since every Pi does not belong to Σ. In fact, the points of G ∩ u−1(G̃ ) ∩Q◦

do not belong to Σ by Lemma 4.4, and the other points Pi are on the boundary of Q, so they

do not belong to Σ because u equals the identity on a small neighborhood of the boundary (we

can always assume this without loss of generality, as noted in Remark 2.5).

For every 0 ≤ n < N and 0 ≤ m < M , let us define the rectangle

Qn,m := [xn, xn+1]× [ym, ym+1] .

Let also Φn,m : Qn,m → B1 be a bi-Lipschitz bijection between Qn,m and the closure of the unit

ball. For every P , Q ∈ Qn,m, we let [P ,Q] = Φ−1
n,m(S), where S ⊆ B1 is the closed segment

joining Φn,m(P ) and Φn,m(Q). The choice of the particular map Φn,m makes no difference,

what is important is that [P ,Q] is a sort of “generalised segment” between P and Q. More

precisely, it is a path joining P and Q which is completely in the interior of the rectangle, except

possibly for the two endpoints. In particular, given four ordered points P , Q, R, S ∈ ∂Qn,m,

the generalised segments [P ,R] and [Q,S] have exactly one point in common, while [P ,Q] and

[R,S] are disjoint, as well as [P ,S] and [Q,R].

We are now in position to build the map v : G → Q. First of all, for any point 1 ≤ i ≤ H

we set v(Pi) = P i. Let now i, j be two distinct indices in {1, 2, . . . , H}. We say that the

segment PiPj is a simple segment if it is contained in the grid G , and it does not contain any

other point Pk with k /∈ {i, j}. Notice that the grid G is the essentially disjoint union of finitely

many simple segments, and moreover every Pi is endpoint of exactly two simple segments. By

construction, the image under u of any simple segment is entirely contained in some rectangle

Qn,m (the image is actually contained in the interior of Qn,m except for the two endpoints,

unless the simple segment is contained in ∂Q). We let then the image of the simple segment

PiPj under v be the generalised segment [P i,P j ]. Hence, to conclude the definition of v we only

have to specify the parameterisation of v on each simple segment.

Before doing so we observe that, regardless of the parameterisation that we will set, in any

case we will have that for every point P ∈ G the two images u(P ) and v(P ) are in a same
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rectangle. Therefore, since the grid G̃ has side-length η < ε/
√

2, we will have

‖u− v‖L∞(G ) ≤
√

2 η < ε .

In other words, the parameterisation of v has only to be chosen in such a way that the resulting

v is continuous, injective, and coincides with the identity on ∂Q.

To specify the parameterisation of v, we need first to select the image of the vertices of G ,

i.e. the points of the form Vp,q = (p/K, q/K) with 1 ≤ p, q ≤ K − 1. Let V = Vp,q be any

such vertex. By construction, V is the intersection between two simple segments, a horizontal

one and a vertical one. Just for simplicity of notation, let us think that the horizontal simple

segment is P1P2, and the vertical one is P3P4, with P1 on the left of P2 and P3 above P4. The

points P 1, P 2, P 3 and P 4 are then four distinct points on the boundary of a same rectangle

Qn,m. A fundamental fact is the following.

Claim 1. The points P 2 and P 4 are on the same one of the two connected components in which

∂Qn,m is divided by P 1 and P 3.

To show the claim, we start defining two curves γa and γb, one connecting P1 and P3, and the

other one connecting P4 and P2. More precisely, γa is done by three segments; a horizontal

one, connecting P1 and a point Vleft which is contained in the interior of P1V ; then a diagonal

one, connecting Vleft and a point Vup in the interior of V P3; and then a vertical one, connecting

Vup and P3. Similarly, γb is done by a vertical segment connecting P4 and some Vdown in the

interior of P4V , together with a diagonal one connecting Vdown and some point Vright in V P2,

and a horizontal one connecting Vright and P2. The curves γa and γb are clearly disjoint, and

they are admissible for almost every choice of the four points Vleft, Vright, Vup and Vdown. Since

V is a continuity point for u, and u(V ) is in the interior of Qn,m, we can select the four points

arbitrarily close to V , in such a way that not only γa and γb are disjoint and admissible, but

in addition their image under u is entirely contained in the interior of Qn,m except for the four

endpoints. We let then γ : [0, 1] → Q be a Lipschitz, injective, admissible curve, containing in

its interior both γa and γb, and being affine for a while around the four points P1, P2, P3 and

P4.

By the definition of a good arrival grid, and since γ is affine around P1, there exist a small

interval (t−1 , t
+
1 ), containing γ−1(P1), such that P−1 := u ◦ γ(t−1 ) is outside the rectangle Qn,m,

while P+
1 = u ◦ γ(t+1 ) is in its interior. Similarly, we define the intervals (t−2 , t

+
2 ), (t−3 , t

+
3 ) and

(t−4 , t
+
4 ), respectively containing γ−1(P2), γ−1(P3) and γ−1(P4), and with points P−2 , P

−
3 and

P+
4 in the interior of Qm,n and P+

2 , P
+
3 and P−4 outside of it. We can select the four intervals

so small that they are disjoint, and that the points P±i are arbitrarily close to the corresponding

P i, in particular with a distance much smaller than min1≤i 6=j≤4 |P i − P j |.
Since u is NCL, we can find a continuous and injective map ϕ : [0, 1] → Q such that δ :=

‖ϕ−u◦γ‖L∞([0,1]) is arbitrarily small. We can take δ so small that the points ϕ(t−1 ), ϕ(t+2 ), ϕ(t+3 )

and ϕ(t−4 ) are outside of Qn,m, while the points ϕ(t+1 ), ϕ(t−2 ), ϕ(t−3 ) and ϕ(t+4 ) are in its interior.

Since ϕ is continuous, we can define t1 (resp., t4) as the last point of the interval (t−1 , t
+
1 ) (resp.,

(t−4 , t
+
4 )) such that ϕ(t1) (resp., ϕ(t4)) belongs to ∂Qn,m. Similarly, t2 and t3 are the first
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points of the intervals (t−2 , t
+
2 ) and (t−3 , t

+
3 ) such that ϕ(t2) and ϕ(t3) belong to ∂Qn,m. Calling

P̃ i = ϕ(ti) for i = 1, 2, 3, 4, by the smallness of δ we have that the points P̃ 1, P̃ 2, P̃ 3 and P̃ 4

are arbitrarily close to the corresponding points P 1, P 2, P 3 and P 4, hence in particular the

order on ∂Qn,m is the same.

Keep now in mind that u◦γ is contained in the interior of Qn,m in the intervals [t+1 , t
−
3 ] and

[t+4 , t
−
2 ]. As a consequence, again provided that δ is small enough, we deduce that ϕ is contained

in the interior of Qn,m in the open segments (t1, t3) and (t2, t4). Since ϕ is injective, this yields

that P̃ 1 and P̃ 3 divide ∂Qn,m in two parts, and both P̃ 2 and P̃ 4 are on the same one of the

two. As noticed above, the same is true with the points P i instead of the points P̃ i, hence the

claim is proved.

Thanks to Claim 1, there is exactly one intersection point between the generalised segments

[P 1,P 2] and [P 3,P 4]. Since these two generalised segments have to be the images under v of

the segments P1P2 and P3P4 respectively, we must define V = v(V ) = [P 1,P 2] ∩ [P 3,P 4].

Summarizing, we have defined the image P i of each of the points Pi, as well as the image V p,q

of each vertex Vp,q. Notice that G is a finite union of essentially disjoint segments, each of which

has both endpoints and no internal point in the set {Pi, 1 ≤ i ≤ H} ∪ {Vp,q, 1 ≤ p, q ≤ K − 1}.
We are finally in position to give the definition of v. Calling AB the generic segment of the

above form, on the segment AB we let v be the path [A, B], parametrised at constant speed,

which makes sense since the points A and B belong to a same rectangle Qn,m by construction.

Notice that, as decided above, the image under v of every simple segment PiPj is the

generalised segment [P i,P j ]. Moreover, the parametrisation of v has constant speed if the

simple segment does not contain any vertex, while otherwise the velocity might change from

a part of the segment to another, and in principle v might even not be injective on a simple

segment. Since by construction it is clear that v is continuous and equals the identity on ∂Q,

to conclude the proof we only have to check that v is injective.

It is simple to observe that, in order to establish the injectivity of v, it is enough to show that

the images of any two disjoint simple segments have empty intersection. Up to renumbering, let

us then assume that P1P2 and P3P4 are two simple segments with P1P2 ∩ P3P4 = ∅. We have

to show that

[P 1,P 2] ∩ [P 3,P 4] = ∅ . (4.7)

Since the points P i are all distinct, and the interiors of the generalised segments are in the

interiors of the corresponding rectangles of G̃ , (4.7) is obvious if the simple segments P1P2 and

P3P4 are not associated with the same rectangle. Let us then assume that both [P 1,P 2] and

[P 3,P 4] belong to a same rectangle Qn,m. To show (4.7), we have to check that the points

P 1, P 2, P 3 and P 4 have the correct order in ∂Qn,m, namely, P 3 and P 4 are on the same one

of the two connected components in which ∂Qn,m is divided by P 1 and P 2. And finally, to

obtain this fact one has to argue exactly as in the proof of Claim 1, considering a Lipschitz,

injective, admissible curve which contains both the simple segments P1P2 and P3P4. �
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