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1 Introduction

The study of mean-value properties of solutions of elliptic PDEs has a long and fruitful history.
For harmonic functions in the Euclidean setting, the study goes back to Gauss, Koebe, Volterra,
and Zaremba, to mention just a few, see also [1] for recent results in Carnot groups and [23] for an
interesting survey on the topic. In the last decade there has been a growing interest in studying
a generalized mean-value property originating in [20] and [21], called the asymptotic mean-value
property (amv-property for short). It allows to characterize solutions to harmonic, p-harmonic
and more general equations of elliptic and parabolic types. Related are applications of p-harmonic
functions in statistical Tug-of-War games, see for instance [20] and [24]. The studies in [20] allow,
in the simplest case, to weaken the classical characterizations of a harmonic function u in R

n as
follows:

u(x) =

ˆ
B"(x)

u + o("2), as "! 0.

It is important from the point of view of our studies below, that the amv-property can be shown
to hold for the viscosity solutions to the normalized p-harmonic equation �N

p u = 0 in R
n for all

1  p  1. Namely, in [20] it is proven that u(x) = µ⇤
p(", u) + o("2), as " ! 0, where µ⇤

p(", u) is
the linear combination of the mean value and the min-max mean:

µ⇤
p(", u) =

n+ 2

n+ p

ˆ
B"(x)

u+
1

2

p� 2

n+ p

 
max
B"(x)

u+ min
B"(x)

u

!
.
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Similar means characterizing p-harmonic functions have been found in [12, 13], by using the median
of a function, see also [15]. The results in [12] yield the amv-property for all p but for n = 2 only,
while results of [15] provide the amv-property for n � 2. Moreover, the mean-value property for
solutions to general elliptic equations with nonsmooth coe�cients is studied in [25].

The amv-property has also been investigated beyond the Euclidean setting, see [9] for results
in the first Heisenberg group H1, [17] for the higher order Heisenberg groups Hn and [10] for the
setting of general Carnot groups.

A new approach to the asymptotic mean-value property has been recently proposed in [14] (see
also [2] for relations with statistical games). More precisely, in [14], the authors proved that every
viscosity solution u to the normalized p-Laplacian in an open set ⌦ ⇢ R

n for a given 1  p  1

(Definition 2.2), can be characterized using an asymptotic mean-value property in terms of the
function µp(", u)(x), defined as the unique minimizer of the following variational problem

ku� µp(", u)kLp(B"(x))
= min

�2R

ku� �kLp(B"(x))
,

where B"(x) ⇢ ⌦ denotes the ball centered at x with radius ". This notion encompasses the
median, the mean-value and the min-max mean of a continuous function, see [14] for details.

In the present paper we generalize the results of [14] to the setting of an arbitrary Carnot
group. The novelty of our results is threefold: Firstly, we consider the setting of noncommutative
metric measure spaces metrically nonequivalent to Euclidean spaces. This shows robustness of the
approach in [14] and opens further possible directions of studies in the setting of subriemannian
spaces as well as Riemannian manifolds. Secondly, since the geometry of sets in Carnot groups
di↵ers from the Euclidean ones due to the complexity of gauge distances and rigidity of the sym-
metries, the techniques used in our work need to be adjusted accordingly. We comment on these
changes throughout the manuscript, see Remark 2 following the proof of Lemma 3.1. Finally, since
our computations allow us to obtain the explicit coe�cients in the key Lemma 3.1, see Examples
2-4, these computations can be employed to obtain counterparts of results in [2] and [3] for Carnot
groups, see also Remark 3 below. Moreover, the proof of our main result can be viewed as a first
step towards the parabolic case (see Section 4 in [14]) as below we develop methods which are key
in establishing counterparts of parabolic-type results in [14].

Let G be a Carnot group of step k (Definition 2.1). Denote by�N
p,G the subelliptic normalized p-

Laplacian (see (2) and (3)) and by µp(", u) the generalized median of a function u defined uniquely
as in (5). The theorem below states that a viscosity solution of �N

p,Gu = 0 can be characterized
asymptotically by the minimum µp(", u). This provides one more, intrinsic, way to characterize
p-harmonic functions via a variant of the asymptotic mean-value property.

Theorem 1.1. Let 1  p  1 and let ⌦ ⇢ G be open. For a function u 2 C0(⌦) the following
are equivalent:

(i) u is a viscosity solution of �N
p,Gu = 0 in ⌦;

(ii) u(x) = µp(", u)(x) + o("2) as "! 0, in the viscosity sense for every x 2 ⌦.

In order to prove this theorem we first prove Lemma 3.1, where the asymptotic behavior of
minimizers µp is described for quadratic polynomials on balls. We illustrate the discussion with
examples of the Heisenberg group and Carnot groups of step 2, see Examples 3 and 4 in Section
3. As presented in Remark 1 in Section 3, our results generalize those obtained in the Euclidean
setting in [14]. In Remark 2 we compare our Lemma 3.1 to its counterpart in [14], discuss di↵erences
between these results and explain di�culties and novelties arising in the setting of general Carnot
groups. Furthermore, in Remark 3 we discuss some possible applications of our results.

2 Carnot groups

In what follows, we briefly recall some standard facts on Carnot groups, see [6, 8, 11, 22] for a more
detailed treatment.
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Definition 2.1. A finite dimensional Lie algebra g, is said to be stratified of step k 2 N, if there
exists subspaces V1, . . . , Vk of g such that:

g = V1 � · · ·� Vk and [V1, Vi] = Vi+1 i = 1, . . . , k � 1; [V1, Vk] = {0}.

We denote by vk the dimension of Vk.
A connected and simply connected Lie group G is a Carnot group if its Lie algebra g is finite

dimensional and stratified. We also set h0 := 0, hi :=
Pi

j=1 vj and m := hk.

Using the exponential map, every Carnot group G of step k is isomorphic as a Lie group to
(Rm, ·) where · is the group operation given by the Baker-Campbell-Hausdor↵ formula.

For each x 2 G we define left translation by ⌧x : G �! G by

⌧x(y) := x · y.

For each � > 0 we define a dilation �� : G �! G by

��(x) = ��(x1, . . . , xm) := (��1x1, . . . ,�
�kxm),

where �i 2 N is called the homogeneity of the variable xi in G and it is defined by �j := i, whenever
hi�1 < j  hi.

We endow G with a pseudonorm and pseudodistance by defining

|x|G := |(x(1), . . . , x(k))|G :=
⇣ kX

j=1

kx(j)
k

2k!
j

⌘ 1
2k!

(1)

d(x, y) := |y�1
· x|G,

where x(j) := (xhj�1+1, . . . , xhj ) and kx(j)
k denotes the standard Euclidean norm in R

hj�hj�1 . We
define the pseudoball centered at x 2 G of radius R > 0 by

B(x,R) = BR(x) := {y 2 G : |y�1
· x|G < R}.

We illustrate the concept of Carnot groups with the following important examples.

Example 1 (The Heisenberg groups Hn). The n-dimensional Heisenberg group G = Hn, is the
Carnot group with a 2-step Lie algebra and orthonormal basis {X1, . . . , X2n, Z} such that

g1 = Span {X1, . . . , X2n}, g2 = Span {Z},

and the nontrivial brackets are [Xi, Xn+i] = Z for i = 1, . . . , n.
In particular, if n = 1, then the Heisenberg group H1 is often presented using coordinates (z, t),

where z = x + iy 2 C and t 2 R, and multiplication defined by (z1, t1)(z2, t2) = (z1 + z2, t1 +
t2 + 2 Im (z1z̄2)). The pseudonorm given by k(z, t)k = (|z|4 + t2)1/4 gives rise to a left invariant
distance defined by dH1(p, q) = kp�1qk which is called the Heisenberg distance. A dilation by r > 0
is defined by �r(z, t) = (rz, r2t) and the left invariant Haar measure � is simply the 3-dimensional
Lebesgue measure, moreover �⇤rd� = r4d�. It follows that the Hausdor↵ dimension of the metric
measure space (H1, dH1 ,�) is 4, and the space is 4-Ahlfors regular, i.e., there exists a positive
constant c such that for all balls B with radius r, we have 1

c r
4
 H

4(B)  cr4, where H
4 denotes

the 4-dimensional Hausdor↵ measure induced by dH1 .

The following proposition, proved in [6], shows that the Lebesgue measure is the Haar measure
on Carnot groups.

Proposition 2.1. Let G = (Rm, ·) be a Carnot group. Then the Lebesgue measure on R
m is

invariant with respect to the left and the right translations on G. Precisely, if we denote by |E| the
Lebesgue measure of a measurable set E ⇢ R

m, then for all x 2 G we have that |x·E| = |E| = |E ·x|.
Moreover, for all � > 0 it holds ��(E)| = �Q|E|, where Q :=

Pm
j=1 vj�j.
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A basis X = {X1, . . . , Xm} of g, is called the Jacobian basis if Xj = J(ej) where (e1, . . . , em) is
the canonical basis of Rm and J : Rm

�! g is defined by J(⌘)(x) := J⌧x(0) · ⌘, where J⌧x denotes
the Jacobian matrix of ⌧x.

Let us recall the following classical proposition describing the Jacobian basis on Carnot groups,
see [6, Corollary 1.3.19] for a proof.

Proposition 2.2. Let G = (Rm, ·) be a Carnot group of step k 2 N. Then the elements of the
Jacobian basis {X1, . . . , Xm} have polynomial coe�cients and if hl�1 < j  hl, 1  l  k, then

Xj(x) = @j +
mX

i>hl

a(j)i (x)@i,

where a(j)i (x) = a(j)i (x1, . . . , xhl�1) when hl�1 < i  hl, and a(j)i (��(x)) = ��i��ja(j)i (x).

The following definition is one of the key concepts of the analysis on Carnot groups. Let
X = {X1, . . . , Xm} be a Jacobian basis of G = (Rm, ·). For any function u 2 C1(Rm), we define
its horizontal gradient by the formula

rV1u :=
h1X

i=1

(Xiu)Xi

and the intrinsic divergence of u as

divV1 u :=
h1X

i=1

Xiu.

Moreover, for 2  j  k, we set rVju :=
P

hj�1<ihj
(Xiu)Xi. The horizontal Laplacian �Gu of a

function u : G �! R is defined by the following

�Gu :=
h1X

i=1

X2
i u.

A priori, one studies solutions to the Laplace equation under the C2-regularity assumption. How-
ever, as in the Euclidean setting, it is natural to weaken the required degree of regularity and
consider weak solutions belonging to the so-called horizontal Sobolev space. For further details we
refer to e.g. [7, 19].

The following results describe the Taylor expansion formula in the Carnot groups, see [6, Propo-
sition 20.3.11] .

Proposition 2.3. Let ⌦ ⇢ G be an open neighborhood of 0 and let u 2 C1(⌦). Then, the following
Taylor formula holds for any point P = (x(1), x(2), . . . , x(k)) 2 ⌦:

u(P ) = u(0) + hrV1u(0), x
(1)

iRh1 + hrV2u(0), x
(2)

iRh2 +
1

2
hD2,⇤

V1
u(0)x(1), x(1)

iRh1 + o(kPk
2)

where

D2,⇤
V1

u :=

✓
(XiXj +XjXi)u

2

◆

1i,jh1

is the so called symmetrized horizontal Hessian of u.

Next, we recall the definition of the main di↵erential operator studied in this work. For p 2

[1,+1] the subelliptic normalized p-Laplace operator is

�N
p,Gu :=

divV1(|rV1u|
p�2

rV1u)

|rV1u|
p�2

if 1  p < 1 (2)
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and

�N
1,Gu :=

D
D2,⇤

V1
u

rV1u
|rV1u|

,
rV1u
|rV1u|

E

|rV1u|
2

. (3)

Note that for p = 2, �2,Gu = �Gu is the so called Kohn-Laplace operator in G. Thus, the p-
Laplace operator is the natural generalization of the Laplacian. Furthermore, the 1-Laplacian can
be viewed as a limit of p-Laplacians in the appropriate sense for p ! 1. Among its applications,
let us mention best Lipschitz extensions, image processing and mass transport problems, see e.g.
the presentation in [20] and references therein.

In the case of the non-renormalized p-Laplacian, notions of a viscosity solution and a weak
solution agree for 1 < p < 1, see [16] for the result in the Euclidean setting and [4] for the
Heisenberg group. Since the normalized p-Laplacian is in the non-divergence form, the concept of
viscosity solutions is more handy than weak solutions. Let us now introduce this notion.

Definition 2.2. Fix a value of p 2 [1,1] and consider the subelliptic normalized p-Laplace
equation

�N
p,Gu = 0 in ⌦ ⇢ G. (4)

(i) A lower semi-continuous function u, is a viscosity supersolution of (4), if for every x0 2 ⌦,
and every � 2 C2(⌦) such that rV1�(x0) 6= 0 and u� � has a strict minimum at x0 2 ⌦, we
have �N

p,G�  0 in ⌦.

(ii) A lower semi-continuous function u, is a viscosity subsolution of (4), if for every x0 2 ⌦, and
every � 2 C2(⌦) such that rV1�(x0) 6= 0 and u � � has a strict maximum at x0 2 ⌦, we
have �N

p,G� � 0 in ⌦.

(iii) A continuous function u is a viscosity solution of of (4), if it is both a viscosity supersolution
and a viscosity subsolution in ⌦.

Fix an open set ⌦ ⇢ G, let 1  p  1 and let u be a real-valued continuous function in ⌦.
For a given x 2 ⌦, choose " > 0 so that B"(x) ⇢ ⌦, we define the number µp(", u)(x) (or simply
µp(", u) if the point x is clear from the context) as the unique real number satisfying

ku� µp(", u)kLp(B"(x))
= min

�2R

ku� �kLp(B"(x))
. (5)

The following properties of µp(", u)(x) have been proved in [14] for the setting of compact topo-
logical spaces X, equipped with a positive Radon measure ⌫ such that ⌫(X) < 1. Here we apply
results from [14] to X = B"(x) ⇢ G and ⌫ the Lebesgue measure, cf. Proposition 2.1.

In Theorem 2.1 below, we summarize results proven in Theorems 2.1, 2.4 and 2.5 in [14].

Theorem 2.1. Let 1  p  1 and u 2 C(B"(x)).

(1) There exists a unique real valued µp(", u) such that

ku� µp(", u)kLp(B"(x))
= min

�2R

ku� �kLp(B"(x))
.

Furthermore, for 1  p < 1, µp(", u) is characterized by the equation

ˆ
B"(x)

|u(y)� µp(", u)|
p�2 (u(y)� µp(", u)) dy = 0, (6)

where for 1  p < 2 we assume that the integrand is zero if u(y)� µp(", u) = 0. For p = 1

we have the following equality:

µ1(", u) =
1

2

 
min
B(x,")

u+ max
B(x,")

u

!
. (7)
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(2) If 1  p  1 then it follows that

���ku� µp(", u)kLp(B"(x))
� kv � µp(", v)kLp(B"(x))

���  ku� vkLp(B"(x))

for any u, v 2 Lp(B"(x)). Moreover, if un ! u in Lp(B"(x)) for 1  p  1 and un, u 2

C0(B"(x)) for p = 1, then µp(", un) ! µp(", u) as n ! 1, the same is true for any p 2 [1,1]

if {un} ⇢ C0(B"(x)) converges uniformly on B"(x) as n ! 1.

(3) Let u and v be two functions which, in the case 1 < p  1, belong to Lp(B"(x)), and in the
case p = 1, belong to C0(B"(x)). If u  v a.e. in B"(x), then µp(", u)  µp(", v).

(4) µp(", u+ c) = µp(", u) + c for every c 2 R.

(5) µp(", cu) = cµp(", u) for every c 2 R.

The following is [14, Corollary 2.3] in Carnot groups of step k:

Corollary 2.1. Let u 2 Lp(B"(x)), for 1 < p  1, or in C0(B"(x)) for p = 1. Let u"(z) =
u(x�"(z)) for z 2 B1(0), then

µp(", u)(x) = µp(1, u")(0).

Proof. For every � 2 R and 1  p < 1 it holds:

ku��kpLp(B"(x))
=

ˆ
B"(x)

|u(⇠)��|p d⇠ = "�1+···+�k

ˆ
B1(0)

|u"(⇠)��|
p d⇠ = "v1+2v2+···+kvkku"��k

p
Lp(B1(0))

and
ku� �kL1(B"(x)) = ku" � �kL1(B1(0))

and the conclusion follows by (1) in Theorem 2.1.

Next we state carefully what is meant by the statement that the asymptotic expansion of the
function u in terms of µp holds in the viscosity sense, see (5) and Definition 2.4. First, we need
the following auxiliary definition.

Definition 2.3. Let h be a real valued function defined in a neighborhood of zero. We say that

h(x)  o(x2) as x ! 0+

if any of the three equivalent conditions is satisfied:

a) lim sup
x!0+

h(x)

x2
 0,

b) there exists a nonnegative function g(x) � 0 such that h(x) + g(x) = o(x2) as x ! 0+,

c) lim
x!0+

h+(x)

x2
 0.

A similar definition is given for h(x) � o(x2) as x ! 0+ by reversing the inequalities in a) and
c), requiring that g(x)  0 in b) and replacing h+ by h� in c)1.

Let f and g be two real valued functions defined in a neighborhood of x0 2 R. We say that f
and g are asymptotic functions for x ! x0, if there exists a function h defined in a neighborhood
Vx0of x0 such that:

(i) f(x) = g(x)h(x) for all x 2 Vx0 \ {x0}.

(ii) limx!x0 h(x) = 1.

1As usual, we denote by h+(x) := max{h(x), 0} and h�(x) := �min{h(x), 0}.
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If f and g are asymptotic for x ! x0, then we simply write f ⇠ g as x ! x0.

Definition 2.4. A continuous function u defined in a neighborhood of a point x 2 G, satisfies

u(x) = µp(", u)(x) + o(✏2),

as ✏! 0+ in the viscosity sense, if the following conditions hold:

(i) for every continuous function � defined in a neighborhood of a point x such that u � � has
a strict minimum at x with u(x) = �(x) and rV1�(x) 6= 0 , we have

�(x) � µp(",�)(x) + o(✏2), as ✏! 0+.

(ii) for every continuous function � defined in a neighborhood of a point x such that u � � has
a strict maximum at x with u(x) = �(x) and rV1�(x) 6= 0, then

�(x)  µp(",�)(x) + o(✏2), as ✏! 0+.

3 The proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following key lemma.

Lemma 3.1 (cf. Lemma 3.1 in [14]). Let G be a Carnot group of step k. Moreover, let ⌦ ⇢ G

be an open set and x 2 ⌦ be a point such that B"(x) ⇢ ⌦ for all small enough "  "0(x). Let
1  p  1 and ⇠ 2 R

v1 \ {0}, ⌘ 2 R
v2 . Let further A be a symmetric v1 ⇥ v1 matrix with trace

tr(A). Moreover, consider the quadratic function q : B"(x) ! R given by

q(y) = q(x)+ h⇠, (x�1y)(1)iRv1 + h⌘, (x�1y)(2)iRv2 +
1

2
hA(x�1y)(1), (x�1y)(1)iRv1 , y 2 B"(x), (8)

where (x�1y)(1) and (x�1y)(2) are the horizontal and the vertical components of x�1y, respectively
and h·, ·iRv1 and h·, ·iRv2 denote the Euclidean scalar products on R

v1 and R
v2 , respectively. It then

follows that

µp(", q)(x) = q(x) + "2c

✓
tr(A) + (p� 2)

hA⇠, ⇠iRv1

|⇠|2

◆
+ o("2), (9)

where

c := c(p, v1, . . . , vk) =
1

2(p+ v1)

B

✓
vk

2(k�1)! ,
p+

Pk�1
j=1 jvj

2(k�1)! + 1

◆

B

✓
vk

2(k�1)! ,
p�2+

Pk�1
j=1 jvj

2(k�1)! + 1

◆
k�1Y

j=2

B

⇣
jvj
2k! ,

p+
Pj�1

i=1 ivi

2k! + 1
⌘

B

⇣
jvj
2k! ,

p�2+
Pj�1

i=1 ivi

2k! + 1
⌘

and B (x, y) denotes the Beta function B (x, y) =
´ 1
0 tx�1(1� t)y�1 dt for all x, y > 0. Furthermore,

if u 2 C2(⌦) with rV1u(x) 6= 0, then

µp(", u)(x) = u(x) + c�N
p,Gu(x)"

2 + o("2), as "! 0+. (10)

Remark 1. The formula describing the constant c(p, v1, . . . , vk) is complicated and not easily
simplified using the properties of the Beta function.

Before we prove the lemma, let us discuss its assertion in some particular cases:

Example 2 (The Euclidean space RN ). If G is the Euclidean space RN then c(p, v1, . . . , vk) agrees
with the constant computed in [14], namely

c(p,N) =
1

2(p+N)
.
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Example 3 (The Heisenberg group H1, cf. Example 1). If G = H1, then quadratic function q
in (8) takes the form:

q(y) = q(x) + h⇠, (x�1y)(1)i+ w(x�1y)(2) +
1

2
hA(x�1y)(1), (x�1y)(1)iR2 , y 2 B"(x),

where w 2 R, ⇠ 2 R
2
\ {0}. Furthermore, the constant c = c(p) appearing in (9) and (10) takes

the following form

c(p) =
2

(p+ 2)(p+ 4)

 
�
�p+6

4

�

�
�p+4

4

�
!2

,

where for t > �1, �(t) =
´1
0 xt�1e�x dx is the Gamma function.

Example 4 (Carnot groups of step 2). Let G be a Carnot group of step 2, then the quadratic
function q in (8) takes the form:

q(y) = q(x) + h⇠, (x�1y)(1)iRn + h⌘, (x�1y)(2)iRk +
1

2
hA(x�1y)(1), (x�1y)(1)iRn , y 2 B"(x),

that is v1 = n, v2 = k, ⇠ 2 R
n
\ {0} and ⌘ 2 R

k. Moreover, the constant c = c(p, n, k), appearing
in (9) and (10), takes the following form

c(p, n, k) :=
1

2(n+ p)

B
�
k
2 ,

n+p+4
4

�

B
�
k
2 ,

n+p+2
4

� .

In the proof of Lemma 3.1 we employ the following integral formula.

Lemma 3.2. Let ↵1, . . . ,↵n be real numbers such that ↵i > �1 for i = 1, . . . , n. It then follows
that ˆ

Tn

x↵1
1 · . . . · x↵n

n dx =
1

2n

Qn
i=1 �(

↵i+1
2 )

�(n+2+
P

↵i

2 )
(11)

where Tn :=
�
(x1, . . . , xn) 2 R

n : x2
1 + . . .+ x2

n < 1, xi � 0 for i = 1, . . . , n
 
.

Proof of Lemma 3.2. Let a, b > �1. Upon applying the change of variables t = sin2 x, we obtain
the following equation:

ˆ ⇡
2

0
sina x cosb xdx =

ˆ 1

0
t
a
2 (1� t)

b
2

1

2
p
t
p
1� t

dt =
1

2

ˆ 1

0
t
a�1
2 (1� t)

b�1
2 dt =

1

2
B

✓
a+ 1

2
,
b+ 1

2

◆
.

Now we are in a position to calculate the left-hand side of (11). We apply the spherical
coordinates 8

>>>>>>>>><

>>>>>>>>>:

x1 = r cos'1

x2 = r sin'1 cos'2

x3 = r sin'1 sin'2 cos'3

...
...

xn�1 = r sin'1 sin'2 · . . . · cos'n�1

xn = r sin'1 sin'2 . . . sin'n�1

with the Jacobian determinant |J | = rn�1 sinn�2 '1 sin
n�3 '2 · . . . · sin'n�2 and the spherical

8



coordinates varying as follows: r 2 (0, 1), 'i 2 (0,⇡/2) for i = 1, . . . , n� 2. The result is

ˆ
Tn

x↵1
1 · . . . · x↵n

n dx =

ˆ 1

0

ˆ ⇡
2

0
. . .

ˆ ⇡
2

0


r
Pn

i=1 ↵i+n�1
· cos↵1 '1 sin

Pn
i=2 ↵i+n�2 '1

· cos↵2 '2 sin
Pn

i=3 ↵i+n�3 '2 · . . . · cos
↵n�1 'n�1 sin

↵n 'n�1

�
d'1 . . . d'n�1dr

=
1

n+
Pn

i=1 ↵i

1

2
B

✓Pn
i=2 ↵i + n� 1

2
,
↵1 + 1

2

◆
1

2
B

✓Pn
i=3 ↵i + n� 2

2
,
↵2 + 1

2

◆

· . . . ·
1

2
B

✓
↵n + 1

2
,
↵n�1 + 1

2

◆
,

which is equal to the right-hand side of (11) upon using the well-known formula B (x, y) = �(x)�(y)
�(x+y) .

Proof of Lemma 3.1. In the proof we follow the steps of the proof of Lemma 3.1 in [14]. However,
since the setting of Carnot groups di↵ers from the Euclidean one, the computations are to some
extent, more demanding and nontrivial.

We begin with computing µp(", q). For z = (z(1), . . . , z(k)) 2 B := B(0, 1), we introduce the
following functions:

q"(z) := q(x�"(z)), v"(z) :=
q"(z)� q(x)

"
and v(z) := h⇠, (z1, . . . , zv1)iRn := h⇠, z(1)iRv1 .

We know that µp(", q)(x) = µp(1, q")(0) by Corollary 2.1. Then, by points (4) and (5) of Theorem
2.1, we see that

µp(", q)(x)� q(x)

"
= µp(1, v")(0).

Let us further observe that

v"(z) = h⇠, z(1)i+
"

2
hAz(1), z(1)i+ "h⌘, z(2)i (12)

which shows that v" converges uniformly to v as " ! 0 on B. We appeal to the second part
of claim (2) in Theorem 2.1 to obtain that µp(1, v")(0) ! µp(1, v)(0) as " ! 0. Recall that the
characterization of � = µp(1, v)(0) given by (6) in Theorem 2.1 states that if p 2 [1,1), then � is
the unique number such that

ˆ
B
|h⇠, y(1)i � �|p�2(h⇠, y(1)i � �)dy = 0.

On the other hand we have ˆ
B
|h⇠, y(1)i|p�2(h⇠, y(1)i)dy = 0,

which follows from the symmetry of the unit ball and the following natural change of variables

�(y(1), y(2), . . . , y(k)) = (�y(1), y(2), . . . , y(k)), |J�| = 1, �(B) = B.

It now follows that µp(1, v)(0) = � = 0.
If p = 1, then by (7):

µ1(1, v)(0) =
1

2

✓
min
B

h⇠, y(1)i+max
B

h⇠, y(1)i

◆
=

1

2
(�|⇠|+ |⇠|) = 0.

Next, we split the discussion into the cases depending on the value of p. Let us define

�" :=
µp(", q)(x)� q(x)

"2
.
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3.1 Case 1: 1 < p < 1.

For the sake of brevity, we introduce a function f(s) = |s|p�2s. Then, upon applying (6) to
µp(1, v")(0) = "�", we obtain ˆ

B
f(v"(z)� "�")dz = 0.

By using (12), this can be transformed to the following expression:
ˆ
B
f

✓
h⇠, z(1)i+ "

✓
1

2
hAz(1), z(1)i � �" + h⌘, z(2)i

◆◆
dz = 0. (13)

Without loss of generality we may assume that |⇠| = 1, since otherwise we can consider the
quadratic function q̃ = q/|⇠|. Let us apply the change of variables z = (z(1), z(2), . . . , z(k)) =
(Ry(1), y(2), . . . , y(k)) in (13), where R is a v1 ⇥ v1 rotation matrix with RT ⇠ = e1 and e1 denotes
the first element of the canonical basis of R⌫1 . Set C = RTAR, then (13) reads as

ˆ
B
f

✓
y1 + "

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆◆
dy = 0.

Since
´
B f(y1)dy = 0, it follows that for all " > 0, we have:

ˆ
B

1

"

✓
f

✓
y1 + "

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆◆
� f(y1)

◆
dy = 0.

Therefore, by the Fundamental Theorem of Calculus, we have:
ˆ
B

ˆ 1

0
f 0
✓
y1 + t"

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆◆
dt

�✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆
dy = 0.

(14)
Equality (14) implies that �" is a weighted mean value of the function 1

2 hCy(1), y(1)i + h⌘, y(2)i
over B with respect to a weighted Lebesgue measure w(y)dy for

w(y) :=

ˆ 1

0
f 0
✓
y1 + t"

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆◆
dt, y 2 B.

The weight function w is nonnegative since f 0(s) = (p� 1)|s|p�2
� 0. Therefore, �" is bounded by

c := k
1
2 hCy(1), y(1)i+ h⌘, y(2)ikL1(B).

Let us consider any subsequence of (�") converging to �0 as " ! 0+, which for the sake of
brevity, we also denote by (�"). Let us consider two cases. If 2  p < 1, then for all y 2 B we
obtain

����
ˆ 1

0
f 0
✓
y1 + t"

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆◆
dt

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆����

 2c(p� 1)

ˆ 1

0

����y1 + t"

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆����
p�2

dt  2c(p� 1)(1 + 2c").

Therefore, by the dominated convergence theorem the sequence (�") converges to

�0 := lim
"!0

�" =

´
B |y1|p�2

�
1
2 hCy(1), y(1)i+ h⌘, y(2)i

�
dy´

B |y1|p�2dy
. (15)

Let now 1 < p < 2. Fix 0 < ✓ < 1 and split the integral (14) into two parts: over the set
G✓ := B \ {|y1| > ✓} and F✓ := B \ {|y1|  ✓}. Observe that for all y 2 G✓ and for all " > 0
satisfying 2c" < ✓, we have the following:

����
ˆ 1

0
f 0
✓
y1 + t"

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆◆
dt

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆����

 2c ||y1|� 2c"|p�2 .
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Moreover,

lim
"!0

ˆ
G✓

||y1|� 2c"|p�2 dy =

ˆ
G✓

|y1|
p�2dy <

ˆ
B
|y1|

p�2dy, (16)

where the inequality holds uniformly for all ✓ 2 (0, 1). Furthermore, the last integral turns out
to be finite which can be seen from the explicit calculation below in (17). Hence, by applying
Theorem 5.4 in [14] to X = G✓ with ⌫ being the Lebesgue measure, we obtain the following:

lim
"!0

ˆ
G✓

ˆ 1

0
f 0
✓
y1 + t"

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆◆
dt

✓
1

2
hCy(1), y(1)i � �" + h⌘, y(2)i

◆
dy

=

ˆ
G✓

(p� 1)|y1|
p�2

✓
1

2
hCy(1), y(1)i+ h⌘, y(2)i � �0

◆
.

Observe that here the upper bound in (16) allows us to conclude that the limit as ✓ ! 0+ is finite.
We now focus on the part of the integral in (14) involving the set F✓. Since |F✓| =

´
F✓

1dy, then
upon writing this integral as in (17), one sees that |F✓| = c(k, v1, . . . , vk)✓, and so |F✓| ! 0, as
✓ ! 0+. Moreover, it su�ces to consider ✓ = 2c" and the related

´
F2c"

||y1|� 2c"|p�2 dy. We again
appeal to integral (17) and reduce our computations to finding

ˆ
Bv1 (0,R1)\{|y1|2c"}

(2c"� |y1|)
p�2 dy(1).

However, direct computation shows that this integral is of order "p�1, which then allows us to let
"! 0+, and in turn conclude (15).

In order to approach the proof of (9), we first need to compute integrals in (15). We begin with
computing the denominator of (15). Once this is completed, the computation of the numerator
will be more straightforward. We write

I =

ˆ
B
|y1|

p�2dy =

ˆ

Bvk
(0,1)

ˆ

Bvk�1
(0,Rk�1)

. . .

ˆ

Bv2 (0,R2)

ˆ

Bv1 (0,R1)

|y1|
p�2dy(1)dy(2) . . . dy(k�1)dy(k),

(17)

where for j = 1, . . . , k, Bvj (0, Rj) denotes the Euclidean ball in R
vj centered at 0 with radius

Rk = 1. Furthermore, each radius Rj > 0 is a function depending on the variables y(i) with i > j,
with the following property:

Rk�1 =Rk�1(y
(k)) =

⇣
1� ky(k)k

2k!
k

⌘ k�1
2k!

Rk�2 =Rk�2(y
(k), y(k�1) =

⇣
1� ky(k)k

2k!
k � ky(k�1)

k
2k!
k�1

⌘ k�2
2k!

...

Rj =Rj(y
(k) . . . , y(j+1)) =

⇣
1� ky(k)k

2k!
k � . . .� ky(j+1)

k
2k!
j+1

⌘ j
2k!

...

R2 =R2(y
(k), . . . , y(3)) =

 
1�

kX

i=3

ky(i)k
2k!
i

! 2
2k!

R1 =R1(y
(k), . . . , y(2)) =

 
1�

kX

i=2

ky(i)k
2k!
i

! 1
2k!

.
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Upon applying the scaling change of variables, followed by Lemma 3.2 with ↵1 = p� 2 and ↵i = 0
for i = 2, . . . , v1, we obtain the following equality:ˆ

Bv1 (0,R1)
|y1|

p�2dy(1) = Rv1+p�2
1

ˆ
Bv1 (0,1)

|y1|
p�2dy(1) = Rv1+p�2

1 2v1
ˆ
Tv1

yp�2
1 dy(1)

= Rv1+p�2
1

�
�p�1

2

�
�
�
1
2

�v1�1

�
� v1+p

2

� . (18)

Using (18) in I, we see that

I =
�
�p�1

2

�
�
�
1
2

�v1�1

�
� v1+p

2

�
ˆ
Bvk

(0,1)
. . .

ˆ
Bv2 (0,R2)

Rv1+p�2
1 dy(2) . . . dy(k). (19)

Since Rv1+p�2
1 is a radial function with respect to y(2), . . . , y(k), in particular with respect to y(2),

we use the spherical coordinates together with the observation that R1 =
⇣
R

2k!
2

2 � ky(2)k
2k!
2

⌘ 1
2k!

to

obtain the following:
ˆ
Bv2 (0,R2)

Rv1+p�2
1 dy(2) =

2
p
⇡
v2

�
�
v2
2

�
ˆ R2

0

⇣
R

2k!
2

2 � r
2k!
2

⌘ v1+p�2
2k!

rv2�1dr

=
2
p
⇡
v2

�
�
v2
2

�
ˆ 1

0
R

v1+p�2
2

2 (1� s
2k!
2 )

v1+p�2
2k! Rv2�1

2 sv2�1R2ds (R2s := r)

=
2
p
⇡
v2

�
�
v2
2

�R
2v2+v1+p�2

2
2

ˆ 1

0
(1� s

2k!
2 )

v1+p�2
2k! sv2�1ds

=
2
p
⇡
v2

�
�
v2
2

�R
2v2+v1+p�2

2
2

2

2k!

ˆ 1

0
(1� t)

v1+p�2
2k! t

2(v2�1)
2k! t

2
2k!�1dt (t := s

2k!
2 )

=
2
p
⇡
v2

�
�
v2
2

�R
2v2+v1+p�2

2
2

2

2k!

ˆ 1

0
(1� t)

v1+p�2
2k! t

2v2
2k! �1dt

=
4
p
⇡
v2

2k!�
�
v2
2

�R
2v2+v1+p�2

2
2 B

✓
2v2
2k!

,
v1 + 2k! + p� 2

2k!

◆
.

In summarise, we now have

I =
4�

�p�1
2

�p
⇡
v1+v2�1

2k!�
� v1+p

2

�
�
�
v2
2

� B

✓
2v2
2k!

,
v1 + 2k! + p� 2

2k!

◆ˆ
Bvk

(0,1)
. . .

ˆ
Bv3 (0,R3)

R
2v2+v1+p�2

2
2 dy(3) . . . dy(k).

In order to complete the computation of the iterated integral I, we need to proceed similarly to
the previous case. As it turns out, the key step is to calculate the following integral:ˆ

Bvj (0,Rj)
R

✓j
j�1dy

(j) (20)

where ✓j > 0 is defined inductively for j = 2, 3, . . . , k � 1. From the previous computations we see
that ✓2 = v1 + p� 2 and ✓3 = 2v2+v1+p�2

2 .
Let us observe, that from the construction of Rj , it follows that

Rj�1 =

✓
R

2k!
j

j � ky(j)k
2k!
j

◆ j�1
2k!

.

Hence

ˆ

Bvj (0,Rj)

R
✓j
j�1dy

(j) =

ˆ

Bvj (0,Rj)

✓
R

2k!
j

j � ky(j)k
2k!
j

◆ (j�1)✓j
2k!

dy(j) =
2
p
⇡
vj

�
� vj

2

�
ˆ Rj

0

✓
R

2k!
j

j � r
2k!
j

◆ (j�1)✓j
2k!

rvj�1dr,

12



which again follows by the integrand being radial. We apply the change of variables Rjs := r to
obtain

ˆ Rj

0

✓
R

2k!
j

j � r
2k!
j

◆ (j�1)✓j
2k!

rvj�1dr =

ˆ 1

0

✓
R

2k!
j

j �R
2k!
j

j s
2k!
j

◆ (j�1)✓j
2k!

R
vj�1
j svj�1Rjds

= R
(j�1)✓j+jvj

j

j

ˆ 1

0
(1� s

2k!
j )

(j�1)✓j
2k! svj�1ds

= R
(j�1)✓j+jvj

j

j

ˆ 1

0
(1� t)

(j�1)✓j
2k! t

j(vj�1)

2k!
j

2k!
t
j�2k!
2k! dt (t := s

2k!
j )

=
j

2k!
R

(j�1)✓j+jvj
j

j

ˆ 1

0
(1� t)

(j�1)✓j
2k! t

jvj�2k!

2k! dt

=
j

2k!
R

(j�1)✓j+jvj
j

j B

✓
jvj
2k!

,
(j � 1)✓j

2k!
+ 1

◆
.

Therefore ✓j is defined by the following recursive formula

✓2 = v1 + p� 2 and ✓j+1 = vj +
j � 1

j
✓j , j = 2, . . . , k � 1,

which leads to the following explicit formula:

✓j+1 =
p� 2 +

Pj
i=1 ivi

j
. (21)

Indeed, observe that

j � 1

j
·
p� 2 +

Pj�1
i=1 ivi

j � 1
+ vj =

p� 2 +
Pj

i=1 ivi
j

.

Now we are in a position to complete the calculation of the integral I, cf. (17) and (19):

I =
�
�p�1

2

�p
⇡
v1�1

�
� v1+p

2

�
ˆ

Bvk
(0,1)

. . .

ˆ

Bv2 (0,R2)

Rv1+p�2
1 dy(2) . . . dy(k)

=
�
�p�1

2

�p
⇡
v1�1

�
� v1+p

2

� 4
p
⇡
v2

2k!�
�
v2
2

�B
✓
2v2
2k!

,
v1 + 2k! + p� 2

2k!

◆ ˆ

Bvk
(0,1)

. . .

ˆ

Bv3 (0,R3)

R
2v2+v1+p�2

2
2 dy(3) . . . dy(k).

Each inner integral of R
✓j
j�1 gives rise to the multiplicative constant

p
⇡
vj

�
� vj

2

� j

k!
B

✓
jvj
2k!

,
(j � 1)✓j

2k!
+ 1

◆

in the value of the iterated integral. Therefore, we end up with

I =
�
�p�1

2

�p
⇡
�1+

Pk�1
j=1 vj (k � 1)!

(k!)k�1�
� v1+p

2

�Qk�1
j=2 �

� vj
2

�
k�1Y

j=2

B

✓
jvj
2k!

,
(j � 1)✓j

2k!
+ 1

◆ˆ
Bvk

(0,1)
R✓k

k�1dy
(k).
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Recall, that ✓k =
p�2+

Pk�1
j=1 jvj

k�1 , Rk = (1� ky(k)k
2k!
k )

k�1
2k! and compute

ˆ
Bvk

(0,1)
R✓k

k�1dy
(k) =

ˆ
Bvk

(0,1)
(1� ky(k)k

2k!
k )

✓k(k�1)
2k! dy(k)

=
2
p
⇡
vk

�
�
vk
2

�
ˆ 1

0
(1� r

2k!
k )

✓k(k�1)
2k! rvk�1dr (s := r

2k!
k )

=
2
p
⇡
vk

�
�
vk
2

� 1

2(k � 1)!

ˆ 1

0
(1� s)

✓k(k�1)
2k! s

vk�1
2(k�1)! s

1
2(k�1)!�1ds

=

p
⇡
vk

�
�
vk
2

�
(k � 1)!

ˆ 1

0
(1� s)

✓k(k�1)
2k! s

vk�2(k�1)!
2(k�1)! ds

=

p
⇡
vk

�
�
vk
2

�
(k � 1)!

B

✓
vk

2(k � 1)!
,
✓k(k � 1)

2(k � 1)!
+ 1

◆
.

Hence we arrive at

I =
�
�p�1

2

�p
⇡
�1+

Pk
i=1 vi

(k!)k�1�
� v1+p

2

�Qk
i=2 �

�
vi
2

�B
✓

vk
2(k � 1)!

,
✓k

2(k � 2)!
+ 1

◆ k�1Y

i=2

B

✓
jvj
2k!

,
(j � 1)✓j

2k!
+ 1

◆
. (22)

Next we consider the integral in the numerator of (15), namely

J :=

ˆ
B
|y1|

p�2

✓
1

2
hCy(1), y(1)i+ h⌘, y(2)i

◆
dy.

We note that
´
Bh⌘, y

(2)
i|y1|p�2 = 0, which follows by applying the change of variables

 (y(1), y(2), y(3), . . . , y(k)) = (y(1),�y(2), y(3), . . . , y(k)),

with |J | = 1 and  (B) = B, resulting in the value of the integral being invariant under multipli-
cation by �1. Let us denote the coe�cients of matrix C as follows: C = [cij ]i,j=1,...,v1 , then

2J = c11

ˆ
B
|y1|

pdy

| {z }
J1

+
X

i 6=j

cij

ˆ
B
|y1|

p�2yiyjdy

| {z }
J2

+
v1X

i=2

cii

ˆ
B
|y1|

p�2y2i dy

| {z }
J3

. (23)

Observe, that by the symmetry of B, every integral term of the sum J2 vanishes. We will
handle J1 and J3 analogously to I. First, for i = 2, . . . , v1 we compute the following integrals

ˆ
Bv1 (0,R1)

|y1|
p�2y2i dy

(1) = Rv1+p
1

�
�p�1

2

�
�
�
3
2

�
�
�
1
2

�v1�2

�
�p+v1+2

2

� = Rv1+p
1

p
⇡
v1�1

�
�p�1

2

�

2�
�p+v1+2

2

� , (24)

where again we use Lemma 3.2 and the familiar property �(1 + s) = s�(s) with s = 1
2 (cf.

computations at (18)).
Notice that the calculations summarised in (22) work for an arbitrary p > 1. More precisely, the

integrals J1 and J3 over the ball B, can be expressed in the same way as in (17), the multiplicative
constants arising from the computation of integrals (20) will be the same but with the exponents
✓j replaced by the exponents ✓0j defined by the following formula (cf. definition of ✓j in (21)):

✓0j =
p+

Pj�1
i=1 ivi

j � 1
.
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Therefore, by using (24) and calculations analogous to those between formula (20) and (22) we
arrive at

J3 =
v1X

i=2

cii

p
⇡
�1+

Pk�1
j=1 vj�

�p�1
2

�
(k � 1)!

2(k!)k�1�
�p+v1+2

2

�Qk�1
j=2 �

� vj
2

�
k�1Y

j=2

B

✓
jvj
2k!

,
(j � 1)✓0j

2k!
+ 1

◆ ˆ

Bvk
(0,1)

(1� ky(k)k
2k!
k )

✓0k(k�1)

2k! dy(k)

=
v1X

i=2

cii

p
⇡
�1+

Pk
j=1 vj�

�p�1
2

�

2(k!)k�1�
�p+v1+2

2

�Qk
j=2 �

� vj
2

�B
✓

vk
2(k � 1)!

,
✓0k

2(k � 2)!
+ 1

◆ k�1Y

j=2

B

✓
jvj
2k!

,
(j � 1)✓0j

2k!
+ 1

◆
.

Moreover, in order to compute J1, we proceed computationally the same way we did for for (17)
with the power p instead of p� 2, and obtain (22) with p now corresponding to p+ 2:

J1 = c11
�
�p+1

2

�p
⇡
�1+

Pk
j=1 vj

(k!)k�1�
� v1+p+2

2

�Qk
j=2 �

� vj
2

�B
✓

vk
2(k � 1)!

,
✓0k

2(k � 2)!
+ 1

◆ k�1Y

j=2

B

✓
jvj
2k!

,
(j � 1)✓0j

2k!
+ 1

◆
.

We collect the above calculations to arrive at

J =
J1 + J3

2
=

p
⇡
�1+

Pk
j=1 vj

2(k!)k�1�
� v1+p+2

2

�Qk
j=2 �

� vj
2

�B
✓

vk
2(k � 1)!

,
✓0k

2(k � 2)!
+ 1

◆

⇥

 
c11�

✓
p+ 1

2

◆
+

v1X

i=1

1

2
cii�

✓
p� 1

2

◆! k�1Y

j=2

B

✓
jvj
2k!

,
(j � 1)✓0j

2k!
+ 1

◆

=
�
�p�1

2

�p
⇡
�1+

Pk
j=1 vj

4(k!)k�1�
� v1+p+2

2

�Qk
j=2 �

� vj
2

�B
✓

vk
2(k � 1)!

,
✓0k

2(k � 2)!
+ 1

◆

⇥

 
c11(p� 1) +

v1X

i=2

cii

!
k�1Y

j=2

B

✓
jvj
2k!

,
(j � 1)✓0j

2k!
+ 1

◆
,

where we again use the familiar property of the � function as in (24). It now follows that

�0 =
J

I
=

�
�p+v1

2

�

4�
�p+2+v1

2

�
B

⇣
vk

2(k�1)! ,
✓0
k

2(k�2)! + 1
⌘

B

⇣
vk

2(k�1)! ,
✓k

2(k�2)! + 1
⌘
 
c11(p� 1) +

v1X

i=2

cii

!
k�1Y

j=2

B

⇣
jvj
2k! ,

(j�1)✓0
j

2k! + 1
⌘

B

⇣
jvj
2k! ,

(j�1)✓j
2k! + 1

⌘

=
1

2(p+ v1)

B

⇣
vk

2(k�1)! ,
✓0
k

2(k�2)! + 1
⌘

B

⇣
vk

2(k�1)! ,
✓k

2(k�2)! + 1
⌘

k�1Y

j=2

B

⇣
jvj
2k! ,

(j�1)✓0
j

2k! + 1
⌘

B

⇣
jvj
2k! ,

(j�1)✓j
2k! + 1

⌘
 
c11(p� 1) +

v1X

i=2

cii

!

= c(p, v1, . . . , vk) ·

 
c11(p� 1) +

v1X

i=2

cii

!
,

where the constant c(p, v1, . . . , vk) is defined with the above equality (see also Remark 1 and
Examples 2-4 in Section 3 for further discussion about this constant).

In order to arrive at assertion (9), we express the constants c11 and tr(C) in terms of the matrix
A and the vector ⇠. Recall that C = RTAR and RT ⇠ = e1, which imply that

c11 = hCe1, e1i = hCRT ⇠, RT ⇠i = hR(RTAR)RT ⇠, ⇠i = hA⇠, ⇠i,

moreover, the orthogonality of R implies that tr(C) = tr(RTAR) = tr(A). Therefore, we can
conclude that

�0 = c(p, v1, . . . , vk)(hA⇠, ⇠i(p� 2) + tr(A)),

which upon substituting ⇠ with ⇠/|⇠|, proves the assertion (9).
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We now consider the second assertion of the lemma, namely the asymptotic formula (10) for
µp(", u) and u 2 C2(⌦). Suppose " > 0 is chosen so that B"(x) ⇢ ⌦. Consider the function q(y)
as in (8), with

q(x) = u(x), ⇠ = rV1u(x), A = r
2
V1
u(x), and ⌘ = 2rV2u(x).

Notice that with this notation (and by the assumption ⇠ 6= 0), it holds that

�N
p,Gu(x) = tr(A) + (p� 2)

hA⇠, ⇠i

|⇠|2
.

Set u"(z) = u(x�"(z)) and q"(z) = q(x�"(z)). Since u 2 C2(⌦), it follows that for all t > 0,
there exists "(t) > 0 such that for every z 2 B and all " 2 (0, "(t)) it holds |u"(z) � q"(z)| < t"2.
Furthermore, by claims (4) and (5) of Theorem 2.1 we have µp(", q ± t"2)(x) = µp(", q)(x) ± t"2.
These observations together with Corollary 2.1 and Part (3) of Theorem 2.1 allow us to obtain the
following estimates:

µp(", q)� u(x)

"2
� t 

µp(", u)� u(x)

"2


µp(", q)� u(x)

"2
+ t.

Applying (9) we obtain

c(p, v1, . . . , vk)�
N
p,Gu(x)� t  lim inf

"!0

µp(", q)� u(x)

"2

 lim sup
"!0

µp(", q)� u(x)

"2
 c(p, v1, . . . , vk)�

N
p,Gu(x) + t,

which implies the assertion (10) for 1 < p < 1.

3.2 Case 2: p = 1.

We need to demonstrate that the expression

�" =
µ1(", q)� q(x)

"2

=
1

2"

✓
min
y2B


h⇠, y(1)i+ "

✓
h⌘, y(2)i+

1

2
hAy(1), y(1)i

◆�

+max
y2B


h⇠, y(1)i+ "

✓
h⌘, y(2)i+

1

2
hAy(1), y(1)i

◆�◆

has a limit as "! 0.
Let us define a function g : G ! R by setting g(y) = h⇠, y(1)i+h⌘, y(2)i+ 1

2 hAy(1), y(1)i. Observe
further, that the change of variables y = �1/"(z) implies the following equalities:

min
y2B1(0)


h⇠, y(1)i+ "

✓
h⌘, y(2)i+

1

2
hAy(1), y(1)i

◆�
=

1

"
min

z2B"(0)
g(z),

and

max
y2B1(0)


h⇠, y(1)i+ "

✓
h⌘, y(2)i+

1

2
hAy(1), y(1)i

◆�
=

1

"
max

z2B"(0)
g(z),

and it follows that

�" =
1

2"2

 
min

z2B"(0)
g(z) + max

z2B"(0)
g(z)

!
.
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Next we note that rV1g(0) = ⇠ 6= 0, thus we can apply Lemma 1.5 and 1.6 in [10], and a�rm

that for all small enough ", there exist points P",M = (y(1)",M , . . . , y(k)",M ) and P",m = (y(1)",m, . . . , y(k)",m)
in @B"(0) with the following properties:

max
B"(0)

g = g(P",M ) and min
B"(0)

g = g(P",m).

In terms of the expression we have the following estimate

1

2"2
(g(P",m) + g(�P",m))  �" 

1

2"2
(g(P",M ) + g(�P",M )) . (25)

Moreover, by applying again [10, Lemma 1.6], we have that

lim
"!0

y(1)",M

"
=

⇠

|⇠|
and lim

"!0

y(1)",m

"
= �

⇠

|⇠|
, (26)

which implies

1

2"2
(g(P",M ) + g(�P",M )) =

1

4"2

⇣
hAy(1)",M , y(1)",M i+ hA� y(1)",M ,�y(1)",M i

⌘

=
1

2
hA

y(1)",M

"
,
y(1)",M

"
i

"!0
���!

1

2

hA⇠, ⇠i

|⇠|2
.

We treat the left-hand side of (25) similarly to conclude that

µ1(", q) = q(x) +
"2

2

hA⇠, ⇠i

|⇠|2
+ o("2).

Upon repeating the reasoning similar to the one for �N
p,G, we obtain that asymptotic formula (10)

holds for �N
1,G as well.

3.3 Case 3: p = 1.

Recall, that by the discussion at the beginning of the proof of Lemma 3.1 (cf. (12)), the unique
number �" is defined with the following equation

|{z 2 B : h⇠, z(1)i+ "

✓
1

2
hAz(1), z(1)i+ h⌘, z(2)i

◆
< "�"}|

= |{z 2 B : h⇠, z(1)i+ "

✓
1

2
hAz(1), z(1)i+ h⌘, z(2)i

◆
> "�"}|.

We apply the same change of variables via the matrix R, as described in the paragraph following
formula (13) (for the sake of simplicity we still use the variable z) and divide both inequalities by
" to arrive at

|{z 2 B :
z1
"
+
1

2
hCz(1), z(1)i+h⌘, z(2)i < �"}| = |{z 2 B :

z1
"
+
1

2
hCz(1), z(1)i+h⌘, z(2)i > �"}|. (27)

We again we assume that |⇠| = 1 and let C = RTAR, where R denotes the rotation matrix as
defined in the discussion following (13). Equation (27) means that for each fixed " > 0, �" is the
median µ1(1, h) =: µ1(h) of the function h : B ! R defined with the following formula

h(z) :=
z1
"

+
1

2
hCz(1), z(1)i+ h⌘, z(2)i.
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Denote by c0 := k
1
2 hCz(1), z(1)kL1(B) < 1. Let us observe, that by monotonicity of µ1 and

property (4) in Theorem 2.1, we obtain the following estimates

�" = µ1

✓
z1
"

+
1

2
hCz(1), z(1)i+ h⌘, z(2)i

◆

 µ1

⇣z1
"

+ h⌘, z(2)i+ c0
⌘

= µ1

⇣z1
"

+ h⌘, z(2)i
⌘
+ c0,

(28)

and

�" = µ1

✓
z1
"

+
1

2
hCz(1), z(1)i+ h⌘, z(2)i

◆

� µ1

⇣z1
"

+ h⌘, z(2)i � c0
⌘

= µ1

⇣z1
"

+ h⌘, z(2)i
⌘
� c0.

(29)

Let us observe, that for all " > 0 we have

|{z 2 B :
z1
"

+ h⌘, z(2)i < 0}| = |{z 2 B :
z1
"

+ h⌘, z(2)i > 0}|.

since the two quantities are equivalent under the change of variables z 7! �z. It then follows that

µ1

⇣z1
"

+ h⌘, z(2)i
⌘
= 0,

and estimates (28) and (29) reads as �c0  �"  c0. Hence �" is bounded, and after passing to a
subsequence, there exists �0 := lim"!0 �".

Now let us apply to both sides of (27) the following change of variables

(z1, z2, . . . , zv1 , z
(2), . . . , z(k)) 7! ("z1, z2, z3, . . . , zv1 , z

(2), . . . , z(k)) =: "z1e1 + z̃,

where z̃ := (0, z2, . . . , zv1 , z
(2), . . . , z(k)). The Jacobian of this transformation is constant, hence it

cancels out on both sides and (27) becomes

|{z 2 R
m : |"z1e1 + z̃|G < 1, z1 +

✓
1

2
hC("z1e1 + z̃(1)), ("z1e1 + z̃(1))i+ h⌘, z(2)i

◆
< �"}|

= |{z 2 R
m : |"z1e1 + z̃|G < 1, z1 +

✓
1

2
hC("z1e1 + z̃(1)), ("z1e1 + z̃(1))i+ h⌘, z(2)i

◆
> �"}|.

(30)

Let us denote by B̃ := {(z2, . . . , zv1 , z
(2), . . . , z(k)) 2 R

m�1 : |(0, z2, . . . , zv1 , z
(2), . . . , z(k))|G < 1}

and consider a function F : {z 2 R
m : |"z1e1 + z̃|G < 1} ! R defined by

F (z) := z1 +

✓
1

2
hC("z1e1 + z̃(1)), ("z1e1 + z̃(1))i+ h⌘, z(2)i

◆
.

For small ", we are going to represent the common boundary of the sets in (30), i.e., the surface
{F (z) = �" : |"z1e1 + z̃|G < 1}, as the graph of a function of the form z̃ ! g"(z̃)e1 + z̃ where
g" : B̃ ! R.

Let us observe, that the derivative Fz1 can be estimated from below:

Fz1(z) = 1 + "2c11z1 + "(c12z2 + c13z3 . . .+ c1v1zv1) >
1

2

for " su�ciently small. This follows from |"z1e1 + z̃|G < 1 and the fact that

�"
v1X

i=1

|c1i|  "2c11z1 + "(c12z2 + c13z3 . . .+ c1v1zv1)  "
v1X

i=1

|c1i|.
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Hence for a fixed z̃ 2 B̃ the function z1 ! F (z1e1+ z̃) is monotone increasing and therefore has an
inverse h",z̃(t). It follows that F (h",z̃(t)e1 + z̃) = t and g"(z̃) = h",z̃(�") is a point in the common
boundary. Furthermore, let us observe that, possibly after passing to a subsequence, the following
limit exists for all z̃ 2 B̃

g"(z̃) ! �0 �
1

2
hCz̃(1), z̃(1)i � h⌘, z(2)i as "! 0+. (31)

Indeed, for all z̃ 2 B̃ the equation F (g"(z̃)e1 + z̃) = �" equivalently reads:

g"(z̃) +
1

2
hC("g"(z̃)e1 + z̃(1)), ("g"(z̃)e1 + z̃(1))i+ h⌘, z(2)i = �".

From this we get that

g"(z̃) +
1

2

 
"2c11g

2
"(z̃) + 2"

v1X

i=2

c1ig"(z̃)zi + hCz̃(1), z̃(1)i

!
+ h⌘, z(2)i = �",

which for fixed z̃ and c11 6= 0 is the following quadratic equation in g"(z̃):

g2"(z̃)
"2c11
2

+ g"(z̃)

 
1 + 2"

v1X

i=2

c1izi

!
+

1

2
hCz̃(1), z̃(1)i+ h⌘, z(2)i � �" = 0.

Therefore g"(z̃) has to be either equal to

g"(z̃) =
�1� 2"

Pv1
i=2 c1izi +

q
(1 + 2"

Pv1
i=2 c1izi)

2
� 2"2c11

�
1
2 hCz̃(1), z̃(1)i+ h⌘, z(2)i � �"

�

"2c11
,

or equal to

g"(z̃) =
�1� 2"

Pv1
i=2 c1izi �

q
(1 + 2"

Pv1
i=2 c1izi)

2
� 2"2c11

�
1
2 hCz̃(1), z̃(1)i+ h⌘, z(2)i � �"

�

"2c11
.

Observe, that the second solution is of order "�2 and therefore violates the condition |"g"(z̃)e1 +
z̃|G < 1 for "! 0+. We consider the first solution, which after cancellation reads

g"(z̃) =
2
�
�" �

1
2 hCz̃(1), z̃(1)i � h⌘, z(2)i

�
q

(1 + 2"
Pv1

i=2 c1izi)
2
� 2"2c11

�
1
2 hCz̃(1), z̃(1)i+ h⌘, z(2)i � �"

�
+ 1 + 2"

Pv1
i=2 c1izi

.

If c11 = 0 then

g"(z̃)

 
1 + 2"

v1X

i=2

c1izi

!
= �" �

1

2
hCz̃(1), z̃(1)i � h⌘, z(2)i.

Therefore, we conclude (31).
Thus, we can represent the measures of the sets appearing in (30) as integrals, and obtain the

following

ˆ
B̃
[min {g"(z̃), G"(z̃)}+G"(z̃)] dz̃ =

ˆ
B̃
[G"(z̃)�max {g"(z̃), G"(z̃)}] dz̃, (32)

where

G"(z̃) :=
1

"

vuuut

0

@1�
kX

j=2

kz(j)k
2k!
j

1

A

1
k!

� (z22 + . . .+ z2v1).

19



The function G" is the non-negative solution z1 to the equation |"z1e1 + z̃|G = 1 describing the
boundary of B. Observe, that (32) is equivalent to

ˆ
B̃
[min {g"(z̃), G"(z̃)}+max {g"(z̃), G"(z̃)}] dz̃ = 0. (33)

Applying the dominated convergence theorem to the case "! 0+ in (33) gives the following
ˆ
B̃

✓
�0 �

1

2
hCz̃(1), z̃(1)i � h⌘, z(2)i

◆
dz̃ = 0. (34)

The symmetry of B̃ shows that
´
B̃h⌘, z

(2)
i = 0 and so (34) becomes

�0 =
1

2

ˆ
B̃
hCz̃(1), z̃(1)idz̃.

Due to symmetries of B̃ the right-hand side can be written as

�0 =
1

2

v1X

i=2

cii

ˆ
B̃
z2i dz̃.

Observe, that the calculation of the above integrals is essentially covered by the calculations
for I defined in (17) and J3 defined in (23) with p = 2. Indeed, the set B̃ has the same structure
as B, since B̃ is defined with the inequality |z̃|G < 1. More precisely, the expression |z̃|G can
be interpreted in the following way: define y(1) := z̃(1) = (z2, z3, . . . , zv1) and y(i) := z̃(i) for
i = 2, 3, . . . , k, ṽ1 = v1 � 1, ṽi = vi for i = 2, . . . , k and |y|

G̃
= |z̃|G. Following the calculations

below (17) and (23) we obtain

✓̃j+1 =

Pj
i=i iṽi
j

=
�1 +

Pj
i=i ivi

j
and ✓̃0j+1 =

2 +
Pj

i=1 iṽi
j

=
1 +

Pj
i=1 ivi
j

for j = 1, . . . , k � 1. We sum up these observations with

�0=
v1X

i=2

cii

p
⇡
�2+

Pk
j=1 vj�

�
2�1
2

�

4(k!)k�1�
�
2+v1+1

2

�Qk
j=2 �

� vj
2

�B
 

vk
2(k � 1)!

,
✓̃0k

2(k � 2)!
+ 1

!
k�1Y

j=2

B

 
jvj
2k!

,
(j � 1)✓̃0j

2k!
+ 1

!

/
�
�
2�1
2

�p
⇡
�2+

Pk
i=1 vi

(k!)k�1�
�
v1+1

2

�Qk
i=2 �

�
vi
2

�B
 

vk
2(k � 1)!

,
✓̃k

2(k � 2)!
+ 1

!
k�1Y

i=2

B

 
jvj
2k!

,
(j � 1)✓̃j

2k!
+ 1

!
,

which reduces to

�0 =
1

2(v1 + 1)

B

⇣
vk

2(k�1)! ,
✓̃0
k

2(k�2)! + 1
⌘

B

⇣
vk

2(k�1)! ,
✓̃k

2(k�2)! + 1
⌘

k�1Y

i=2

B

✓
jvj
2k! ,

(j�1)✓̃0
j

2k! + 1

◆

B

⇣
jvj
2k! ,

(j�1)✓̃j
2k! + 1

⌘
v1X

i=2

cii

= c(z, v1, . . . , vk)
v1X

i=2

cii = c(z, v1, . . . , vk)

✓
tr(A)�

hA⇠, ⇠i

|⇠|2

◆
.

The last equality follows from the same argument used in the case 1 < p < 1, and the same
reasoning allows us to conclude (9) and (10) for p = 1 as well. Thus, the proof of Lemma 3.1 is
completed for all 1  p  1.

Let us comment about the di↵erences between the above lemma and [14, Lemma 3.1].

Remark 2. (1) The quadratic polynomial q in formula (8) is defined for any Carnot group of
step k and di↵ers from the original one studied in R

n, cf. [14, Lemma 3.1]. The formula for
q reflects the dependence of q on the first two layers of G.

20



(2) The geometry of gauge balls in Carnot groups is far from Euclidean and non-trivial in com-
parision: balls are flattened at the characteristic points (at poles) and possess less symmetry
than balls in R

n. The k-step stratification of G allows for the integrals I (see (17)), J1 and
J3 (see the discussion following formula (23)) to be expressed in a straightforward manner
as multiple integrals. However, evaluating these integrals leads to technically involved com-
putations, cf. (19) and the computations following it. A noticable di↵erence in comparison
with [14] is the appearance of the Beta function which is not present in the Euclidean case
and can be viewed as consequence of the stratification in the geometry.

(3) Our proof for the case p = 1 di↵ers from the corresponding one in [14], as it requires
appealing to results in [10]. Indeed, the geometry of gauge balls in general Carnot groups
makes obtaining limits in (26) a subtle and highly nontrivial task, see the proof of Lemma
1.6 in [10] and the discussion following its formulation in [10] on pg. 207.

We are now in position to prove Theorem 1.1.

The proof of Theorem 1.1. Let B(x) ⇢ ⌦ be ball and let us fix u 2 C0(⌦) and � 2 C2(B(x)) with
rV1�(x) 6= 0. The asymptotic formula (10) implies that

�(x) = µp(",�)(x)� c(p, v1, . . . , vk)�
N
p,G�(x)"

2 + o("2), as "! 0. (35)

Suppose that u is a viscosity solution, in the sense of Definition 2.2, to the equation �N
p,Gu = 0

in ⌦. Thus, in particular, u satisfies parts (i) and (ii) of Definition 2.2. Since u is a viscosity
supersolution of �N

p,G = 0 in ⌦, then at point x, for � as above such that u � � has a strict

minimum at x and u(x) = �(x), it holds that �N
p,G�(x)  0. Therefore, from (35) we obtain

�(x) � µp(", u)(x) + o("2), as "! 0,

which proves that � at x satisfies part (i) of Definition 2.4. By using the fact that u is also a
viscosity subsolution (and so u satisfies part (ii) of Definition 2.2) we show that inequality in part
(ii) of Definition 2.4 holds as well. This proves that u(x) = µp(", u)(x) + o("2) as " ! 0 in the
viscosity sense.

Now we will prove the converse. Suppose, that u(x) = µp(", u)(x) + o("2) as " ! 0 in the
viscosity sense. If u � � attains a strict minimum at x, then by Definition 2.4, it follows that
�(x) � µp(",�)(x) + o("2) as "! 0. Using this result in (35), we get

�N
p,G�(x) =

µp(",�)(x)� �(x)

c(p, v1, . . . , vk)"2
+ o(1)  o(1),

as " ! 0, and hence �N
p,G�(x)  0. We apply a similar reasoning in the case u � � has a strict

maximum at x. This proves, that u is a viscosity solution of �N
p,Gu = 0 in ⌦.

Remark 3. Mean value formulas similar to the ones proved in the present paper have been used
in [18] to study random walks and random tug of war in the Heisenberg group. In [18], the authors
implemented the approach of Peres-She�eld [24] to provide a game-theoretical interpretation of
the p-Laplacian in the Heisenberg group, they also characterized its viscosity solutions via an
asymptotic mean value expansion similar to the one proved in [20]. We expect that the result
proved in the present paper could be used to generalize [18] to general Carnot groups.
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