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Abstract
In this PhD thesis, we present some developments in the theory of sets of finite perimeter,
weak integration by parts formulas and systems of coupled evolution equations for nonnegative
Radon measures.

First, we introduce a characterization of the perimeter of a measurable set in Rn via a
family of functionals originating from a BMO-type seminorm. This result comes from a joint
work with Luigi Ambrosio and is based on a previous paper by Ambrosio, Bourgain, Brezis and
Figalli. In this paper, the authors considered functionals depending on a BMO-type seminorm
and disjoint coverings of cubes with arbitrary orientations, and proved the convergence to a
multiple of the perimeter. We modify their approach by using, instead of cubes, covering
families made by translations of a given open connected bounded set with Lipschitz boundary.
We show that the new functionals converge to an anisotropic surface measure, which is indeed
a multiple of the perimeter if we allow for isotropic coverings (e.g. balls). This result underlines
that the particular geometry of the covering sets is not essential.

We then present the proof of a one-sided interior approximation for sets of finite perimeter,
which was introduced in a paper of Chen, Torres and Ziemer. The original proof contained a
gap, which was corrected in a joint work with Monica Torres. Given a set of finite perimeter
E, the key idea for the approximation consists in taking the superlevel sets above 1/2 (re-
spectively, below) of the mollification of the characteristic function of E. Then, we have that,
asymptotically, the boundary of the approximating sets has negligible intersection with the
measure theoretic interior (respectively, exterior) of E with respect to the (n− 1)-dimensional
Hausdorff measure.

The main motivation for the study of this finer type of approximation was the aim to
establish Gauss–Green formulas for sets of finite perimeter and divergence-measure fields; that
is, Lp-summable vector fields whose divergence is a Radon measure. Exploiting an alternative
approach, we lay out a direct proof of generalized versions of the Gauss–Green formulas, which
relies solely on the Leibniz rule for essentially bounded divergence-measure fields and scalar
essentially bounded BV functions. In addition, we show some recent refinements. In particular,
we provide a new Leibniz rule for Lp-summable divergence-measure fields and scalar essentially
bounded Sobolev functions with gradient in Lp′ and we derive Green’s identities on sets of finite
perimeter. This part is based on joint works with Kevin R. Payne and with Gui-Qiang Chen
and Monica Torres.

Due to the robustness of the Euclidean theory of divergence-measure fields, we can extend it
to some non-Euclidean context. In particular, based on a joint work with Valentino Magnani,
we develop a theory of divergence-measure fields in noncommutative stratified nilpotent Lie
groups. Thanks to some nontrivial approximation arguments, we prove a Leibniz rule for
essentially bounded horizontal divergence-measure fields and essentially bounded scalar function
of bounded h-variation. As a consequence, we achieve the existence of normal traces and the
related Gauss–Green theorem on sets of finite h-perimeter. Despite the fact that the Euclidean
theory of normal traces relies heavily on De Giorgi’s blow-up theorem, which does not hold in
general stratified groups, we are able to provide alternative proofs for the locality of the normal
traces and other related results.

Finally, we present a work in progress concerning the study of dislocations in crystals and
their connection with evolution equations for signed measures, based on a current research
project with Luigi Ambrosio, Mark A. Peletier and Oliver Tse. Starting from previous works of
Ambrosio, Mainini and Serfaty, we consider couples of nonnegative measures instead of signed
measures. Then, we employ techniques from the theory of optimal transport in order to repre-
sent the evolution equations as the gradient flows of a given energy with respect to a suitable
distance among couples of nonnegative measures. To this purpose, we study a version of a
Hellinger-Kantorovich distance introduced by Liero, Mielke and Savaré. In particular, we prove
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the existence of (weakly) continuous minimizing curves of measures which realize this distance
and investigate its alternative representation as infimum of some action functional. Future
research shall go in the direction of analyzing further properties of this Hellinger-Kantorovich
distance, such as its dual representation, with the final aim to apply the classical methods of
minimizing movements to prove the existence of solutions satisfying a certain type of energy
dissipation equality.
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Introduction

Geometric Measure Theory is the branch of Analysis which studies the fine properties of weakly
regular functions and nonsmooth surfaces, generalizing techniques from differential geometry
through measure theoretic arguments. More specifically, it deals with the generalizations and
the weaker versions of many classical problems and statements from Geometry and Analysis,
such as the isoperimetric and Plateau’s problem, Stokes’ theorem and the Gauss–Green for-
mula. In addition, tools and concepts from Geometric Measure Theory play a relevant role in
many other fields where weak convergence results and vector fields are involved. One of the
main examples of such applications is the theory of gradient flows, which deals with the study
of differential systems where the velocity of the solution is given by the gradient of a given
functional. In particular, such theory has been exploited to derive existence and regularity
results for solutions of differential equations which could be seen as a gradient flows of some
functionals acting on suitable spaces of finite Radon (or probability) measures.

This thesis is devoted to some of the topics from Geometric Measure Theory, to which I ded-
icated my research during my years of PhD: different characterization of sets of finite perimeter
and their smooth approximation (in the Euclidean and the stratified groups framework), the
Gauss–Green and integration by parts formulas under weak regularity assumptions and some
evolution problems for signed measures.

We provide now an outline of the thesis, while we shall give a more detailed overview of
these topics in the following subsections.

• In Chapter 1 we set some notations and introduce basic tools and results from Geometric
Measure Theory which shall be used in the subsequent chapters. In particular, we recall
relevant preliminary notions on the theory of functions with bounded variation (BV ) and
sets of finite perimeter in stratified groups, while providing certain new results on smooth
approximation for BV functions, based on the first sections of [51], a joint work with
Valentino Magnani.

• Chapter 2 contains a collection of results on the theory of sets with finite perimeter in
the Euclidean space and in stratified groups. In particular, in Section 2.2, based on a
joint work with Luigi Ambrosio [6], we deal with a characterization of the perimeter of
sets in Rn through functionals arising from seminorms of the bounded mean oscillation
type. In Section 2.3, based on [55], in collaboration with Monica Torres, we provide an
improvement to the standard approximation results for Euclidean sets of finite perimeter.
In Section 2.4 we investigate the existence and uniqueness of weak∗ limit of mollifications
of characteristic functions of sets with finite h-perimeter in stratified groups. These results
are part of the preliminaries of [51], in collaboration with Valentino Magnani.

• In Chapter 3 we give an exposition on the main features of the Euclidean theory of
divergence-measure fields in relation with the generalization of Gauss–Green and integra-
tion by parts formulas. This chapter contains material from [52], in collaboration with
Kevin R. Payne, and [40], in collaboration with Gui-Qiang Chen and Monica Torres.
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• Chapter 4 is devoted to the extension of the notion of divergence-measure field to the
framework of stratified groups and the subsequent derivation of related Gauss–Green
formulas on sets of finite h-perimeter. While the fundamental steps of this derivation
are similar to the Euclidean case, thanks to the robustness of the theory, we stress the
fact that there are some new difficulties which require different techniques and methods of
proof to be overcome. These results were presented in [51], in collaboration with Valentino
Magnani.

• Finally, in Chapter 5 we describe the state of the art of an ongoing research project with
Luigi Ambrosio, Mark A. Peletier and Oliver Tse, related to the study of a certain type of
evolution problems in divergence form for couples of nonnegative Radon measures. The
interest on these type of systems of equations comes from the theory of dislocation in
crystals. The aim of the investigation is to represent these systems as gradient flows of
a suitable free energy with respect to a distance between couples of nonnegative Radon
measures, exploiting ideas from the theory of optimal transport and gradient flows.

The characterization of the perimeter of sets through BMO-type
seminorms
The notion of set of finite perimeter is at the core of Geometric Measure Theory. Broadly
speaking, it extends the idea of manifold with smooth boundary, in this way providing a suitable
space in which is possible to study the existence of a solution to Plateau’s problem on minimal
surfaces with a prescribed boundary and other similar geometric variational problems. We say
that a Lebesgue measurable set E has (locally) finite perimeter in Rn if the total variation of
its characteristic function V (χE,Ω) is finite on any bounded open set Ω; that is,

V (χE,Ω) := sup
{∫

Ω
χE divφ dx : φ ∈ C∞c (Ω;Rn), ‖φ‖L∞(Ω;Rn) ≤ 1

}
<∞. (I.1)

We define the perimeter of E in Ω to be the total variation of χE, P(E,Ω) := V (χE,Ω). Thanks
to Riesz’s Representation Theorem, it is possible to show that this definition is equivalent to
ask the existence of a (locally finite) vector valued Radon measure DχE such that the following
weak version of the Gauss–Green formula holds∫

E
divφ dx = −

∫
Rn
φ · dDχE, for any φ ∈ C1

c (Rn;Rn). (I.2)

As an immediate consequence, we see that |DχE|(Ω) = P(E,Ω) for any bounded open set Ω.
The first seminal idea of looking for a new notion of orientable surface suitable for satisfying

extensions of the Gauss–Green theorem is due to Caccioppoli [36, 37], who defined the sets of
finite perimeter through an approximation procedure via polyhedral sets. It was De Giorgi
[63, 64] who fully accomplished this program and named this family of sets after Caccioppoli.
De Giorgi actually gave a definition different from (I.1) and (I.2), since he employed the heat
kernel and the properties of its gradient. Nevertheless, he proved that his definition included
the one of Caccioppoli, by a compactness argument, and that it is equivalent to the validity of
(I.2). In addition, he proved a remarkable representation formula for the measure DχE; that
is,

DχE = νE H n−1 FE, (I.3)
where νE is the measure theoretic unit interior normal, H n−1 is the (n− 1)-dimensional Haus-
dorff measure and FE is the reduced boundary (see Definition 1.1.7 and Theorem 1.1.10). For
an account on the early stages of the theory of sets of finite perimeter, we refer to [3], while in
Chapter 1 the main results on this theory are recalled, together with the notion of functions of
bounded variation (BV ), which is strongly tied to it.
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The standard definition of a set of finite perimeter (I.2) is of distributional nature: it ba-
sically means that, if E is a set of (locally) finite perimeter in Rn, then each distributional
partial derivative of its characteristic function is a distribution of order 0; that is, a (locally)
finite Radon measure. Even the smoothing procedure of De Giorgi implied the use of a differ-
ential operator.

It is therefore of interest to consider new possible ways of defining sets of finite perimeter
without employing any weak differentiation. The classical approach of Federer [71, 72] was
based on the definition of the measure theoretic boundary of a set E,

∂∗E :=
{
x ∈ Rn : lim sup

r→0

|B(x, r) ∩ E|
|B(x, r)| > 0, lim inf

r→0

|B(x, r) ∩ E|
|B(x, r)| < 1

}
,

which is the set of points with Lebesgue density in E neither 1 nor 0. Equivalently, ∂∗E =
Rn \ (E1 ∪ E0), where

E1 :=
{
x ∈ Rn : lim

r→0

|B(x, r) ∩ E|
|B(x, r)| = 1

}
and E0 :=

{
x ∈ Rn : lim

r→0

|B(x, r) ∩ E|
|B(x, r)| = 0

}

are the measure theoretic interior and exterior of E, respectively. A famous and deep theorem
by Federer states that a Lebesgue measurable set E is of (locally) finite perimeter in Rn if and
only if ∂∗E has (locally) finite (n− 1)-dimensional Hausdorff measure; that is, H n−1(K) <∞
for any compact set K ⊂ ∂∗E.

Recently, a different approach has been investigated, based on the approximation of Sobolev
and BV norms by some family of functionals. In particular, [5] Ambrosio, Bourgain, Brezis
and Figalli considered the following functionals

Iε(f) = εn−1 sup
Gε

∑
Q′∈Gε

−
∫
Q′

∣∣∣∣f(x)− −
∫
Q′
f
∣∣∣∣ dx, (I.4)

for any measurable function f , where Gε is any disjoint collection of ε-cubes Q′ with arbitrary
orientation. The authors then focused on the case f = χA; that is, the characteristic function
of a measurable set A, and proved that

lim
ε→0

Iε(χA) = 1
2P(A). (I.5)

In Chapter 2, Section 2.2 (based on [6], a joint work with Luigi Ambrosio), we modify their
approach by using, instead of cubes, covering families made by translations of a given open
bounded connected set C with Lipschitz boundary. Hence, we define

HC
ε (A) := εn−1 sup

Hε

∑
C′∈Hε

−
∫
C′

∣∣∣∣χA(x)− −
∫
C′
χA

∣∣∣∣ dx,
where Hε is any disjoint family of translations C ′ of the set εC with no bounds on cardinality.
In order to show the convergence, the key idea is to define suitable localized versions HC

ε (A,Ω)
of the functionals, by considering only coverings inside a given open set Ω. Then we consider
HC
ε (Sν , Qν), where ν ∈ Sn−1, Sν := {x ∈ Rn : x · ν ≥ 0} and Qν is a unit cube centered in the

origin having one face orthogonal to ν and bisected by the hyperplane ∂Sν . Then, we prove
that the limit as ε → 0 of this functionals is well defined and depends only on ν, so that we
can define

ϕC(ν) := lim
ε→0

HC
ε (Sν , Qν).

The subsequent steps consist in proving suitable density estimates for the functionals

HC
+ (A,Ω) := lim sup

ε→0
HC
ε (A,Ω), HC

− (A,Ω) := lim inf
ε→0

HC
ε (A,Ω),
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from which we deduce that, for any set with finite perimeter E,

lim inf
r→0

HC
− (E,QνE(x)(x, r))

P(E,QνE(x)(x, r))
= lim sup

r→0

HC
+ (E,QνE(x)(x, r))

P(E,QνE(x)(x, r))
= ϕC(νE(x)) for H n−1-a.e. x ∈ FE,

where Qν(x, r) is a cube of side length r centered in x and with one face orthogonal to ν.
Adapting the classical proofs of the differentiation theorem for Radon measures, we are able to
achieve a generalization of (I.5), by showing that, for any set of finite perimeter A, we have

lim
ε→0

HC
ε (A) =

∫
FA

ϕC(νA(x)) dH n−1(x). (I.6)

On the other hand, if A is measurable and P(A) =∞, using a comparison argument with Iε(χA)
we obtain

lim
ε→0

HC
ε (A) = +∞.

This result means that the functionals HC
ε converge to some type of anisotropic surface

measure. In addition, we can prove that, if C is a ball, then ϕC is constant, so that the surface
measure at the right hand side of (I.6) reduces to a multiple of the perimeter.

We remark that (I.6) raises the question whether the limit functional is indeed an anisotropic
perimeter. It is well known that

∫
FA ϕ

C(νA) dH n−1 is lower semicontinuous with respect to
the convergence in measure if and only if ϕC is the restriction to the unit sphere of a positively
1-homogeneous and convex function ϕ̃C . The problem is nontrivial since we are able to prove
that, if C is the unit square (0, 1)2 in R2, then ϕ̃C is not convex ([6, Section 4]). In particular,
the convexity of C is not a sufficient condition to obtain the convexity of ϕ̃C . However, ϕC is
constant in the case C is a ball, and so it is trivially convex in this case. Therefore, a future
research in this field is to look for conditions under which we can ensure the convexity of ϕ̃C .

Smooth approximations of sets of finite perimeter
Somehow in the spirit of the original definition of Caccioppoli, it is well known that any set E
with finite perimeter in Rn, for n ≥ 2, can be approximated by a sequence of smooth sets Ek
in the sense that

|Ek∆E| → 0 and P(Ek)→ P(E). (I.7)
As showed in [11, Theorem 3.42], these sets may be constructed by taking the convolution of
χE against a standard mollifier ρ, and considering suitable superlevel sets of ρεk ∗ χE, for some
nonnegative sequence εk → 0. Then, exploiting the coarea formula for BV functions and Sard’s
theorem, we deduce the existence of some t ∈ (0, 1) such that {ρεk ∗ χE > t} is a smooth set
for any k.

In Section 2.3, we consider a refinement of this approximation result, by exploiting the
tangential properties of the reduced boundary of sets of finite perimeter. It is a classical result
due to De Giorgi (Theorem 1.1.10) that in any point x of the reduced boundary of a set E with
finite perimeter in Rn we have the following blow-ups:

E − x
ε
→ H+

νE
(x) := {y ∈ Rn : y · νE(x) ≥ 0} in L1

loc(Rn) as ε→ 0 (I.8)

and
(Rn \ E)− x

ε
→ H−νE(x) := {y ∈ Rn : y · νE(x) ≤ 0} in L1

loc(Rn) as ε→ 0. (I.9)

Roughly speaking, this means that on small scales the set E ∩ B(x, r) is asymptotically equal
to the half ball centered in x and bisected by the hyperplane

{x+ y : y · νE(x) = 0}.
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A simple consequence of (I.8) and (I.9) is that (ρε ∗ χE)(x) → 1/2 for any x ∈ FE and any
standard mollifier ρ (Lemma 1.1.16). This suggests that it is possible to distinguish between
the approximating superlevel sets {ρεk ∗ χE > t} according to whether t < 1/2 or t > 1/2.

Indeed, we show that, in the first case, the difference between the level sets and the measure
theoretic interior of E is asymptotically vanishing with respect to the H n−1-measure; in the
latter, we obtain the same result for the measure theoretic exterior. Therefore, we call this type
of approximation “one-sided” since it provides different interior and exterior approximations
of the set (see Theorem 2.3.4). In addition, for this one-sided approximation the first limit
in (I.7) holds when substituting the Lebesgue measure with any Radon measure µ absolutely
continuous with respect to the Hausdorff measure H n−1. More rigorously, we prove that, if E
is a bounded set of finite perimeter in Rn and µ is a Radon measure such that |µ| � H n−1,
there exist two sequences {Ek;i}, {Ek;e} of sets with smooth boundary such that

|µ|(Ek;i∆E1)→ 0 and P(Ek,i)→ P(E), (I.10)
|µ|(Ek;e∆(E1 ∪FE))→ 0 and P(Ek,e)→ P(E), (I.11)

and
H n−1(∂Ek,i \ E1)→ 0 and H n−1(∂Ek,e \ E0)→ 0. (I.12)

Generalizations of the Gauss–Green formula in the Euclidean setting
The Gauss–Green formula, or divergence theorem, plays a ubiquitous role in Mathematical
Analysis, Mathematical Physics and Continuum Physics, since it provides a way to establish
energy identities and energy inequalities for PDEs, to derive the governing PDEs from basic
physical principles and to rigorously justify balance or conservation laws for classes of subbodies
of a given body. Thus, of particular importance is the search for extending the validity of such
formulas to vector fields of low regularity and for general classes of subdomains.

The classical statement of the Gauss–Green formula requires a vector field F ∈ C1
c (Rn;Rn)

and an open set E such that ∂E is a C1 smooth (n − 1)-dimensional manifold, in order to
conclude that ∫

E
divF dx = −

∫
∂E
F · νE dH n−1, (I.13)

where νE is the unit interior normal to ∂E. Such assumptions are clearly too strong for many
practical purposes, since, for instance, open sets with Lipschitz boundary would not be allowed,
and thus integration by parts on cubes would not be possible. As we mentioned above, the
first relevant generalization of (I.13) is strongly tied to the notion of set of finite perimeter,
and it is due to De Giorgi [63,64] and Federer [71,72]. Indeed, if we exploit (I.2) and (I.3), we
immediately obtain that, given any set E with locally finite perimeter in Rn, we have∫

E
divF dx = −

∫
FE

F · νE dH n−1, (I.14)

for any F ∈ C1
c (Rn;Rn). While we can argue that the assumption of being a set with (locally)

finite perimeter is optimal for the integration domain, it is clear that we can still weaken the
regularity hypotheses on the vector field. In 1967 Vol’pert [156,157] obtained an extension of the
Gauss–Green theorem for essentially bounded vector fields of bounded variations. The space of
functions of bounded variation on Rn, BV (Rn), is the set of L1-functions whose distributional
gradient Du is a finite vector valued Radon measure. Thus, it can be seen as the natural
extension of the Sobolev space W 1,1(Rn). The notion of BV function was first considered by
C. Jordan in 1881 in the one-dimensional case [102], in order to deal with convergence criteria
of Fourier series. The initial definition was based on a pointwise notion of total variation,
and could not be easily extended to many variables. It was Fichera [74] and De Giorgi [63]
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who gave the modern distributional definition, exploiting Schwartz’s theory of distributions. In
particular, De Giorgi proved that a set E has locally finite perimeter in Rn if and only if the
characteristic function of E is of locally bounded variation.

Exploiting the fine properties of BV functions, Vol’pert proved integration by parts formulas
for essentially bounded functions with bounded variations on sets of finite perimeter. More
precisely, he showed that, if u ∈ BV (Rn) ∩ L∞(Rn) and E is a bounded set of finite perimeter
in Rn, then for any j ∈ {1, . . . , n} we have

(Du)j(E1) = −
∫

FE
uνE(νE)j dH n−1, (I.15)

(Du)j(E1 ∪FE) = −
∫

FE
u−νE(νE)j dH n−1, (I.16)

where (Du)j and (νE)j are the j-th components of Du and νE, respectively, and u±νE are the
exterior and interior traces of u on FE; that is, the approximate limits of u at x ∈ FE
restricted to the half spaces {y ∈ Rn : (y−x) · (±νE(x)) ≥ 0}. The existence of such traces is a
consequence of the fact that any BV function u admits a precise representative u∗ which is well
defined for H n−1-a.e. x ∈ Rn. It is then clear that we can apply (I.15) and (I.16) to the j-th
component of a vector field F ∈ BV (Rn;Rn) ∩ L∞(Rn;Rn), for any j ∈ {1, . . . , n}, and then
sum up the resulting idenities, obtaining in such a way the following Gauss–Green formulas,
which extend (I.14):

divF (E1) = −
∫

FE
FνE · νE dH n−1, (I.17)

divF (E1 ∪FE) = −
∫

FE
F−νE · νE dH n−1. (I.18)

It is easy to notice that not all the partial derivative of the vector field F actually need
to be Radon measures, since only the divergence of F appears in the left hand sides of (I.17)
and (I.18). This simple observation leads to the idea that the Gauss–Green formulas may hold
also for a larger family of vector fields, for which only the distributional divergence is a Radon
measure. Thus, it seems natural to define the space of (p-summable) divergence-measure fields,
DMp(Rn), for any p ∈ [1,∞], to be the set of Lp-summable vector fields whose divergence is
a finite Radon measure on Rn. It is clear that divergence-measure fields generalize the vector
fields of bounded variation, and indeed they were studied in the last two decades in order
to achieve Gauss–Green and integration by parts formulas with lower regularity assumptions
on both the vector fields and the integration domains. After having been first introduced by
Anzellotti in [23], divergence-measure fields proved to be very important in applications, as in
hyperbolic conservations laws, in the theory of contact interactions in Continuum Physics, and
in the study of 1-Laplace, minimal surface and prescribed mean curvature type equations (we
refer for instance to [41,104,107,134,138]).

In Chapter 3 we present an approach to the proof of the Gauss–Green formula based on the
adaptation of the techniques already developed for BV functions in Vol’pert’s monograph [157].
We start with a short exposition on the general properties of DMp-fields, such as the absolute
continuity properties of the divergence-measure and the product rules. In particular, we prove
a product rule not present in the literature to the best of our knowledge (Theorem 3.2.3): if
p, p′ ∈ [1,∞], 1

p
+ 1

p′
= 1, F ∈ DMp

loc(Rn) and g ∈ W 1,p′
loc (Rn)∩L∞loc(Rn), then gF ∈ DMp

loc(Rn)
and

div(gF ) = g∗divF + F · ∇gL n, (I.19)

where g∗ is a suitable representative of g. Then, we focus ourselves on the case p = ∞, in
which we exploit an already established product rule for essentially bounded divergence-measure
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fields and essentially bounded scalar functions with bounded variation: if F ∈ DM∞
loc(Rn) and

g ∈ BVloc(Rn) ∩ L∞loc(Rn), then gF ∈ DM∞
loc(Rn) and

div(gF ) = g∗divF + (F,Dg), (I.20)

where g∗ is the precise representative of g (see Definition 1.1.14) and (F,Dg) is the (unique)
pairing measure between F and the weak gradient of g (see Lemma 1.1.3). In particular, the
measure (F,Dg) satisfies |(F,Dg)| ≤ ‖F‖L∞(Rn;Rn)|Dg|. We stress the fact that, for p =∞, we
have |divF | � H n−1, so that the expression g∗divF is meaningful. The starting point of our
method to obtain generalized Gauss-Green formulas is to apply (I.20) to the case g = χE, for
some set E with locally finite perimeter, in order to derive suitable identities between Radon
measures. Thanks to some algebraic manipulations, we obtain

div(χEF ) = χE1divF + 2(χEF,DχE), (I.21)
div(χEF ) = χE1∪FHEdivF + 2(χRn\EF,DχE). (I.22)

Then, we define the generalized interior and exterior normal traces of F on FE, which we
denote by (Fi · νE) and (Fe · νE), as the densities of the pairing measures (χEF,DχE) and
(χRn\EF,DχE) with respect to the perimeter measure |DχE|:

2(χEF,DχE) = (Fi · νE)|DχE|, (I.23)
2(χRn\EF,DχE) = (Fe · νE)|DχE|. (I.24)

As an immediate consequence, (I.21) and (I.22) can be rewritten as

div(χEF ) = χE1divF + (Fi · νE)|DχE|, (I.25)
div(χEF ) = χE1∪FHEdivF + (Fe · νE)|DχE|. (I.26)

In addition, the following trace estimates hold (Theorem 3.3.5):

‖Fi · νE‖L∞(FE;H n−1) ≤ ‖F‖L∞(E;Rn) and ‖Fe · νE‖L∞(FE;H n−1) ≤ ‖F‖L∞(Rn\E;Rn).

The next key observation is that, for any G ∈ DM∞(Rn) compactly supported, we have
divG(Rn) = 0. Hence, for F ∈ DM∞(Rn) and E is a bounded set of finite perimeter in Rn,
it is enough to evaluate (I.25) and (I.26) on Rn in order to obtain the following Gauss–Green
formulas:

divF (E1) = −
∫

FE
Fi · νE dH n−1 and divF (E1 ∪FE) = −

∫
FE
Fe · νE dH n−1.

As a consequence, exploiting the product rule (I.19) for p = ∞, we derive integration by
parts formulas for F ∈ DM∞

loc(Rn), ϕ ∈ L∞loc(Rn) with ∇ϕ ∈ L1
loc(Rn;Rn) and a set of locally

finite perimeter E such that supp(χEϕ) is compact:∫
E1
ϕ∗ ddivF +

∫
E
F · ∇ϕdx = −

∫
FE

ϕ∗(Fi · νE) dH n−1 (I.27)

and ∫
E1∪FE

ϕ∗ ddivF +
∫
E
F · ∇ϕdx = −

∫
FE

ϕ∗(Fe · νE) dH n−1, (I.28)

where (Fi · νE), (Fe · νE) ∈ L∞loc(FE; H n−1) are defined as in (I.23) and (I.24), since those
identities can be clearly localized to any bounded open set. In addition, we show that this
notion of generalized normal traces is consistent with the case of continuous vector fields F , for
which we have

(Fi · νE)(x) = (Fe · νE)(x) = F (x) · νE(x) for H n−1-a.e.x ∈ FE.
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Then, as an improvement of the preexisting results in the literature (for instance, [8, Proposition
3.2]), we show the following locality properties of the normal traces: if F ∈ DM∞

loc(Rn) and
E1, E2 are sets of locally finite perimeter in Rn such that H n−1(FE1 ∩FE2) 6= 0, then we
have

Fi · νE1 = Fi · νE2 and Fe · νE1 = Fe · νE2 (I.29)
for H n−1-a.e. x ∈ {y ∈ FE1 ∩FE2 : νE1(y) = νE2(y)}, and

Fi · νE1 = −Fe · νE2 and Fe · νE1 = −Fi · νE2 (I.30)

for H n−1-a.e. x ∈ {y ∈ FE1 ∩FE2 : νE1(y) = −νE2(y)}. Finally, exploiting (I.27) and (I.28)
in the case F = ∇u for u ∈ Liploc(Rn) with ∆u ∈ Mloc(Rn), we derive generalized versions of
the Green’s identities (Theorem 3.5.1 and Corollary 3.5.2).

The theory of divergence-measure fields in stratified groups
In the past decades, Geometric Measure Theory experienced a number of generalizations and
extensions to the more general settings of abstract metric measure spaces [1, 2, 14, 15, 123]. In
particular, great attention was given to the theory of functions of bounded variation and sets
of finite perimeter in stratified groups, starting from the pioneering work of Franchi, Serapioni
and Serra Cassano in the Heisenberg group [79]. A stratified (or Carnot) group can be seen as
a linear space G equipped with an analytic group operation such that its Lie algebra Lie(G)
is stratified, and with left invariant horizontal vector fields X1, . . . , Xm, that determine the
directions along which it is possible to differentiate. Given a function f differentiable in this
sense, f ∈ C1

H(G), we denote by ∇Hf its horizontal gradient; that is,

∇Hf :=
m∑
j=1

(Xjf)Xj.

Analogously, if ϕ : G→ HG is a suitably regular horizontal section, we define its divergence as

divϕ :=
m∑
j=1

Xjϕj.

It is then clearly possible to consider corresponding horizontal distributional derivatives, and
this leads to the definition of the functions of bounded h-variation: f ∈ BVH(G), if f ∈ L1(G)
and

|DHf |(G) := sup
{∫

G
fdivφ dx : φ ∈ C1

c (HG), |φ| ≤ 1
}
<∞.

Analogously to the Euclidean case, we say that a measurable set E ⊂ G is of locally finite
h-perimeter in G (or is a locally h-Caccioppoli set) if χE ∈ BVH,loc(G); that is, for any bounded
open set U , we have

P(E,U) := |DHχE|(U) <∞,
where P(E,U) is the h-perimeter of E in U . Many of the classical results from the Euclidean
BV theory proved to be true in the context of stratified groups. However, the extension of the
notion of rectifiability resulted to be problematic. Remarkably, De Giorgi’s Blow-up Theorem
(Theorem 1.1.10) may be false in general, if the step of nilpotence of the group ι is strictly
larger than 2, as showed by a counterexample in the Engel group [80].

The Euclidean theory of divergence-measure fields presented in Chapter 3 proves to be
sufficiently robust to be extended to some non-Euclidean contexts, such as noncommutative
stratified nilpotent Lie groups. In Chapter 4 we lay down the foundations for such a theory.
We define the divergence-measure horizontal fields as Lp-summable sections of the horizontal
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subbundle HG, such that their distributional divergence is a finite Radon measure. In other
words, we say that F ∈ DMp(HG), for some 1 ≤ p ≤ ∞, if F : G → HG, |F | ∈ Lp(G) and
there exists divF ∈M(G) such that∫

G
〈F,∇Hϕ〉 dx = −

∫
G
ϕddivF

for any ϕ ∈ C1
c (G), where 〈·, ·〉 denotes the scalar product associated to the left invariant

Riemannian metric of G. We observe that DMp(HG) contains divergence-measure horizontal
fields that are not BV even with respect to the group structure. In analogy with the Euclidean
context, we can prove absolute continuity properties of the divergence measure with respect to
the spherical Hausdorff measure. In particular, if p =∞, we have |divF | � SQ−1, where Q is
the homogeneous dimension of the group G.

Thanks to some nontrivial approximation arguments, we derive a Leibniz rule for essen-
tially bounded horizontal divergence-measure fields and essentially bounded scalar function of
bounded h-variation. In particular, we show that, if F ∈ DM∞(HG) and g ∈ L∞(G) with
|DHg|(G) < +∞, then gF ∈ DM∞(HG). Then, if we take a mollifier ρ (which we may choose
to be only continuous with compact support), for any infinitesimal sequence ε̃k > 0, there exists
a subsequence εk such that (ρεk ∗ g) ∗

⇀ g̃ in L∞(Ω; |divF |) and 〈F,∇H(ρεk ∗ g)〉µ ⇀ (F,DHg)
inM(Ω). In addition, the following formula holds

div(gF ) = g̃ divF + (F,DHg), (I.31)

where the measure (F,DHg) satisfies

|(F,DHg)| ≤ ‖F‖L∞(Ω)|DHg|. (I.32)

We stress the fact that, due to the noncommutativity of the group operation, it is essential to
employ a convolution with the mollifier on the left. Following the same techniques introduced
in the Euclidean case, the product rule (I.31) is the starting point of the derivation of the
Gauss–Green formulas.

It is however important to stress the fact that a priori we cannot ensure the uniqueness of g̃
and of the pairing (F,DHg), as they may both depend on the approximating sequence. Despite
this, a totally unexpected fact occurs, since in the case g = χE and E has finite h-perimeter,
it is possible to prove that the limit χ̃E is uniquely determined, regardless of the choice of the
mollifying sequence ρεk ∗χE. This seems rather surprising, since we have no rectifiability result
for the reduced boundary of a set with finite h-perimeter in arbitrary stratified groups. The
proof of this fact relies mainly on some refinements of the Leibniz rule in the case g = χE,
on the absolute continuity |divF | � SQ−1 and on the fact that the weak∗ limit of ρε ∗ χE in
L∞(G; |DHχE|) is precisely 1/2, for any set E ⊂ G of finite h-perimeter and any symmetric
mollifier ρ (Proposition 2.4.2). In particular, we are able to prove that there exists a unique
|divF |-measurable subset

E1,F ⊂ Ω \FHE,

up to |divF |-negligible sets, such that

χ̃E(x) = χE1,F (x) + 1
2χFHE(x) for |divF |-a.e. x ∈ G.

We call E1,F the measure theoretic interior of E with respect to F . As an immediate conse-
quence, we deduce that the pairing (F,DHχE) is unique, since, by (I.31), we have

div(χEF ) = χ̃EdivF + (F,DHχE).
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Thanks to some algebraic manipulations, we can deduce the uniqueness also of the pairings
(χEF,DHχE) and (χG\EF,DHχE), and this implies the uniqueness of the interior and exterior
normal traces 〈Fi, νE〉 and 〈Fe, νE〉, which we define as in the Euclidean case:

2(χEF,DHχE) = 〈Fi, νE〉 |DHχE|,
2(χΩ\EF,DHχE) = 〈Fe, νE〉 |DHχE|.

Rather unexpectedly, we obtain the locality properties of these normal traces without any blow-
up technique related to rectifiability of the reduced boundary. In fact, as in the Euclidean case,
the normal traces of a divergence-measure horizontal section F only depend on the orientation
of the reduced boundary. In particular, in the case the divergence-measure field F is continuous
we have

〈Fi, νE〉 (x) = 〈Fe, νE〉 (x) = 〈F (x), νE(x)〉 for |DHχE|-a.e. x ∈ FHE.

In addition, thanks to (I.32), these normal traces belong to L∞(FHE; |DHχE|), and the fol-
lowing refined estimates on the L∞-norms hold:

‖ 〈Fi, νE〉 ‖L∞(FHE;|DHχE |) ≤ ‖F‖L∞(E), and ‖ 〈Fe, νE〉 ‖L∞(FHE;|DHχE |) ≤ ‖F‖L∞(G\E).

Finally, we obtain the following Leibniz rules:

div(χEF ) = χE1,F divF + 〈Fi, νE〉 |DHχE|, (I.33)
div(χEF ) = χE1,F∪FHEdivF + 〈Fe, νE〉 |DHχE|. (I.34)

As a consequence, we achieve the related Gauss–Green and integration by parts formulas
for DM∞-fields on sets of finite h-perimeter. Indeed, it is enough to observe that, if G ∈
DM∞(HG) has compact support, then divG(G) = 0. Then, if we take E to be a bounded set
with finite h-perimeter in G and we evaluate (4.1.5) and (4.1.6) on G, we obtain the following
general versions of the Gauss–Green formulas in stratified groups:

divF (E1,F ) = −
∫

FHE
〈Fi, νE〉 d|DHχE|, (I.35)

divF (E1,F ∪FHE) = −
∫

FHE
〈Fe, νE〉 d|DHχE|. (I.36)

As a simple consequence of (I.33), we deduce that E1,F , up to |divF |-negligible sets, can be
seen as the Borel set in Ω \FHE satisfying

div(χEF ) Ω \FHE = divF E1,F . (I.37)

However, an explicit and geometric characterization of E1,F is still an open problem. Even more
interesting would be to prove (or disprove) the existence of a unique Borel set E1,∗ satisfying
(I.37) for any F ∈ DM∞(HΩ), as it happens in the Euclidean context, where E1,∗ = E1,
the measure theoretic interior. Nevertheless, under some assumptions, involving either the
regularity of E or of the field F , the set E1,F can be properly determined. This immediately
yields different versions of Gauss–Green and integration by parts formulas.

If we assume |divF | � µ, where µ is the Haar measure of the group, then we obtain
|divF |(E1,F∆E) = 0 and the existence of a unique normal trace 〈F, νE〉 ∈ L∞(Ω; |DHχE|) such
that there holds

divF (E) = −
∫

FHE
〈F, νE〉 d|DHχE|. (I.38)

This means that, in the case F is Lipschitz or Sobolev regular, then E1,F coincides with E,
up to |divF |-negligible sets. It is also worth to point out that (I.38) holds also for sets whose
boundary is not rectifiable in the Euclidean sense (Example 4.5.2).
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Another important case we considered is the one in which the set E ⊂ G has finite perimeter
in the Euclidean sense. First, we prove that the group pairing (F,DHχE) is actually equal to
the Euclidean pairing (F,DχE), and that we have E1,F = E1

|·|, up to a |divF |-negligible set,
where E1

|·| is the Euclidean measure theoretic interior of E; that is, the set of points with
density 1 with respect to the balls defined using the Euclidean distance in the group. Thanks
to this result and to the Leibniz rule, we obtain the following integration by parts formulas:
for any F ∈ DM∞

loc(HG), any set of locally finite h-perimeter E and any ϕ ∈ C(G) with
∇Hϕ ∈ L1

loc(HG) such that supp(ϕχE) is compact, we have∫
E1
|·|

ϕddivF +
∫
E
〈F,∇Hϕ〉 dx = −

∫
FHE

ϕ 〈Fi, νE〉 d|DHχE|,∫
E1
|·|∪FHE

ϕddivF +
∫
E
〈F,∇Hϕ〉 dx = −

∫
FHE

ϕ 〈Fe, νE〉 d|DHχE|.

As a consequence of our results, we derive very general versions of Green’s identities in
stratified groups. In particular, in Theorem 4.5.3 such formulas are extended to sets of h-finite
perimeter and C1

H-scalar functions with sub-Laplacian measure which is absolutely continuous
with respect to the Haar measure of the group. Instead, in Theorem 4.1.6 the domain of
integration is assumed to be a set with Euclidean finite perimeter, while the sub-Laplacians are
measures.

Evolution equations for Radon measures related to the dynamics of
dislocations
The theory of optimal transport provides a way to give a notion of gradient flows on the space of
probability measures with finite second moment endowed with the L2-Wasserstein distance,W2.
The main advantage of this is the possibility to represent some evolution equations for Radon
measures as gradient flows of a given free energy with respect to the W2 distance. Then, it is
possible to apply the minimizing movement scheme to obtain existence of solutions satisfying
some energy dissipation inequality. We refer to the monograph [13] for a full account of this
theory.

In Chapter 5 we investigate the possibility of applying this method to systems of evolution
equations for couples of nonnegative measures (µ1, µ2) of the following form

d
dt
µ1 = div(µ1∇(V ∗ µ))− σ

d
dt
µ2 = −div(µ2∇(V ∗ µ))− σ

(I.39)

for µ = µ1 − µ2, some interaction potential V , and some (possibly nonlinear) dissipation term
σ depending on µ1 and µ2. The interest of (I.39) lies in its close relations with the continuum
models of dislocations in crystals, such as the Groma-Balogh equations introduced in [93,94].

Our purpose is to see these evolution equations as the gradient flows of an energy of the
form

Φ(µ1, µ2) := 1
2

∫
Rn

(V ∗ µ) dµ+ µ1(Rn) + µ2(Rn),

with respect to a suitable distance among couples of nonnegative measures. In Section 5.3 we
outline the definition of a family of Hellinger-Kantorovich distances analyzed by Liero, Mielke
and Savaré in [108, 109], which appears to be useful to this aim. In particular, we focused on
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the following definition:

D2
K((ν1, ν2), (µ1, µ2)) := inf

{ ∫ 1

0

(∫
Rn
|v1|2 dρ1,t + |v2|2 dρ2,t + |ξ|

2

2 df(ρ1,t, ρ2,t)
)
dt,

d

dt

(
ρ1
ρ2

)
= −div

(
v1ρ1
v2ρ2

)
+ ξ

2f(ρ1, ρ2)
(

1
1

)
, (I.40)

(ρ1, ρ2) ∈ C([0, 1];M+(Rn)×M+(Rn)),

ρi,0 = νi, ρi,1 = µi, i = 1, 2
}
, (I.41)

where f : M+(Rn) ×M+(Rn) → M+(Rn) is a measure-valued map derived from a suitable
concave nonnegative function f .

Section 5.4 is devoted to the study of the properties of DK. In particular, we give an
alternative representation of DK in terms of the minimization of a certain action functional A.
In this way we prove that, if

DK((ν1, ν2), (µ1, µ2)) <∞,
than there exist (weakly) continuous curves (ρ1, ρ2) ∈ C([0, 1];M+(Rn) ×M+(Rn)), vector
fields v1, v2 ∈ L2((0, 1);L2(Rn; ρi)) and a scalar reaction term ξ ∈ L2((0, 1);L2(Rn; f(ρ1, ρ2)))
satisfying (I.40), (I.41) and

D2
K((ν1, ν2), (µ1, µ2)) =

∫ 1

0

(∫
Rn
|v1|2 dρ1,t + |v2|2 dρ2,t + |ξ|

2

2 df(ρ1,t, ρ2,t)
)
dt.

Then, we show that DK is indeed an (extended) distance onM+(Rn)×M+(Rn), and we find
a necessary and sufficient condition under which DK((ν1, ν2), (µ1, µ2)) <∞, namely,

ν1(Rn)− ν2(Rn) = µ1(Rn)− µ2(Rn).

Finally, we also prove that

DK((µ1, µ2), (µk1, µk2))→ 0 as k → +∞

implies µki ⇀ µi and µki (Rn) → µi(Rn) for i = 1, 2. However, as showed in Example 5.4.17,
the convergence with respect to DK does not imply the convergence of the total mass of the
couples of Radon measures (µk1, µk2). Then, in Section 5.5 we describe the state of the art of our
investigations on the first variation of DK under different types of perturbations. The final aim
would be to obtain Euler-Lagrange equations for the distance DK. Future research shall go in
the direction of analyzing further properties of the distance DK, as its dual representation, for
instance. Our final aim is to apply the minimizing movements scheme to obtain the existence
of solutions to 

d
dt
µ1 = div(µ1∇(V ∗ µ))− f(µ1, µ2)

d
dt
µ2 = −div(µ2∇(V ∗ µ))− f(µ1, µ2),

satisfying some type of energy dissipation inequality. We conclude our current exposition with
Section 5.6, where we prove that the local (or descending) slope of the self energy

Φself(µ1, µ2) := µ1(Rn) + µ2(Rn)

is √
2
∫
Rn
df(µ1, µ2),

which is not lower semicontinuous with respect to the distance DK. This seems to represent an
issue in the application of the classical results from the theory of gradient flows.
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Other works
We conclude this introduction with a brief summary of other relevant research projects devel-
oped during my years of PhD.

A distributional approach to fractional Sobolev spaces and fractional
variation: existence of blow-up and asymptotics
In the last decades, fractional Sobolev spaces have been receiving increasing attention ([67]),
and, in particular, the theory of sets with finite fractional perimeter has been deeply studied,
with a focus on minimal fractional surfaces ([56, Section 7]). However, differently from the stan-
dard Sobolev space W 1,p(Rn), the space Wα,p(Rn) does not seem to have a clear distributional
nature.

In the past few years, several authors ([137, 142, 143, 147]), looking for a good notion of
fractional differential operator, considered the following fractional gradient:

∇αu(x) := µn,α

∫
Rn

(y − x)(u(y)− u(x))
|y − x|n+α+1 dy,

where

µn,α := 2απ−n2
Γ
(
n+α+1

2

)
Γ
(

1−α
2

)
is a multiplicative renormalizing constant. In a similar way, one can define the associated
fractional divergence

divαϕ(x) := µn,α

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+α+1 dy,

so that the operators ∇α and divα are dual, in the sense that∫
Rn
u divαϕdx = −

∫
Rn
ϕ · ∇αu dx (I.42)

for all u ∈ C∞c (Rn) and ϕ ∈ C∞c (Rn;Rn).
This is the starting point of [54], a joint work with G. Stefani, which concerns a new distri-

butional characterization of the notion of sets of finite fractional perimeter, and consequently
the study of a new space of functions of fractional bounded variation.

Indeed, thanks to (I.42), we can define

BV α(Rn) :=
{
u ∈ L1(Rn) : |Dαu|(Rn) < +∞

}
,

where
|Dαu|(Rn) = sup

{∫
Rn
u divαϕdx : ϕ ∈ C∞c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}
.

In addition, we say that a measurable set E is a set with finite fractional Caccioppoli α-perimeter
in an open set Ω if

|DαχE|(Ω) = sup
{∫

E
divαϕdx : ϕ ∈ C∞c (Ω;Rn), ‖ϕ‖L∞(Ω;Rn) ≤ 1

}
<∞,

and we say that E has locally finite Caccioppoli α-perimeter in Rn if |DαχE|(Ω) <∞ for any
open bounded set Ω.

In perfect analogy with the classical space of functions of bounded variation BV (Rn), in [54]
we prove that BV α(Rn) is a Banach space and its norm is lower semicontinuous with respect
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to L1-convergence; that u ∈ L1(Rn) belongs to BV α(Rn) if and only if there exists a vector
valued finite Radon measure Dαu such that∫

Rn
u divαϕdx = −

∫
Rn
ϕ · dDαu (I.43)

for any ϕ ∈ C∞c (Rn;Rn).
In addition, we show that any uniformly bounded sequence in BV α(Rn) admits limit points

in L1(Rn) with respect the L1
loc-convergence.

Then, exploiting again (I.42) and arguing similarly to the classical case, it seems natural to
define the weak fractional α-gradient of a function u ∈ Lp(Rn), for p ∈ [1,+∞], as the function
∇α
wu ∈ L1

loc(Rn;Rn) satisfying ∫
Rn
u divαϕdx = −

∫
Rn
∇α
wu · ϕdx

for any ϕ ∈ C∞c (Rn;Rn). For α ∈ (0, 1) and p ∈ [1,+∞], we can define the distributional
fractional Sobolev space

Sα,p(Rn) := {u ∈ Lp(Rn) : ∃∇α
wu ∈ Lp(Rn;Rn)} , (I.44)

naturally endowed with the norm

‖u‖Sα,p(Rn) := ‖u‖Lp(Rn) + ‖∇α
wu‖Lp(Rn;Rn). (I.45)

It is clearly interesting to make a comparison between the distributional fractional Sobolev
spaces Sα,p(Rn) and the well-known fractional Sobolev space Wα,p(Rn), which, for α ∈ (0, 1)
and p ∈ [1,∞), is defined as

Wα,p(Rn) :=

u ∈ Lp(Rn) : [u]Wα,p(Rn) :=
(∫

Rn

∫
Rn

|u(x)− u(y)|p
|x− y|n+pα dx dy

) 1
p

< +∞

 ,
endowed with the norm

‖f‖Wα,p(Rn) := ‖u‖Lp(Rn) + [u]Wα,p(Rn) ∀u ∈ Wα,p(Rn),

while, for p =∞, Wα,∞(Rn) := C0,α
b (Rn), the space of bounded α-Hölder continuous functions.

In [54], we focus on the case p = 1, and we show that the inclusions

Wα,1(Rn) ⊂ Sα,1(Rn) ⊂ BV α(Rn)

are all continuous and strict.
As for the sets with finite fractional Caccioppoli α-perimeter, we show that indeed they

include the family of sets with standard finite fractional α-perimeter; that is, we have

|DαχE|(Ω) ≤ µn,αPα(E; Ω)

for any open set Ω ⊂ Rn, where

Pα(E; Ω) :=
∫

Ω

∫
Ω

|χE(x)− χE(y)|
|x− y|n+α dx dy + 2

∫
Ω

∫
Rn\Ω

|χE(x)− χE(y)|
|x− y|n+α dx dy.

Employing the notion of weak fractional gradient to define a natural analogue of De Giorgi’s
reduced boundary, the fractional reduced boundary FαE, as the set of points satisfying

x ∈ supp(DαχE) and ∃ lim
r→0

DαχE(B(x, r))
|DαχE|(B(x, r)) ∈ Sn−1.
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We also let

ναE : FαE → Sn−1, ναE(x) := lim
r→0

DαχE(B(x, r))
|DαχE|(B(x, r)) , x ∈ FαE,

be the measure theoretic unit interior fractional normal to E.
Then, following an approach similar to the one presented in [69, Section 5.7], we derive

density estimates for |DαχE|(B(x, r)) for any x ∈ FαE, thanks to which we prove that

|DαχE| �H n−α FαE,

where H n−α is the (n− α)-dimensional Hausdorff measure. In addition, exploiting a suitable
compactness result we are able to show the following result on Tan(E, x); that is, the set of
all tangent sets of E at x, i.e. the set of all limit points in L1

loc(Rn)-topology of the family{
E−x
r

: r > 0
}
as r → 0.

Theorem I.1. Let α ∈ (0, 1). Let E be a set with locally finite fractional Caccioppoli α-
perimeter in Rn. For any x ∈ FαE we have Tan(E, x) 6= ∅. In addition, if F ∈ Tan(E, x),
then F is a set of locally finite fractional Caccioppoli α-perimeter such that ναF (y) = ναE(x) for
|DαχF |-a.e. y ∈ FαF .

Hence, we obtain a first partial extension of De Giorgi’s Blow-up Theorem for sets of finite
fractional Caccioppoli perimeter, by proving existence of blow-ups on points of the fractional
reduced boundary.

This new distributional approach provides a tool to deal with a large variety of classical
results in the context of functions with fractional bounded variation. We list here the principal
directions of future research:

• achieve a better characterization of the blow-ups, and possibly their uniqueness;

• prove a Structure Theorem for FαE in the spirit of De Giorgi’s Theorem;

• develop a calibration theory for sets of finite fractional Caccioppoli α-perimeter as a useful
tool for the study of fractional minimal surfaces;

• consider the asymptotics as α → β for β ∈ [0, 1], and in particular as α → 1−, in which
case it is of interest to investigate the Γ-convergence of |DαχE| to the classical perimeter;

• extend the Gauss–Green and integration by parts formulas to sets of finite fractional
Caccioppoli α-perimeter;

• give a good definition of BV α functions on a general open set.

Indeed, the study of the asymptotics as α→ β−, for any β ∈ (0, 1] is the core of the forth-
coming work [53], in collaboration with G. Stefani, while the case α → 0+ shall be treated in
[34], in collaboration with M. Calzi, E. Brué and G. Stefani. We outline here the key aspects
of these future developments.

It is well-known that, for any p ∈ [1,∞) and n ≥ 1, there exists a constant Cn,p > 0 such
that

lim
α→1−

(1− α) [f ]pWα,p(Rn) = Cn,p ‖∇f‖pLp(Rn;Rn) (I.46)

for any f ∈ W 1,p(Rn) (see [29]). In [53], we improve (I.46) by showing the following asymptotic
behaviours.

23



• If p ∈ (1,∞), then W 1,p(Rn) ⊂ Sα,p(Rn) for any α ∈ (0, 1) and, for any f ∈ W 1,p(Rn),

lim
α→1−

‖∇α
wf −∇wf‖Lp(Rn;Rn) = 0. (I.47)

• If p = 1, then BV (Rn) ⊂ BV α(Rn) for any α ∈ (0, 1) and, for any f ∈ BV (Rn),

Dαf ⇀ Df inM(Rn;Rn), |Dαf |⇀ |Df | inM(Rn) as α→ 1− (I.48)

and
lim
α→1−

|Dαf |(Rn) = |Df |(Rn). (I.49)

• If p =∞, then W 1,∞(Rn) ⊂ Sα,∞(Rn) for any α ∈ (0, 1) and, for any f ∈ W 1,∞(Rn),

∇α
wf

∗
⇀ ∇wf in L∞(Rn;Rn) as α→ 1− (I.50)

and
‖∇wf‖L∞(Rn;Rn) ≤ lim inf

α→1−
‖∇α

wf‖L∞(Rn;Rn). (I.51)

It is interesting to notice that no renormalising factor is required in the limits (I.47) –
(I.51), contrarily to what happened for the standard fractional Sobolev seminorm, since it is
not difficult to show that

µn,α ∼
1− α
ωn

as α→ 1−.

In addition, [53] contains an extension of the result of Γ-convergence in L1
loc(Rn) of the

fractional α-perimeter Pα to the standard De Giorgi’s perimeter P as α → 1− (see [9]). More
precisely, [9, Theorem 2] states that, if Ω ⊂ Rn is a bounded open set with Lipschitz boundary,
then there exists a constant cn > 0 such that

Γ(L1
loc)− lim

α→1−
(1− α)Pα(E; Ω) = cnP (E; Ω) (I.52)

for any measurable sets E ⊂ Rn. We refer the interested reader to [31,61] for complete treatment
of the subject of Γ-convergence.

Our counterpart of (I.52) for the fractional α-variation as α→ 1− is the following: if Ω ⊂ Rn

is a bounded open set with Lipschitz boundary, then

Γ(L1
loc)− lim

α→1−
|DαχE|(Ω) = P (E; Ω) (I.53)

for any measurable set E ⊂ Rn. In addition, it is interesting to notice that our approach allows
to prove that Γ-convergence holds true also at the level of functions. Indeed, if f ∈ BV (Rn)
and Ω ⊂ Rn is an open set such that either Ω is bounded with Lipschitz boundary or Ω = Rn,
then

Γ(L1)− lim
α→1−

|Dαf |(Ω) = |Df |(Ω). (I.54)

It is relevant to mention that, as a byproduct of the techniques developed for the asymptotic
study of the fractional α-variation as α → 1−, we are also able to characterise the behaviour
of the fractional α-variation as α → β−, for any given β ∈ (0, 1). On the one hand, if f ∈
BV β(Rn), then

Dαf ⇀ Dβf inM(Rn;Rn), |Dαf |⇀ |Dβf | inM(Rn) as α→ β−

and, moreover,
lim
α→β−

|Dαf |(Rn) = |Dβf |(Rn).
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On the other hand, if f ∈ BV β(Rn) and Ω ⊂ Rn is an open set such that either Ω is bounded
and |Dβf |(∂Ω) = 0 or Ω = Rn, then

Γ(L1)− lim
α→β−

|Dαf |(Ω) = |Dβf |(Ω).

As for the asymptotics as α → 0+, it was proved in [120, 121] that for any p ∈ [1,+∞),
there exists a constant C̃n,p > 0 such that

lim
α→0+

α [f ]pWα,p(Rn) = C̃n,p ‖f‖pLp(Rn) (I.55)

for any f ∈ ⋃
α∈(0,1)W

α,p(Rn). Starting from (I.55), in [34] we study what happens to the
fractional α-variation as α→ 0+. Note that

lim
α→0+

µn,α = π−
n
2

Γ
(
n+1

2

)
Γ
(

1
2

) =: µn,0,

so there is no renormalization factor as α→ 0+.
At least formally, as α→ 0+ the fractional α-gradient is converging to the operator

∇0u(x) := µn,0

∫
Rn

(y − x)(u(y)− u(x))
|y − x|n+1 dy.

The operator ∇0 is well defined on C∞c (Rn) and, actually, coincides with the well-known vector-
valued Riesz transform Rf , see [92, Section 5.1.4] and [148, Chapter 3]. Similarly, the fractional
α-divergence is formally converging to the operator

div0ϕ(x) := µn,0

∫
Rn

(y − x) · (ϕ(y)− ϕ(x))
|y − x|n+1 dy, (I.56)

which is well defined for any ϕ ∈ C∞c (Rn;Rn).
In perfect analogy with what we did before, it seems natural to introduce the space BV 0(Rn)

as the space of functions u ∈ L1(Rn) such that

|D0u|(Rn) := sup
{∫

Rn
u div0ϕdx : ϕ ∈ C∞c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1

}
<∞.

Surprisingly (and differently from the fractional α-variation, recall [54, Section 3.10]), it turns
out that |D0u| � L n for all f ∈ BV 0(Rn). More precisely, one can actually prove that
BV 0(Rn) = H1(Rn), in the sense that u ∈ BV 0(Rn) if and only if u ∈ H1(Rn), with

D0u = RuL n inM(Rn;Rn),

where
H1(Rn) :=

{
u ∈ L1(Rn) : Ru ∈ L1(Rn;Rn)

}
is the (real) Hardy space, see [150, Chapter III] for the precise definition. Thus, it would be
interesting to understand for which functions u ∈ L1(Rn) the fractional α-gradient ∇αu tends
(in a suitable sense) to the Riesz transform Ru as α→ 0+.
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On BV functions and essentially bounded divergence-measure fields
in metric spaces
In [35], a work in collaboration with Vito Buffa and Michele Miranda Jr., we give another
extension of the theory of divergence-measure fields and generalized Gauss–Green formulas
in the context of complete and separable metric measure spaces (X, d, µ) equipped with a
nonnegative Radon measure µ finite on bounded sets. In order to deal with “vector fields” on
metric measure spaces, one needs to refer to some differential structure of the ambient space,
in terms of which the usual differential objects of the “smooth” analysis and geometry find a
consistent and equivalent counterpart.

Following the definitions of tangent and cotangent module given by Gigli ([90,91]), we first
give a notion of functions of bounded variation and sets of finite perimeter in terms of suitable
vector fields. Then, we extend the concept of divergence-measure field. We say that X is an
Lp-summable divergence-measure field, and we write X ∈ DMp(X), if it belongs to the tangent
module Lp(TX) and there exists a finite Radon measure div(X) which satisfies

−
∫
X
φ ddiv(X) =

∫
X

dφ(X) dµ

for any φ ∈ Lip(X) with bounded support, where dφ stands for the differential of φ, seen as an
element of the cotangent module Lp′(T ∗X), for p′ = p/(p− 1). While this definition and some
basic properties do not require any other assumption on the metric space, we need to ask X to
be locally compact in order to derive Gauss–Green formula on regular domains.

Inspired by [117], we say that an open set of finite perimeter Ω ⊂ X is a regular domain if
the upper inner Minkowski content of its boundary satisfies

M∗
i (∂Ω) := lim sup

t→0

µ(Ω \ Ωt)
t

= |DχΩ|(X),

where, for t > 0,
Ωt := {x ∈ Ω; dist(x,Ωc) ≥ t} .

This property allows us to construct a good family of smooth functions approximating χΩ so
that we obtain the following result.

Theorem I.2. Let X be locally compact, X ∈ DM∞(X) and Ω ⊂ X be a regular domain. Then
there exists a function (X · νΩ)−∂Ω ∈ L∞ (∂Ω; |DχΩ|) such that∫

Ω
ϕddiv(X) +

∫
Ω

dϕ(X) dµ = −
∫
∂Ω
ϕ (X · νΩ)−∂Ω d|DχΩ|, (I.57)

for any ϕ ∈ Lipb(X) such that supp(ϕχΩ) is a bounded set. In addition, we have the following
estimate:

‖(X · νΩ)−∂Ω‖L∞(∂Ω;|DχΩ|) ≤ ‖|X|‖L∞(Ω).

As customary, we call the function (X · νΩ)−∂Ω the interior normal trace of X on ∂Ω.
Aiming to integration by parts formulas on sets of finite perimeter, we need to require

additional structural assumptions on the metric measure space: in particular, in the second part
of [35] we focus ourselves on locally compact RCD(K,∞) metric measure spaces. Following idea
analogous to those developed in [51, 52] (see also Chapters 3 and 4), we first obtain a Leibniz
rule for the divergence of the product of a field in X ∈ DM∞(X) and a scalar function in
f ∈ BV (X) ∩ L∞(X), and then we exploit it to gain the Gauss–Green and the integration by
parts formula on sets of finite perimeter. In this setting, we employ the heat semigroup ht in
order to regularize the bounded scalar BV function in the proof of the Leibniz rule, and so we
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strongly relied on the Bakry-Emery curvature-dimension condition and its related contraction
estimate. Even though the heat semigroup is not a local operator, as the mollification instead
was in the Euclidean spaces and the stratified groups, we are able to obtain similar convergence
results. In particular, we can define the pairing between Df and X as any (possibly not
unique) accumulation point Df(X) of the family of measures dhtf(X)µ inM(X) is absolutely
continuous with respect to the total variation measure |Df |. This fact plays a fundamental
role in the definition of the normal traces of a divergence-measure field. Indeed, we set the
interior and exterior distributional normal traces of X ∈ DM∞(X) on the boundary ∂E of a
set of finite perimeter E ⊂ X are given as the functions 〈X, νE〉− , 〈X, νE〉+∂E ∈ L∞(X; |D1E|)
such that

2DχE(χEX) = 〈X, νE〉−∂E |DχE|,
2DχE(χEcX) = 〈X, νE〉+∂E |DχE|.

Due to the non-uniqueness of the pairing, a priori, we cannot ensure the uniqueness of these
normal traces either. However, assuming to have fixed a sequence tj → 0 such that

dhtj(χE)(χEX)µ ⇀DχE(χEX) and dhtj(χE)(χEcX)µ ⇀DχE(χEcX),

we are able to carry on our analysis in an analogous way as in [51] (see also Chapter 4), with
the additional difficulty given by the fact that we cannot characterize in general the weak*
accumulation points 1̂E of htj1E in L∞(X; |D1E|), and so we cannot achieve uniqueness of the
normal traces. Nevertheless, we obtain general Gauss–Green and integration by parts formulas.

We remark that the issue of the dependence on the approximating sequence htjχE can be
solved under the additional assumption that |div(X)| � µ. In this case, the interior and
exterior distributional normal traces of X ∈ DM∞(X) on the boundary of the set of finite
perimeter E are uniquely determined and coincide, so that the unique normal trace, denoted
by 〈X, νE〉∂E, satisfies∫

E
ϕddiv(X) +

∫
E

dϕ(X) dµ = −
∫
∂E
ϕ 〈X, νE〉∂E d|D1E| (I.58)

for any ϕ ∈ Lipb(X) such that supp(1Eϕ) is bounded.

Finer entropy estimates for systems of evolution equations for mea-
sures
In [7], a current research project with Luigi Ambrosio, Mark A. Peletier and Oliver Tse, we
consider some refinements of entropy estimates related to systems of evolution equations for
Radon measures, starting from previous works of Ambrosio, Mainini and Serfaty ([18,21,115]).
The aim of this research is to obtain the existence of solutions for less regular initial data.

In the framework of [115] we consider couples (µ1, µ2) ∈M2
α(R2)×M2

β(R2), where

M2
α(R2) :=

{
µ ∈M+(R2) : µ(R2) = α,

∫
R2
|x|2 dµ(x) <∞

}
.

Given an initial datum
(µ0

1, µ
0
2) ∈M2

α(R2)×M2
β(R2),

for some α, β ≥ 0, we want to find a couple of measures (µ1(t), µ2(t)) which is a solution to
d
dt
µ1(t)− div(∇hµ(t)µ1(t)) = 0

d
dt
µ2(t) + div(∇hµ(t)µ2(t)) = 0

inD′((0,+∞)× R2), (I.59)
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where µ(t) = µ1(t)− µ2(t) and hµ(t) is the solution, for any t > 0, to

−∆hµ(t) = µ(t) in R2. (I.60)

We take as free energy the Dirichlet energy associated to (I.60),

Φ(µ) = 1
2

∫
R2
hµ dµ.

The key idea of [115] is to represent (I.59) as the gradient flow of Φ with respect to the
2-Wasserstein distance between couples of measures in (µ1, µ2), (ν1, ν2) ∈ M2

α(R2) ×M2
β(R2),

given by √
W 2

2 (µ1, ν1) +W 2
2 (µ2, ν2).

In this way, it is possible to build a solution by applying the minimizing movement scheme. To
this purpose, we choose initial data (µ0

1, µ
0
2) ∈M2

α(R2)×M2
β(R2), and a time step τ > 0, and

we look for µ1,τ and µ2,τ which are solution to

min
(ν1,ν2)∈M2

α(R2)×M2
β

(R2)
Φ(ν1 − ν2) + 1

2τ (W 2
2 (ν1, µ

0
1) +W 2

2 (ν2, µ
0
2)). (I.61)

Then, we employ (µ1,τ , µ2,τ ) as initial data and we look for (µ2
1,τ , µ

2
2,τ ) which solves (I.61)

for this new initial data; and proceeding in this way we construct by iteration a sequence
(µk1,τ , µk2,τ ). The method employed in [115] is based on deriving the Euler-Lagrange equations
for the minimizers µ1,τ , µ2,τ and exploiting them to get some entropy estimates; that is, a bound
of the form ∫

R2
ϕ(µ1,τ ) + ϕ(µ2,τ ) ≤

∫
R2
ϕ(µ0

1) + ϕ(µ0
2), (I.62)

for an entropy function ϕ satisfying certain properties. In particular, this means that, if
ϕ(x) ≈ xp as x → +∞ and µ0

i ∈ Lp(R2), i = 1, 2, then the minimizers µ1,τ , µ2,τ are also
Lp-summable. In [115] it is proved (using an argument from [18]) that, if p ≥ 4, then the piece-
wise constant interpolation (µ̄1,τ (t), µ̄2,τ (t)) := (µdt/τe1,τ , µ

dt/τe
2,τ ) admits a narrow limit as τ → 0,

up to a subsequence, which is a solution of of (I.59) and belongs to Lp(R2)× Lp(R2).
The starting point of our approach is to give a slightly different definition of an entropy

function. We say that a nondecrasing, C1-differentiable and piecewise C2-differentiable function
ϕ : [0,+∞)→ [0,∞) is an entropy function if it satisfies

1. ϕ(0) = 0,

2. ϕ′(0) = lim
x→0

ϕ(x)
x
∈ R,

3. 2x2ϕ′′(x) ≥ xϕ′(x)− ϕ(x), for any x where ϕ is twice differentiable,

4. lim
x→+∞

ϕ(x)
x

= +∞.

Then, we associate to each entropy function ϕ a dissipation function ψ; that is, a convex
function ψ : [0,+∞) → R satisfying ψ′(x) = xϕ′(x) − ϕ(x). Thanks to some rather technical
approximation arguments, we are able to refine the method of proof of [115] (see also [18]),
obtaining the following stronger version of (I.62):∫

R2
ϕ(µ1,τ ) + ϕ(µ2,τ ) ≤

∫
R2
ϕ(µ0

1) + ϕ(µ0
2)− τ

∫
R2

(ψ′(µ1,τ )− ψ′(µ2,τ ))µτ , (I.63)
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where µτ := µ1,τ − µ2,τ . Given initial data satisfying
∫
R2
ϕ(µ0

i ) < ∞ for i = 1, 2 and under
some additional assumptions on ϕ and ψ, we show that any solution (µ1(t), µ2(t)) of (5.2.12),
built as narrow limit of the piecewise constant interpolation (µ̄1(t), µ̄2(t)), up to a subsequence,
satisfies ∫

R2
ϕ(µ1(t)) + ϕ(µ2(t))−

∫
R2
ϕ(µ0

1) + ϕ(µ0
2) ≤ −

∫ t

0

∫
R2
|µ(r)|ψ′(|µ(r)|) dr, (I.64)

where µ(r) = µ1(r)− µ2(r).
In particular, choosing ϕ(x) = xp, p > 1, we obtain the following improvement of the

existence result given in [115].

Proposition I.3. Let (µ0
1, µ

0
2) ∈ Lp(R2) × Lp(R2), for some p > 1, and let (µ1(t), µ2(t)) be a

solution of (I.59), built as narrow limit of the piecewise constant interpolation (µ̄1(t), µ̄2(t)), up
to a subsequence τk → 0. Then, we have∫

R2
(µ1(t))p + (µ2(t))p dx−

∫
R2

(µ0
1)p + (µ0

2)p dx ≤ −(p− 1)
∫ t

0

∫
R2
|µ(r)|p+1 dx dr, (I.65)

and so µi ∈ L∞(0, T ;Lp(R2)), i = 1, 2; while µ ∈ Lp+1(0, T ;Lp+1(R2)), for any T > 0.

In the case of a logarithmic entropy function

ϕ(x) = (1 + x) log(1 + x)

we show that there exists a solution to (I.59) also for initial data in the Orlicz space L logL(R2).
We remark that it is possible to obtain analogous results also in the framework of [18].
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Chapter 1

Preliminaries

In this chapter we introduce some basic notions and tools of Geometric Measure Theory in the
Euclidean and the stratified groups frameworks. In particular, in the latter context we also
present in Section 1.3 some new smoothing results for BV functions.

1.1 BV and capacity theory in the Euclidean space
This section is devoted to recalling definitions and well known results from the Euclidean theory
of functions of bounded variation and of capacity.

We start by setting some notation. Unless otherwise stated, Ω is an open subset of Rn and
⊂ is equivalent to ⊆. We denote by Ac the complement of A and by A∆B := (A \B)∪ (B \A)
the symmetric difference of the sets A,B. We denote by E b Ω a set E whose closure, E, is
compact and contained in Ω, by E◦ the interior of the set E and by ∂E its topological boundary.

We denote by L n and H α the Lebesgue and α-dimensional Hausdorff measures on Rn,
where α ≥ 0. Unless otherwise stated, a measurable set is a L n-measurable set. For any
measurable set E ⊂ Rn, we denote by |E| the L n-measure of E, while, when applied to a
function with values in Rm, | · | is the Euclidean norm. B(x, r) is the open ball with center
in x and radius r > 0 and ωn = |B(0, 1)|. The unit sphere in Rn is denoted by Sn−1 and we
recall that H n−1(Sn−1) = nωn. We denote by B(Ω) the Borel σ-algebra generated by the open
subsets of (Ω, | · |) which is a locally compact and separable metric space. We also use the
standard notation µ A for the restriction of a measure µ to the set A and µ � ν to indicate
that the measure µ is absolutely continuous with respect to the measure ν.

For k ∈ N0∪{+∞} and m ∈ N we denote by Ck
c (Ω;Rm) := {φ ∈ Ck(Ω;Rm), supp(φ) b Ω}

the space of Ck functions compactly supported in Ω which will be endowed with the sup norm

‖φ‖L∞(Ω;Rm) = sup
x∈Ω
|φ(x)|.

We denote by Lip(Ω), Liploc(Ω) and Lipc(Ω) the spaces of Lipschitz, locally Lipschitz and
Lipschitz functions with compact support in Ω, respectively.

As it is customary, the space of signed Radon measures on Ω is denoted by Mloc(Ω) and
the space of Rm-vector valued Radon measures by Mloc(Ω;Rm). In addition, if µ ∈ Mloc(Ω)
and its total variation of |µ| is finite on Ω, then µ is a finite signed Radon measure on Ω and we
write µ ∈M(Ω); if µ is nonnegative, then µ = |µ| and we write µ ∈M+,loc(Ω) (or µ ∈M+(Ω)
if µ(Ω) < ∞). Analogously, we say that µ is a finite Rm-vector valued Radon measure on Ω,
and we write µ ∈M(Ω;Rm), if µ ∈Mloc(Ω;Rm) and |µ|(Ω) <∞.

We introduce now the notion of local weak∗ convergence for Radon measures. The Riesz
representation theorem shows that the space Mloc(Ω;Rm) can be identified with the dual of
Cc(Ω;Rm), for any m ≥ 1. Hence, we can give the following definition.
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Definition 1.1.1 (Local weak∗ convergence). We say that a sequence of Radon measures
νk ∈Mloc(Ω) locally weakly∗ converges in Ω to ν ∈Mloc(Ω), and we write νk ⇀ ν, if for every
φ ∈ Cc(Ω) we have ∫

Ω
φ dνk →

∫
Ω
φ dν as k → +∞. (1.1.1)

Analogously, given νk, ν ∈ Mloc(Ω;Rm), we have the local weak∗ convergence νk ⇀ ν, if for
every φ ∈ Cc(Ω;Rm) we have ∫

Ω
φ dνk →

∫
Ω
φ dν as k → +∞. (1.1.2)

Remark 1.1.2. In the sequel, the local weak∗ convergence above will also refer to measures
νε ∈ M(Ωε) defined on a family of increasing open sets Ωε ⊂ Ω as ε decreases, such that⋃
ε>0 Ωε = Ω and for every compact set K ⊂ Ω there exists ε′ > 0 such that K ⊂ Ωε′ . This type

of local weak∗ convergence does not make a substantial difference compared to the standard
one, so we will not use a different symbol.

For instance, the local weak∗ convergence of (1.3.18) refers to a family of measures that are
not defined on all of Ω for every fixed ε > 0.

We introduce now the notion of pairing between an essentially bounded vector field and a
finite vector valued Radon measure.

Lemma 1.1.3. Let F ∈ L∞(Ω;Rn) and ν ∈ M(Ω;Rn). Let ρ ∈ Cc(B(0, 1)) be a nonnegative
mollifier satisfying ρ(−x) = ρ(x) and

∫
B(0,1) ρ dx = 1. Then, the measures F · (ρε ∗ν)L n satisfy

the estimate ∫
Ω
|F · (ρε ∗ ν)| dx ≤ ‖F‖L∞(Ω;Rn) |ν|(Ω) (1.1.3)

for ε > 0 and any weak∗ limit point (F, ν) ∈M(Ω) satisfies |(F, ν)| ≤ ‖F‖L∞(Ω;Rn)|ν|.

We call any weak∗ limit (F, ν) constructed as in Lemma 1.1.3 the pairing measure between
the vector field F and the vector valued Radon mesure ν.

Proof. Let φ ∈ Cc(Ω). It is not difficult to see that∫
Ω
φ(x)F (x) · (ρε ∗ ν)(x) dx =

∫
Ω

∫
Ω
φ(x)ρε(x− y)F (x) · dν(y) dx

=
∫

Ω
(ρε ∗ (φF ))(y) · dν(y).

This implies that∣∣∣∣∫
Ω
φF · (ρε ∗ ν) dx

∣∣∣∣ ≤ ‖ρε ∗ (φF )‖L∞(Ω;Rn)|ν|(Ω) ≤ ‖φ‖L∞(Ω)‖F‖L∞(Ω;Rn)|ν|(Ω),

and therefore the sequence F · (ρε ∗ ν)L n satisfies (1.1.3). This means that there exists a
weakly∗ converging subsequence F · (ρεk ∗ ν)L n, whose limit we denote by (F, ν). Hence, for
any φ ∈ Cc(Ω) we obtain∣∣∣∣∫

Ω
φ d(F, ν)

∣∣∣∣ = lim
εk→0

∣∣∣∣∫
Ω
φF · (ρε ∗ ν) dx

∣∣∣∣ ≤ lim
εk→0
‖F‖L∞(Ω;Rn)

∫
Ω
|φ||ρεk ∗ ν| dx

≤ lim
εk→0
‖F‖L∞(Ω;Rn)

∫
Ω
|φ|(ρε ∗ |ν|) dx = ‖F‖L∞(Ω;Rn)

∫
Ω
|φ| d|ν|,

since (ρε ∗ |ν|)µ ⇀ |ν| by Remark 1.2.12. This concludes our proof.
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Remark 1.1.4. We stress the fact that the pairing (F, ν) introduced in Lemma 1.1.3 is not
unique, a priori. However, if ν � L n, we have ν = GL n, for some vector field G ∈ L1(Ω;Rn),
and so it is easy to see that

lim
ε→0

∫
Ω
φF · (ρε ∗ ν) dx = lim

ε→0

∫
Ω
φF · (ρε ∗G) dx =

∫
Ω
φF ·Gdx,

for any φ ∈ Cc(Ω). This implies (F, ν) = F ·GL n, which yields the uniqueness of the pairing
in the case of absolutely continuous measures.

1.1.1 Functions of bounded variations and sets of finite perimeter
In this section we recall some basic definitions and results in the theory of functions of bounded
variation and sets of finite perimeter, known as Caccioppoli sets. In particular, we will make
use of elements in the structure theory of sets of finite perimeter as developed by De Giorgi
[64] and Federer [71] (see also the manuscript of Federer [72]). We follow mainly the treatment
of the monographs [11,69,111].

Definition 1.1.5. Let Ω ⊂ Rn be open.

a) A function u ∈ L1(Ω) is said to be of bounded variation in Ω if the distributional gradient
Du is a finite Rn-vector valued Radon measure on Ω; that is,

|Du|(Ω) := sup
{∫

Ω
u divφ dx : φ ∈ C1

c (Ω;Rn), |φ| ≤ 1
}
<∞. (1.1.4)

The space of all such functions is denoted by BV (Ω). Analogously, we say that u is of
locally of bounded variation in Ω if, for every open set W b Ω, we have u ∈ BV (W ); the
space of all such functions is denoted by BVloc(Ω).

b) A measurable set E ⊂ Ω is said to be a set of locally finite perimeter in Ω (or is a locally
Caccioppoli set) if χE ∈ BVloc(Ω). For any open set U b Ω, we denote the perimeter of
E in U by

P(E,U) := |DχE|(U).
We say that E is a set of finite perimeter in Ω if |DχE| is a finite Radon measure on Ω.

Thanks to the Radon-Nikodým theorem, for any u ∈ BV (Ω) we have the following decom-
position of the weak gradient:

Du = Dau+Dsu = ∇uL n +Dsu,

whereDau denotes the absolutely continuous part ofDu, with density∇u, andDsu the singular
part.

It is not difficult to see that W 1,1(Ω) ⊂ BV (Ω), since it corresponds to the case (Du)s = 0,
and indeed some properties of the Sobolev space extend to the functions of bounded variation.
In particular, the Poincaré inequality holds also in BV , and it implies the linear form of
the relative relative isoperimetric inequality for sets of finite perimeter (see for instance [11,
Theorem 3.44]).

Theorem 1.1.6. Let Ω be an open bounded connected set with Lipschitz boundary. Then there
exists a constant κ = κΩ > 0 such that

‖u− uΩ‖L1(Ω) ≤ κ|Du|(Ω)

for any u ∈ BV (Ω). In particular, if E is a set of finite perimeter in Ω and γ = κ/|Ω|, we have

|Ω ∩ E||Ω \ E|
|Ω|2 ≤ γP(E,Ω). (1.1.5)
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From the definition, if E is a set of locally finite perimeter in Ω, then DχE is an Rn-vector
valued Radon measure on Ω whose total variation is |DχE|. By the polar decomposition of
measures ([11, Corollary 1.29]), one can write DχE = νE|DχE|, where νE is a |DχE|-measurable
function such that |νE(x)| = 1 for |DχE|-a.e. x ∈ Ω.

Important examples of sets of finite perimeter in Ω are open bounded sets U b Ω such that
H n−1(∂U) <∞ or ∂U is Lipschitz. In this second case, it is possible to show that

|DχU | = H n−1 ∂U, (1.1.6)

as is known from the work of Federer (see [11, Proposition 3.62], for example).
While (1.1.6) says that |DχU | is concentrated on the topological boundary of a bounded

Lipschitz domain U , this does not happen in general. Indeed, the topological boundary of a
bounded set of finite perimeter E can be very irregular, including the possibility of having
positive Lebesgue measure. On the other hand, De Giorgi [64] discovered a suitable subset of
∂E of finite H n−1-measure on which |DχE| is concentrated if E has finite perimeter in Ω.

Definition 1.1.7. Let E be a measurable subset of Rn and let Ω be the largest open subset
for which E is of locally finite perimeter in Ω. The reduced boundary of E, denoted by FE, is
defined as the set of all x ∈ supp(|DχE|) ∩ Ω such that the limit

νE(x) := lim
r→0

DχE(B(x, r))
|DχE|(B(x, r)) (1.1.7)

exists in Rn and satisfies
|νE(x)| = 1. (1.1.8)

The function νE : FE → Sn−1 is called the measure theoretic unit interior normal to E.

A precise justification for calling νE a generalized interior normal comes from De Giorgi’s
blow-up analysis of E around a point of FE illustrated in Theorem 1.1.10 below. First, we
need to recall the definitions of rectifiable set and approximated tangent space.

Definition 1.1.8. Let k ∈ [0, n] be an integer and let S ⊂ Rn be a H k-measurable set. We say
that S is countably k-rectifiable if there exist countably many Lipschitz functions fi : Rk → Rn

such that
S ⊂

⋃
i

fi(Rk).

Definition 1.1.9. Let k ∈ [0, n] be an integer, µ be a Radon measure in Ω and x ∈ Ω. We say
that the approximate tangent space of µ is a k-plane π with multiplicity θ ∈ R at x, and we
write

Tank(µ, x) = θH k π,

if r−kµx,r locally weak∗ converges to θH k π in Rn as r → 0; that is,

lim
r→0

1
rk

∫
Ω
φ
(
y − x
r

)
dµ(y) =

∫
π
φ(y) dH k(y)

for any φ ∈ Cc(Rn).

Theorem 1.1.10. Let E be a set of locally finite perimeter in Rn. Then FE is countably
(n− 1)-rectifiable and we have

|DχE| = H n−1 FE. (1.1.9)
In addition, for any x ∈ FE,

Tann−1(|DχE|, x) = H n−1 ν⊥E (x), (1.1.10)
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and the following convergence results hold:

E − x
ε
→ H+

νE
(x) := {y ∈ Rn : y · νE(x) ≥ 0} in L1

loc(Rn) as ε→ 0 (1.1.11)

and

(Rn \ E)− x
ε

→ H−νE(x) := {y ∈ Rn : y · νE(x) ≤ 0} in L1
loc(Rn) as ε→ 0. (1.1.12)

For the proof of this result we refer to [11, Theorem 3.59].

Remark 1.1.11. Thanks to Whitney’s extension theorem ([69, Theorem 6.10]), it is actually
possible to show that H k-almost all of a k-rectifiable set can be covered by a sequence of C1

k-graphs. In particular, if E is a set of finite perimeter, then there exist a sequence of C1

hypersurfaces Γi whose union covers H n−1-almost all of FE and such that νE|Γi is the interior
normal of the subgraph of Γi.

One of the many consequences of Theorem 1.1.10 is the extension of the classical Gauss–
Green formula to the sets of finite perimeter: indeed, thanks to the definition of weak gradient,
the polar decomposition and (1.1.9), one can see that∫

E
divφ dx = −

∫
FE

φ · νE dH n−1, (1.1.13)

for any φ ∈ C1
c (Ω;Rn).

Crucial to the calculus on sets of finite perimeter E in Ω is Federer’s structure theorem. For
any measurable set E ⊂ Ω and for any α ∈ [0, 1] define the subsets

Eα := {x ∈ Ω : θ(E, x) = α}, (1.1.14)

where
θ(E, x) := lim

r→0

|B(x, r) ∩ E|
|B(x, r)| , (1.1.15)

is the Lebesgue density of x in E. One calls E1 and E0 the measure theoretic interior and
exterior of E in Ω, respectively, while ∂∗E := Ω \ (E0 ∪ E1) is called the measure theoretic
boundary of E in Ω.

Theorem 1.1.12 (Federer’s structure theorem). If E has finite perimeter in Ω, then we have

FE ⊂ E1/2 ⊂ ∂∗E (1.1.16)

and there exists a subset NE with H n−1(NE) = 0 such that

Ω = E1 ∪FE ∪ E0 ∪NE. (1.1.17)

For a proof, we refer to [11, Theorem 3.61].

Remark 1.1.13. An easy consequence of Theorem 1.1.12 is that H n−1(∂∗E \FE) = 0, so
that we can integrate indifferently over FE or ∂∗E with respect to the Hausdorff measure
H n−1. In addition, E has density 0, 1/2 or 1 in Ω at H n−1-a.e. x ∈ E.

As for the fine properties of general BV functions, we recall a well-known result on the
existence of the precise representative, for which we refer for instance to [11, Corollary 3.80].

35



Definition 1.1.14. Let u ∈ L1
loc(Ω). The precise representative u∗ of u is defined by

u∗(x) :=

lim
r→0

1
|B(x, r)|

∫
B(x,r)

u(y) dy if this limit exists

0 otherwise
(1.1.18)

Theorem 1.1.15. If u ∈ BV (Ω), then

u∗(x) = lim
r→0

1
|B(x, r)|

∫
B(x,r)

u(y) dy

for H n−1-a.e. x ∈ Ω. In addition, if we set uε := ρε ∗u in Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε}, for
any nonnegative radially symmetric mollifier ρ ∈ C∞c (B(0, 1)) with

∫
B(0,1) ρ dx = 1, we have

uε(x)→ u∗(x) for H n−1-a.e. x ∈ Ω. (1.1.19)

We conclude this subsection with the needed properties of mollifying characteristic functions
of sets of finite perimeter.

Lemma 1.1.16. Let E ⊂ Ω be a set of locally finite perimeter in Ω and ρ ∈ C∞c (B(0, 1)) be a
nonnegative radially symmetric mollifier such that

∫
B(0,1) ρ dx = 1. Then, the following results

hold:

1. there is a set N with H n−1(N ) = 0 such that, for all x ∈ Ω \ N , (ρε ∗ χE)(x)→ χ∗E(x)
where

χ∗E(x) =


1 if x ∈ E1

1
2 if x ∈ FE

0 if x ∈ E0
; (1.1.20)

2. ρε ∗ χE ∈ C∞(Ωε) and ∇(ρε ∗ χE)(x) = (ρε ∗DχE)(x) for any x ∈ Ωε;

3. one has the following weak∗ limits inMloc(Ω;Rn):

(a) ∇(ρε ∗ χE) ⇀ DχE;
(b) χE∇(ρε ∗ χE) ⇀ (1/2)DχE;
(c) χΩ\E∇(ρε ∗ χE) ⇀ (1/2)DχE;

Proof. For the pointwise convergence of point (1), we notice that, since the pointwise converg-
erce is a local property, we may assume without loss of generality that E is a set of finite
perimeter in Ω. Theorem 1.1.15 implies that, for H n−1-a.e. x ∈ Ω, (ρε ∗ χE)(x)→ χ∗E(x) and

χ∗E(x) = lim
r→0

1
|B(x, r)|

∫
B(x,r)

χE(y)dy = θ(E, x),

where θ(E, x) is the Lebesgue density defined in (1.1.15). It follows that χ∗E(x) = 1, 0 if
x ∈ E1, E0 respectively. Moreover, by (1.1.16), we see that χ∗E(x) = 1

2 if x ∈ FE. Finally,
thanks to Theorem 1.1.12, we conclude that θ(E, x) is well defined H n−1-a.e. in Ω.

The smoothness of ρε ∗ χE is a well known property of the mollification. In order to prove
the commutation of point (2), let φ ∈ C1

c (Ωε;Rn). Then, it is easy to see that∫
Ω
φ · ∇(ρε ∗ χE) dx = −

∫
Ω

(ρε ∗ χE) divφ dx = −
∫

Ω
χE div(ρε ∗ φ) dx

=
∫

Ω
(ρε ∗ φ) · dDχE =

∫
Ω
φ · (ρε ∗DχE) dx.

36



Since φ is arbitrary, the result is proved.
For the weak∗ limit (a) of point (3), since (ρε ∗ χE)→ χE in L1

loc(Ω), one has∫
Ω
∇(ρε ∗ χE) · φ dx = −

∫
Ω

(ρε ∗ χE)divφ dx→ −
∫

Ω
χEdivφ dx =

∫
Ω
φ · dDχE

for each φ ∈ C1
c (Ω;Rn). Consequently, one has the limit (a) in the sense of Rn-vector valued

Radon measures, by the density of C1
c (Ω;Rn) in Cc(Ω;Rn) with respect to the supremum norm.

In order to show limit (b), consider φ ∈ C1
c (Ω;Rn) and notice that∫

Ω
φχE · ∇(ρε ∗ χE) dx =

∫
Ω
χEdiv((ρε ∗ χE)φ) dx−

∫
Ω
χE(ρε ∗ χE)divφ dx

= −
∫

Ω
φ(ρε ∗ χE) · dDχE −

∫
Ω
χE(ρε ∗ χE)divφ dx.

Now, let ε → 0 and apply Lebesgue’s dominated convergence theorem to the measures |DχE|
and L n and use point (1) in order to obtain

lim
ε→0

∫
Ω
φχE · ∇(ρε ∗ χE) dx = −

∫
Ω
φχ∗E · dDχE −

∫
Ω
χ2
Edivφ dx

= −
∫

Ω

1
2φ · dDχE −

∫
Ω
χEdivφ dx

= −
∫

Ω

1
2φ · dDχE +

∫
Ω
φ · dDχE

since χ∗E = 1
2 on FE and |DχE|(Ω \ FE) = 0. Therefore, by the density of C1

c (Ω;Rn) in
Cc(Ω;Rn) with respect to the supremum norm, the claim (b) follows.

Finally, for the limit (c), observe that

χΩ\E∇(ρε ∗ χE) = ∇(ρε ∗ χE)− χE∇(ρε ∗ χE) ⇀
(

1− 1
2

)
DχE

as ε→ 0 by combining the limits (a) and (b).

1.1.2 Some notions of capacity theory
As is well known, the notion of capacity is very useful in the study of the fine properties of
Sobolev functions and for Sobolev type inequalities for functions of bounded variation. We
recall here a few well-known results which will play a key role in the proof of the Leibniz rule
for p-summable divergence-measure fields in Chapter 3. The brief exposition here borrows from
the monographs of [69,101,116,119].

Definition 1.1.17. For 1 ≤ p ≤ n and a compact subset K of Ω we define the p-capacity of K
relative to Ω as

capp(K,Ω) := inf
{∫

Ω
|∇φ|p dx : φ ∈ C∞c (Ω), φ ≥ 1 onK

}
.

If U ⊂ Ω is open, we set

capp(U,Ω) := sup{capp(K,Ω) : K ⊂ U compact}

and, for an arbitrary set A ⊂ Ω,

capp(A,Ω) := inf{capp(U,Ω) : A ⊂ U ⊂ Ω, U open}.

If Ω = Rn, we write capp(A,Rn) = capp(A), for any set A.
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It is possible to show that, for any compact subset K of Ω, Definition 1.1.17 is equivalent
to

capp(K,Ω) := inf
{∫

Ω
|∇φ|p dx : φ ∈ C∞c (Ω), 0 ≤ φ ≤ 1, {φ = 1}◦ ⊃ K

}
,

by an approximation argument one finds in [119, § 2.2.1, point (ii)].
It is also easy to see that

1. capp(A1,Ω) ≤ capp(A2,Ω) if A1 ⊂ A2 ⊂ Ω,

2. capp(A,Ω2) ≤ capp(A,Ω1) if Ω1 ⊂ Ω2, hence capp(A) ≤ capp(A,Ω).

Definition 1.1.18. For 1 ≤ p ≤ n and for a set E we define the p-Sobolev capacity as

Cp(E) := inf
{∫

Rn
|∇φ|p + |φ|p dx : φ ∈ C∞c (Rn), {φ ≥ 1}◦ ⊃ E

}
.

It is clear that Cp(E1) ≤ Cp(E2) for any E1 ⊂ E2.
We also have capp(E) ≤ Cp(E) for any set E: indeed, capp(K) ≤ Cp(K) for any compact

K, hence capp(U) ≤ Cp(U) for any open set U , which easily implies the inequality for a general
set.

Following the notation of [101], we say that a set E in Rn has zero p-capacity if

capp(E ∩ Ω,Ω) = 0 ∀Ω open.

Lemma 1.1.19. If 1 ≤ p < n and if capp(E,Ω) = 0 for an open set Ω ⊃ E, then capp(E,Ω′) =
0 for any bounded open set Ω′ satisfying E ⊂ Ω′ b Ω.

Proof. By the definition of capacity, it is enough to prove the statement for a compact K ⊂ Ω.
Let Ω′ be such that K ⊂ Ω′ b Ω. We take φ ∈ C∞c (Ω), 0 ≤ φ ≤ 1, {φ = 1}◦ ⊃ K and
ψ ∈ C∞c (Ω′), 0 ≤ ψ ≤ 1, {ψ = 1}◦ ⊃ K, then φψ ∈ C∞c (Ω′), 0 ≤ φψ ≤ 1, {φψ = 1}◦ ⊃ K. Thus

capp(K,Ω′) ≤
∫

Ω′
|∇(φψ)|p dx ≤ 2p

(∫
Ω
|∇φ|p dx+ ‖∇ψ‖pL∞(Ω;Rn)

∫
Ω′
|φ|p dx

)
≤ 2p

(∫
Ω
|∇φ|p dx+ ‖∇ψ‖pL∞(Ω;Rn)|Ω

′|
p
n‖φ‖p

Lp∗ (Ω)

)
≤ C(∇ψ,Ω′, p)

∫
Ω
|∇φ|p dx,

by Gagliardo-Nirenberg-Sobolev inequality. Passing to the infimum in φ, we obtain the desired
result, since capp(K,Ω) = 0.

Lemma 1.1.20. If 1 ≤ p < n, E is a bounded set and there exists an open set Ω ⊃ E such
that capp(E,Ω) = 0, then E has zero p-capacity.

Proof. By Lemma 1.1.19, we can assume Ω to be bounded. Then the result follows from
[101, Lemma 2.9] in the case p > 1, while the case p = 1 can be proved easily with a similar
argument.

Lemma 1.1.21. For 1 ≤ p ≤ n, Cp(E) = 0 if and only if E has zero p-capacity; that is,
capp(E ∩ Ω,Ω) = 0 for any open set Ω.

Proof. See [101, Corollary 2.39], the case p = 1 follows easily by the same techniques.

We recall now two important results on the relations between the Hausdorff measures, the
capacities and the Sobolev spaces.

Theorem 1.1.22. If 1 < p ≤ n and E is a Borel set such that H n−p(E) <∞, then Cp(E) = 0.
For p = 1, we have that H n−1(E) = 0 if and only if C1(E) = 0.
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Proof. For the first part of the statement, we refer to [116, Theorem 2.52]. The second part
follows from [96, Theorem 4.4, Theorem 5.1].

In what follows, we denote by ρ a smooth radially symmetric mollifier ρ ∈ C∞c (B(0, 1)),
with ρ ≥ 0 and

∫
B(0,1) ρ dx = 1, and we set ρε(x) := ε−nρ(x/ε).

Definition 1.1.23. A function u is called p-quasicontinuous on Ω if for any ε > 0 there exists
an open set V with Cp(V ) < ε such that u restricted to Ω \ V is bounded and continuous.
We say that a property holds p-quasi everywhere (or at p-quasi every point) if it holds expect
for a set of zero Sobolev capacity.

Theorem 1.1.24. Let p ∈ [1, n] and u ∈ W 1,p
loc (Ω), then u∗ is a p-quasicontinuous representative

of u and
lim
r→0
−
∫
B(x,r)

|u(y)− u∗(x)| dy = 0 (1.1.21)

at p-quasi every x ∈ Ω; that is, there exists a set Z with Cp(Z) = 0 such that (1.1.21) holds
for any x ∈ Ω \ Z. In particular, (u ∗ ρε)(x)→ u∗(x) at p-quasi every x ∈ Ω.

Proof. For the proof of the case p ∈ (1, n] we refer to [116, Theorem 2.55], where it is assumed
u ∈ W 1,p

loc (Rn), however this result is clearly of local nature, hence it is valid also for u ∈ W 1,p
loc (Ω).

For p = 1 we refer to [69, Theorem 4.19], observing again that this statement is local and that
clearly C1(Z) = 0 implies cap1(Z) = 0.

Then, (1.1.21) implies easily that

|(u ∗ ρε)(x)− u∗(x)| ≤ ‖ρ‖L∞(B(0,1))ωn −
∫
B(x,ε)

|u(y)− u∗(x)| dy → 0.

1.2 Differentiation and intrinsic convolution in stratified
groups

1 In this section we recall the main features of the stratified groups, also well known as Carnot
groups. For a general theory on these groups we refer for instance to [75,76,100]. In particular,
we are focusing ourselves on the notion of differentiation and intrinsic convolution. At the end
of the section we provide an original approximation results for intrinsic Lipschitz functions.

1.2.1 Basic facts on stratified groups
A stratified group can be seen as a linear space G equipped with an analytic group operation
such that its Lie algebra Lie(G) is stratified. This assumption on Lie(G) corresponds to the
following conditions:

Lie(G) = V1 ⊕ · · · ⊕ Vι, [V1,Vj] = Vj+1

for all integers j ≥ 0 and Vj = {0} for all j > ι with Vι 6= {0}. The integer ι is the step of
nilpotence of G. The tangent space T0G can be canonically identified with Lie(G) by associating
to each v ∈ T0G the unique left invariant vector field X ∈ Lie(G) such that X(0) = v. This
allows for transferring the Lie algebra structure from Lie(G) to T0G. We can further simplify
the structure of G by identifying it with T0G, hence having a Lie product on G, that yields

1This section is based on a joint work with Valentino Magnani [51].
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the group operation by the Baker-Campbell-Hausdorff formula. This identification also gives a
graded structure to G, obtaining the subspaces Hj of G from the subspaces

{v ∈ T0G : v = X(0), X ∈ Vj} ,

therefore getting G = H1 ⊕ · · · ⊕H ι. By these assumptions the exponential mapping

exp : Lie(G)→ G

is somehow the “identity mapping” expX = X(0). It is clearly a bianalytic diffeomorphism.
We will denote by q the dimension of G, seen as a vector space. Those dilations that are
compatible with the algebraic structure of G are defined as linear mappings δr : G → G such
that δr(p) = rip for each p ∈ H i, r > 0 and i = 1, . . . , ι.

1.2.2 Metric structure, distances and graded coordinates
We may use a graded basis to introduce a natural scalar product on a stratified group G. We
then define the unique scalar product on G such that the graded basis is orthonormal.

We will denote by | · | the associated Euclidean norm, that exactly becomes the Euclidean
norm with respect to the corresponding graded coordinates.

On the other hand, the previous identification of G with T0G yields a scalar product on
T0G, that defines by left translations a left invariant Riemannian metric on G. By a slight
abuse of notation, we use the symbols | · | and 〈·, ·〉 to denote the norm arising from this left
invariant Riemannian metric and its corresponding scalar product. By 〈·, ·〉Rq we will denote
the Euclidean scalar product, that makes the fixed graded basis (e1, . . . , eq) orthonormal.

Notice that the basis (X1, . . . , Xq) of Lie(G) associated to our graded basis is clearly or-
thonormal with respect to the same left invariant Riemannian metric.

A homogeneous distance
d : G×G→ [0,+∞)

on a stratified group G is a continuous and left invariant distance with

d(δr(p), δr(q)) = r d(p, q)

for all p, q ∈ G and r > 0. We define the open balls as

B(p, r) =
{
q ∈ G : d(q, p) < r

}
.

The corresponding homogeneous norm will be denoted by ‖x‖ = d(x, 0) for all x ∈ G. It is
worth to compare d with our fixed Euclidean norm on G, getting

C−1|x− y| ≤ d(x, y) ≤ C|x− y|1/ι (1.2.1)

on compact sets of G. A homogeneous distance also defines a Hausdorff measure H α and a
spherical measure S α. As it is customary, we set for δ > 0 and A ⊂ G:

H α
δ (A) := inf

∑
j∈J

(
diamAj

2

)α
: diamAj < δ, A ⊂

⋃
j∈J

Aj

 ,
S α
δ (A) := inf

∑
j∈J

rαj : 2rj < δ, A ⊂
⋃
j∈J

B(xj, rj)


and we take the following suprema

H α(A) := sup
δ>0

H α
δ (A) and S α(A) := sup

δ>0
S α
δ (A).
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It will be useful to introduce the right invariant distance dR associated to d as follows

dR(x, y) := ‖xy−1‖ = d(xy−1, 0) = d(x−1, y−1). (1.2.2)

It is not difficult to check that dR is a continuous and right invariant distance, that is also
homogeneous, namely

dR(δrx, δry) = rdR(x, y)
for r > 0 and x, y ∈ G. The local estimates (1.2.1) also show that dR defines the same topology
of both d and the Euclidean norm | · |. The metric balls associated to dR are

BR(p, r) =
{
q ∈ G : dR(q, p) < r

}
. (1.2.3)

We notice that
BR(0, 1) = B(0, 1), (1.2.4)

being dR(x, 0) = d(x−1, 0) = d(0, x) for all x ∈ G.
A basis (e1, . . . , eq) of G that respects the grading of G has the property that

(emj−1+1, emj−1+2, . . . , emj
)

is a basis of Hj for each j = 1, . . . , ι, where mj = ∑j
i=1 dimH i for every j = 1, . . . , ι, m0 = 0

and m = m1. The basis (e1, . . . , eq) is then called graded basis of G. Such basis provides the
corresponding graded coordinates x = (x1, . . . , xq) ∈ Rq, that give the unique element of G that
satisfies

p =
q∑
j=1

xjej ∈ G.

We define a graded basis (X1, . . . , Xq) of Lie(G) defining Xj ∈ Lie(G) as the unique left
invariant vector field with Xj(0) = ej and j = 1, . . . , q.

We assign degree i to each left invariant vector field of Vi. In different terms, for each
j ∈ {1, . . . , q} we define the integer function dj on {1, . . . , ι} such that

mdj−1 < j ≤ mdj .

The previous definitions allow to represent any left invariant vector field Xj as follows

Xj = ∂xj +
q∑

i:di>dj
aij∂xi , (1.2.5)

where j = 1, . . . , q and aij are suitable polynomials. The vector fields X1, X2, . . . , Xm of degree
one, are the so-called horizontal left invariant vector fields and constitute the horizontal left
invariant frame of G.

Using graded coordinates, the dilation of x ∈ Rq is given by

δr(x) =
q∑
j=1

rdjxjej.

Through the identification of G with T0G, it is also possible to write explicitly the group product
in the graded coordinates. In the sequel, an auxiliary scalar product on G is fixed such that our
fixed graded basis is orthonormal. The restriction of this scalar product to V1 can be translated
to the so-called horizontal fibers

HpG = {X(p) ∈ TpG : X ∈ V1}
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as p varies in G, hence defining a left invariant sub-Riemannian metric g on G. We denote by
HG the horizontal subbundle of G, whose fibers are HxG.

The Hausdorff dimension Q of the stratified group G with respect to any homogeneous
distance is given by the formula

Q =
ι∑
i=1

i dim(H i).

We fix a Haar measure µ on G, that with respect to our graded coordinates becomes the
standard q-dimensional Lebesgue measure L q. Because of this identification, we shall write
dx instead of dµ(x) in the integrals. This measure defines the corresponding Lebesgue spaces
Lp(A) and Lploc(A) for any measurable set A ⊂ G. The Lp-norm will be denoted using the same
symbols we will use for horizontal vector fields in Definition 1.3.1.

For any measurable set E ⊂ G, we have µ(xE) = µ(E) for any x ∈ G and

µ(δλE) = λQµ(E) for any λ > 0.

Since B(p, r) = p δrB(0, 1) and BR(p, r) = δr(B(0, 1))p, we get

µ(B(p, r)) = rQµ(B(0, 1)) and µ(BR(p, r)) = rQµ(B(0, 1)) (1.2.6)

due to the left and right invariance of the Haar measure µ. The previous formulas show the
existence of constants c1, c2 > 0 such that

H Q = c1 H Q
R = c2 µ, (1.2.7)

where H Q and H Q
R are the Hausdorff measures with respect to d and dR, respectively. In

particular, (1.2.6) shows that µ is doubling with respect to both d and dR, hence the Lebesgue
differentiation theorem holds with respect to µ and both distances d and dR.

Theorem 1.2.1. Given f ∈ L1
loc(G), we have

lim
r→0
−
∫
B(x,r)

|f(y)− f(x)| dy = 0 and lim
r→0
−
∫
BR(x,r)

|f(y)− f(x)| dy = 0,

for µ-a.e. x ∈ G.

For a general proof of the previous theorem in metric measure spaces equipped with a
doubling measure, we refer for instance to [22, Theorem 5.2.3].

1.2.3 Differentiability, local convolution and smoothing
The group structure and the intrinsic dilations naturally give a notion of “differential” and of
“differentiability” made by the corresponding operations. A map L : G→ R is a homogeneous
homomorphism, in short, a h-homomorphism if it is a Lie group homomorphism such that
L ◦ δr = r L. It can be proved that L : G→ R is a h-homomorphism if and only if there exists
(a1, . . . , am1) ∈ Rm1 such that L(x) = ∑m1

j=1 ajxj with respect to our fixed graded coordinates.
If not otherwise stated, in the following we denote by Ω an open set in G.

Definition 1.2.2 (Differentiability). We say that f : Ω→ R is differentiable at x0 ∈ Ω if there
is an h-homomorphism L : G→ R such that

lim
x→x0

f(x)− f(x0)− L(x−1
0 x)

d(x, x0) = 0.

If f is differentiable, then L is unique and we denote it simply by df(x0).
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A weaker notion of differentiability, that holds for Sobolev and BV functions on groups is
the following.

Definition 1.2.3 (Approximate differentiability). We say that f : Ω → R is approximately
differentiable at x0 ∈ Ω if there is an h-homomorphism L : G→ R such that

lim
r→0+

−
∫
B(x0,r)

|f(x)− f(x0)− L(x−1
0 x)|

r
dx = 0.

The function L is uniquely defined and it is called the approximate differential of f at x0. The
unique vector defining L with respect to the scalar product is denoted by ∇Hf(x0).

Remark 1.2.4. When G is the Euclidean space, the simplest stratified group, Definition 1.2.2
and Definition 1.2.3 yield the standard notions of differentiability and approximate differentia-
bility in Euclidean spaces.

We denote by C1
H(Ω) the linear space of real-valued functions f : Ω→ R such that the point-

wise partial derivatives X1f, . . . , Xmf are continuous in Ω. For any f ∈ C1
H(Ω) we introduce

the horizontal gradient
∇Hf :=

m∑
j=1

(Xjf)Xj, (1.2.8)

whose components Xjf are continuous functions in Ω. Taylor’s inequality [76, Theorem 1.41]
simply leads us to the everywhere differentiability of f and to the formula

df(x)(v) = 〈∇Hf(x), v〉 =
m∑
j=1

vjXjf(x)

for any x ∈ Ω and v =
q∑
j=1

vjej ∈ G.

We denote by Lip(Ω), Liploc(Ω) and Lipc(Ω) the spaces of Euclidean Lipschitz, locally
Lipschitz and Lipschitz functions with compact support in Ω, respectively. Analogously, we can
define the space of Lipschitz functions with respect to any homogeneous distance of the stratified
group, LipH(Ω). It is well known that Liploc(Ω) ⊂ LipH,loc(Ω), due to the local estimate (1.2.1).
In addition, analogously to the Euclidean Rademacher’s theorem, a differentiation theorem for
Lipschitz functions holds in stratified groups, and it was proved by Pansu, [130].

Theorem 1.2.5 (Pansu-Rademacher). If f ∈ LipH,loc(Ω), then f is differentiable µ-almost
everywhere.

This result follows also from a Rademacher’s type theorem by Monti and Serra Cassano,
proved in more general Carathéodory spaces, [124, Theorem 3.2].

Remark 1.2.6. From the standard Leibniz rule, if f, g ∈ LipH,loc(Ω), the definition of differ-
entiability joined with Theorem 1.2.5 gives

∇H(fg)(x) = f(x)∇Hg(x) + g(x)∇Hf(x) for µ-a.e. x.

The Haar measure on stratified groups allows for defining the convolution with respect to
the group operation.

Definition 1.2.7 (Convolution). For f, g ∈ L1(G), we define the convolution of f with g by
the integral

(f ∗ g)(x) :=
∫
G
f(y)g(y−1x) dy =

∫
G
f(xy−1)g(y) dy,

that is well defined for µ-a.e. x ∈ G, see for instance [76, Proposition 1.18].
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Due to the noncommutativity of the group operation, one may clearly expect that g ∗ f
differs from f ∗ g, in general. This difference appears especially when we wish to localize the
convolution. In the sequel, Ω denotes an open set, if not otherwise stated. For every ε > 0,
two possibly empty open subsets of Ω are defined as follows

ΩRε =
{
x ∈ G : distR(x,Ωc) > ε

}
and Ωε = {x ∈ G : dist(x,Ωc) > ε} , (1.2.9)

where we have defined the distance functions

distR(x,A) = inf
{
dR(x, y) : y ∈ A

}
and dist(x,A) = inf {d(x, y) : y ∈ A}

for an arbitrary subset A ⊂ G. We finally define the open set

AR,ε =
{
x ∈ G : distR(x,A) < ε

}
.

Definition 1.2.8 (Mollification). Given a function ρ ∈ Cc(B(0, 1)), we set

ρε(x) := ε−Qρ(δ1/ε(x))

for ε > 0. If f ∈ L1(Ω) and x ∈ G, we define

ρε ∗ f(x) =
∫

Ω
ρε(xy−1)f(y) dy. (1.2.10)

If we restrict the domain of this convolution considering x ∈ ΩRε , then we can allow for f ∈
L1

loc(Ω) and we have
ρε ∗ f(x) =

∫
BR(x,ε)

ρε(xy−1)f(y) dy, (1.2.11)

which is well posed since the map y → ρε(xy−1) has compact support inside BR(x, ε) ⊂ Ω. In
addition, under these assumptions, a simple change of variables also yields

ρε ∗ f(x) =
∫
B(0,ε)

ρε(y) f(y−1x) dy =
∫
B(0,1)

ρ(y) f
(
(δεy−1)x

)
dy. (1.2.12)

Due to the noncommutativity, a different convolution may also be introduced

f ∗ ρε(x) =
∫

Ω
f(y)ρε(y−1x) dy =

∫
B(x,ε)

ρε(y−1x)f(y) dy, (1.2.13)

where the first integral makes sense for all x ∈ G and the second one only for x ∈ Ωε.
It is not difficult to show that the mollified functions ρε ∗ f and f ∗ ρε enjoy many standard

properties. For instance, ρε ∗ f converges to f in L1
loc(Ω), whenever f ∈ L1

loc(Ω).
We may also define the convolution between a (signed) Radon measure and a continuous

function. As it is customary, we denote byMloc(Ω) the space of signed Radon measures on Ω,
and byM(Ω) the space of finite signed Radon measures on Ω.
Definition 1.2.9 (Local convolution of measures). Let us consider two open sets Ω, U ⊂ G
and define the new open set O = U(Ω−1) ⊂ G. Let f ∈ C(O) and ν ∈ M(Ω). Then the
convolution between f and ν is given by

(f ∗ ν)(x) :=
∫

Ω
f(xy−1) dν(y), (1.2.14)

with the additional assumption that Ω 3 y 7→ f(xy−1) is |ν|-integrable for every x ∈ U . Thus,
f ∗ ν is well defined in U . If ρ ∈ Cc(B(0, 1)), for any x ∈ ΩRε we may represent the convolution
as follows

(ρε ∗ ν)(x) =
∫

Ω
ρε(xy−1) dν(y) =

∫
BR(x,ε)

ρε(xy−1) dν(y). (1.2.15)

The first integral makes sense for all x ∈ G, being ρ continuously extendable by zero outside
B(0, 1). In addition, (1.2.15) is well posed also for ν ∈Mloc(Ω), if x ∈ ΩR2ε. The function ρε ∗ ν
is the mollification of ν.
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Definition 1.2.10 (Local weak∗ convergence). We say that a family of Radon measures νε ∈
M(Ω) locally weakly∗ converges to ν ∈M(Ω), if for every φ ∈ Cc(Ω) we have∫

Ω
φ dνε →

∫
Ω
φ dν as ε→ 0+ (1.2.16)

and in this case we will use the symbols νε ⇀ ν as ε→ 0+.

Remark 1.2.11. In the sequel, the local weak∗ convergence above will also refer to measures
νε ∈ M(Ωε) defined on a family of increasing open sets Ωε ⊂ Ω as ε decreases, such that⋃
ε>0 Ωε = Ω and for every compact set K ⊂ Ω there exists ε′ > 0 such that K ⊂ Ωε′ . This type

of local weak∗ convergence does not make a substantial difference compared to the standard
one, so we will not use a different symbol.

For instance, the local weak∗ convergence of (1.3.18) refers to a family of measures that are
not defined on all of Ω for every fixed ε > 0. We stress that this distinction is important, since
our mollifier ρ is assumed to be only continuous.

Remark 1.2.12. For any measure ν ∈ M(Ω) and any mollifier ρ ∈ Cc(B(0, 1)) satisfying
ρ(x) = ρ(x−1) and

∫
B(0,1)

ρ dx = 1, we observe that ρε ∗ ν ∈ C(G) and we have the local weak∗

convergence of measures
(ρε ∗ ν)µ ⇀ ν (1.2.17)

in Ω, as ε→ 0+. Indeed, let φ ∈ Cc(Ω) and let ε > 0 small enough, such that suppφ ⊂ U and
U ⊂ ΩRε is an open set. Then we have

∫
Ω
φ(x)(ρε ∗ ν)(x) dx =

∫
U
φ(x)

(∫
BR(x,ε)

ρε(xy−1) dν(y)
)
dx

=
∫
UR,ε

(∫
U
ρε(yx−1)φ(x) dx

)
dν(y)

=
∫

Ω
(ρε ∗ φ)(y) dν(y)→

∫
Ω
φ(y) dν(y),

since UR,ε ⊂ (ΩRε )R,ε ⊂ Ω and ρε ∗ φ → φ uniformly on compact subsets of Ω. The previous
equalities also show that ∫

Ω
φ(x)(ρε ∗ ν)(x) dx =

∫
Ω

(ρε ∗ φ)(y) dν(y), (1.2.18)

whenever ρ ∈ Cc(B(0, 1)), ν ∈M(Ω) and φ ∈ Cc(Ω) such that supp(φ) ⊂ ΩRε .

Remark 1.2.13. The previous arguments also show that ρε ∗ f , for f ∈ L1(Ω), enjoys all
properties of the convolution in Remark 1.2.12. The same is true for ρε ∗ ν, if we consider

ν = (u1, . . . , um)β, (1.2.19)

where u1, . . . , um : Ω→ R belong to L1(Ω; β) and β ∈M+(Ω).

Proposition 1.2.14. Let ΩRε 6= ∅ for some ε > 0. The following statements hold.

1. If f ∈ C1
H(Ω), ρ ∈ Cc(B(0, 1)) and

∫
B(0,1)

ρ dx = 1 , then ρε ∗ f ∈ C1
H(ΩRε ),

Xj(ρε ∗ f) = ρε ∗Xjf in ΩRε , (1.2.20)

and both ρε ∗ f and ∇H(ρε ∗ f) uniformly converge to f and ∇Hf on compact subsets of
Ω. In addition, if f ∈ L1(Ω) and ρ ∈ Ck

c (B(0, 1)) for some k ≥ 1, then ρε ∗ f ∈ Ck(G).

45



2. If f ∈ L∞(Ω) and ρ ∈ Lipc(B(0, 1)), then ρε ∗ f ∈ Liploc(G).

Proof. Let f ∈ C1
H(Ω) and ρ ∈ Cc(B(0, 1)). By the estimate of [76, Theorem 1.41] and

Lebesgue’s dominated convergence, we have

Xj(ρε ∗ f)(x) = lim
t→0

∫
B(0,ε)

ρε(y) f(y−1x(tej))− f(y−1x)
t

dy

=
∫
B(0,ε)

ρε(y) lim
t→0

f(y−1x(tej))− f(y−1x)
t

dy

=
∫
B(0,ε)

ρε(y)(Xjf)(y−1x) dy = (ρε ∗Xjf)(x)

for any x ∈ ΩRε , due to the left invariance of Xj. By the condition
∫
B(0,1)

ρ dx = 1, the uniform
convergence follows from the continuity of both f and ∇Hf , along with the standard properties
of the convolution. The second point can be proved in a similar way, by differentiating the
mollifier ρε. Here we only add that this differentiation is possible at every point of G, being
ρε ∗ f defined on the whole group.

If f ∈ L∞(Ω) and ρ ∈ Lipc(B(0, 1)), then it is easy to notice that the mollification ρε ∗ f as
in (1.2.10) is well posed and belongs to L∞(G). Hence, for each compact set K ⊂ G and any
x, y ∈ K, we have

|f ε(x)− f ε(y)| ≤
∫

Ω
|f(z)| |ρε(xz−1)− ρε(yz−1)| dz

= ε−Q
∫
V
|f(z)|

∣∣∣∣ρ (δ1/ε(xz−1)
)
− ρ

(
δ1/ε(yz−1)

) ∣∣∣∣ dz
≤ ‖f‖L∞(Ω) 2µ(B(0, 1))LCε|x− y|,

where V = BR(x, ε) ∪BR(y, ε) ⊂ Ω, L > 0 is the Lipschitz constant of ρ and Cε > 0 is the
supremum of all Lipschitz constants Lε,z of K 3 x 7→ δ1/ε(xz−1) as z varies in V . Due to this
fact, we have Lε < +∞.

The next density theorem follows from the choice of suitable mollified functions.

Theorem 1.2.15. If g ∈ LipH,loc(Ω), then there exists a sequence (gk)k in C∞(Ω) with the
following properties

1. gk → g uniformly on compact subsets of Ω;

2. ‖|∇Hgk|‖L∞(U) is bounded for each U b Ω and k sufficiently large;

3. ∇Hgk → ∇Hg µ-a.e. in Ω.

If g ∈ LipH,c(Ω), then we can choose all gk to have compact support in Ω.

Proof. We consider ρ ∈ C∞c (B(0, 1)) satisfying ρ ≥ 0 and
∫
B(0,1)

ρ dy = 1. Then we define

gk(x) = (ρεk ∗ g)(x) =
∫

Ω
ρεk(xy−1)g(y) dy

for a positive sequence εk converging to zero, where ρε(x) = ε−Qρ(x/ε). In this way, we have
gk ∈ C∞(Ω) and Proposition 1.2.14 implies the uniform convergence on compact subsets of Ω.
For the subsequent claims, we may consider an open set U b Ω and take k sufficiently large
such that U b ΩRεk . For every fixed x ∈ U , formula (1.2.12) yields

gk(x) =
∫
B(0,εk)

ρεk(y)g(y−1x)dy,
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therefore the following equalities hold:(
gk(xh)− gk(x)−

〈∫
B(0,εk)

ρεk(y)∇Hg(y−1x)dy, h
〉)
‖h‖−1

=
(
gk(xh)− gk(x)−

∫
B(0,εk)

ρεk(y)
〈
∇Hg(y−1x), h

〉
dy

)
‖h‖−1

=
∫
B(0,εk)

ρεk(y)
(
g(y−1xh)− g(y−1x)− 〈∇Hg(y−1x), h〉

‖h‖

)
dy

for h sufficiently small. The difference quotient in the last integral is uniformly bounded with
respect to y and h, due to the Lipschitz continuity of g. The a.e. differentiability of g, by
Theorem 1.2.5, joined with Lebesgue’s dominated convergence show that

∇Hgk(x) =
∫
B(0,εk)

ρεk(y)∇Hg(y−1x)dy.

The local Lipschitz continuity of g provides local boundedness for ∇Hg, hence the previous
formula immediately establishes the second property. By a change of variables, we get

∇Hgk(x)−∇Hg(x) =
∫
BR(x,εk)

ρεk(xz−1) (∇Hg(z)−∇Hg(x)) dy.

From this, it follows that

|∇Hgk(x)−∇Hg(x)| ≤ ‖ρ‖L∞(G)
1
εQk

∫
BR(x,εk)

|∇Hg(z)−∇Hg(x)| dy,

and now we can conclude by Theorem 1.2.1. Finally, if g has compact support, it is clear that
also supp(ρε ∗ g) is compact in Ω, for ε small enough.

1.3 Basic notions of Geometric Measure Theory in strat-
ified groups

2 In this section we present some basic notions on BV functions and sets of finite perimeter in
stratified groups. In particular, some new smoothing arguments for BV functions are presented.
Additional results and references on these topics can be found for instance in [139].

We also introduce the important concept of horizontal vector field, that will be fundamental
in Chapter 4, in connection with Leibniz formulas and the Gauss–Green theorem in strati-
fied groups. To this purpose, we prove the well posedness of the pairings between essentially
bounded horizontal vector fields and weak horizontal gradients of BV functions (see Lemma
1.3.6).

1.3.1 BV functions and horizontal vector fields in stratified groups
Let Ω ⊂ G be an open set and denote by HΩ the restriction of the horizontal subbundle HG
to the open set Ω, whose horizontal fibers HpG are restricted to all points p ∈ Ω.

Definition 1.3.1 (Horizontal vector fields). Any measurable section F : Ω → HΩ of HΩ is
called a measurable horizontal vector field in Ω. We denote by |F | the measurable function
x→ |F (x)|, where | · | denotes the fixed graded invariant Riemannian norm.

2This section is based on a joint work with Valentino Magnani [51].
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The Lp-norm of a measurable horizontal vector field F in Ω is defined as follows:

‖F‖Lp(Ω) :=
(∫

Ω
|F (x)|p dx

)1/p
if 1 ≤ p <∞, (1.3.1)

‖F‖L∞(Ω) := ess sup
x∈Ω
|F (x)| if p =∞. (1.3.2)

We say that a measurable horizontal vector field F is a p-summable horizontal field if |F | ∈
Lp(Ω). For 1 ≤ p ≤ ∞, we denote by Lp(HΩ) the space of p-summable horizontal fields
endowed with the norms defined either in (1.3.1) or (1.3.2). A measurable horizontal vector
field F in Ω is locally p-summable if for any open subset W b Ω, we have F ∈ Lp(HW ). The
space of all such vector fields is denoted by Lploc(HΩ).

For k ∈ N \ {0}, the linear space of all Ck smooth sections of Ω is denoted by Ck(HΩ) and
its elements will be called horizontal vector fields of class Ck. Considering the subclass of all
Ck smooth horizontal vector fields with compact support in Ω yields the space Ck

c (HΩ). When
k = 0 the integer k is omitted and the corresponding space of vector fields will include those
with continuous coefficients.

It is easy to observe that, for all f ∈ C1
H(Ω), the horizontal gradient ∇Hf , given by (1.2.8),

automatically defines a continuous horizontal vector field in Ω.

Definition 1.3.2. We say that a function f : Ω → R is a function of bounded h-variation, or
simply a BV function, and write f ∈ BVH(Ω), if f ∈ L1(Ω) and

|DHf |(Ω) := sup
{∫

Ω
fdivφ dx : φ ∈ C1

c (HΩ), |φ| ≤ 1
}
<∞. (1.3.3)

We denote by BVH,loc(Ω) the space of functions in BVH(U) for any open set U b Ω.

Remark 1.3.3. In the case G is commutative and equipped with the Euclidean metric, the
previous notion of BV function coincides with the classical one.

Due to the standard Riesz representation theorem, it is possible to show that when f ∈
BVH(Ω) the total variation of its distributional horizontal grandient |DHf | is a nonnegative
Radon measure on Ω. In addition, there exists a |DHf |-measurable horizontal vector field
σf : Ω→ HΩ in Ω such that |σf (x)| = 1 for |DHf |-a.e. x ∈ Ω, and∫

Ω
fdivφ dx = −

∫
Ω
〈φ, σf〉 d|DHf |, (1.3.4)

for all φ ∈ C1
c (HΩ). In fact, these conditions are equivalent to the finiteness of (1.3.3).

Remark 1.3.4. Using Theorem 1.2.15 one can actually see that in (1.3.4) the horizontal vector
field φ can be taken with coefficients in LipH,c(Ω).

The integration by parts formula (1.3.4) allows us to think of DHf as a kind of “measure
with values inHΩ”, even though the horizontal tangent spaces ofHΩ may have different frames,
in principle.

Definition 1.3.5 (Measures in HΩ). Let γ ∈ M(Ω) be a measure and let α : Ω → HΩ be a
horizontal vector field such that |α| ∈ L∞loc(Ω, γ). We define the vector measure αγ in HΩ as
the linear operator

Cc(HΩ) 3 φ −→
∫

Ω
〈φ, α〉 dγ =:

∫
Ω
〈φ, d(αγ)〉 ,

bounded on Cc(HU) for any open set U b Ω with respect to the L∞-topology.
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According to the previous definition, σf |DHf | is a vector measure on HΩ, that will be also
denoted by DHf . When a horizontal frame (X1, . . . , Xm) is fixed, we can represent σf by the
|DHf |-measurable functions σ1

f , . . . , σ
m
f : Ω→ R such that

σf =
m∑
j=1

σjf Xj.

Thanks to this representation, DHf can be naturally identified with the vector valued Radon
measure

(σ1
f , . . . , σ

m
f )|DHf |. (1.3.5)

For each j = 1, . . . ,m, we define the scalar measures

DXjf = σjf |DHf |, (1.3.6)

that represent the distributional derivatives of a BV function as Radon measures. In view of
the Radon-Nikodým theorem, we have the decomposition

DHf = Da
Hf +Ds

Hf

where Da
Hf denotes the absolutely continuous part of DHf with respect to the Haar measure

of the group and Ds
Hf the singular part.

Any BV function is approximately differentiable a.e. and in addition the approximate dif-
ferential coincides a.e. with the vector density of Da

Hf , see [17, Theorem 2.2]. As a result, we
are entitled to denote Xjf ∈ L1(Ω) as the unique measurable function such that

Da
Xj
f = Xjf µ. (1.3.7)

Thus, to a BV function f we can assign a unique horizontal vector field ∇Hf ∈ L1(HΩ) whose
components are defined in (1.3.7) and by definition we have

Da
Hf = ∇Hf µ.

As a result, we have the decomposition of measures

DHf = ∇Hf µ+Ds
Hf. (1.3.8)

In the previous formula, ∇Hf is uniquely defined, up to µ-negligible sets, and it coincides a.e.
with the approximate differential of f , see Definition 1.2.3.

The vector measure DHf in HΩ enjoys some standard properties of vector measures, as
those mentioned in Remark 1.2.13. The mollification of DHf is the vector field

ρε ∗DHf(x) :=
m∑
j=1

(
ρε ∗ (σjf |DHf |)

)
(x)Xj(x) =

m∑
j=1

(
ρε ∗ (DXjf)

)
(x)Xj(x). (1.3.9)

We state now a technical lemma concerning an extension of the Euclidean notion of pairing
introduced in Lemma 1.1.3.

Lemma 1.3.6. Let F ∈ L∞(HΩ), γ ∈ M(Ω) and α : Ω → HΩ be a γ-measurable horizontal
section such that |α(x)| = 1 for γ-a.e. x ∈ Ω. Let ν := αγ be the corresponding vector
measure in HΩ and let ρ ∈ Cc(B(0, 1)) be a nonnegative mollifier satisfying ρ(x) = ρ(x−1) and∫
B(0,1) ρ dx = 1. Then the measures 〈F, (ρε ∗ ν)〉µ satisfy the estimate∫

Ω
|〈F, (ρε ∗ ν)〉| dx ≤ ‖F‖L∞(Ω) |ν|(Ω) (1.3.10)

for ε > 0 and any weak∗ limit point (F, ν) ∈M(Ω) satisfies |(F, ν)| ≤ ‖F‖L∞(Ω)|ν|.
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Proof. For any φ ∈ Cc(Ω), denoting by K ⊂ Ω its support, we have∫
Ω
φ(x) 〈F (x), (ρε ∗ ν)(x)〉 dx =

∫
K
φ(x)

〈
F (x),

∫
KR,ε

ρε(xy−1)α(y)
〉
dγ(y) dx

=
∫
KR,ε

∫
Ω
φ(x) 〈F (x), α(y)〉 ρε(yx−1) dx dγ(y)

=
∫

Ω
〈(ρε ∗ (φF ))(y), α(y)〉 dγ(y).

This implies that∣∣∣∣∫
Ω
φ(x) 〈F (x), (ρε ∗ ν)(x)〉 dx

∣∣∣∣ ≤ ‖ρε ∗ (φF )‖L∞(Ω)|ν|(Ω) ≤ ‖φ‖L∞(Ω)‖F‖L∞(Ω)|ν|(Ω),

therefore the sequence 〈F, (ρε ∗ ν)〉µ satisfies (1.3.10). Let now 〈F, (ρεk ∗ ν)〉µ be a weakly
converging subsequence, whose limit we denote by (F, ν). Then, by definition of weak∗ limit,
for any φ ∈ Cc(Ω) we obtain∣∣∣∣∫

Ω
φ d(F, ν)

∣∣∣∣ = lim
εk→0

∣∣∣∣∫
Ω
φ 〈F, (ρε ∗ ν)〉 dx

∣∣∣∣ ≤ lim
εk→0
‖F‖L∞(Ω)

∫
Ω
|φ||ρεk ∗ ν| dx

≤ lim
εk→0
‖F‖L∞(Ω)

∫
Ω
|φ|(ρε ∗ |ν|) dx = ‖F‖L∞(Ω)

∫
Ω
|φ| d|ν|,

since (ρε ∗ |ν|)µ ⇀ |ν| by Remark 1.2.12. This concludes our proof.

Remark 1.3.7. We stress the fact that the pairing measure (F, ν) is not unique in general,
unless |ν| � µ. Indeed, in the absolutely continuous case, we can write ν = Gµ, for some
G ∈ L1(HΩ) and we have ρε ∗G→ G in L1(HΩ). Hence, it is clear that

〈F, (ρε ∗ ν)〉µ ⇀ 〈F,G〉µ inM(Ω),

and so (F, v) = 〈F,G〉µ.

We give now the definition of a weak notion of divergence for nonsmooth horizontal fields,
which we shall need in the sequel.

Definition 1.3.8 (Distributional divergence). The divergence of a measurable horizontal vector
field F ∈ L1

loc(HΩ) is defined as the following distribution

C∞c (Ω) 3 φ 7→ −
∫

Ω
〈F,∇Hφ〉 dx. (1.3.11)

We denote this distribution by divF . The same symbol will denote the measurable function
defining the distribution, whenever it exists.

Remark 1.3.9. Due to Theorem 1.2.15, we can extend (1.3.11) to test functions φ in LipH,c(Ω).

The representation of left invariant vector fields (1.2.5) gives

F =
m∑
j=1

FjXj =
m∑
j=1

Fj∂xj +
q∑

i=m+1

( m∑
j=1

Fja
i
j

)
∂xi =

q∑
i=1

fi∂xi , (1.3.12)

therefore we have an analytic expression for the components fi of F and we may observe that
the distributional divergence (1.3.11) corresponds to the standard divergence

(divF )(φ) = −
∫

Ω
〈F,∇Hφ〉 dx = −

∫
Ω
〈F,∇φ〉Rq dx, (1.3.13)
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where ∇ denotes the Euclidean gradient in the fixed graded coordinates.
Let us consider a horizontal vector field F = ∑m

j=1 Fj Xj of class C1
H , namely Fj ∈ C1

H(Ω)
for every j = 1, . . . ,m. It is easy to notice that its distributional divergence coincides with its
pointwise divergence. Indeed, for φ ∈ C1

c (Ω) we have

−
∫

Ω
〈F,∇Hφ〉 dx = −

∫
Ω

m∑
j=1

Xj(Fjφ) +
∫

Ω
φ

m∑
j=1

XjFj dx =
∫

Ω
φ

m∑
j=1

XjFj dx.

The last equality follows by approximation, using Theorem 1.2.15, the divergence theorem for
C1 smooth functions and the fact that divXj = 0. For this reason, in the sequel we will not
use a different notation to distinguish between the distributional divergence and the pointwise
divergence.

The following lemma will play an important role in the sequel. It tells us that a mollifier
that is only continuous turns a BV function into a C1

H function.
Lemma 1.3.10. If f ∈ BVH,loc(Ω), ε > 0 is such that ΩR2ε 6= ∅, ρ ∈ Cc(B(0, 1)) is nonnegative
such that ρ(x) = ρ(x−1) and

∫
B(0,1) ρ = 1, then ρε ∗ f ∈ C1

H(ΩR2ε) ∩ C(G) and

∇H(ρε ∗ f) = (ρε ∗DHf) on ΩR2ε. (1.3.14)

Proof. Let φ ∈ C1
c (HΩR2ε). In particular, this means φ ∈ C1

c (HG), so that (1.2.20) implies

(ρε ∗ divφ)(y) = div(ρε ∗ φ)(y) (1.3.15)

for any y ∈ G. Arguing similarly as in the proof of (1.2.18) and observing that (ΩR2ε)R,ε ⊂ ΩRε ,
we get the following equalities, where the second one is a consequence of (1.3.15):∫

ΩR2ε
(ρε ∗ f)(x) divφ(x) dx =

∫
ΩRε

f(y) (ρε ∗ divφ)(y) dy =
∫

ΩRε
f(y) div(ρε ∗ φ)(y) dy

= −
∫

ΩRε
〈(ρε ∗ φ)(y), σf (y)〉 d|DHf |(y)

= −
∫

ΩRε

∫
ΩR2ε

ρε(yx−1) 〈φ(x), σf (y)〉 dx d|DHf |(y)

= −
∫

ΩR2ε

∫
ΩRε

ρε(xy−1) 〈φ(x), σf (y)〉 d|DHf |(y) dx

= −
∫

ΩR2ε
〈φ(x), (ρε ∗DHf)(x)〉 dx.

The standard density of C1
c (ΩR2ε) in Cc(ΩR2ε), shows that ρε ∗ f ∈ BVH,loc(ΩR2ε) and proves the

following formula
DH(ρε ∗ f) = (ρε ∗DHf)µ on ΩR2ε. (1.3.16)

By Remark 1.2.12 and Remark 1.2.13, it follows that both ρε ∗ f and ρε ∗DHf are continuous,
therefore ρε ∗ f ∈ C1

H(ΩR2ε) and formula (1.3.14) follows.

Taking into account (1.3.6), formula (1.3.14) can be written in components as follows

Xj(ρε ∗ f)(x) = (ρε ∗DXjf)(x) for every x ∈ ΩR2ε. (1.3.17)

Theorem 1.3.11. Let f ∈ BVH,loc(Ω) be such that |DHf |(Ω) < +∞ and let ρ ∈ Cc(B(0, 1))
with ρ ≥ 0,

∫
B(0,1) ρ dx = 1 and ρ(x) = ρ(x−1). Then ρε ∗ f ∈ C1

H(ΩR2ε) and we have

∇H(ρε ∗ f) ⇀ DHf and |ρε ∗DHf |⇀ |DHf |, (1.3.18)
|∇H(ρε ∗ f)|µ ≤ (ρε ∗ |DHf |)µ on ΩR2ε (1.3.19)

for every ε > 0 such that ΩR2ε 6= ∅. Finally, the following estimate holds

|∇H(ρε ∗ f)|(ΩR2ε) ≤ |DHf |(Ω). (1.3.20)
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Proof. The C1
H smoothness of ρε∗f and∇H(ρε∗f) = ρε∗DHf on ΩR2ε follow from Lemma 1.3.10.

As a result, by (1.2.17) and taking into account (1.3.6) we obtain the local weak∗ convergence
Xj(ρε ∗ f) ⇀ DXjf for any j = 1, . . . ,m. This proves the first convergence of (1.3.18).

To prove (1.3.19), we consider φ ∈ Cc(HΩR2ε), therefore∣∣∣∣∣
∫

ΩR2ε
〈φ(x),∇H(ρε ∗ f)(x)〉 dx

∣∣∣∣∣ =

∣∣∣∣∣∣
m∑
j=1

∫
ΩR2ε

φj(x)Xj(ρε ∗ f)(x) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

Ω

m∑
j=1

(ρε ∗ φj)(y) dDXjf(y)

∣∣∣∣∣∣
=
∣∣∣∣∫

Ω
〈(ρε ∗ φ)(y), σf〉 d|DHf |(y)

∣∣∣∣ .
The second equality follows from (1.3.17) joined with (1.2.18) and the last equality is a conse-
quence of (1.3.6). As a result, applying again (1.2.18), we get∣∣∣∣∣

∫
ΩR2ε
〈φ(x),∇H(ρε ∗ f)(x)〉 dx

∣∣∣∣∣ ≤
∫

Ω
(ρε ∗ |φ|)(y) d|DHf |(y)

=
∫

ΩR2ε
|φ(x)| (ρε ∗ |DHf |)(x) dx.

(1.3.21)

By taking the supremum among all φ ∈ Cc(HU) with ‖φ‖L∞(U) ≤ 1 and U ⊂ ΩR2ε open set, we
are immediately lead to (1.3.19). From the first inequality of (1.3.21), we also get∣∣∣∣∣

∫
ΩR2ε
〈φ(x),∇H(ρε ∗ f)(x)〉 dx

∣∣∣∣∣ ≤ ‖φ‖L∞(U)|DHf |(Ω),

whenever φ ∈ Cc(HΩR2ε). This immediately proves (1.3.20).
Finally, we are left to show the second local weak∗ convergence of (1.3.18). We fix an open

set U b Ω and notice that, by (1.2.17), we have

ρε ∗ |DHf |⇀ |DHf | in U. (1.3.22)

In addition, by (1.3.20) and (1.3.17) we know that

lim sup
ε→0

|∇H(ρε ∗ f)|(U) ≤ lim sup
ε→0

|ρε ∗DHf |(ΩR2ε) ≤ |DHf |(Ω),

hence there exists a weakly∗ converging sequence |∇H(ρεk ∗ f)|µ with limit ν in U . By virtue
of [11, Proposition 1.62] with (1.3.18), we have |DHf | ≤ ν in U . Therefore, taking nonnegative
test functions ϕ ∈ Cc(U) and using (1.3.19), we get∫

U
ϕ |∇H(ρε ∗ f)| dx ≤

∫
U
ϕ (ρε ∗ |DHf |) dx

for ε > 0 sufficiently small, depending on U . Passing to the limit as ε → 0, due to (1.3.22)
we get the opposite inequality ν ≤ |DHf | in U , therefore establishing the second local weak∗
convergence of (1.3.18).
Remark 1.3.12. In the assumptions of Theorem 1.3.11, the first local weak∗ convergence of
(1.3.18) joined with the lower semicontinuity of the total variation with respect to the weak∗
convergence of measures imply that

lim inf
ε→0

|∇H(ρε ∗ f)|(U) ≥ |DHf |(U)

for every open set U b Ω. If in addition ρ ∈ C1
c (B(0, 1)), and then ρε ∗ f ∈ C1(G) by

Proposition 1.2.14, the previous inequality immediately gives

lim inf
ε→0

|∇H(ρε ∗ f)|(Ω) ≥ |DHf |(Ω).
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1.3.2 Sets of finite perimeter in stratified groups
Functions of bounded h-variation, introduced in the previous section, naturally yield sets of
finite h-perimeter as soon as we consider their characteristic functions.
Definition 1.3.13 (Sets of finite h-perimeter). A measurable set E ⊂ G is of locally finite
h-perimeter in Ω (or is a locally h-Caccioppoli set) if χE ∈ BVH,loc(Ω). In this case, for any
open set U b Ω, we denote the h-perimeter of E in U by

P(E,U) := |DHχE|(U).

We say that E is a set of finite h-perimeter in Ω if |DHχE| is a finite Radon measure on Ω.
The measure theoretic unit interior h-normal of E in Ω is the |DHχE|-measurable horizontal
section νE := σχE .

We can define two relevant subsets of the topological boundary of a set of locally finite
h-perimter E: the reduced boundary FHE and the measure theoretic boundary ∂∗HE.
Definition 1.3.14 (Reduced boundary). If E ⊂ G is a set of locally finite h-perimeter, we say
that x belongs to the reduced boundary if

1. |DHχE|(B(x, r)) > 0 for any r > 0;

2. there exists lim
r→0
−
∫
B(x,r)

νE d|DHχE|;

3.
∣∣∣∣∣limr→0

−
∫
B(x,r)

νE d|DHχE|
∣∣∣∣∣ = 1.

The reduced boundary is denoted by FHE.
Definition 1.3.15 (Measure theoretic boundary). Given a measurable set E ⊂ G, we say that
x ∈ ∂∗HE, if the following two conditions hold:

lim sup
r→0

µ(B(x, r) ∩ E)
rQ

> 0 and lim sup
r→0

µ(B(x, r) \ E)
rQ

> 0.

The Lebesgue differentiation of Theorem 1.2.1 immediately shows that

µ(∂∗HE) = 0. (1.3.23)

However, a deeper differentiability result shows that indeed ∂∗HE is σ-finite with respect to the
h-perimeter measure. Indeed, a general result on the integral representation of the perimeter
measure holds in doubling metric measure spaces which admit a Poincaré inequality [2].

The following result restates [1, Theorem 4.2] in the special case of stratified groups, that
are special instances of Ahlfors regular metric spaces equipped with a Poincaré inequality.
Theorem 1.3.16. Given a set of finite h-perimeter E in G, there exists γ ∈ (0, 1) such that
the measure P(E, ·) is concentrated on the set Σγ ⊂ ∂∗HE defined as

Σγ =
{
x : lim sup

r→0
min

{
µ(E ∩B(x, r))
µ(B(x, r)) ,

µ(B(x, r) \ E)
µ(B(x, r))

}
≥ γ

}
.

Moreover, S Q−1(∂∗HE \ Σγ) = 0, S Q−1(∂∗HE) <∞ and there exists α > 0, independent of E,
and a Borel function θE : G→ [α,+∞) such that

P(E,B) =
∫
B∩∂∗HE

θE dS
Q−1 (1.3.24)

for any Borel set B ⊂ G. Finally, the perimeter measure is asymptotically doubling, i.e., for
P(E, ·)-a.e. x ∈ G we have lim sup

r→0

P(E,B(x, 2r))
P(E,B(x, r)) <∞.
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Lemma 1.3.17. If E ⊂ G is a set of locally finite h-perimeter, then

FHE ⊂ ∂∗HE and H Q−1(∂∗HE \FHE) = 0. (1.3.25)

Proof. The lower estimates of [80] joined with the invariance of reduced boundary and perimeter
measure when passing to the complement of E immediately give the inclusion of (1.3.25). By
Theorem 1.3.16, the perimeter measure P(E, ·) = |DχE|(·) is a.e. asymptotically doubling,
therefore the following differentiation property holds:

lim
r→0
−
∫
B(x,r)

νE d|DHχE| = νE(x) for |DHχE|-a.e. x,

according to [72, Sections 2.8.17 and 2.9.6]. This implies that |DHχE|-a.e. x belongs to FHE;
that is, |DHχE|(G \ FHE) = 0. Moreover, (1.3.24) yields |DHχE|(B) ≥ αS Q−1(B ∩ ∂∗HE)
on Borel sets B ⊂ G. This inequality also extends to |DHχE|-measurable sets, hence taking
B = G \FHE, we obtain S Q−1(∂∗HE \FHE) = 0. Since H Q−1 and S Q−1 have the same
negligible sets, the equality of (1.3.25) follows.

Remark 1.3.18. The previous lemma joined with (1.2.7) and (1.3.23) shows that

µ(FHE) = 0. (1.3.26)

In addition, (1.3.24) and (1.3.25) imply that, for any Borel set B, |DHχE|(B) = 0 if and only if
S Q−1(B∩FHE) = 0; that is, the measures |DHχE| and S Q−1 FHE have the same negligible
sets. In particular, |DHχE| ≥ αS Q−1 FHE.

1.3.3 Precise representatives and mollifications
As in the Euclidean setting, we can introduce the notion of precise representative of a locally
summable function in a stratified group. However, due to the noncommutativity of the group,
our choice of mollifying functions by putting the mollifier on the left, requires us to consider
averages on balls associated to a right invariant distance. Therefore, it does not seem straight-
forward to recover in stratified groups a result on the existence S Q−1-a.e. of the pointwise
limit of mollifications of BV functions in the spirit of Theorem 1.1.15. Nevertheless, we can
still ensure a convergence result on a suitable family of points.

Definition 1.3.19 (Precise representative). Assume u ∈ L1
loc(G). Then

u∗,R(x) :=


lim
r→0
−
∫
BR(x,r)

u(y) dy if the limit exists

0 otherwise
(1.3.27)

is the precise representative of u on the balls with respect to the right invariant distance. We
denote by CRu the set of points such that the limit in (1.3.27) exists.

It is clear that, by Theorem 1.2.1, all Lebesgue points of u belong to CRu . Given a measurable
set E ⊂ Ω, one can consider its points with density α ∈ [0, 1] with respect to the right invariant
distance

Eα,R :=
{
x ∈ G : lim

r→0

µ(E ∩BR(x, r))
µ(BR(x, r)) = α

}
,

and hence define
∂∗,RH E = Ω \ (E1,R ∪ E0,R). (1.3.28)
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Then, if we set CRχE = CRE , we clearly have

CRE =
⋃

α∈[0,1]
Eα,R

and
χ∗,RE = χE1,R in Ω \ ∂∗,RH E. (1.3.29)

We state now a simple result which relates the pointwise limit of the mollification of a
function f ∈ L1

loc(G) and the precise representative of f on right invariant balls.

Proposition 1.3.20. Let η ∈ Lip([0, 1]) with η ≥ 0 and η(1) = 0, and ρ(x) = η(d(x, 0)) for all
x ∈ G such that

∫
B(0,1) ρ(x) dx = 1. If f ∈ L1

loc(Ω) and x ∈ CRf , then we have

(ρε ∗ f)(x)→ f ∗,R(x) as ε→ 0.

Proof. Let x ∈ CRf and ε > 0 be sufficiently small, so that BR(x, ε) ⊂ Ω. We assume first that
η is strictly decreasing. By Cavalieri’s formula, we have

(ρε ∗ f)(x) =
∫
BR(x,ε)

ε−Qρ(δ1/ε(xy−1))f(y) dy

=
∫ +∞

0

∫
{y∈B(x,ε): ρ(δ1/ε(xy−1))>t}

f(y)ε−Q dy dt(
t = η

(
r

ε

))
= −

∫ ε

0

1
ε
η′
(
r

ε

) 1
εQ

∫
BR(x,r)

f(y) dy dr

(r = sε) = −
∫ 1

0
η′(s)µ(B(0, 1))sQ −

∫
BR(x,sε)

f(y) dy ds.

The last equalities have been obtained from the standard area formula for one-dimensional
Lipschitz functions. Now, we use the existence of the limit of the averages of f on the balls
BR(x, sε). This also implies that these averages are uniformly bounded with respect to ε
sufficiently small. Thus, by Lebesgue’s dominated convergence we obtain

(ρε ∗ f)(x)→ −µ(B(0, 1))f ∗,R(x)
∫ 1

0
η′(s)sQ ds.

We observe that the constant Cη,Q := −µ(B(0, 1))
∫ 1

0 η
′(s)sQ ds is independent from f . In

addition, if we take f ≡ 1, we clearly have (ρε ∗ f) ≡ 1 on ΩRε . Thus, we can conlude that

−µ(B(0, 1))
∫ 1

0
η′(s)sQ ds = 1,

and the statement follows. We use now the well known fact that any Lipschitz continuous
function in one variable can be written as the difference of two strictly decreasing functions to
write η = η1− η2, with ηi ∈ Lip([0, 1]), strictly decreasing and satisfying η1(1) = η2(1). We can
now repeat the above argument and so we obtain

(ρε ∗ f)(x)→ −µ(B(0, 1))f ∗,R(x)
∫ 1

0
(η′1(s)− η′2(s))sQ ds

= −f ∗,R(x)µ(B(0, 1))
∫ 1

0
η′(s)sQ ds = f ∗,R(x),

for any x ∈ CRf .
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Remark 1.3.21. We point out that the previous result also holds in the Euclidean case,
corresponding to a commutative group G. It is then easy to see that the hypothesis that ρ is
radially symmetric cannot be removed. Indeed, we may consider f = χE, where E = (0, 1)2

and G = R2, with x = 0. Clearly, χ∗,RE (0) = 1/4. If we choose

ρ ∈ C∞c (B(0, 1) ∩ (−1, 0)2), ρ ≥ 0, with
∫
B(0,1)

ρ(y) dy = 1,

then we have

(ρε ∗ χE)(0) =
∫
B(0,ε)∩E

ρε(−y) dy =
∫
B(0,ε)∩(−1,0)2

ρε(y) dy =
∫
B(0,1)∩(−1/ε,0)2

ρ(y) dy = 1,

for any ε ∈ (0, 1].
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Chapter 2

New contributions to the classical
theory of sets of finite perimeter

2.1 Introduction
In this chapter we describe some new results in the theory of sets of finite perimeter in the
Euclidean and stratified groups frameworks. We start in Section 2.2 by considering a recent
characterization of the Euclidean perimeter through a family of functionals related to BMO-
type seminorms. This alternative approach provides a way to define sets of finite perimeter
without employing the theory of distributions, as done classically. We investigate an anisotropic
version ot these functionals and prove a convergence result to a certain surface measure, related
to the perimeter. In Section 2.3 we describe a way to improve the standard result on the
approximation of sets of finite perimeter by smooth sets in Rn: in particular, we construct two
sequences of open sets with smooth boundaries approximating a given set of finite perimeter
from the interior and from the exterior in a suitable measure theoretic sense. Finally, Section
2.4 is devoted to the study of weak∗ limit of mollifications of characteristic functions of sets with
finite h-perimeter in stratified groups. It is relevant to notice that we determine the limit even
in the absence of any rectifiability result analogous to De Giorgi’s theorem (Theorem 1.1.10).

2.2 Anisotropic surface measures as limits of volume
fractions

1 The literature on approximation of Sobolev and BV norms, and on the characterizations
of the corresponding spaces in terms of these approximations, is by now very wide, see in
particular [29] for the case of Sobolev spaces, [129] and the more recent papers [32, 33] which
deal with non-local approximations, in the sense of Γ-convergence of (a multiple of) the total
variation norm, with intriguing connection to problems considered in image processing. Still in
connection with non-local functionals, it is worth to mention the paper [38] which gave origin
to the theory of nonlocal minimal surfaces.

Somehow in the same vein, motivated by [30], Ambrosio, Bourgain, Brezis and Figalli re-
cently studied in [4] and [5] a new characterization of the perimeter of a set in Rn by considering
the following functionals originating from a BMO-type seminorm

Iε(f) = εn−1 sup
Gε

∑
Q′∈Gε

−
∫
Q′
|f(x)− −

∫
Q′
f | dx, (2.2.1)

1This section is based on a joint work with Luigi Ambrosio [6], and on [50].
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where Gε is any disjoint collection of ε-cubes Q′ with arbitrary orientation and cardinality not
exceeding ε1−n.
In particular, they studied the case f = χA; that is, the characteristic function of a measurable
set A, and proved that

lim
ε→0

Iε(χA) = 1
2 min{1,P(A)}. (2.2.2)

This theme has been further investigated in [84], for BV functions, see also [85] for a variant
of this construction leading to Sobolev norms and spaces.

In this section we study more in detail the structure of the optimization problem in (2.2.1).
We remove the upper bound on cardinality that seems to be very special of the case of cubes,
at least if one is willing to get a precise formula as (2.2.2) and not only upper and lower bounds
on Iε. With this simplification, we prove that the existence of the limit and the emergence of
a surface measure are general phenomena. In particular we prove that, for some dimensional
constant ξ = ξ(n), one has

lim
ε→0

HB
ε (χA) = ξP(A), (2.2.3)

where HB
ε is defined as (2.2.1), without the bound on cardinality and using disjoint ε-balls.

More generally, if C is a bounded connected open set containing the origin with Lipschitz
boundary and if we define

HC
ε (A) := εn−1 sup

Hε

∑
C′∈Hε

−
∫
C′
|χA(x)− −

∫
C′
χA| dx, (2.2.4)

where Hε is any disjoint family of translations C ′ of the set εC with no bounds on cardinality,
we are able to prove the following result.

Theorem 2.2.1. There exists ϕC : Sn−1 → (0,+∞), bounded and lower semicontinuous, such
that, for any set of finite perimeter A, one has

lim
ε→0

HC
ε (A) =

∫
FA

ϕC(νA(x)) dH n−1(x), (2.2.5)

where FA and νA are respectively the reduced boundary of A and the measure theoretic unit
interior normal to FA. Moreover, if A is measurable and P(A) =∞, one has

lim
ε→0

HC
ε (A) = +∞. (2.2.6)

The right hand side of (2.2.5) can be seen as an anisotropic version of the perimeter, Pϕ(A).
This result, while shows that the particular geometry of the covering sets is not essential, raises
indeed some open questions. The most important is maybe the following one:

Is the function ϕ̃C(p) :=


|p|ϕC

( p
|p|
)

if p 6= 0

0 if p = 0

convex?

This question is natural, in view of the fact that the anisotropic perimeter

A→
∫

FA
ϕ(νA) dH n−1

is lower semicontinuous w.r.t. the convergence in measure if and only if ϕ is the restriction to
the unit sphere of a positively 1-homogeneous and convex function. The problem is nontrivial
since we were able to prove that, if C is the unit square (0, 1)2 in R2, then ϕ̃C is not convex,
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as it is shown in Section 2.2.5. In particular, the convexity of C is not a sufficient condition to
obtain ϕ̃C convex.

Finally, we wish to mention that in the recent paper [70] a new version of Theorem 2.2.1 for
SBV fuctions has been proved, under some additional regularity assumptions on the covering
set C.

The section is organized as follows: in Section 2.2.1 we define suitable localized versions
Hε(A,Ω) of our functionals and we provide the proof of (2.2.6), by a simple comparison argu-
ment based on the results of [5]. Then, in Section 2.2.2 we consider a set A of finite perimeter in
Ω and study the properties of the functionals Hε(A, ·) and H±(A, ·); the latter arise by taking
the lim sup and the lim inf w.r.t. the scale parameter ε. Thanks to symmetry and superadditiv-
ity arguments, in Section 2.2.3 we show that H+ = H− when both are evaluated in halfspaces
Sν and in cubical domains Qν with faces parallel or orthogonal to the normal to the halfspace.
Eventually, in Section 2.2.4 we use covering theorems as well as the fine properties of sets of
finite perimeter to extend the result to general sets of finite perimeter and general domains.
We conclude with Section 2.2.5, where we discuss examples and variants of our result.

2.2.1 Convergence in the case P(A) =∞
In this section we introduce some useful tools and we show that (2.2.6) follows easily from the
results of [5] and comparison arguments.

In order to prove Theorem 2.2.1, we define a localized version of Hε: for any measurable
set A and any open set Ω we set

HC
ε (A,Ω) := εn−1 sup

Hε

∑
C′∈Hε

−
∫
C′
|χA(x)− −

∫
C′
χA| dx, (2.2.7)

where the supremum runs among all disjoint families Hε made with translations of the set εC
in Ω. Since

−
∫
C′
|χA(x)− −

∫
C′
χA| dx = −

∫
C′
−
∫
C′
|χA(x)− χA(y)| dxdy = 2 |C

′ ∩ A||C ′ \ A|
|C ′|2

, (2.2.8)

we have the following equivalent definition

HC
ε (A,Ω) := εn−1 sup

Hε

∑
C′∈Hε

2 |C
′ ∩ A||C ′ \ A|
|C ′|2

, (2.2.9)

which we are going to use mostly.
It is not difficult to compare HC

ε to HD
ε when D ⊂ C and D is an open set containing the

origin2. Indeed, it is clear that that for any measurable set A one has

|D ∩ A||D \ A|
|D|2

≤ |C|
2

|D|2
|C ∩ A||C \ A|

|C|2
, (2.2.10)

and that the same holds for any translated and dilated copies of C and D. Now, for any disjoint
family Hε,D of translations of εD we can find a family Hε,C of translations of εC such that
for any Dj ∈ Hε,D there exists Cj ∈ Hε,C with Dj ⊂ Cj. Even though the family Hε,C is not
disjoint in general, it is easily seen, using the inclusions

B(xj, λε) ⊂ Dj ⊂ Cj ⊂ B(xj, ε) for some xj ∈ Rn

(where λ > 0 satisfies B(0, λ) ⊂ D), that it has bounded overlap. More precisely, there exists
θ = θ(n, λ) > 0 such that for any fixed j we have #{k : B(xk, ε) ∩ B(xj, ε) 6= ∅} ≤ θ and so

2Without loss of generality, we can always assume 0 ∈ D ⊂ C.
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the same property holds if we replace the balls by the corresponding sets Cj. Therefore, the
family Hε,C can be seen as the union of at most θ disjoint subfamilies Hε,C,i. This argument
yields

εn−1 ∑
D′∈Hε,D

2 |D
′ ∩ A||D′ \ A|
|D′|2

≤ |C|
2

|D|2
θ∑
i=1

εn−1 ∑
C′∈Hε,C,i

2 |C
′ ∩ A||C ′ \ A|
|C ′|2

≤ |C|
2

|D|2
θHC

ε (A,Ω),

and, taking the supremum over the families Hε,D, we obtain

HD
ε (A,Ω) ≤ |C|

2

|D|2
θHC

ε (A,Ω), HD
± (A,Ω) ≤ |C|

2

|D|2
θHC
± (A,Ω). (2.2.11)

In addition, we notice that, for any rotation R we have HR(C)
ε (R(A), R(Ω)) = HC

ε (A,Ω) and
H
R(C)
± (R(A), R(Ω)) = HC

± (A,Ω).
Since in the following the set C will be mostly fixed, we drop the superscript C fromHC

ε , HC
± .

We pass now to the proof of (2.2.6).

Proof of (2.2.6). Let

Iε(χA,Ω) := εn−1 sup
Fε

∑
Q′∈Fε

2 |Q
′ ∩ A||Q′ \ A|
|Q′|2

,

where Fε denotes a collection of disjoint open cubes Q′ ⊂ Ω with side length ε and arbitrary
orientation. In [5] it was shown that, for any Borel set A, one has

lim
ε→0

Iε(χA,Rn) = 1
2P(A). (2.2.12)

For later purposes, we recall also a local version of (2.2.12) which is proved in [5] in order to
get the global version, namely

lim inf
ε→0

Iε(χA,Ω) ≥ 1
2P(A,Ω) for any open set Ω ⊂ Rn. (2.2.13)

Arguing as in the proof of (2.2.11), we observe that for any cube Q′ with arbitrary orientation
and side length 2ε/

√
n, we can find an open ε-ball B′ ⊃ Q′. Hence, for any collection F2ε/

√
n

of disjoint cubes Q′ with arbitrary orientation and side length 2ε/
√
n, we find a family Gε,B of

ε-balls with bounded overlap; that is, there exists θn > 0 such that for any fixed B′ ∈ Gε,B we
have #{B′′ ∈ Gε,B : B′′ ∩B′ 6= ∅} ≤ θn.
Then, if we denote by HB

ε the functional where we take a covering with ε-balls, we get

θnH
B
ε (A,Ω) ≥ 4n

nnω2
n

I2ε/√n(χA,Ω) (2.2.14)

If P(A) = +∞, inequalities (2.2.12) and (2.2.14) clearly give

lim inf
ε→0

HB
ε (A) ≥ lim inf

ε→0

4n
nnω2

nθn
I 2√

n
ε(χA) = +∞.

The case of a general open bounded connected set with Lipschitz boundary C containing
the origin follows immediately by (2.2.11), since C ⊃ B(0, λ) for some λ = λ(C) > 0.
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2.2.2 First properties of Hε

We start by stressing the fact that we require C to be an open bounded connected set with
Lipschitz boundary in order to employ the relative isoperimetric inequality (Theorem 1.1.6) to
obtain a bound for the volume fraction. Indeed, thanks to (1.1.5), we know that there exists a
constant γ = γ(C) such that

|C ∩ E||C \ E|
|C|2

≤ γP(E,C), (2.2.15)

for any measurable set E. By scaling, it follows that if C ′ = εC we have
|C ′ ∩ E||C ′ \ E|

|C ′|2
≤ ε1−nγP(E,C ′),

for any measurable set E.
We notice that it is convenient to define the following set functions

HC
+ (A,Ω) := lim sup

ε→0
HC
ε (A,Ω), (2.2.16)

HC
− (A,Ω) := lim inf

ε→0
HC
ε (A,Ω). (2.2.17)

Clearly, we have HC
− (A,Ω) ≤ HC

+ (A,Ω). In order to show the existence of the limit in
the case of a set of finite perimeter A, we need to prove the converse inequality H−(A,Ω) ≥
H+(A,Ω).

The following scaling properties will be useful:

HλC
ε (A,Ω) = λ1−nHC

ελ(A,Ω), HλC
± (A,Ω) = λ1−nHC

± (A,Ω). (2.2.18)

In the sequel, we also often assume with no loss of generality that diam(C) = 1. Indeed, if we
set C̃ := C/diam(C), then (2.2.18) with λ = diam(C), so that C = λC̃, implies

HC
ε (A,Ω) = diam(C)1−nH C̃

εdiam(C)(A,Ω), HC
± (A,Ω) = diam(C)1−nH C̃

± (A,Ω).

We show now some elementary properties of the functionals Hε and H±, omitting the proof
of the simplest ones and assuming the normalization diam(C) = 1.

1. Translation invariance: for any τ ∈ Rn, we have Hε(A + τ,Ω + τ) = Hε(A,Ω); taking
limits, one has also H±(A+ τ,Ω + τ) = H±(A,Ω);

2. Monotonicity: Hε(A, ·) and H±(A, ·) are increasing set functions on the class of open sets
in Rn;

3. Homogeneity: for any t > 0, Htε(tA, tΩ) = tn−1Hε(A,Ω). Indeed, tC ′ ⊂ tΩ if and only if
C ′ ⊂ Ω, and

|tC ′ ∩ tA||tC ′ \ tA|
|tC ′|2

= |C
′ ∩ A||C ′ \ A|
|C ′|2

.

It follows immediately that

H±(tA, tΩ) = tn−1H±(A,Ω). (2.2.19)

4. Superadditivity of H−: it is easy to see that

Hε(A,Ω1 ∪ Ω2) = Hε(A,Ω1) +Hε(A,Ω2) (2.2.20)

whenever Ω1 ∩ Ω2 = ∅. From (2.2.20) we get

H−(A,Ω1 ∪ Ω2) ≥ H−(A,Ω1) +H−(A,Ω2). (2.2.21)
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5. Almost subadditivity of H+:

Hε(A,Ω1 ∪ Ω2) ≤ Hε(A, Iε(Ω1)) +Hε(A, Iε(Ω2)), (2.2.22)

for any open set Ω1,Ω2, where It(Ω) := {x ∈ Rn : dist(x,Ω) < t}. Indeed, if C ′ ⊂
Ω1 ∪ Ω2, then it must be contained in the ε-neighborhood of one of the two open sets,
since diam(C ′) = εdiam(C) = ε. From (2.2.22) we get

H+(A,Ω1 ∪ Ω2) ≤ H+(A,W1) +H+(A,W2), (2.2.23)

for any open sets Wi ⊃ Iδ(Ωi), i = 1, 2, for some δ > 0.

6. Upper bound for H+: using (2.2.15), we see that

Hε(A,Ω) ≤ 2γP(A,Ω)

and so
H+(A,Ω) ≤ 2γP(A,Ω). (2.2.24)

2.2.3 Lower and upper densities of H±
We set

ϕ+(ν) := H+(Sν , Qν),
ϕ−(ν) := H−(Sν , Qν),

where ν ∈ Sn−1, Sν := {x ∈ Rn : x · ν ≥ 0} and Qν an open unit cube centered in the origin
having one face orthogonal to ν and bisected by the hyperplane ∂Sν . Due to the translation
invariance, this definition does not actually depend on the choice of the origin, since we could
take any hyperplane {(x− x0) · ν ≥ 0} and cubes centered in x0.

While in R2 there exists only one unit cube centered in origin, bisected by the hyperplane
∂Sν and with one face orthogonal to ν ∈ S1, if instead n ≥ 3, given any such cube Qν , R(Qν)
satisfies the same conditions for any rotation R such that Rν = ν. Therefore, in Rn, for n ≥ 2,
there are n − 2 degrees of freedom in the choice of Qν , as noticed in [70]. Hence, if n ≥ 3, a
priori ϕ+(ν) and ϕ−(ν) depend also on the choice of the unit cube Qν . However, as showed
in Lemma 2.2.3 below, such dependence is illusory, and so, with a little abuse of notation, we
may omit to indicate it.

It is obvious that ϕ−(ν) ≤ ϕ+(ν). We collect in the next proposition a few elementary
properties of ϕ± (more refined estimates in some special cases will be given in Section 2.2.5)
and then we prove that these two functions coincide.

Proposition 2.2.2. We have the following upper and lower bounds for ϕ±:

1. ϕ+ ≤ 2γ, where γ is the same constant in (2.2.24);

2. ϕ− ≥ λn+1 22n−1

|C|2θnnθn
, where λ = λ(C) := sup{r > 0 : B(0, r) ⊂ C}, θ = θ(n, λ) and θn

are defined in the proofs of (2.2.11) and (2.2.6), respectively.

In addition, ϕ− = ϕ+ and ϕ− is lower semicontinuous.

Proof. The inequality ϕ+ ≤ 2γ is easy, since by (2.2.15) we have

H+(Sν , Qν) ≤ 2γP(Sν , Qν)

62



and P(Sν , Qν) = 1, by the definition of Sν and Qν .
As for the lower bound on ϕ−(ν), it can be obtained as follows: first we take r > 0 such that
B(0, r) ⊂ C, then we apply (2.2.11), (2.2.18) and eventually (2.2.14) to get

HC
ε (Sν , Qν) ≥

|B(0, r)|2
|C|2θ

HB(0,r)
ε (Sν , Qν)

= r1−n |B(0, r)|2
|C|2θ

HB
εr(Sν , Qν)

≥ rn+1 |B|2

|C|2θ
4n

nnω2
nθn

I2ελ/√n(Sν , Qν) = rn+1 1
|C|2θ

4n
nnθn

I2ελ/√n(Sν , Qν).

Now we let ε→ 0, using (2.2.13) with A = Sν and Ω = Qν , and finally we take the supremum
over r > 0 such that B(0, r) ⊂ C.
Finally, homogeneity implies that

ϕ−(ν) = H−(Sν , Qν) = lim inf
ε→0

εn−1H1(Sν , (1/ε)Qν),

since (1/ε)Sν = Sν for any ε > 0.
We observe that (1/ε)Qν contains the union of at least b(t/ε)cn−1 open disjoint cubes of side
length 1/t, for any t > ε, which are translations of (1/t)Qν centered in points of ∂Sν . Clearly,
Hε(Sν , x+Qν) = Hε(Sν , Qν) for any x ∈ ∂Sν . Hence, the monotonicity in the second argument,
the additivity of Hε and the homogeneity imply

ϕ−(ν) ≥ lim inf
ε→0

εn−1 b(t/ε)cn−1H1(Sν , (1/t)Qν) = tn−1Ht(1/t)((1/t)Sν , (1/t)Qν)

= Ht(Sν , Qν),

which implies ϕ−(ν) ≥ supt>0Ht(Sν , Qν).
On the other hand, it is clear that

ϕ−(ν) ≤ ϕ+(ν) = lim sup
ε→0

Hε(Sν , Qν) = lim
ε→0

sup
0<s<ε

Hs(Sν , Qν) ≤ sup
s>0

Hs(Sν , Qν)

from which we deduce that ϕ−(ν) = ϕ+(ν) = supt>0Ht(Sν , Qν).
As a byproduct, we also obtain that ϕ− is lower semicontinuous in ν, being the supremum with
respect to the parameter t of the supremum over the families Ht of translations of tC of the
quantities

tn−1 ∑
C′∈Ht

2 |C
′ ∩ Sν ||C ′ \ Sν |
|C ′|2

,

which are continuous functions of ν.

We define ϕ(ν) := limε→0Hε(Sν , Qν), since Proposition 2.2.2 showed the existence of the
limit, and we proceed to prove that it does not depend on the choice of Qν in the family of unit
cubes centered in the origin, bisected by ∂Sν with one face orthogonal to ν, even in the case
n ≥ 3.

Lemma 2.2.3. Let ν ∈ Sn−1, and Qν , Q
′
ν be two cubes centered in the origin, bisected by ∂Sν

and with one face orthogonal to ν. Then, we have

H−(Sν , Qν) = H+(Sν , Qν) = H+(Sν , Q′ν) = H−(Sν , Q′ν).
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Proof. Clearly,
Q′ν = (Q′ν \ Iδ(∂Sν)) ∪ (Iδ(∂Sν) ∩Q′ν)

for any δ > 0, and we notice that

Hε(Sν , Q′ν \ Iδ(∂Sν)) = 0

for any ε, δ > 0, since, if C ′ ⊂ Q′ν \ Iδ(∂Sν), then

|C ′ ∩ Sν ||C ′ \ Sν | = 0.

By (2.2.20), we have
Hε(Sν , Q′ν) = Hε(Sν , Iδ(∂Sν) ∩Q′ν)

for any δ > 0, which implies

H+(Sν , Q′ν) = H+(Sν , Iδ(∂Sν) ∩Q′ν). (2.2.25)

Let now r ∈ (0, 1). We can cover (∂Sν) ∩Q′ν with a disjoint family {Pj,r}mrj=1 of translations of
(∂Sν) ∩ rQν up to a closed set Γr such that H n−1(Γr)→ 0 as r → 0. Clearly, mrr

n−1 ≤ 1. If
we associate to each Pj,r the translation of rQν which generates it, we obtain a family of cubes
{Qj,r}mrj=1, Qj,r = xj + rQν for some xj ∈ (∂Sν) ∩Q′ν), such that

Ir(∂Sν) ∩Q′ν =
mr⋃
j=1

Qj,r ∪ Ur,

for some open set Ur satisfying H n−1((Ur ∩ ∂Sν)∆Γr) = 0. Thanks to (2.2.25), (2.2.23), the
translation invariance, (2.2.19) and (2.2.24), for any r, δ > 0 we have

H+(Sν , Q′ν) = H+(Sν , Ir(∂Sν) ∩Q′ν) ≤
mr∑
j=1

H+(Sν , xj + (1 + δ)rQν) +H+(Sν , Iδ(Ur))

≤ mr(1 + δ)n−1rn−1H+(Sν , Qν) + 2γP(Sν , Iδ(Ur))
≤ (1 + δ)n−1H+(Sν , Qν) + 2γH n−1(Iδ(Γr) ∩ ∂Sν).

Hence, if we send δ → 0, we obtain

H+(Sν , Q′ν) ≤ H+(Sν , Qν) + 2γH n−1(Γr),

from which we immediately get H+(Sν , Q′ν) ≤ H+(Sν , Qν), since r > 0 is arbitrary. Exchanging
now the role of Qν and Q′ν , we obtain the reverse inequality and we conclude that

H+(Sν , Q′ν) = H+(Sν , Qν).

Finally, Propositon (2.2.2) implies that H−(Sν , Q) = H+(Sν , Q) for Q ∈ {Qν , Q
′
ν}, and this

ends the proof.

We wish now to prove that the upper and lower densities of H± coincide with ϕ. To this
purpose, we need a modulus of continuity for E → Hε(E,Ω) similar to the one shown in
[5, Lemma 3.6]. We recall that for any E, F sets of finite perimeter in Ω we have

H n−1(∂∗(E∆F ) ∩ Ω) = H n−1((∂∗E∆∂∗F ) ∩ Ω), (2.2.26)

see for instance [5, Section 2].
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Lemma 2.2.4. For any E, F sets of finite perimeter in Ω and any ε > 0 we have

Hε(F,Ω) ≤ Hε(E,Ω) + 4γH n−1((FE∆FF ) ∩ Ω). (2.2.27)

In particular one has

H±(F,Ω) ≤ H±(E,Ω) + 4γH n−1((FE∆FF ) ∩ Ω). (2.2.28)

Proof. For any C ′ and any measurable set L ⊂ C ′ we have the relative isoperimetric inequality
(2.2.15) and, combining it with the inequality min{t, 1 − t} ≤ 2t(1 − t) for any t ∈ [0, 1], we
obtain also

min{|L|, |C ′ \ L|} ≤ 2γ|C|εP(L,C ′). (2.2.29)

Let now Hε be a disjoint family of translations of εC in Ω.
For any C ′ ∈ Hε, we have

−
∫
C′
−
∫
C′
|χF (x)− χF (y)| dx dy ≤ −

∫
C′
−
∫
C′
|χE(x)− χE(y)| dx dy + 2

|C|
ε−n|C ′ ∩ (F∆E)|. (2.2.30)

Indeed,

−
∫
C′
−
∫
C′
|χF (x)− χE(x)− χF (y) + χE(y)| dx dy

= 2
|C ′|2

(2|C ′ ∩ (F \ E)||C ′ ∩ (E \ F )|+ |C ′ \ (F∆E)||C ′ ∩ (F∆E)|)

= 2
|C ′|2

(2|C ′ ∩ (F \ E)||C ′ ∩ (E \ F )|+ |C ′||C ′ ∩ (F∆E)| − (|C ′ ∩ (E \ F )|+ |C ′ ∩ (F \ E)|)2)

≤ 2
|C|

ε−n|C ′ ∩ (F∆E)|.

Since χEc(x)− χEc(y) = χE(y)− χE(x), then we have also

−
∫
C′
−
∫
C′
|χF (x)−χF (y)| dx dy ≤ −

∫
C′
−
∫
C′
|χE(x)−χE(y)| dx dy+ 2

|C|
ε−n|C ′ ∩ (F∆Ec)|. (2.2.31)

It is clear that F∆E = Ω \ (F∆Ec), hence we can apply (2.2.29) to L = C ′ ∩ (F∆E).
Therefore, by (2.2.8), we obtain

εn−1 ∑
C′∈Hε

−
∫
C′
|χF (x)− −

∫
C′
χF | dx ≤ Hε(E,Ω) + 4γ

∑
C′∈Hε

P(F∆E,C ′).

Since ∑C′∈Hε P(F∆E,C ′) ≤ P(F∆E,Ω) = H n−1((FE∆FF ) ∩ Ω) by (2.2.26), we can pass
to the supremum at the left hand side and we get (2.2.27).

Let now x ∈ ∂Sν . If we denote by Qν(x, r) the cube of side length r centered in x ∈ Rn and
with one face orthogonal to ν, by homogeneity we have

lim
r→0

H±(Sν , Qν(x, r))
rn−1 = H±(Sν , Qν(x, 1)) = ϕ(ν). (2.2.32)

Theorem 2.2.5. Let E be a set of finite perimeter and νE be its measure theoretic unit interior
normal. Then, for H n−1-a.e. x ∈ FE, we have

lim inf
r→0

H−(E,QνE(x)(x, r))
P(E,QνE(x)(x, r))

≥ ϕ(νE(x)). (2.2.33)
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Proof. By our previous remarks, the result holds if E is the half-space {y : (y−x) ·νE(x) ≥ 0}.
Indeed, P(E,QνE(x)(x, r)) = rn−1, so that (2.2.32) implies (2.2.33).

If E is a set of finite perimeter, for any x ∈ FE there exists the measure theoretic unit
interior normal νE(x) and the approximate tangent space to the measure |DχE| is ν⊥E (x), namely
(1.1.10) holds. This implies that

lim
r→0

H n−1(FE ∩QνE(x)(x, r))
rn−1 = H n−1((ν⊥E (x)) ∩QνE(x)(x, 1)) = 1.

Therefore, since P(E, ·) = H n−1 FE, by (1.1.9), we deduce that, for all x ∈ FE one has

P(E,QνE(x)(x, r)) = rn−1 + o(rn−1). (2.2.34)

If F is the subgraph of a C1 function in a neighborhood of x, then (F −x)/ρ is bi-Lipschitz
equivalent to the half-space SνF (x) in QνF (x)(0, 1), with bi-Lipschitz constants converging to 1 as
ρ→ 0. Hence, we can use a C1 deformation map Φ with bi-Lipschitz constant close to 1 near
to x to transform any disjoint family C ′i admissible for F into a disjoint family Di = Φ(Ci);
we can then find C ′′i ⊂ Di ⊂ C ′′′i translated and scaled copies of C ′i whose diameters satisfy
diam(C ′i)/diam(Ci) ∼ 1, diam(C ′′′i )/diam(Ci) ∼ 1. Summing up, for r > 0 small enough there
exists a nonnegative modulus of continuity ω(r) satisfying

(1− ω(r))|C ′′ ∩ SνF (x)| ≤ |C ′ ∩ F | ≤ (1 + ω(r))|C ′′′ ∩ SνF (x)|

for 0 < ρ < r and any translated copy C ′ of ρC contained in QνF (x)(x, r). We can choose the
modulus of continuity in such a way that similar inequalities hold with the roles of F and SνF (x)
reversed. Hence, we have

|C ′ ∩ F ||C ′ \ F |
|C ′|2

≤ (1 + ω(r))2 |C ′′′ ∩ SνF (x)||C ′′′ \ SνF (x)|
|C ′′′|2

, (2.2.35)

and
|C ′ ∩ F ||C ′ \ F |

|C ′|2
≥ (1− ω(r))2 |C ′′ ∩ SνF (x)||C ′′ \ SνF (x)|

|C ′′|2
. (2.2.36)

In particular, (2.2.36) and (2.2.32) imply

H−(F,QνE(x)(x, r)) ≥ ϕ(νF (x))rn−1 + o(rn−1). (2.2.37)

Now, in order to obtain (2.2.37) also for E, we are going to use the rectifiability of FE
(Theorem 1.1.10 and Remark 1.1.11) and apply Lemma 2.2.4 to E and to the subgraph of one
of the C1 hypersurfaces Γi whose union covers H n−1-almost all of FE and such that νE|Γi
is the interior normal of the subgraph of Γi. Indeed, we fix i and observe that for H n−1-a.e.
x ∈ Γi ∩FE one has

H n−1((Γi∆FE) ∩B(x, r)) = o(rn−1),
arguing as in the proof of [5, Lemma 3.7] and using the density properties of the Hausdorff
measure (see [11, Theorem 2.56, Eq. (2.41)]). It follows easily that we have also

H n−1((Γi∆FE) ∩QνE(x)(x, r)) = o(rn−1)

for H n−1-a.e. x ∈ Γi ∩FE. Now we use (2.2.28) choosing Ω = QνE(x)(x, r) and F to be the
subgraph of Γi inside QνE(x)(x, r), obtaining

H−(F,QνE(x)(x, r)) ≤ H−(E,QνE(x)(x, r)) + 4γH n−1((Γi∆FE) ∩QνE(x)(x, r)).

Since Γi is a C1 hypersurface, we have (2.2.37) for F , with νF (x) = νE(x). Since i is arbitrary
this implies (2.2.37) for H n−1-a.e. x ∈ FE.

Combining (2.2.34) and (2.2.37), we get the desired resut.
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Theorem 2.2.6. For any Borel set B ⊂ FE and t > 0, we have that

lim inf
r→0

H−(E,QνE(x)(x, r))
P(E,QνE(x)(x, r))

≥ t (2.2.38)

for all x ∈ B implies H−(E,U) ≥ tH n−1(B) for any open set U ⊃ B.

Proof. Without loss of generality, let U ⊃ B be a bounded open set, since H n−1 B is in-
ner regular. For a given δ ∈ (0, 1), we consider the family F of all the closed cubes inside
U centered in the points x ∈ B with one face oriented as νE(x), such that, if we denote
their interior by QνE(x)(x, r), we have H−(E,QνE(x)(x, r)) ≥ t(1 − δ)P(E,QνE(x)(x, r)) and
|DχE|(∂QνE(x)(x, r)) = 0.

In this way, since this family covers B finely, we can apply the version of Vitali theorem
for cubes (see [128, Theorem 5.13]) and find a disjoint countable subfamily {Qj} which covers
H n−1-almost all of B. It is also clear that P(E,Qj) = P(E,Qj), hence we can use an open
covering. Therefore, the superadditivity of H−(E, ·) implies

tH n−1(B) ≤ tP(E,
⋃
j

Qj) = t
∑
j

P(E,Qj) ≤ (1− δ)−1∑
j

H−(E,Qj)

≤ (1− δ)−1H−(E,
⋃
j

Qj) ≤ (1− δ)−1H−(E,U).

Letting δ → 0, we prove the theorem.

We can now extend the result of Theorem 2.2.5 to H+(E, ·) using similar techniques.

Theorem 2.2.7. Let E be a set of finite perimeter and νE be its measure theoretic unit interior
normal. Then, for H n−1-a.e. x ∈ FE, we have

lim sup
r→0

H+(E,QνE(x)(x, r))
P(E,QνE(x)(x, r))

≤ ϕ(νE(x)). (2.2.39)

Proof. In the beginning of the proof of Theorem 2.2.5 we showed that P(E,QνE(x)(x, r)) =
rn−1 + o(rn−1) for all x ∈ FE.
By (2.2.32), (2.2.39) holds if E is a half space Sν . Then we need to use estimate (2.2.35) in order
to prove the inequality in the case that E is a subgraph of a C1 function in a neighborhood of
x.
Finally, we switch the roles of F and E in (2.2.28) and we repeat the steps of the last part of
the proof of Theorem 2.2.5 to obtain

H+(E,QνE(x)(x, r)) ≤ ϕ(νE(x))rn−1 + o(rn−1)

for H n−1-a.e. x ∈ FE.
Combining these results, we obtain (2.2.39).

In order to prove the upper estimate for H+, we need to consider the inner regularization
of the nondecreasing set functions H+(E, ·) defined on the open sets of Rn.

Definition 2.2.8. Let A be the family of open sets in Rn and let α : A → [0,+∞] be a
nondecreasing set function. The inner regular envelope of α is the function α∗ : A → R defined
by

α∗(A) := sup{α(A′) : A′ b A}.
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It is not hard to show (see for instance [60]) that α∗ is the largest inner regular function
smaller than α (namely α∗(A) = sup{α∗(A′) : A′ b A}). Recall also that any inner regular
and subadditive function α is σ-subadditive, namely

α(A) ≤
∞∑
i=0

α(Ai) whenever A ⊂
∞⋃
i=0

Ai.

The proof of this statement can be adapted also to the case when α is weakly subadditive as
our set function H+, this leads to the following result.

Proposition 2.2.9. H∗+(E, ·) is σ-subadditive and

H∗+(E,Ω) ≤ 2γP(E,Ω). (2.2.40)

Proof. Given open sets Ωi, i = 1, 2, let 0 < t < H∗+(E,Ω1∪Ω2). Then there existsW b Ω1∪Ω2
such that H+(E,W ) ≥ t. By [60, Lemma 14.20], there exist open sets Ω′i, i = 1, 2, such that
W b Ω′1 ∪Ω′2 and Ω′i b Ωi, i = 1, 2. Hence, we can find open sets Wi such that Ω′i b Wi b Ωi,
i = 1, 2, and, by (2.2.23), we obtain

t ≤ H+(E,W ) ≤ H+(E,W1) +H+(E,W2) ≤ H∗+(E,Ω1) +H∗+(E,Ω2).

Since t < H∗+(E,Ω1 ∪ Ω2) is arbitrary, this proves the subadditivity.
Since H∗+(E, ·) is inner regular and subadditive the σ-subadditivity follows. The last state-

ment follows by (2.2.24) and the inner regularity of H n−1 FE.

We are now able to show the same result of Theorem 2.2.6 for H+.

Theorem 2.2.10. For any Borel set B ⊂ FE and t > 0, we have that

lim sup
r→0

H+(E,QνE(x)(x, r))
P(E,QνE(x)(x, r))

≤ t (2.2.41)

for all x ∈ B implies H∗+(E,U) ≤ tP(E,U) + 2γP(E,U \B) for any open set U ⊃ B.

Proof. Since H∗+ is inner regular, we may assume U ⊃ B to be a bounded open set without
loss of generality. We fix δ ∈ (0, 1) and we consider the family F of all the closed cubes inside
U centered in the points x ∈ B with one face oriented as νE(x), such that, if we denote their
interior by QνE(x)(x, r), we have

H∗+(E,QνE(x)(x, r)) ≤ H+(E,QνE(x)(x, r)) ≤ (1 + δ)tP(E,QνE(x)(x, r)),

and |DχE|(∂QνE(x)(x, r)) = 0.
As in the proof of Theorem 2.2.6, we can apply the version of Vitali theorem for cubes (see

[128, Theorem 5.13]) and find a disjoint countable subfamily {Qj} which covers H n−1-almost
all B. It is also clear that, since P(E,Qj) = P(E,Qj), then we have

H n−1(B \
⋃
j

Qj) = 0. (2.2.42)

Therefore the subadditivity of H∗+(E, ·) and (2.2.40) imply

H∗+(E,U) ≤ H∗+(E,
N⋃
j=1

Qj) +H∗+(E,U \
N⋃
j=1

(1− δ)Qj)

≤ (1 + δ)t
N∑
j=1

P(E,Qj) + 2γP(E,U \
N⋃
j=1

(1− δ)Qj)

≤ (1 + δ)tP(E,U) + 2γP(E,U \
N⋃
j=1

(1− δ)Qj).
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Letting first δ → 0 and then N → +∞, we obtain

H∗+(E,U) ≤ tP(E,U) + 2γP(E,U \
⋃
j

Qj)

= tP(E,U) + 2γP(E,U \ (B ∪
⋃
j

Qj)) + 2γP(E,B \
⋃
j

Qj)

≤ tP(E,U) + 2γP(E,U \B),

because of (2.2.42).

Remark 2.2.11. We notice that, by combining Theorems 2.2.5 and 2.2.7, for H n−1-a.e. x ∈
FE we obtain

ϕ(νE(x)) ≤ lim inf
r→0

H−(E,QνE(x)(x, r))
P(E,QνE(x)(x, r))

≤ lim sup
r→0

H+(E,QνE(x)(x, r))
P(E,QνE(x)(x, r))

≤ ϕ(νE(x)),

which yields the following equalities:

lim inf
r→0

H−(E,QνE(x)(x, r))
P(E,QνE(x)(x, r))

= lim sup
r→0

H+(E,QνE(x)(x, r))
P(E,QνE(x)(x, r))

= ϕ(νE(x)). (2.2.43)

2.2.4 Final estimates
Now we use the results of the previous section to adapt the classical results concerning differ-
entiation of Radon measures to the nondecreasing set functions H±(E, ·).

Theorem 2.2.12. For any set of finite perimeter E in Rn one has

H+(E) = H−(E) =
∫

FE
ϕ(νE(x)) dH n−1(x). (2.2.44)

Proof. We consider first the case of H−. Then, fixed t > 1, we define the Borel sets

Dk := {x ∈ FE : ϕ(νE(x)) ∈ (tk, tk+1]}

for k ∈ Z.
For any εk > 0 we can find compact sets Kk ⊂ Dk such that

H n−1(Dk \Kk) < εk. (2.2.45)

Since this family of compact sets is disjoint, it is then clear that

min
−J≤k 6=k′≤J

dist(Kk, Kk′) > 0. ∀J ∈ N.

Hence, for any J , we can find a disjoint family of open sets Uk ⊃ Kk, for −J ≤ k ≤ J . By the
superadditivity of H−, Theorem 2.2.6 and (2.2.43), we get

H−(E) ≥ H−(E,
⋃

−J≤k≤J
Uk) ≥

∑
−J≤k≤J

H−(E,Uk) (2.2.46)

≥
∑

−J≤k≤J
tkH n−1(Kk)

≥
∑

−J≤k≤J
t−1

∫
Kk

ϕ(νE) dH n−1

= t−1
∫⋃
−J≤k≤J Kk

ϕ(νE) dH n−1
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for any J ∈ N. Since the measure H n−1 FE is regular and εk are arbitrary, we can pass to
the supremum to get

H−(E) ≥ t−1
∫⋃
−J≤k≤J Dk

ϕ(νE) dH n−1

Finally, we pass to the supremum over J and then send t→ 1 to get

H−(E) ≥
∫

FE
ϕ(νE) dH n−1. (2.2.47)

Now we deal with H+. Fixed t > 1, we define the Borel sets Dk as above. For ε > 0, we can
therefore find open sets Uk ⊃ Dk with∑

k

tk+1P(E,Uk \Dk) < ε,
∑
k

2γP(E,Uk \Dk) < ε.

Since ⋃k Uk covers H n−1-almost all of FE we can cover Rn \ ⋃k Uk with an open set U0 with
P(E,U0) arbitrarily small and use the σ-subadditivity of H∗+ and (2.2.40) to get

H∗+(E,Rn) ≤
∑
k

H∗+(E,Uk).

Now, using Theorem 2.2.10, we estimate

H∗+(E,Rn) ≤
∑
k

H∗+(E,Uk) (2.2.48)

≤
∑
k

tk+1P(E,Uk) + 2γP(E,Uk \Dk)

≤
∑
k

tk+1P(E,Dk) + 2ε

≤
∑
k

t
∫

(FE)∩Dk
ϕ(νE) dH n−1 + 2ε

≤ t
∫

FE
ϕ(νE) dH n−1 + 2ε.

Now we let ε ↓ 0 and t ↓ 1 to get

H∗+(E,Rn) ≤
∫

FE
ϕ(νE) dH n−1.

We show now that H∗+(E,Rn) = H+(E,Rn). Indeed, we need only to show H+(E,Rn) ≤
H∗+(E,Rn). Fix W b Rn open and let Ω such that W b Ω; by (2.2.23) we have

H+(E,Rn) ≤ H+(E,Ω) +H+(E,Rn \W ),

since we can take Ω̃ and W̃ such that W b W̃ b Ω̃ b Ω and write Rn = Ω̃ ∪ (Rn \ W̃ ). By
(2.2.24), we have

H+(E,Rn) ≤ H∗+(E,Rn) + 2γP(E,Rn \W ),

which implies H+(E,Rn) ≤ H∗+(E,Rn), since W is arbitrary. In this way we obtain the in-
equality

H+(E) ≤
∫

FE
ϕ(νE) dH n−1. (2.2.49)

Combining (2.2.47) and (2.2.49), we prove the theorem.
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Remark 2.2.13 (A local version of Theorem 2.2.12). By similar arguments one can prove that
P(E,Rn) <∞ implies that the family

R :=
{
A ⊂ Rn : A open, H±(E,A) =

∫
A∩FE

ϕ(νE) dH n−1
}

is rich, namely the set {i ∈ [0, 1] : Ai /∈ R} is at most countable whenever the family {Ai}i∈[0,1]
satisfies Ai b Aj for i < j.
Indeed, since the density arguments are local, one need just to start with H−(E,A) in (2.2.46)
and with H∗+(E,A) in (2.2.48) and to estimate in a finer way. Then, we recall that H∗+(E, ·) =
H+(E, ·) on a rich family of open sets. More specifically, one can use (2.2.40) and an argument
similar to the last part of the proof of Theorem 2.2.12 to prove that any open set A ⊂ Rn such
that |DχE|(∂A) = 0 belongs to this family.

2.2.5 Some examples
In this section we discuss a few examples and estimates of the function ϕ. We also introduce a
variant of the functionals Hε in which we allow for dilations ηC, for any η ∈ (0, ε] (i.e. the size
of the sets in the family need not be the same).

Covering with balls

If we choose the set C to be the unit ball B(0, 1), it is easy to see that the function ϕ is a
constant ξn depending only on the space dimension. Indeed, in this case the functionals Hε

and H± are rotationally invariant.
We are also able to estimate ξn, see (2.2.53) below. A result due to Cianchi ([48]) shows

that we have the following sharp form of the relative linear isoperimetric inequality in the unit
ball B:

|E ∩B||B \ E|
|B|2

≤ 1
4ωn−1

P(E,B) for any measurable set E.

This inequality clearly gives us the upper bound

ξn = HB
+ (Sν , Qν) ≤

1
2ωn−1

P(Sν , Qν) = 1
2ωn−1

. (2.2.50)

On the other hand, the derivation of a lower bound is related to the well-known Kepler’s
problem (see for instance [97, 151]). This problem, also called “packing problem”, consists in
looking for the best way to place finite unions of disjoint open balls with the same (small) radius
inside a unit cube in Rn in order to cover as much volume as possible. As the radius tends to
0, this problem identifies the best fraction ρn ∈ (0, 1] of volume covered. Kepler’s problem is
highly non trivial, since only in 1998 Hales ([97,98]) was able to prove that in three dimensions
the best packing is the face centered cubic lattice (which is the one used to pack oranges and
cannon balls), and that ρ3 = π

3
√

2 , as Kepler conjectured. In two dimensions the best packing
is the exagonal lattice and therefore ρ2 = π

2
√

3 , as it was proved by Thue in 1890 ([73,152]). In
dimensions higher than 3 the problem is still essentially open, even though the best packing
constant has been recently determined in dimension 8 and 24 ([49,154]). Nevertheless, it is not
difficult to prove the existence of the constant ρn by standard subadditivity arguments.

Our aim is to give a lower estimate of the number of disjoint ε-balls which can stay inside
Qν and are bisected by ∂Sν . Thus, it is clear that this problem is related to the one of looking
for the optimal fraction ρn ∈ (0, 1] of the volume of the n-dimensional unit cube covered by
finite unions of disjoint balls with the same radii. We claim that we have

ξn ≥
ρn−1

2ωn−1
. (2.2.51)
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Indeed, we can cover ∂Sν ∩Qν with a number Nε of (n− 1)-dimensional ε-balls satisfying

Nε ∼ ρn−1
1

ωn−1εn−1 . (2.2.52)

Such (n − 1)-dimensional ε-balls can be seen as the sections ∂Sν ∩ B′ for some disjoint n-
dimensional ε-balls B′ which are bisected by the hyperplane ∂Sν and lie inside the cube Qν .
Therefore, we get

ξn = HB
− (Sν , Qν) ≥ lim inf

ε→0
εn−1 1

2Nε = ρn−1

2ωn−1
.

Combining (2.2.50) and (2.2.51), we obtain

ρn−1

2ωn−1
≤ ξn ≤

1
2ωn−1

. (2.2.53)

In particular, it is easy to see that ρ1 = 1, since the ball centered in the origin of radius r coin-
cides with the cube, being the interval (−r, r). Therefore, we conclude that ξ2 = 1/(2ω1) = 1/4.

We notice that we can use the above arguments to estimate ϕ also in the case when C is
the spherical shell B(0, 1) \B(0, r), for some r ∈ (0, 1).
Indeed, it is clear that ϕ is a constant ξn,r depending only on the interior radius and the space
dimension, due to the rotational invariance. If we choose the arrangement of disjoint copies
of εC which are bisected by ∂Sν and cover the maximum fraction of surface area, then their
number will be the same Nε as in (2.2.52): in fact, C ∩ (∂Sν) occupies the same surface area
as B(0, 1) ∩ (∂Sν). Hence, we have

ξn,r ≥
ρn−1

2ωn−1
.

On the other hand, it is clear C ⊂ B(0, 1) and that any disjoint family of translations of εC
generates a disjoint family of full ε-balls. Hence, the inequalities (2.2.10) and (2.2.50) imply

ξn,r ≤
|B(0, 1)|2

|B(0, 1) \B(0, r)|2
1

2ωn−1
= 1

(1− rn)22ωn−1
.

Anisotropic coverings

We present now three examples of ϕC , for anisotropic sets C. For simplicity, we shall restrict
ourself to dimension n = 2 for the actual calculations.

The unit square

Let us consider at first C be the unit cube Q = (0, 1)n in Rn.
In order to evaluate ϕQ(ν), we want to maximize in x ∈ Rn for any fixed unit vector ν the

function

f(x, ν) :=


|(x+Q)∩Sν ||(x+Q)\Sν |

P(Sν ,(x+Q)) if P(Sν , (x+Q)) > 0,
0 otherwise.

(2.2.54)

We define then
g(ν) := sup

x∈Rn
f(x, ν). (2.2.55)

We observe that g is well defined and that the supremum is a maximum.
Indeed, for any fixed ν ∈ Sn−1, f(x, ν) is continuous in x. Clearly, f(x, ν) = 0 if x /∈ {y :
−
√
n ≤ y · ν ≤

√
n}, and, if v · ν = 0, then f(x + v, ν) = f(x, ν). Thus, by simme-

try, we can restrict ourselves to a compact set Kν containing the origin inside the stripe
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{y : −
√
n ≤ y · ν ≤

√
n} such that f(Kν , ν) = f(Rn, ν). Next, we notice that if we have

a sequence yk → x with P(Sν , (yk + Q)) > 0 for any k and P(Sν , (yk + Q)) → 0 as yk → x,
then min{|(yk + Q) ∩ Sν |, |(yk + Q) \ Sν |} = o(P(Sν , (yk + Q))), because one of the two parts
of (yk + Q) reduces to a simplex, for k large enough, and so its volume is proportional to the
product of the basis area, P(Sν , (yk +Q)), and the relative height, which is going to zero.
Hence, supx∈Rn f(x, ν) = maxx∈Kν f(x, ν).

By the definition of ϕQ, it follows that ϕQ(ν) ≤ 2g(ν), since

ϕQ(ν) = lim
ε→0

εn−1 sup
Hε

∑
Q′∈Hε

2 |Q
′ ∩ Sν ||Q′ \ Sν |
|Q′|2

≤ lim
ε→0

sup
Hε

2g(ν)P
Sν , ⋃

Q′∈Hε
Q′

 ≤ 2g(ν)P(Sν , Qν) = 2g(ν).

On the other hand, by symmetry, there exists τ ≥ 0 such that g(ν) = f(±τν + tv, ν), for any
v ∈ Sn−1 orthogonal to ν and t > 0. Then, for any ε, we can choose the disjoint family Gε of
translations of εQ inside Qν which corresponds to a subset of {±τν+tv : v ∈ Sn−1, v ·ν = 0, t >
0} and which covers ∂Sν up to a set of H n−1-measure going to zero as ε → 0. The existence
of such a family of translation for any fixed ε > 0 follows easily from the fact that one can
cover Rn with a tessellation of open disjoint cubes, up to a Lebesgue negligible set. For such a
sequence of families we obtain

ϕQ(ν) ≥ lim
ε→0

2g(ν)P
Sν , ⋃

Q′∈Gε
Q′

 = 2g(ν).

Thus, we conclude that ϕQ(ν) = 2g(ν).

We consider now the case n = 2. By the symmetries of the problem, we can redefine the
function f as

f(q,m) := |Q ∩ S
q
m||Q \ Sqm|

P(Sqm, Q) , (2.2.56)

where Q = (0, 1) × (0, 1), Sqm := {(x, y) ∈ R2 : y ≥ mx + q}, q ∈ [−m, 1], m = −(ν1/ν2) ∈
[0,+∞). It is enough now to distinguish between the cases 0 ≤ m ≤ 1 and m ≥ 1.

If 0 ≤ m ≤ 1, then we need only to consider q ∈ [0, 1]. The line {y = mx + q} intersects
the edges of Q in the points A = (0, q) and

B =


(1,m+ q) if 0 ≤ q ≤ 1−m,(

1−q
m
, 1
)

if 1−m ≤ q ≤ 1.

Hence, we have

f(q,m) = 1√
1 +m2


(
q + m

2

)
−
(
q + m

2

)2
if 0 ≤ q ≤ 1−m,

1−q
2 −

(1−q)3

4m if 1−m ≤ q ≤ 1.
(2.2.57)

It is easy to see that, for any fixed m, the partial derivative in q is

∂f

∂q
(q,m) = 1√

1 +m2


1− 2q −m if 0 < q < 1−m,

−1
2 + 3

4m(1− q)2 if 1−m < q < 1.
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Hence, ∂f
∂q
≥ 0 if and only if 

q ≤ 1−m
2 if 0 < q < 1−m,

q ≤ 1−
√

2m
3 if 1−m < q < 1,

which means that
max

q∈[0,1−m]
f(q,m) = 1

4
√

1 +m2

and

max
q∈[1−m,1]

f(q,m) = 1√
1 +m2


1
3

√
2m
3 if 2

3 < m ≤ 1,
m
2

(
1− m

2

)
if 0 ≤ m ≤ 2

3 .

Since
m

2

(
1− m

2

)
≤ 1

4
for any m ∈ [0, 1], and

1
3

√
2m
3 ≤

1
4

only for 0 ≤ m ≤ (27/32), it follows that

max
q∈[0,1]

f(q,m) = 1√
1 +m2


1
3

√
2m
3 if 27

32 ≤ m ≤ 1,
1
4 if 0 ≤ m ≤ 27

32 .
(2.2.58)

If m > 1, we need only to consider q ∈ [1−m, 1] and the intersections are

A =


(0, q) if 0 ≤ q ≤ 1,(
− q
m
, 0
)

if 1−m ≤ q ≤ 0,

and B =
(1− q

m
, 1
)
. Hence, we have

f(q,m) = 1√
1 +m2


1−q

2 −
(1−q)3

4m if 0 ≤ q ≤ 1,(
1
2 − q

)
− 1

m

(
1
2 − q

)2
if 1−m ≤ q ≤ 0.

(2.2.59)

We have that, for any fixed m, the partial derivative in q is

∂f

∂q
(q,m) = 1√

1 +m2


−1

2 + 3
4m(1− q)2 if 0 < q < 1,

−1 + 2
m

(
1
2 − q

)
if 1−m < q < 0.

Hence, ∂f
∂q
≥ 0 if and only if 

q ≤ 1−
√

2m
3 if 0 < q < 1,

q ≤ 1−m
2 if 1−m < q < 0,

which means that
max

q∈[1−m,0]
f(q,m) = m

4
√

1 +m2
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and

max
q∈[0,1]

f(q,m) = 1√
1 +m2


1
3

√
2m
3 if 1 < m < 3

2 ,

2m−1
4m if m ≥ 3

2 .

Since
2m− 1
m

≤ m

for any m > 1, and
1
3

√
2m
3 ≤

m

4
only for 1 < m ≤ (32/27), it follows that

max
q∈[1−m,1]

f(q,m) = 1√
1 +m2


1
3

√
2m
3 if 1 < m ≤ 32

27 ,

m
4 if m ≥ 32

27 .
(2.2.60)

Because of the symmetry of the cube, we can conclude that

g(ν) =


|ν2|
4 if |ν1| ≤ 27

32 |ν2|,
1
3

√
2
3 |ν1||ν2| if 27

32 |ν2| ≤ |ν1| ≤ 32
27 |ν2|,

|ν1|
4 if |ν1| ≥ 32

27 |ν2|,

which means

g(ν) =


1
3

√
2
3 |ν1||ν2| if 27

32 |ν2| ≤ |ν1| ≤ 32
27 |ν2|,

‖ν‖∞
4 if |ν1| ≤ 27

32 |ν2| or |ν1| ≥ 32
27 |ν2|,

(2.2.61)

and so

ϕQ(ν) =


2
3

√
2
3 |ν1||ν2| if 27

32 |ν2| ≤ |ν1| ≤ 32
27 |ν2|,

‖ν‖∞
2 if |ν1| ≤ 27

32 |ν2| or |ν1| ≥ 32
27 |ν2|.

It is clear that its 1-homogeneous extension ΦQ(x, y) :=
√
x2 + y2ϕQ

(
(x,y)√
x2+y2

)
is indeed ϕQ(x)

and that it is not convex in the region {27
32 |y| ≤ |x| ≤

32
27 |y|}.

We also notice that maxν∈S1 ϕQ(ν) = (1/2), coherently with the results of [5] in the isotropic
case.

The rectangles

Let us now deal with anisotropic coverings made with rectangles. Let R = ∏n
i=1(0, ai),

ai > 0, then we can argue as before to show that

ϕR(ν) = 2 sup
x∈Rn

|(x+R) ∩ Sν ||(x+R) \ Sν |
|R|2P(Rν , (x+R)) .

If n = 2, we can work with Rλ = (0, 1) × (0, λ), λ > 0, since for a generic rectangle R =
(0, a)× (0, b), we have R = aRλ if λ = (b/a), and so ϕR(ν) = (1/a)ϕRλ(ν).
In order to deal with the explicit calculation, we can proceed in a similar way as before, by
considering the function

fλ(q,m) := |Rλ ∩ Sqm||Rλ \ Sqm|
|Rλ|2P(Sqm, Rλ)

, (2.2.62)
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where Sqm := {(x, y) ∈ R2 : y ≥ mx + q}, q ∈ [−m,λ], m = −(ν1/ν2) ∈ [0,+∞), and dividing
in the two cases 0 ≤ m ≤ λ and m ≥ λ. Then, it is not difficult to show that we have

gRλ(ν) =


|ν2|
4 if |ν1| ≤ 27

32λ|ν2|,
1
3

√
2

3λ |ν1||ν2| if 27
32λ|ν2| ≤ |ν1| ≤ 32

27λ|ν2|,
|ν1|
4λ if |ν1| ≥ 32

27λ|ν2|.

(2.2.63)

Since ϕRλ(ν) = 2gRλ(ν), then neither the 1-homogeneous extension of this function is convex.
In conclusion, for the rectangle R = (0, a)× (0, b) we have

ϕR(ν) =


|ν2|
2a if a|ν1| ≤ 27

32b|ν2|,
2
3

√
2

3ab |ν1||ν2| if 27
32b|ν2| ≤ a|ν1| ≤ 32

27b|ν2|,
|ν1|
2b if a|ν1| ≥ 32

27b|ν2|.

It is also easy to see that
max
ν∈S1

ϕR(ν) = 1
2 min{a, b} , (2.2.64)

which gives the value of the constant ξ(R) in the case of isotropic coverings with rectangles,
when arbitrary rotations are allowed.

The ellipse

As a last example, let C be the ellipse E = {(x, y) : (x/a)2 + (y/b)2 < 1}, for some a, b > 0.
In order to estimate ϕ from below, we choose the arrangement of copies of εE such that each
one is bisected by the line ∂Sν and the contiguous copies are tangent in the intersection between
their boundaries and ∂Sν . Hence, we need to evaluate the length of the segment intersected by
a copy of εE on the line ∂Sν = {(x, y) · ν = 0}.
If m = −ν1/ν2, then ∂Sν = {y = mx} and the intesections with ∂E are ± ab√

b2 +m2a2
(1,m).

Therefore3, the length of the segment is 2εab
√

(1 +m2)/(b2 +m2a2). Since the copies of εE
need to cover the unitary segment (∂Sν) ∩Qν , we obtain

ϕE(ν) ≥ lim
ε→0

1
2ε
⌊ √

b2 +m2a2

ε2ab
√

1 +m2

⌋
= 1

4ab

√
b2ν2

2 + a2ν2
1 .

In particular, if a = b = 1, we get ϕB(ν) ≥ (1/4), coherently with (2.2.53).

2.2.6 Variants
Isotropic coverings

If we redefine Hε in an isotropic way; that is, allowing for any orientation of the sets C ′ in the
covering, we clearly get the rotational invariance for the modified functionals H iso

ε and so the
associated function ϕiso is a constant ξ(C). This was done in [5] with C equal to the unit cube
Q and it is not difficult to show that ξ(Q) = 1/2, as Ambrosio, Brezis, Bourgain and Figalli
proved. Indeed, by the relative isoperimetric inequality in the unit cube

|E|(1− |E|) ≤ 1
4P(E,Q) (2.2.65)

3If ν2 = 0, the length is 2εb.
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for any measurable set E ⊂ Q (see [5, Eq. (2.2)]), we have that

|Q′ ∩ Sν ||Q′ \ Sν |
|Q′|2

≤ 1
4ε

1−nP(Sν , Q′)

for any ε-cube Q′. This gives H iso,Q
+ (Sν , Qν) ≤ 1

2P(Sν , Qν) = 1
2 .

On the other hand, we can take the ε-cubes with one face oriented as ν, bisected by ∂Sν
and whose intersection with it gives the canonical partition of ∂Sν ∩ Qν in order to obtain
H iso,Q
ε (Sν , Qν) ≥ 1

2ε
n−1 bε1−nc. This gives the result, coherently with [5].

Actually, using (2.2.13) and (2.2.65) we have immediately

lim
ε→0

H iso,Q
ε (A,Ω) = 1

2P(A,Ω) (2.2.66)

for any measurable set A and any open sets Ω.
It is also possible to show that we obtain a similar result if C is the pluri-rectangle R =∏n
j=1(−aj/2, aj/2), for aj > 0.

Indeed, we can take the copies of εR having one face oriented as ν, bisected by ∂Sν and whose
intersection with it gives a partition of ∂Sν ∩ Qν with the largest cardinality; that is, at least
bε1−n/mc, where

m := min
i=1,...,n

∏
j 6=i

aj.

Thus, we obtain the lower bound H iso,R
ε (Sν , Qν) ≥ 1

2ε
n−1 bε1−n/mc and so ξ(R) ≥ 1

2m .
As for the upper bound, by (2.2.64) in the following subsection, we have ξ(R) = 1/(2m) =
1/(2 min{a1, a2}) if n = 2.

We notice that in these isotropic cases the result of Theorem 2.2.1 for sets of finite perimeter
follows directly from Theorems 2.2.6 and 2.2.10 with B = FE. Indeed, these theorems still
hold true since H iso

ε has the same properties of Hε.
Then, if we take t = ξ(C), Theorem 2.2.6 implies H iso

− (E,U) ≥ ξ(C)H n−1(FE) for any open
set U ⊃ FE: it follows immediately that H iso

− (E) ≥ ξ(C)P(E).
On the other hand, if we take an open set U containing FE and an open set W b U , the
subadditivity of H iso,∗

+ gives

H iso,∗
+ (E) ≤ H iso,∗

+ (E,U) +H iso,∗
+ (E,Rn \W ) ≤ H iso,∗

+ (E,U) + 2γP(E,Rn \W )

and clearly P(E,Rn \W ) ↓ 0 as W ↑ U .
Now, Theorem 2.2.10 yields H iso,∗

+ (E) ≤ ξ(C)P(E,U) = ξ(C)P(E). It suffices now to repeat
the same argument at the end of the proof of Theorem 2.2.12 in order to obtain H iso

+ (E) ≤
ξ(C)P(E), which concludes the proof.

Infinitesimal coverings

One may define a family of functionals similar to Hε allowing for different dilations of the set
C under a fixed level ε > 0. More specifically, we set

H̃ε(A,Ω) := sup
Gε

∑
C′∈Gε

2(ε(C ′))n−1 |C ′ ∩ A||C ′ \ A|
|C ′|2

, (2.2.67)

where C ′ = ε(C ′)(C + a), for some translation vector a, and Gε is a disjoint family inside Ω of
translations of the set ηC, for any η ∈ (0, ε].

It is clear that Hε(A,Ω) ≤ H̃ε(A,Ω), and so (2.2.6) follows for H̃ε in the case P(A) = +∞.
We can define the functionals H̃± as liminf and limsup of H̃ε. It is also not difficult to see that
H̃ε and H̃± satisfy the same elementary properties of Hε shown in Section 2.2.2. For instance,
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the homogeneity H̃tε(tA, tΩ) = tn−1H̃ε(A,Ω) follows from the fact that each set C ′′ ∈ Gtε can
be seen as C ′′ = tC ′, with C ′ = ε(C ′)C, for ε(C ′) ≤ ε, and so C ′ ∈ Gε.

Since these functionals satisfy the same properties of Hε and H±, we can define the functions
ϕ̃±(ν) := H̃±(Sν , Qν) and show an analogous version of Proposition 2.2.2 for them. Then, one
may follow the same steps in order to prove Theorem 2.2.1 for H̃ε in the rectifiable case. Thus,
we obtain that for any set of finite perimeter A

lim
ε→0

H̃ε(A) =
∫

FA
ϕ̃(νA) dH n−1.

Let us now consider the case in which the set C is the unit ball. Then ϕ̃ is a constant, since
H̃ε is rotation invariant, and ϕ̃ ≡ 1/(2ωn−1), since arbitrarily small radii are allowed. Indeed,
the upper estimate is given by (2.2.50).

On the other hand, we notice that we can find a lower bound by considering only the family
of balls which are bisected by the hyperplane ∂Sν . For any fixed ε > 0, we can apply Vitali-
Besicovitch Theorem ([11, Theorem 2.19]) to the measure µ = H n−1 Q′′, where Q′′ is a unit
cube in Rn−1 and to a fine cover of balls with radii smaller than ε, in order to find a disjoint
family Fε,(n−1) of (n− 1)-dimensional balls with radii smaller than ε such that

H n−1

Q′′ \ ⋃
B′′∈Fε,(n−1)

B′′

 = 0. (2.2.68)

Hence, we can take the family Fε of n-dimensional balls bisected by (∂Sν) ∩ Qν and whose
intersections with it generate the family Fε,(n−1). Then, we use (2.2.68) to obtain

ϕ̃(ν) ≥ lim
ε→0

1
2
∑
B′∈Fε

εn−1

= lim
ε→0

1
2ωn−1

∑
B′′∈Fε,(n−1)

ωn−1ε
n−1

= 1
2ωn−1

H n−1((∂Sν) ∩Qν) = 1
2ωn−1

.

Finally, we observe that if we redefine H̃ε allowing for the possibility to rotate the sets C ′ in
the covering, we obtain that ϕ̃ is a constant, as it happens for Hε.

In particular, if we take C to be the unit cube Q as in [5], then, by (2.2.66) and (2.2.65),
we have

1
2P(A,Ω) = lim

ε→0
H iso,Q
ε (A,Ω) ≤ lim

ε→0
H̃ iso,Q
ε (A,Ω) ≤ 1

2P(A,Ω),

which gives lim
ε→0

H̃ iso,Q
ε (A,Ω) = 1

2P(A,Ω) for any measurable set A and open set Ω.

2.3 One-sided approximation of sets of finite perimeter
4 It is a classical result in Geometric Measure Theory that a set of finite perimeter E in Rn,
for n ≥ 2, can be approximated with smooth sets Ek such that

|Ek∆E| → 0 and P(Ek)→ P(E). (2.3.1)

Suitable approximating smooth sets (see for instance [11, Theorem 3.42] and [111, Theorem
13.8]) are the superlevel sets of the convolutions of χE, which can be chosen for L 1-a.e. t ∈
(0, 1).

4This section is based on a joint work with Monica Torres [55].
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In this section, we introduce a one-sided approximation which refines the classical result in
the sense that it distinguishes between the superlevel sets for L 1-a.e. t ∈

(
1
2 , 1

)
from the ones

corresponding to L 1-a.e. t ∈
(
0, 1

2

)
, thus providing an interior and an exterior approximation

of the set respectively (see Theorem 2.3.4). Indeed, in the first case, the difference between
the level sets and the measure theoretic interior is asymptotically vanishing with respect to
the H n−1-measure; in the latter, we obtain the same result for the measure theoretic exterior.
In addition, the one-sided approximation allows to extend the first limit in (2.3.1) from the
Lebesgue measure to any Radon measure µ absolutely continuous with respect to the Hausdorff
measure H n−1. All in all, we shall prove that, if E is a bounded set of finite perimeter in Rn

and µ is a Radon measure such that |µ| � H n−1, there exist two sequences {Ek;i}, {Ek;e} of
sets with smooth boundary such that

|µ|(Ek;i∆E1)→ 0 and P(Ek,i)→ P(E), (2.3.2)
|µ|(Ek;e∆(E1 ∪FE))→ 0 and P(Ek,e)→ P(E), (2.3.3)

and
H n−1(∂Ek,i \ E1)→ 0 and H n−1(∂Ek,e \ E0)→ 0. (2.3.4)

2.3.1 The approximation of E with respect to measures µ�H n−1

In this section we will work in Rn, for n ≥ 2. Let ρ ∈ C∞c (B(0, 1)) be a smooth nonnegative
radially symmetric mollifier. We denote the mollification of χE by χE;εk(x) := (χE ∗ ρεk)(x) for
some positive sequence εk → 0. We define, for t ∈ (0, 1),

Ak;t := {χE;εk > t}. (2.3.5)

By Sard’s theorem ([111, Lemma 13.15]), we know that, since χE;εk ∈ C∞(Rn), L 1-a.e. t ∈
(0, 1) is not the image of a critical point for χE;εk . Hence, Ak;t has a smooth boundary for these
good values of t. Thus, for each k there exists a set Zk ⊂ (0, 1), with L 1(Zk) = 0, which is
the set of values of t for which Ak;t has not a smooth boundary. If we set Z := ⋃+∞

k=1 Zk, then
L 1(Z) = 0 and, for each t ∈ (0, 1) \ Z and for each k, Ak;t has a smooth boundary.

It is clear that the convergence P(Ak;t) → P(E) for L 1-a.e. t ∈ (0, 1) follows in the same
way as in the classical proof of (2.3.1) (for which we refer to [11, Theorem 3.42]).

As for the first two limit in (2.3.2) and (2.3.2), they are an immediate consequence of the
following result.

Theorem 2.3.1. Let µ be a Radon measure such that |µ| �H n−1 and E be a bounded set of
finite perimeter in Rn. Then:

1. |µ|(E1∆Ak;t)→ 0 for any t ∈
(

1
2 , 1

)
;

2. |µ|((E1 ∪FE)∆Ak;t)→ 0 for any t ∈
(
0, 1

2

)
.

Proof. By Lemma 1.1.16, we have

χE;εk → χ∗E(x) for H n−1-a.e. x. (2.3.6)

We also notice that {0 < |χE;εk − χ∗E| ≤ 1} ⊂ Eδ := {x ∈ Rn : dist(x,E) ≤ δ}, for any k if
δ > max εk. Therefore, since Eδ is bounded, χEδ is a summable majorant of |χE;εk − χ∗E| with
respect to |µ|, and so we can apply Lebesgue’s dominated convergence theorem with respect to
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the measure |µ|, obtaining ‖χE;εk − χ∗E‖L1(Rn;|µ|) → 0. Then, we observe that, if 1
2 < t < 1, we

have∫
Rn
|χE;εk(x)− χ∗E(x)|d|µ| ≥

∫
Ak;t\E1

(χE;εk(x)− χ∗E(x))d|µ|+
∫
E1\Ak;t

(χ∗E(x)− χE;εk(x))d|µ|

≥ (t− 1
2)|µ|(Ak;t \ E1) + (1− t)|µ|(E1 \ Ak;t)

≥ min
{
t− 1

2 , 1− t
}
|µ|(Ak;t∆E1).

Thus, for any 1
2 < t < 1 we obtain

|µ|(Ak;t∆E1) ≤
‖χE;εk − χ∗E‖L1(Rn;|µ|)

min
{
t− 1

2 , 1− t
} ,

which implies point 1. Analogously, if 0 < t < 1
2 , we have∫

Rn
|χE;εk(x)− χ∗E(x)|d|µ| ≥

∫
Ak;t\(E1∪FE)

(χE;εk(x)− χ∗E(x))d|µ|+

+
∫

(E1∪FE)\Ak;t
(χ∗E(x)− χE;εk(x))d|µ|

≥ t|µ|(Ak;t \ (E1 ∪FE)) +
(1

2 − t
)
|µ|((E1 ∪FE) \ Ak;t)

≥ min
{
t,

1
2 − t

}
|µ|(Ak;t∆(E1 ∪FE)).

Thus, for any 0 < t < 1
2 ,

|µ|(Ak;t∆(E1 ∪FE)) ≤
‖χE;εk − χ∗E‖L1(Rn;|µ|)

min
{
t, 1

2 − t
} ,

which gives point 2.

Therefore, Theorem 2.3.1 implies that we can choose the approximating sets Ek;i and Ek;e

to be Ak;t for any t ∈
(

1
2 , 1

)
\ Z and t ∈

(
0, 1

2

)
\ Z, respectively.

Remark 2.3.2. If we choose µ = H n−1 FE, we obtain from Theorem 2.3.1:

1. H n−1(FE ∩ Ak;t)→ 0 for any t ∈
(

1
2 , 1

)
;

2. H n−1(FE ∩ (Rn \ Ak;t))→ 0 for any t ∈
(
0, 1

2

)
.

Indeed, this is clear from the following identities:

FE ∩ (E1∆Ak;t) = FE ∩ [(E1 \ Ak;t) ∪ (Ak;t \ E1)] = FE ∩ Ak;t,

FE ∩ (E∆Ak;t) = FE ∩ [(E \ Ak;t) ∪ (Ak;t \ E)] = FE ∩ (Rn \ Ak;t).

In particular, this implies also

H n−1(FE ∩ ∂Ak;t)→ 0 for any t ∈
(

0, 1
2

)
∪
(1

2 , 1
)
,

Indeed, ∂Ak;t ⊂ Ak;s for 1
2 < s < t < 1 and ∂Ak;t ⊂ Rn \ Ak;s for 0 < t ≤ s < 1

2 .
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2.3.2 The one-sided convergence of boundaries
We prove now that indeed the sets Ak;t satisfy the first limit in (2.3.4) for L 1-a.e. t ∈

(
1
2 , 1

)
and for a suitable sequence εk → 0, independent of t. First, we recall the classical coarea
formula, for which we refer to [69, Theorem 3.10].

Theorem 2.3.3. Let u : Rn → R be Lipschitz. Then, for any Borel-measurable set A, we have∫
A
|∇u| dx =

∫
R

H n−1(A ∩ u−1(t)) dt. (2.3.7)

Theorem 2.3.4. Let E be a set of finite perimeter in Rn. There exists a sequence εk converging
to 0 such that, if χE;εk := χE ∗ ρεk and Ak;t := {χE;εk > t}, we have

lim
k→+∞

H n−1(∂Ak;t \ E1) = 0 (2.3.8)

for L 1-a.e. t ∈
(

1
2 , 1

)
.

Proof. We take s > 1
2 and a sequence εk, with εk → 0. By the coarea formula (2.3.7), we have∫

Ak;s\E1
|∇χE;εk | dx =

∫ 1

0
H n−1(χ−1

E;εk(t) ∩ (Ak;s \ E1)) dt

=
∫ 1

s
H n−1(∂Ak;t \ E1) dt, (2.3.9)

since, for t ≤ s,
χ−1
E;εk(t) ∩ (Ak;s \ E1) = ∅,

while, for t > s,
χ−1
E;εk(t) ∩ (Ak;s \ E1) = χ−1

E;εk(t) \ E
1 = ∂Ak;t \ E1.

We claim that
‖∇χE;εk‖L1(Ak;s\E1;Rn) → 0. (2.3.10)

In order to prove the claim, we observe that ∇χE;εk = (DχE ∗ ρεk), and so

|∇χE;εk | ≤ |DχE| ∗ ρεk . (2.3.11)

Since |E∆E1| = 0, (2.3.9), (2.3.11) and (1.1.9) yield

‖∇χE;εk‖L1(Ak;s\E1;Rn) =
∫
Rn
|∇χE;εk |χAk;s\E dx

≤
∫
Rn

(|DχE| ∗ ρεk)χAk;s\E dx =
∫
Rn

(ρεk ∗ χAk;s\E) d|DχE|

=
∫

FE
(ρεk ∗ χAk;s\E) dH n−1. (2.3.12)

Thus, we need to investigate, for any x ∈ FE, the behaviour of (ρεk ∗ χAk;s\E)(x) as k → +∞.
We have

(ρεk ∗ χAk;s\E)(x) =
∫
Rn
ε−nk ρ

(
x− y
εk

)
χAk;s(y)χ(Rn\E)(y) dy

= [y = x+ εkz] =
∫
B(0,1)

ρ(z)χAk;s(x+ εkz)χ(Rn\E)(x+ εkz) dz.

We observe that x+ εkz ∈ Rn \ E if and only if z ∈ (Rn\E)−x
εk

: hence, by (1.1.12), we have

χ(Rn\E)(x+ εk·) = χ (Rn\E)−x
εk

(·)→ χH−νE (x)(·) in L1(B(0, 1)) as k → +∞.
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In particular, this means that the L1 limit of χ(Rn\E)(x + εkz) is not L n-a.e. zero only if
z · νE(x) ≤ 0, so that we can restrict the integration domain to B(0, 1) ∩H−νE(x). On the other
hand, x+ εkz ∈ Ak;s = {χE;εk > s} if and only if χE;εk(x+ εkz) > s. We see that

χE;εk(x+ εkz) =
∫
Rn
ρεk(x+ εkz − y)χE(y) dy

= [y = x+ εkz + εku] =
∫
B(0,1)

ρ(u)χE(x+ εk(u+ z)) du.

Arguing similarly as before by applying (1.1.11), we obtain χE(x+ εk(z + ·))→ χH+
νE

(x)(z + ·)
in L1(B(0, 1)) as k → +∞, for any x ∈ FE and z ∈ B(0, 1). Now, we recall that z · νE(x) ≤ 0,
and since we have χH+

νE
(x)(z + u) = 1 if and only if 0 ≤ (z + u) · νE(x), we conclude that

0 ≤ −z ·νE(x) ≤ u ·νE(x) ≤ 1; that is, u belongs to the half ball B(0, 1)∩H+
νE

(x). This implies
that, for any x ∈ FE and z ∈ B(0, 1) ∩H−νE(x),

lim
k→+∞

χE;εk(x+ εkz) := v(x, z) =
∫
B(0,1)

ρ(u)χH+
νE

(x)(z + u) du ≤ 1
2 . (2.3.13)

Therefore, since 0 ≤ χAk;s(x + εkz) ≤ 1 and 0 ≤ χ(Rn\E)(x + εkz) ≤ 1, these calculations
yield

(ρεk ∗ χAk;s\E)(x) =
∫
B(0,1)

ρ(z)χAk;s(x+ εkz)χ(Rn\E)(x+ εkz) dz

→
∫
B(0,1)

ρ(z)χ{v(x,z)>s}(z)χH−νE (x)(z) dz, (2.3.14)

for any x ∈ FE.
Equation (2.3.13) shows then that the limit in (2.3.14) is identically zero, since{

z ∈ Rn : v(x, z) > s >
1
2

}
∩B(0, 1) ∩H−νE(x) = ∅,

for any x ∈ FE.
We can now apply to (2.3.12) the Lebesgue dominated convergence theorem with respect

to the measure H n−1xFE and the sequence of functions ρεk ∗ χAk;s\E (since the constant 1 is
clearly a summable majorant), thus obtaining (2.3.10).

Finally, up to passing to another subsequence (which we shall keep calling εk with a little
abuse of notation), (2.3.9) and (2.3.10) yield (2.3.8), for L 1-a.e. t > s. Since s > 1

2 is fixed
arbitrarily, we can conclude that (2.3.8) is valid for L 1-a.e. t > 1

2 , up to a diagonalization
argument.

Remark 2.3.5. An analogous result holds for the measure theoretic exterior; namely, there
exists a sequence εk converging to 0 such that, if χE;εk := χE ∗ ρεk and Ak;t := {χE;εk > t}, we
have

lim
k→+∞

H n−1(∂Ak;t \ E0) = 0 (2.3.15)

for L 1-a.e. t ∈
(
0, 1

2

)
.

2.4 Weak∗ limit points of mollified sets of finite h-perimeter
5 Through this section, let G be a stratified group, Ω ⊂ G be an open set and E be a set of
finite h-perimeter in Ω. Let also ρ ∈ Cc(B(0, 1)) be a mollifier satisfying ρ ≥ 0, ρ(x) = ρ(x−1)

5This section is based on a joint work with Valentino Magnani [51].
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and
∫
B(0,1)

ρ(y) dy = 1. Thanks to Theorem 1.3.11, we know that the right mollification ρε ∗χE
is well behaved in the sense that ρε ∗ χE ∈ C1

H(ΩR2ε) and ∇H(ρε ∗ χE) ⇀ DHχE. It seems
natural to ask whether we could obtain convergence results similar to those of Lemma 1.1.16
also in the stratified groups context. However, as pointed out in Section 1.3.3, we cannot
expect in general a pointwise convergence S Q−1-a.e. result for the mollification ρε ∗ χE, since
we have the convergence to the precise representative defined using balls with respect to the
right invariant distance dR, while the spherical Hausdorff measure is constructed using the left
invariant distance d. Nevertheless, in this section we prove that the weak∗ limit points of the
family ρε ∗χE in L∞(Ω; |DHχE|) is precisely 1/2. This proposition is proved by a soft argument
borrowed from [10, Proposition 4.3]. It should be noted that this weak∗ convergence does not
require any existence of blow-ups, since it holds in any stratified groups, even in those where it
is not known whether a De Giorgi’s type theorem may hold. As an immediate consequence, in
Theorem 2.4.5 we recover in any stratified group the weak∗ limits

χE(ρε ∗DHχE)µ ⇀ 1
2DHχE,

χΩ\E(ρε ∗DHχE)µ ⇀ 1
2DHχE

which are point (2b) and (2c) of Lemma 1.1.16.
We start with a preliminary remark.

Remark 2.4.1. Let ν ∈ M(Ω) be any nonnegative Radon measure and denote by χ̃E any
weak∗ cluster point of ρε ∗χE in L∞(Ω; ν). Then the lower semicontinuity of the L∞-norm gives

‖χ̃E‖L∞(Ω;ν) ≤ lim inf
εk→0

‖(ρεk ∗ χE)‖L∞(Ω,ν) ≤ 1

for some positive sequence of εk converging to zero. Considering a nonnegative test function
ψ ∈ L1(Ω; ν), we also have

0 ≤
∫

Ω
ψ (ρε ∗ χE) dν →

∫
Ω
ψχ̃E dν,

hence proving that 0 ≤ χ̃E(x) ≤ 1 for ν-a.e. x ∈ Ω.

We pass now to the main convergence result, which exhibits a deep similarity with the
statement of [10, Proposition 4.3], where the authors study points of density 1/2 and relate
them to the representation of perimeters in Wiener spaces.

Proposition 2.4.2. Let E ⊂ Ω be a set of locally finite h-perimeter, ρ ∈ Cc(B(0, 1)) be a
mollifier satisfying ρ ≥ 0, ρ(x) = ρ(x−1) and

∫
B(0,1)

ρ(y) dy = 1. It follows that

DH((ρε ∗ χE)χE) = (ρε ∗ χE)DHχE + χE(ρε ∗DHχE) inM(ΩR2ε) (2.4.1)

for any ε > 0 such that ΩR2ε 6= ∅ and

ρε ∗ χE ∗
⇀

1
2 as ε→ 0+ in L∞(Ω; |DHχE|). (2.4.2)

Proof. It suffices to show that for any cluster point χE ∈ L∞(Ω; |DHχE|) of ρε ∗ χE as ε→ 0,
then we have χE = 1/2 a.e. with respect to |DHχE|. We consider a positive vanishing sequence
εk such that ρεk ∗ χE

∗
⇀ χE in L∞(Ω; |DHχE|). Indeed, ρε ∗ χE is clearly uniformly bounded

in L∞(Ω; |DHχE|), and therefore there exists at least a converging subsequence. We have first
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to prove (2.4.1). We know that ρε ∗ χE ∈ C1
H(ΩR2ε) ∩ C(G) by Lemma 1.3.10. Choosing any

φ ∈ C1
c (HΩR2ε) and taking into account (1.3.17), it follows that∫

ΩR2ε
(ρε ∗ χE)χEdivφ dx =

∫
ΩR2ε

χEdiv(φ(ρε ∗ χE)) dx−
∫

ΩR2ε
χE 〈φ, ρε ∗DHχE〉 dx. (2.4.3)

By Remark 1.3.4, we get∫
ΩR2ε

(ρε ∗ χE)χEdivφ dx = −
∫

ΩR2ε
(ρε ∗ χE) 〈φ,DHχE〉 −

∫
ΩR2ε

χE 〈φ, ρε ∗DHχE〉 dx,

which implies (2.4.1). Thus, taking into account (1.3.14) and (1.3.19), for any open set A b Ω
such that A ⊂ ΩR2ε, we obtain

|DH((ρε ∗ χE)χE)|(A) ≤
∫
A
ρε ∗ χE d|DHχE|+

∫
E∩A

ρε ∗ |DHχE| dx. (2.4.4)

Now we observe that∫
E∩A

ρε ∗ |DHχE| dx =
∫
G

∫
Ω
χE∩A(x)ρε(yx−1) d|DHχE|(y) dx

=
∫

Ω
(ρε ∗ χE∩A)(y) d|DHχE|(y),

(2.4.5)

since ρε(xy−1) = ρε(yx−1). We notice that (ρε ∗ χE∩A) ≤ (ρε ∗ χE) and

(ρε ∗ χE∩A)(x) = 0

for any x /∈ AR,ε. Taking into account this vanishing property, along with (2.4.4), (2.4.5),
(1.2.17) and the lower semicontinuity of the total variation, we let ε = εk and, for any open set
A b Ω, we obtain

|DHχE|(A) ≤ 2
∫
A
χE d|DHχE|,

since χE ≥ 0, as observed in Remark 2.4.1, in the particular case ν = |DHχE|. This inequality
can be refined by noticing that, given any open set A ⊂ Ω, if we take an increasing sequence of
open sets Aj such that Aj b Aj+1 and ⋃j Aj = A, the regularity of the Radon measure |DHχE|
yields

|DHχE|(A) = lim sup
j→+∞

|DHχE|(Aj)

≤ 2 lim sup
j→+∞

∫
Aj
χE d|DHχE| ≤ 2

∫
A
χE d|DHχE|.

(2.4.6)

This means that χE(x) ≥ 1/2 for |DHχE|-a.e. x ∈ Ω. Finally, we notice that also Ω \E is a set
of locally finite h-perimeter in Ω and the equality

ρεk ∗ χΩ = ρεk ∗ χE + ρεk ∗ χΩ\E

yields the weak∗ convergence of ρεk ∗ χΩ\E to 1 − χE in L∞(Ω; |DHχE|). This implies that
1− χE ≥ 1/2 at |DHχE|-a.e. point of Ω, therefore our claim is achieved.

Lemma 2.4.3. If γ ∈ M(Ω) is a nonnegative measure and fk ∗
⇀ f in L∞(Ω; γ) as k → ∞,

then for every θ ∈ L1(Ω; γ), setting ν = θγ, we have

fkν ⇀ fν

in the sense of Radon measures on Ω and fk ∗
⇀ f in L∞(Ω; |ν|).
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Proof. For any φ ∈ Cc(Ω), one clearly has φθ ∈ L1(Ω; γ) and so we get∫
Ω
φfk dν =

∫
Ω
φθfk dγ →

∫
Ω
φθf dγ =

∫
Ω
φf dν.

We observe that |ν| = |θ|γ, and so, for any ψ ∈ L1(Ω; |ν|), we have ψ|θ| ∈ L1(Ω; γ). Thus, we
obtain ∫

Ω
ψfk d|ν| =

∫
Ω
ψ|θ|fk dγ →

∫
Ω
ψ|θ|f dγ =

∫
Ω
ψf d|ν|,

concluding the proof.

Remark 2.4.4. By (2.4.2) and the previous lemma, we notice that

(ρε ∗ χE)ν ⇀ (1/2)ν,

having ν = θ|DHχE| and θ ∈ L1(Ω; |DHχE|).

Lemma 2.4.5. Let E ⊂ Ω be a set of locally finite h-perimeter and ρ ∈ Cc(B(0, 1)) be a
mollifier satisfying ρ ≥ 0, ρ(x) = ρ(x−1) and

∫
B(0,1)

ρ(y) dy = 1. Then, we have

χE(ρε ∗DHχE)µ ⇀ 1
2DHχE, (2.4.7)

χΩ\E(ρε ∗DHχE)µ ⇀ 1
2DHχE. (2.4.8)

Proof. By (2.4.1) and (1.3.14), we have

χE(ρε ∗DHχE)µ = χE∇H(ρε ∗ χE)µ = DH((ρε ∗ χE)χE)− (ρε ∗ χE)DHχE inM(ΩR2ε).

Since for any φ ∈ C1
c (HΩ) we have supp(φ) ⊂ ΩR2ε for ε > 0 sufficiently small, we get∫

Ω
φχE∇H(ρε ∗ χE) dx = −

∫
Ω

(ρε ∗ χE)χE divφ dx−
∫

Ω
(ρε ∗ χE) 〈φ, dDHχE〉 .

We pass now to the limit on the right hand side, and, by Remark 2.4.4, we obtain that

−
∫

Ω
(ρε ∗ χE)χE divφ dx−

∫
Ω

(ρε ∗ χE) 〈φ, dDHχE〉

converges to
−
∫

Ω
χE divφ dx−

∫
Ω

1
2 〈φ, dDHχE〉

as ε→ 0+. The last limit equals ∫
Ω

1
2 〈φ, dDHχE〉 .

Therefore, by the density of C1
c (HΩ) in Cc(HΩ) with respect to the sup norm, we get (2.4.7).

We observe that χΩ\E(ρε ∗DHχE) = (1− χE)∇H(ρε ∗DHχE), and so (2.4.8) follows from the
first local weak∗ convergence of (1.3.18) and from (2.4.7).
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Chapter 3

Divergence-measure fields in the
Euclidean space

3.1 Introduction
1 The Gauss–Green formula is of significant importance in pure and applied Mathematics, as
it plays a role in PDEs, Geometric Measure Theory and Mathematical Physics. In the last two
decades, there have been many efforts in extending this formula to ‘nonsmooth domains’ and
‘weakly regular vector fields’. Through this introduction, we shall illustrate the various versions
of the Gauss–Green theorem in the whole space, to avoid unessential technicalities deriving
from the restriction to an open set Ω.

The classical Gauss–Green theorem, or divergence theorem, asserts that, for a vector field
F ∈ C1

c (Rn;Rn) and an open set E such that E is a C1 smooth manifold with boundary, there
holds ∫

E
divF dx = −

∫
∂E
F · νE dH n−1, (3.1.1)

where νE is the unit interior normal to ∂E and H n−1 is the (n − 1)-dimensional Hausdorff
measure. The class of open sets considered above is too restrictive and this motivated the
search for a wider class of integration domains for which the Gauss–Green theorem holds true
in a suitable weaker form. Such a research was one of the aims which historically led to the
theory of functions of bounded variation (BV ) and sets of finite perimeter, or Caccioppoli sets.
Indeed, an equivalent definition of set of finite perimeter requires the validity of a measure
theoretic Gauss–Green formula restricted to compactly supported smooth vector fields.

While it is well known that a set of finite perimeter E may have very irregular topological
boundary, even with positive Lebesgue measure, it is possible to consider a particular subset
of ∂E, namely, the reduced boundary FE, on which one can define a unit vector νE, called
measure theoretic unit interior normal. In view of De Giorgi’s theorem (Theorem 1.1.10), which
shows the rectifiability of the reduced boundary, we know that |DχE| = H n−1 FE and so
(1.1.13) implies a first important relaxation of (3.1.1):∫

E
divF dx = −

∫
FE

F · νE dH n−1, (3.1.2)

where E is a set of locally finite perimeter in Rn and F ∈ Lipc(Rn;Rn). Even though this result
is important because of the large family of integration domains, it is however restricted to a
class of integrands with a still relatively strong regularity.

The subsequent generalization of (3.1.2) is due to Vol’pert [156] (we refer also to the classical
monograph [157]). Thanks to further developments in the BV theory, he was able to consider

1This chapter is based on joint works with Kevin R. Payne [52], and with Gui-Qiang Chen and Monica
Torres [40].
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vector fields in F ∈ BV (Rn;Rn) ∩ L∞(Rn;Rn) and bounded sets E of finite perimeter in Rn,
getting the following formulas

divF (E1) = −
∫

FE
FνE · νE dH n−1, (3.1.3)

divF (E1 ∪FE) = −
∫

FE
F−νE · νE dH n−1, (3.1.4)

where E1 is the measure theoretic interior of E and F±νE are the exterior and interior traces
of F on FE; that is, the approximate limits of F at x ∈ FE restricted to the half spaces
{y ∈ Rn : (y − x) · (±νE(x)) ≥ 0}. The existence of such traces follows from the fact that any
BV function admits a representative which is well defined H n−1-a.e.

Not all distributional partial derivatives of a vector field are required to be Radon measures
in (3.1.3) and (3.1.4), since only the divergence appears. Moreover, Gauss–Green formulas with
vector fields of lower regularity have proved to be very important in applications, as for instance
in hyperbolic conservations laws or in the study of contact interactions in Continuum Physics,
[41, 138]. All of these facts finally led to the study of p-summable divergence-measure fields,
namely, Lp vector fields on Rn whose divergence is a Radon measure.

Divergence-measure fields provide a natural way to extend the Gauss–Green formula. The
family of Lp summable divergence-measure fields, denoted by DMp, clearly generalizes the vec-
tor fields of bounded variation. It was first introduced by Anzellotti for p =∞ in [23], where he
studied different pairings between vector fields and gradients of weakly differentiable functions.
Thus, he considered F ∈ DM∞ in order to define pairings between bounded vector fields and
vector valued measures given by weak gradients of BV functions. One of the main results
is [23, Theorem 1.2], which shows the existence of L∞(∂Ω) traces of the normal component
of DM∞(Ω) fields on the boundary of open bounded sets Ω with Lipschitz boundary. These
traces are referred to as normal traces in the literature.

After the works of Anzellotti ([23, 24]), the notion of divergence-measure fields was redis-
covered in the early 2000s by many authors with different purposes. Chen and Frid proved
generalized Gauss–Green formulas for divergence-measure fields on open bounded sets with
Lipschitz deformable boundary (see [41, Theorem 2.2] and [43, Theorem 3.1]), motivated by
applications to the theory of systems of conservation laws with the Lax entropy condition. The
idea of their proof rests on an approximation argument, which allows to obtain a Gauss–Green
formula on a family of Lipschitz open bounded sets approximating the given integration do-
main. Later, Chen, Torres and Ziemer generalized this method to the case of sets of finite
perimeter in order to extend the result in the case p = ∞, achieving Gauss–Green formulas
for essentially bounded divergence-measure fields and sets of finite perimeter ([45, Theorem
5.2]). Then, Chen and Torres [44] applied this theorem to the study of the trace properties of
solutions of nonlinear hyperbolic systems of conservation laws. Further studies, improvements
and simplifications of [45] have subsequently appeared in [40,52,55].

It is of interest to mention also other methods to prove the Gauss–Green formula, and
different applications. Degiovanni, Marzocchi and Musesti in [66] and Schuricht in [138] were
interested in the existence of a normal trace under weak regularity hypotheses in order to achieve
a representation formula for Cauchy fluxes, contact interactions and forces in the context of the
foundations of Continuum Mechanics. As is well explained in [138], the search for a rigorous
proof of Cauchy’s stress theorem under weak regularity assumptions is a common theme in
much of the literature on divergence-measure fields. The Gauss–Green formulas obtained in
[66,138] are valid for F ∈ DMp(Rn) and p ≥ 1, even though the domains of integration E must
be taken from a suitable subalgebra of sets of finite perimeter, related to the vector field F .

Šilhavý in [144] also studied the problem of finding a representation of Cauchy fluxes through
traces of suitable divergence-measure fields. He gave a detailed description of generalized
Gauss–Green formulas for DMp-fields with respect to p ∈ [1,∞] and suitable hypotheses on
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concentration of divF . In particular, he provided sufficient conditions under which the interior
normal traces (and so also the exterior) can be seen as integrable functions with respect to
the measure H n−1 on the reduced boundary of a set of finite perimeter. We should also note
that Šilhavý studied the so-called extended divergence-measure fields, already introduced by
Chen-Frid in [43], which are vector valued Radon measures whose divergence is still a Radon
measure. He proved absolute continuity results and Gauss–Green formulas in [145, 146]. It
is also worth to mention the paper by Ambrosio, Crippa and Maniglia [8], where the authors
employed techniques similar to the original ones of Anzellotti and studied a class of essentially
bounded divergence-measure fields induced by functions of bounded deformation. Their results
were motivated by the aim of extending DiPerna-Lions theory of the transport equation to
special vector fields with bounded deformation.

In the last decades and more recently, Anzellotti’s pairings and Gauss–Green formulas
have appeared in several applied and theoretical questions, as the 1-Laplace equation, minimal
surface equation, the obstacle problem for the area functional and theories of integration to
extend the Gauss–Green theorem. We refer for instance to the works [65,104,106,107,131,134–
136]. Recently Anzellotti’s pairing theory has been extended in [57], see also [58,59], where the
authors have also established integration by parts formulas for essentially bounded divergence-
measure fields, sets of finite perimeter and essentially bounded scalar functions of bounded
variation.

In the context of unbounded divergence-measure fields, in [52, Example 6.1] it was showed
that, for any p ∈ [1,∞), there exists F ∈ DMp

loc(Rn) \ DM∞
loc(Rn) which fails to have locally

integrable interior and exterior normal traces on the boundary of a smooth set. Nevertheless, in
the joint work with Gui-Qiang Chen and Monica Torres [40] the case of DMp-fields for p <∞
is considered, new integration by parts formulas are presented and the normal trace functional
is studied in relation with the Leibniz rules. In particular, if p and p′ are Sobolev conjugate
exponents, a new Leibniz rule for DMp-fields and essentially bounded scalar functions with
gradient in Lp′ is established. Theorem 3.2.3 is a refinement of this result.

In this chapter we shall present the alternative approach developed in [52], which follows
the original idea employed by Vol’pert to prove (3.1.3) and (3.1.4). While the statement of the
fundamental result (Theorem 3.3.4) is essentially the same as the main result in [45, Theorem
5.2], our proof is much simpler. Indeed, beyond known facts from Geometric Measure Theory
concerning sets of finite perimeter and functions of bounded variation, it relies only on the
following three ingredients:

1. the absolute continuity property of the divergence of a field F ∈ DM∞: |divF | �H n−1

(Theorem 3.2.2);

2. the Leibniz rule between fields in DM∞ and essentially bounded BV scalar functions
(Theorem 3.2.4);

3. the divergence theorem in the case of compactly supported divergence-measure fields
(Lemma 3.3.3): if F has compact support, then divF (Rn) = 0.

The Gauss–Green theorem for essentially bounded divergence-measure fields and sets of finite
perimeter states that, if F ∈ DM∞(Rn) and E is a set of locally finite perimeter in Rn, then
there exist interior and exterior normal traces of F on FE; that is,

(Fi · νE), (Fe · νE) ∈ L∞(FE; H n−1)
such that, for any ϕ ∈ Lipc(Rn), we have∫

E1
ϕddivF +

∫
E
F · ∇ϕdx = −

∫
FE

ϕFi · νE dH n−1,∫
E1∪FE

ϕddivF +
∫
E
F · ∇ϕdx = −

∫
FE

ϕFe · νE dH n−1.
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In addition, the following trace estimates hold:

‖Fi · νE‖L∞(FE;H n−1) ≤ ‖F‖L∞(E;Rn) and ‖Fe · νE‖L∞(FE;H n−1) ≤ ‖F‖L∞(Rn\E;Rn). (3.1.5)

The chapter is structured in the following way. In Section 3.2, we recall the notion of p-
summable divergence-measure fields and their absolute continuity properties, from which gen-
eral Leibniz rules for any p ∈ [1,∞] are derived. Then, Section 3.3 is devoted to the study of
the Gauss–Green formulas on sets of finite perimeter in the case p = ∞. In addition, we give
the definition of the interior and exterior normal traces and we obtain the integration by parts
formulas. The properties of the normal traces are further investigated in Section 3.4, where
we show their consistency in the case of a continuous vector field and their locality. Finally,
in Section 3.5 we apply the integration by parts formula previously obtained to derive general
Green’s identities for sets of finite perimeter and Lipschitz scalar function whose distributional
Laplacian is a Radon measure.

3.2 Product rules for divergence-measure fields
In the rest of the chapter, Ω will denote an open subset of Rn.

Definition 3.2.1. Let 1 ≤ p ≤ ∞.

a) A vector field F ∈ Lp(Ω;Rn) is a divergence-measure field, and we write F ∈ DMp(Ω), if
the distributional divergence divF is a real finite Radon measure on Ω.

b) A vector field F is a locally divergence-measure field, and we write F ∈ DMp
loc(Ω), if

F ∈ DMp(W ) for any open set W b Ω.

In the case p =∞, F is called a (locally) essentially bounded divergence-measure field.

It is worth mentioning that, if F = (F1, . . . , Fn) is a vector field with components Fj ∈
BV (Ω)∩Lp(Ω), then F ∈ DMp(Ω); however, cancellations in the singular part of the measure
divF can allow for DMp(Ω) without having components in BV (Ω) ∩ Lp(Ω).

A first important result concerns the absolute continuity properties of divF with respect to
the Sobolev capacity and the Hausdorff measure, which depends on the Lebesque index p for
F ∈ DMp

loc(Ω). In what follows, we denote by p′ the conjugate exponent to p; that is, the real
positive number satisfying 1

p
+ 1

p′
= 1.

Theorem 3.2.2. If n/(n− 1) ≤ p ≤ ∞ and F ∈ DMp
loc(Ω), then |divF | � Cp′. In particular,

for any Borel set E such that H n−p′(E) <∞ we have |divF |(E) = 0.
If p =∞, |divF | �H n−1.

Proof. If n/(n−1) ≤ p <∞, the result follows from [132, Theorem 2.8] and Theorem 1.1.22 (we
refer also to [144, Theorem 3.2]). If p = ∞, then [144, Theorem 3.2] implies |divF | � H n−1,
and so, by Theorem 1.1.22, we also obtain |divF | � C1.

We notice that, if 1 ≤ p < n/(n − 1), we can always find a field F ∈ DMp
loc(Ω) such that

divF = δx0 for some x0 ∈ Ω, namely

F (x) := 1
nωn

x− x0

|x− x0|n
.

Therefore, we cannot expect to extend the previous result for such values of p.
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In addition, Šilhavý proved in [144, Example 3.3 and Proposition 6.1] that Theorem 4.2.7
is sharp also for p ≥ n/(n− 1) in the sense that for any ε > 0 there exists F ∈ DMp

loc(Ω) such
that |divF | is not absolutely continuous with respect to H n−p′+ε.

We prove now a result concerning the product rule between a field F ∈ DMp
loc(Ω) and

a scalar function g ∈ L∞loc(Ω) ∩W 1,p′
loc (Ω). This provides an extension to [40, Proposition 3.1]

which we could not find in the literature.

Theorem 3.2.3. Let p ∈ [1,∞], F ∈ DMp
loc(Ω) and g ∈ L∞loc(Ω) with ∇g ∈ Lp

′

loc(Ω;Rn), then
we have gF ∈ DMp

loc(Ω) and

div(gF ) = g∗divF + F · ∇gL n, (3.2.1)

where g∗ is the p′-quasicontinuous representative of g if p ≥ n/(n− 1), and it is the continuous
representative of g if p ∈ [1, n/(n− 1)).

Proof. It is clear that gF ∈ Lploc(Ω;Rn).
We consider now the mollification of g, gε := g ∗ ρε, where ρ ∈ C∞c (B(0, 1)) is radially

simmetric, with ρ ≥ 0 and
∫
B(0,1) ρ dx = 1 and ρε(x) := ε−nρ(x/ε). Then we obtain

div(gεF ) = gεdivF + F · ∇gε L n (3.2.2)

in the sense of distributions: indeed, for any φ ∈ C1
c (Ω) we have∫

Ω
gεF · ∇φ dx =

∫
Ω
F · ∇(gεφ) dx−

∫
Ω
φF · ∇gε dx

= −
∫

Ω
φgε ddivF −

∫
Ω
φF · ∇gε dx.

In particular, if we take φ ∈ C1
c (Ω′) for some open set Ω′ b Ω, this implies that∣∣∣∣∫

Ω
gεF · ∇φ dx

∣∣∣∣ ≤ ‖φ‖L∞(Ω′)
(
‖g‖L∞(Ω′)|divF |(Ω′) + ‖F‖Lp(Ω′;Rn)‖∇g‖Lp′ (Ω′;Rn)

)
.

Therefore, for any fixed Ω′ b Ω, we showed that {div(gεF )}ε is a uniformly bounded sequence
inM(Ω′). However, it is clear that div(gεF ) ⇀ div(gF ) in the duality with C1

c (Ω), hence we
conclude that div(gεF ) ⇀ div(gF ) inMloc(Ω), by the density of C1

c (Ω) in Cc(Ω).
Now we need to pass to the limit as ε→ 0 also in the right hand side of (3.2.2).
If p ≥ n/(n− 1), which means p′ ∈ [1, n], we have that gε(x)→ g∗(x) at p′-quasi every x ∈ Ω,
by Theorem 1.1.24 since g ∈ W 1,p′

loc (Ω). This implies that gε(x) → g∗(x) for |divF |-a.e. x ∈ Ω,
since |divF | � Cp′ by Theorem 4.2.7. On the other hand, it is clear that |gε(x)| ≤ ‖g‖L∞(Ω′)
for any x ∈ Ω′ b Ω. Thus we can apply Lebesgue theorem with respect to the measure |divF |
in order to obtain ∫

Ω
φgε ddivF →

∫
Ω
φg∗ ddivF (3.2.3)

for any fixed φ ∈ Cc(Ω), since supp(φ) ⊂ Ω′ for some Ω′ b Ω.
If instead p ∈ [1, n/(n − 1)), which means p′ > n, then, by Morrey’s inequality, g admits a
continuous representative, which we shall denote again by g∗, and so gε(x) → g∗(x) for any
x ∈ Ω. Therefore, we can apply again Lebesgue theorem and obtain (3.2.3).
As for the second term, we notice that, if p > 1, and so p′ <∞, then ∇gε → ∇g in Lp

′

loc(Ω;Rn)
and so it follows that ∫

Ω
φF · ∇gε dx→

∫
Ω
φF · ∇g dx (3.2.4)
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for any φ ∈ Cc(Ω).
Finally, we consider the case p = 1, p′ =∞: we have that g ∈ W 1,∞

loc (Ω) and so it is almost ev-
erywhere differentiable and the weak gradient coincide with the classical one almost everywhere.
Then, for any φ ∈ Cc(Ω) we obtain∫

Ω
φ(x)F (x)·∇gε(x) dx =

∫
Ω
∇g(y)·

∫
Ω
F (x)ρε(x−y)(φ(x)−φ(y)) dx dy+

∫
Ω
φ(y)∇g(y)·Fε(y) dy.

Since Fε → F in L1
loc(Ω;Rn), it follows that∫

Ω
φ∇g · Fε dy →

∫
Ω
φ∇g · F dy.

On the other hand, since φ is uniformly continuous, for any η > 0 there exists an ε > 0 such
that, if |x− y| < ε, then |φ(x)− φ(y)| < η, and this implies that∣∣∣∣∫

Ω
∇g(y) ·

∫
Ω
F (x)ρε(x− y)(φ(x)− φ(y)) dx dy

∣∣∣∣ ≤ η‖∇g‖L∞(Ω′;Rn)‖F‖L1(Ω′;Rn),

if supp(φ) ⊂ Ω′ b Ω. Since φ is fixed and η is arbitray, we obtain again (3.2.4). This concludes
the proof.

We notice that, if p = ∞, it is possible to extend Theorem 3.2.3 to scalar functions g ∈
L∞(Ω) ∩ BVloc(Ω). To this purpose, it is necessary to employ the notion of pairing measure
between an essentially bounded vector field and a vector valued Radon measure, introduced
in Lemma 1.1.3. This case has indeed been widely studied, see for instance [41, Theorem 3.1]
and [82, Theorem 2.1]. For the sake of completeness, we recall here its statement in the most
general form.

Theorem 3.2.4. If F ∈ DM∞
loc(Ω), g ∈ L∞loc(Ω) and Dg ∈ Mloc(Ω;Rn), then gF ∈ DM∞

loc(Ω)
and there exists a unique pairing meaure (F,Dg) such that

F · (ρε ∗Dg) L n ⇀ (F,Dg) inMloc(Ω)

for any nonnegative radially symmetric mollifier ρ ∈ C∞c (B(0, 1)) satisfying
∫
B(0,1) ρ dx = 1.

This measure satisfies
div(gF ) = g∗divF + (F,Dg), (3.2.5)

where g∗ is the precise representative of g given by (1.1.18), and

|(F,Dg)| Ω′ ≤ ‖F‖L∞(Ω′;Rn)|Dg| Ω′ (3.2.6)

for any open set Ω′ b Ω. In addition, we have the decompositon

(F,Dg)a = F · ∇gL n, (F,Dg)s = (F,Dsg),

where (Dg)a = ∇gL n.

Proof. Since the statement is of local nature, we can restrict ourselves to any open set Ω′ b Ω
without loss of generality, so that we have F ∈ DM∞(Ω′) and g ∈ L∞(Ω′) ∩ BV (Ω′). Then,
for the proof under these assumptions we refer to [82, Theorem 2.1].

Remark 3.2.5. As an immediate consequence of (3.2.5), we notice that the pairing measure
is linear in the first component, for any fixed g ∈ L∞loc(Ω) with Dg ∈Mloc(Ω;Rn).
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3.3 The Gauss–Green formulas
In this section, we establish versions of the Gauss–Green formula for DM∞

loc(Ω) fields on sets
of locally finite perimeter in Ω. The method of the proof is analogous to the one Vol’pert used
in order to prove his integration by parts theorem and it is based on the product rule recalled
in Theorem 3.2.4. The results are similar to those presented in the paper of Chen, Torres and
Ziemer [45], but this exposition does not require the theory of the one-sided approximation of
sets of finite perimeter by sets with smooth boundary introduced in Section 2.3. Therefore, we
do not need to state a preliminary version of the theorem for open sets with smooth boundary.
Nevertheless, we will show in Remark 3.4.4 that our approach actually implies the one of [45],
thanks to the approximation result of Section 2.3. In addition, our approach can be easily
generalized to sets of locally finite perimeter, and employed to obtain integration by parts
formulas, Green’s identities and the locality properties of the normal traces.

3.3.1 The normal traces
Let F ∈ DM∞(Ω) and E be a set of finite perimeter in Ω. Then, Theorem 3.2.4 implies that
the pairing measures (χEF,DχE) and (χΩ\EF,DχE) are well defined and unique. In addition,
thanks to (3.2.6), we clearly have

|(χEF,DχE)| ≤ ‖F‖L∞(E;Rn)|DχE| and |(χΩ\EF,DχE)| ≤ ‖F‖L∞(Ω\E;Rn)|DχE|. (3.3.1)

We may now employ Radon-Nikodým Theorem and define the interior and exterior normal
traces of F on the boundary of E as the functions Fi · νE,Fe · νE ∈ L∞(FE; |DχE|) satisfying

2(χEF,DχE) = Fi · νE |DχE|, (3.3.2)
2(χΩ\EF,DχE) = Fe · νE |DχE|. (3.3.3)

These definitions may be justified in the light of the following result, which is a refinement
of the Leibniz rule between a field in DM∞(Ω) and the characteristic function of a set of finite
perimeter.

Theorem 3.3.1. Let F ∈ DM∞(Ω) and E be a set of finite perimeter in Ω. Then the following
formulas hold inM(Ω)

div(χEF ) = χE1divF + 2(χEF,DχE), (3.3.4)
div(χEF ) = χE1∪FEdivF + 2(χΩ\EF,DχE), (3.3.5)
χFEdivF = 2(χEF,DχE)− 2(χΩ\EF,DχE). (3.3.6)

Proof. Using the product rule of Theorem 3.2.4, one has

div(χ2
EF ) = div(χE(χEF )) = χ∗Ediv(χEF ) + (χEF,DχE)

= χ∗E (χ∗EdivF + (F,DχE)) + (χEF,DχE)
= (χ∗E)2divF + χ∗E(F,DχE) + (χEF,DχE), (3.3.7)

where χ∗E is the precise representative of χE given in formula (1.1.20). On the other hand, one
also has

div(χ2
EF ) = div(χEF ) = χ∗EdivF + (F,DχE) (3.3.8)

and combining (3.3.7) with (3.3.8) yields

χ∗E(1− χ∗E)divF = (χ∗E − 1)(F,DχE) + (χEF,DχE). (3.3.9)
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Since |divF | �H n−1, by Theorem 3.2.2, formula (1.1.20) of Lemma 1.1.16 implies that

χ∗E(1− χ∗E)divF = 1
4χFEdivF. (3.3.10)

By Theorem 3.2.4, |(F,DχE)| � |DχE| and so χ∗E(F,DχE) = 1
2(F,DχE), since this measure

is concentrated on FE. From this fact and (3.3.10) we obtain

1
2χFEdivF = 2(χEF,DχE)− (F,DχE). (3.3.11)

Thanks to the linearity of the pairing measure (Remark 3.2.5), we have

(F,DχE) = (χEF,DχE) + (χΩ\EF,DχE), (3.3.12)

and so (3.3.6) easily follows from (3.3.11). Now, we can employ (3.3.8) and (3.3.11) to obtain

div(χEF ) = χE1divF + 1
2χFEdivF + (F,DχE)

= χE1divF + 2(χEF,DχE)− (F,DχE) + (F,DχE)
= χE1divF + 2(χEF,DχE),

which is (3.3.4). On the other hand, if we add and subtract the term 1
2χFEdivF in (3.3.8),

then (3.3.6) and (3.3.12) yield (3.3.5):

div(χEF ) = χE1∪FEdivF − 1
2χFEdivF + (F ·DχE)

= χE1∪FEdivF − (χEF,DχE) + (χΩ\EF,DχE) + (F ·DχE)
= χE1∪FEdivF + 2(χEF,DχE).

As an immediate consequence, (3.3.2) and (3.3.3) imply that the formulas of Theorem 3.3.1
may be rewritten in terms of the normal traces, instead of the pairing measures.

Corollary 3.3.2. Let F ∈ DM∞(Ω) and E be a set of finite perimeter in Ω. Then the normal
traces Fi · νE and Fe · νE satisfy the following formulas inM(Ω)

div(χEF ) = χE1divF + Fi · νE|DχE|, (3.3.13)
div(χEF ) = χE1∪FEdivF + Fe · νE|DχE|, (3.3.14)
χFEdivF = (Fi · νE −Fe · νE) |DχE|. (3.3.15)

Proof. The result easily follows by combining (3.3.4), (3.3.5) and (3.3.6) with the definitions of
interior and exterior normal traces (3.3.2) and (3.3.3).

We state now the following simple result concerning fields with compact support, which is
valid for any 1 ≤ p ≤ ∞ and can be seen as the easy case of the Gauss–Green formula, since
there are no boundary terms.

Lemma 3.3.3. Let p ∈ [1,∞]. If F ∈ DMp(Ω) has compact support in Ω, then

divF (Ω) = 0.
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Proof. Since F has compact support, there exists an open set V satisfying supp(F ) ⊂ V b Ω.
Then, we have divF = 0 in Ω \ V .

Now, if we choose ϕ ∈ C∞c (Ω) such that ϕ ≡ 1 on a neighborhood of V , we obtain

0 = −
∫

Ω\V
F · ∇ϕdx = −

∫
Ω
F · ∇ϕdx =

∫
Ω
ϕddivF =

∫
V
ϕddivF = divF (V )

and hence divF (Ω) = 0.

By combining Lemma 3.3.3 and Corollary 3.3.2, we obtain the Gauss–Green formulas.

Theorem 3.3.4. Let F ∈ DM∞
loc(Ω) and let E b Ω be a set of finite perimeter in Ω. Then,

we have

divF (E1) = −
∫

FE
Fi · νE dH n−1 and divF (E1 ∪FE) = −

∫
FE
Fe · νE dH n−1. (3.3.16)

Proof. Without loss of generality, we may assume that F ∈ DM∞(Ω). Indeed, it is clear that
there exists an open set Ω′ b Ω such that F ∈ DM∞(Ω′) and E b Ω′; so that we may work
on Ω′ instead of Ω.

Since χEF ∈ DM∞(Ω) and clearly has compact support in Ω, by Lemma 3.3.3 and (3.3.13)
one has

0 = div(χEF )(Ω) = divF (E1) +
∫

Ω
Fi · νE d|DχE|.

Then, thanks to De Giorgi’s theorem (Theorem 1.1.10), we have |DχE| = H n−1 FE and the
first part of (3.3.16) follows. In an analogous way, Lemma 3.3.3, (3.3.13) and Theorem 1.1.10
yield the second part of (3.3.16).

By (3.3.1), (3.3.2) and (3.3.3), it is easy to obtain a first rough bound on the L∞-norm of
the normal traces of a divergence-measure field, namely

‖Fi · νE‖L∞(FE;H n−1) ≤ 2‖F‖L∞(E;Rn) and ‖Fe · νE‖L∞(FE;H n−1) ≤ 2‖F‖L∞(Ω\E;Rn).

However, it is possible to get a refined version of such estimates, as shown in the following
theorem.

Theorem 3.3.5. Let F ∈ DM∞(Ω) and let E be a set of finite perimeter in Ω. Then, we have
the following estimates on the normal traces:

‖Fi · νE‖L∞(FE;H n−1) ≤ ‖F‖L∞(E;Rn) and ‖Fe · νE‖L∞(FE;H n−1) ≤ ‖F‖L∞(Ω\E;Rn). (3.3.17)

Proof. By the Lebesgue-Besicovitch differentiation theorem, for H n−1-a.e. x ∈ FE one has

Fi · νE(x) = lim
r→0

2(χEF,DχE)(B(x, r))
|DχE|(B(x, r)) .

We recall that, by Theorem 3.2.4, for any nonnegative radially symmetric mollifier ρ ∈ C∞c (B(0, 1))
satisfying

∫
B(0,1) ρ dy = 1, we have

χEF · (ρε ∗DχE)L n ⇀ (χEF,DχE).

In addition, by (1.1.3) in Lemma 1.1.3, the family of measures |χEF ·(ρε∗DχE)|L n is uniformly
bounded inM(Ω), with the estimate∫

Ω
|χEF · (ρε ∗DχE)| dy ≤ ‖F‖L∞(E;Rn)|DχE|(Ω).
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Thus, there exists a weak∗ converging subsequence, which we label with εk, and let the
positive measure λi ∈M(Ω) be its limit:

|χEF · (ρεk ∗DχE)|L n ⇀ λi.

Then, by [11, Proposition 1.62] we know that |(χEF,DχE)| ≤ λi. Moreover, we observe that
also the sequence χΩ\E|ρεk ∗DχE| is uniformly bounded with a similar estimate as above, for
any nonnegative sequence εk → 0. So there exists a weak∗ converging subsequence which we
shall not relabel for simplicity of notation and which converge to positive measures µe ∈M(Ω).

By a standard concentration argument (see [11, Example 1.63]), we can choose a sequence
of balls B(x, rj) b Ω with rj → 0 in such a way that

|DχE|(∂B(x, rj)) = λi(∂B(x, rj)) = µe(∂B(x, rj)) = 0.

Hence, by [11, Proposition 1.62] and Lemma 1.1.16, we have

lim
rj→0

∣∣∣∣∣2(χEF,DχE)(B(x, rj))
|DχE|(B(x, rj))

∣∣∣∣∣ = lim
rj→0

∣∣∣∣∣∣∣∣∣
lim
εk→0

2
∫
B(x,rj)

χEF · (ρεk ∗DχE) dy

lim
εk→0

∫
B(x,rj)

|∇(ρεk ∗ χE)| dy

∣∣∣∣∣∣∣∣∣
≤ lim

rj→0

2‖F‖L∞(E;Rn) lim
εk→0

∫
B(x,rj)

χE|ρεk ∗DχE| dy

lim
εk→0

∫
B(x,rj)

|∇(ρεk ∗ χE)| dy

= 2‖F‖L∞(E;Rn) lim
rj→0

1−
lim
εk→0

∫
B(x,rj)

χΩ\E|ρεk ∗DχE| dy

lim
εk→0

∫
B(x,rj)

|∇(ρεk ∗ χE)| dy



≤ 2‖F‖L∞(E;Rn) lim
rj→0

1−
lim
εk→0
|
∫
B(x,rj)

χΩ\E∇(ρεk ∗ χE) dy|

lim
εk→0

∫
B(x,rj)

|∇(ρεk ∗ χE)| dy


= 2‖F‖L∞(E;Rn) lim

rj→0

(
1− 1

2
|DχE(B(x, rj))|
|DχE|(B(x, rj))

)
= ‖F‖L∞(E;Rn).

In the last equality we used the definition of reduced boundary (Definition 1.1.7): if x ∈ FE,
then |νE|(x) = 1, |DχE|(B(x, r)) > 0 for r > 0 and νE(x) = limr→0

DχE(B(x,r))
|DχE |(B(x,r)) . This implies

that
lim
r→0

|DχE(B(x, r))|
|DχE|(B(x, r)) = |νE(x)| = 1.

The estimate for the exterior normal trace Fe · νE can be obtained in a similar way. Indeed,
Theorem 3.2.4 and Lemma 1.1.3 imply that

χΩ\EF · (ρε ∗DχE)L n ⇀ (χΩ\EF,DχE),

and that the family of Radon measures |χΩ\EF · (ρε ∗DχE)|L n is uniformly bounded inM(Ω),
with bound ∫

Ω
|χΩ\EF · (ρε ∗DχE)| dy ≤ ‖F‖L∞(Ω\E;Rn)|DχE|(Ω).

Hence, there exists a weakly∗ converging subsequence, which we label again with εk, whose
limit is a positive Radon measure λe satisfying |(χΩ\EF,DχE)| ≤ λe. Analogously, one can
show that the sequence χE|ρεk ∗ DχE|L n is uniformly bounded in M(Ω), extract a weakly∗
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converging subsequence (not relabeled) and denote its limit by µi. Now we can consider balls
B(x, rj) b Ω which satisfy

|DχE|(∂B(x, rj)) = λe(∂B(x, rj)) = µi(∂B(x, rj)) = 0

and we use the inequality∣∣∣∣∣
∫
B(x,r)

χΩ\EF · (ρεk ∗DχE) dy
∣∣∣∣∣ ≤ ‖F‖L∞(Ω\E;Rn)

∫
B(x,r)

χΩ\E|ρεk ∗DχE| dy

to complete the proof.

Before proceeding, we would like to formalize a few remarks comparing the case of DM∞(Ω)
and BV (Ω;Rn) ∩ L∞(Ω;Rn) fields.

Remark 3.3.6. Since the proof of Theorem 3.3.4 given above relies on the product rule for
F ∈ DM∞(Ω) and g ∈ BV (Ω)∩L∞(Ω) and on Lemma 3.3.3, then it is not difficult to show that
Theorem 3.3.4 is consistent with Vol’pert’s Gauss–Green formula for BV (Ω;Rn) ∩ L∞(Ω;Rn)
fields as given in [157, Chapter 5, Section 1.8]. Indeed, if F ∈ BV (Ω;Rn) ∩ L∞(Ω;Rn), then
Theorem 1.1.15 and some straighforward calculations show that

(F,Dg) = F ∗ ·Dg.

Therefore, we have
Fi · νE = FνE · νE and Fe · νE = F−νE · νE,

where F±νE(x) are the approximate limits of F in H n−1-a.e. x ∈ FE restricted to E and Ω\E,
respectively. Actually, thanks to De Giorgi’s Theorem (Theorem 1.1.10), this is equivalent to
say that F±νE are the approximate limits of F restricted to

Π±νE(x) := {y ∈ Rn : (y − x) · (±νE(x)) ≥ 0};

that is, for any ε > 0 one has

lim
r→0

|{y ∈ Rn : |F (y)− F±νE(x)| ≥ ε} ∩B(x, r) ∩ Π±νE(x)|
|B(x, r)| = 0.

3.3.2 Integration by parts formulas
In this section we prove general integration by parts formulas for a DM∞

loc vector fields and
scalar functions in W 1,1

loc ∩ L∞loc over sets of locally finite perimeter, under some assumptions on
the compactness of the supports.

Theorem 3.3.7. Let F ∈ DM∞
loc(Ω) and let E be a set of locally finite perimeter in Ω. Then,

there exist (Fi · νE), (Fe · νE) ∈ L∞loc(FE; H n−1) satisfying (3.3.2) and (3.3.3) in any open set
U b Ω, and such that the following estimates hold:

‖Fi · νE‖L∞(FE∩U ;H n−1) ≤ ‖F‖L∞(E∩U ;Rn) and ‖Fe · νE‖L∞(FE∩U ;H n−1) ≤ ‖F‖L∞(U\E;Rn).
(3.3.18)

In addition, for any ϕ ∈ L∞loc(Ω) such that ∇ϕ ∈ L1
loc(Ω;Rn) and supp(χEϕ) b Ω, the following

formulas hold: ∫
E1
ϕ∗ ddivF +

∫
E
F · ∇ϕdx = −

∫
FE

ϕ∗(Fi · νE) dH n−1 (3.3.19)

and ∫
E1∪FE

ϕ∗ ddivF +
∫
E
F · ∇ϕdx = −

∫
FE

ϕ∗(Fe · νE) dH n−1. (3.3.20)
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Proof. It is clear that for any open set U b Ω we have F|U ∈ DM∞(U) and (χE)|U = χE∩U ∈
BV (U). With a slight abuse of notation, from now on, we will write F instead of F |U . Hence,
in the open set U the interior and exterior normal traces of F on FE are well defined as in
(3.3.2) and (3.3.3). Then, (3.3.18) follows easily from the restriction of (3.3.17) to U .

As for the second part of the statement, we see that there exists U b Ω such that
supp(χEϕ) b U . By applying the Leibniz rules (Theorem 3.2.3 and Corollary 3.3.2) to ϕχEF ,
we obtain:

div(ϕχEF ) = ϕ∗χE1divF + ϕ∗Fi · νE|DχE|+ χEF · ∇ϕL n, (3.3.21)
div(ϕχEF ) = ϕ∗χE1∪FEdivF + ϕ∗Fe · νE|DχE|+ χEF · ∇ϕL n, (3.3.22)

as identities between Radon measures in M(U). Then, it is enough evaluate (3.3.21) and
(3.3.22) over U and to apply Lemma 3.3.3 in order to get (3.3.19) and (3.3.20).

Remark 3.3.8. It is possible to improve the estimates in (3.3.18) on the L∞-norm of the
normal traces. Indeed, if F ∈ DM∞

loc(Ω) and E ⊂ Ω is a set of locally finite perimeter in Ω, we
can choose U = (FE)ε ∩ V , where (FE)ε = {x ∈ Ω : dist(x,FE) < ε} and V b Ω is open.
Then, we get

‖Fi · νE‖L∞((FE)∩V ;H n−1) ≤ inf
ε>0
{‖F‖L∞(Eε;Rn)},

where Eε := U ∩ E = {x ∈ E ∩ V : dist(x,FE) < ε}. On the other hand, a similar argument
yields

‖Fe · νE‖L∞((FE)∩V ;H n−1) ≤ inf
ε>0
{‖F‖L∞(Eε;Rn)},

where Eε := U ∩ (Ω \ E) = {x ∈ (Ω \ E) ∩ V : dist(x,FE) < ε}.

3.4 Consistency of normal traces

3.4.1 The continuous case
Because of (3.3.15), we see that for a general divergence-measure field the measure divF contains
a jump component at the boundary of a set of finite perimeter where the exterior and interior
normal traces do not coincide. However, this does not happen if the field F is continuous.
The following theorem is similar to [45, Theorem 7.2], however, our proof does not need the
preliminary result given by [45, Lemma 7.1] and it is consequently more direct.

Theorem 3.4.1. (Consistency of the normal traces) Let F ∈ DM∞
loc(Ω) ∩ C(Ω;Rn). If

E is a set of locally finite perimeter in Ω, then

(Fi · νE)(x) = (Fe · νE)(x) = F (x) · νE(x) for H n−1-a.e.x ∈ FE.

In particular, |divF |(FE) = 0 and, for any ϕ ∈ L∞loc(Ω) such that ∇ϕ ∈ L1
loc(Ω;Rn) and

supp(χEϕ) b Ω, we have:∫
E1
ϕ∗ ddivF +

∫
E
F · ∇ϕdx = −

∫
FE

ϕ∗F · νE dH n−1. (3.4.1)

Proof. By Theorem 3.3.7 and (3.3.2), one has that 2(χEF,DχE) = (Fi · νE) H n−1 FE in
M(U) for any open set U b Ω, and Fi · νE ∈ L∞(FE ∩ U ; H n−1). This means that, for
H n−1-a.e. x ∈ FE, one has

(Fi · νE)(x) = lim
r→0

2(χEF,DχE)(B(x, r))
|DχE|(B(x, r)) . (3.4.2)
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In addition, we know that

χEF · (ρε ∗DχE)L n ⇀ (χEF,DχE) in Mloc(Ω),

which means that, ∀φ ∈ Cc(Ω),∫
Ω
φχEF · (ρε ∗DχE) dx→

∫
Ω
φ d(χEF,DχE) as ε→ 0.

Observe that φF ∈ Cc(Ω;Rn) and, since χE(ρε ∗DχE) ⇀ (1/2)DχE, by point (3)(b) in Lemma
1.1.16, one also has∫

Ω
(φF ) · χE(ρε ∗DχE) dx→

∫
Ω

(φF ) · 1
2dDχE as ε→ 0.

Thus, we conclude that (χEF,DχE) = 1
2F ·DχE inMloc(Ω), which means that

2(χEF,DχE)(B(x, r)) =
∫
B(x,r)

F · dDχE =
∫
B(x,r)

F · νE d|DχE|,

for any r > 0 small enough so that B(x, r) b Ω. Moreover, by the continuity of F , the function
F · νE is well defined on FE and is also in L∞loc(FE; H n−1). Therefore, from (3.4.2), for
H n−1-a.e. x ∈ FE, one obtains

(Fi · νE)(x) = lim
r→0

∫
B(x,r) F (y) · νE(y)d|DχE|(y)

|DχE|(B(x, r))
= F (x) · νE(x),

by the Lebesgue-Besicovitch differentiation theorem.
Applying the same steps to the measure 2(χΩ\EF,DχE) yields that it is equal to F ·DχE

and hence one also finds that Fe ·νE admits F ·νE as representative and hence it coincides with
Fi · νE. Finally, (3.3.15) easily implies |divF |(FE) = 0, and (3.4.1) follows from (3.3.19).

From this theorem, we see that continuous divergence-measure fields have no jump com-
ponent in their distributional divergence. However, we remark that χFE|divF | = 0 does not
imply a better absolute continuity property of divF such as |divF | �H n−t for some t ∈ [0, 1).

Remark 3.4.2. We note that the L∞ estimates in Theorem 3.3.7 are sharp. Indeed, given a
set of finite perimeter E in Ω, there exists a divergence-measure fields F for which

‖Fi · νE‖L∞(FE;H n−1) = ‖Fe · νE‖L∞(FE;H n−1) = ‖F‖L∞(E;Rn) = ‖F‖L∞(Ω\E;Rn).

Indeed, it is enough to select a constant vector field F ≡ νE(x), for some fixed x ∈ FE, so
that (Fi · νE)(x) = (Fe · νE)(x) = 1.

We conclude this section with a pair of remarks concerning normal traces.

Remark 3.4.3. We observe that in general the normal traces of an essentially bounded (but
discontinuous) divergence-measure field on the reduced boundary of a set of finite perimeter
do not coincide H n−1-a.e. with the pointwise dot product. However, in [8] it has been shown
that, roughly speaking, the normal traces coincide with the classical one on almost every
surface. More precisely, let I ⊂ R be an open interval and let {Σt}t∈I be a family of oriented
hypersurfaces in Ω such that there exists Ω′ b Ω, Φ ∈ C1(Ω′) and a family of open set Ωt b Ω′,
t ∈ I, with Φ(Ω′) = I, {Φ = t} = Σt = ∂Ωt for any t ∈ I, |∇Φ| > 0 in Ω′ and Σt is oriented by
∇Φ/|∇Φ|. Then, if F ∈ DM∞

loc(Ω), we have

Fi · νΩt = Fe · νΩt = F · νΩt H n−1-a.e. on Σt, for L 1-a.e. t ∈ I.
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For a proof of this result, see [8, Proposition 3.6] (although in their paper the definition of
exterior normal trace is slightly different from ours, they are indeed equivalent by Proposition
3.4.6 below).

We notice that, in particular, this statement applies to any family of balls {B(x0, r)}r∈(0,R)
inside Ω: indeed in this case I = (0, R) and Φ(x) = |x− x0|2. Thus, for L 1-a.e. r ∈ (0, R), we
have |divF |(∂B(x0, r)) = 0,

Fi · νB(x0,r)(x) = Fe · νB(x0,r)(x) = −F (x) · (x− x0)
|x− x0|

H n−1-a.e. x ∈ ∂B(x0, r)

and
divF (B(x0, r)) =

∫
∂B(x0,r)

F (x) · (x− x0)
|x− x0|

dH n−1(x).

Remark 3.4.4. We notice that, by combining Theorem 3.3.4 and Remark 3.4.3, one can
recover the approximation result of Chen, Torres and Ziemer (as in (i)(b), (i)(g), (ii)(b) and
(ii)(g) of [45, Theorem 5.2]); that is, the integrals of the interior and the exterior normal traces
over the reduced boundary are the limits of the integrals of the classical normal trace over the
boundaries of a suitable family of smooth sets. Indeed, let F ∈ DM∞

loc(Ω) and let E b Ω be a
set of finite perimeter. Pick a smooth nonnegative radially symmetric mollifier ρ ∈ C∞c (B(0, 1))
and consider the mollification χE;εk(x) := (χE ∗ρεk)(x) of χE for some positive sequence εk → 0,
as in Section 2.3. For t ∈ (0, 1), one has Ak;t := {uk > t} b Ω if εk is small enough. Since
|divF | �H n−1 (by Theorem 3.2.2), we can apply Theorem 2.3.1 to the measure divF in order
to obtain

lim
k→+∞

|divF |(E1∆Ak;t) = 0 for t ∈
(1

2 , 1
)

(3.4.3)

and
lim

k→+∞
|divF |((E1 ∪FE)∆Ak;t) = 0 for t ∈

(
0, 1

2

)
. (3.4.4)

It is clear that the sets Ak;t satisfy the hypothesis of Remark 3.4.3 for any k with Φ = χE;εk ,
and so

Fi · νAk;t = Fe · νAk;t = F · νAk;t H n−1-a.e. on ∂Ak;t, for L 1-a.e. t ∈ (0, 1).

Now, since Ak;t has a smooth boundary for L 1-a.e. t ∈ (0, 1), then for these values of t
one has H n−1(∂Ak;t \ FAk;t) = 0 (see for instance [11, Proposition 3.62]), and this implies
H n−1((Ak;t)1 \ Ak;t) = 0. Hence, by the Gauss–Green formulas (3.3.16), one has

divF (Ak;t) = −
∫
∂Ak;t

F · νAk;t dH
n−1 (3.4.5)

for any t ∈ (0, 1) \ Zk, with L 1(Zk) = 0. Clearly, Z := ⋃
k Zk is L 1-negligible, and so (3.4.5)

holds for any k and for any t ∈ (0, 1) \ Z. Finally, one applies (3.3.16) to the set E and uses
(3.4.3) and (3.4.4) to obtain

lim
k→+∞

∫
∂Ak;t

F · νAk;t dH
n−1 = − lim

k→+∞
divF (Ak;t) = −divF (E1) =

∫
FE
Fi · νE dH n−1

for L 1-a.e. t ∈ (1
2 , 1), and

lim
k→+∞

∫
∂Ak;t

F · νAk;t dH
n−1 = − lim

k→+∞
divF (Ak;t) = −divF (E1 ∪FE) =

∫
FE
Fe · νE dH n−1

for L 1-a.e. t ∈ (0, 1
2), which are the desired approximation results.
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3.4.2 Locality properties of the normal traces
In this section, we show that, for sets of locally bounded perimeter, the normal traces are
determined by FE and its orientation, thus generalizing what is known for the case of E open,
bounded with C1 boundary (see [8, Proposition 3.2]). Our treatment begins by considering the
normal traces on complementary sets.

If E ⊂ Ω has locally finite perimeter in Ω, then it is well known that the complementary
set Ω \ E also has locally finite perimeter in Ω, with DχΩ\E = −DχE, F (Ω \ E) = FE, and
νΩ\E = −νE. Therefore, Theorem 3.3.7 shows that F ∈ DM∞

loc(Ω) also admits interior and
exterior normal traces

Fi · νΩ\E,Fe · νΩ\E ∈ L∞loc(FE; H n−1).

One easily obtains the following useful relations for normal traces on the boundary of comple-
mentary sets of locally finite perimeter in Ω.

Proposition 3.4.5. If F ∈ DM∞
loc(Ω) and E ⊂ Ω is a set of locally finite perimeter in Ω, then

Fe · νE = −Fi · νΩ\E H n−1-a.e. on FE (3.4.6)

and
Fe · νΩ\E = −Fi · νE H n−1-a.e. on FE. (3.4.7)

Proof. By the definition of normal traces, (3.3.2) and (3.3.3), and Theorem 3.3.7, we have

2(χΩ\EF,DχΩ\E) = Fi · νΩ\E |DχE|, 2(χEF,DχΩ\E) = Fe · νΩ\E |DχE|.

Then, by the definition of pairing measure, for any nonnegative radially symmetric mollifier
ρ ∈ C∞c (B(0, 1)) we have

χΩ\EF · (ρε ∗DχΩ\E)L n ⇀ (χΩ\EF,DχΩ\E),
χEF · (ρε ∗DχΩ\E)L n ⇀ (χEF,DχΩ\E)

On the other hand, it is clear that

χΩ\EF · (ρε ∗DχΩ\E)L n = −χΩ\EF · (ρε ∗DχE)L n ⇀ −(χΩ\EF,DχE),
χEF · (ρε ∗DχΩ\E)L n = −χEF · (ρε ∗DχE)L n ⇀ −(χEF,DχE).

All in all, we get

(χΩ\EF,DχΩ\E) = −(χΩ\EF,DχE) and (χEF,DχΩ\E) = −(χEF,DχE).

Therefore, (3.4.6) and (3.4.7) follow from the definition of Fi · νE and Fe · νE.

We consider now the normal traces of F on a common portion of the reduced boundary of
two sets of locally finite perimeter. We will show that the traces agree if the measure theoretic
unit interior normals are the same, while they have opposite signs if the measure theoretic unit
interior normals have opposite orientation. Our proof will adapt that given in [8, Proposition
3.2] for bounded open sets with C1 boundary.

For the proof, we need to recall a few additional facts from Geometric Measure Theory.
First, we recall a consequence of the basic comparison result between a positive Radon measure
µ and k-dimensional Hausdorff measures through the use of k-dimensional densities of µ: if
µ ∈Mloc(Ω) with µ positive and µ A = 0 for a Borel set A ⊂ Ω, then for each k ≥ 0 one has

µ(B(x, ρ)) = o(ρk) for H k-a.e. x ∈ A. (3.4.8)
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For a proof of this fact, see [11, Theorem 2.56]. Next, we recall elements of the structure of
sets of locally finite perimeter given by De Giorgi’s blow up construction. By Theorem 1.1.10,
if E is a set of locally finite perimeter in Ω, then for any x ∈ FE one has

χ(E−x)/ρ → χH+
νE

(x) and χ((Ω\E)−x)/ρ → χH−νE (x) in L1(B(0, 1)) as ρ→ 0+, (3.4.9)

where H±νE(x) := {y ∈ Rn : ±y · νE(x) ≥ 0}. Moreover, by (1.1.10), the hyperplane HνE(x) :=
{y : y · νE(x) = 0} is the approximate tangent space to the measure H n−1 FE at x ∈ FE
in the sense that for any ϕ ∈ Cc(Ω) one has

lim
ρ→0+

ρ−(n−1)
∫

FE
ϕ

(
y − x
ρ

)
dH n−1(y) =

∫
HνE (x)

ϕ(z) dH n−1(z). (3.4.10)

Finally, let us consider two sets E1, E2 of locally finite perimeter in Ω. Then, for H n−1-a.e.
x ∈ FE1 ∩FE2, we have either νE1(x) = νE2(x) or νE1(x) = −νE2(x). This follows from the
locality property of approximate tangent spaces, for which we refer to [11, Proposition 2.85 and
Remark 2.87].

Proposition 3.4.6. Let F ∈ DM∞
loc(Ω) and let E1, E2 be sets of locally finite perimeter in Ω

such that H n−1(FE1 ∩FE2) 6= 0. Then one has

Fi · νE1 = Fi · νE2 and Fe · νE1 = Fe · νE2 (3.4.11)

for H n−1-a.e. x ∈ {y ∈ FE1 ∩FE2 : νE1(y) = νE2(y)} and

Fi · νE1 = −Fe · νE2 and Fe · νE1 = −Fi · νE2 (3.4.12)

for H n−1-a.e. x ∈ {y ∈ FE1 ∩FE2 : νE1(y) = −νE2(y)}.

Proof. We begin with the first claim in (3.4.11). For H n−1-a.e. x ∈ FE1 ∩FE2 such that
νE1(x) = νE2(x) one has

x is a Lebesgue point for Fi · νEj with respect to H n−1 FEj for j = 1, 2 (3.4.13)

and
|divF |((E1

1 ∪ E1
2) ∩B(x, ρ)) = o(ρn−1). (3.4.14)

Indeed, the normal traces are in L∞loc(FE; H n−1) and so the Lebesgue-Besicovich differentiation
theorem gives (3.4.13). For (3.4.14), it suffices to observe that (E1

1∪E1
2)∩FEj = ∅ for j = 1, 2,

and so the property follows from (3.4.8) with µ = |divF | (E1
1 ∪ E1

2) and k = n− 1.
Let η ∈ C∞c (B(0, 1)) and define ηx,ρ(y) := η((y − x)/ρ) for any ρ > 0. It is clear that

supp(ηx,ρ) b Ω for ρ small enough. By the integration by parts formula (3.3.19), we have∫
E1
j

ηx,ρ ddivF = −
∫

FEj
ηx,ρ(Fi · νEj) dH n−1 −

∫
Ej
F · ∇ηx,ρ dy (3.4.15)

for j = 1, 2. Using (3.4.14), we see that∣∣∣∣∣
∫
E1

1

ηx,ρ ddivF −
∫
E1

2

ηx,ρ ddivF
∣∣∣∣∣ ≤ |divF |((E1

1 ∪ E1
2) ∩B(x, ρ)) = o(ρn−1). (3.4.16)

Since ∇ηx,ρ = (1/ρ)(∇η)ρ, one also has∣∣∣∣∫
E1
F · ∇ηx,ρ dy −

∫
E2
F · ∇ηx,ρ dy

∣∣∣∣ ≤ 1
ρ
||F ||L∞(B(x,1);Rn)||∇η||L∞(B(0,1);Rn)|(E1∆E2) ∩B(x, ρ)|.

(3.4.17)
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Next, observe that

ρ−n|(E1∆E2) ∩B(x, ρ)| = ρ−n
∫
B(x,ρ)

|χE1 − χE2| dy

=
∫
B(0,1)

|χE1(x+ ρz)− χE2(x+ ρz)| dz

=
∫
B(0,1)

|χE1−x
ρ

(z)− χE2−x
ρ

(z)| dz → 0,

as ρ→ 0, where one uses (3.4.9) and the fact that H+
νE1

(x) = H+
νE2

(x). Hence, (3.4.17) implies
∣∣∣∣∫
E1
F · ∇ηx,ρ dy −

∫
E2
F · ∇ηx,ρ dy

∣∣∣∣ = o(ρn−1). (3.4.18)

Subtracting (3.4.15) with j = 2 from (3.4.15) with j = 1 and using (3.4.16) and (3.4.18), one
obtains ∫

FE1
ηx,ρ(Fi · νE1) dH n−1 −

∫
FE2

ηx,ρ(Fi · νE2) dH n−1 = o(ρn−1). (3.4.19)

On the other hand, since x is a Lebesgue point for Fi · νEj with respect to H n−1 FEj, one
has ∣∣∣∣∣

∫
FEj

ηx,ρ(Fi · νEj) dH n−1 − (Fi · νEj)(x)
∫

FEj
ηx,ρ dH

n−1
∣∣∣∣∣ (3.4.20)

≤
∫

FEj
ηx,ρ(y)|(Fi · νEj)(y)− (Fi · νEj)(x)| dH n−1(y) = o(ρn−1)

for j = 1, 2. In addition, (3.4.10) implies that∣∣∣∣∣∣ρ−(n−1)
∫

FEj
ηx,ρ dH

n−1 −
∫
HνEj

(x)
η dH n−1

∣∣∣∣∣∣ = o(1), (3.4.21)

for j = 1, 2. Hence, by (3.4.20), (3.4.21) and the triangle inequality, one has∣∣∣∣∣∣ρ−(n−1)
∫

FEj
ηx,ρ(Fi · νEj) dH n−1 − (Fi · νEj)(x)

∫
HνEj

(x)
η dH n−1

∣∣∣∣∣∣ = o(1).

Hence, for j = 1, 2 one has

ρ−(n−1)
∫

FEj
ηx,ρ(Fi · νEj) dH n−1 → (Fi · νEj)(x)

∫
HνEj

(x)
η dH n−1 as ρ→ 0. (3.4.22)

Now choose η such that η ≥ (1/2) on HνEj
(x) ∩ B(0, (1/2)) so that the integral over HνEj

(x)
is not zero. Recalling that HνE1

(x) = HνE2
(x), then (3.4.19) and (3.4.22) imply (Fi · νE1)(x) =

(Fi · νE2)(x).
As for the other identities, notice that (3.4.6) gives (Fe · νEj) = −(Fi · νΩ\Ej) for H n−1-a.e.

x ∈ FEj, for j = 1, 2. Moreover, since νΩ\Ej = −νEj H n−1-a.e. on FEj and νE1(x) = νE2(x),
one has νΩ\E1(x) = νΩ\E2(x). Since Ω\Ej is a set of locally finite perimeter in Ω, one can apply
the identity we just proved to obtain (Fe · νE1)(x) = −(Fi · νΩ\E1)(x) = −(Fi · νΩ\E2)(x) =
(Fe ·νE2)(x) for H n−1-a.e. x ∈ {y ∈ FE1∩FE2 : νE1(y) = νE2(y)}, which is the second claim
in (3.4.11). The identities of (3.4.12) follow in an analogous way by using (3.4.6), (3.4.7) and
the previous argument applied to E1 and Ω \ E2.

103



3.5 The Green’s identities
As an application of the integration by parts formulas, we can generalize the classical Green’s
identities to Lipschitz functions whose gradients are locally essentially bounded divergence-
measure fields.

Theorem 3.5.1. Let u ∈ Liploc(Ω) be such that ∆u ∈ Mloc(Ω), and let E ⊂ Ω be a set of
locally finite perimeter. Then there exist interior and exterior normal traces of ∇u: (∇ui ·
νE), (∇ue ·νE) ∈ L∞loc(FE; H n−1) such that, for any v ∈ C(Ω) satisfying ∇v ∈ L1

loc(Ω;Rn) and
supp(χEv) b Ω, ∫

E1
v d∆u+

∫
E
∇v · ∇u dx = −

∫
FE

v(∇ui · νE) dH n−1, (3.5.1)∫
E1∪FE

v d∆u+
∫
E
∇v · ∇u dx = −

∫
FE

v(∇ue · νE) dH n−1. (3.5.2)

For any open set U b Ω, the following estimates hold:

‖∇ui · νE‖L∞(FE∩U ;H n−1) ≤ ‖∇u‖L∞(U∩E;Rn), (3.5.3)
‖∇ue · νE‖L∞(FE∩U ;H n−1) ≤ ‖∇u‖L∞(U\E;Rn). (3.5.4)

In addition, if v ∈ Liploc(Ω) with ∆v ∈ Mloc(Ω), and supp(χEv), supp(χEu) b Ω, then the
following formulas hold:∫

E1
v d∆u− u d∆v = −

∫
FE

(
v(∇ui · νE)− u(∇vi · νE)

)
dH n−1, (3.5.5)∫

E1∪FE
v d∆u− u d∆v = −

∫
FE

(
v(∇ue · νE)− u(∇ve · νE)

)
dH n−1. (3.5.6)

In particular, if supp(χEu) b Ω, then∫
E1
u d∆u+

∫
E
|∇u|2 dx = −

∫
FE

u(∇ui · νE) dH n−1, (3.5.7)∫
E1∪FE

u d∆u+
∫
E
|∇u|2 dx = −

∫
FE

u(∇ue · νE) dH n−1. (3.5.8)

Proof. Since ∇u ∈ DM∞
loc(Ω), the existence of interior and exterior normal traces ∇ui ·νE,∇ue ·

νE ∈ L∞loc(FE; H n−1) and the estimates (3.5.3) and (3.5.4) follow from Theorem 3.3.7. Analo-
gously, (3.5.1) and (3.5.2) are an immediate consequence of (3.3.19) and (3.3.20), respectively,
with F = ∇u and ϕ = v.

In addition, if supp(χEu) b Ω and v ∈ Liploc(Ω) with ∆v ∈Mloc(Ω), then we can exchange
the role of u and v in (3.5.1) and (3.5.2):∫

E1
u d∆v +

∫
E
∇v · ∇u dx = −

∫
FE

u(∇vi · νE) dH n−1, (3.5.9)∫
E1∪FE

v d∆v +
∫
E
∇v · ∇u dx = −

∫
FE

u(∇ve · νE) dH n−1. (3.5.10)

Thus, it suffices to subtract (3.5.9) from (3.5.1) to obtain (3.5.5), and to subtract (3.5.10) from
(3.5.2) to obtain (3.5.6). Finally, choosing u = v in (3.5.1) and (3.5.2), we obtain (3.5.7) and
(3.5.8), respectively.

In the case we deal with continuously differentiable functions, thanks to Theorem 3.4.1, we
can write the normal traces of the gradient as the classical scalar product with the measure
theoretic unit interior normal.
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Corollary 3.5.2. Let u ∈ C1(Ω) satisfy ∆u ∈ Mloc(Ω) and let E be a set of locally finite
perimeter in Ω. Then, for any v ∈ C(Ω) satisfying ∇v ∈ L1

loc(Ω;Rn) and supp(χEv) b Ω, we
have ∫

E1
v d∆u = −

∫
FE

v∇u · νE dH n−1 −
∫
E
∇v · ∇u dx. (3.5.11)

In addition, if v ∈ C1(Ω) with ∆v ∈Mloc(Ω), and supp(χEv), supp(χEu) b Ω, then we get∫
E1
v d∆u− u d∆v = −

∫
FE

(v∇u− u∇v) · νE dH n−1. (3.5.12)

In particular, if supp(χEu) b Ω, then∫
E1
u d∆u+

∫
E
|∇u|2 dx = −

∫
FE

u∇u · νE dH n−1. (3.5.13)

Proof. We begin by noticing that ∇u ∈ DM∞
loc(Ω) ∩ C(Ω;Rn), and so Theorem 3.4.1 implies

that the normal traces of ∇u on FE coincide with the classical dot product ∇u(x) · νE(x)
for H n−1-a.e. x ∈ FE. Thus, (4.4.18), (4.4.19) and (3.5.13) follow from (3.5.1), (3.5.5) and
(3.5.7).
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Chapter 4

Divergence-measure fields in stratified
groups

4.1 Introduction
1 The Gauss–Green formula has been deeply studied also in a number of different non-Euclidean
contexts, see for instance [95,99,110]. Related to these results is also the recent study by Züst,
on functions of bounded fractional variation, [158]. Other extensions of the Gauss–Green
formula appears in the framework of doubling metric spaces satisfying a Poincaré inequality, as
in [117]. Through special trace theorems for BV functions in Carnot–Carathéodory spaces, an
integration by parts formula has been established also in [155], assuming an intrinsic Lipschitz
regularity on the boundary of the domain of integration.

The main objective of this chapter is to establish a Gauss–Green theorem for sets of finite
perimeter and divergence-measure vector fields in a family of noncommutative nilpotent Lie
groups, called stratified groups or Carnot groups. Such Lie groups equipped with a suitable
homogeneous distance represent infinitely many different types of non-Euclidean geometries,
with Hausdorff dimension strictly greater than their topological dimension. Notice that com-
mutative stratified Lie groups coincide with normed vector spaces, where our results agree with
the classical ones. Stratified groups arise from Harmonic Analysis and PDE, [75,149], and rep-
resent an important class of connected and simply connected real nilpotent Lie groups. They
are characterized by a family of dilations, along with a left invariant distance that properly
scales with dilations, giving a large class of metric spaces that are not bi-Lipschitz equivalent
to each other.

The theory of sets of finite h-perimeter in stratified groups has known a wide development
in the last two decades, especially in relation to topics like De Giorgi’s rectifiability, minimal
surfaces and differentiation theorems. We mention for instance some relevant works [1, 16, 26,
46,62,80,81,105,112,113,118,124,125,127], only to give a small glimpse of the vast and always
expanding literature. Some basic facts on the theory of sets of finite perimeter and BV functions
hold in this setting, once these notions are properly defined. Indeed, other related notions such
as reduced boundary and essential boundary, intrinsic rectifiability and differentiability can be
naturally introduced in this setting, see for instance [139] for a recent overview on these topics
and further references.

The stratified group G, also called Carnot group, is always equipped with left invariant
horizontal vector fields X1, . . . , Xm, that determine the directions along which it is possible
to differentiate. The corresponding distributional derivatives define functions of bounded h-

1This chapter is based on a joint work with Valentino Magnani [51]. However, in order to align it to the rest
of the thesis, we adopted the convention that νE denotes the measure theoretic unit interior normal, resulting
in a change of signs from the formulas in [51].
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variation (Definition 1.3.2) and sets of finite h-perimeter (Definition 1.3.13). We consider
divergence-measure horizontal fields, that are Lp-summable sections of the horizontal subbundle
HΩ, where Ω is an open set of G (Definition 4.2.1). Notice that the space of these fields,
DMp(HΩ), with 1 ≤ p ≤ ∞, contains divergence-measure horizontal fields that are not BV
even with respect to the group structure (Example 4.2.3). Nevertheless, horizontal fields in
DM∞(HΩ) satisfy a Leibniz rule when multiplied by a function of bounded h-variation, that
might be much less regular than a BV function on Euclidean space, see Theorem 4.1.1 below.
The loss of Euclidean regularity can be already seen with sets of finite h-perimeter, that are not
necessarily of finite perimeter in Euclidean sense, [79, Example 1]. Sets of finite h-perimeter
are in some sense the largest class of measurable sets for which one can expect existence of
normal traces and Gauss–Green formulas for divergence-measure horizontal fields.

Among our techniques, a special tool is the smooth approximation result given in Theorem
1.3.11, which provides a number of natural properties that are satisfied by the “correct” mollified
function. We obtained it by the noncommutative group convolution (Definition 1.2.8). This
is a well known tool in Harmonic Analysis and PDE on homogeneous Lie groups, [76, 150],
that has been already used to study perimeters and BV functions on Heisenberg groups, [126,
141]. On the other hand, a number of smooth approximations can be obtained in Carnot-
Carathéodory spaces or sub-Riemannian manifolds using the Euclidean convolution, also in
relation to Meyers–Serrin theorem and Anzellotti–Giaquinta approximations for Sobolev and
BV functions, [12, 77,78,86,87,155].

One should also notice that the minimal regularity of the mollifier ρ is necessary in order
to have Proposition 1.3.20 and its consequences. Indeed, the mollifier ρε can be also built
using a homogeneous distance, that in general may not be smooth even outside the origin.
Theorem 1.3.11 plays an important role also in the proof of the Leibniz rule of Theorem 4.1.1.
The noncommutativity of the group convolution makes necessary a right invariant distance dR
canonically associated to d (1.2.2) and the ‘right inner parts’ of an open set ΩR2ε (1.2.9), that
appear in the statement of Theorem 1.3.11.

Theorem 4.1.1 (Approximation and Leibniz rule). If F ∈ DM∞(HΩ) and g ∈ L∞(Ω) with
|DHg|(Ω) < +∞, then gF ∈ DM∞(HΩ). If ρ ∈ Cc(B(0, 1)) is nonnegative, ρ(x) = ρ(x−1)
and

∫
B(0,1)

ρ dx = 1, then for any infinitesimal sequence ε̃k > 0, setting gε := ρε ∗ g, there exists

a subsequence εk such that gεk
∗
⇀ g̃ in L∞(Ω; |divF |) and 〈F,∇Hgεk〉µ ⇀ (F,DHg) in M(Ω).

Moreover, the following formula holds

div(gF ) = g̃ divF + (F,DHg), (4.1.1)

where the measure (F,DHg) satisfies

|(F,DHg)| ≤ ‖F‖L∞(Ω)|DHg|. (4.1.2)

Finally, we have the decompositions

(F,DHg)aµ = 〈F,∇Hg〉µ and (F,DHg)s = (F,Ds
Hg), (4.1.3)

where ∇Hg denotes the approximate differential of g.

In the Euclidean setting, this Leibniz rule has been established in [41, Theorem 3.1] and
[82, Theorem 2.1]. The product rule (4.1.1) is the starting point of many of our results. For
instance, applying this formula to F ∈ DM∞(HΩ) and g = χE, for a set of finite h-perimeter
E b Ω, and using Lemma 4.2.6, one is led to a first embryonic Gauss–Green formula. Here
the pairing (F,DHχE) has still to be related to suitable notions of normal trace. Indeed, the
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interior and exterior normal traces 〈Fi, νE〉 and 〈Fe, νE〉, respectively, are defined in Section 4.3
through the notion of pairing measure as follows:

(χEF,DHχE) = 1
2 〈Fi, νE〉 |DHχE|,

(χΩ\EF,DHχE) = 1
2 〈Fe, νE〉 |DHχE|.

We notice that this definition is well posed, since (χEF,DHχE) and (χΩ\EF,DHχE) are ab-
solutely continuous with respect to the perimeter measure thanks to (4.1.2). It is important
to stress that the weak assumptions of Theorem 4.1.1 a priori do not ensure the uniqueness
of g̃ and of the pairing (F,DHg). They may both depend on the approximating sequence. A
first remark is that at those points where the averaged limit of g exists with respect to dR, the
function g̃ can be characterized explicitly (Proposition 4.2.9). However, the appearance of the
right invariant distance dR prevents the use of any intrinsic regularity of the reduced boundary
(Definition 1.3.14) for sets of finite h-perimeter.

Despite these difficulties, a rather unexpected fact occurs, since in the case g = χE and E has
finite h-perimeter, it is possible to prove that the limit χ̃E is uniquely determined, along with
the normal traces, regardless of the choice of the mollifying sequence ρεk ∗ χE. The surprising
aspect is that we have no rectifiability result for the reduced boundary in arbitrary stratified
groups. We mainly use functional analytic arguments, the absolute continuity divF � SQ−1

and the important Proposition 2.4.2, that is further discussed below. We summarize these
relevant facts by restating here the main results of Theorem 4.3.13.

Theorem 4.1.2 (Uniqueness of traces). If F ∈ DM∞(HΩ) and E ⊂ Ω is a set of finite
h-perimeter, then there exists a unique |divF |-measurable subset

E1,F ⊂ Ω \FHE,

up to |divF |-negligible sets, such that

χ̃E(x) = χE1,F (x) + 1
2χFHE(x) for |divF |-a.e. x ∈ Ω. (4.1.4)

In addition, there exist unique normal traces

〈Fi, νE〉 , 〈Fe, νE〉 ∈ L∞(FHE; |DHχE|)

satisfying

div(χEF ) = χE1,F divF + 〈Fi, νE〉 |DHχE|, (4.1.5)
div(χEF ) = χE1,F∪FHEdivF + 〈Fe, νE〉 |DHχE|. (4.1.6)

Equalities (4.1.5) and (4.1.6) immediately lead to general Gauss–Green formulas. Indeed,
taking F ∈ DM∞(HΩ) and a set of finite h-perimeter E b Ω, it is enough to evaluate (4.1.5)
and (4.1.6) on Ω, and then to exploit the fact that χEF ∈ DM∞(HΩ), thanks to Theorem 4.1.1,
and Lemma 4.2.6. In this way, we obtain the following general versions of the Gauss–Green
formulas in stratified groups:

divF (E1,F ) = −
∫

FHE
〈Fi, νE〉 d|DHχE|, (4.1.7)

divF (E1,F ∪FHE) = −
∫

FHE
〈Fe, νE〉 d|DHχE|. (4.1.8)
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We notice that, as a simple consequence of (4.1.5), we can define E1,F , up to |divF |-negligible
sets, as that Borel set in Ω \FHE satisfying

div(χEF ) Ω \FHE = divF E1,F . (4.1.9)

However, it is still an appealing open question to characterize E1,F explicitly, namely in geo-
metric terms, or even to prove that the set E1,F does not depend on the vector field F , as it
happens in the Euclidean context.

Nevertheless, we are able to find different sets of assumptions, involving either the regularity
of E or of the field F , for which E1,F can be properly detected. This immediately yields
a number of Gauss–Green and integration by parts formulas in the spirit of the well known
Euclidean results.

Before discussing Gauss–Green formulas, it is natural to ask whether normal traces have
the locality property. Rather unexpectedly, also locality of normal traces is obtained without
any blow-up technique related to rectifiability of the reduced boundary. Indeed, the classical
proofs in the literature heavily employ the existence of an approximate tangent space at almost
every point on the reduced boundary of a set of finite perimeter ([8, Proposition 3.2] and
[52, Proposition 4.10]).

In Theorem 4.3.6 we show that the normal traces of a divergence-measure horizontal section
F only depend on the orientation of the reduced boundary. It can be seen using the Leibniz
rule established in Proposition 4.3.2, the locality of perimeter in stratified groups proved by
Ambrosio-Scienza [20] and general arguments of measure theory. Another important tool that
somehow allows us to overcome the absence of regularity of the reduced boundary is Proposi-
tion 2.4.2, where we prove that the weak∗ limit of ρε ∗ χE in L∞(Ω; |DHχE|) is precisely 1/2,
for any set E ⊂ G of finite h-perimeter and any symmetric mollifier ρ. This proposition can
be proved by a soft argument borrowed from [10, Proposition 4.3]. It seems quite interesting
that this weak∗ convergence comes from an analogous study in the infinite dimensional setting
of Wiener spaces and it does not require any existence of blow-ups.

Proposition 2.4.2, together with Remark 2.4.4 and Lemma 2.4.5, is fundamental in proving
the refinements (4.1.5) and (4.1.6) of the Leibniz rule, along with the uniqueness results of
Theorem 4.1.2. Furthermore, Proposition 2.4.2 immediately leads to the ‘intrinsic blow-up
property’ (Lemma 2.4.5), that is fundamental to prove the estimates of Proposition 4.3.4 for
the normal traces of F ∈ DM∞(Ω). We point out that the names of interior and exterior
normal traces can be also justified by the same estimates (4.3.18) and (4.3.19). We stress
that the proofs of this result in the Euclidean literature rely on De Giorgi’s blow-up theorem,
see [52, Theorem 3.2], while Proposition 4.3.4, when the group is commutative, provides an
alternative proof.

Returning to Gauss–Green formulas, we observe first that when FHE is negligible with
respect to |divF | (Theorem 4.4.5), then the interior and exterior normal traces coincide. In par-
ticular, we can define the average normal trace 〈F, νE〉 as the density of the pairing (F,DHχE)
with respect to the h-perimeter measure |DHχE|, according to Definition 4.4.2. Thanks to
(4.3.46), it is immediate to observe that

〈F, νE〉 = 〈Fi, νE〉+ 〈Fe, νE〉
2 .

As a result, when |divF |(FHE) = 0, we have 〈Fi, νE〉 = 〈Fe, νE〉 = 〈F, νE〉, so that there exists
a unique normal trace and the Gauss–Green formula (4.4.7) holds.

In case the divergence-measure field F is continuous (Theorem 4.4.7), then the Gauss–Green
formula (4.4.9) holds and the normal trace has an explicit representation by the scalar product
between the field F and the measure theoretic unit interior h-normal νE.
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A first important consequence of the previous theorems is a Gauss–Green formula for hori-
zontal fields with divergence-measure absolutely continuous with respect to the Haar measure
of the group. Such a result could be also achieved from a modified product rule with additional
assumptions on divF , but we have preferred to start from a more general Leibniz rule and then
derive some special cases from it.

Theorem 4.1.3. Let F ∈ DM∞(HΩ) such that |divF | � µ and let E b Ω be a set of finite
h-perimeter. Then there exists a unique normal trace 〈F, νE〉 ∈ L∞(Ω; |DHχE|) such that there
holds

divF (E) = −
∫

FHE
〈F, νE〉 d|DHχE|. (4.1.10)

The key point is to show that E1,F can be replaced by E, namely, to prove that their
symmetric difference is |divF |-negligible. The Gauss–Green formula (4.1.10) naturally leads to
the following integration by parts formula.

Theorem 4.1.4. Let F ∈ DM∞
loc(HΩ) be such that |divF | � µ, and let E be a set of locally

finite h-perimeter in Ω. Let ϕ ∈ C(Ω) with ∇Hϕ ∈ L1
loc(HΩ) such that

supp(ϕχE) b Ω.

Then there exists a unique normal trace 〈F, νE〉 ∈ L∞loc(Ω; |DHχE|) of F , such that the following
formula holds ∫

E
ϕddivF +

∫
E
〈F,∇Hϕ〉 dx = −

∫
FHE

ϕ 〈F, νE〉 d|DHχE|. (4.1.11)

We notice that the assumption |divF | � µ is very general in the sense that it is satisfied
by F ∈ W 1,p

H,loc(HΩ), for any 1 ≤ p ≤ ∞. Moreover, it clearly implies |divF |(FHE) = 0, which
means that the divergence-measure is not concentrated on the reduced boundary of E, and
thus there is no jump component in the divergence. It is also worth to point out that both
(4.1.10) and (4.1.11) hold also for sets whose boundary is not rectifiable in the Euclidean sense
(Example 4.5.2).

If we slightly weaken the absolute continuity assumption on divF , requiring instead

|divF |(∂∗,RH E) = 0,

where ∂∗,RH E is the measure theoretic boundary of E with respect to the right invariant distance
dR (1.3.28), we are able to prove that E1,F is equivalent to E1,R; that is, the measure theoretic
interior with respect to dR. As a consequence, we can derive a modified Gauss–Green formula
(Theorem 4.5.6) and related statements.

Finally, other versions of the Gauss–Green theorem and integration by parts formulas can
be obtained in the case the set E ⊂ G has finite perimeter in the Euclidean sense. Here it
is important to investigate the behavior of the Euclidean pairing of a field F ∈ DM∞(HΩ)
and a function g ∈ BV (Ω) ∩ L∞(Ω). Let us remark that, even if the family DMp(HΩ) with
1 ≤ p ≤ ∞ is strictly contained in the known space of divergence-measure fields (Section 4.2.1),
the known Euclidean results could only prove that the Euclidean pairing measure (F,Dg) is
absolutely continuous with respect to the total variation |Dg|. This result does not imply
the absolute continuity of the pairing with respect to |DHg|, since this measure is absolutely
continuous with respect to |Dg| while the opposite may not hold in general.

In Theorem 4.6.3 we refine the classical results on (F,Dg), proving that, up to a restriction
to bounded open sets,

|(F,Dg)| ≤ ‖F‖L∞(Ω)|DHg|.
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For this purpose, we have used the Euclidean convolution to compare the Euclidean pairing
with the intrinsic pairing in the stratified group. While no exact commutation rule between
the horizontal gradient and the Euclidean convolution holds, it is however possible to use an
asymptotic commutator estimate similar to the classical one by Friedrichs [83], see also [86].
Thanks to the above absolute continuity, we can actually prove that, given a set of Euclidean
finite perimeter E, the group pairing (F,DHχE) defined in Theorem 4.1.1 is actually equal to
the Euclidean pairing (F,DχE), according to Theorem 4.6.4. An important tool used in the
proof of this result is Theorem 4.2.7, which states that |divF | � S Q−1, if F ∈ DM∞

loc(HΩ).
This property of divF allows us to show in Theorem 4.6.4 that we have E1,F = E1

|·|, up to a
|divF |-negligible set, where we denote by E1

|·| the Euclidean measure theoretic interior of E;
that is, the set of points with density 1 with respect to the balls defined using the Euclidean
distance in the group. These results allow us to prove the following Leibniz rules and integration
by parts formulas for sets of Euclidean finite perimeter in stratified groups.

Theorem 4.1.5. Let F ∈ DM∞
loc(HΩ) and E ⊂ Ω be a set of Euclidean locally finite perimeter

in Ω, then there exist interior and exterior normal traces 〈Fi, νE〉 , 〈Fe, νE〉 ∈ L∞loc(Ω; |DHχE|)
such that, for any open set U b Ω, we have

div(χEF ) = χE1
|·|
divF + 〈Fi, νE〉 |DHχE|, (4.1.12)

div(χEF ) = χE1
|·|∪FHE divF + 〈Fe, νE〉 |DHχE|, (4.1.13)

χFHE divF = (〈Fi, νE〉 − 〈Fe, νE〉) |DHχE| (4.1.14)

inM(U). Moreover, we get the trace estimates

‖ 〈Fi, νE〉 ‖L∞(FHE∩U ;|DHχE |) ≤ ‖F‖L∞(E∩U),

‖ 〈Fe, νE〉 ‖L∞(FHE∩U ;|DHχE |) ≤ ‖F‖L∞(U\E).

For any ϕ ∈ C(Ω) with ∇Hϕ ∈ L1
loc(HΩ) such that supp(ϕχE) b Ω, we have∫

E1
|·|

ϕddivF +
∫
E
〈F,∇Hϕ〉 dx = −

∫
FHE

ϕ 〈Fi, νE〉 d|DHχE|, (4.1.15)∫
E1
|·|∪FHE

ϕddivF +
∫
E
〈F,∇Hϕ〉 dx = −

∫
FHE

ϕ 〈Fe, νE〉 d|DHχE|. (4.1.16)

Formulas (4.1.11) and (4.1.15) extend Anzellotti’s pairings to stratified groups in the case
the BV function of the pairing is the characteristic function of a finite h-perimeter set. Indeed, if
we take E to be an open bounded set with Euclidean Lipschitz boundary, as in the assumptions
of [23, Theorem 1.1], then it is well known that E1

|·| = E. Thus, for this choice of E, it is clear
that (4.1.11) and (4.1.15) are equivalent to definition of (interior) normal trace of Anzellotti;
that is, the pairing between F and DχE (see [23, Definition 1.4]).

Let us point out that Theorem 4.1.5 is new even when seen in Euclidean coordinates, since
the measures appearing in the Leibniz rules are in fact absolutely continuous with respect to
the h-perimeter.

In the assumptions of Theorem 4.1.5, if E b Ω, taking the test function ϕ ≡ 1 in both
(4.1.15) and (4.1.16), we get the following general Gauss–Green formulas

divF (E1
|·|) = −

∫
FHE
〈Fi, νE〉 d|DHχE|, (4.1.17)

divF (E1
|·| ∪FHE) = −

∫
FHE
〈Fe, νE〉 d|DHχE|. (4.1.18)
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Analogously, the estimates on the L∞-norm of the normal traces are similar to those in (3.1.5).
When the vector field F is C1 smooth up to the boundary of a bounded set E b Ω of Euclidean
finite perimeter, then all (4.1.10), (4.1.17) and (4.1.18) boil down to the following one∫

E
divF dx = −

∫
FE
〈F, νE〉 d|DHχE| = −

∫
FE

〈
F,NH

E

〉
d|DχE|, (4.1.19)

where NH
E = ∑m

j=1 〈NE, Xj〉Rq Xj is the non-normalized interior horizontal normal, G is linearly
identified with Rq (Section 1.2.2), 〈·, ·〉Rq denotes the Euclidean scalar product, NE is the
Euclidean measure theoretic interior normal, |DχE| is the Euclidean perimeter and FE is the
Euclidean reduced boundary. In the special case of (4.1.19) the proof is a simple application
of the Euclidean theory of sets of finite perimeter, see for instance [47, Remark 2.1].

Equalities of (4.1.19) can be also written using Hausdorff measures, getting∫
E
divF dx = −

∫
FE

〈
F,NH

E

〉
dH q−1

|·| = −
∫

FE
〈F, νE〉 dS Q−1. (4.1.20)

The first equality is a consequence of the rectifiability of Euclidean finite perimeter sets [64]
and the second one follows from [113], when the homogeneous distance d constructing S Q−1 is
suitably symmetric. For instance, when E is bounded, ∂E is piecewise smooth and F is a C1

smooth vector field on a neighborhood of E, then (4.1.19) and (4.1.20) hold and the reduced
boundary FE can be replaced by the topological boundary ∂E, coherently with the classical
result (3.1.1).

For smooth functions and sufficiently smooth domains, Green’s formulas, that are simple
consequences of the Gauss-Green theorem, have proved to have a wide range of applications in
classical PDE’s. In the context of sub-Laplacians in stratified groups these formulas play an
important role, [28,133].

As a consequence of our results, we obtain a very general version of Green’s formulas in
stratified groups. Precisely in the next theorem, (4.1.21) and (4.1.22) represent the first and
the second Green’s formulas, where the domain of integration is only assumed to be a set with
Euclidean finite perimeter and the sub-Laplacians are measures.

Theorem 4.1.6. Let u ∈ C1
H(Ω) satisfy ∆Hu ∈ Mloc(Ω) and let E ⊂ Ω be a set of Euclidean

locally finite perimeter in Ω. Then for each v ∈ Cc(Ω) with ∇Hv ∈ L1(HΩ) one has∫
E1
|·|

v d∆Hu = −
∫

FHE
v 〈∇Hu, νE〉 d|DHχE| −

∫
E
〈∇Hv,∇Hu〉 dx. (4.1.21)

If u, v ∈ C1
H,c(Ω) also satisfy ∆Hu,∆Hv ∈M(Ω), one has∫

E1
|·|

v d∆Hu− u d∆Hv =
∫

FHE
〈u∇Hv − v∇Hu, νE〉 d|DHχE|. (4.1.22)

If E b Ω, one can drop the assumption that u and v have compact support in Ω.

These Green’s formulas are extended in Theorem 4.5.3 to sets of h-finite perimeter, assuming
that the sub-Laplacian is absolutely continuous with respect to the Haar measure of the group.

The chapter is structured as follows: in Section 4.2 we introduce the divergence-measure
horizontal fields and we present some of their first properties, including the absolute continuity
with respect to Hausdorff spherical measure (Theorem 4.2.7). Then, we prove the Leibniz rule
(Theorem 4.1.1) for the essentially bounded case, together with some refinements in special
cases. In Section 4.3 the normal traces for essentially bounded horizontal divergence-measure
fields on the boundaries of sets with finite h-perimeter are defined, their relation with the Leibniz
rules is explored and their locality properties are established (Theorem 4.3.6). In addition, the

113



existence and uniqueness of measure theoretic interior and exterior of a set of finite h-perimeter
E with respect to the divergence-measure field F , E1,F and E0,F , are established in Theorem
4.3.13. Then, by exploiting the Leibniz rules, we obtain the uniqueness also of the normal traces,
thus paving the way for the general Gauss–Green and integration by parts formulas (Theorem
4.4.1 and Theorem 4.4.8), presented in Section 4.4. In this section we also prove that, if the
horizontal field is continuous, the interior and exterior normal traces coincide with the scalar
product associated with the invariant Riemannian metric. Finally, we consider some special
cases. In Section 4.5 we deal with horizontal fields whose divergence is absolutely continuous
with respect to the Haar measure of the group, and with a slightly more general assumption
on the concentration properties of the divergence measure. Instead, Section 4.6 deals with the
case of sets with Euclidean finite perimeter.

4.2 Divergence-measure horizontal fields
In this section we will introduce and study the function spaces of p-summable horizontal sections
whose horizontal divergence is a Radon measure. In the sequel, Ω will denote a fixed open set
of G.

4.2.1 General properties and Leibniz rules
By a little abuse of notation, for any µ-measurable set E we shall use the symbols ‖F‖Lp(E)
and ‖F‖L∞(E) with the same meaning as in (1.3.1) and (1.3.2).

Definition 4.2.1 (Divergence-measure horizontal field). A p-summable divergence-measure
horizontal field is a field F ∈ Lp(HΩ) whose distributional divergence divF is a Radon measure
on Ω. We denote by DMp(HΩ) the space of all p-summable divergence-measure horizontal
fields, where 1 ≤ p ≤ ∞. A measurable section F of HΩ is a locally p-summable divergence-
measure horizontal field if, for any open subset W b Ω, we have F ∈ DMp(HW ). The space
of all such section is denoted by DMp

loc(HΩ).

It is easy to observe that, if F = ∑m
j=1 FjXj and Fj ∈ Lp(Ω)∩BVH(Ω) for all j = 1, . . . ,m,

then F ∈ DMp(HΩ). We also notice that, from (1.3.12) and (1.3.13), the divergence-measure
horizontal fields forms a subspace of the whole space of divergence-measure fields. Hence,
if we denote by TΩ the tangent bundle of Ω, we have DMp(HΩ) ⊂ DMp(TΩ), for any
p ∈ [1,∞], where DMp(TΩ) denotes the classical space of divergence-measure fields with
respect to the Euclidean structure fixed on G. Actually DMp(HΩ) is a closed subspace of
DMp(TΩ), according to the next remark.

Remark 4.2.2. As in the Euclidean case ([41, Corollary 1.1]), DMp(HΩ) endowed with the
following norm

‖F‖DMp(HΩ) := ‖F‖Lp(Ω) + |divF |(Ω)

is a Banach space. Any Cauchy sequence {Fk} is clearly a Cauchy sequence in Lp(HΩ), and
so there exists F ∈ Lp(HΩ) such that Fk → F in Lp(HΩ). Then, the lower semicontinuity
of the total variation and the property of the Cauchy sequence yield F ∈ DMp(HΩ) and
|div(F − Fk)|(Ω)→ 0.

The following example shows that fields of DMp(HΩ) may have components that are not
BV functions. It is a simple modification of an example of Chen and Frid, see [42, Example
1.1].
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Example 4.2.3. Let G = H1, be the first Heisenberg group, equipped with graded coordinates
(x, y, z) and horizontal left invariant vector fields X1 = ∂1− y∂3 and X2 = ∂2 + x∂3. We define
the divergence-measure horizontal field

F (x, y, z) = sin
(

1
x− y

)
(X1 +X2).

It is plain to see that F ∈ L∞(HH1), and that

divF = X1 sin
(

1
x− y

)
+X2 sin

(
1

x− y

)
= 0,

in the sense of Radon measures, but the components of F are not BV .

Remark 4.2.4. We notice that, for a given F ∈ DMp(TΩ), if we denote by FH its projection on
the horizontal subbundle with respect to a fixed left invariant Riemannian metric that makes
X1, . . . , Xq orthonormal, we may not get FH ∈ DMp(HΩ). Let us consider the Heisenberg
group H1 identified with R3, as in the previous example, along with the vector fields X1, X2,
and define X3 = ∂3.

Let us consider the following measurable vector field

G(x, y, z) = sin
( 1
x− z

)
(∂1 + ∂2 + ∂3).

We clearly have G ∈ DM∞(TH1), i.e. G is a divergence-measure field. However, if we consider
its projection onto horizontal fibers

GH(x, y, z) = sin
( 1
x− z

)
(X1 +X2),

for any x 6= z, we have

divGH(x, y, z) = −1 + x+ y

(x− z)2 cos
( 1
x− z

)
,

which is not a locally summable function in any neighborhood of {x = z}. This shows that
divGH /∈M(H1).

We show now an easy extension result (see also [52, Remark 2.20]).

Remark 4.2.5. If 1 ≤ p ≤ ∞ and F ∈ DMp(HΩ) has compact support in Ω, then its trivial
extension

F̂ (x) :=

F (x) if x ∈ Ω
0 if x ∈ G \ Ω,

belongs to DMp(HG). Indeed, since F̂ ∈ Lp(HG) and for any φ ∈ C∞c (G) and a fixed
ξ ∈ C∞c (Ω) that equals one on a neighborhood of the support of F , we have∫

G
〈F̂,∇Hφ〉 dx =

∫
Ω
〈F̂,∇Hφ〉 dx

=
∫

Ω
〈F,∇H(ξφ)〉 dx+

∫
Ω
〈F,∇H((1− ξ)φ)〉 dx

= −
∫

Ω
φ d(divF ξ) = −

∫
G
φ d(divF ξ),

(4.2.1)

where we denote by divF ξ the signed Radon measure on G such that

divF ξ(E) =
∫

Ω∩E
ξ ddivF
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for every relatively compact Borel subset E ⊂ G. Thus, we have shown that F̂ ∈ DMp(HG)
and divF̂ = divF ξ. The equalities of (4.2.1) imply that the restriction of divF̂ to Ω coincides
with divF and in particular |divF̂ |(Ω) = |divF |(Ω). The same equalities also imply that
|divF̂ |(G \ Ω) = 0.

As a consequence, we can prove the following result concerning fields with compact support,
which can be seen as the easy case of the Gauss–Green formula, since there are no boundary
terms. A similar result has been proved in the Euclidean setting in [52, Lemma 3.1].

Lemma 4.2.6. If 1 ≤ p ≤ ∞ and F ∈ DMp(HΩ) has compact support in Ω, then

divF (Ω) = 0.

Proof. Since F has compact support in Ω, the extension F̂ defined in Remark 4.2.5 shows that
F̂ ∈ DMp(HG), divF̂ = divF as signed Radon measure in Ω and divF̂ is the null measure
when restricted to G \ Ω. As a consequence, if φ ∈ C∞c (G) is chosen such that φ = 1 on a
neighborhood of Ω, then ∫

G
φ ddivF̂ =

∫
Ω
ddivF̂ = divF (Ω).

By definition of distributional divergence, there holds∫
G
φ ddivF̂ = −

∫
Ω
〈F,∇Hφ〉 dx = 0,

since F has support inside Ω and φ is constant on this set. This concludes the proof.

We show now a result concerning the absolute continuity properties of divF with respect to
the S α-measure, for a suitable α related to the summability exponent p. This is a generalization
of a known result in the Euclidean case ([144, Theorem 3.2]).

Theorem 4.2.7. If F ∈ DMp
loc(HΩ) and Q

Q−1 ≤ p < +∞, then |divF |(B) = 0 for any Borel
set B ⊂ Ω of σ-finite S Q−p′ measure. If p =∞, then |divF | � S Q−1.

Proof. Let Q
Q−1 ≤ p < +∞. It suffices to consider a Borel set B such that S Q−p′(B) < ∞.

We can use the Hahn decomposition in order to split B into B+ ∪ B−, in such a way that
±divF B± ≥ 0, thus reducing ourselves to show that divF (K) = 0 for any compact set
K ⊂ B±. Without loss of generality, we consider K ⊂ B+. Let ϕ : G→ [0, 1] defined as follows

ϕ(x) :=


1 if d(x, 0) < 1
2− d(x, 0) if 1 ≤ d(x, 0) ≤ 2
0 if d(x, 0) > 2

.

It is clear that ϕ ∈ Lipc(G), therefore it is also differentiable µ-a.e. with |∇Hϕ| ≤ L for some
constant L > 0, by Theorem 1.2.5.
We notice that since S Q−p′(K) < ∞, then µ(K) = 0. This implies that for any ε > 0 there
exists an open set U b Ω such that K ⊂ U and ‖F‖Lp(U) < ε, because |F | ∈ Lploc(Ω). In
addition, we can ask that such an U satisfies |divF |(U \K) < ε, because of the regularity of
Radon measures.
It is clear that there exists δ > 0 such that for any 0 < 2r < δ and for any open ball B(x, r)
which intersects K we have B(x, 2r) ⊂ U . Then we can select a covering of K (which can
be also taken finite by compactness) of such balls {B(xj, rj)}j∈J and so, by the definition of
spherical measure, we have ∑

j∈J
rQ−p

′

j < S Q−p′(K) + 1,
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for δ small enough.
We set ϕj(x) := ϕ(δ1/rj(x−1

j x)) and ψ(x) := sup{ϕj(x) : j ∈ J}. It is easy to see that 0 ≤ ψ ≤ 1,
ϕj is supported in B(xj, 2rj), ψ ∈ Lipc(Ω), supp(ψ) ⊂ U and ψ ≡ 1 on K. Then, by Remark
1.3.9, we have

divF (K) =
∫
K
ψ ddivF = −

∫
U
〈F,∇Hψ〉 dx−

∫
U\K

ψ ddivF,

which implies

divF (K) < ‖F‖Lp(U)‖∇Hψ‖Lp′ (U) + ε < ε(‖∇Hψ‖Lp′ (U) + 1).

Since ψ is the maximum of a finite family of functions, we have ∇Hψ(x) = ∇Hϕj(x) for some
j ∈ J and µ-a.e. x ∈ Ω. Indeed, Theorem 1.2.5 shows that Lipschitz functions are differentiable
µ-a.e., moreover, ψ(x) = ϕj(x) in the open set {ϕj > ϕi, ∀i 6= j}, while ∇Hϕj(x) = ∇Hϕi(x)
for µ-a.e. x on the set {ϕj = ϕi}. Then∫

U
|∇Hψ|p

′
dx ≤

∑
j∈J

∫
U
|∇Hϕj|p

′
dx =

∑
j∈J

∫
B(xj ,2rj)

|∇Hϕj|p
′
dx

≤ 2Qµ(B(0, 1))Lp′
∑
j∈J

rQ−p
′

j ≤ 2QLp′µ(B(0, 1))(S Q−p′(K) + 1).

This implies
0 ≤ divF (K) ≤ ε(1 + 2

Q
p′Lµ(B(0, 1))

1
p′ (S Q−p′(K) + 1)

1
p′ )

and, since ε is arbitrary, we conclude the proof.
In the case p =∞, we proceed similarly by considering a Borel set B such that S Q−1(B) = 0

and a compact subset of B±. For any ε > 0, there exists an open set U satisfying K ⊂ U b Ω
and |divF |(U \ K) < ε, as before. Now, there exists a δ > 0 small enough such that we can
find a finite open covering {B(xj, rj)}j∈J , 2rj < δ, of K, which satisfies ∑j∈J r

Q−1
j < ε, and

B(xj, 2rj) ⊂ U whenever B(xj, rj) ∩K 6= ∅.
It is clear that ∣∣∣∣∫

U
〈F,∇Hψ〉 dx

∣∣∣∣ ≤ ‖F‖L∞(U)‖∇Hψ‖L1(U)

and that ∫
U
|∇Hψ| dx ≤

∑
j∈J

∫
Ω
|∇Hϕj| dx =

∑
j∈J

∫
B(xj ,2rj)

|∇Hϕj| dx

≤ 2QLµ(B(0, 1))
∑
j∈J

rQ−1
j < 2QLµ(B(0, 1))ε.

Thus, we conclude that

divF (K) = −
∫
U
〈F,∇Hψ〉 dx−

∫
U\K

ψ ddivF < ε(1 + 2QLµ(B(0, 1))‖F‖L∞(U)),

which implies divF (K) = 0, since ε is arbitrary.

We notice that there is a precise way to compare S Q−p′ and the Euclidean Hausdorff mea-
sure H q−p′

|·| on a stratified group G of topological dimension q, as shown in [25]. In particular,
[25, Proposition 3.1] implies that

S Q−p′ �H q−p′
|·| .

This shows that Theorem 4.2.7 is coherent with the Euclidean case ([144, Theorem 3.2]), and
that the divergence-measure horizontal fields have finer absolute continuity properties than the
general ones.

Now we prove a first case of Leibniz rule between an essentially bounded divergence-measure
horizontal field and a scalar Lipschitz function, whose gradient is in L1(HΩ).
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Proposition 4.2.8. If F ∈ DM∞(HΩ) and g ∈ L∞(Ω) ∩ LipH,loc(Ω), with ∇Hg ∈ L1(HΩ),
then gF ∈ DM∞(HΩ) and the following formula holds

div(gF ) = gdivF + 〈F,∇Hg〉µ. (4.2.2)

Proof. It is clear that gF ∈ L∞(HΩ). For any φ ∈ C1
c (Ω) with ‖φ‖L∞(Ω) ≤ 1, by Remarks 1.2.6

and 1.3.9, we have∫
Ω
〈gF,∇Hφ〉 dx =

∫
Ω
〈F,∇H(gφ)〉 dx−

∫
Ω
φ 〈F,∇Hg〉 dx

= −
∫

Ω
φg ddivF −

∫
Ω
φ 〈F,∇Hg〉 dx,

which clearly implies that gF ∈ DM∞(HΩ) and (4.2.2) holds.

We have now all the tools to establish a general product rule for essentially bounded
divergence-measure horizontal fields and BVH functions, see Theorem 4.1.1. This is one of
the main ingredients in the proof of the Gauss–Green formulas.

Proof of Theorem 4.1.1. We notice that (4.2.2) holds for every gε with ε > 0 and we also have
|gε(x)| ≤ ‖g‖L∞(Ω) for any x ∈ Ω. The family {gε̃k} is then equibounded in L∞(Ω; |divF |) and
there exists g̃ ∈ L∞(Ω; |divF |) and a subsequence εk → 0 such that gεk

∗
⇀ g̃. It follows that∫

Ω
φgεk ddivF →

∫
Ω
φg̃ ddivF

for any φ ∈ L1(Ω; |divF |). In particular, the previous convergence holds for any φ ∈ Cc(Ω),
and so gεkdivF ⇀ g̃divF inM(Ω).

Now we show that {div(gεF )} is uniformly bounded inM(Ω): by (4.2.2), we obtain that∣∣∣∣∫
Ω
φ ddiv(gεF )

∣∣∣∣ ≤ ∣∣∣∣∫
Ω
φgε ddivF

∣∣∣∣+ ∣∣∣∣∫
Ω
φ 〈F,∇H(gε)〉 dx

∣∣∣∣
≤ ‖φ‖L∞(Ω)‖g‖L∞(Ω)|divF |(Ω) + ‖F‖L∞(Ω)

∫
Ω
|φ||∇Hgε| dx.

As a result, considering supp(φ) ⊂ ΩR2ε, by (1.3.20) we conclude that

|div(gεF )|(ΩR2ε) ≤ ‖g‖L∞(Ω)|divF |(Ω) + ‖F‖L∞(Ω)|DHg|(Ω). (4.2.3)

We have shown that {div(gεF )} is uniformly bounded inM(Ω′) for any open set Ω′ b Ω, and
so up to extracting a further subsequence that we relabel as εk, the sequence {div(gεkF )} is a
locally weakly∗ converging subsequence. However, it is clear that div(gεkF ) weakly∗ converges
to div(gF ) in the sense of distributions, and that C∞c (Ω) is dense in Cc(Ω). Therefore, by
uniqueness of weak∗ limits, we conclude that div(gεkF ) ⇀ div(gF ) inM(Ω).

Thus, (F,∇Hgεk) is weakly∗ convergent, being the difference of two weakly∗ converging
sequences, and taking into account (4.2.2) we get

(F,∇Hgεk) ⇀ (F,DHg) := div(gF )− g̃divF. (4.2.4)

In relation to (F,DHg), we first argue as in Lemma 1.3.6. For any φ ∈ Cc(Ω), we have∣∣∣∣∫
Ω
φ d(F,DHg)

∣∣∣∣ = lim
εk→0

∣∣∣∣∫
Ω
φ 〈F,∇Hgεk〉 dx

∣∣∣∣ ≤ ‖F‖L∞(Ω) lim sup
εk→0

∫
Ω
|φ||∇Hgεk | dx

≤ ‖F‖L∞(Ω) lim sup
εk→0

∫
Ω
|φ|(ρεk ∗ |DHg|) dx

= ‖F‖L∞(Ω) lim
εk→0

∫
Ω

(ρεk ∗ |φ|) d|DHg| = ‖F‖L∞(Ω)

∫
Ω
|φ| d|DHg|,
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where the second inequality follows by (1.3.19), since supp(φ) ⊂ ΩR2εk for εk small enough. The
subsequent equality is a consequence of (1.2.18), therefore proving (4.1.2). The decomposition
(1.3.8) in our case yields

DHg = ∇Hg µ+Ds
Hg,

where ∇Hg is also characterized as the approximate differential of g, [17, Theorem 2.2]. We
aim to show that

(F,DHg)aµ = 〈F,∇Hg〉µ and (F,DHg)s = (F,Ds
Hg),

for some measure (F,Ds
Hg) ∈M(Ω) that is absolutely continuos with respect to |Ds

Hg|. Indeed,
by (1.3.14) we get ∇Hgε = ρε ∗DHg on Ω′ for every fixed open set Ω′ b Ω and ε > 0 sufficiently
small. On this open set we have

〈F,∇Hgε〉 = 〈F, ρε ∗ ∇Hg〉+ 〈F, ρε ∗Ds
Hg〉 . (4.2.5)

By Lemma 1.3.6 the measures 〈F, ρε ∗Ds
Hg〉µ are uniformly bounded, so that possibly selecting

a subsequence of εk, denoted by the same symbol, there exists (F,Ds
Hg) ∈M(Ω) such that

〈F, ρεk ∗Ds
Hg〉µ ⇀ (F,Ds

Hg)

and applying again Lemma 1.3.6 we get

|(F,Ds
Hg)| ≤ ‖F‖L∞(Ω) |Ds

Hg|. (4.2.6)

Since ∇Hg ∈ L1(HΩ), we clearly have ρε ∗∇Hg → ∇Hg in L1(HΩ), which yields the following
weak∗ convergence

〈F, ρε ∗ ∇Hg〉µ ⇀ 〈F,∇Hg〉µ
inM(Ω). Since (4.2.5) holds on every relatively compact open subset of Ω, we get

(F,DHg) = 〈F,∇Hg〉µ+ (F,Ds
Hg). (4.2.7)

Due to (4.2.6) the previous sum is made by mutually singular measures, then showing that

(F,DHg)aµ = 〈F,∇Hg〉µ and (F,DHg)s = (F,Ds
Hg),

hence (4.1.3) holds.

Proposition 4.2.9. Let F ∈ DM∞(HΩ) and let g ∈ L∞(Ω) with |DHg|(Ω) < +∞. If we
define gε := ρε ∗ g using the mollifier ρ of Proposition 1.3.20, then any weak∗ limit point
g̃ ∈ L∞(Ω; |divF |) of some subsequence gεk satisfies the property

g̃(x) = g∗,R(x) for |divF |-a.e. x ∈ CRg .

In addition, if g ∈ L∞(Ω) ∩C(Ω) and ∇Hg ∈ L1(HΩ), then g̃(x) = g(x) for |divF |-a.e. x ∈ Ω
and

div(gF ) = g divF + 〈F,∇Hg〉µ. (4.2.8)

Proof. Let gεk
∗
⇀ g̃ in L∞(Ω; |divF |). By Proposition 1.3.20, we know that gεk(x) → g∗,R(x)

for any x ∈ CRg . If we choose as test function φ = χCRg ψ, for some ψ ∈ L1(Ω; |divF |), we have∫
Ω
φgεk ddivF =

∫
CRg

ψgεk ddivF →
∫
CRg

ψg∗,R ddivF

by Lebesgue’s theorem with respect to the measure |divF |. Since ψ is arbitrary, this implies
g̃(x) = g∗,R(x) for |divF |-a.e. x ∈ CRg . Let now g ∈ L∞(Ω) ∩ C(Ω) with ∇Hg ∈ L1(HΩ). It
is clear that g̃(x) = g(x) for |divF |-a.e. x ∈ Ω, since g∗,R(x) = g(x) for any x ∈ Ω, being g
continuous. In addition, sinceDHg has no singular part, (4.1.3) implies immediately (4.2.8).
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Remark 4.2.10. We stress that in Theorem 4.1.1 the pairing term (F,DHg) depends on the
particular sequence gεk , and therefore on g̃. In order to obtain uniqueness, one should be able
to show that there exists only one accumulation point g̃ of gε. For instance, this happens in
the Euclidean case G = Rn, in which g̃ = g∗(= g∗,R) H n−1-a.e. However, it is possible to
impose some more conditions on the measures divF and |DHg| under which g̃ and (F,DHg)
are uniquely determined.

Corollary 4.2.11. Let F ∈ DM∞(HΩ) and let g ∈ L∞(Ω) with |DHg|(Ω) < +∞. Let divsF
and Ds

Hg be the singular parts of the measures divF and DHg. If we also assume that |divsF |
and |Ds

Hg| are mutually singular measures, then we have

div(gF ) =
(
g divaF + 〈F,∇Hg〉

)
µ+ g̃ divsF + (F,Ds

Hg), (4.2.9)

where g̃ ∈ L∞(Ω; |divF |) and (F,Ds
Hg) ∈ M(Ω) are defined as in Theorem 4.1.1 and the

singular measures g̃ divsF and (F,Ds
Hg) are uniquely determined by g and F . In particular, if

|divF | � µ, we have

div(gF ) =
(
g divaF + 〈F,∇Hg〉

)
µ+ (F,Ds

Hg). (4.2.10)

Proof. It is well known that we can decompose the measures divF and (F,DHg) in their
absolutely continuous and singular parts. By Theorem 4.1.1, we know that

div(gF ) =
(
g̃ divaF + 〈F,∇Hg〉

)
µ+ g̃ divsF + (F,Ds

Hg).

Since gε converges to g in L1
loc(Ω) for any mollification of g, we clearly obtain g̃ divaFµ =

g divaFµ in the sense of Radon measures. It follows that (4.2.9) holds and clearly

g̃ divsF + (F,Ds
Hg) = div(gF )−

(
g divaF + 〈F,∇Hg〉

)
µ.

We have shown that the singular measures on the left hand side are uniquely determined by g
and F , since the right hand side is uniquely determined and the two measures are also mutually
singular. Indeed we have |(F,Ds

Hg)| ≤ ‖F‖L∞(Ω)|Ds
Hg| by Theorem 4.1.1. To conclude the

proof, we observe that the condition |divF | � µ clearly gives divsF = 0, so (4.2.10) immediately
follows.

Remark 4.2.12. It is clear that one can obtain (4.2.10) if we have F ∈ L∞(HΩ) with divF ∈
L1(Ω) and g ∈ L∞(Ω) ∩BVH(Ω).

Remark 4.2.13. Under no additional assumption on F ∈ DM∞(HΩ) and g ∈ L∞(Ω) with
|DHg|(Ω) < +∞, we can always decompose the term g̃divF . Indeed, we have

g̃ divF = g divaFµ+ g∗,R divsF CRg + g̃ divsF (Ω \ CRg ). (4.2.11)

Then, it follows that g̃divF is uniquely determined by divF and g if |divsF |(Ω \ CRg ) = 0.

4.3 Interior and exterior normal traces
In this section we introduce interior and exterior normal traces for a divergence-measure field.
The absence of sufficient regularity for the reduced boundary (Definition 1.3.14) does not guar-
antee their uniqueness a priori. However, the next section will present different conditions that
lead to a unique normal trace and a corresponding Gauss–Green theorem.
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Let F ∈ DM∞(HΩ) and E ⊂ Ω be a set of finite h-perimeter. Let ρ ∈ Cc(B(0, 1)) be a
nonnegative mollifier satisfying ρ(x) = ρ(x−1) and

∫
ρ dx = 1, and εk be a suitable vanishing

sequence such that

〈χEF, ρεk ∗DHχE〉µ ⇀ (χEF,DHχE)〈
χΩ\EF, ρεk ∗DHχE

〉
µ ⇀ (χΩ\EF,DHχE) in M(Ω). (4.3.1)

The existence of such converging subsequences follows from Lemma 1.3.6, which implies also
the estimates

|(χEF,DHχE)| ≤ ‖F‖L∞(E) |DHχE| and
|(χΩ\EF,DHχE)| ≤ ‖F‖L∞(Ω\E) |DHχE|. (4.3.2)

It is worth to mention that another definition equivalent to (4.3.1) is possible. Employing
formula (1.3.14), we obtain

〈χEF, ρεk ∗DHχE〉 = 〈χEF,∇H(ρεk ∗ χE)〉〈
χΩ\EF, ρεk ∗DHχE

〉
=
〈
χΩ\EF,∇H(ρεk ∗ χE)

〉 in ΩR2εk . (4.3.3)

We point out that the measures at the right hand side in (4.3.3) are not defined on the whole
Ω, while this is true for those at the left hand side. However, arguing as in Remark 1.2.11, we
can see that the weak∗ convergence (4.3.1) is equivalent to the weak∗ convergence

〈χEF,∇H(ρεk ∗ χE)〉µ ⇀ (χEF,DHχE),〈
χΩ\EF,∇H(ρεk ∗ χE)

〉
µ ⇀ (χΩ\EF,DHχE). (4.3.4)

It is important to stress that at the moment the “pairing measures” (χEF,DHχE) and
(χΩ\EF,DHχE) may depend on the choice of the sequence εk and also on the mollifier ρ.

We are now in the position to define the interior and exterior normal traces of F on the
boundary of E as the functions 〈Fi, νE〉 , 〈Fe, νE〉 ∈ L∞(Ω; |DHχE|) satisfying

2(χEF,DHχE) = 〈Fi, νE〉 |DHχE|, (4.3.5)
2(χΩ\EF,DHχE) = 〈Fe, νE〉 |DHχE|. (4.3.6)

Since ρεk ∗ χE is uniformly bounded, up to extracting a subsequence, we may also assume that

ρεk ∗ χE
∗
⇀ χ̃E in L∞(Ω; |divF |). (4.3.7)

This allows us to define the sets

Ẽ1 := {x ∈ Ω : χ̃E(x) = 1} and Ẽ0 := {x ∈ Ω : χ̃E(x) = 0} (4.3.8)

to be the measure theoretic interior and the measure theoretic exterior of E, respectively, with
respect to F and χ̃E. We may also define an associated reduced boundary

F̃HE = FHE \
(
Ẽ1 ∪ Ẽ0

)
. (4.3.9)

We wish to underline again the fact that these notions heavily depend on χ̃E, which is not
unique, a priori, since it depends on the choice of the sequence ρεk ∗ χE.

In the sequel, we will refer to the above sequence εk, or possible subsequences, such that
(4.3.1) and (4.3.7) hold. Notice that despite this dependence we will provide conditions under
which the limit measures of (4.3.1) and the sets of (4.3.8) and (4.3.9) prove to have an intrinsic
geometric meaning.
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Remark 4.3.1. By (4.3.1), observing that ρεk ∗ DHχE = −ρεk ∗ DHχΩ\E, we also get the
following equalities

(χEF,DHχE) = −(χEF,DHχΩ\E),
(χΩ\EF,DHχE) = −(χΩ\EF,DHχΩ\E).

We conclude that the normal traces of F on E and Ω \ E satisfy the following relations

〈Fi, νE〉 = −
〈
Fe, νΩ\E

〉
and 〈Fe, νE〉 = −

〈
Fi, νΩ\E

〉
.

We employ now the Leibniz rule (Theorem 4.1.1) and (4.3.1) to achieve the following result,
which is a key step in order to prove the Gauss–Green formulas.

Proposition 4.3.2. Let F ∈ DM∞(HΩ) and E ⊂ Ω be a set of finite h-perimeter, then the
following formulas hold

div(χEF ) = χ̃EdivF + (F,DHχE), (4.3.10)

div(χEF ) = (χ̃E)2divF + 1
2(F,DHχE) + (χEF,DHχE), (4.3.11)

χ̃E(1− χ̃E)divF = 1
2(χEF,DHχE)− 1

2(χΩ\EF,DHχE) (4.3.12)

in the sense of Radon measures on Ω, where χ̃E ∈ L∞(Ω; |divF |) is defined in (4.3.7).

Proof. By Theorem 4.1.1 applied to F and g = χE, up to extracting a subsequence, we can
assume that the choice of εk leads to (4.3.10) in analogy with Theorem 4.1.1. We observe that

div((ρεk ∗ χE)χEF ) ⇀ div(χ2
EF ) = div(χEF ),

as measures, since χ2
E = χE. By (4.2.2), (4.3.10) and (1.3.14), we get the following identities

of measures on ΩR2εk :

div(FχE(ρεk ∗ χE)) = (ρεk ∗ χE)div(χEF ) + 〈χEF,∇H(ρεk ∗ χE)〉µ (4.3.13)
= (ρεk ∗ χE)χ̃EdivF + (ρεk ∗ χE)(F,DHχE) (4.3.14)

+ 〈χEF, ρεk ∗DHχE〉µ.

Recall that our subsequence εk is chosen such that both (4.3.7) and (4.3.1) hold. In view of
(2.4.2), we have (ρεk ∗ χE) ∗

⇀
1
2 ∈ L

∞(Ω; |DHχE|). By (4.1.2) we get

|(F,DHχE)| ≤ ‖F‖L∞(Ω)|DHχE|

and we observe that the definition of (F,DHχE) from Theorem 4.1.1 fits with the definitions
(4.3.1), thanks to (4.3.4), getting the obvious identity

(F,DHχE) = (χEF,DHχE) + (χΩ\EF,DHχE). (4.3.15)

Remark 2.4.4 shows that

(ρεk ∗ χE)(F,DHχE) ⇀ 1
2(F,DHχE).

All in all, by passing to the weak∗ limits in (4.3.13), we get (4.3.11). Subtracting (4.3.11) from
(4.3.10) we have

χ̃E(1− χ̃E)divF = (χEF,DHχE)− 1
2(F,DHχE). (4.3.16)

From (4.3.16) and (4.3.15) we get (4.3.12).
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Remark 4.3.3. In the assumptions of Proposition 4.3.2, joining (4.3.12), (4.3.5) and (4.3.6),
we get the following equality

χ̃E(1− χ̃E)divF = 〈Fi, νE〉 − 〈Fe, νE〉4 |DHχE|. (4.3.17)

We now prove sharp estimates on the L∞-norm of the normal traces. Let us point out that
such estimates could not be obtained directly from (4.3.2), employing (4.3.5) and (4.3.6). A
more refined argument is necessary, involving the differentiation with respect to the h-perimeter
measure.

Proposition 4.3.4. If F ∈ DM∞(HΩ) and E ⊂ Ω is a set of finite h-perimeter, then

‖ 〈Fi, νE〉 ‖L∞(FHE;|DHχE |) ≤ ‖F‖L∞(E), (4.3.18)
‖ 〈Fe, νE〉 ‖L∞(FHE;|DHχE |) ≤ ‖F‖L∞(Ω\E), (4.3.19)

where the interior and exterior normal traces of F are defined in (4.3.5) and (4.3.6).

Proof. By Theorem 1.3.16 the perimeter measure |DHχE|(·) is a.e. asymptotically doubling.
Therefore the following differentiation property holds (see [72, Sections 2.8.17 and 2.9.6]): for
DHχE-a.e. x ∈ FHE one has

〈Fi, νE〉 (x) = lim
r→0

2(χEF,DHχE)(B(x, r))
|DHχE|(B(x, r) .

Let εk be the sequence defining (4.3.1) and (4.3.7). By (1.3.10), we obtain that the sequence
| 〈χEF, ρεk ∗DHχE〉 |µ is uniformly bounded inM(Ω). Thus, there exists a weak∗ converging
subsequence, which we do not relabel. Let the positive measure λi ∈M(Ω) be its limit.

In an analogous way, one can prove that the measures |
〈
χΩ\EF, ρεk ∗DHχE

〉
|µ are uni-

formly bounded in M(Ω). So there exists a weak∗ converging subsequence, which we do not
relabel again, and whose limit is the positive Radon measure λe ∈ M(Ω). We also observe
that the sequences χE|ρεk ∗DHχE|µ and χΩ\E|ρεk ∗DHχE|µ are bounded inM(Ω) and that,
if γ ∈M(Ω) is any of their weak∗ limit points, then γ ≤ |DHχE|, due to (1.3.18).

We can choose a sequence of balls B(x, rj) with rj → 0 in such a way that

|DHχE|(∂B(x, rj)) = λi(∂B(x, rj)) = λe(∂B(x, rj)) = 0

for all j. As a result, taking into account [11, Proposition 1.62] and (4.3.1), we have

∣∣∣∣∣2(χEF,DHχE)(B(x, rj))
|DHχE|(B(x, rj))

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
lim
εk→0

2
∫
B(x,rj)

〈χEF, ρεk ∗DHχE〉 dy

lim
εk→0

∫
B(x,rj)

|ρεk ∗DHχE| dy

∣∣∣∣∣∣∣∣∣
≤ 2‖F‖L∞(E)

lim
εk→0

∫
B(x,rj)

χE|ρεk ∗DHχE| dy

lim
εk→0

∫
B(x,rj)

|ρεk ∗DHχE| dy
.

The last term can be also written as

2‖F‖L∞(E)

1−
lim
εk→0

∫
B(x,rj)

χΩ\E|ρεk ∗DHχE| dy

lim
εk→0

∫
B(x,rj)

|ρεk ∗DHχE| dy

 .
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It follows that

∣∣∣∣∣2(χEF,DHχE)(B(x, rj))
|DHχE|(B(x, rj))

∣∣∣∣∣ ≤ 2‖F‖L∞(E)

1−
lim
εk→0

∣∣∣∣∣
∫
B(x,rj)

χΩ\E(ρεk ∗DHχE) dy
∣∣∣∣∣

lim
εk→0

∫
B(x,rj)

|ρεk ∗DHχE)| dy


= 2‖F‖L∞(E)

(
1− 1

2
|DHχE(B(x, rj))|
|DHχE|(B(x, rj))

)
.

by (2.4.8) and the second limit of (1.3.18). Taking the limit as j →∞, the definition of reduced
boundary immediately yields

|〈Fi, νE〉 (x)| = lim
k→∞

∣∣∣∣∣2(χEF,DHχE)(B(x, rj))
|DHχE|(B(x, rj))

∣∣∣∣∣ ≤ ‖F‖L∞(E).

The estimate for the exterior normal trace 〈Fe, νE〉 can be obtained in a similar way, hence the
proof is complete.

4.3.1 Locality of normal traces
In this section we show the locality of normal traces, along with their relation with the ori-
entation of the reduced boundary. First, we need to recall some known facts on the locality
properties of perimeter in stratified groups. By Theorem 1.3.16 (see also [1, Theorem 4.2]) and
Lemma 1.3.17, for any set E of finite h-perimeter in Ω, there exists a Borel function θE, such
that θE ≥ α > 0 and

|DHχE|(B) =
∫
B∩FHE

θE dS
Q−1, (4.3.20)

which implies θ ∈ L1(Ω; S Q−1 FHE). By this representation, a property holds |DHχE|-a.e.
if and only if it holds S Q−1-a.e. on FHE, see also Remark 1.3.18.

Given two sets E1, E2 of finite h-perimeter such that S Q−1(FHE1 ∩FHE2) > 0, by [20,
Theorem 2.9], for any Borel set B ⊂ FHE1 ∩FHE2 we have

|DHχE1|(B) = |DHχE2 |(B).

Hence, (4.3.20) implies that

θE1(x) = θE2(x) for S Q−1-a.e. x ∈ FHE1 ∩FHE2. (4.3.21)

Moreover, [20, Corollary 2.6] implies that, for S Q−1-a.e. x ∈ FHE1∩FHE2, we have νE1(x) =
±νE2(x).

Lemma 4.3.5. If E1 and E2 have finite h-perimeter in Ω with S Q−1(FHE1 ∩FHE2) > 0,
then we have

|DH(χE1 − χE2)|(B(x, r)) = o(|DHχEj |(B(x, r))) (4.3.22)
for S Q−1-a.e. x ∈ FHE1 ∩FHE2 such that νE1(x) = νE2(x), and for j = 1, 2. Analogously,
we have

|DH(χE1 + χE2)|(B(x, r)) = o(|DHχEj |(B(x, r))) (4.3.23)
for S Q−1-a.e. x ∈ FHE1 ∩FHE2 such that νE1(x) = −νE2(x), and for j = 1, 2. In addition,
we have

|DHχE1|(B(x, r)) ∼ |DHχE2 |(B(x, r)), (4.3.24)
for S Q−1-a.e. x ∈ FHE1 ∩FHE2 and j = 1, 2.
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Proof. We first define the following sets

L := FHE1 ∩FHE2 and G := FHE1∆FHE2.

Then, by (4.3.20) and (4.3.21), we obtain

|DHχE1 | L = |DHχE2 | L, (4.3.25)

||DHχE1| − |DHχE2 || = θS Q−1 G, (4.3.26)
where θ = θEj(x) for S Q−1-a.e. x ∈ FHEj and for j = 1, 2. Hence, since L ∩ G = ∅, for
S Q−1-a.e. x ∈ L, we have

||DHχE1| − |DHχE2|| (B(x, r)) =
∫
G∩B(x,r)

θ dS Q−1 = o(rQ−1), (4.3.27)

by (4.3.26) and standard differentiation of Borel measures. In addition,

|DHχEj |(B(x, r)) ≥ crQ−1 (4.3.28)

for S Q−1-a.e. x ∈ FHEj, r > 0 sufficiently small and j = 1, 2, by [1, Theorem 4.3]. Then,
(4.3.27) and the triangle inequality imply that, for j = 1, 2,

||DHχE1|(B(x, r))− |DHχE2|(B(x, r))| = o(|DHχEj |(B(x, r))),

from which we get (4.3.24). Then, we notice that, for S Q−1-a.e. x ∈ L such that νE1(x) =
νE2(x), and j = 1, 2, we have

|DH(χE1 − χE2)|(B(x, r)) =
∣∣∣∣(νE1 − νE2)|DHχE1| L+ νE1|DHχE1 | G+

− νE2|DHχE2| G
∣∣∣∣(B(x, r))

≤
∫
B(x,r)

|νE1 − νE2| d|DHχE1| L +

+ |DHχE1|(G ∩B(x, r)) + |DHχE2|(G ∩B(x, r))

≤
∫
B(x,r)

|νE1 − νE1(x)| d|DHχE1|+

+
∫
B(x,r)

|νE2 − νE2(x)| d|DHχE2|+ o(rQ−1)

= o(|DHχEj |(B(x, r))),

by (4.3.25), (4.3.24), (4.3.28), the triangle inequality and standard differentiation of Borel
measures. Thus, we can conclude that (4.3.22) holds. Analogously, (4.3.23) follows for S Q−1-
a.e. x ∈ FHE1 ∩FHE2 such that νE1(x) = −νE2(x).

Theorem 4.3.6. Let F ∈ DM∞(HΩ), and E1, E2 ⊂ Ω be sets of finite h-perimeter such that
S Q−1(FHE1 ∩FHE2) > 0. Then, we have

〈Fi, νE1〉 (x) = 〈Fi, νE2〉 (x) and 〈Fe, νE1〉 (x) = 〈Fe, νE2〉 (x), (4.3.29)

for S Q−1-a.e. x ∈ {y ∈ FHE1 ∩FHE2 : νE1(y) = νE2(y)}, and

〈Fi, νE1〉 (x) = −〈Fe, νE2〉 (x) and 〈Fe, νE1〉 (x) = −〈Fi, νE2〉 (x), (4.3.30)

for S Q−1-a.e. x ∈ {y ∈ FHE1 ∩FHE2 : νE1(y) = −νE2(y)}.
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Proof. We recall that, by Theorem 1.3.16, the perimeter measure |DHχEj |(·) is a.e. asymp-
totically doubling, for j = 1, 2. Therefore, by the definitions (4.3.5) and (4.3.6), and the
differentiation of perimeters (see [72, Sections 2.8.17 and 2.9.6]), we have

〈
Fi, νEj

〉
(x) = 2 lim

r→0

(χEjF,DHχEj)(B(x, r))
|DHχEj |(B(x, r)) ,

〈
Fe, νEj

〉
(x) = 2 lim

r→0

(χΩ\EjF,DHχEj)(B(x, r))
|DHχEj |(B(x, r)) ,

for j = 1, 2, and for S Q−1-a.e. x ∈ FHEj. Let x ∈ FHE1∩FHE2 be such that νE1(x) = νE2(x)
and (4.3.22) and (4.3.24) hold true. Taking into account that | 〈Fi, νE1〉 (x)− 〈Fi, νE2〉 (x)| can
be written as the limit of the difference

2 lim
r→0

∣∣∣∣∣(χE1F,DHχE1)(B(x, r))
|DHχE1|(B(x, r)) − (χE2F,DHχE2)(B(x, r))

|DHχE2|(B(x, r))

∣∣∣∣∣
using the linearity and the triangle inequality, we get

| 〈Fi, νE1〉 (x)−〈Fi, νE2〉 (x)| ≤ 2 lim sup
r→0

∣∣∣∣∣(χE1F,DH(χE1 − χE2))(B(x, r))
|DHχE1 |(B(x, r))

∣∣∣∣∣
+ lim sup

r→0

∣∣∣∣∣(χE2F,DH(χE1 − χE2))(B(x, r))
|DHχE2|(B(x, r))

∣∣∣∣∣
+ lim sup

r→0

∣∣∣∣∣(χE1F,DHχE2)(B(x, r))
|DHχE1|(B(x, r)) − (χE2F,DHχE1)(B(x, r))

|DHχE2|(B(x, r))

∣∣∣∣∣ .
By (4.1.2), we have |(χEjF,DH(χE1 −χE2))| ≤ ‖F‖L∞(Ej)|DH(χE1 −χE2)|, for j = 1, 2, and so,
by (4.3.22), we conclude that∣∣∣∣∣(χEjF,DH(χE1 − χE2))(B(x, r))

|DHχEj |(B(x, r))

∣∣∣∣∣→ 0,

for j = 1, 2. Now we have to deal with the last term, which, by (4.3.24), is infinitesimal as
r → 0 if and only if so is∣∣∣∣∣(χE1F,DHχE2)(B(x, r))− (χE2F,DHχE1)(B(x, r))

|DHχE2|(B(x, r))

∣∣∣∣∣ . (4.3.31)

By Theorem 4.1.1, we know that χEjF ∈ DM∞(HΩ), for j = 1, 2. Let εk be the defining
sequence for 〈

Fe, νEj
〉
,

〈
Fi, νEj

〉
, (χEjF,DHχEj) and (χΩ\EjF,DHχEj)

through limits analogous to those of (4.3.1) and (4.3.7) for Ej, j = 1, 2, in place of E. It follows
that

ρεk ∗ χE1
∗
⇀ χ̃E1 in L∞(Ω; |divF |)

and, by (4.2.2), (4.3.10) and (1.3.14), in ΩR2ε we have

div((ρεk ∗ χE1)χE2F ) = ρεk ∗ χE1div(χE2F ) + 〈χE2F,∇H(ρεk ∗ χE1)〉µ
= (ρεk ∗ χE1)χ̃E2div(F ) + (ρεk ∗ χE1)(F,DHχE2)
+ 〈χE2F, ρεk ∗DHχE1〉µ.

(4.3.32)
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Since |ρεk ∗ χE1|(x) ≤ 1 for any x ∈ Ω, up to extracting a further subsequence, we may find
χE1 ∈ L∞(Ω; |(F,DHχE2)|) such that

ρεk ∗ χE1
∗
⇀ χE1 in L∞(Ω; |(F,DHχE2)|).

Thus, by Lemma 2.4.3, we get the weak∗ convergence
(ρεk ∗ χE1)(F,DHχE2) ⇀ χE1(F,DHχE2).

Moreover, by Lemma 1.3.6, the sequence 〈χE2F, ρεk ∗DHχE1)〉µ is uniformly bounded on Ω,
hence, up to extracting further subsequences, there exists the weak∗ limit

〈χE2F, ρεk ∗DHχE1〉µ ⇀ (χE2F,DHχE1).
By Remark 2.4.1 we know that |divF |-a.e. there holds 0 ≤ χ̃E2 ≤ 1 and by Lemma 2.4.3, we
conclude that

(ρεk ∗ χE1)χ̃E2div(F ) ⇀ χ̃E1χ̃E2divF.
Passing now to the limit in (4.3.32) as εk → 0, there holds

div(χE1χE2F ) = χ̃E1χ̃E2divF + χE1(F,DHχE2) + (χE2F,DHχE1). (4.3.33)
Arguing in an analogous way, exchanging the role of χE1 and χE2 , we get

div(χE1χE2F ) = χ̃E1χ̃E2divF + χE2(F,DHχE1) + (χE1F,DHχE2). (4.3.34)
Then (4.3.33) and (4.3.34) yield

(χE2F,DHχE1)− (χE1F,DHχE2) = χE2(F,DHχE1)− χE1(F,DHχE2). (4.3.35)
Joining (2.4.2), Lemma 2.4.3 and (4.3.25), we can conclude that

χE1(x) = χE2(x) = 1/2 for S Q−1 − a.e. x ∈ FHE1 ∩FHE2 =: L.
By (4.1.2), we notice that

|(F,DHχEj)| L ≤ ‖F‖L∞(Ω)|DHχEj | L, for j = 1, 2; (4.3.36)
and so, by Remark 1.3.18, we obtain

χE2(F,DHχE1) L = 1
2(F,DHχE1) L, χE1(F,DHχE2) L = 1

2(F,DHχE2) L.

Now, if we set G := FHE1∆FHE2, we observe that we can rewrite (4.3.35) as
(χE2F,DHχE1)− (χE1F,DHχE2) = χE2(F,DHχE1) G− χE1(F,DHχE2) G (4.3.37)

+ 1
2(F,DH(χE1 − χE2)) L.

By (4.1.2) and by standard differentiation of Borel measures, we have
|(F,DHχEj) G|(B(x, r)) ≤ ‖F‖L∞(Ω)|DHχEj |(G ∩B(x, r)) = o(rQ−1)

for S Q−1-a.e. x ∈ L, since G ∩ L = ∅, and j = 1, 2. In addition, |DHχEj |(B(x, r)) ≥ crQ−1

for S Q−1-a.e. x ∈ FHEj, r > 0 sufficiently small and j = 1, 2, by [1, Theorem 4.3]; and so we
obtain

|(F,DHχEj) G|(B(x, r)) = o(|DHχE2|(B(x, r))).
As for the second term, by (4.1.2) and (4.3.22) we get

|(F,DH(χE1 − χE2))|(L ∩B(x, r)) ≤ ‖F‖L∞(Ω)|DH(χE1 − χE2)|(B(x, r))
= o(|DHχE2|(B(x, r)))

for S Q−1-a.e. x ∈ FHE1 ∩FHE2 such that νE1(x) = νE2(x). This implies that the expression
in (4.3.31) goes to zero as r → 0, and so it proves the first part of (4.3.29). Concerning the
exterior normal traces, one can argue in a similar way for the sets Ω \ E1 and Ω \ E2. Finally,
taking into account (4.3.5), (4.3.6), Remark 4.3.1 and (4.3.29) applied to E1 and Ω \ E2, and
conversely, we arrive at (4.3.30).
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4.3.2 Tripartition by weak∗ limit of mollified functions
In this section we study the properties of the limit χ̃E defined in (4.3.7) and the related Leibniz
rule. From Remark 2.4.1 we have that 0 ≤ χ̃E(x) ≤ 1 for |divF |-a.e. x ∈ Ω.

Proposition 4.3.7. Let F ∈ DM∞(HΩ) and E ⊂ Ω be a set of finite h-perimeter. Let χ̃E,
Ẽ1, Ẽ0 and F̃HE be as in (4.3.7), (4.3.8) and (4.3.9), respectively. It holds

|divF |(Ω \ (FHE ∪ Ẽ1 ∪ Ẽ0)) = |divF |(Ω \ (F̃HE ∪ Ẽ1 ∪ Ẽ0)) = 0. (4.3.38)

In particular, χ̃E is uniquely determined on Ω \FHE, up to |divF |-negligible sets, and we have

χ̃E = χ
Ẽ1 |divF |-a.e. in Ω \FHE, (4.3.39)

so that
div(χEF ) (Ω \FHE) = divF (Ẽ1 \FHE). (4.3.40)

Proof. From (4.3.17) we immediately conclude that∫
Ω\FHE

χ̃E(1− χ̃E) d|divF | = 0.

Therefore definitions (4.3.8) and (4.3.9) give

Ω = Ẽ1 ∪ Ẽ0 ∪ F̃HE ∪ ZF
E ,

where ZF
E = Ω\ (FHE∪ Ẽ1∪ Ẽ0) is |divF |-negligible. This proves (4.3.38). Then, if we restrict

(4.3.10) to Ω \FHE, we have

div(χEF ) (Ω \FHE) = χ̃EdivF (Ω \FHE), (4.3.41)

which immediately shows that χ̃E is uniquely determined on Ω \ FHE, as a function in
L∞(Ω; |divF |). Moreover, by (4.3.38), we have that χ̃E(x) ∈ {0, 1} for |divF |-a.e. x ∈
Ω \ FHE, and this implies (4.3.39). Finally, this immediately shows that (4.3.41) is equiv-
alent to (4.3.40).

Formula (4.3.39) will be important to show that indeed the set Ẽ1 is uniquely defined up
to |divF |-negligible sets.

Remark 4.3.8. We notice that, by Proposition 4.2.9, χ̃E(x) = χ∗,RE (x) for |divF |-a.e. x ∈ CRE .
In particular, we obtain

|divF |
(
(Ẽ1∆E1,R) ∩ CRE

)
= 0 and |divF |

(
(Ẽ0∆E0,R) ∩ CRE

)
= 0.

If we now assume that
|divF |(Ω \ CRE ) = 0, (4.3.42)

then it follows that χ̃E(x) = χ∗,RE (x) for |divF |-a.e. x ∈ Ω. In particular, this yields

|divF |(Ẽ1∆E1,R) = 0 and |divF |(Ẽ0∆E0,R) = 0.

Thus, we have shown that

∂∗,RH E \FHE = Ω \ (E1,R ∪ E0,R ∪FHE) = (Ω \ (Ẽ1 ∪ Ẽ0 ∪FHE)) ∪ Z̃F
E ,

for some |divF |-negligible set Z̃F
E . By (4.3.38), we obtain |divF |(∂∗,RH E \FHE) = 0. Hence,

under the assumption (4.3.42), we can identify Ẽ1 and Ẽ0 with E1,R and E0,R, up to |divF |-
negligible sets, thus obtaining their uniqueness in this special case. In fact, as we shall see
below, the uniqueness holds in general, even if (4.3.42) fails to be true.
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The following proposition proves that any given set of finite h-perimeter E in Ω yields a
tripartition of Ω. More precisely, for F ∈ DM∞(HΩ) there exists a representative χ̃E of χE
such that χ̃E(x) ∈ {1, 0, 1/2} for |divF |-a.e. x ∈ Ω.

Proposition 4.3.9. Let F ∈ DM∞(HΩ) and let E ⊂ Ω be a set of finite h-perimeter.
Let ρ ∈ Cc(B(0, 1)) be a mollifier satisfying ρ(x) = ρ(x−1) and

∫
B(0,1) ρ(y) dy = 1. If χ̃E ∈

L∞(Ω; |divF |) is defined by (4.3.7), then

χ̃E = 1
2 |divF |-a.e. on F̃HE. (4.3.43)

In addition, the normal traces of F on the boundary of E satisfy

〈Fi, νE〉 = 〈Fe, νE〉 |DHχE|-a.e. on Ẽ1 ∪ Ẽ0 (4.3.44)

and we have
χ

F̃HE
divF = (〈Fi, νE〉 − 〈Fe, νE〉)|DHχE|. (4.3.45)

Proof. From (4.3.17) it follows immediately that

(〈Fi, νE〉 − 〈Fe, νE〉)|DHχE| = 0 on FHE ∩ (Ẽ1 ∪ Ẽ0),

proving (4.3.44). Let εk be the defining sequence such that (4.3.1) and (4.3.7) hold. We have

(ρεk ∗ χE)χ̃E(1− χ̃E)divF ⇀ (χ̃E)2(1− χ̃E)divF,

by Lemma 2.4.3. Since the traces 〈Fi, νE〉 , 〈Fe, νE〉 defined in (4.3.5) and (4.3.6) belong to
L∞(Ω; |DHχE|), Remark 2.4.4 and (4.3.17) imply that

(ρεk ∗ χE)〈Fi, νE〉 − 〈Fe, νE〉4 |DHχE|⇀
1
2
〈Fi, νE〉 − 〈Fe, νE〉

4 |DHχE|

= 1
2 χ̃E(1− χ̃E)divF.

Again (4.3.17) shows that the previous sequences of measures are equal, hence so are their
limits. Taking their difference, we get(

χ̃E −
1
2

)
χ̃E(1− χ̃E)divF FHE = 0.

This implies χ̃E = 1
2 |divF |-a.e. on F̃HE. From (4.3.43) and (4.3.17), we obtain (4.3.45).

Remark 4.3.10. Proposition 4.3.9 and (4.3.43) imply that

|divF |
(
F̃HE \ {x ∈ Ω : χ̃E = 1/2}

)
= 0.

Since Proposition 4.3.7 states that Ω = Ẽ1 ∪ Ẽ0 ∪ F̃HE ∪ ZF
E , for some |divF |-negligible set

ZF
E , then we get the tripartition

χ̃E(x) ∈ {0, 1, 1/2} for |divF |-a.e. x ∈ Ω.

As a result, we have shown that for every F ∈ DM∞(HΩ), taking any weak∗ limit of ρε ∗ χE
in L∞(Ω; |divF |), this limit attains only the three possible values 1, 0, 1/2 for |divF |-a.e. x ∈ Ω.
This motivates our definitions (4.3.8) and (4.3.9).
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Remark 4.3.11. If F ∈ DM∞(HΩ) and E ⊂ Ω is a set of finite h-perimeter, then

(F,DHχE) = 〈Fi, νE〉+ 〈Fe, νE〉
2 |DHχE|. (4.3.46)

This follows from (4.3.15) and from the definitions of the normal traces, (4.3.5), (4.3.6).
We are now arrived at our first general result on the Leibniz rule for divergence-measure

horizontal fields and characteristic functions of sets of finite h-perimeter in stratified groups.
Theorem 4.3.12. If F ∈ DM∞(HΩ) and E ⊂ Ω is a set of finite h-perimeter, then we have

div(χEF ) = χ
Ẽ1divF + 〈Fi, νE〉 |DHχE|, (4.3.47)

div(χEF ) = χ
Ẽ1∪F̃HE

divF + 〈Fe, νE〉 |DHχE|, (4.3.48)

where χ̃E ∈ L∞(Ω; |divF |) is the weak∗ limit defined in (4.3.7).
Proof. By Remark 4.3.10, we have

χ̃E(x) = χ
Ẽ1(x) + 1

2χF̃HE
(x) for |divF | − a.e. x ∈ Ω.

Due to (4.3.46), we can rewrite (4.3.10) as follows

div(χEF ) = χ
Ẽ1divF + 1

2χF̃HE
divF + 〈Fi, νE〉+ 〈Fe, νE〉

2 |DHχE|.

We can now employ (4.3.45) to substitute the term χ
F̃HE

divF , obtaining

div(χEF ) = χ
Ẽ1divF + 〈Fi, νE〉 − 〈Fe, νE〉2 |DHχE| F̃HE+

+ 〈Fi, νE〉+ 〈Fe, νE〉
2 |DHχE|.

The previous equality immediately gives (4.3.47). To derive (4.3.48), we simply join (4.3.47)
with (4.3.45) and (4.3.44).

4.3.3 Uniqueness results

The previous results, together with the auxiliary definitions of Ẽ1, Ẽ0 and F̃HE, allow us to
obtain the following uniqueness theorem, along with a number of relevant consequences.
Theorem 4.3.13 (Uniqueness). If F ∈ DM∞(HΩ) and E ⊂ Ω is a set of finite h-perimeter,
then there exists a unique |divF |-measurable subset

E1,F ⊂ Ω \FHE,

up to |divF |-negligible sets, such that

χ̃E(x) = χE1,F (x) + 1
2χFHE(x) for |divF |-a.e. x ∈ Ω. (4.3.49)

In addition, we have
|divF |

(
FHE \ F̃HE

)
= 0 (4.3.50)

and there exist unique normal traces

〈Fi, νE〉 , 〈Fe, νE〉 ∈ L∞(FHE; |DHχE|)

satisfying

div(χEF ) = χE1,F divF + 〈Fi, νE〉 |DHχE|, (4.3.51)
div(χEF ) = χE1,F∪FHEdivF + 〈Fe, νE〉 |DHχE|. (4.3.52)
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Proof. Thanks to (4.3.39) the set
E1,F = Ẽ1 \FHE ⊂ Ω \FHE

satisfies the equality χ̃E = χE1,F |divF |-a.e. in Ω \FHE and it is uniquely determined up to
|divF |-negligible sets. By the tripartition stated in Proposition 4.3.7, we get

χ̃E(x) = χE1,F (x) + χ
Ẽ1∩FHE

(x) + 1
2χF̃HE

(x) for |divF |-a.e. x ∈ Ω, (4.3.53)

from which we get
Ẽ1 = E1,F ∪ (Ẽ1 ∩FHE) and Ẽ0 = E0,F ∪ (Ẽ0 ∩FHE),

where E0,F = Ω \ (E1,F ∪FHE). Let E be a set of finite h-perimeter in Ω. We notice that
FHE is a Borel set, by definition, so that, if F ∈ DM∞(HΩ), the measure |divF | FHE is
well defined. Let εk be the fixed nonnegative vanishing sequence such that ρεk ∗ χE

∗
⇀ χ̃E in

L∞(Ω; |divF |). Then, we also have
ρεk ∗ χE

∗
⇀ χ̃E in L∞(Ω; |divF | FHE). (4.3.54)

To see this, it is enough to multiply any test functions ψ ∈ L1(Ω; |divF | FHE) with χFHE,
getting a function in L∞(Ω; |divF |).

Now, Theorem 4.2.7 shows that |divF | � S Q−1, so that
|divF | FHE � S Q−1 FHE,

which, by Theorem 1.3.16, gives
|divF | FHE � |DHχE|. (4.3.55)

Then, it is easy to see that (4.3.55) implies |divF | FHE = θF,E|DHχE|, for some θF,E ∈
L1(Ω; |DHχE|), by Radon-Nikodým theorem. We recall that, by (2.4.2), we have

ρε ∗ χE ∗
⇀ 1/2

in L∞(Ω; |DHχE|). Due to Lemma 2.4.3, it follows that

(ρε ∗ χE)|divF | FHE ⇀
1
2 |divF | FHE.

On the other hand, (4.3.54) implies
(ρεk ∗ χE)|divF | FHE ⇀ χ̃E|divF | FHE,

and so we conclude that any weak* limit point of {ρε ∗ χE}ε>0 in L∞(Ω; |divF |) must satisfy
χ̃E(x) = 1

2 for |divF | FHE-a.e. x ∈ Ω. Clearly, this means that

χ̃E(x) = 1
2 for |divF |-a.e. x ∈ FHE. (4.3.56)

As an immediate consequence, we obtain
|divF |(Ẽ1 ∩FHE) = 0 and |divF |(Ẽ0 ∩FHE) = 0,

which implies (4.3.50). Thus, combining these results with (4.3.53), we deduce that there exists
a unique |divF |-measurable set E1,F ⊂ Ω \FHE such that (4.3.49) holds. Hence, there exists
a unique weak* limit χ̃E of {ρε ∗ χE}ε>0 in L∞(Ω; |divF |). Thanks to (4.3.47) and (4.3.48), we
obtain the uniqueness of the normal traces. Indeed, we have

div(χEF )− χE1,F divF = 〈Fi, νE〉 |DHχE|,
div(χEF )− χE1,F∪FHEdivF = 〈Fe, νE〉 |DHχE|,

and the uniqueness of the terms on the left hand sides implies the uniqueness of those on the
right hand sides.
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In view of the previous uniqueness result, we are in the position to introduce the following
definition.

Definition 4.3.14. Let E ⊂ Ω be a set of finite h-perimeter and let F ∈ DM∞(HΩ). We
define the measure theoretic interior of E with respect to F as E1,F ⊂ Ω \FHE, such that

div(χEF ) (Ω \FHE) = χE1,F divF. (4.3.57)

Analogously, we define the measure theoretic exterior of E with respect to F as a set E0,F ⊂
Ω \FHE such that

div(χΩ\EF ) (Ω \FHE) = χE0,F divF. (4.3.58)

Remark 4.3.15. The existence of E1,F , along with its uniqueness up to |divF |-negligible sets,
is a direct consequence of restricting (4.3.51) to Ω \ FHE. Analogously, the existence and
uniqueness up to |divF |-negligible sets of E0,F follows from applying (4.3.51) to Ω \ E and
restricting it to Ω \FHE. In addition, we have

|divF |
(
Ω \ (E1,F ∪ E0,F ∪FHE)

)
= 0,

since

χE0,F divF = div(χΩ\EF ) (Ω \FHE) = χΩ\FHEdivF − div(χEF ) (Ω \FHE)
=
(
χΩ\FHE − χE1,F

)
divF = χΩ\(E1,F∪FHE)divF,

thanks to (4.3.57).

Remark 4.3.16. Theorem 4.3.13 shows that the interior and exterior normal traces 〈Fi, νE〉
and 〈Fe, νE〉 are unique up to |DHχE|-negligible sets. As an immediate consequence of this fact,
joined with (4.3.5) and (4.3.6), we see that also the pairings (χEF,DHχE) and (χΩ\EF,DHχE)
are uniquely determined and do not depend on the approximating sequences 〈χEF,∇H(ρεk ∗ χE)〉µ
and

〈
χΩ\EF,∇H(ρεk ∗ χE)

〉
µ. In addition, (4.3.46) shows that also the pairing (F,DHχE) is

unique and independent from the choice of the approximating sequence.

We conclude this section with the following easy refinement of (4.3.45).

Corollary 4.3.17. Let F ∈ DM∞(HΩ) and E be a set of finite h-perimeter. Then, we have

χFHEdivF = (〈Fi, νE〉 − 〈Fe, νE〉)|DHχE|. (4.3.59)

Proof. It is enough to subtract (4.3.51) from (4.3.52).

4.4 Gauss–Green and integration by parts formulas
This section is devoted to establish different Gauss–Green formulas and integration by parts
formula in stratified groups. Throughout we shall use the measure theoretic interior E1,F ⊂ G
introduced in Definition 4.3.14. We start with a general version of the Gauss–Green formulas,
which is a direct consequence of Theorem 4.3.13.

Theorem 4.4.1. Let F ∈ DM∞(HΩ) and E b Ω be a set of finite h-perimeter. Then, we
have

divF (E1,F ) = −
∫

FHE
〈Fi, νE〉 d|DHχE|, (4.4.1)

divF (E1,F ∪FHE) = −
∫

FHE
〈Fe, νE〉 d|DHχE|. (4.4.2)
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Proof. If we evaluate (4.3.51) and (4.3.52) on Ω, we obtain

div(χEF )(Ω) = divF (E1,F ) +
∫

FHE
〈Fi, νE〉 d|DHχE|,

div(χEF )(Ω) = divF (E1,F ∪FHE) +
∫

FHE
〈Fe, νE〉 d|DHχE|.

Then, we exploit the fact that χEF ∈ DM∞(HΩ), thanks to Theorem 4.1.1, and Lemma 4.2.6
in order to conclude that div(χEF )(Ω) = 0.

We consider now some special cases in which the normal traces coincides; that is, in which
there are no jumps along the reduced boundary of the integration domain. To this purpose, we
give the following definition.

Definition 4.4.2. Let F ∈ DM∞(HΩ) and let E ⊂ Ω be a set of finite h-perimeter. We define
the average normal trace 〈F, νE〉 as the function in L∞(Ω; |DHχE|) satisfying

(F,DHχE) = 〈F, νE〉 |DHχE|. (4.4.3)

Remark 4.4.3. Thanks to (4.1.2), we have

|(F,DHχE)| ≤ ‖F‖L∞(Ω)|DHχE|,

which implies the existence of 〈F, νE〉 ∈ L∞(Ω; |DHχE|) satisfying (4.4.3), by Radon-Nikodým
theorem. In addition, (4.3.46) shows that

〈F, νE〉 = 〈Fi, νE〉+ 〈Fe, νE〉
2 |DHχE|-a.e. in Ω. (4.4.4)

Proposition 4.4.4. Let F ∈ DM∞(HΩ) and let E ⊂ Ω be a set of finite h-perimeter such
that |divF |(FHE) = 0. Then we have

〈Fi, νE〉 = 〈Fe, νE〉 = 〈F, νE〉 |DHχE|-a.e. in Ω. (4.4.5)

As a consequence, we obtain

div(χEF ) = χE1,F divF + (F,DHχE) = χE1,F divF + 〈F, νE〉 |DHχE|. (4.4.6)

Proof. Equality (4.4.5) is an immediate consequence of |divF |(FHE) = 0, (4.3.59) and (4.4.4).
Then, by combining (4.3.51), (4.4.3) and (4.4.5) we obtain (4.4.6).

The previous result immediately gives a new version of the Gauss–Green formula without
jumps on the reduced boundary of the domain.

Theorem 4.4.5. Let F ∈ DM∞(HΩ) and let E b Ω be a set of finite h-perimeter with
|divF |(FHE) = 0. Then there exists a unique normal trace 〈F, νE〉 ∈ L∞(Ω; |DHχE|) such
that

divF (E1,F ) = −
∫

FHE
〈F, νE〉 d|DHχE|. (4.4.7)

Proof. The existence of a unique normal trace 〈F, νE〉 follows from Proposition 4.4.4. Then,
we evaluate (4.4.6) on Ω and apply Lemma 4.2.6, and thus we obtain (4.4.7).

We now prove that, in the case F is continuous, the normal traces are equal and coincide
with the scalar product in the horizontal section.
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Proposition 4.4.6. Let F ∈ DM∞(HΩ) ∩ C(HΩ) and E ⊂ Ω be a set of finite h-perimeter.
Then we have

〈Fi, νE〉 (x) = 〈Fe, νE〉 (x) = 〈F (x), νE(x)〉 for |DHχE|-a.e. x ∈ FHE (4.4.8)

and in particular |divF |(FHE) = 0.

Proof. Let φ ∈ Cc(Ω) and let (χEF,DHχE) be as defined in (4.3.1), hence∫
Ω
φ d(χEF,DHχE) = lim

ε→0

∫
Ω
〈φF, χE(ρε ∗DHχE)〉 dx.

We observe that φF ∈ Cc(Ω, HΩ) and taking into account that νE is the measure theoretic
unit interior h-normal, by (2.4.7) we obtain∫

Ω
φ d(χEF,DHχE) =

∫
Ω

1
2φ 〈F, νE〉 d|DHχE|.

By definition of interior normal trace (4.3.5), we obtain that

〈Fi, νE〉 (x) = 〈F (x), νE(x)〉 for |DHχE|-a.e. x ∈ Ω,

which implies (4.4.8) for the interior normal trace. The identity for the exterior normal trace
in (4.4.8) can be proved in an analogous way, employing (2.4.8) and definition (4.3.6). Finally,
in view of (4.3.59), we get |divF |(FHE) = 0.

Theorem 4.4.7. Let F ∈ DM∞(HΩ) ∩ C(HΩ) and let E b Ω be a set of finite h-perimeter.
Then the following formula holds

divF (E1,F ) = −
∫

FHE
〈F, νE〉 d|DHχE|. (4.4.9)

Proof. By Proposition 4.4.6, we have a unique normal trace, that |DHχE|-a.e. in FHE equals
the scalar product 〈F, νE〉. In addition, |divF |(FHE) = 0. Since E b Ω, we may apply (4.4.7)
to conclude the proof.

Next, we apply the Leibniz rule (Theorem 4.1.1) to derive integration by parts formulas.

Theorem 4.4.8. Let F ∈ DM∞
loc(HΩ), E be a set of locally finite h-perimeter in Ω and

ϕ ∈ C(Ω) with ∇Hϕ ∈ L1
loc(HΩ) such that supp(ϕχE) b Ω. Then, there exist interior and

exterior normal traces
〈Fi, νE〉 , 〈Fe, νE〉 ∈ L∞loc(Ω; |DHχE|)

such that the following formulas hold∫
E1,F

ϕddivF +
∫
E
〈F,∇Hϕ〉 dx = −

∫
FHE

ϕ 〈Fi, νE〉 d|DHχE|, (4.4.10)∫
E1,F∪FHE

ϕddivF +
∫
E
〈F,∇Hϕ〉 dx = −

∫
FHE

ϕ 〈Fe, νE〉 d|DHχE|. (4.4.11)

In addition, for any open set U b Ω, we have the following estimates

‖ 〈Fi, νE〉 ‖L∞(FHE∩U ;|DHχE |) ≤ ‖F‖L∞(E∩U), (4.4.12)
‖ 〈Fe, νE〉 ‖L∞(FHE∩U ;|DHχE |) ≤ ‖F‖L∞(U\E). (4.4.13)
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Proof. Let U b Ω be an open set such that supp(ϕχE) ⊂ U . Then, we clearly have F ∈
DM∞(HU), χE ∈ BV (U) and ϕ ∈ C(U)∩L∞(U) with∇Hϕ ∈ L1(HU). Hence, Theorem 4.1.1
implies that χEF ∈ DM∞(HU) and so we can apply (4.2.8) to ϕ and χEF , thus obtaining

div(ϕχEF ) = ϕdiv(χEF ) + 〈χEF,∇Hϕ〉µ (4.4.14)

in the sense of Radon measures on U . Now, Theorem 4.3.13 implies the existence of interior
and exterior normal traces 〈Fi, νE〉 , 〈Fe, νE〉 in L∞(U ; |DHχE|), and, by (4.3.51) and (4.3.52),
we get

div(ϕχEF ) = χE1,FϕdivF + ϕ 〈Fi, νE〉 |DHχE|+ χE 〈F,∇Hϕ〉µ, (4.4.15)
div(ϕχEF ) = χE1,F∪FHEϕdivF + ϕ 〈Fe, νE〉 |DHχE|+ χE 〈F,∇Hϕ〉µ. (4.4.16)

Finally, we evaluate (4.4.15) and (4.4.16) on U , and we employ Lemma 4.2.6 and the assumption
that supp(ϕχE) ⊂ U , so that (4.4.10) and (4.4.11) immediately follow. The estimates (4.4.12)
and (4.4.13) follow from the restriction of F and χE to U and from (4.3.18) and (4.3.19).

Remark 4.4.9. We notice that the local statement of Theorem 4.4.8 shows that the field
F needs not be essentially bounded on the whole set Ω, but only on an arbitrarily small
neighborhood of FHE. In particular, let ε > 0 and E b Ω. We define

Eε := {x ∈ E : dist(x,FHE) < ε},
Eε := {x ∈ Ω \ E : dist(x,FHE) < ε}.

Then, from (4.4.12) and (4.4.13) one can deduce that we have

‖ 〈Fi, νE〉 ‖L∞(FHE;|DHχE |) ≤ inf
ε>0
‖F‖L∞(Eε),

‖ 〈Fe, νE〉 ‖L∞(FHE;|DHχE |) ≤ inf
ε>0
‖F‖L∞(Eε).

Indeed, it is enough to take the open set U = Eε ∪ Eε = {x ∈ Ω : dist(x,FHE) < ε} for some
ε > 0 such that U b Ω, and then to pass to the infimum in ε.

As an application of the integration by parts formulas, one can generalize the classical
Euclidean Green’s identities to C1

H(Ω) functions whose horizontal gradients are in DM∞
loc(HΩ).

In the spirit of Definition 1.3.8, we can define the distributional sub-Laplacian of a locally
summable function u : Ω → R with horizontal gradient satisfying ∇Hu ∈ L1

loc(HΩ) as the
distribution

C∞c (Ω) 3 φ 7→ −
∫

Ω
〈∇Hu,∇Hφ〉 dx. (4.4.17)

We shall denote the distributional sub-Laplacian of u by ∆Hu and, with a little abuse of
notation, we shall use the same symbol to denote also the measurable function defining the
distribution, whenever it exists. Arguing as in the paragraph after Remark 1.3.9, one can
show that, if u ∈ C2

H(Ω), then its distributional sub-Laplacian coincides with the pointwise
sub-Laplacian, and so we can write

∆Hu =
m∑
j=1

X2
j u.

Theorem 4.4.10. Let u ∈ C1
H(Ω) satisfy ∆Hu ∈ Mloc(Ω) and let E ⊂ Ω be a set of locally

finite h-perimeter in Ω. Then for each v ∈ Cc(Ω) with ∇Hv ∈ L1(HΩ), one has∫
E1
u

v d∆Hu = −
∫

FHE
v 〈∇Hu, νE〉 d|DHχE| −

∫
E
〈∇Hv,∇Hu〉 dx, (4.4.18)
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where E1
u := E1,∇Hu is the measure theoretic interior of E with respect to ∇Hu. If u, v ∈ C1

H,c(Ω)
also satisfy ∆Hu,∆Hv ∈M(Ω), then we have∫

E1
u

v d∆Hu−
∫
E1
v

u d∆Hv =
∫

FHE
〈u∇Hv − v∇Hu, νE〉 d|DHχE|, (4.4.19)

where E1
v := E1,∇Hv, analogously as with u. If E b Ω, one can drop the assumption that u and

v have compact support in Ω.

Proof. Arguing as in the proof of Theorem 4.4.8, we can localize to an open set U b Ω such
that supp(vχE) ⊂ U . Then, we notice that, since u ∈ C1

H(U) and ∆Hu ∈ M(U), then
∇Hu ∈ DM∞(HU) ∩ C(HU). Thus, since E is a set of finite h-perimeter in U , the normal
traces of ∇Hu on FHE ∩ U coincide with 〈∇Hu(x), νE(x)〉 for |DHχE|-a.e. x ∈ U , by Propo-
sition 4.4.6. In addition, Proposition 4.4.6 gives |∆Hu|(FHE) = 0, and so (4.4.10) implies
(4.4.18), if we set E1,∇Hu =: E1

u.
If now u, v ∈ C1

H,c(Ω) and satisfy ∆Hu,∆Hv ∈M(Ω), one also has (4.4.18) with the roles of
u and v interchanged, and thus with a set E1

v uniquely determined by∇Hv, instead. Subtracting
these two expressions leads to (4.4.19). If E b Ω, then the assumption on the compact support
of u and v are not anymore needed.

4.5 Absolutely continuous divergence-measure horizon-
tal fields

This section is devoted to some first applications of our previous results, which cover the
case of F ∈ L∞(HΩ) with divF ∈ L1(Ω), and consequently the cases F ∈ W 1,1(HΩ) and
F ∈ LipH,c(HΩ).

Theorem 4.5.1. If F ∈ DM∞(HΩ) and |divF | � µ, then for any set of finite h-perimeter
E ⊂ Ω, we have

div(χEF ) = χEdivF + (F,DHχE) (4.5.1)
in the sense of Radon measures on Ω. Therefore, we also obtain (4.4.5),

|divF |(E1,F∆E) = 0, (4.5.2)

and
div(χEF ) = χEdivF + 〈F, νE〉 |DHχE|. (4.5.3)

Proof. Formula (4.5.1) is a simple application of (4.2.10) to g = χE, taking into account (1.3.8).
Since the absolute continuity assumption and (1.3.26) give |divF |(FHE) = 0, we can apply
Proposition 4.4.4 and obtain (4.4.5). In addition, by comparing (4.4.6) and (4.5.1), we get
(4.5.2). Thus, (4.5.3) is an immediate consequence of (4.4.6) and (4.5.2).

Thanks to Theorem 4.5.1, the proofs of Theorem 4.1.3 and Theorem 4.1.4 can be immedi-
ately achieved.

Proof of Theorem 4.1.3. We evaluate (4.5.3) on Ω and apply Lemma 4.2.6, thanks to the fact
that E b Ω.

Proof of Theorem 4.1.4. It suffices to combine (4.4.5), (4.5.2) and |divF |(FHE) = 0 with The-
orem 4.4.8.

We notice now that Theorem 4.1.4 may be applied to a set of locally finite h-perimeter
whose reduced boundary is not rectifiable in the Euclidean sense.
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Example 4.5.2. We recall that a set S ⊂ G is called a C1
H-regular surface if, for any p ∈ S,

there exists an open set U 3 p and a map f ∈ C1
H(U) such that

S ∩ U = {q ∈ U : f(q) = 0 and ∇Hf(q) 6= 0}.

In [140, Theorem 3.1], the authors proved the existence of a C1
H-regular surface S in the

Heisenberg group H1 such that H
5−ε

2
|·| (S) > 0 for any ε ∈ (0, 1); which means that S is

not 2-Euclidean rectifiable. In particular, they showed that there exists a function f ∈ C1
H(H1)

related to S as above, with U = H1. From [81, Theorem 2.1], it is known that the open set
E = {p ∈ H1 : f(p) < 0} is of locally finite h-perimeter and FHE = S. Thus, given any
F ∈ DM∞

loc(HH1) such that |divF | � µ = L 3, we can apply Theorem 4.1.4 to F and E to
show that there exists a unique normal trace 〈F, νE〉 ∈ L∞loc(H1; |DHχE|). In addition, for any
ϕ ∈ Cc(H1) with ∇Hϕ ∈ L1(HH1) we obtain∫

E
ϕddivF +

∫
E
〈F,∇Hϕ〉 dx = −

∫
S
ϕ 〈F, νE〉 d|DHχE|.

We stress the fact that, on the right hand side, we are integrating on a fractal object, which is
an Euclidean unrectifiable set.

Theorem 4.5.3. Let u ∈ C1
H(Ω) be such that ∆Hu ∈Mloc(Ω) with |∆Hu| � µ and let E ⊂ Ω

be a set of locally finite h-perimeter in Ω. Then for each v ∈ Cc(Ω) with ∇Hv ∈ L1(HΩ) one
has ∫

E
v d∆Hu = −

∫
FHE

v 〈∇Hu, νE〉 d|DHχE| −
∫
E
〈∇Hv,∇Hu〉 dx. (4.5.4)

If u, v ∈ C1
H,c(Ω) also satisfy ∆Hu,∆Hv ∈M(Ω), |∆Hu| � µ, |∆Hv| � µ, one has∫

E
v d∆Hu− u d∆Hv =

∫
FHE
〈u∇Hv − v∇Hu, νE〉 d|DHχE|. (4.5.5)

If E b Ω, one can drop the assumption that u and v have compact support in Ω.

Proof. It suffices to combine the results of Theorem 4.4.10 with the fact that, in this case,
E1
u = E1

v = E up to µ-negligible sets, which follows from Theorem 4.5.1.

It is worth noticing that one could weaken the absolute continuity assumption on divF , by
asking only |divF |(∂∗,RH E) = 0. We also notice that, in the Euclidean context, this resembles
part of the hypotheses assumed by Degiovanni, Marzocchi and Musesti in [66, Theorem 5.2] and
Schuricht in [138, Proposition 5.11]. However, we do not require the existence of any suitable
smooth approximation of F , as they do: thus, our results are more general, even though we
cannot represent the normal traces as the classical scalar product. Before stating our results,
we need a preliminary lemma.

Lemma 4.5.4. Let F ∈ DM∞(HΩ) and let E ⊂ Ω be a set of finite h-perimeter such that
(4.3.42) holds. Then, we have

|divF |(E1,F∆E1,R) = 0 and |divF |(E0,F∆E0,R) = 0. (4.5.6)

Proof. Thanks to Remark 4.3.8, we see that

|divF |
(
(E1,F∆E1,R) ∩ CRE

)
= 0 and |divF |

(
(E0,F∆E0,R) ∩ CRE

)
= 0.

If (4.3.42) holds, then it is clear that we obtain (4.5.6).
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Proposition 4.5.5. Let F ∈ DM∞(HΩ) and let E ⊂ Ω be a set of finite h-perimeter such
that |divF |(∂∗,RH E) = 0. Then we have (4.4.5), (4.5.6) and

div(χEF ) = χE1,RdivF + 〈F, νE〉 |DHχE|. (4.5.7)

Proof. We notice that Ω \ CRE ⊂ ∂∗,RH E, therefore we can apply Lemma 4.5.4 to get (4.5.6).
Thanks to (4.3.51) and (4.5.6), we easily get

div(χEF ) = χE1,RdivF + 〈Fi, νE〉 |DHχE|. (4.5.8)

In addition, (4.5.6) and |divF |(∂∗,RH E) = 0 imply that

|divF |(FHE) ≤ |divF |(E1,R ∩FHE) + |divF |(E0,R ∩FHE)
= |divF |(E1,F ∩FHE) + |divF |(E0,F ∩FHE) = 0,

since E1,F , E0,F ⊂ Ω \FHE by Definition 4.3.14. As an immediate consequence of this fact
and of (4.5.6), we may rewrite (4.3.52) as

div(χEF ) = χE1,RdivF + 〈Fe, νE〉 |DHχE|. (4.5.9)

Finally, by combining (4.5.8) and (4.5.9), the equalities (4.4.5) and (4.5.7) follow.

Theorem 4.5.6. Let F ∈ DM∞(HΩ) and let E b Ω be a set of finite h-perimeter such that
|divF |(∂∗,RH E) = 0. Then, we have

divF (E1,R) = −
∫

FHE
〈F, νE〉 d|DHχE|. (4.5.10)

Proof. We just need to evaluate (4.5.7) on Ω and we apply Lemma 4.2.6 to get (4.5.10).

In analogy to the case |divF | � µ, we can obtain similar integration by parts formula and
Green’s identities in the case |divF |(∂∗,RH E) = 0, with E1,R instead of E in the integration with
respect to the divergence and the Laplacian measure, respectively.

Theorem 4.5.7. Let F ∈ DM∞
loc(HΩ), E be a set of locally finite h-perimeter in Ω such that

|divF |(∂∗,RH E) = 0, and let ϕ ∈ C(Ω) with ∇Hϕ ∈ L1
loc(HΩ) such that supp(ϕχE) b Ω. Then

there exists a unique normal trace 〈F, νE〉 ∈ L∞loc(Ω; |DHχE|) of F , such that the following
formula holds ∫

E1,R
ϕddivF +

∫
E
〈F,∇Hϕ〉 dx = −

∫
FHE

ϕ 〈F, νE〉 d|DHχE|.

Proof. Proposition 4.5.5 implies that, if |divF |(∂∗,RH E) = 0, then we have (4.4.5), (4.4.3) and
(4.5.6). One needs just to combine these results with Theorem 4.4.8.

Theorem 4.5.8. Let u ∈ C1
H(Ω) satisfy ∆Hu ∈Mloc(Ω) and let E ⊂ Ω be a set of locally finite

h-perimeter in Ω such that |∆Hu|(∂∗,RH E) = 0. Then for each v ∈ Cc(Ω) with ∇Hv ∈ L1(HΩ)
one has ∫

E1,R
v d∆Hu = −

∫
FHE

v 〈∇Hu, νE〉 d|DHχE| −
∫
E
〈∇Hv,∇Hu〉 dx.

If u, v ∈ C1
H,c(Ω) also satisfy ∆Hu,∆Hv ∈M(Ω), |∆Hu|(∂∗,RH E) = |∆Hv|(∂∗,RH E) = 0, one has∫

E1,R
v d∆Hu− u d∆Hv =

∫
FHE
〈u∇Hv − v∇Hu, νE〉 d|DHχE|.

If E b Ω, one can drop the assumption that u and v have compact support in Ω.

138



Proof. It suffices to combine the results of Theorem 4.4.10 with the fact that, by Proposi-
tion 4.5.5, E1

u = E1
v = E1,R up to |∆Hu|, |∆Hv|-negligible sets.

As an easy consequence of Theorem 4.3.6, we obtain the same locality property for the
normal trace in the case |divF | � µ and |divF |(∂∗,RH E) = 0.

Proposition 4.5.9. Let F ∈ DM∞(HΩ), and E1, E2 ⊂ Ω be sets of finite h-perimeter such
that S Q−1(FHE1 ∩FHE2) > 0 and |divF |(∂∗,RH Ej) = 0, for j = 1, 2. Then, we have

〈F, νE1〉 (x) = 〈F, νE2〉 (x), (4.5.11)

for S Q−1-a.e. x ∈ {y ∈ FHE1 ∩FHE2 : νE1(y) = νE2(y)}, and

〈F, νE1〉 (x) = −〈F, νE2〉 (x), (4.5.12)

for S Q−1-a.e. x ∈ {y ∈ FHE1 ∩FHE2 : νE1(y) = −νE2(y)}.

Proof. The result follows immediately from Theorem 4.3.6 and (4.4.5), which holds by Propo-
sition 4.5.5.

4.6 Applications to sets of Euclidean finite perimeter
The underlying linear structure of G allows for introducing an Euclidean scalar product, for
instance using a fixed system of graded coordinates, see Section 1.2.2. With respect to this
metric structure the classical sets of finite perimeter can be considered. We will call them sets
of Euclidean finite perimeter to make a precise distinction with sets of finite h-perimeter.

If E ⊂ G is a set of locally finite Euclidean perimeter in Ω ⊂ G and F ∈ DM∞
loc(HΩ),

then we can refine (4.4.1) and (4.4.2) employing the theory of divergence-measure fields in
Euclidean space. From the Euclidean Leibniz rule for essentially bounded divergence-measure
fields ([82, Theorem 2.1] of Frid), the uniqueness of the representative g̃ in Theorem 4.1.1 and
of the pairing measure follows.

Recall that we can identify G with Rq, where q is the topological dimension of G. In this
section, we shall denote the Euclidean norm by | · |, and the Riemannian one by | · |g. The
L∞-norm ‖ · ‖∞,Ω for horizontal fields is the same defined in (1.3.2) using | · |g.

We denote the Euclidean Hausdorff measure by H α
|·| and the Euclidean ball by

B|·|(x, r) := {y ∈ Rq : |x− y| < r}.

Consequently, given u ∈ L1
loc(G), we denote by

u∗|·|(x) :=


lim
r→0
−
∫
B|·|(x,r)

u(y) dy if the limit exists,

0 otherwise,
(4.6.1)

the Euclidean precise representative of u.
The following useful lemma is a consequence of the rectifiability of the reduced boundary

and of the negligibility of characteristic points [112]. Its proof can be found in [139]. For the
ease of the reader, we add a short proof.

Lemma 4.6.1. If E is a set of Euclidean locally finite perimeter in Ω and if we denote by FE
the Euclidean reduced boundary, we have S Q−1(FHE∆FE) = 0.
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Proof. By Theorem 1.3.16, Lemma 1.3.17 and [139, Proposition 5.11], we know that

|DHχE| = |πHNE|H q−1
|·| FE = θE S Q−1 FHE, (4.6.2)

where πHNE is the projection of the Euclidean measure theoretic unit interior normal NE on
the horizontal bundle of G. Hence, since θE ≥ α > 0 by Theorem 1.3.16, we get

S Q−1(FHE \FE) = 0,

In addition, [139, Proposition 5.11] implies also that the set

Char(E) := {x ∈ FE : πHNE(x) = 0}

is S Q−1-negligible. Therefore, by (4.6.2) we have

H q−1
|·| (FE \ (FHE ∪ Char(E))) = 0,

which implies S Q−1(FE \ (FHE ∪ Char(E))) = 0 by [80, Proposition 4.4]. Since Char(E) is
S Q−1-negligible, the proof is complete.

We now recall the Euclidean Leibniz rule for essentially bounded divergence-measure fields
in a stratified group.

Theorem 4.6.2. Let F ∈ DM∞(HΩ) and g ∈ L∞(Ω) be such that for every j = 1, . . . , q we
have ∂xjg ∈M(Ω). It follows that gF ∈ DM∞(HΩ) and

div(gF ) = g∗|·|divF + (F,Dg), (4.6.3)

where (F,Dg) is the weak∗ limit of 〈F,D(ρε∗̃g)〉Rq µ as ε → 0, denoting by ∗̃ the Euclidean
convolution product, by ρ ∈ C∞c (B|·|(0, 1)) a radially symmetric mollifier with

∫
ρ dx = 1 and

ρε(x) = ε−qρ(x/ε).

Proof. Since F ∈ DM∞(HΩ) ⊂ DM∞(Ω) and g is an essentially bounded function of Eu-
clidean bounded variation, [82, Theorem 2.1] shows that gF ∈ DM∞(Ω) and that we have
(4.6.3). Then we clearly have gF ∈ DM∞(HΩ), since F is a measurable horizontal section.

We stress the fact that g ∈ BV (Ω) in general does not imply g ∈ BVH(Ω), unless the set Ω
is bounded. Since a function of Euclidean bounded variation on Ω belongs only to BVH,loc(Ω),
we shall need to localize all the following statements.

Theorem 4.6.3. Let F ∈ DM∞(HΩ) and g ∈ L∞(Ω) be such that ∂xjg ∈ M(Ω) for j =
1, . . . , q. Then, the measure (F,Dg) satisfies

|(F,Dg)| U ≤ ‖F‖L∞(U)|DHg| U, (4.6.4)

for any open bounded set U ⊂ Ω.

Proof. Without loss of generality, we may assume Ω to be bounded, which means that we have
g ∈ L∞(Ω) ∩BVH(Ω). By Theorem 4.6.2, we know that

〈F,∇(ρε∗̃g)〉Rq µ ⇀ (F,Dg)

as ε→ 0. By (1.3.12) one easily observes that 〈F,∇(ρε∗̃g)〉Rq = 〈F,∇H(ρε∗̃g)〉 and this means
that

〈F,∇H(ρε∗̃g)〉µ ⇀ (F,Dg). (4.6.5)
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We notice that, for any φ ∈ Cc(Ω), we have

lim sup
ε→0

∣∣∣∣∫
Ω
φ 〈F, (ρε∗̃DHg)〉 dx

∣∣∣∣ ≤ lim sup
ε→0

‖F‖L∞(Ω)

∫
Ω
|φ|ρε∗̃|DHg| dx

= ‖F‖L∞(Ω)

∫
Ω
|φ| d|DHg|,

by well-known properties of Euclidean convolution of measures (see [11, Theorem 2.2]). Now
we show that

〈F,∇H(ρε∗̃g)〉µ− 〈F, (ρε∗̃DHg)〉µ ⇀ 0. (4.6.6)
Indeed, if (4.6.6) holds, then, for any φ ∈ Cc(Ω), by (4.6.5) we have∣∣∣∣∫

Ω
φ d(F,Dg)

∣∣∣∣ = lim
ε→0

∣∣∣∣∫ φ 〈F,∇H(ρε∗̃g)〉 dx
∣∣∣∣

≤ lim sup
ε→0

∣∣∣∣∫ φ 〈F,∇H(ρε∗̃g)− (ρε∗̃DHg)〉 dx
∣∣∣∣

+ lim sup
ε→0

∣∣∣∣∫ φ 〈F, ρε∗̃DHg〉 dx
∣∣∣∣

≤ ‖F‖L∞(Ω)

∫
Ω
|φ| d|DHg|,

which implies (4.6.4). Therefore, we need to show a commutation estimate. We recall the fact
that |aij(x) − aij(y)| ≤ C|x − y| on compact sets, for any j = 1, . . . ,m and i = m + 1, . . . , q.
Hence, for any x ∈ Ω and ε > 0 such that B|·|(x, ε) ⊂ Ω, the equality between the modulus of
the sum ∣∣∣∣∣∣

q∑
i=m+1

aij(x)(ρε∗̃∂yig)(x)− ρε∗̃(aij∂yig)(x)

∣∣∣∣∣∣
and its more explicit version∣∣∣∣∣∣

q∑
i=m+1

∫
B|·|(x,ε)

(aij(x)− aij(y))ρε(x− y) d∂yig(y)

∣∣∣∣∣∣
leads us to the inequality∣∣∣∣∣∣

q∑
i=m+1

aij(x)(ρε∗̃∂yig)(x)− ρε∗̃(aij∂yig)(x)

∣∣∣∣∣∣ ≤ C‖ρ‖L∞(B|·|(0,1))
|Dg|(B|·|(x, ε))

εq−1 . (4.6.7)

We now take φ ∈ Cc(Ω) and we employ the fact that ∂xj(ρε∗̃g) = (ρε∗̃∂xjg), for any j = 1, . . . , q,
to obtain∣∣∣∣∫

Ω
〈φF,∇H(ρε∗̃g)− (ρε∗̃DHg)〉 dx

∣∣∣∣ =

∣∣∣∣∣∣
∫

Ω
φ

m∑
j=1

Fj

 q∑
i=m+1

aij(ρε∗̃∂xig)− ρε∗̃(aij∂xig)
 dx

∣∣∣∣∣∣
≤ C‖F‖L∞(Ω)‖ρ‖L∞(B|·|(0,1))

∫
Ω
|φ(x)| |Dg|(B|·|(x, ε))

εq−1 dx

by (4.6.7). Let now ε > 0 be smal enough so that

supp(φ) ⊂ Ωε := {x ∈ Ω : dist|·|(x, ∂Ω) > ε}.

It follows that ∫
Ω
|φ(x)| |Dg|(B|·|(x, ε))

εq−1 dx =
∫

Ωε

∫
B|·|(x,ε)

|φ(x)|ε1−q d|Dg|(y) dx

=
∫

Ω

∫
B|·|(y,ε)

|φ(x)|ε1−q dx d|Dg|(y)

≤ µ
(
B|·|(0, 1)

)
ε ‖φ‖L∞(Ω)|Dg|(Ω).
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We finally conclude that ∫
Ω
φ(x) |Dg|(B|·|(x, ε))

εq−1 dx→ 0.

All in all, (4.6.6) follows, and this ends the proof of (4.6.4).

Thanks to the Leibniz rule of Theorem 4.6.2 and to its refinement given in Theorem 4.6.3,
we are able to obtain the Gauss–Green formulas for Euclidean sets of finite perimeter in strat-
ified groups. Even though such results could be proved directly, using (4.6.4) and employing
techniques very similar to those presented in [52, Theorems 3.2, 4.1, 4.2], we shall instead first
show that, in the case of a set of Euclidean finite perimeter E, the pairing (F,DHχE) defined
in Theorem 4.1.1 actually coincides with (F,DχE) introduced in Theorem 4.6.2. Then, the
Gauss–Green formulas will be just a consequence of Theorem 4.3.12.

Let us denote by E1
|·| and E0

|·| the Euclidean measure theoretic interior and exterior of a
measurable set E ⊂ Ω; that is,

E1
|·| =

{
x ∈ Ω : lim

r→0

µ(B|·|(x, r) ∩ E)
µ(B|·|(x, r))

= 1
}
,

E0
|·| =

{
x ∈ Ω : lim

r→0

µ(B|·|(x, r) ∩ E)
µ(B|·|(x, r))

= 0
}
.

We recall now that, if E is a set of Euclidean finite perimeter and we denote by FE the
Euclidean reduced boundary, then

χ∗E,|·| = χE1
|·|

+ 1
2χFE, (4.6.8)

see for instance [52, Lemma 2.13] and the references therein.
We proceed now to show that, in the case g = χE for an Euclidean set of finite perimeter

E, the Euclidean Leibniz rule is equivalent to the group one.

Theorem 4.6.4. Let F ∈ DM∞(HΩ) and E be a set of Euclidean finite perimeter in Ω. Then
we have χEF ∈ DM∞(HΩ),

(F,DχE) = (F,DHχE), (4.6.9)
and

div(χEF ) = χ∗E,|·|divF + (F,DHχE). (4.6.10)
In addition, for any ρ ∈ Cc(B(0, 1)) satisfying ρ ≥ 0, ρ(x) = ρ(−x),

∫
B(0,1) ρ(x) dx = 1, we have

ρε ∗ χE ∗
⇀ χ∗E,|·| in L∞(Ω; |divF |) and 〈F,∇H(ρε ∗ χE)〉µ ⇀ (F,DχE) inM(Ω). In particular,

E1,F = E1
|·| and E0,F = E0

|·|, up to |divF |-negligible sets.

Proof. It is easy to see that χEF ∈ L∞(HΩ) and that (4.6.3) with g = χE yields us

div(χEF ) = χ∗E,|·|divF + (F,DχE), (4.6.11)

which means χEF ∈ DM∞(HΩ). Notice that this fact would not follow directly from Theorem
4.1.1, since, in our assumptions, the h-perimeter of E is only locally finite. Let us assume now
Ω to be bounded, so that E is a set of finite h-perimeter in Ω. By (4.3.10), we immediately
obtain

χ∗E,|·|divF + (F,DχE) = χ̃EdivF + (F,DHχE), (4.6.12)
where χ̃E and (F,DHχE) are unique thanks to Theorem 4.3.13 and Remark 4.3.16. This means
that

(F,DHχE) = χ∗E,|·|divF + (F,DχE)− χ̃EdivF. (4.6.13)
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Hence, if Ω is unbounded, we get (4.6.12) and (4.6.13) in the sense of Radon measures on
any bounded open set U ⊂ Ω. However, since divF ∈ M(Ω), χ̃E, χ∗E,|·| ∈ L∞(Ω; |divF |) and
(F,DχE) ∈M(Ω), by Theorem 4.6.2, the right hand side of (4.6.13) is a finite Radon measure
on Ω. Thus, it follows that (F,DHχE) ∈ M(Ω), even if E is only a set of locally finite h-
perimeter on Ω. Hence, (4.6.12) holds on the whole Ω. We recall now that, by Lemma 4.6.1,
S Q−1(FHE∆FE) = 0, which implies

|divF |(FHE∆FE) = 0, (4.6.14)

by Theorem 4.2.7. Now, we employ (4.3.49) in order to rewrite (4.6.12) as(
χE1
|·|
− χE1,F

)
divF = 1

2 (χFHE − χFE) divF + (F,DHχE)− (F,DχE). (4.6.15)

Thanks to (4.6.14), we have
(χFHE − χFE) divF = 0,

so that (4.6.15) reduces to(
χE1
|·|
− χE1,F

)
divF = (F,DHχE)− (F,DχE). (4.6.16)

If we restrict (4.6.16) to FHE, we obtain

χE1
|·|∩FHEdivF = (F,DHχE)− (F,DχE), (4.6.17)

since E1,F ⊂ Ω\FHE, by Definition 4.3.14, and |(F,DHχE)|, |(F,DχE)| � |DHχE|, by (4.1.2)
and (4.6.4). We notice that

|divF |(E1
|·| ∩FHE) = |divF |(E1

|·| ∩ (FHE ∩FE)) + |divF |(E1
|·| ∩ (FHE \FE))

≤ |divF |(FHE \FE) = 0,

by (4.6.14) and the fact that E1
|·| ∩FE = ∅. Therefore, we obtain

χE1
|·|∩FHEdivF = 0,

so that (4.6.17) implies (4.6.9). Then, combining (4.6.12) and (4.6.9), we obtain(
χ∗E,|·| − χ̃E

)
divF = 0,

which immediately yields χ̃E(x) = χ∗E,|·|(x) for |divF |-a.e. x ∈ Ω. As a consequence, we get
|divF |(E1,F∆E1

|·|) = 0 and |divF |(E0,F∆E0
|·|) = 0.

Remark 4.6.5. By Theorem 4.6.4, χEF, χΩ\EF ∈ DM∞(HΩ) for any F ∈ DM∞(HΩ) and
any set E of Euclidean finite perimeter in Ω. This means that, by (4.6.9), we have

(χEF,DχE) = (χEF,DHχE) and (χΩ\EF,DχE) = (χΩ\EF,DHχE).

Thus, we can define the normal traces of F on the reduced boundary of an Euclidean set of
finite perimeter as in (4.3.5) and (4.3.6). We stress the fact that, thanks to Remark 4.3.16, the
measures (χEF,DHχE) and (χΩ\EF,DHχE) do not depend on the vanishing sequence εk.

These results enable us to prove Gauss–Green formulas for sets of Euclidean finite perimeter,
Theorem 4.1.5, extending [52, Theorem 4.2] to all geometries of stratified groups.
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Proof of Theorem 4.1.5. If we choose U b Ω, it is clear that E is a set of finite Euclidean
perimeter in U , and so of finite h-perimeter in U . By Theorem 4.6.4, we know that, up to
|divF |-negligible sets, E1,F = E1

|·|. Then, (4.1.12), (4.1.13) and (4.1.14) follow immediately
from (4.3.51), (4.3.52) and (4.3.59). The estimates on the normal traces are a consequence of
(4.4.12) and (4.4.13) in Theorem 4.4.8, since assumptions imply that E is also a set of finite
h-perimeter on any bounded open set of Ω. The same theorem shows that (4.1.15) and (4.1.16)
are a consequence of (4.4.10) and (4.4.11), taking into account that |divF |(E1,F∆E1

|·|) = 0.
Thus, we conclude the proof.

Remark 4.6.6. The normal traces of F on the reduced boundary of an Euclidean set of finite
perimeter E satisfy the same locality property stated in Theorem 4.3.6. As a byproduct, we
have also provided an alternate proof of the locality of normal traces on reduced boundaries of
Euclidean sets of finite perimeter. Such proof does not employ De Giorgi’s blow-up theorem,
which was essential in [52, Proposition 4.10].

Arguing as for Theorem 4.1.5, we can provide a generalization of Green’s identities to
stratified groups for sets of Euclidean locally finite perimeter, Theorem 4.1.6, which extends
the result of [52, Proposition 4.5] to stratified groups.

Proof of Theorem 4.1.6. It suffices to combine the results of Theorem 4.4.10 with the case of
a set of Euclidean finite perimeter. By Theorem 4.6.4, we know that, up to |∆Hu|-negligible
sets, E1

u = E1
|·|, and so we get (4.1.21). The same is clearly true up to |∆Hv|-negligible sets,

and this concludes the proof.
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Chapter 5

Evolution problems for Radon
measures

5.1 Introduction
In this chapter we describe a current research project with Luigi Ambrosio, Mark A. Peletier and
Oliver Tse, concerning the modelling of dislocations in crystals (for which we refer for instance
to [88, 89, 93, 94, 153]) and related systems of evolution equations for couples of nonnegative
measures (µ1, µ2) of the following form

d
dt
µ1 = div(µ1∇(V ∗ µ))− σ

d
dt
µ2 = −div(µ2∇(V ∗ µ))− σ

(5.1.1)

for µ = µ1 − µ2, some interaction potential V , and some (possibly nonlinear) dissipation term
σ depending on µ1 and µ2. Section 5.2 is devoted to a quick overview of the models for the
dynamics of dislocations (borrowing especially from [89]) and of the previous works [18,21,115]
by Ambrosio, Mainini and Serfaty on systems of evolution equations such as (5.1.1). Then,
employing techniques from the theory of abstract gradient systems, we try to represent these
evolution equations as the gradient flows of a given energy with respect to a suitable distance
among couples of nonnegative measures. To this purpose, in Section 5.3 we outline the definition
of a family of Hellinger-Kantorovich distances introduced by Liero, Mielke and Savaré in [108,
109]. After focusing on a particular case of such distances between couples of nonnegative Radon
measures, DK, we study its properties, focusing on its Benamou-Brenier formulation in Section
5.4. In particular, we give an alternative representation of DK in terms of the minimization
of an action functional A, we prove the existence of (weakly) continuous minimizing curves of
measures which realize this minimum, we show that DK is indeed an (extended) distance on
M+(Rn)×M+(Rn) and we prove that the convergence with respect to DK implies the narrow
convergence between couples of nonnegative Radon measures. Then, Section 5.5 contains a
state of the art description of our research concerning the first variation of DK under different
types of perturbations. The final goal of this investigation would be to derive Euler-Lagrange
equations for the distance DK. Future research shall go in the direction of analyzing further
properties of this Hellinger-Kantorovich distance, such as its dual representation, with the
final aim to apply the classical methods of minimizing movements to prove the existence of
solutions satisfying some type of energy dissipation equality. However, our investigations met
an unexpected obstacle which we describe in Section 5.6: the local (or descending) slope of the
self energy

Φself(µ1, µ2) := µ1(Rn) + µ2(Rn)
is not lower semicontinuous with respect to the distance DK, so that classical results from the
theory of gradient flows do not seem to apply.
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5.2 Models for the dynamics of the densities of disloca-
tion

We start by giving a short summary of the models of evolution of dislocations in crystals, since
a full account of it would go beyond the scope of this exposition (for a more detailed description
of this framework, we refer to [89,153]).

Dislocations can be defined as defects in an atomic lattice, and they play a central role in
the theory of plastic deformation. In particular, in a three-dimensional lattice a dislocation is a
line defect. Thanks to the periodicity of the atomic lattice structure, it is possible to represent
straight parallel edge dislocations as points in the two-dimensional plane perpendicular to the
dislocation line. The key idea is that the macroscopic plastic deformation is the result of the
combined motion of a large quantity of dislocations: at the continuum-level, the effect of the
dislocation is described by certain types of measures, the densities of dislocation. For this
reason, historically, models of plastic deformation have been different according to the chosen
scales.

A widely accepted model for the evolution of dislocations at the continuum level was intro-
duced by Groma and Balogh in [93,94]. The authors considered the evolution of positively and
negatively oriented straight parallel edge dislocations in a three-dimensional periodic lattice,
and denoted by ρ+ and ρ− their respective densities1. Considering the interaction between
dislocations as controlled by some coupling interaction potential V and the presence of some
external forces represented by a smooth external potential U , the Groma-Balogh equations are
the following system: 

d
dt
ρ+ = div (ρ+(∇V ∗ (ρ+ − ρ−) +∇U))

d
dt
ρ− = −div (ρ−(∇V ∗ (ρ+ − ρ−) +∇U)) .

(5.2.1)

The purpose of [89,153] is to show rigorously that indeed is possible to pass from the discrete
model of dislocations to the continuum one given by (5.2.1). We give here a short description
of the formal argument.

Because of the periodicity, it is possible to consider the dislocations as points in the torus
T2, on which we define the discrete elastic energy

Ẽm(x; b) = 1
m2

m∑
i=1

m∑
j=1
j 6=i

bibjV (xi − xj) + 1
m

m∑
i=1

biU(xi),

where x = (x1, . . . , xm) ∈ (T2)m and b = (b1, . . . , bm) ∈ {±1}m denote the position and the sign
(orientation) of each dislocation. We assume now that the evolution of the dislocations is given
by a gradient flow of the energy, namely,

dx(t)
dt

= −m∇Ẽm(x(t); b), (5.2.2)

which is Orowan’s relation. If now we pass to the framework of measures, we can define the
empirical measures associated to the discrete densities of the positively and negatively oriented
dislocations:

µ+
m := 1

m

m∑
i=1
bi=1

δxi , µ−m := 1
m

m∑
i=1
bi=−1

δxi .

1We stress the fact that, in this context, ρ± do not denote the positive and negative part of some given
Radon measure ρ.
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It is not difficult to check that, at least formally, µ+
m and µ−m satisfy (5.2.1). Hence, if we

assume that µ±m converge to some ρ± in a suitable weak sense as m → +∞, then these limit
measures should satisfy (5.2.1) as well. The difficulties related to obtaining a rigorous proof
of this convergence are caused by the singularity near the origin of the interaction potential
V , which is a Green’s type function. This issue is central to the paper [89], and we refer the
interested reader to it.

We observe that the discrete evolution system (5.2.2) is a gradient flow, and, at least for-
mally, ρ+(t), ρ−(t) being curves of measures limits of discrete dislocations densities, it would
seem possible to give an interpretation of (5.2.1) as the gradient flow of some free energy func-
tional with respect to a Wasserstein-like type of distance. In order to avoid some complications,
we shall consider the case of a constant external potential U , adding instead a dissipation term
σ as in (5.1.1). Along this line of thought, in [18,21] a system of evolution equations very similar
to (5.1.1), the Chapman-Rubinstein-Schatzman-E evolution model for superconductivity, has
been studied by viewing it as a gradient flow on a particular space of measures in a suitable
sense. More precisely, in [18] the authors investigated the case of real-valued signed measures,
which is closer to the physical model, and thus they were forced to introduce new concepts of
Wasserstein pseudo-distances for signed measures.

The physical mean field model for the evolution of the density of vortices in a type-II
superconductor under the effect of an external magnetic field, derived formally by Chapman,
Rubinstein and Schatzman in [39] (see also the work of E [68]), is the initial value problem2:

d
dt
µ(t)− div(∇hµ(t)|µ(t)|) = 0 in (0,+∞)× Ω

µ(0) = µ0 at t = 0,
(5.2.3)

where Ω is a bounded open set with smooth boundary in R2 (or R2 itself under some additional
assumptions), µ0 ∈M(Ω)∩H−1(Ω) is a signed Radon measure, and hµ is given by the elliptic
boundary value problem −∆hµ + hµ = µ in Ω

hµ = 1 on ∂Ω.
(5.2.4)

In [21], the authors dealt with probability measures, and they showed that (5.2.3) can be
seen as the gradient flow of the energy functional Φλ for the quadratic Wasserstein distance
W2, where

Φλ(µ) := λ

2 |µ|(Ω) + 1
2

∫
Ω
|∇hµ|2 + |hµ − 1|2 dx, (5.2.5)

for some suitable λ ≥ 0. Then, it is possible to use the minimizing movement scheme ([13,103])
in order to build a solution to this gradient flow in the Wasserstein space; that is, for any τ > 0
we find by recursion a sequence of minimizers (µkτ ) for the functional

ν → 1
2τ W

2
2 (µk−1

τ , ν) + Φλ(ν),

we construct a piecewise constant interpolation in time, and then we pass to the limit as τ → 0.
The key idea of [18] is instead to consider signed measures, and to apply the minimizing

movement scheme using a pseudo-distance, which is required to be lower semicontinuous and
bounded from below by an actual distance. More precisely, if we let

µ, ν ∈Mκ,M(Ω) := {µ ∈M(Ω) : µ(Ω) = κ, |µ|(Ω) ≤M},

such that |ν|(Ω) ≤ |µ|(Ω), then it is possible to define the functional W2
2 (ν, µ) as

inf{W 2
2 (σ1, µ

+) +W 2
2 (σ2, µ

−) : σ1, σ2 ∈M+(Ω), σ1 − σ2 = ν, σ1(Ω) = µ+(Ω), σ2(Ω) = µ−(Ω)},
(5.2.6)

2Unless otherwise stated, in this chapter the operators ∇,div,∆ are intended to be acting on the x variable.
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where µ+ and µ− are the positive and negative part of the measure µ, so that µ = µ+−µ− and
|µ| = µ++µ−. It is clear that this functional is not symmetric in general, unless |ν|(Ω) = |µ|(Ω),
since in this latter case ν+(Ω) = µ+(Ω) and ν−(Ω) = µ−(Ω). Thus, in such a case the only
couple (σ1, σ2) which we can choose is (ν+, ν−), and the pseudo-distance W2 reduces to

W2(ν, µ) =
√
W 2

2 (ν+, µ+) +W 2
2 (ν−, µ−),

which is the 2-Wasserstein distance on the product spaceM+
α (Ω)×M+

β (Ω), where α = µ+(Ω),
β = µ−(Ω) and

M+
α (Ω) := {θ ∈M+(Ω) : θ(Ω) = α}. (5.2.7)

One can also show that W2 does not satisfy the triangle inequality in general. However,
these two properties are not really essential for the minimizing movement scheme, while it
is relevant that W2 is lower semicontinuous with respect to weak convergence of measures.
We refer to [18, 114] for investigations on other notions of pseudo-distances for signed Radon
measures.

Then, following [18] we can consider the following discrete minimization problem: for a
given µ ∈Mκ,M(Ω) and τ > 0, solve for

min
ν∈Mκ,M (Ω),|ν|(Ω)≤|µ|(Ω)

Φλ(ν) + 1
2τW

2
2 (ν, µ). (5.2.8)

The strategy is to consider a perturbed functional where the energy is given by

Φδ
λ(ν) = Φλ(ν) + δ

∫
Ω

(ν̂)4 dx, (5.2.9)

for δ > 0, where ν̂ := χΩν and we identify ν with its density when ν � L 2, with a little
abuse of notation. We also let ν̃ := χ∂Ων. It is then proved that the perturbed minimization
problem admits a solution µδτ and that any limit point as δ → 0 is a solution to (5.2.8). The
Euler-Lagrange equations for the perturbed problem allow us to show, by an entropy argument,
that, if the initial datum is Lp regular enough (p ≥ 4), then the solution to the perturbed and
unperturbed problem preserves that Lp regularity.

Now, in order to deal with the boundary, the key idea of the discrete time minimization is
to start by considering the interior part of the previous minimum and then adding its boundary
part to the new step. Given a time step τ > 0 and an initial datum µ0

τ = µ0 ∈ Mκ,M(Ω) ∩
H−1(Ω), assuming that the k-step µkτ has already been defined, we set νk+1

τ to be the minimizer
of

min
ν∈Mκ′,M (Ω),|ν|(Ω)≤|µ̂kτ |(Ω)

Φλ(ν) + 1
2τW

2
2 (ν, µ̂kτ ),

where κ′ = µ̂kτ (Ω). Then we let µk+1
τ := νk+1

τ + µ̃kτ ∈ Mκ,M(Ω) and we define the piecewise
constant interpolation µ̄τ (t) := µdt/τeτ for any t ≥ 0. After having found a discrete C0,1/2

estimate, we see that there exists a sequence τn → 0 and a measure µ(t) ∈Mκ,M(Ω) such that
µ̄τn(t) converges weakly to µ(t), preserving the uniform bound in L4(Ω) if µ0 ∈ L4(Ω).

Finally, calculation made ’by hand’, employing again the Euler-Lagrange equations for the
discrete minimization problem, allowed the authors to prove their main result, [18, Theorem
1.1].

Theorem 5.2.1. Let µ0 ∈ L4(Ω). The minimizing movement scheme produces a signed measure
µ(t) ∈ L4(Ω) which satisfies µ(0) = µ0 and

d

dt
µ(t)− div(χΩ∇hµ(t)ρ(t)) = 0 in the duality with C∞c ((0,+∞)× R2), (5.2.10)
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where ρ(t) is a suitable positive measure satisfying ρ(t) ≥ |µ(t)| in Ω.
More precisely, there exist two positive measures on Ω, ρ1(t), ρ2(t), and a positive measure

σ = σµ on (0,+∞)× Ω such that µ(t) = ρ1(t)− ρ2(t), ρ(t) = ρ1(t) + ρ2(t) and
d
dt
ρ1(t)− div(χΩ∇hµ(t)ρ1(t)) = −σ(t)

d
dt
ρ2(t) + div(χΩ∇hµ(t)ρ2(t)) = −σ(t)

in the duality with C∞c ((0,+∞)× R2). (5.2.11)

It is possible to see that, if µ0 is positive, then µ(t) is positive and ρ(t) = µ(t) (and so,
ρ1(t) = µ(t), ρ2(t) = 0), coherently with the results stated in [21]. It is conjectured that this
scheme could be improved to obtain ρ(t) = |µ(t)|, so that ρ1(t) = µ+(t) and ρ2(t) = µ−(t).
However, up to now it is not known whether ρ1 and ρ2 are orthogonal in the general case.
On the other hand, the measure σ takes into account the mass cancellation, but it still lacks
unfortunately an explicit expression.

A first attempt to characterize σ could be to ask for no mass cancellation (or vortex anni-
hilation, in the Ginzburg-Landau model framework). This idea has been carried out in [115],
where couples of positive measures with fixed mass and finite second moment are considered
instead of signed measures.

We summarize this approach as follows. Let Ω be a bounded domain in R2 with smooth
boundary (or Ω = R2) and let us define

M2
α(Ω) :=

{
µ ∈M+(Ω) : µ(Ω) = α,

∫
Ω
|x|2 dµ(x) <∞

}
.

Given an initial datum
(µ0

1, µ
0
2) ∈M2

α(Ω)×M2
β(Ω),

for some α, β ≥ 0, such that χΩ(µ0
1 − µ0

2) ∈ H−1(Ω), we want to find a couple of measures
(µ1(t), µ2(t)) which is a solution, in the duality with C∞c ((0,+∞)× R2), to

d
dt
µ1(t)− div(χΩ∇hµ(t)µ1(t)) = 0

d
dt
µ2(t) + div(χΩ∇hµ(t)µ2(t)) = 0

µ(t) = µ1(t)− µ2(t),
(5.2.12)

where hµ(t) is the solution, for any t > 0, to−∆hµ(t) = µ(t) in Ω
hµ(t) = 0 on ∂Ω,

(5.2.13)

which is a variant of (5.2.4). In this setting, the energy functional is defined has

(µ1, µ2)→ Φ(µ) := 1
2

∫
Ω
hµ dµ, (5.2.14)

where µ = µ1 − µ2 ∈M(Ω). It is clear that Φ does not see possible overlappings of µ1 and µ2,
since it depends only on the difference. We can also show that, if χΩµ ∈ H−1(Ω), an integration
by parts yields

Φ(µ) = 1
2

∫
Ω
|∇hµ|2 dx,

obtaining in this way strict convexity, nonnegativity and lower semicontinuity for Φ. In the case
Ω = R2, it is possible to obtain analogous properties with a slightly more complex argument.

In order to proceed, we apply the same minimizing movement scheme used in [18], with the
simplification that now W2 is just the 2-Wasserstein distance on the product spaceM2

α(Ω) ×
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M2
β(Ω). Therefore, given initial data (µ0

1, µ
0
2) ∈M2

α(Ω)×M2
β(Ω) with finite energy and second

moment (and no boundary part), and a time step τ > 0, we need to find (µ1)τ and (µ2)τ which
are solution to

min
(ν1,ν2)∈M2

α(Ω)×M2
β

(Ω)
Φ(ν1 − ν2) + 1

2τ (W 2
2 (ν1, µ

0
1) +W 2

2 (ν2, µ
0
2)). (5.2.15)

Arguing again very similarly to [18], in [115] it is proved that Lp regularity, for p ≥ 4, is
preserved passing from the perturbed problem to the unperturbed one, where the perturbed
energy is given by

Φδ(µ) = Φ(µ) + δ
∫

Ω
(µ̂1)4 dx+ δ

∫
Ω

(µ̂2)4 dx.

Thanks to the Euler-Lagrange equations for the perturbed minimization problem, it is pos-
sible to obtain entropy estimates as in [18] and then to show that the weak limit of the piecewise
constant interpolation is indeed a solution of (5.2.12). In order to build such interpolation, we
consider initial data (µ0

1, µ
0
2) ∈ M+

α (Ω) ×M+
β (Ω) with finite energy and second moment, and

a time step τ > 0, and we find recursively (ν1)kτ and (ν2)kτ which are solution to

min
(ν1,ν2)∈M+

αk
(Ω)×M−

βk
(Ω)

Φ(ν1 − ν2) + 1
2τ (W 2

2 (ν1, (µ̂1)k−1
τ ) +W 2

2 (ν2, (µ̂2)k−1
τ )), (5.2.16)

where αk = (µ̂1)k−1
τ (Ω) ≤ α and βk = (µ̂2)k−1

τ (Ω) ≤ β. We then let

(µi)kτ = (νi)kτ + (µ̃i)k−1
τ , for i = 1, 2.

After having constructed a couple of piecewise constant interpolations as customary, it is
possible to pass to the limit for a suitable subsequence τn, thus finding a couple (µ1(t), µ2(t))
which is the weak limit of ((µ̄1)τn(t), (µ̄2)τn(t)). In this way, the following theorem, the main
result [115, Theorem 1.1], is proved.

Theorem 5.2.2. Let (µ0
1, µ

0
2) ∈ M+

α (Ω) ×M+
β (Ω) be such that χΩµ

0
i ∈ Lp(Ω), p ≥ 4 and i =

1, 2. Then there exists a weakly continuous map (µ1(t), µ2(t)) on [0,+∞), uniformly bounded
in Lp(Ω), satisfying µi(0) = µ0

i , i = 1, 2 and (5.2.12), where µ(t) = µ1(t)− µ2(t). In addition,
the following energy dissipation equality holds:

Φ(µ(t)) +
∫ t

s

∫
Ω
|∇hµ(r)|2 d(µ1(r) + µ2(r)) dr = Φ(µ(s)) (5.2.17)

for any t ≥ s ≥ 0.

It is plain to see that Theorem 5.2.2 is not affected by any of the uncertainties of Theorem
5.2.1, as a consequence of the absence of the dissipation term in (5.2.12). However, we want
to deal with the general case (5.1.1) for σ 6= 0: to this purpose, in the following section we
consider new types of distances between couples of nonnegative finite Radon measures.

5.3 The Hellinger-Kantorovich distance
Following the works [108,109], it is possible to redefine the framework of the minimizing move-
ment scheme itself, by passing from the product Wasserstein distance (or one of the possible
pseudodistances considered in [114]) to a version of the Hellinger-Kantorovich distance, defined
through an Onsager operator K.

The Onsager operators appear in the context of abstract gradient systems. A triple (X,F ,Ψ)
is called a gradient system if X is a Banach space, if the functional F : X → R ∪ {∞} has a
Fréchet subdifferentialDF(u) ∈ X∗ well defined on a suitable subset ofX, and if the dissipation
potential Ψ satisfies the following properties:
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• for any u ∈ X, Ψ(u, ·) : X → [0,+∞] is lower semicontinuous and convex;

• Ψ(u, 0) = 0.

In classical gradient systems, Ψ(u, ·) is a quadratic form; that is, there exists a symmetric and
positive (semi-)definite operator G(u) : X → X∗ (called the Riemannian operator) such that

Ψ(u, v) = 1
2〈G(u)v, v〉

for any u, v ∈ X.
If we denote by Ψ∗(u, ·) the Legendre-Fenchel transform of the dissipation potential, then

we can define the Onsager operator K as the symmetric and positive (semi-)definite operator
K(u) : X → X∗ such that

Ψ∗(u, v) = 1
2〈K(u)v, v〉

for any u, v ∈ X. It is possible to see that K(u) = G(u)−1 and K(u)−1 = G(u).
In this setting, the gradient evolution is given by the equation

d

dt
u = −K(u)DF(u).

In our context3,

X =
{

(µ1, µ2) ∈M+(Rn)×M+(Rn) :
∫
Rn
|x|2 dµi(x) <∞, i = 1, 2

}
,

and, letting µ := µ1 − µ2, we consider as the free energy

Φ(µ1, µ2) := 1
2

∫
Rn

(V ∗ µ) dµ+ µ1(Rn) + µ2(Rn), (5.3.1)

which is the sum of an interaction energy, for some suitably regular potential V , and the so-
called self energy. If n = 2, the interaction part can be for instance chosen to be the standard
Dirichlet energy, as in [115],∫

R2
hµ(x) dµ(x) = − 1

4π

∫
R2×R2

log |x− y| dµ(y) dµ(x)

for hµ defined as in (5.2.13) with Ω = R2 and no boundary conditions, and µ ∈ L1(R2)∩L2(R2)
with finite second moment. As for the second term in the energy, it has been conjectured to
be the Γ-limit of a sequence of discrete energies arising from dislocation models, under some
suitable assumptions (see [153, Conjecture 5.5.1]).

Then, we consider a type of Onsager operator which arises in reaction-diffusion systems (for
a detailed study, we refer to [122]):

K(µ1, µ2)ξ := −div(M(µ1, µ2)∇ξ) + H(µ1, µ2)ξ, (5.3.2)

where M is a symmetric and positive definite matrix and H is the reaction matrix.
We choose

M(µ1, µ2) :=
(
µ1 0
0 µ2

)
(5.3.3)

3For the purpose of modelling the dynamics of the densities of dislocations it would be enough to consider
the dimension n = 2; however, the abstract gradient flow structure allows us to deal directly with Rn.
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and
H(µ1, µ2) := 1

2f(µ1, µ2)
(

1 1
1 1

)
, (5.3.4)

where f : [0,+∞) × [0,+∞) → [0,+∞) is a continuous function such that f(x, y) = f(y, x)
and f(x, 0) = f(0, y) = 0.

Now, we see that, at least formally, the Fréchet differential of Φ is given by

DΦ(µ1, µ2) =
(

1
−1

)
(V ∗ µ) +

(
χ{µ1>0}
χ{µ2>0}

)
. (5.3.5)

Hence, we have that the (formal) gradient system evolution is given by
d
dt
µ1 = div(µ1∇((V ∗ µ) + χ{µ1>0}))− 1

2f(µ1, µ2)(χ{µ1>0} + χ{µ2>0})
d
dt
µ2 = div(µ2∇(−(V ∗ µ) + χ{µ2>0}))− 1

2f(µ1, µ2)(χ{µ1>0} + χ{µ2>0}),

which reduces to 
d
dt
µ1 = div(µ1∇(V ∗ µ))− f(µ1, µ2)

d
dt
µ2 = −div(µ2∇(V ∗ µ))− f(µ1, µ2),

(5.3.6)

since clearly f(µ1, µ2) 6= 0 only if µ1 > 0 and µ2 > 0, and, at least formally, the distribution
Dχ{µi>0} is supported on the set {µi = 0}; thus µiDχ{µi>0} = 0. In this way, we see that the
diffusion part of K deals only with the interaction energy, while the reaction part only with the
self energy: therefore, there is a decoupling, as if the two parts of the Onsager operator and
the energy have orthogonal roles.

Since K is the inverse of the metric tensor G, it can be used to define a Hellinger-Kantorovich
distance (for a detailed exposition, we refer to [108]) as

D2
K((ν1, ν2), (µ1, µ2)) := inf

{ ∫ 1

0

∫
Rn
∇ξ : M(ρ1, ρ2)∇ξ + ξ ·H(ρ1, ρ2)ξ ds,

d

ds

(
ρ1
ρ2

)
= −div (M(ρ1, ρ2)∇ξ) + H(ρ1, ρ2)ξ,

ρi(0) = µi, ρi(1) = νi, i = 1, 2
}
.

The action minimization which defines this distance can be rewritten slightly more explicitly
in the following way:

D2
K((ν1, ν2), (µ1, µ2)) := inf

{ ∫ 1

0

∫
Rn
ρ1|∇ξ1|2 + ρ2|∇ξ2|2 + 1

2f(ρ1, ρ2)(ξ1 + ξ2)2 ds, (5.3.7)

d

ds

(
ρ1
ρ2

)
= −div

(
ρ1∇ξ1
ρ2∇ξ2

)
+ 1

2f(ρ1, ρ2)
(
ξ1 + ξ2
ξ1 + ξ2

)
,

ρi(0) = µi, ρi(1) = νi, i = 1, 2
}
.

In order to derive rigorously the existence of a solution to (5.3.6), we can use this distance
and the energy Φ, and then apply the machinery of the minimizing movements scheme. To
this purpose, we first study more in detail the properties of a slightly modified version of the
distance DK.
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5.4 The Benamou-Brenier formulation of DK

We define a distance of Hellinger-Kantorovich type for couples of measures

(µ1, µ2), (ν1, ν2) ∈M+(Rn)×M+(Rn).

To this purpose, we consider a continuous concave function f : [0,+∞) × [0,+∞) → [0,+∞)
satisfying

f(x, y) = f(y, x) > 0 for x, y > 0, f(x, 0) = f(0, y) = 0 and f(x, y) ≤ C(x+ y), (5.4.1)

for some constant C > 0; and we denote by f∞ its recession function, given by

f∞(x, y) := lim
z→+∞

f(zx, zy)
z

.

Clearly, f∞(0, y) = f∞(x, 0) = 0 and 0 ≤ f∞(x, y) ≤ C(x+ y).
Then, we set

D2
K((ν1, ν2), (µ1, µ2)) := inf

{ ∫ 1

0

(∫
Rn
|v1|2 dρ1,t + |v2|2 dρ2,t + |ξ|

2

2 df(ρ1,t, ρ2,t)
)
dt, (5.4.2)

d

dt

(
ρ1
ρ2

)
= −div

(
v1ρ1
v2ρ2

)
+ ξ

2f(ρ1, ρ2)
(

1
1

)
, (5.4.3)

(ρ1, ρ2) ∈ C([0, 1];M+(Rn)×M+(Rn)), (5.4.4)

ρi,0 = νi, ρi,1 = µi, i = 1, 2
}
, (5.4.5)

where f :M+(Rn)×M+(Rn)→M+(Rn) is the map given by

f(ρ1, ρ2) = f

(
dρac

1
dx

,
dρac2
dx

)
dx+ f∞

(
dρs

1
d|(ρs

1, ρ
s
2)| ,

dρs
2

d|(ρs
1, ρ

s
2)|

)
d|(ρs

1, ρ
s
2)|.

We stress the fact that (5.4.3) and (5.4.5) have to be intended in a distributional sense; that
is,

−
∫ 1

0

∫
Rn

∂ϕ(t, x)
∂t

dρi,t(x) dt =
∫ 1

0

∫
Rn
∇ϕ(t, x) · vi(t, x) dρi,t(x) dt+ (5.4.6)

+
∫
Rn
ϕ(t, x)ξ(t, x)

2 df(ρ1,t(x), ρ2,t(x)) dt+

+
∫
Rn
ϕ(0, x) dνi(x)−

∫
Rn
ϕ(1, x) dµi(x)

for i = 1, 2 and any ϕ ∈ C∞c ([0, 1]×Rn). Actually, thanks to a simple regularization argument
via convolution, it is possible to show that the test functions ϕ may be taken in C1

c ([0, 1]×Rn).
In addition, if we select test functions of the form ϕ(t, x) = η(t)ζ(x), for some η ∈ C∞c ([0, 1])
and ζ ∈ C∞c (Rn), then (5.4.6) reduces to

d

dt

∫
Rn
ζ(x) dρi,t(x) =

∫
Rn
∇ζ(x) · vi(t, x) dρi,t(x) + 1

2

∫
Rn
ζ(x)ξ(t, x) df(ρ1,t(x), ρ2,t(x)) (5.4.7)

for i = 1, 2, all t ∈ (0, 1) and any ζ ∈ C∞c (Rn). Actually, this formulation is equivalent to
(5.4.6), by the density of the space Span 〈{ηζ : η ∈ C∞c ([0, 1]), ζ ∈ C∞c (Rn)}〉 in C1

c ([0, 1]×Rn).
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Remark 5.4.1. We observe that, if µi(Rn) = νi(Rn) for i = 1, 2, then

D2
K((ν1, ν2), (µ1, µ2)) ≤ W 2

2 (ν1, µ1) +W 2
2 (ν2, µ2).

Indeed, we can choose ξ = 0 and ρ1, ρ2, v1, v2 to be the solutions of the continuity equations

d

dt
ρi = −div(viρi), i = 1, 2,

which are well known to exist, thanks to the Benamou-Brenier representation of the Wasserstein
distance (for which we refer for instance to [13, Chapter 8]).

For the scope of this section, it is useful to recall the notion of narrow convergence of
nonnegative finite Radon measures.

Definition 5.4.2. Let µ, µk ∈ M+(Rn), k ∈ N. Then we say that µk narrowly convergence to
µ as k → +∞ if

lim
k→+∞

∫
Rn
ϕdµk =

∫
Rn
ϕdµ

for any ϕ ∈ Cb(Rn).

Remark 5.4.3. Given a sequence of nonnegative finite Radon measures (σk1 , σk2) which is
narrowly converging to some (σ1, σ2), then, for any converging subsequence of (f(σk1 , σk2))k
(which we do not relabel), we have

lim
k→+∞

∫
Rn
ψ df(σk1 , σk2) ≤

∫
Rn
ψ df(σ1, σ2), (5.4.8)

for any ψ ∈ Cb(Rn), ψ ≥ 0. This means the f is a narrowly upper semicontinuous nonnegative
measure valued map. In particular, (5.4.8) holds for ψ ≡ 1, so that we have

lim
k→+∞

∫
Rn
df(σk1 , σk2) ≤

∫
Rn
df(σ1, σ2). (5.4.9)

Indeed, f(σk1 , σk2)(Rn) ≤ C(σk1 + σk2)(Rn) ≤ C̃, since the sequence (σk1 , σk2) is narrowly
converging. Hence, there exists a narrowly converging subsequence whose limit we denote by
fσ. By concavity, we have

f(x, y) = inf
j
{ajx+ bjy + cj},

f∞(x, y) = inf
j
{ajx+ bjy},

for some suitable sequences of real numbers (aj), (bj), (cj) (see [11, Proposition 2.31 and Lemma
2.33]).

Then, for any ψ ∈ Cb(Rn), ψ ≥ 0, we have∫
Rn
ψ dfσ = lim

k→+∞

∫
Rn
ψ f(σk1 , σk2) ≤ lim

k→+∞

∫
Rn
ψ d(ajσk1 + bjσ

k
2 + cj) =

∫
Rn
ψ d(ajσ1 + bjσ2 + cj).

Thus, by splitting the σi’s in absolutely continuous and singular parts and passing to the
infimum in j ∈ N, we conclude our argument.

In order to prove that the functional DK is indeed a distance, we exploit an alternative
representation. To this purpose, we recall the notion of generalised product of Radon measures
(for which we refer to [11, Section 2.5]).
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Definition 5.4.4. Let U ⊂ Rk, V ⊂ Rm be open sets, µ ∈ M+(U), and z → νz a function
which associates to each z ∈ U a finite Radon measure νz on V. We say that this map is
µ-measurable if z → νz(B) is µ-measurable for any B ∈ B(V ).

If we assume in addition that ∫
U
|νz|(V ) dµ(z) <∞,

we define the generalized product µ⊗ νz as the finite Radon measure on U × V which satisfies

µ⊗ νz(B) =
∫
U

(∫
V
χB(z, y) dνz(y)

)
dµ(z) for any B ∈ B(U × V ).

Thanks to [11, Proposition 2.26], we know that the measure σ := µ ⊗ νz is well defined,
belongs toM(U × V ) and satisfies∫

U×V
ψ(z, y) dσ(z, y) =

∫
U

(∫
V
ψ(z, y) dνz(y)

)
dµ(z)

for any bounded Borel function ψ : U × V → R. In addition, if π : Rk × Rm → Rn is the
projection on the first coordinate, π(z, y) = z, then π#σ = νz(Rn)µ.

In view of this definition, we set

σi := L 1 (0, 1)⊗ ρi,t, i = 1, 2 and Σ := L 1 (0, 1)⊗ f(ρ1,t, ρ2,t). (5.4.10)

Then, we define the following Radon measures on (0, 1)× Rn:

wi := viσi, for i = 1, 2, and η := ξΣ. (5.4.11)

Thanks to (5.4.10) and (5.4.11), we see that
∫ 1

0

(∫
Rn
|v1|2dρ1 + |v2|2dρ1 + |ξ|

2

2 df(ρ1, ρ2)
)
dt =

∫ 1

0

∫
Rn

∣∣∣∣∣dw1

dσ1

∣∣∣∣∣
2

dσ1 +
∣∣∣∣∣dw2

dσ2

∣∣∣∣∣
2

dσ2 + 1
2

∣∣∣∣∣ dηdΣ

∣∣∣∣∣
2

dΣ.

Arguing in this way, we can give an alternative definition of DK:

D̃K
2
((ν1, ν2), (µ1, µ2)) := inf


∫ 1

0

∫
Rn

∣∣∣∣∣dw1

dσ1

∣∣∣∣∣
2

dσ1 +
∣∣∣∣∣dw2

dσ2

∣∣∣∣∣
2

dσ2 + 1
2

∣∣∣∣∣ dηdΣ

∣∣∣∣∣
2

dΣ

 , (5.4.12)

where the infimum is taken over all the σ1, σ2,Σ ∈M+((0, 1)×Rn), w1, w2 ∈M((0, 1)×Rn;Rn)
and η ∈M((0, 1)× Rn) such that

d

dt
σi = −divwi + η

2 + (δ0 ⊗ νi − δ1 ⊗ µi), i = 1, 2. (5.4.13)

In addition, if π̃(t, x) = t, we require that

π̃#σi � L 1 (0, 1), dπ̃#σi
dL 1 (0, 1) ∈ L

∞((0, 1)), i = 1, 2, (5.4.14)

and

π̃#Σ� L 1 (0, 1),
(

dπ̃#Σ
dL 1 (0, 1)

)
t

Σt = f
(

dπ#σ1

dL 1 (0, 1)σ1,t,
dπ#σ2

dL 1 (0, 1)σ2,t

)
, (5.4.15)

where σi,t, i = 1, 2 and Σt for t ∈ (0, 1) are positive finite Radon measures on Rn coming from
the disintegration of σi and Σt, respectively, so that σi = π̃#σi ⊗ σi,t and Σ = π̃#Σ ⊗ Σt (see
[11, Theorem 2.28]).
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We remark that (5.4.13) has to be intended in a distributional sense; that is, for any ψ ∈
C1
c ([0, 1]× Rn) and i = 1, 2, we have

−
∫ 1

0

∫
Rn

∂ψ(t, x)
∂t

dσi(t, x) =
∫ 1

0

∫
Rn
∇ψ(t, x) · dwi(t, x) +

∫ 1

0

∫
Rn

ψ(t, x)
2 dη(t, x)+ (5.4.16)

+
∫
Rn
ψ(0, x) dνi −

∫
Rn
ψ(1, x) dµi.

It is plain to see that (5.4.16) is equivalent to (5.4.6), thanks to (5.4.10) and (5.4.11). There-
fore, it seems natural to wonder whether DK and D̃K are indeed different representations of
the same distance. To this purpose, we need to show that, if there exists weak solutions
ρ1, ρ2 ∈ L∞((0, 1);M+(Rn)) of (5.4.3), then they admit a continuous representative, under
some additional assumptions on the velocity fields v1, v2 and the reaction factor ξ. This techni-
cal result and its proof are very similar to their analogues for the continuity equation as stated
in [13, Lemma 8.1.2].

Lemma 5.4.5. Let (ρ1, ρ2, v1, v2, ξ) be a Borel family of measures satisfying (5.4.7) and

ρi ∈ L∞((0, 1);M+(Rn)), |vi| ∈ L1((0, 1);L1(Rn; ρi)), ξ ∈ L1((0, 1);L1(Rn; f(ρ1, ρ2))),
(5.4.17)

for i = 1, 2.
Then there exist continuous curves ρ̃i ∈ C([0, 1];M+(Rn)) such that ρ̃i,t = ρi,t for L 1-a.e.

t ∈ (0, 1). In addition, if ζ ∈ C1
c ([0, 1]× Rn) and 0 ≤ t1 ≤ t2 ≤ 1, for i = 1, 2 we have∫

Rn
ζ(t2, x) dρ̃i,t2(x)−

∫
Rn
ζ(t1, x) dρ̃i,t1(x) =

∫ t2

t1

∫
Rn

∂ζ

∂t
(t, x) dρi,t(x) dt (5.4.18)

+
∫ t2

t1

∫
Rn
∇ζ(t, x) · vi(t, x) dρi,t(x) dt

+
∫ t2

t1

∫
Rn

1
2ζ(t, x) ξ(t, x) df(ρ1,t(t), ρ2,t(t)) dt.

Proof. For any fixed ζ ∈ C∞c (Rn) and i = 1, 2, we define the maps

Pi(ζ, t) :=
∫
Rn
ζ(x) dρi,t(x), t ∈ (0, 1),

which are just the representation of the action of the finite Radon measure ρi,t(·) on C∞c (Rn) ⊂
Cc(Rn). Thanks to (5.4.7) and (5.4.17), it follows that Pi(ζ, ·) is well defined and belongs to
W 1,1(0, 1), with weak derivative given by

Ṗi(ζ, t) =
∫
Rn
∇ζ(x) · vi(t, x) dρi,t(x) + 1

2

∫
Rn
ζ(x)ξ(t, x) df(ρ1,t(x), ρ2,t(x)). (5.4.19)

In addition, we get
|Ṗi(ζ, t)| ≤ ‖ζ‖C1(Rn)(Vi(t) + Ξ(t)), (5.4.20)

where

‖ζ‖C1(Rn) := max{‖ζ‖L∞(Rn); ‖∇ζ‖L∞(Rn;Rn)},

Vi(t) :=
∫
Rn
|vi(t, x)| dρi,t(x),

Ξ(t) :=
∫
Rn
|ξ(t, x)| df(ρ1,t(x), ρ2,t(x)).

We notice that Vi,Ξ ∈ L1((0, 1)), because of (5.4.17), so that Vi(t),Ξ(t) <∞ for any t ∈ FVi,Ξ,
with L 1((0, 1) \ FVi,Ξ) = 0. Hence, (5.4.20) implies that, for any t ∈ FVi,Ξ, Pi(·, t) can be
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extended to a continuous linear functional on C1
c (Rn). If we denote by LPi(ζ,·) the set of Lebesgue

points of Pi(ζ, ·), we know that L 1((0, 1) \ LPi(ζ,·)) = 0. Hence, thanks to the separability of
C1
c (Rn) with respect to the norm ‖ · ‖C1(Rn), we can find a countable dense set Γ and define

LΓ,i := ⋂
ζ∈Γ LPi(ζ,·). If we set Li := FVi,Ξ ∩ LΓ,i is clear that L 1((0, 1) \ Li) = 0, and we notice

that the restriction of Pi to Li is a uniformly continuous family of linear bounded functionals
on C1

c (Rn), since (5.4.20) yields

|Pi(ζ, t)− Pi(ζ, s)| ≤ ‖ζ‖C1(Rn)

∫ t

s
Vi(u) + Ξ(u) du (5.4.21)

for any ζ ∈ C1
c (Rn) and any s, t ∈ Li, s < t. Thus, {Pi(·, t)}t∈Li can be extended to a continuous

curve {P̃i(·, t)}t∈(0,1) in the dual of C1
c (Rn): it is enough now to prove that {P̃i(·, t)}t∈(0,1) belongs

indeed to the dual of Cc(Rn) in order to conclude the existence of a continuous representative
ρ̃i,t of ρi,t. To this purpose, we claim that the uniformly bounded family {Pi(·, t)}t∈Li is also
uniformly tight: then, by applying Prokhorov’s theorem [27, Theorem 8.6.2], we conclude that
any accumulation point of that family has to be a finite nonnegative Radon measure, so that
{P̃i(·, t)}t∈(0,1) can be actually represented by a continuous curve {ρ̃i,t}t∈(0,1) ⊂M+(Rn).

In order to prove the claim, we start by noticing that Pi(·, t) can be extended to a functional
on C1

b (Rn), thanks to (5.4.17). Then, let us consider a family of cutoff functions ζk ∈ C∞c (Rn)
satisfying

0 ≤ ζk ≤ 1, ζk(x) ≡ 1 if |x| ≤ k, ζk(x) ≡ 0 if |x| ≥ k + 1, |∇ζk| ≤ 2.

Without loss of generality, we can assume that ζk ∈ Γ for any k ∈ N. By (5.4.19), for any
k ∈ N and s, t ∈ Li, s < t, we have

|Pi(1− ζk, t)− Pi(1− ζk, s)| ≤ 2
∫ 1

0

∫
B(0,k+1)\B(0,k)

|vi(u, x)| dρi,u(x) du

+ 1
2

∫ 1

0

∫
Rn\B(0,k)

|ξ(u, x)| df(ρ1,u(x), ρ2,u(x)) du.

By (5.4.17), it is clear that the right hand side of this inequality goes to zero as k → +∞, so
that, for any ε > 0 there exists k0 ∈ N such that

|Pi(1− ζk, t)− Pi(1− ζk, s)| < ε

for any k ≥ k0. Analogously, Pi(1− ζk, s) < ε for any k ≥ k1, for some k1 ∈ N. Hence, by the
triangle inequality, we have∫

Rn\B(0,k+1)
dρi,t(x) ≤ Pi(1− ζk, t) < 2ε

for any t ∈ Li and k ≥ max{k0, k1}. This proves the uniform tightness of the family {ρi,t}t∈Li ,
and enables us to apply Prokhorov’s theorem.

Finally, we pass to the proof of (5.4.18). Let at first 0 < t1 ≤ t2 < 1. We select ϕ ∈
C1
c ([0, 1]× Rn) and a sequence ηk ∈ C∞c (t1, t2) satisfying

0 ≤ ηk(t) ≤ 1, ηk(t)→ χ(t1,t2)(t) for any t ∈ (t1, t2), η′kL 1 (0, 1) ⇀ δt1 − δt2 .

Then, using (5.4.7) we get

0 =
∫ 1

0

∫
Rn

(∂t(ηkϕ) +∇(ηkϕ) · vi) dρi,t dt+ 1
2

∫ 1

0

∫
Rn
ηkϕξ df(ρ1,t, ρ2,t) dt

=
∫ 1

0
ηk

(∫
Rn

(∂tϕ+∇ϕ · vi) dρi,t + 1
2

∫
Rn
ϕξ df(ρ1,t, ρ2,t)

)
dt+

∫ 1

0
η′k

∫
Rn
ϕdρ̃i,t dt.

Thus, we conclude by passing to the limit in k → +∞ and employing the continuity of ρ̃i,t.
Then, if we have for t1 = 0 (or t2 = 1), we employ (5.4.18) with t1 = 1/k (or t2 = 1 − 1/k,
respectively), and pass to the limit in k → +∞ using again the continuity of ρ̃i,t.
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Corollary 5.4.6. DK = D̃K.

Proof. Given ρ1, ρ2, v1, v2, ξ satisfying (5.4.3), (5.4.4) and (5.4.5), it is plain to see that, if we
define σ1, σ2,Σ, w1, w2, η as in (5.4.10) and (5.4.11), then (5.4.13) is satisfied, in view of (5.4.6)
and (5.4.16). In addition, for i = 1, 2,

π̃#σi = ρi,t(Rn) L 1 (0, 1),

which gives us (5.4.14), thanks to (5.4.4). This shows that DK ≥ D̃K, which in particular means
that, if D̃K = +∞, then DK = +∞. Without loss of generality, let ν1, ν2, µ1, µ2 ∈ M+(Rn) be
such that D̃K((ν1, ν2), (µ1, µ2)) < ∞. Given σ1, σ2,Σ, w1, w2, η satisfying (5.4.13) and (5.4.14),
let us assume that ∫ 1

0

∫
Rn

∣∣∣∣∣dw1

dσ1

∣∣∣∣∣
2

dσ1 +
∣∣∣∣∣dw2

dσ2

∣∣∣∣∣
2

dσ2 + 1
2

∣∣∣∣∣ dηdΣ

∣∣∣∣∣
2

dΣ <∞.

In particular, since σi((0, 1)× Rn) <∞, i = 1, 2, this means that∣∣∣∣∣dwidσi

∣∣∣∣∣ ∈ L1((0, 1)× Rn;σi),
dη

dΣ ∈ L
1((0, 1)× Rn; Σ),

for i = 1, 2. Then, we consider the disintegration of the measures σi, i = 1, 2: by [11, Theorem
2.28], we know that there exist positive finite Radon measures σi,t for t ∈ (0, 1) such that
t → σi,t is π̃#σi-measurable and σi,t(Rn) = 1 for π̃#σi-a.e. t ∈ (0, 1). However, thanks to
(5.4.14), we see that π̃#σi � L 1 (0, 1), with density in L∞((0, 1)), so that

dπ#σi
dL 1 (0, 1)σi,· ∈ L

∞((0, 1);M+(Rn)).

Now, we set

ρi,t :=
(

dπ#σi
dL 1 (0, 1)

)
t

σi,t, vi := dwi
dσi

, i = 1, 2, and ξ := dη

dΣ ,

and we employ (5.4.15) to show that

Σ = π̃#Σ⊗ Σt = L 1 (0, 1)⊗
(

dπ̃#Σ
dL 1 (0, 1)

)
t

Σt = L 1 (0, 1)⊗ f(ρ1,t, ρ2,t),

where Σt comes from the disintegration of Σ, in analogous way as we did above with σi,t.
Thus, in this way we obtain a weak solution to (5.4.3) and (5.4.5) satisfying the assumptions
of Lemma 5.4.5, which implies the existence of a representative continuous in t for ρ1,t and ρ2,t.
This ends the proof.

Since we showed that to any measure σi, i = 1, 2, as in the definition of D̃K can be associated
a continuous curve of measures ρi,t, from this point on we set σi := L 1 (0, 1) ⊗ ρi,t, i = 1, 2.
Analogously, we set Σ(ρ1, ρ2) := L 1 (0, 1)⊗ f(ρ1,t, ρ2,t).

The main advantage of the different representation given by (5.4.12) lies in the possibility
to achieve a form of weak lower semicontinuity for the the action functional

A(ρ1, ρ2, w1, w2, η) :=
∫ 1

0

∫
Rn

∣∣∣∣∣dw1

dσ1

∣∣∣∣∣
2

dρ1 +
∣∣∣∣∣dw2

dσ2

∣∣∣∣∣
2

dρ2 + 1
2

∣∣∣∣∣ dη

dΣ(ρ1, ρ2)

∣∣∣∣∣
2

df(ρ1, ρ2)
 dt
(5.4.22)

for ρi ∈ C([0, 1];M+(Rn)), wi ∈ M((0, 1) × Rn;Rn), with wi � σi, and η ∈ M((0, 1) × Rn),
with η � Σ(ρ1, ρ2).

To this purpose, we recall a technical lemma on a joint lower semicontinuity properties of
sequence of measures and functions.
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Lemma 5.4.7. Let (X, d) be a metric space and µk, µ ∈M+(X). If µk ⇀ µ and fk ∈ L2(X;µk)
with ‖fk‖L2(X;µk) ≤ C < ∞ for any k, then there exists a measure σ such that, up to a
subsequence,

1. fkµk ⇀ σ,

2. σ = fµ for some f ∈ L2(X,µ), and so σ � µ,

3. ‖f‖L2(X;µ) ≤ lim inf
k→+∞

‖fk‖L2(X;µk).

It is possible to show (see [11, Theorem 2.34 and Example 2.36]) that this result is equivalent
to the joint lower semicontinuity with respect to the weak convergence of the functional

F (σ, µ) :=


∫
X

∣∣∣∣∣σµ
∣∣∣∣∣
2

dµ if σ � µ,

+∞ otherwise.

Lemma 5.4.8. Let

ρk1,t, ρ
k
2,t ∈ L∞((0, 1);M+(Rn)), σki = L 1 (0, 1)⊗ ρki,t,

wk1 , w
k
2 ∈M((0, 1)× Rn;Rn), wki � σki , i = 1, 2,
ηk ∈M((0, 1)× Rn), ηk � Σ(ρk1, ρk2)

for any k, with

lim inf
k→+∞

‖ρki,·(Rn)‖L∞((0,1)) <∞,

lim inf
k→+∞

∫ 1

0

∫
Rn

∣∣∣∣∣dwkidσki

∣∣∣∣∣
2

dρki dt <∞,

lim inf
k→+∞

∫ 1

0

∫
Rn

∣∣∣∣∣ dηk

dΣ(ρk1, ρk2)

∣∣∣∣∣
2

df(ρk1, ρk2) ds <∞.

If (σk1 , σk2 , wk1 , wk2 , ηk) ⇀ (σ1, σ2, w1, w2, η), then we have

1. σi = L 1 (0, 1)⊗ ρi,t, for some ρi ∈ L∞((0, 1);M+(Rn)) with

‖ρi,·(Rn)‖L∞((0,1)) ≤ lim inf
k→+∞

‖ρki,·(Rn)‖L∞((0,1)), i = 1, 2; (5.4.23)

2. wi � σi, with

∫ 1

0

∫
Rn

∣∣∣∣∣dwidσi

∣∣∣∣∣
2

dρi dt ≤ lim inf
k→+∞

∫ 1

0

∫
Rn

∣∣∣∣∣dwkidσki

∣∣∣∣∣
2

dρki dt, i = 1, 2; (5.4.24)

3. η � Σ(ρ1, ρ2), with

∫ 1

0

∫
Rn

∣∣∣∣∣ dη

dΣ(ρ1, ρ2)

∣∣∣∣∣
2

df(ρ1, ρ2) dt ≤ lim inf
k→+∞

∫ 1

0

∫
Rn

∣∣∣∣∣ dηk

df(ρk1, ρk2)

∣∣∣∣∣
2

dΣ(ρk1, ρk2) ds. (5.4.25)

Proof. Since σki ⇀ σi, then π̃#σ
k
i ⇀ π̃#σi. In addition, π̃#σ

k
i = ρki,·(Rn)L 1 (0, 1), and, up

to a subsequence, ρki,·(Rn) is uniformly bounded in L∞((0, 1)), and so in L2((0, 1)). Hence, we
may apply Lemma 5.4.7 to the sequence of functions ρki,·(Rn) and of measures µk = L 1 (0, 1),
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in order to get π̃#σi � L 1 (0, 1). Exploiting the disintegration of the measure σi (see [11,
Theorem 2.28]) as in the proof of Corollary 5.4.6, we obtain

σi = π̃#σi ⊗ σi,t,

for some finite nonnegative Radon measures σi,t satisfying σi,t(Rn) = 1 for L 1-a.e. t ∈ (0, 1),
thanks to the absolute continuity π̃#σi � L 1 (0, 1). This allows us to define

ρi,t :=
(

dπ#σi
dL 1 (0, 1)

)
t

σi,t.

Then, σki ⇀ σi implies that, for any ψ ∈ Cc((0, 1)× Rn),∫ 1

0

∫
Rn
ψ dρki,t dt =

∫ 1

0

∫
Rn
ψ dσki →

∫ 1

0

∫
Rn
ψ dσi =

∫ 1

0

∫
Rn
ψ dρi,t dt

so that we obtain∣∣∣∣∫ 1

0

∫
Rn
ψ dρi,t dt

∣∣∣∣ ≤ ‖ψ‖L1((0,1);L∞(Rn)) lim inf
k→+∞

‖ρki,·(Rn)‖L∞(0,1),

from which we get (5.4.23), by passing to the supremum in

ψ ∈ Cc((0, 1)× Rn), ‖ψ‖L1((0,1);L∞(Rn)) ≤ 1.

Let us consider now wki . Up to a subsequence, we notice that, by the assumptions, wki = vki σ
k
i

for some vki in L2((0, 1)× Rn;σki ) with ‖vki ‖L2((0,1)×Rn;σki ) ≤ C <∞ for any k and i = 1, 2. We
apply Lemma 5.4.7 to the sequences (σki )k and (vki )k and we immediately deduce that the weak
limit wi of wki satisfies wi � σi and (5.4.24).

As for the term involving f , we notice that f(ρk1, ρk2) ≤ C(ρk1 + ρk2), by (5.4.1). This fact
and the assumptions on ρki clearly imply the uniform boundedness of Σ(ρk1, ρk2) = L 1 (0, 1)⊗
f(ρk1, ρk2). Hence, there exists a converging subsequence (which we do not relabel) Σ(ρk1, ρk2) ⇀
Σρ, for some Σρ ∈M+((0, 1)× Rn).

Therefore, employing again Lemma 5.4.7 we obtain that η � Σρ and

∫ 1

0

∫
Rn

∣∣∣∣∣ dηdΣρ

∣∣∣∣∣
2

dΣρ ≤ lim inf
k→+∞

∫ 1

0

∫
Rn

∣∣∣∣∣ dηk

dΣ(ρk1, ρk2)

∣∣∣∣∣
2

df(ρk1, ρk2) dt <∞. (5.4.26)

It is not difficult to see that Remark 5.4.3 implies Σρ ≤ Σ(ρ1, ρ2) = L 1 (0, 1)⊗f(ρ1, ρ2), which
means that

Σρ = hΣ(ρ1, ρ2),

for some h ∈ L1((0, 1) × Rn; Σ(ρ1, ρ2)), 0 ≤ h ≤ 1. We deduce that η � Σ(ρ1, ρ2), and, since
η = gΣρ for some g ∈ L1((0, 1)× Rn; Σρ), we conclude that

η = ghΣ(ρ1, ρ2).

Therefore, it follows that∣∣∣∣∣ dηdΣρ

∣∣∣∣∣
2

Σρ = |g|2Σρ = |g| |η| ≥ |g|h |η| = |g|2h2 Σ(ρ1, ρ2) =
∣∣∣∣∣ dη

dΣ(ρ1, ρ2)

∣∣∣∣∣
2

L 1 (0, 1)⊗ f(ρ1, ρ2).

Hence, (5.4.26) implies (5.4.25).
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It should be pointed out that the narrow upper semicontinuity of f is essential in the last
part of the proof of Lemma 5.4.8.

Thanks to this type of weak lower semicontinuity of A, we can prove the existence of a
narrowly continuous minimizing curve (ρ1,t, ρ2,t) for the distance DK.

Proposition 5.4.9. Let (µ1, µ2), (ν1, ν2) ∈M+(Rn)×M+(Rn) be such that

DK((ν1, ν2), (µ1, µ2)) <∞.

Then there exist a weakly continuous curve (ρ1, ρ2) ∈ C([0, 1];M+(Rn) × M+(Rn)), vector
fields v1, v2 ∈ L2((0, 1);L2(Rn; ρi)) and a scalar reaction term ξ ∈ L2((0, 1);L2(Rn; f(ρ1, ρ2)))
satisfying

D2
K((ν1, ν2), (µ1, µ2)) = A(ρ1, ρ2, w1, w2, η), (5.4.27)

where wi = viσi for i = 1, 2 and η = ξΣ(ρ1, ρ2). In addition, for any 0 ≤ s < t ≤ 1 and i = 1, 2,
we have

ρi,t(Rn)− ρi,s(Rn) =
∫ t

s

∫
Rn

ξ

2 df(ρ1,u, ρ2,u) du. (5.4.28)

Proof. Since DK((ν1, ν2), (µ1, µ2)) <∞, then we can find a sequence of admissible curves, vector
fields and reaction terms (ρk1, ρk2, vk1 , vk2 , ξk) satisfying (5.4.3) and such that, if we define wki and
ηk as above, then

D2
K((ν1, ν2), (µ1, µ2)) = lim

k→∞
A(ρk1, ρk2, wk1 , wk2 , ηk).

We proceed now to show that the sequences ρk1, ρk2 are uniformly bounded in L∞((0, 1);M+(Rn)).
We recall the definition of σki = L 1 (0, 1)⊗ρki,t, i = 1, 2. Since (σk1 , σk2 , wk1 , wk2 , ηk) is a weak

solution to (5.4.13), by (5.4.16) we have

−
∫ 1

0

∫
Rn

∂ψ(t, x)
∂t

dσki (t, x) =
∫ 1

0

∫
Rn
∇ψ(t, x) · dwki (t, x) +

∫ 1

0

∫
Rn

ψ(t, x)
2 dηk(t, x)+ (5.4.29)

+
∫
Rn
ψ(0, x) dνi −

∫
Rn
ψ(1, x) dµi

for any ψ ∈ C1
c ([0, 1]×Rn) and i = 1, 2. Hence, if we choose ψ(t, x) = φ(x) in (5.4.29) for some

φ ∈ C1
c (Rn), we deduce that, for any t ∈ [0, 1],∫

Rn
φ dρki,t =

∫ t

0

∫
Rn
∇φ · dwki + 1

2

∫ t

0

∫
Rn
φ dηk +

∫
Rn
φ dνi. (5.4.30)

Let ϕ ∈ C1
c (B(0, 2)) such that ϕ ≡ 1 on B(0, 1). For some R > 0, we define ϕR(x) = ϕ(x/R):

this function satisfies ϕR ≡ 1 on B(0, R), ϕR ≡ 0 in Rn \ B(0, 2R) and |∇ϕR| ≤ C/R. In
particular, we notice that∣∣∣∣∣

∫
Rn\B(0,R)

ϕR dρ
k
i,t

∣∣∣∣∣ ≤ ‖ϕR‖L∞(Rn)ρ
k
i,t(Rn \B(0, R)),

∣∣∣∣∫ t

0

∫
Rn
∇ϕR · dwki

∣∣∣∣ ≤
∫ 1

0

∫
Rn

∣∣∣∣∣dwkidσki

∣∣∣∣∣
2

dρki,s ds

 1
2 (∫ 1

0

∫
Rn
|∇ϕR|2 dρki,s ds

) 1
2

(5.4.31)

≤ C

R

(∫ 1

0
ρki,s(Rn) ds

) 1
2
,
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∣∣∣∣∣
∫ t

0

∫
Rn\B(0,R)

ϕR dη
k

∣∣∣∣∣ ≤
∫ 1

0

∫
Rn

∣∣∣∣∣ dηk

dΣ(ρk1, ρk2)

∣∣∣∣∣
2

df(ρk1, ρk2) ds
 1

2 (∫ 1

0

∫
Rn\B(0,R)

df(ρk1, ρk2) ds
) 1

2

≤ C

(∫ 1

0

∫
Rn\B(0,R)

df(ρk1,s, ρk2,s) ds
) 1

2

≤ C
(∫ 1

0
ρk1,s(Rn \B(0, R)) + ρk2,s(Rn \B(0, R)) ds

) 1
2

since (ρk1, ρk2, wk1 , wk2 , ηk) is a minimizing sequence, and by (5.4.1). This means that, for any
fixed k, all these terms goes to zero as R → +∞, since ρki ∈ C([0, 1];M+(Rn)) and (5.4.17)
holds. Therefore, if we set φ = ϕR in (5.4.30) and we pass to the limit as R→ +∞, we get

ρki,t(Rn)− νi(Rn) =
∫ t

0

∫
Rn

1
2 dη

k ds

≤ 1
2

∫ 1

0

∫
Rn

∣∣∣∣∣ dηk

df(ρk1, ρk2)

∣∣∣∣∣
2

df(ρk1, ρk2) ds
 1

2 (∫ t

0

∫
Rn
df(ρk1, ρk2) ds

) 1
2

≤ C0 + C2

2

∫ t

0
ρk1,s(Rn) + ρk2,s(Rn) ds,

hence, by summing these inequalities for i = 1, 2, we obtain

ρk1,t(Rn) + ρk2,t(Rn) ≤ C1 + C2

∫ t

0
ρk1,s(Rn) + ρk2,s(Rn) ds. (5.4.32)

Therefore, by Gronwall’s lemma and (5.4.32), it follows that

ρk1,t(Rn) + ρk2,t(Rn) ≤ C1e
C2t. (5.4.33)

Thus, (5.4.33) implies that ρki is uniformly bounded in L∞((0, 1);M+(Rn)) for i = 1, 2.
It is then obvious to see that the sequence σki := L 1 (0, 1) ⊗ ρki,t is uniformly bounded in
M+((0, 1)×Rn), so that there exists a subsequence converging to some measure σi. Hence, by
Lemma 5.4.8 we conclude the existence of a curve of measures ρi ∈ L∞((0, 1);M+(Rn)) such
that σi = L 1 (0, 1)⊗ ρi,t, for i = 1, 2.

Let us then show that (wk1 , wk2 , ηk) is bounded inM((0, 1)× Rn;Rn × Rn × R). We have

∫ 1

0

∫
Rn

d|wki | ≤

∫ 1

0

∫
Rn

∣∣∣∣∣dwkidσki

∣∣∣∣∣
2

dρki ds

 1
2 (∫ 1

0

∫
Rn
ρki,s ds

) 1
2
≤ C

(∫ 1

0
C1e

C2s ds
) 1

2
≤ C̃,

and

∫ 1

0

∫
Rn

d|ηk| ≤

∫ 1

0

∫
Rn

∣∣∣∣∣ dηk

dΣ(ρk1, ρk2)

∣∣∣∣∣
2

df(ρk1, ρk2) ds
 1

2 (∫ 1

0

∫
Rn
df(ρk1, ρk2) ds

) 1
2

≤ C
(∫ 1

0
ρk1,s(Rn) + ρk2,s(Rn) ds

) 1
2
≤ C

(∫ 1

0
C1e

C2s ds
) 1

2
≤ C̃,

by (5.4.33).
Thus, we find that there exist narrowly convergent subsequences (wki ) inM((0, 1)×Rn;Rn)

and (ηk) inM((0, 1)× Rn), which converge to some wi and η, respectively. In addition, since
A(ρk1, ρk2, wk1 , wk2 , ηk) < ∞, we see that the conditions of Lemma 5.4.8 are satisfied, and so we
can conclude that we have wi � σi, η � Σ(ρ1, ρ2), together with (5.4.24) and (5.4.25). This
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shows that there exist velocity fields vi ∈ L2((0, 1);L2(Rn; ρi)) such that wi = viσi, and a scalar
reaction term ξ ∈ L2((0, 1);L2(Rn; f(ρ1, ρ2))) such that η = ξΣ(ρ1, ρ2).

Now, if we pass to the limit as k → +∞ in (5.4.29), we easily obtain

−
∫ 1

0

∫
Rn

∂ψ(t, x)
∂t

dσi(t, x) =
∫ 1

0

∫
Rn
∇ψ(t, x) · dwi(t, x) +

∫ 1

0

∫
Rn

ψ(t, x)
2 dη(t, x)+

+
∫
Rn
ψ(0, x) dνi −

∫
Rn
ψ(1, x) dµi

for any i = 1, 2 and ψ ∈ C1
c ([0, 1]× Rn), which implies (5.4.7) by substituting

σi = L 1 (0, 1)⊗ ρi,t, wi = viσi, η = ξΣ(ρ1, ρ2), Σ(ρ1, ρ2) = L 1 (0, 1)⊗ f(ρ1,t, ρ2,t).

Thus, (ρ1, ρ2, v1, v2, ξ) is a weak solution of (5.4.3) and we can employ Lemma 5.4.5 to ensure
the existence of a continuous representative for the curves ρ1,t and ρ2,t.

Finally, we notice that, if we choose ζ(t, x) = ϕR(x) in (5.4.18), and we use (5.4.31) in order
to pass to the limit as R→ +∞, we deduce (5.4.28).

From this point on, we shall refer to couples of continuous curves of measures (ρ1, ρ2)
satisfying (5.4.27) as to minimizing curves with respect to DK. Before proceeding with the
description of the properties of DK, we show a simple estimate on the total masses of any
minimizing curve.

Lemma 5.4.10. Let (µ1, µ2), (ν1, ν2) ∈M+(Rn)×M+(Rn) be such that

DK((ν1, ν2), (µ1, µ2)) <∞.

Then any minimizing curve (ρ1, ρ2) with respect to DK from (ν1, ν2) to (µ1, µ2) satisfies

ρ1,t(Rn) + ρ2,t(Rn) ≤
(
ν1(Rn) + ν2(Rn) + 1

2DK((ν1, ν2), (µ1, µ2))2
)
e
C
2 t (5.4.34)

for any t ∈ [0, 1], where C := supx,y>0 f(x, y)/(x+ y).

Proof. By (5.4.28) with s = 0, for any t ∈ [0, 1] we have

ρ1,t(Rn) + ρ2,t(Rn) ≤ ν1(Rn) + ν2(Rn) +
∫ t

0

∫
Rn
|ξ| df(ρ1,u, ρ2,u) du,

where ξ ∈ L2((0, 1);L2(Rn; f(ρ1, ρ2))) is the scalar reaction term associated to the minimizing
curve (ρ1, ρ2). Then, by Cauchy-Schwarz inequality, (5.4.27) and the fact that f(x, y) ≤ C(x+y)
for some C > 0, we have

∫ t

0

∫
Rn
|ξ| df(ρ1,u, ρ2,u) du ≤

(∫ t

0

∫
Rn
|ξ|2 df(ρ1,u, ρ2,u) du

) 1
2
(∫ t

0

∫
Rn
df(ρ1,u, ρ2,u) du

) 1
2

≤ 1
2

(∫ 1

0

∫
Rn
|ξ|2 df(ρ1,u, ρ2,u) du+

∫ t

0

∫
Rn
df(ρ1,u, ρ2,u) du

)
≤ 1

2

(
DK((ν1, ν2), (µ1, µ2))2 + C

∫ t

0
ρ1,u(Rn) + ρ2,u(Rn) du

)
.

All in all, we obtain

ρ1,t(Rn) + ρ2,t(Rn) ≤ C1 + C2

∫ t

0
ρ1,u(Rn) + ρ2,u(Rn) du,

where C1 = ν1(Rn) + ν2(Rn) + 1
2DK((ν1, ν2), (µ1, µ2))2 and C2 = C

2 . Thus, a straightforward
application of Gronwall’s inequality allows us to obtain (5.4.34).
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We shall now prove that the functional DK is indeed an extended distance, borrowing in
particular a classical scaling argument from the Wasserstein distance’s framework.

Proposition 5.4.11. DK is an extended distance onM+(Rn)×M+(Rn).

Proof. It is clear that DK ≥ 0 and that it is symmetric.
Let now DK((ν1, ν2), (µ1, µ2)) = 0, and let (ρ1, ρ2) be a minimizing curve of couples of

nonnegative measures from (ν1, ν2) to (µ1, µ2), with vector fields v1, v2 and scalar reaction term
ξ, whose existence is ensured by Proposition 5.4.9. Then, for L 1-a.e. t ∈ (0, 1), we have clearly
vi = 0 for ρi,t-a.e. x, and ξ = 0 for f(ρ1,t, ρ2,t)-a.e. x. This means that ρ̇i = 0 in the duality
with C∞c ([0, 1] × Rn), and so ρi must be constant in time, but this is possible if and only if
νi = µi for i = 1, 2. This shows the nondegeneracy.

As for the triangular inequality, let us consider three couples of nonnegative Radon measures
(µ1, µ2), (ν1, ν2), (σ1, σ2) such that DK((ν1, ν2), (σ1, σ2)),DK((σ1, σ2), (µ1, µ2)) < ∞, otherwise
there is nothing to prove.

Let (r1, r2) be the minimizing continuous curve from (σ1, σ2) to (µ1, µ2), with velocity fields
(Ξ1,Ξ2) and scalar reaction term z; while (s1, s2) is the minimizing continuous curve from
(ν1, ν2) to (σ1, σ2), with velocity fields (u1, u2) and scalar reaction term y. Then, we define an
admissible curve from (ν1, ν2) to (µ1, µ2) together with its velocity fields and scalar reaction
term by setting

ρi(t, x) :=

si(t/T, x) 0 ≤ t < T,

ri((t− T )/(1− T ), x) T ≤ t ≤ 1,

vi(t, x) :=


1
T
ui(t/T, x) 0 ≤ t < T,
1

1−T Ξi((t− T )/(1− T ), x) T ≤ t ≤ 1,

ξ(t, x) :=


1
T
y(t/T, x) 0 ≤ t < T,
1

1−T z((t− T )/(1− T ), x) T ≤ t ≤ 1,

where we choose T ∈ (0, 1) such that

T

1− T = DK((ν1, ν2), (σ1, σ2))
DK((σ1, σ2), (µ1, µ2)) .

It is easy to check that (ρ1, ρ2, v1, v2, ξ) is admissible. To simplify notation, we set

A (ρ1, ρ2, v1, v2, ξ)(t) :=
∫
Rn
|v1(t, x)|2 dρ1,t(x) + |v2(t, x)|2 dρ2,t(x) + |ξ(t, x)|2

2 f(ρ1,t, ρ2,t).

Hence, it follows that

D2
K((ν1, ν2), (µ1, µ2)) ≤

∫ 1

0
A (ρ1, ρ2, v1, v2, ξ)(t) dt

= 1
T 2

∫ T

0
A (s1, s2, u1, u2, y)(t/T ) dt+

+ 1
(1− T )2

∫ 1

T
A (r1, r2,Ξ1,Ξ2, z)((t− T )/(1− T )) dt

= 1
T

∫ 1

0
A (s1, s2, u1, u2, y)(t) dt+ 1

(1− T )

∫ 1

0
A (r1, r2,Ξ1,Ξ2, z)(t) dt

= (DK((ν1, ν2), (σ1, σ2)) + DK((σ1, σ2), (µ1, µ2)))2.

This ends the proof.
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As a byproduct of this proof, we can deduce the following technical result on the minimizing
curves ρi.

Lemma 5.4.12. Let µ1, µ2, ν1, ν2 ∈ M+(Rn) such that DK((ν1, ν2), (µ1, µ2)) < ∞, and let
(ρ1, ρ2) ∈ C([0, 1];M+(Rn) ×M+(Rn)) be a minimizing curve from (ν1, ν2) to (µ1, µ2) with
respect to DK. Then, for any s ∈ [0, 1] we have

DK((ν1, ν2), (ρ1,s, ρ2,s)) ≤
√
sDK((ν1, ν2), (µ1, µ2)), (5.4.35)

DK((ρ1,s, ρ2,s), (µ1, µ2)) ≤
√

1− sDK((ν1, ν2), (µ1, µ2)). (5.4.36)

Proof. By Proposition 5.4.9, there exist continuous curves of nonnegative Radon measures
ρ1,t, ρ2,t, vector fields

v1, v2 ∈ L2((0, 1);L2(Rn; ρi))
and a scalar reaction term

ξ ∈ L2((0, 1);L2(Rn; f(ρ1, ρ2)))
such that (5.4.3) holds,

DK((ν1, ν2), (µ1, µ2))2 =
∫ 1

0

(∫
Rn
|v1(t)|2 dρ1,t + |v2(t)|2 dρ2,t + |ξ|

2(t)
2 df(ρ1,t, ρ2,t)

)
dt,

and ρi,0 = νi, ρi,1 = µi, for i = 1, 2. Let us now fix s ∈ [0, 1] and let ρ̃i,t := ρi,ts for i = 1, 2. By
the continuity, it is clear that ρ̃i,0 = νi and ρ̃i,1 = ρi,s. In addition, it is not difficult to see that
(5.4.3) implies

d

dt

(
ρ̃1
ρ̃2

)
= −div

(
sv1ρ̃1
sv2ρ̃2

)
+ sξ

2 f(ρ̃1, ρ̃2)
(

1
1

)
,

so that, if we set ṽi(t) := svi(st), i = 1, 2, and ξ̃(t) := sξ(st), then (ρ̃1,t, ρ̃2,t, ṽ1(t), ṽ2(t), ξ̃(t)) is
a distributional solution to (5.4.3). Hence, by the definition of the distance DK, we obtain

DK((ν1, ν2), (ρ1,s, ρ2,s))2 ≤
∫ 1

0

(∫
Rn
|ṽ1(t)|2 dρ̃1,t + |ṽ2(t)|2 dρ̃2,t + |ξ̃(t)|

2

2 df(ρ̃1,t, ρ̃2,t)
)
dt

= s2
∫ 1

0

(∫
Rn
|v1(st)|2 dρ1,ts + |v2(st)|2 dρ2,ts + |ξ|

2(st)
2 df(ρ1,ts, ρ2,ts)

)
dt

= [ts = u]

= s
∫ s

0

(∫
Rn
|v1(u)|2 dρ1,u + |v2(u)|2 dρ2,u + |ξ(u)|2

2 df(ρ1,u, ρ2,u)
)
du

≤ s
∫ 1

0

(∫
Rn
|v1|2 dρ1 + |v2|2 dρ2 + 1

2 |ξ|
2 df(ρ1, ρ2)

)
du

≤ sDK((ν1, ν2), (µ1, µ2))2.

Hence, (5.4.35) immediately follows. If instead we set ρ̃i,t := ρi,s+t(1−s), i = 1, 2, we get (5.4.36)
with a similar argument.

As an consequence of (5.4.28), we can derive necessary and sufficient conditions on the
measures µi and νi to ensure the finiteness of DK((ν1, ν2), (µ1, µ2)).

To this purpose, we also notice that for any m, q ≥ 0, not both zero, there exists α > 0 such
that f(x,mx+ q) ≥ αx as x→ 0. This is a consequence of the concavity of f and the fact that
f(0, y) = 0, for any y ≥ 0, and f(x, y) > 0 for any x, y > 0.

Corollary 5.4.13. DK((ν1, ν2), (µ1, µ2)) <∞ if and only if

ν1(Rn)− ν2(Rn) = µ1(Rn)− µ2(Rn). (5.4.37)
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Proof. Let us at first assume that DK((ν1, ν2), (µ1, µ2)) < ∞. Then there exist continuous
curves ρ1, ρ2 and a scalar reaction term ξ which realize the minimum and such that (5.4.28)
holds for any t ∈ [0, 1]. In particular, we have

µ1(Rn)− ν1(Rn) =
∫ 1

0

∫
Rn

1
2ξ df(ρ1, ρ2) ds = µ2(Rn)− ν2(Rn),

which immediately implies (5.4.37).
Let us now suppose that (5.4.37) holds and that none of the measures µi, νi is the null

measure. Then, we notice that we can transport the measures µi, νi into the absolutely contin-
uous measures µ̄i := µi(Rn)L n (0, 1)n and ν̄i := νi(Rn)L n (0, 1)n. By Remark 5.4.1 and the
triangle inequality, we need just to show that (µ̄1, µ̄2) and (ν̄1, ν̄2) have finite distance.

We may now look for solutions to (5.4.3) such that vi ≡ 0. To this purpose, we observe that
any admissible curve (ρ1, ρ2) must satisfy ρ̇1 = ρ̇2 in the sense of distributions. Then, for any
test function φ ∈ Cb(Rn) and for any t ∈ (0, 1) we have∫

Rn
φ d(ρ1,t − ν̄1) =

∫
Rn
φ d(ρ2,t − ν̄2).

This means that ρ2,t = ρ1,t + ν̄2 − ν̄1. We can clearly choose the following linear interpolation,
due to the identity (5.4.37):

ρi,t = ((1− t)νi(Rn) + tµi(Rn)) L n (0, 1)n.

By definition of µ̄i and ν̄i, it is easy to check that ρi,0 = ν̄i and ρi,1 = µ̄i. We denote by ρi(t, x)
the density of ρi,t with respect to the Lebesgue measure.

The scalar term ξ is then a measurable function which satisfies the equation

(µ1(Rn)− ν1(Rn))χ(0,1)n(x) = 1
2f(ρ1(t, x), ρ2(t, x))ξ(t, x).

Since f(0, 0) = 0, we can choose ξ(t, x) ≡ 0 for x /∈ (0, 1)n and any t ∈ (0, 1). On the other
hand, for x ∈ (0, 1)n, ξ(t, x) is a bounded function, since the concavity of f implies

f(ρ1(t, x), ρ2(t, x)) ≥ (1− t)f(ν1(Rn), ν2(Rn)) + tf(µ1(Rn), µ2(Rn))
≥ min{f(ν1(Rn), ν2(Rn)), f(µ1(Rn), µ2(Rn))} > 0

for any x ∈ (0, 1)n. This clearly shows that∫ 1

0

∫
Rn

1
2f(ρ1, ρ2)|ξ|2 dx dt <∞,

for this choice of (ρ1, ρ2, v1, v2, ξ), thus proving the finiteness of the distance.
If instead µ1 = ν1 = 0, then (5.4.37) implies ν2(Rn) = µ2(Rn) and Remark 5.4.1 implies

that
DK((0, ν2), (0, µ2)) ≤ W2(ν2, µ2) <∞.

If ν1 = ν2 = 0, then (5.4.37) implies µ1(Rn) = µ2(Rn), which we can assume to be non zero.
We can take then ρ1(t, x) = ρ2(t, x) = g(t)χ(0,1)n(x), for some continuous increasing function g
such that g(0) = 0 and g(1) = µ1(Rn). Therefore, it follows that we can select

ξ(t, x) = 2g′(t)
f(g(t), g(t))χ(0,1)n(x),

and we have to prove that there exists an admissible g such that∫ 1

0
2 (g′(t))2

f(g(t), g(t)) dt <∞.
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Now we select g(t) = µ1(Rn)tγ, for γ > 0, and then we have that, as t→ 0,

(g′(t))2

f(g(t), g(t)) ≤ Ctγ−2.

Therefore, it is enough to choose γ > 1 to obtain integrabiliy.
Finally, if ν1 = 0 and the other measures are non trivial, we have ρ2(t, x) = ρ1(t, x) +

ν2(Rn)χ(0,1)n(x). Hence, we can argue as in the previous case, this time having ρ2(t, x) =
(g(t) + ν2(Rn))χ(0,1)n(x). Therefore, we have

ξ(t, x) = 2g′(t)
f(g(t), g(t) + c)χ(0,1)n(x),

where c = ν2(Rn) > 0, and we have to prove that there exists an admissible g such that∫ 1

0
2 (g′(t))2

f(g(t), g(t) + c) dt <∞.

Arguing analogously as before, we choose g(t) = µ1(Rn)tγ, for γ > 1, and we conclude.

We show now that the convergence with respect to the DK distance implies the narrow
convergence of each measure in the couple.

Proposition 5.4.14. Let (µ1, µ2), (ν1, ν2) ∈ M+(Rn)×M+(Rn), then, for any ϕ ∈ Lipb(Rn)
and i = 1, 2, we have∣∣∣∣∫

Rn
ϕdµi −

∫
Rn
ϕdνi

∣∣∣∣ ≤ C(‖ϕ‖L∞(Rn) + Lip(ϕ))DK((µ1, µ2), (ν1, ν2)). (5.4.38)

Proof. Clearly, we can assume that DK((µ1, µ2), (ν1, ν2)) < ∞, otherwise there is nothing to
prove.

Let ρ1, ρ2, v1, v2, ξ be the minimizing curves, velocity fields and scalar reaction term which
realize the distance DK((µ1, µ2), (ν1, ν2)). Then, for any ϕ ∈ Lipb(Rn) and i = 1, 2, we obtain∣∣∣∣∫

Rn
ϕdµi −

∫
Rn
ϕdνi

∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

d

dt

∫
Rn
ϕdρi dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

(∫
Rn
vi · ∇ϕdρi +

∫
Rn
ϕ
ξ

2 df(ρ1, ρ2)
)
dt

∣∣∣∣∣
≤ Lip(ϕ)

(∫ 1

0

∫
Rn
|vi|2 dρi dt

) 1
2
(∫ 1

0
ρi(Rn) dt

) 1
2

+ ‖ϕ‖L∞(Rn)

(∫ 1

0

∫
Rn

|ξ|2

2 df(ρ1, ρ2) dt
) 1

2 (∫ 1

0

∫
Rn

df(ρ1, ρ2) dt
) 1

2
.

Now, by the sublinearity of f and (5.4.33), we can conclude that there exists C > 0 such that
(∫ 1

0
ρi(Rn) dt

) 1
2
≤ C,(∫ 1

0

∫
Rn

df(ρ1, ρ2) dt
) 1

2
≤ C.

This allows us to conclude.

Corollary 5.4.15. Let (µ1, µ2), (µk1, µk2) ∈M+(Rn)×M+(Rn) be such that

DK((µ1, µ2), (µk1, µk2))→ 0

as k → +∞. Then µki narrowly converges to µi, and, in particular, µki (Rn) → µi(Rn) for
i = 1, 2.
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Proof. By (5.4.38), we have ∫
Rn
ψ dµki →

∫
Rn
ψ dµi

as k → +∞ for any ψ ∈ Lipb(Rn). Given then ϕ ∈ Cb(Rn), there exist two sequences
ϕj, φj ∈ Lipb(Rn) such that ϕj ↑ ϕ and φj ↓ ϕ. Hence, we obtain

lim sup
k→+∞

∫
Rn
ϕdµki ≤ lim sup

k→+∞

∫
Rn
φj dµ

k
i =

∫
Rn
φj dµi

and
lim inf
k→+∞

∫
Rn
ϕdµki ≥ lim inf

k→+∞

∫
Rn
ϕj dµ

k
i =

∫
Rn
ϕj dµi.

Thus, we conclude by passing to the limit in j. Finally, if we take ϕ ≡ 1 in (5.4.38), we
immediately obtain the convergence µki (Rn)→ µi(Rn) for i = 1, 2.

Thanks to Lemma 5.4.12 and Corollary 5.4.15, we can show a narrow convergence result for
the minimizing curves.

Lemma 5.4.16. Let (µ1, µ2), (µk1, µk2) ∈M+(Rn)×M+(Rn) be such that

DK((µ1, µ2), (µk1, µk2))→ 0

as k → +∞. Let (ρk1, ρk2) ∈ C([0, 1];M+(Rn) ×M+(Rn)) be a geodetic curve of couples of
nonnegative measures from (µ1, µ2) to (µk1, µk2) with respect to DK. Then, for any s ∈ [0, 1], we
have

DK((µ1, µ2), (ρk1,s, ρk2,s))→ 0
and ρki,s narrowly converges to µi, i = 1, 2 as k → +∞.

Proof. Thanks to (5.4.35), we immediately get the convergence of (ρk1,s, ρk2,s) to (µ1, µ2) with
respect to DK for any s ∈ [0, 1]. Then, Corollary 5.4.15 implies the narrow convergence.

However, we point out that the convergence with respect to the DK distance does not imply
the convergence of the total mass of the vector valued measures, as we show in the following
example.

Example 5.4.17. Let us consider the following sequences of measures:

µk1 := gk(x1) L n (0, 1)n,
µk2 := (1− gk(x1)) L n (0, 1)n,

where gk : [0, 1]→ R is given by

gk(t) :=


1 x ∈

2k−1−1⋃
m=0

[2m
2k ,

2m+ 1
2k

]
,

0 otherwise,

for k ≥ 1. It is not difficult to show that

µk1 ⇀
1
2 L n (0, 1)n =: µ1,

µk2 ⇀
1
2 L n (0, 1)n =: µ2,

and that
µk1(Rn) = µk2(Rn) = µ1(Rn) = µ2(Rn) = 1

2 .
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In addition, we notice that µki have compact support inside [0, 1]n for any k ≥ 1 and i = 1, 2,
which implies that the second moments are uniformly integrable. Hence, [13, Proposition 7.1.5]
implies that

W2(µki , µi)→ 0 for i = 1, 2.
The equality of masses and Remark 5.4.1 allow us to obtain

D2
K((µk1, µk2), (µ1, µ2)) ≤ W 2

2 (µk1, µ1) +W 2
2 (µk2, µ2),

and this yields that
(µk1, µk2) DK→ (µ1, µ2).

However, since µk1 and µk2 are concentrated on disjoint sets, we have

|(µk1, µk2)|(Rn) = 1
2 + 1

2 = 1.

Instead, µ1 = µ2, and so

|(µ1, µ2)|(Rn) =
√

2
2 .

This shows that
DK((µk1, µk2), (µ1, µ2))→ 0

does not imply |(µk1, µk2)|(Rn)→ |(µ1, µ2)|(Rn).

5.5 First variation of DK

In analogy with the theory of Wasserstein distance (see for instance [13, Chapter 10] and [19]),
it is of interest to study the behaviour of the distance DK under smooth perturbations of the
endpoint measures. This is indeed a fundamental step in order to derive the Euler-Lagrange
equations for the minimizing movement scheme related to the gradient flow of the energy with
respect to DK, in analogy with the approach of [18,21].

Let µi, νi ∈M+(Rn), Φi ∈ C∞c (Rn;Rn) and ψi ∈ C∞c (Rn) be smooth perturbations, and set
µεi := φεi,#(eεψiµi), where φεi := Id + εΦi. Let ρi be optimal curves satisfying (5.4.3).

We perturb the optimal curves ρi by taking vector fields and scalar functions
Φs
i ∈ C∞c ([0, 1]× Rn;Rn), ψsi ∈ C∞c ([0, 1]× Rn) such that Φ0

i ≡ 0, ψ0
i ≡ 0,Φ1

i = Φi, ψ
1
i = ψi.

We set
ρεi,s := φε,si,#(eεψsi ρi,s),

where φε,si := Id + εΦs
i .

If (ρ1, ρ2, v1, v2, ξ) is a weak solution to the system (5.4.3), then we can obtain a definition
of perturbed vector fields vεi and scalar function ξε with a standard procedure (similar to the
one exploited in [19]). For any test function g ∈ C1

c (Rn), we have
d

ds

∫
Rn
g dρεi,s = d

ds

∫
Rn
g(φε,si )eεψsi dρi,s

=
∫
Rn
εeεψ

s
i

(
(∇g)(φε,si )∂Φs

i

∂s
+ g(φε,si )∂ψ

s
i

∂s

)
dρi,s+

+
∫
Rn
g(φε,si )eεψsi d

(
−div(viρi) + ξ

2f(ρ1, ρ2)
)

=
∫
Rn

(∇g)(φε,si )eεψsi
(
vi + ε∇Φs

i · vi + ε
∂Φs

i

∂s

)
dρi+

+ g(φε,si )eεψsi d
(
ξ

2f(ρ1, ρ2) + ε∇ψsi · viρi + ε
∂ψsi
∂s

ρi

)
.
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Hence, we may take

vεi =
(
vi + ε∇Φs

i · vi + ε
∂Φs

i

∂s

)
◦ (φε,si )−1. (5.5.1)

As for the scalar reaction term, we get

ξε =
φε,si,#

(
eεψ

s
i

(
f(ρ1, ρ2)ξ + 2ε∂ψ

s
i

∂s
ρi + 2ε∇ψsi · viρi

))
f(ρε1, ρε2) . (5.5.2)

Hence, we must find conditions under which these two expressions for i = 1, 2 are equal. In
other words, we need to choose only perturbations φεi and ψεi satisfying

φε,s1,#

(
eεψ

s
1

(
f(ρ1, ρ2)ξ + 2ε∂ψ

s
1

∂s
ρ1 + 2ε∇ψs1 · v1ρ1

))
= (5.5.3)

= φε,s2,#

(
eεψ

s
2

(
f(ρ1, ρ2)ξ + 2ε∂ψ

s
2

∂s
ρ2 + 2ε∇ψs2 · v2ρ2

))
.

This is indeed a quite serious issue, since it does not seem straightforward to derive such
conditions, except for a few simple cases which we list here.

• (The case Φs
1 = Φs

2) If we assume Φs
1 = Φs

2 = Φs, we look for ψs1, ψs2 satisfying

ξ(eεψ1 − eεψ2)f(ρ1, ρ2) = 2ε(eεψ2
∂ψ2

∂s
ρ2 + eεψ2∇ψ2 · v2ρ2 − eεψ1

∂ψ1

∂s
ρ1 − eεψ1∇ψ1 · v1ρ1)

(5.5.4)
= 2(Ds,xe

εψ2 · (1, v2)ρ2 −Ds,xe
εψ1 · (1, v1)ρ1).

If we set γεi := eεψi , then we obtain some type of nonlinear transport equation:

ξ(γε1 − γε2)f(ρ1, ρ2) = 2(Ds,xγ
ε
2 · (1, v2)ρ2 −Ds,xγ

ε
1 · (1, v1)ρ1).

In the particular case f(x, y) = √xy and ρi � L n, this reduces to

1
2ξ(γ

ε
1 − γε2) = Ds,xγ

ε
2 · (1, v2)

√
ρ2

ρ1
−Ds,xγ

ε
1 · (1, v1)

√
ρ1

ρ2
,

on supp(ρ1) ∩ supp(ρ2).

• (The case ψs1 = ψs2 = 0) If we assume ψs1 = ψs2 ≡ 0, then (5.5.3) reduces to

φε,s1,#(ξf(ρ1, ρ2)) = φε,s2,#(ξf(ρ1, ρ2)).

It follows immediately that this implies φε,s1 = φε,s2 on supp(ρ1)∩supp(ρ2)∩supp(ξ), and so
Φs

1 = Φs
2 = Φs. Hence, if we do not change the masses of µ1 and µ2, the only perturbation

which is allowed is the one with the same push-forward in both components. This can be
also seen as the trivial solution to (5.5.3), since Φs

1 = Φs
2 = Φs and ψs1 = ψs2 ≡ 0.

One could argue that this implies a strong rigidity, which seems to depend only on the
reaction term. Indeed, in the limiting case of f ≡ 0, we would have the Wasserstein
distance, for which no such condition is required. However, it might be that, since the
model describes cancellations, then there could be some sort of balance between ρ1 and
ρ2: by moving them independently in the space, we might make this balance condition
fail.
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We focus now on this latter particular case; that is, Φs
1 = Φs

2 = Φs and ψs1 = ψs2 ≡ 0. By
(5.5.1) and (5.5.2), we obtain

vεi =
(
vi + ε∇Φs · vi + ε

∂Φs

∂s

)
◦ (φε,s)−1,

ξε =
φε,s# (f(ρ1, ρ2)ξ)

f(ρε1, ρε2) .

Therefore, standard calculations yield

DK((ν1, ν2), (µε1, µε2))−DK((ν1, ν2), (µ1, µ2)) ≤ 2ε
∫ 1

0

∫
Rn

(v1 · ∇Φs · v1 + ∂Φs

∂s
· v1)ρ1+

+ (v2 · ∇Φs · v2 + ∂Φs

∂s
· v2)ρ2 ds+

+ 1
2

∫ 1

0

∫
Rn

∣∣∣∣∣φ
ε,s
# (f(ρ1, ρ2)ξ)

f(ρε1, ρε2)

∣∣∣∣∣
2

f(ρε1, ρε2)− |ξ|2f(ρ1, ρ2) ds.

If we assume now that ρi � L n, then

ξε = (f(ρ1, ρ2)ξ)
f
(

ρ1
det(∇φε,s) ,

ρ2
det(∇φε,s)

)
det(∇φε,s)

◦ (φε,s)−1,

and so we get∫
Rn
|ξε|2 df(ρε1, ρε2) =

∫
Rn
|ξ|2f(ρ1, ρ2) f(ρ1, ρ2)

f
(

ρ1
det(∇φε,s) ,

ρ2
det(∇φε,s)

)
det(∇φε,s)

dx

=
∫
Rn
|ξ|2f(ρ1, ρ2)− ε|ξ|2f(ρ1, ρ2)Tr∇Φs+

+ εTr∇Φs|ξ|2
(
∂f

∂x
(ρ1, ρ2)ρ1 + ∂f

∂y
(ρ1, ρ2)ρ2

)
+ o(ε) dx.

Hence, the contribution to the first variation of the reaction part is

1
2

∫ 1

0

∫
Rn

Tr∇Φs|ξ|2
(
∂f

∂x
(ρ1, ρ2)ρ1 + ∂f

∂y
(ρ1, ρ2)ρ2 − f(ρ1, ρ2)

)
dx ds. (5.5.5)

In particular, if f is 1-homogeneous (for instance, f(x, y) = √xy), then the reaction term
does not contribute to the first variation, since, by Euler theorem on homogeneous functions,

f(x, y) = x
∂f

∂x
(x, y) + y

∂f

∂y
(x, y).

We can now conclude that, at least under the absolute continuity assumption on ρ1, ρ2, the
first variation of DK with respect to the push-forward perturbation φ is given by

(Φ,Φ)→2
∫ 1

0

∫
Rn

(v1 ·DΦs · v1 + ∂Φs

∂s
· v1)ρ1 + (v2 ·DΦs · v2 + ∂Φs

∂s
· v2)ρ2 ds+ (5.5.6)

+ 1
2

∫ 1

0

∫
Rn

TrDΦs|ξ|2
(
∂f

∂x
(ρ1, ρ2)ρ1 + ∂f

∂y
(ρ1, ρ2)ρ2 − f(ρ1, ρ2)

)
ds.

It is worth to notice that in the case f is a 1-homogeneous function, then the second term is
identically zero, so that only the transport part contributes to this first variation.

Clearly, the absolute continuity assumption on the curves ρi is quite strong, hence, it would
be interesting to consider the case of µi, νi � L n and to investigate whether under this con-
dition we would indeed have ρi � L n, in analogy with the classical case of the Wasserstein
distance.
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5.6 The descending slope of the energy
Following the idea behind the minimizing movements scheme (for a detailed exposition, we
refer to [13, Chapter 2]), it seems natural to look for the existence of solutions to the system
(5.3.6), by seeing it as a gradient flow of the energy

Φ(µ1, µ2) = 1
2

∫
Rn

(V ∗ µ) dµ+ µ1(Rn) + µ2(Rn)

with respect to the distance DK. By [13, Theorem 2.3.3], if Φ satisfies some lower semicontinuity
and coercivity assumptions and the relaxed slope ∂−Φ of Φ (the sequentially lower semicontin-
uous envelope of the local slope of Φ) is a strong upper gradient for Φ itself, then any curve
obtained as limits of the (generalized) minimizing movements scheme is a curve of maximal
slope for |∂−Φ| which satisfies the following energy dissipation equality:

1
2

∫ T

0
|(µ1, µ2)′|(t)2 dt+ 1

2

∫ T

0
|∂−Φ(µ1(t), µ2(t))|2 + Φ(µ1(T ), µ2(T )) = Φ(µ1(0), µ2(0))

for any T > 0, where |(µ1, µ2)′|(t) is the metric derivative of the curve (µ1(t), µ2(t)) with respect
to the distance DK; that is,

|(µ1, µ2)′|(t) := lim
h→0

DK((µ1(t+ h), µ2(t+ h)), (µ1(t), µ2(t)))
|h|

.

However, it turns out that, in general, the self-energy

Φself(µ1, µ2) := µ1(Rn) + µ2(Rn)

admits a local slope |∂Φself | which is upper semicontinuous and not lower semicontinuous with
respect to DK.

We devote this section to proving this claim.
By the definition of the local (or descending) slope, by setting µ := (µ1, µ2), we have

|∂Φself |(µ) := lim sup
µk

DK→µ

(Φself(µ)− Φself(µk))+

DK(µk, µ) . (5.6.1)

Proposition 5.6.1. We have

|∂Φself |(µ1, µ2) ≤
√

2
∫
Rn
df(µ1, µ2). (5.6.2)

Proof. Let ((µk1, µk2))k≥1 be a sequence of couples of nonnegative measures on Rn converging to
(µ1, µ2) with respect to DK. In particular, we can assume that DK((µk1, µk2), (µ1, µ2)) < ∞ for
any k ≥ 1. Hence, by Proposition 5.4.9, there exist (ρk1, ρk2) ∈ C([0, 1];M+(Rn) ×M+(Rn)),
vk1 , v

k
2 ∈ L2((0, 1);L2(Rn; ρki )) and ξk ∈ L2((0, 1);L2(Rn; f(ρk1, ρk2))) such that

DK((µk1, µk2), (µ1, µ2))2 =
∫ 1

0

(∫
Rn
|vk1 |2 dρk1 + |vk2 |2 dρk2 + 1

2 |ξ
k|2 df(ρk1, ρk2)

)
ds.

In particular, if we set µ := (µ1, µ2) and µk := (µk1, µk2), we get

DK(µ, µk) ≥
√∫ 1

0

∫
Rn

1
2 |ξ

k|2 df(ρk1, ρk2) ds.
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Employing now (5.4.28) with t = 1 and s = 0 and Cauchy-Schwarz inequality, we get(
Φself(µ)− Φself(µk)

)+
=
(
µ1(Rn) + µ2(Rn)− µk1(Rn)− µk2(Rn)

)+

=
(∫ 1

0

∫
Rn
ξk df(ρk1, ρk2) ds

)+

≤
√∫ 1

0

∫
Rn
|ξk|2 df(ρk1, ρk2) ds

√∫ 1

0

∫
Rn
df(ρk1, ρk2) ds.

All in all, we obtain

|∂Φself |(µ1, µ2) ≤ lim sup
µk

DK→µ

√
2
∫ 1

0

∫
Rn
df(ρk1, ρk2) ds.

We notice now that, thanks to (5.4.34), we obtain∫
Rn
df(ρk1,s, ρk2,s) ≤ C

(
ρk1,s(Rn) + ρk2,s(Rn)

)
≤ C

(
µ1(Rn) + µ2(Rn) + 1

2DK((µ1, µ2), (µk1, µk2))
)
e
C
2 s,

which yields the existence of a majorant in L1((0, 1)) for the functions s →
∫
Rn
df(ρk1,s, ρk2,s).

Thus, we can employ the continuity of the square root, Reverse Fatou’s Lemma, Lemma 5.4.16
and (5.4.9) to conclude that

|∂Φself |(µ1, µ2) ≤
√√√√√2

∫ 1

0
lim sup
µk

DK→µ

∫
Rn
df(ρk1, ρk2) ds ≤

√
2
∫ 1

0

∫
Rn
df(µ1, µ2) ds =

√
2
∫
Rn
df(µ1, µ2).

Under some additional assumptions on f , it is actually possible to obtain an equality in
(5.6.4). As a consequence of this and Remark (5.4.3), we deduce that the local slope of the self-
energy is upper semicontinuous with respect to the distance DK, but not lower semicontinuous.

Proposition 5.6.2. Let f : [0,+∞) × [0,+∞) → [0,+∞) be a continuous concave function
such that (5.4.1) holds and satisfying also

f(x, y) ≤ C min{x, y}, (5.6.3)

for some constant C > 0. Then, we have

|∂Φself |(µ1, µ2) =
√

2
∫
Rn
df(µ1, µ2). (5.6.4)

In particular, |∂Φself | is upper and not lower semicontinuous with respect to the distance DK.

Proof. Thanks to (5.6.4), we need only to show that there exists a suitable sequence of µk such
that

lim
k→+∞

(Φself(µ)− Φself(µk))+

DK(µk, µ) ≥
√

2
∫
Rn
df(µ1, µ2). (5.6.5)

Let µki = µi − εkf(µ1, µ2), for some nonnegative sequence εk → 0. Thanks to (5.6.3), it is clear
that µki ≥ 0 if we assume εkC ≤ 1. It is easy to notice that(

Φself(µ1, µ2)− Φself(µk1, µk2)
)+

= 2εk
∫
Rn
df(µ1, µ2).
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We observe now that a solution to (5.4.3) is given by ρki,s = (1− s)µi + sµki , vi = 0, for i = 1, 2,
and ξk ∈ L2((0, 1);L2(Rn; f(ρk1, ρk2))) satisfying

− εkf(µ1, µ2) = ξk

2 f(ρki , ρk2). (5.6.6)

We check now the integrability property of such ξk. Since 0 ≤ f(x, y) ≤ C(x + y), then there
exists a function g ∈ L1(Rn;µ1 + µ2) such that

f(µ1, µ2) = g (µ1 + µ2) and 0 ≤ g ≤ C. (5.6.7)

In addition,
0 ≤ f(ρk1,s, ρk2,s) ≤ C (µ1 + µ2 − 2εksf(µ1, µ2)) ≤ C (µ1 + µ2),

so that there exists gk,s ∈ L1(Rn;µ1 + µ2) such that

f(ρk1,s, ρk2,s) = gk,s (µ1 + µ2) and 0 ≤ gk,s ≤ C. (5.6.8)

Combining (5.6.7) and (5.6.8), we obtain the following expression for ξk:

ξk = −2εk
g

gk,s
. (5.6.9)

We now let γ := f(µ1, µ2) and we use the concavity of f to get

f(ρk1,s, ρk2,s) = f (µ1(1−√εk) + (µ1 −
√
εksγ)√εk, µ2(1−√εk) + (µ2 −

√
εksγ)√εk)

≥ (1−√εk)f(µ1, µ2) +√εkf(µ1 −
√
εksγ, µ2 −

√
εksγ)

≥ (1−√εk)f(µ1, µ2),

where we used (5.6.3) to ensure that µi −
√
εksf(µ1, µ2) ≥ 0, for any i ∈ {1, 2} and s ∈ [0, 1],

provided that √εkC ≤ 1, which can be assumed without loss of generality. As an immediate
consequence, we obtain the following relation between g and gk,s:

gk,s ≥ (1−√εk)g.

It is easy to see that this and (5.6.9) imply

|ξk| ≤ 2 εk
1−√εk

, (5.6.10)

from which we conclude that ξk ∈ L2((0, 1);L2(Rn; f(ρk1, ρk2))). In addition, it is easy to notice
that ξk ≤ 0. Hence, thanks to (5.4.2), (5.6.6) and (5.6.10), we get

DK((µk1, µk2), (µ1, µ2))2 ≤
∫ 1

0

∫
Rn

|ξ|2

2 df(ρk1,s, ρk2,s) ds

≤ εk
1−√εk

∫ 1

0

∫
Rn

(−ξk) df(ρk1,s, ρk2,s) ds

= εk
1−√εk

∫ 1

0

∫
Rn

2εk df(µ1, µ2) ds = 2 ε2
k

1−√εk

∫
Rn
df(µ1, µ2).

All in all, we obtain(
Φself(µ1, µ2)− Φself(µk1, µk2)

)+

DK((µk1, µk2), (µ1, µ2)) ≥
√

2(1−√εk)
∫
Rn
df(µ1, µ2),
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which easily implies (5.6.5), so that (5.6.4) is now proved.
Finally, Remark (5.4.3) implies immediately the upper semicontinuity of |∂Φself |, while, in

order to prove that |∂Φself | is not lower semicontinuous with respect to the distance DK, it is
enough to construct an example which shows that

∫
Rn
df(·, ·) is not lower semicontinuous with

respect to DK.
We recall that f(0, x) = 0 = f(x, 0) for any x > 0. Without loss of generality, we assume

that f
(

1
2 ,

1
2

)
> 0. Then, we take the sequences of measures (µk1, µk2) of Example 5.4.17, which

satisfy
(µk1, µk2) DK→ (µ1, µ2)

for µ1 = µ2 = 1
2L

n (0, 1)n.
Since gk(x1)(1− gk(x1)) = 0 for any x1 ∈ [0, 1], it is clear that∫

Rn
df(µk1, µk2) =

∫ 1

0
f(gk(x1), 1− gk(x1)) dx1 = 0

for any k ≥ 1, while ∫
Rn
df(µ1, µ2) = f

(1
2 ,

1
2

)
> 0.

Thus, this means that
∫
Rn
df(·, ·) is not lower semicontinuous with respect to the DK distance,

and so is |∂Φself |.
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