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Abstract

We describe the spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators
A =

∑n
i,j=1 qijDij +

∑n
i,j=1 bijxjDi in Lp(Rn), 1 ≤ p < +∞, and in C0(Rn). We

show that the spectrum of A is the sum of (−∞, 0] and the spectrum of the drift term.
Our result gives a complete picture of the spectral properties of Ornstein-Uhlenbeck
operators in Lp spaces.

Mathematics subject classification (2000): 35P05, 35J70, 35K65, 47D06.

1 Introduction

The aim of the present paper is the full description of the spectrum of possibly degenerate
Ornstein-Uhlenbeck operators

A =

n∑
i,j=1

qijDij +

n∑
i,j=1

bijxjDi = Tr(QD2) + 〈Bx,D〉, x ∈ Rn, (1.1)

in Lp(Rn), 1 ≤ p < +∞, and in C0(Rn). Here Q = (qij) is a real, constant, symmetric and
positive semidefinite matrix and B = (bij) is a nonzero real matrix. The semidefinitess of
the matrix Q is responsible for the possible degeneracy of A. Throughout we assume that
A is hypoelliptic, which can be stated as follows: the symmetric matrices

Qt =

∫ t

0

esBQesB
T

ds

have nonzero determinant for some (equivalently, for all) t > 0. In the literature one can
find several equivalent conditions for hypoellipticity. In particular, on p. 148 of [10] it is
pointed out that the hypoellipticity of A is equivalent to the property

ker(Q) does not contain nontrivial subspaces which are invariant for BT , (1.2)

see also [13, Appendix]. Here nontrivial means different from {0}.
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The hypoellipticity assumption implies that the associated Markov semigroup (T (t))t≥0
has the following explicit representation formula due to Kolmogorov [12]

(T (t)f)(x) =
1

(4π)n/2(detQt)1/2

∫
Rn
e−〈Q

−1
t y,y〉/4f(etBx− y) dy, x ∈ Rn, t > 0. (1.3)

The parabolic equation ut = Au, known as Kolmogorov equation, is solved by the function
u(t, x) = T (t)f(x) for a large class of initial data f . In recent years, both the semigroup
(T (t))t≥0 and its generator A have extensively been studied. Several applications in physics
and finance for the operator A and its evolutionary counterpart A − Dt can be found in
the survey [21]. They were also used in the context of rotating fluids, see e.g. [9]. These
operators were also the leading example for an intensive research on elliptic and parabolic
problems with unbounded coefficients, see e.g. [14].

In the analytical study of A, even in the nondegenerate case the classical Lp and Schauder
estimates do not apply because of the unboundedness of the first order coefficients. Regu-
larity properties in spaces of continuous functions were proved in [4] in the nondegenerate
case and in [15] in the degenerate case. Schauder estimates can then be deduced by means
of interpolation techniques. Moreover, Lp estimates were established in [20] and in [19] in
the nondegenerate case, by a semigroup approach, and in [1] in the degenerate case.

The underlying stochastic process admits an invariant measure µ if and only if all eigen-
values of the drift matrix B have negative real parts. This means that µ is a probability
measure satisfying ∫

Rn

(
T (t)f

)
(x) dµ(x) =

∫
Rn
f(x) dµ(x)

for every t ≥ 0 and continuous and bounded function f on Rn. The invariant measure is
unique and absolutely continuous with respect to the Lebesgue measure having the (Gaus-
sian) density

ρ(x) =
1

(4π)n/2(detQ∞)1/2
e−〈Q

−1
∞ x,x〉/4 with Q∞ =

∫ ∞
0

esBQesB
T

ds,

see [5, Chapter II. 6].
The semigroup (T (t))t≥0 and its generatorA have widely been investigated in the weighted

spaces Lp(Rn, dµ), if σ(B) ⊂ C−. Here the unboundedness of the coefficients ofA is balanced
by the exponential decay of the density ρ which leads to a much better behavior in several
respects. For instance, the generator has compact resolvent in Lp(Rn, dµ) if p ∈ (1,∞),
which is not true in the unweighted spaces Lp. The domain of the generator in Lp(Rn, dµ)
was computed in [16] for p = 2 and in [20] for p ∈ (1,∞) in the nondegenerate case. See
also [2, 3] for the analogous problem on an infinite-dimensional Hilbert space E instead of
Rn. In the degenerate case a sharp inclusion for the domain was shown in [8] for p = 2,
whereas the case p 6= 2 is still an open problem, indicating that the general picture of
Ornstein-Uhlenbeck operators is still not complete.

In [18] the spectrum of A in Lp(Rn, dµ) was completely described also in the degenerate
case, provided that σ(B) ⊂ C−. The situation is much different in the spaces Lp = Lp(Rn)
with respect to the Lebesgue measure, e.g., since A does not have a compact resolvent here.
For some choices of B the spectrum of A was computed in Lp in [17]. This paper is the
starting point of our investigation.

The operator A can be seen as the sum of the diffusion term
∑n
i,j=1 qijDij and of the drift

term L =
∑n
i,j=1 bijxjDi. The spectral properties of the drift term are fully understood

2



by [17]. There it was proved that the spectrum of the realization Lp of L in Lp is the line
−tr(B)/p+ iR unless B is similar to a diagonal matrix with purely imaginary eigenvalues.
In this last case the spectrum of Lp can be either iR or a discrete, explicitly given subgroup
G of iR, see Theorem 2.2 and Proposition 2.3.

In [17] it is further shown that the boundary spectrum of the realization Ap of A in Lp

contains the spectrum of Lp without further assumptions on the matrices Q and B 6= 0.
Here Ap is defined as the generator of (T (t))t≥0 in Lp, see Proposition 2.4. The spectrum of
Ap has been computed in [17] if σ(B) is contained in the left or in the right open half-plane.
In this case, σ(Ap) is equal to {µ ∈ C : Reµ ≤ − tr(B)/p}. So it depends on p and is far
from being discrete. In addition, and this is the main step in [17], if all the eigenvalues of
B have positive real parts, then the open half-plane {µ ∈ C |Reµ < − tr(B)/p} consists of
eigenvalues.

In this paper we complete the picture computing the spectrum of Ap without any further
restriction on Q = QT ≥ 0 and B 6= 0, apart from hypoellipticity. We prove that σ(Ap) is
given as the sum of the spectra of its diffusion part (i.e., (−∞, 0]) and of the drift term Lp.

Theorem 1.1. Let (1.2) be true and p ∈ [1,∞]. Then the spectrum of Ap is given by

σ(Ap) = (−∞, 0] + σ(Lp).

In particular, we have either σ(Ap) = (−∞, 0] +G or σ(Ap) = {µ ∈ C |Reµ ≤ −tr(B)/p},
according to σ(Lp) being a discrete subgroup G = 2πi

τ Z of iR or the whole line −tr(B)/p+iR.
Moreover, the semigroup (T (t))t≥0 satisfies the weak spectral mapping theorem

σ(T (t)) = exp(tσ(Ap)), t ≥ 0.

We even have σ(T (t)) \ {0} = etσ(Ap) except for the case that σ(Lp) = G = 2πi
τ Z and t/τ is

irrational.

We note that for p = 2 the spectral mapping theorem was proved for perturbed Ornstein-
Uhlenbeck operators with Q = I and B = 2I by completely different methods in [6].

If B = BT and QB = BQ, by separation of variables one can transform the Ornstein-
Uhlenbeck operator into the form A = ∆ +

∑n
i=1 bixiDi. Here the problem can be reduced

to one dimensional problems, see [17, Theorem 5.1]. However, this is far from being the
general case. We also stress that A2 does not possess eigenvalues if B has an eigenvalue
with negative real part or if B is skew-symmetric and Q = I, as we will see in Section 3.
So we have to proceed in a different way than in [17] or [18], where eigenfunctions played a
crucial role.

Instead, we start by reducing A to a canonical form with an upper quasi triangular
drift matrix whose diagonal is formed by 1 × 1 and 2 × 2 blocks containing the real and
complex conjugate eigenvalues of B, respectively. The transformation is made through a
linear change of variables that leaves the spectrum unchanged.

The second step consists in a scaling procedure leading to a new operator C in the limit
which is the sum of an Ornstein-Uhlenbeck operator in one or two variables and a drift
operator acting in the remaining ones. The scaling and the limit allow us to get rid of the
upper off-diagonal blocks of the drift matrix of A and to separate the variables. We can
recover the spectrum of Ap from that of the limit operator C.

The main part of the proof is thus devoted to the investigation of the spectrum of C. Here
we can assume that B has an eigenvalue with nonnegative real part, since the other case is
already covered by the main result in [17]. The above splitting then reduces the problem
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to Ornstein-Uhlenbeck operators in R or in R2 where B has one nonnegative eigenvalue or
two complex conjugate eigenvalues with nonnegative real parts. We further have to treat
eigenvalues in iR and with positive real part separately. The detailed study of these four
cases is mainly based on the construction of approximate eigenfuctions.

The paper is structured as follows. In Section 2 we recall the known generator properties
of the drift operator L =

∑n
i,j=1 bijxjDi and its spectrum, as computed in [17]. We provide

further details in the case where the generated group is periodic. We also collect the known
properties on A. Most of the results are contained in [17], where it is assumed that Q is
positive definite. However, we explain why they continue to hold with minor modifications in
the degenerate hypoelliptic setting. Corollary 2.7 and Proposition 2.8 establish the inclusion
σ(Ap) ⊆ (−∞, 0] + σ(Lp) by means of general spectral theory of semigroups. In Section 3
we show that there are no eigenvalues of A2 in many cases. Finally, Section 4 is devoted
to the proof of Theorem 1.1. Here also the spectral mapping theorem follows mainly from
general theory, whereas the proof of the other inclusion (−∞, 0] + σ(Lp) ⊆ σ(Ap) requires
a sophisticated analysis of the four cases indicated above.

Warning: Throughout the whole paper, we write L∞ for C0(Rn), which is the space of
continuous functions on Rn vanishing at infinity, endowed with the supremum norm.

Notation. Lp stands for Lp(Rn) if p ∈ [1,∞) and C∞c for C∞c (Rn).
The spectrum and the resolvent set of a linear operator B are denoted by σ(B) and ρ(B),

respectively. The spectral bound of B is defined by s(B) = sup{Reµ |µ ∈ σ(B)} and the
boundary spectrum is σ(B)∩{µ ∈ C |Reµ = s(B)}. The approximate point spectrum σap(B)
of B is the subset of σ(B) of all complex numbers µ for which there is a sequence (vn) in its
domain D(B) such that ‖vn‖ = 1 and ‖Bvn − µvn‖ → 0 as n → ∞. The sequence (vn) is
called an approximate eigenvector relative to the approximate eigenvalue µ. The topological
boundary of the spectrum of B is always contained in σap(B) (see [7, Proposition IV.1.10]).

We write Bp to indicate a realization of a (differential) operator B in Lp, that is when B
is provided with a specific domain in Lp. However, we sometimes omit the suffix p in the
proofs, to shorten the notation.

If B is a matrix, BT denotes its transpose. We set C+ = {µ ∈ C |Reµ > 0} and
C− = {µ ∈ C |Reµ < 0}. When p =∞, by 1/p we mean 0.

Acknowledgement. The authors wish to thank Enrico Priola for helpful discussions
during the preparation of the paper. D.P. is member of GNAMPA of the Italian Istituto
Nazionale di Alta Matematica (INdAM) and has been partially supported by the PRIN
project “Deterministic and stochastic evolution equations” of the Italian Ministry of Edu-
cation MIUR and by Italian INFN.

2 Basic and known results

We collect background material from [17] and prove auxiliary results concerning the drift
term and the Ornstein-Uhlenbeck operator.

2.1 Properties of L
Let B = (bij) 6= 0 be a real n× n matrix and consider the drift operator

L =

n∑
i,j=1

bijxjDi
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defined on its maximal domain

D(Lp) = {u ∈ Lp | Lu ∈ Lp}

in Lp for 1 ≤ p ≤ ∞, where Lu is understood in the sense of distributions. We write Lp for
(L, D(Lp)) and recall the following results, whose proofs can be found in [17, Section 2].

Proposition 2.1. Let 1 ≤ p ≤ ∞. The operator Lp generates the C0-group (S(t))t∈R in
Lp defined by

(S(t)f)(x) = f(etBx), (2.1)

the space C∞c is a core of Lp, and we have

‖S(t)f‖p = e−
t
p tr(B)‖f‖p (2.2)

for f ∈ Lp and t ∈ R.

We next describe the spectrum of Lp distinguishing several cases.

Theorem 2.2. Let 1 ≤ p ≤ ∞.

(a) Let tr(B) 6= 0. Then σ(Lp) = −tr(B)/p+ iR.

(b) Let tr(B) = 0 and B be not similar to a diagonal matrix with purely imaginary eigen-
values. Then σ(Lp) = iR.

(c) Let B be similar to a diagonal matrix with nonzero eigenvalues ±iσ1,±iσ2, . . . ,±iσk in
iR and possibly 0, where σrσ

−1
s /∈ Q for some r, s ∈ {1, . . . , k}. Then σ(Lp) = iR.

(d) Let B be similar to a diagonal matrix with nonzero eigenvalues ±iσ1,±iσ2, . . . ,±iσk in
iR and possibly 0, where σrσ

−1
s ∈ Q for all r, s ∈ {1, . . . , k}. Then (S(t))t∈R is periodic

and σ(Lp) is the discrete subgroup G = {i(n1σ1 + · · ·+ nkσk) | (n1, . . . , nk) ∈ Zk}.

In the sequel we need more information about case (d) above in which (S(t))t∈R is periodic.

Proposition 2.3. Let B be similar to a diagonal matrix with nonzero eigenvalues
±iσ1,±iσ2, . . . ,±iσk in iR and possibly 0, with 2k ≤ n. Assume that for every j ∈
{2, . . . , k} we have σj =

pj
qj
σ1 for some coprime integers pj and qj. Then (S(t)) is periodic

with period τ = 2πNσ−11 , where N is the least common multiple of q2, . . . , qk. Moreover,
the set G from Theorem 2.2 is given by G = σ1

N iZ = 2π
τ iZ.

Proof. We denote a point in Rn by x = (x1, y1, . . . , xk, yk, w2k+1, . . . , wn) and set zj =
(xj , yj). Possibly after a change of variables we obtain

S(t)f(x) = f(eitσ1z1, . . . , e
itσkzk, w2k+1, . . . , wn), (2.3)

see Theorem 2.6 of [17]. If 0 /∈ σ(B), the components wj are not present. Formula (2.3)
yields S(τ)f = f .

We prove that the set G defined in Theorem 2.2 (d) coincides with σ1

N iZ. The inclusion ⊆
easily follows from the form of the numbers σj and the definition of N . To show the other
inclusion, we first observe that the greatest common divisor of N,Np2/q2, . . . , Npk/qk is
equal to 1. Indeed, otherwise there would exist a prime number p dividing N, . . . , Npk/qk.
Let α ∈ N be the greatest exponent for which pα divides N . Then pα occurs in the prime
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factorization of some qj . Since pj and qj are coprime, p cannot divide Npj/qj , and this is
a contradiction. As a result, each integer m can be written as

m = m1N +m2
Np2
q2

+ · · ·+mk
Npk
qk

,

for suitable mj ∈ Z. This is equivalent to saying that the element σ1

N m can be written as
m1σ1 + · · ·+mkσk and concludes the proof.

2.2 Properties of A
We turn our attention to the Ornstein-Uhlenbeck operator defined in (1.1) and to the asso-
ciated semigroup (T (t))t≥0 given by (1.3). We always assume the hypoellipticity condition
(1.2) and 1 ≤ p ≤ ∞. We do not need the full description of the domain of the generator, but
only the fact that smooth functions with compact support are a core. We point out, how-
ever, that the domain has been described in [20, Section 4] and in [19] in the nondegenerate
case and in [1] in the degenerate one.

Proposition 2.4. The semigroup (T (t))t≥0 is strongly continuous on Lp, 1 ≤ p ≤ ∞, and
satisfies the estimate

‖T (t)‖ ≤ e−
t
p tr(B) (2.4)

for t ≥ 0. Moreover, C∞c is a core for the generator Ap.

Proof. If the diffusion matrix Q is positive definite, the stated properties and a partial
description of the domain of the generator have been proved in Section 3 of [17]. However,
the same proofs hold in the degenerate hypoelliptic case. We only sketch them and refer to
[17] for more details. To show (2.4), we write T (t)f = S(t)(gt ∗ f) where

gt(y) =
1

(4π)n/2(detQt)1/2
e−〈Q

−1
t y,y〉/4

and S(t) is defined in (2.1). The estimate (2.4) then follows from (2.2), Young’s inequality
for convolutions, and ‖gt‖1 = 1. Since T (t)f → f in Lp as t → 0+ for f ∈ C∞c , by density
(2.4) implies the strong continuity of (T (t))t≥0 for every 1 ≤ p ≤ ∞.

Let Ap and S(Rn) denote the generator of (T (t))t≥0 in Lp and the Schwartz class, re-
spectively. One easily checks that S(Rn) ⊆ D(Ap) and Apf = Af for every f ∈ S(Rn).
Moreover, S(Rn) is dense in Lp and invariant for (T (t))t≥0 by (1.3). Therefore it is a core
of Ap. By a truncation argument we conclude that C∞c is a core for Ap.

We recall Theorem 3.3 and Corollary 3.5 of [17].

Proposition 2.5. The boundary spectrum of Ap contains the spectrum of the drift Lp.

Corollary 2.6. The growth bound of (T (t))t≥0 in Lp is ωp = −tr(B)/p.

Standard semigroup theory then yields first inclusions of the spectra.

Corollary 2.7. The spectrum of Ap belongs to the half-plane {µ ∈ C |Reµ ≤ −tr(B)/p},
and that of T (t) to the closed ball B(0, e−

t
p tr(B)).
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If σ(Lp) is the whole line −tr(B)/p + iR, the half-plane {µ ∈ C |Reµ ≤ −tr(B)/p}
coincides with the sum (−∞, 0] +σ(Lp). This is not the case if σ(Lp) is a discrete subgroup
of iR, which occurs when the group generated by the drift part is periodic (see Theorem
2.2 (d)). However, also in this case we have the inclusion σ(Ap) ⊆ (−∞, 0]+σ(Lp) as proved
in the next proposition.

Proposition 2.8. Let B be similar to a diagonal matrix with nonzero eigenvalues ±iσ1,
· · · ,±iσk in iR and possibly 0. Assume that the quotient σrσ

−1
s is rational for all r and s.

Then σ(Ap) ⊆ (−∞, 0] + σ(Lp).

Proof. Let τ > 0 be the period of (S(t))t∈R, see Proposition 2.3. Also etB
T

is τ -periodic

and in particular eτB
T

= I. By the representation formula (1.3) we have

(T (τ)f)(x) =
1

(4π)n/2(detQτ )1/2

∫
Rn
e−〈Q

−1
τ y,y〉/4f(x− y) dy,

showing that T (τ) = Tτ (1) where (Tτ (t))t≥0 is the semigroup generated by the diffusion
operator Aτ = Tr(QτD

2), whose spectrum is (−∞, 0]. Take µ = a + ib ∈ σ(Ap). The
spectral inclusion Theorem IV.3.6 of [7] yields that eτ(a+ib) belongs to σ(T (τ)) = σ(Tτ (1)).
Since (Tτ (t))t≥0 is analytic, from Corollary IV.3.12 of [7] we infer the identity σ(Tτ (1)) \
{0} = eσ(Aτ ) = (0, 1]. It follows that a ≤ 0 and τb = 2mπ for some m ∈ Z and hence
ib ∈ 2π

τ iZ = G, using also Proposition 2.3. Therefore σ(Ap) is contained in (−∞, 0]+G.

The spectrum of the Ornstein-Uhlenbeck operators has been computed in [17, Section 4] if
either σ(B) ⊂ C− or σ(B) ⊂ C+. The proofs in this paper are written only in the uniformly
elliptic case where Q is positive definite, but in the introduction of [17] it is pointed out
that they also work only assuming the hypoellipticity condition (1.2).

To explain why this condition suffices, we recall that the spectrum of Ap is determined in
[17] at first under the assumption σ(B) ⊂ C+ by exhibiting explicit eigenfunctions for the
eigenvalues µ < −tr(B)/p. These are computed using the matrix

Q̃∞ =

∫ ∞
0

e−sBQe−sB
T

ds.

The above integral converges since the matrix semigroup (e−sB)s≥0 is exponentially stable.

Moreover Q̃∞ is nondegenerate under condition (1.2). Since Q̃∞, and not Q, enters all
calculations, all results still hold in the hypoelliptic setting provided that σ(B) ⊂ C+,
including the extreme cases p = 1,∞.

The case σ(B) ⊂ C− follows from the preceding one by a simple duality argument, which
we describe now. The formal adjoint of A is given by

A∗ =

n∑
i,j=1

qijDij −
n∑

i,j=1

bijxjDi − tr(B).

Let A∗p′ be the realization of A∗ in Lp
′
, 1/p + 1/p′ = 1, as the generator of the semigroup

(1.3) with −B replacing B (also in the definition of Qt) multiplied by the exponential factor
e−t tr(B). Notice that the spectrum of the drift matrix is now contained in C+. Therefore,
for every µ ∈ C with Reµ < tr(B)/p′ − tr(B) = −tr(B)/p the operator µ − A∗p′ is not

injective. Let (Ap′, D(Ap′)) denote the adjoint of Ap in Lp
′
. Recalling that C∞c is a core for
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A∗p′ and Ap, it is easily seen that D(A∗p′) ⊆ D(Ap′) and Ap′f = A∗p′f for every f ∈ D(A∗p′).
Since µ−A∗p′ is not injective, it follows that µ−Ap is not surjective and hence µ ∈ σ(Ap).
The other inclusion is provided by Corollary 2.7. Note that this works in the extreme cases
p = 1,∞ as well.

We state the results discussed above.

Theorem 2.9. Let 1 ≤ p ≤ ∞ and (1.2) be true. If either σ(B) ⊂ C− or σ(B) ⊂ C+, then
σ(Ap) = {µ ∈ C |Reµ ≤ −tr(B)/p}. In the latter case, every µ with Reµ < −tr(B)/p is
an eigenvalue.

3 Preliminary considerations

In contrast to [17] we cannot use eigenvalues in the proof of our main result. To show this
we rule out eigenvalues of A if the spectrum of B intersects C− or if B is skew-symmetric
and Q = I, where we assume that p = 2.

First, we assume that some eigenvalue of B has a negative real part. Suppose that µ ∈ C
with Reµ < − 1

2 tr(B) was an eigenvalue of A2 with eigenfunction f ∈ L2 \ {0}. The
spectral mapping theorem for the point spectrum shows that T (t)f = eµtf for every t ≥ 0,

see Theorem IV.3.7 and Corollary IV.3.8 of [7]. Denoting by f̂ the Fourier transform of f ,
the representation formula (1.3) implies that the equation T (t)f = eµtf is equivalent to

f̂(e−tB
T

ξ) = e(µ+tr(B))te|Q
1/2
t e−tB

T
ξ|2 f̂(ξ), (3.1)

where t ≥ 0, see Section 4 of [17]. We compute

|Q1/2
t e−tB

T

ξ|2 = 〈Qte−tB
T

ξ, e−tB
T

ξ〉 =

∫ t

0

〈esBQesB
T

e−tB
T

ξ, e−tB
T

ξ〉 ds

=

∫ t

0

|Q1/2e(s−t)B
T

ξ|2 ds =

∫ t

0

|Q1/2e−sB
T

ξ|2ds (3.2)

for ξ ∈ Rn. Take λ ∈ σ(B) = σ(BT ) with Reλ < 0. Let P be the spectral projection of BT

corresponding to λ. Fix ε > 0 with Reλ+ ε < 0. Then there exists a constant M > 0 such

that ‖esBTP‖ ≤ Me(Reλ+ε)s for every s ≥ 0. Observe that also −B satisfies (1.2), so that
there is a constant ν > 0 with∫ 1

0

|Q1/2e−sB
T

ξ|2ds =
〈∫ 1

0

e−sBQe−sB
T

ξ ds, ξ
〉
≥ ν|ξ|2.

Let t ∈ [m,m+ 1) for some m ∈ N0. Inserting P in (3.2), it follows

|Q1/2
t e−tB

T

ξ|2 ≥
∫ m

0

|Q1/2e−sB
T

ξ|2ds =

m−1∑
k=0

∫ 1

0

|Q1/2e−rB
T

e−kB
T

ξ|2dr

≥
m−1∑
k=0

ν‖P‖−2 |Pe−kB
T

ξ|2 ≥
m−1∑
k=0

ν(M‖P‖)−2e−2(Reλ+ε)k |Pξ|2

≥ ce−2(Reλ+ε)t|Pξ|2
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for some constant c > 0. Integrating (3.1) on Rn, we derive∫
Rn
|f̂(ξ)|2 dξ = e2t (Reµ+ 1

2 tr(B))

∫
Rn
e2|Q

1/2
t e−tB

T
ξ|2 |f̂(ξ)|2 dξ

≥ exp
(
2cα2e−2(Reλ+ε)t

)
e2t (Reµ+ 1

2 tr(B))

∫
{|Pξ|≥α}

|f̂(ξ)|2 dξ,

for every t ≥ 0 and α > 0. Letting t → +∞, the right hand side blows up unless∫
{|Pξ|≥α} |f̂(ξ)|2 dξ = 0. Since α > 0 is arbitrary and the set {Pξ = 0} has measure 0,

this would imply f̂ = 0 and thus f = 0 in L2, which is a contradiction.

Second, we assume that B = −BT and Q = I. Recalling that tr(B) = 0, we now suppose
there was an eigenvalue µ of A2 with Reµ < 0. Arguing as before, we rewrite (3.1) as

e−|Q
1/2
t e−tB

T
ξ|2 f̂(e−tB

T

ξ) = eµtf̂(ξ), t ≥ 0,

and then integrate over Rn to obtain∫
Rn
e−2|Q

1/2
t ξ|2 |f̂(ξ)|2 dξ = e2Reµ t

∫
Rn
|f̂(ξ)|2dξ.

Observing

|Q1/2
t ξ|2 = 〈Qtξ, ξ〉 =

∫ t

0

〈esBesB
T

ξ, ξ〉 ds =

∫ t

0

〈es(B+BT )ξ, ξ〉 ds = t |ξ|2,

we derive∫
Rn
|f̂(ξ)|2dξ =

∫
Rn
e−2t(|ξ|

2+Reµ)|f̂(ξ)|2 dξ

=

∫
{|ξ|2>−Reµ}

e−2t(|ξ|
2+Reµ)|f̂(ξ)|2 dξ +

∫
{|ξ|2<−Reµ}

e−2t(|ξ|
2+Reµ)|f̂(ξ)|2 dξ.

The first integral in the last line tends to 0 as t→ +∞ by dominated convergence. The sec-
ond integral tends to +∞ by monotone convergence, if

∫
{|ξ|2<−Reµ} |f̂(ξ)|2 dξ > 0. Therefore

we have either ‖f̂‖2 = +∞ or ‖f̂‖2 = 0, and we get a contradiction in any case.

By duality one deduces from the above examples that, if σ(B) intersects both C− and
C+, a point λ can be in the spectrum of A2 even though λ−A2 is injective and has dense
range. Approximate eigenvalues will thus play a central role.

In order to describe the spectrum of A, we will reduce the drift matrix B to a quasi
triangular upper matrix. This is done as follows. If M is an invertible real n × n matrix,
we define the change of variables

ΦM : Lp → Lp, (ΦMu)(y) = u(M−1y). (3.3)

Setting v = ΦMu, one easily calculates that Au(x) = A0v(Mx) for x ∈ Rn, where

A0v = Tr(Q0D
2v) + 〈B0y,Dv〉

with y = Mx, Q0 = MQMT , and B0 = MBM−1. We conclude

A = Φ−1M A0ΦM with D(Ap) = Φ−1M D(A0,p).
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We observe that the new operator A0 is still hypoelliptic, see (1.2), and that the spectrum
is invariant under this transformation.

Applying Schur’s theorem for real matrices (see e.g. Theorem 2.3.4 in [11]), we can now
choose a real orthogonal matrix M such that MBM−1 = T with

T =



B1 ∗ ∗ · · · ∗
0 B2 ∗ · · · ∗

0 0 B3 ∗
...

...
...

. . .
...

0 0 0 · · · Bl

 (3.4)

where each Bj is a real 1× 1 matrix with a real eigenvalue of B, or a real 2× 2 matrix with
a pair of nonreal complex conjugate eigenvalues αj ± iβj . The diagonal blocks Bj may be
arranged in any prescribed order. By * we denote an arbitrary block.

4 The spectrum of Ap
The spectrum of the Ornstein-Uhlenbeck operators Ap depends on the spectrum of the drift
operator Lp which in turn is determined by B. If B is similar to a diagonal matrix with
nonzero eigenvalues ±iσ1,±iσ2, . . . ,±iσk in iR and possibly 0 and if all ratios σrσ

−1
s belong

to Q, then Theroem 2.2 shows that σ(Lp) is a discrete subgroup G = 2πi
τ Z of iR, where

S(τ) = I. In this case we prove that σ(Ap) = (−∞, 0] +G. In all the remaining cases, the
spectrum of Lp is the vertical line −tr(B)/p+ iR and we show that σ(Ap) is the half-plane
{µ ∈ C |Reµ ≤ −tr(B)/p}. These results, which are the main achievement of the paper,
are stated in Theorem 1.1, which we rewrite below for convenience.

Theorem 4.1. Let (1.2) be true and p ∈ [1,∞]. Then the spectrum of Ap is given by

σ(Ap) = (−∞, 0] + σ(Lp). (4.1)

In particular, we have either σ(Ap) = (−∞, 0] +G or σ(Ap) = {µ ∈ C |Reµ ≤ −tr(B)/p},
according to σ(Lp) being the discrete subgroup G = 2πi

τ Z of iR or the whole line −tr(B)/p+
iR. Moreover, the semigroup (T (t))t≥0 satisfies the weak spectral mapping theorem

σ(T (t)) = exp(tσ(Ap)), t ≥ 0. (4.2)

We even have σ(T (t)) \ {0} = etσ(Ap) except for the case that σ(Lp) = G = 2πi
τ Z and t/τ is

irrational.

Proof. Theorem 2.9 shows the equality (4.1) if σ(B) ⊂ C− or σ(B) ⊂ C+. Moreover, by
Corollary 2.7 and Proposition 2.8 the inclusion σ(Ap) ⊆ (−∞, 0] + σ(Lp) always holds.
Therefore we only have to prove the other inclusion (−∞, 0] + σ(Lp) ⊆ σ(Ap) in two re-
maining cases: one eigenvalue of B has a positive real part or one eigenvalue of B lies on the
imaginary axis. Note that these cases may overlap and that the first one includes situations
covered by Theorem 2.9. The inclusion (−∞, 0] +σ(Lp) ⊆ σ(Ap) is established in these two
cases in the following two subsections.

To prove the (weak) spectral mapping theorem, we take (4.1) for granted. Let t > 0. The
spectral inclusion Theorem IV.3.6 of [7] and Corollary 2.7 show that

etσ(Ap) ⊆ σ(T (t)) \ {0} ⊆ {µ ∈ C | 0 < |µ| ≤ e−t tr(B)/p} =: Bt.
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We thus even obtain σ(T (t)) \ {0} = etσ(Ap) if σ(Ap) = {µ ∈ C |Reµ ≤ −tr(B)/p}. In the
other case Proposition 2.3 yields σ(Lp) = G = 2πi

τ Z. Now tr(B) = 0. By (4.1) we can now
write

etσ(Ap) = {etae2πimt/τ | a ≤ 0, m ∈ Z} = (0, 1] · St,

with St = {e2πimt/τ |m ∈ Z}. There are two subcases.
First, let t/τ be irrational. Then the set St is dense in the unit circle and it follows that

exp(tσ(Ap)) is equal to B0; i.e., (4.2) is true.
Second, let t/τ = j/k for coprime j, k ∈ N. Then St coincides with the set Γk of kth unit

roots so that etσ(Ap) = (0, 1] · Γk On the other hand, we have S(t)k = S(jτ) = I. As in the
proof of Proposition 2.8, we deduce that T (t)k = T (kt) = Tkt(1) for the analytic semigroup
(Tkt(s))s≥0 generated by Tr(QktD

2). The spectrum of Tkt(1) is thus equal to [0, 1] and
hence σ(T (t)) \ {0} = (0, 1] · Γk as required.

4.1 The case σ(B) ∩ C+ 6= ∅
We show the remaining inclusion in the proof of Theorem 4.1 in the first case.

Proposition 4.2. Let σ(B) ∩ C+ 6= ∅. Then (−∞, 0] + σ(Lp) ⊆ σ(Ap).

In the proof we use degenerate Ornstein-Uhlenbeck operators depending on different sets
of variables, as we explain now. We let Rn = Rk×Rm and write a point z ∈ Rn accordingly
as z = (x, y). Let B1 and B2 be real k× k and m×m matrices, respectively, and Q2 a real,
symmetric and positive semidefinite m×m matrix. We consider the operators

L(1) = 〈B1x,Dx〉 and A(2) = Tr(Q2D
2) + 〈B2y,Dy〉. (4.3)

Here L(1) is a drift operator on Lp(Rk) and A(2) is an Ornstein-Uhlenbeck operator on
Lp(Rm), which is assumed to be hypoelliptic (recall that L∞ means C0). Let (S1(t))t≥0 and
(T2(t))t≥0 be the generated semigroups. Then (S1(t)⊗ T2(t))t≥0 acting on Lp(Rk)⊗Lp(Rm)
can be extended to a C0-semigroup on Lp(Rn), whose generator is the closure Cp of C =

L(1) + A(2) initially defined on D(L(1)
p ) ⊗ D(A(2)

p ). Since C∞c (Rk) and C∞c (Rm) are cores
for L(1) and A(2), respectively, it follows that C∞c (Rn) is a core for Cp.

Proof of Proposition 4.2. Let λ = α + iβ ∈ σ(B) with α > 0. As explained at the end of
Section 3, using a change of variables we can assume that our operator is given by

A = Tr(Q0D
2) + 〈Tx,D〉,

where T is in the quasi triangular form (3.4), its last block Bl corresponds to λ, and Q0 is the
transformed diffusion matrix. We distinguish between the cases β = 0 and β 6= 0. (Below
we tacitly assume that T 6= Bl since the easier case T = Bl can be treated analogously.)

Case 1. β = 0. Denote the nonreal eigenvalues of B by {α1 ± iβ1, . . . , αk ± iβk} with
0 ≤ 2k < n and the real ones by {λ2k+1, . . . , λn} with λn = α > 0. We write a point in Rn
as x = (x1, y1, . . . , xk, yk, w2k+1, . . . , wn). We use a scaling argument in which the variables
zj = (xj , yj) relative to conjugated eigenvalues are coupled and which leaves the last variable
unscaled. Let Dzj = (Dxj , Dyj ) for j = 1, . . . , k. The scaling operator is defined by

Iru(x) = u
( z1
rγ1

,
z2
rγ2

, . . . ,
zk
rγk

,
w2k+1

rγ2k+1
, . . . ,

wn−1
rγn−1

, wn

)
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for r > 0 and with γ1 = 1 and γi > γj > 0 for i < j. Observe that ‖I−1r ‖ = ‖Ir‖−1 on Lp.
Let u ∈ C∞c . Computing I−1r AIru, one finds that

lim
r→+∞

I−1r AIru = Cu in Lp,

for the limit operator

Cu = νD2
wnu+ λnwnDwnu+

k∑
j=1

〈Bjzj , Dzju〉+

n−1∑
j=2k+1

λjwjDwju.

The constant ν is the component 〈Q0en, en〉 of Q0 where en = (0, . . . , 0, 1). It is positive,
which can be explained as follows. The last row vector in the matrix T is λnen. This means
that the transpose of T maps en to λnen. Let X be the one-dimensional subspace spanned
by en. It is invariant for the transpose of T . Since A is hypoelliptic, X is not contained in

the kernel of Q0. It follows Q0en 6= 0 and hence ν = |Q1/2
0 en|2 > 0.

Note that we can write C = Llim +Alim with

Alim = νD2
n + λnwnDn, Llim =

k∑
j=1

〈Bjzj , Dzj 〉+

n−1∑
j=2k+1

λjwjDwj .

We endow C with the domain described before the proof and call it Cp. We first establish a
crucial spectral property of Cp.
Claim. Every µ with Reµ < −tr(B)/p is an approximate eigenvalue for Cp.
Since λn > 0, every λ with Reλ < −λn/p is an eigenvalue of the one dimensional operator
Alim
p by Theorem 2.9. Theorem 2.2 shows that Llim

p possesses the approximate eigenvalue
−c/p, where

c = 2

k∑
j=1

αj +

n−1∑
i=2k+1

λi = tr(B)− λn.

Now, fix µ ∈ C with Reµ < −tr(B)/p and set λ = µ + c/p. Note that Reλ < −λn/p.
Choose an eigenfunction u1 = u1(wn) of Alim

p for λ with ‖u1‖Lp(R) = 1. Given ε > 0, there

is a function u2 = u2(z1, . . . , zk, w2k+1, . . . , wn−1) in D(Llim
p ) with ‖u2‖Lp(Rn−1) = 1 and

‖Llimu2 + c
pu2‖Lp(Rn−1) ≤ ε. The function u = u1u2 thus belongs to D(Cp), has norm one

in Lp and satisfies

Cu− µu =
(
Alimu1 − λu1

)
u2 +

(
Llimu2 + c

pu2
)
u1 =

(
Llimu2 + c

pu2
)
u1 , (4.4)

which yields ‖Cu− µu‖p ≤ ε. So the claim is proved.

Take λ0 ∈ ρ(Ap). By similarity, λ0 belongs to ρ(I−1r AIr) with resolvent R(λ0, I
−1
r ApIr) =

I−1r R(λ0,Ap)Ir for all r > 0. It follows ‖R(λ0, I
−1
r ApIr)‖ ≤ ‖R(λ0,Ap‖ =: C and

‖u‖p = ‖R(λ0, I
−1
r ApIr)(λ0 − I−1r AIr)u‖p ≤ C ‖(λ0 − I−1r AIr)u‖p (4.5)

for u ∈ C∞c . Letting r → +∞, we infer ‖u‖p ≤ C ‖(λ0 − C)u‖p. Since C∞c is a core for Cp,
this shows that λ0 cannot be an approximate eigenvalue of Cp, and hence Reλ0 ≥ −tr(B)/p
by the claim. This means that (−∞, 0] + σ(Lp) is contained in σ(Ap).

Case 2. β 6= 0. We rearrange the blocks in (3.4) such that the first blocks contain the
real eigenvalues λ1, . . . , λk with 0 ≤ k < n and the other blocks contain the complex ones
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αk+1 ± iβk+1, . . . , αk+m ± iβk+m for n = k + 2m, where αk+m = α > 0 and βk+m = β 6= 0.
As a consequence, a point of Rn is denoted by x = (w1, w2, . . . , wk, zk+1, . . . , zk+m) with
zj = (xj , yj). The scaling operator is now defined by

Jru(x) = u
(w1

rγ1
,
w2

rγ2
, . . . ,

wk
rγk

,
zk+1

rγk+1
, . . . ,

zk+m−1
rγk+m−1

, zk+m

)
(4.6)

with γ1 = 1 and γi > γj > 0 for i < j. For every u ∈ C∞c we have

lim
r→+∞

J−1r AJru = Cu in Lp,

where the limit operator is given by

Cu = Tr(Q†0D
2
k+mu) + 〈Bk+mzk+m, Dzk+mu〉 (4.7)

+

k∑
j=1

λjwjDwju+

m−1∑
j=1

〈Bk+jzk+j , Dzk+ju〉.

Here Q†0 is the lower right 2× 2 submatrix of Q0.
As before we introduce Cp and claim that the open half-plane {µ ∈ C |Reµ < −tr(B)/p}

is contained in its approximate spectrum.
To prove the claim, we split C as the sum Alim+Llim for the Ornstein-Uhlenbeck operator

Alim = Tr(Q†0D
2
k+m) + 〈Bk+mzk+m, Dzk+m〉

in the last two variables and the drift operator

Llim =

k∑
j=1

λjwjDwj +

m−1∑
j=1

〈Bk+jzk+j , Dzk+j 〉

acting in the remaining variables.
We show that Alim is hypoelliptic by verifying (1.2). Let Y be a real subspace of R2 which

is invariant for BTk+m. Suppose that dimY = 1. Then there would exist a real eigenvalue

for BTk+m, but this is not the case as σ(BTk+m) = {α ± iβ}. We thus have either Y = {0}
or Y = R2. Suppose that R2 ⊆ ker(Q†0). In this case the real subspace of Rn spanned by
en−1 = (0, . . . , 0, 1, 0) and en = (0, . . . , 0, 1) would be invariant for the transpose of the drift
matrix T and it would be contained in ker(Q0). This contradicts the hypoellipticity of A.

Since αk+m > 0, by Theorem 2.9 every λ with Reλ < −2αk+m/p is an eigenvalue of Alim
p .

Moreover, Theorem 2.2 yields that σap(Llim
p ) contains the number −c/p with

c =

k∑
j=1

λj +

m−1∑
j=1

2αj+k.

Take µ ∈ C with Reµ < −tr(B)/p and set λ = µ + c/p. Take an eigenfunction u1 =
u1(xk+m, yk+m) of Alim

p for λ with ‖u1‖Lp(R2) = 1. Given ε > 0, we have a function

u2 = u2(w1, . . . , wk, zk+1, . . . , zk+m−1) in D(Llim
p ) satisfying ‖u2‖Lp(Rn−2) = 1 and ‖Llimu2+

c
pu2‖Lp(Rn−2) ≤ ε. As in (4.4), u = u1u2 is an approximate eigenfunction for Cp with

approximate eigenvalue µ. We can then proceed as at the end of Case 1, see (4.5).
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4.2 The case σ(B) ∩ iR 6= ∅
To deal with imaginary eigenvalues of B, we need a second type of transformation. We
introduce an isometry S : Lp → Lp by

Su(x) = eisφ(x)u(x), (4.8)

where s ∈ R and the function φ : Rn → R is chosen below. For u ∈ C∞c , say, the operator
A given by (1.1) is transformed into

S−1ASu(x) = Au− s2〈QDφ,Dφ〉u+ 2is〈QDφ,Du〉+ isTr(QD2φ)u+ is〈Bx,Dφ〉u. (4.9)

Let λ ∈ σ(B) ∩ iR. Then we have either λ = 0 or λ = iβ 6= 0. The next two propositions
show the spectral inclusion needed for Theorem 4.1 separately for these two cases.

Proposition 4.3. Let 0 ∈ σ(B). Then (−∞, 0] + σ(Lp) ⊆ σ(Ap).
Proof. In the proof we writeA forAp and similarly for the other operators involved. Observe
that the kernel of BT is a nontrivial subspace which is invariant for BT . Condition (1.2)
thus yields a vector ξ ∈ ker(BT ) with Qξ 6= 0. Then 〈Qξ, ξ〉 = |Q1/2ξ|2 6= 0. We set
φ(x) = ξ · x for x ∈ Rn. Equation (4.9) then becomes

S−1ASu(x) = Au− s2〈Qξ, ξ〉u+ 2is〈Qξ,Du〉+ is〈x,BT ξ〉u = Ãu− s2〈Qξ, ξ〉u (4.10)

where we have defined Ãu = Au + 2is〈Qξ,Du〉 and used BT ξ = 0. Let k ∈ N and the
isometry Vk : Lp → Lp be given by

Vku(x) = k−n/pu(k−1x). (4.11)

For u ∈ C∞c , we compute

V −1k ÃVku = k−2Tr(QD2u) + 〈Bx,Du〉+ k−12is〈Qξ,Du〉 −→ Lu = 〈Bx,Du〉,

as k → +∞. Set Ãk = V −1k ÃVk. Then ρ(Ãk) = ρ(Ã) by similarity, where we omit the

subscript p. We want to show the inclusion σ(L) ⊆ σ(Ã), for which we need the next fact.

Claim. Let λ ∈ ρ(Ã) ∩ ρ(L) and f ∈ Lp. We then obtain

R(λ, Ãk)f → R(λ,L)f in Lp as k →∞. (4.12)

Since C∞c is a core of (L, D(Lp)) by Proposition 2.1, it suffices to prove the convergence on
the dense subspace (λ− L)C∞c . Let f = λu− Lu for some u ∈ C∞c . Using the identity

R(λ, Ãk)f −R(λ,L)f = R(λ, Ãk)(L − Ãk)R(λ,L)f

we deduce

‖R(λ, Ãk)f −R(λ,L)f‖p ≤ ‖R(λ, Ãk)‖ ‖Lu− Ãku‖p ≤ ‖R(λ, Ã)‖ ‖Lu− Ãku‖p
and the claim follows.

Now, let λ0 ∈ σ(L). Suppose that λ0 ∈ ρ(Ã). Then there exists a radius r > 0 such that
λ ∈ ρ(Ã) = ρ(Ãk) whenever |λ−λ0| < r. Take λ with |λ−λ0| < r and Reλ > Reλ0. Then
λ also belongs to ρ(L) by Theorem 2.2. The formula (4.12) thus yields

‖R(λ,L)f‖p ≤ lim inf
k→∞

‖R(λ, Ãk)f‖p ≤ ‖R(λ, Ã)‖ ‖f‖p.

for every f ∈ Lp. In the limit λ→ λ0 the left-hand side blows up, whereas the right-hand side
remains bounded. By this contradiction, λ0 belongs to σ(Ã) and consequently λ0−s2〈Qξ, ξ〉
to σ(A), see (4.10). As s ∈ R is arbitrary, we conclude that σ(L) + (−∞, 0] ⊆ σ(A).
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We next treat the remaining case.

Proposition 4.4. Let β 6= 0 and iβ ∈ σ(B), then (−∞, 0] + σ(Lp) ⊆ σ(Ap).

In order to show this proposition, we proceed as in Case 2 of the proof of Proposition
4.2 obtaining the same limit operator C = Alim + Llim, see (4.7). But now we cannot use
Theorem 2.9 to determine the spectrum of Alim, since the 2× 2 drift matrix of Alim has the
purely imaginary eigenvalues ±iβ. Instead we directly compute the spectrum of Alim. We
start with a first-order operator that will appear in a scaling limit.

Lemma 4.5. Let b, s, µ1, µ2 ∈ R and set T∞u = bx2D1u−bx1D2u−s2
(
µ1

x2
1

|x|2 +µ2
x2
2

|x|2
)
u. Let

T∞,p be the realization of T∞ in Lp(R2) endowed with domain D(T∞) = {u ∈ Lp(R2) | T∞u ∈
Lp(R2)}, where T∞u is understood in the sense of distributions. Then, for every m ∈ Z,
the number imb− s2(µ1 + µ2)/2 is an eigenvalue of T∞,p possessing an eigenfunction u in
C∞c (R2 \ {0}).

Proof. In polar coordinates (ρ, θ), our operator is expressed by

T∞u = −b∂θu− s2(µ1 cos2 θ + µ2 sin2 θ)u.

Let ϕ ∈ C∞c (0,∞) and m ∈ Z. Set u(x) = ϕ(|x|)eimθe−s2(µ1−µ2) sin(2θ)/(4b) for x ∈ R2.
Then u belongs to C∞c (R2 \ {0}) and straightforward computations show that T∞u = λu
with λ = imb− s2(µ1 + µ2)/2.

Lemma 4.6. Let A♦ be a hypoelliptic Ornstein-Uhlenbeck operator on R2 whose drift matrix
B♦ has the eigenvalues ±iβ for β ∈ R \ {0}. Then (−∞, 0] + iβZ = σap(A♦

p ) = σ(A♦
p ).

Proof. We divide the proof in four steps.
1) Put A♦ in a canonical form. Let µ1 and µ2 be the two nonnegative eigenvalues of the
diffusion matrix Q♦ of A♦. There is an invertible matrix M1 ∈ R2×2 such that

M1B
♦M−11 =

(
0 β
−β 0

)
.

Then take an orthogonal U2 ∈ R2×2 such that U2(M1Q
♦MT

1 )UT2 = D for the diagonal
matrix D with diagonal elements µ1 and µ2. Since U2 is 2× 2 orthogonal, we obtain

U2

(
0 β
−β 0

)
UT2 =

(
0 b
−b 0

)
=: B◦,

where b = ±β. The change of variables (3.3) with M = U2M1 thus yields

A◦ = ΦMA♦Φ−1M = µ1D11u+ µ2D22u+ bx2D1u− bx1D2u.

with D(A◦p) = ΦMD(A♦
p ).

We observe that there are two possible cases: either µ1 and µ2 are both positive, or
one of them is positive and the other one zero. In the first case A◦ is a nondegenerate
Ornstein-Uhlenbeck operator, in the second one it is a degenerate hypoelliptic operator.

2) Scale A◦ by the isometry (4.8). We now set φ(x) = |x| for all x = (x1, x2) ∈ R2 in
(4.8). Observe that Dφ(x) = 1

|x|x and 〈B◦x,Dφ〉 = 0. For u ∈ C∞c (R2 \ {0}) and s ∈ R the
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formula (4.9) thus yields

S−1A◦Su(x) = A◦u− s2
(
µ1

x21
|x|2

+ µ2
x22
|x|2

)
u+ 2is

(
µ1
x1
|x|
D1u+ µ2

x2
|x|
D2u

)
+ is

(
µ1

x22
|x|3

+ µ2
x21
|x|3

)
u =: T u.

By similarity, it is enough to treat T .

3) Show that iβZ + (−∞, 0] ⊆ σ(Tp) = σ(A♦
p ). We scale the operator T through the

isometries Vk in (4.11), obtaining

V −1k T Vku =
1

k2
µ1D11u+

1

k2
µ2D22u+ bx2D1u− bx1D2u− s2

(
µ1

x21
|x|2

+ µ2
x22
|x|2

)
u

+
1

k
2is

(
µ1
x1
|x|
D1u+ µ2

x2
|x|
D2u

)
+

1

k
is

(
µ1

x22
|x|3

+ µ2
x21
|x|3

)
u.

Set Tk = V −1k T Vk. With the limit operator T∞ from Lemma 4.5, it follows

Tku −→ T∞u = bx2D1u− bx1D2u− s2
(
µ1

x21
|x|2

+ µ2
x22
|x|2

)
u

in Lp as k →∞, for every u ∈ C∞c (R2 \ {0}).
We now argue as in the proof of Proposition 4.2. Take λ0 ∈ ρ(Tp). By similarity, we

have λ0 ∈ ρ(Tk) and ‖R(λ0, Tk)‖ ≤ C for every k ∈ N. For u ∈ C∞c (R2 \ {0}) we derive
‖u‖p ≤ C ‖(λ0−Tk)u‖p, and thus ‖u‖p ≤ C ‖(λ0−T∞)u‖p letting k → +∞. Recalling that
b = ±β, Lemma 4.5 implies that λ0 /∈ iβZ−s2(µ1 +µ2)/2 for all s ∈ R. We have this shown
the inclusion iβZ + (−∞, 0] ⊆ σ(Tp) = σ(A♦

p ).

4) Compute the spectrum of A♦
p . Theorem 2.2 (d) shows that iβZ is the spectrum of the

drift operator L♦ = 〈B♦x,D〉. From Proposition 2.8 we deduce σ(A♦
p ) ⊆ (−∞, 0]+ iβZ and

hence σ(A♦
p ) = iβZ+(−∞, 0] by step 3). In particular, σ(A♦

p ) coincides with its topological

boundary so that σ(A♦
p ) = σap(A♦

p ).

Proof of Proposition 4.4. As already pointed out, we proceed as in Case 2 of the proof
of Proposition 4.2. The operator A thus has the form A = Tr(Q0D

2) + 〈Tx,D〉 with
T as in (3.4). As after (4.6), the functions J−1r AJru tend to Cu in Lp as r → +∞ for
u ∈ C∞c , where C = Alim + Llim is defined in (4.7) and it is split into the same operators
Alim and Llim. In particular, Alim is hypoelliptic. Lemma 4.6 yields the spectral identity
σ(Alim

p ) = σap(Alim
p ) = (−∞, 0] + iβZ.

We next want to show the equality σ(Llim
p ) + iβZ = σ(Lp). Let B̄ denote the coefficient

matrix of Llim. Observe that it is diagonalizable since it has n−2 eigenvalues (counted with
multiplicities) and that σ(B) = σ(B̄) ∪ {±iβ}. Hence, case (b) of Theorem 2.2 does not
occur for Llim. Let Llim fall under cases (a) or (c) of Theorem 2.2 (so that L cannot fall
under case (d)). Theorem 2.2 then leads to

σ(Llim
p ) = −tr(B̄)/p+ iR = −tr(B)/p+ iR.

The asserted equality thus follows from Theorem 2.2. In case (d), Theorem 2.2 and Propo-
sition 2.3 yield

σ(Llim
p ) = {i(n1σ1 + · · ·+ nm−1σm−1) | (n1, · · · , nm−1) ∈ Zm−1}.
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If β/σ1 is rational, we infer from these results

σ(Lp) = {i(n1σ1 + · · ·+ nmβ) | (n1, · · · , nm) ∈ Zm}
= {i(n1σ1 + · · ·+ nm−1σm−1) | (n1, · · · , nm−1) ∈ Zm−1}+ iβZ
= σ(Llim) + iβZ.

Otherwise, it follows σ(Lp) = iR = σ(Llim) + iβR as well.
Observe that also σ(Llim

p ) = σap(Llim
p ). Take λ1 ∈ σ(Alim

p ) and λ2 ∈ σ(Llim
p ). As in (4.4),

we check that µ = λ1+λ2 is an approximate eigenvalue for Cp; i.e., (−∞, 0]+iβZ+σ(Llim) =
(−∞, 0] + σ(Lp) is contained in σap(Cp). Arguing as in (4.5), we finally see that σap(Cp) is
a subset of σ(Ap).

Propositions 4.2, 4.3 and 4.4 conclude the proof of Theorem 4.1.
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