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Abstract. In this paper we study the asymptotic behaviour of a family of random free-

discontinuity energies Eε defined in a randomly perforated domain, as ε goes to zero. The
functionals Eε model the energy associated to displacements of porous random materials that

can develop cracks. To gain compactness for sequences of displacements with bounded energies,

we need to overcome the lack of equi-coerciveness of the functionals. We do so by means of
an extension result, under the assumption that the random perforations cannot come too close

to one another. The limit energy is then obtained in two steps. As a first step we apply a

general result of stochastic convergence of free-discontinuity functionals to a modified, coercive
version of Eε. Then the effective volume and surface energy densities are identified by means

of a careful limit procedure.
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1. Introduction

In this paper we prove a stochastic homogenisation result for free-discontinuity functionals defined
in randomly perforated domains. More precisely we consider the functionals Eε given by

Eε(ω)(u,A) =

∫
A\εK(ω)

f
(
ω,
x

ε
,∇u

)
dx+

∫
Su∩(A\εK(ω))

g
(
ω,
x

ε
, νu

)
dHn−1, (1.1)

for u ∈ SBV (A); here A ⊂ Rn is a bounded, Lipschitz domain, and SBV (A) denotes the set of
special functions of bounded variation in A. In (1.1) the parameter ω belongs to the sample space
Ω of a given probability space (Ω, T , P ), whereas ε > 0 sets the geometric scale of the problem.
The integrands f and g are stationary random variables, thus they are to be interpreted as an
ensemble of coefficients; f satisfies standard p-growth assumptions, for p > 1, and g is bounded
(see Section 2.2). Note that the Mumford-Shah functional is a special case of our class of energies.
The integration in (1.1) is performed only on the set A \ εK(ω), where K(ω) denotes a collection
of randomly distributed n-dimensional balls with random radii (see (2.4)), and models random
perforations inside the material occupying the reference configuration A. Energies of this type can
be used to describe the elastic energy of a porous brittle random material.

In the deterministic periodic setting, the limit behaviour of energies of type (1.1) has been
studied both in the case of Dirichlet conditions on the perforations [20] and in the case of natural
boundary conditions [3, 9, 21]. Only very recently, in [11], the stochastic homogenisation of
free-discontinuity functionals was considered, under quite general assumptions on the volume
and surface integrands, and in the vector-valued case (see [10], and [5, 22] for the deterministic
counterpart). In [11], however, the volume and surface integrands must satisfy non-degenerate
lower bounds, which is not the case for Eε, due to the presence of the perforations.

The study of the asymptotic behaviour of elliptic problems in randomly perforated domains
has a long history starting with the seminal work of Jikov [24]. We refer the reader to the book
[25] and the references therein for the classical results on this subject. More recently the random
counterpart of the work by Cioranescu and Murat [14] has been also considered [12, 13, 23]. In
this case, sequences uε of equi-bounded energy can be trivially extended to zero inside εK(ω), due
to the homogeneous Dirichlet boundary conditions, and hence can be assumed from the onset to
satisfy a priori bounds on the whole domain. In the Dirichlet setting the main difficulty in the
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analysis lies then in the characterisation of the limiting “capacitary” term. Since in this case no
extension result for the uε is needed, the assumptions on the geometry of the perforations can be
rather mild [23].

In this paper we assume instead that sequences uε of equi-bounded energy satisfy natural
boundary conditions on the perforations, which makes the compactness of minimising sequences
subtle. In this setting the classical way to obtain compactness is to extend the functions uε inside
the perforations in a way that keeps the functionals on the extended functions comparable with the
functionals on uε. In the periodic case, and for Sobolev functions, the use of extension theorems
as a powerful technique to treat degenerate problems is due to Khruslov [26], Cioranescu and
Paulin [15], and to Tartar [27]. In that setting, the most general extension result is due to Acerbi,
Chiadò Piat, Dal Maso, and Percivale [1], and has been proved under minimal assumptions on the
geometry of the periodic perforations, which in particular can be connected in dimension n > 2.

In the random case a common approach to the homogenisation of perforated (or porous) mate-
rials is to assume the existence of an extension operator as a property of the domain (see, e.g., [25,
Chapter 8]). More precisely, it is often assumed that the perforated domain A\εK(ω) is a random
set, that it is open and connected, that its density (namely the expectation of its characteristic
function) is strictly positive, and that there exists an extension operator from the perforated to the
full domain. These assumptions guarantee compactness of sequences with equi-bounded energies,
and allow to prove existence of the Γ-limit, and non-degeneracy of the limit energy. Alternatively,
simplified random geometries are considered, for which one can prove directly that the random
domain satisfies the assumptions above. This is the case for a class of disperse media, the so-called
random spherical structure; i.e., a system of many hard sphere particles. In the simplest case of
such structure the domain has an underlying ε-periodic grid, and in each ε-cell the random per-
foration is a ball - with random radius and centre - which is εδ-separated from the boundary of
the cell where it is contained, for a given δ > 0. A more general geometry is given by the case
where the spherical holes are 2εδ-separated from one another, but no underlying periodic “safety”
grid is postulated. For random spherical structures it is shown, e.g., in [25, Section 8.4] that if the
spherical holes are not too close to one another, then the density of the domain is strictly positive,
and some extension operator exists in the Sobolev setting.

Our approach is in the same spirit, and we now explain it in some detail.

1.1. Overview of the main results. In what follows we give a brief overview of the main
results contained in this paper: An extension result for special functions of bounded variation in
a randomly perforated domain, and the Γ-convergence of the functionals Eε in (1.1).

The extension property in SBV . The geometry we consider for the randomly perforated
domain is the following: We assume that the perforations K(ω) are disjoint balls of random
centres and radii, and that the radii are bounded from above by a deterministic constant r∗ > 0.
Moreover, we require that the minimal distance between any two of them is 2δ, where δ > 0 is
independent of the realisation ω. In other words, not only the perforations are separated, but
also their δ-neighbourhoods are so. Our first main result is an extension property for this class
of domains in SBV (Lemma 4.1 and Theorem 4.2). We recall that the existence of an extension
operator in SBV , for the Mumford-Shah functional, has been proved by Cagnetti and Scardia [9]
in the periodic case. This result, however, cannot be applied directly to our case since the domain
A \ εK(ω) is in general not periodic. Intuitively, we would like to apply the deterministic result
in a δ-neighbourhood of each component of K(ω), since by assumption such neighbourhoods are
pairwise disjoint. If we did it naively, however, then we could have for each component of K(ω)
a different extension operator norm bound, since the components of K(ω) are balls with possibly
different centres and radii from one another. Consequently, we would not be able to obtain uniform
bounds for the extended function, which are crucial for equi-coerciveness.

To illustrate how we obtain uniform bounds, we now focus on a generic perforationB(θ(ω), r(ω)),
where θ(ω) and r(ω) are the (random) centre and radius, with r(ω) < r∗. We need to construct an
extension operator from the annulus Aδ(ω) := B(θ(ω), r(ω)+δ)\B(θ(ω), r(ω)) (which is contained
in A \ εK(ω), thanks to the δ-separation of the perforations) to B(θ(ω), r(ω) + δ). Essentially,
there are two different cases to be considered separately: the case r(ω) < δ and the opposite case
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r(ω) ≥ δ. If r(ω) < δ we follow [9] to extend from B(θ(ω), 2r(ω)) \ B(θ(ω), r(ω)) ⊂ Aδ(ω); if
instead r(ω) ≥ δ we follow [9] to extend from B(θ(ω), r(ω)(1 + δ/r∗)) \ B(θ(ω), r(ω)) ⊂ Aδ(ω).
Since the deterministic extension constructed in [9] is invariant under translations and homoth-
eties of the domains, in both cases the extension constant is independent of r(ω) and θ(ω) (see
Lemma 4.1). We then repeat this procedure for every inclusion, and obtain an extension operator
from A \ εK(ω) to A, with an extension constant independent of ε and of ω (Theorem 4.2). This
is a key ingredient in the proof of the compactness (strongly in L1) for sequences with bounded
energies Eε(ω) (Proposition 4.7).

The Γ-convergence result. Once the compactness result is established, we prove the sto-
chastic Γ-convergence of Eε(ω) for ε → 0 (Theorems 5.1 and 5.3). Our strategy is to resort to
a perturbation argument. Namely, we first introduce a perturbed functional Ekε (ω), with volume
and surface densities given by fk := akf and gk := akg, where

ak(ω, x) :=

{
1 if x ∈ Rn \K(ω),
1
k if x ∈ K(ω).

In other words, Ekε (ω) is obtained from Eε(ω) by filling the holes with a coefficient 1
k , with k ∈ N.

The perturbed functionals are non-degenerate and coercive, hence for fixed k the Γ-limit of Ekε
for ε→ 0 exists almost surely by [11, Theorem 3.12]. Moreover, we can identify the limit volume
and surface energy densities, which are given by

fkhom(ω, ξ) = lim
t→+∞

1

tn
inf

{∫
tQ

fk (ω, x,∇u) dx : u ∈W 1,p(tQ), u = ξ · x near ∂(tQ)

}
, (1.2)

and

gkhom(ω, ν) = lim
t→+∞

1

tn−1
inf

{∫
Su∩tQν

gk (ω, x, νu) dHn−1 : u ∈ P(tQν), u = u0,1,ν near ∂(tQν)

}
,

(1.3)
where ξ ∈ Rn, ν ∈ Sn−1, Qν is the rotated unit cube centred at the origin with one face perpen-
dicular to ν, u0,1,ν is the piecewise constant function equal to 1 in the half-space in the positive
direction of ν and 0 in the complement, and P denotes the set of partitions with values in {0, 1}.

The volume and the surface densities fhom and ghom of the Γ-limit of Eε(ω) are then obtained
as the limits for k → +∞ of fkhom and gkhom, respectively. The most delicate part in the proof is
to show that these limits coincide with

lim
t→+∞

1

tn
inf

{∫
tQ\K(ω)

f (ω, x,∇u) dx : u ∈W 1,p(tQ), u = ξ · x near ∂(tQ)

}
(1.4)

and

lim
t→+∞

1

tn−1
inf

{∫
Su∩(tQν\K(ω))

g (ω, x, νu) dHn−1 : u ∈ P(tQν), u = u0,1,ν near ∂(tQν)

}
, (1.5)

respectively. This step requires a careful use of extension techniques for Sobolev functions (Lemma
4.5) and for Caccioppoli partitions (Lemma 4.6) separately, in order to construct, starting from a
competitor for the minimisation problem in (1.4) (resp. (1.5)) a competitor for the minimisation
problem in (1.2) (resp. (1.3)). Lemma 4.6, in particular, requires the use of a technical lemma
proved by Congedo and Tamanini in [16] (see also [17]), which establishes some regularity prop-
erties for minimisers of the perimeter functional. These regularity properties, in turn, ensure that
minimising partitions are constant on a sphere around each perforation, from which we can then
perform a trivial extension at no additional energetic cost.

Finally, our assumptions on the geometry of K(ω) allow us to prove that the limit densities
fhom and ghom are non-degenerate.
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1.2. Conclusions and outlook. In this paper we prove a stochastic homogenisation result for
free-discontinuity functionals on randomly perforated domains, without imposing any boundary
conditions on the perforations. Our approach relies on the construction of an extension operator
guaranteeing that, given a function in the perforated domain, the extended function in the whole
domain is bounded, in energy, in terms of the original function. The construction of the extension
operator, in turn, is guaranteed by our assumptions on the geometry of the randomly perforated
domain. In particular, the assumption of δ-separation of the holes is crucial in our analysis. This
assumption, moreover, also ensures that the density of the random domain is strictly positive, and
hence the non-degeneracy of the limit energy.

It would be interesting to investigate whether our result could work in the more general case
where the existence of a fixed safety distance δ is replaced by a more global condition of “average”
separation, e.g. in the spirit of [25, Section 8.4].

2. Setting of the problem and statement of the main result

2.1. Notation. We introduce here all the notation that we need.

• N∗ := {z ∈ Z : z ≥ 1};
• For ρ > 0 and θ ∈ Rn we define Qρ(θ) := {x ∈ Rn : |xi − θi| < ρ

2 , i = 1, .., n}; we use the
shorthands Qρ = Qρ(0) and Q = Q1;

• For ρ > 0 and θ ∈ Rn we define B(θ, ρ) := {x ∈ Rn : |x− θ| < ρ};
• For 0 < r < s and θ ∈ Rn we define the open annulus Br,s(θ) := B(θ, s) \ B(θ, r) and

denote Br,s = Br,s(0);
• Sn−1 := {x ∈ Rn : |x| = 1};
• Ln denotes the Lebesgue measure on Rn and Hn−1 the (n − 1)-dimensional Hausdorff

measure on Rn;
• A denotes the family of bounded domains of Rn with Lipschitz boundary;
• We denote with Bn the Borel σ-algebra on Rn and with B(Sn−1) the Borel σ-algebra on
Sn−1;

• For ξ ∈ Rn, we denote with `ξ the linear function `ξ(x) = ξ · x for x ∈ Rn;
• For x ∈ Rn, t > 0 and ν ∈ Sn−1, we denote with Qνt (x) the cube of side-length t > 0,

centred at x with one face orthogonal to ν;
• For x ∈ Rn and ν ∈ Sn−1, we set

ux,1,ν(y) :=

{
1 if (y − x) · ν ≥ 0

0 if (y − x) · ν < 0.

The functional setting for our analysis is that of generalised special functions of bounded vari-
ation. We recall some basic definitions and refer to [2] for a more comprehensive introduction to
the topic.

For A ∈ A, the space of special functions of bounded variation in A is defined as

SBV (A) = {u ∈ BV (A) : Du = ∇uLn + (u+ − u−)νuHn−1 Su}.

Here Su denotes the approximate discontinuity set of u, νu is the generalised normal to Su, u+

and u− are the traces of u on both sides of Su. We also consider the space

P(A) = {u ∈ SBV (A) : ∇u = 0, u ∈ {0, 1} Ln-a.e., Hn−1(Su) < +∞};

hence every u in P(A) is a partition in the sense of [2, Definition 4.21].
For p > 1, we define the following vector subspace of SBV (A):

SBV p(A) = {u ∈ SBV (A) : ∇u ∈ Lp(A) and Hn−1(Su) < +∞}.

We consider also the larger space of generalised special functions of bounded variation in A,

GSBV (A) = {u ∈ L1(A) : (u ∧m) ∨ (−m) ∈ SBV (A) for all m ∈ N}.

By analogy with the case of SBV functions, we write

GSBV p(A) = {u ∈ GSBV (A) : ∇u ∈ Lp(A) and Hn−1(Su) < +∞}.
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2.2. Volume and surface integrands. Let p > 1, 0 < c1 ≤ c2 < +∞, L > 0, and let f : Rn ×
Rn −→ [0,+∞) be a Borel function on Rn×Rn satisfying the following conditions:

(f1) (lower bound) for every x ∈ Rn and every ξ ∈ Rn

c1|ξ|p ≤ f(x, ξ);

(f2) (upper bound) for every x ∈ Rn and every ξ ∈ Rn

f(x, ξ) ≤ c2(1 + |ξ|p);

(f3) (continuity in ξ) for every x ∈ Rn we have

|f(x, ξ1)− f(x, ξ2)| ≤ L
(
1 + |ξ1|p−1 + |ξ2|p−1

)
|ξ1 − ξ2|

for every ξ1, ξ2 ∈ Rn.

Let 0 < c3 ≤ c4 < +∞ and let g : Rn × Sn−1 −→ [0,+∞) be a Borel function on Rn × Sn−1

satisfying the following conditions:

(g1) (lower bound) for every x ∈ Rn and every ν ∈ Sn−1

c3 ≤ g(x, ν);

(g2) (upper bound) for every x ∈ Rn and every ν ∈ Sn−1

g(x, ν) ≤ c4;

(g3) (symmetry) for every x ∈ Rn and every ν ∈ Sn−1

g(x, ν) = g(x,−ν).

2.3. Stochastic framework. Let (Ω, T , P ) be a complete probability space. We start by recalling
some definitions.

Definition 2.1 (Group of P -preserving transformations). A group of P -preserving transforma-
tions on (Ω, T , P ) is a family (τy)y∈Rn of T -measurable mappings τy : Ω → Ω satisfying the
following properties:

• (measurability) the map (ω, y) 7→ τy(ω) is (T ⊗Bn, T )-measurable;
• (bijectivity) τy is bijective for every y ∈ Rn;
• (invariance) P (τy(E)) = P (E), for every E ∈ T and every y ∈ Rn;
• (group property) τ0 = idΩ (the identity map on Ω) and τy+y′ = τy ◦τy′ for every y, y′ ∈ Rn.

If, in addition, every set E ∈ T which satisfies τy(E) = E for every y ∈ Rn has probability 0 or 1,
then (τy)y∈Rn is called ergodic.

We are now in a position to define the notion of stationary random integrand.

Definition 2.2 (Stationary random integrand). Let (τy)y∈Rn be a group of P -preserving trans-
formations on (Ω, T , P ). We say that f : Ω×Rn×Rn −→ [0,+∞) is a stationary random volume
integrand if

(a) f is (T ⊗Bn ⊗Bn)-measurable;

(b) f(ω, ·, ·) satisfies (f1)–(f3) for every ω ∈ Ω, with c1, c2 independent of ω;

(c) f(ω, x+ y, ξ) = f(τy(ω), x, ξ), for every ω ∈ Ω, x, y ∈ Rn, and ξ ∈ Rn.

Similarly, we say that g : Ω× Rn × Sn−1 −→ [0,+∞) is a stationary random surface integrand if

(d) g is (T ⊗Bn ⊗B(Sn−1))-measurable;

(e) g(ω, ·, ·) satisfies (g1)–(g3) for every ω ∈ Ω, with c3, c4 independent of ω;

(f) g(ω, x+ y, ν) = g(τy(ω), x, ν), for every ω ∈ Ω, x, y ∈ Rn, and ν ∈ Sn−1.

If in addition (τy)y∈Rn is an ergodic group of P -preserving transformations, then we say that f
and g are ergodic.

We also recall the definition of random domain. The main difference with the classical definition
given in, e.g., [25, Chapter 8] is that we do not assume any ergodicity for the group (τy)y∈Rn .
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Definition 2.3 (Random domain). Let (τy)y∈Rn be a group of P -preserving transformations on
(Ω, T , P ). A random domain is a map ω 7→ D(ω) from Ω to the subsets of Rn such that:

• the map (ω, x) 7→ χD(ω)(x) is (T ⊗Bn)-measurable;
• for every ω ∈ Ω, x, y ∈ Rn it holds

χD(ω)(x+ y) = χD(τyω)(x). (2.1)

In short, we say that D is a random domain. We refer to (2.1) as the stationarity condition for
the domain. If in addition (τy)y∈Rn is ergodic, then we say that the random domain is ergodic.

Remark 2.4. We note that D is a random domain if and only if for every ω ∈ Ω

D(ω) =
{
x ∈ Rn : τxω ∈ D̃

}
(2.2)

for some D̃ ∈ T . Indeed if D(ω) is as in (2.2) for some D̃ ∈ T , then it is immediate to check that
χD(ω) satisfies (2.1). If on the other hand χD(ω) satisfies (2.1), we have that χD(ω)(x) = χD(τxω)(0)
and therefore

D̃ = {ω ∈ Ω: 0 ∈ D(ω)}.

Definition 2.5 (Density of a random domain). Let D be a random domain, let D̃ ∈ T be as
in (2.2), and let I ⊂ T denote the σ-algebra of (τy)y∈Rn -invariant sets; that is, I := {E ∈
T : τy(E) = E ∀ y ∈ Rn}. The function κ : Ω → [0,+∞) defined for every ω ∈ Ω as κ(ω) :=
E[χD̃|I ](ω) is called the pointwise density of D.

Remark 2.6. By the definition of conditional expectation we have that∫
Ω

E[χD̃|I ](ω) dP (ω) =

∫
Ω

χD̃(ω) dP (ω) = P (D̃),

since Ω ∈ I . The nonnegative number κ̄ := P (D̃) is usually referred to as the (average) density
of D (see e.g. [25, Chapter 8]).

Remark 2.7 (Birkhoff’s Ergodic Theorem). Let D be a random domain and let ε > 0. For every
ω ∈ Ω and x ∈ Rn, we set

κε(ω, x) := χεD(ω)(x). (2.3)

Then, the Birkhoff Ergodic Theorem ensures that for P -a.e. ω ∈ Ω

κε(ω, ·)
∗
⇀ κ(ω) in L∞loc(Rn)

as ε→ 0. If moreover D is ergodic then

κε(ω, ·)
∗
⇀ κ̄ in L∞loc(Rn).

We require the following additional assumptions on the geometry of the random domain D.

Definition 2.8 (Random perforated domain). Let δ > 0 and r∗ > δ be fixed and independent of
ω, let K be a random domain, and set, for ω ∈ Ω, D(ω) := Rn \K(ω). We say that D is a random
perforated domain if:

(K1) for every ω ∈ Ω the set K(ω) is the union of closed balls with radius smaller than r∗;

(K2) for every ω ∈ Ω the distance between any two distinct balls in K(ω) is larger that 2δ.

Properties (K1) and (K2) can be rephrased as follows:

• K(ω) is a countable union of balls of the form

K(ω) :=
⋃
i∈I

B(θi(ω), ri(ω)), (2.4)

with ri(ω) ∈ (0, r∗), θi(ω) ∈ Rn, and with θi(ω) 6= θj(ω) for i 6= j, for every i, j ∈ I and
for every ω ∈ Ω;

• for every i, j ∈ I with i 6= j

B(θi(ω), ri(ω) + δ) ∩B(θj(ω), rj(ω) + δ) = Ø. (2.5)
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The set K(ω) is a special type of random spherical structure, as defined in [25, Definition 8.19]. It
is special because of the strong 2δ-separation of the spherical perforations, which is crucial in our
analysis.

Remark 2.9 (Example of a random perforated domain). The simplest example of a random perfo-
rated domain can be obtained as follows. Let L ⊂ Rn be a regular Bravais lattice (e.g., the cubic
lattice or the triangular lattice for n = 2). Let Q(L) denote the periodicity cell of the lattice, and
let B ⊂⊂ Q(L) be a ball well contained in the cell. Then an admissible set of perforations is given
by

KL(ω) =
⋃

y∈Y(ω)

(B + y),

where Y(ω) ⊂ L is a random set obtained, for instance, by running i.i.d. Bernoulli trials at each
y ∈ L. Then D(ω) := Rn \KL(ω) is a random perforated domain.

We now show that a random domain as in Definition 2.8 has a positive pointwise density κ(ω)
for P -a.e. ω ∈ Ω.

Property 2.10. Let D be a random perforated domain as in Definition 2.8 and let κ be its
pointwise density as in Definition 2.5. Then κ(ω) > 0 for P -a.e. ω ∈ Ω.

Proof. Let ε > 0 be small and let κε be as in (2.3); then for ω ∈ Ω∫
Q

κε(ω, x) dx =

∫
Q

χεD(ω)(x) dx = Ln(Q ∩ εD(ω)) = Ln(Q \ εK(ω)),

where Q denotes the unit cube. By the Birkhoff Ergodic Theorem we deduce that, in particular,

lim
ε→0
Ln(Q \ εK(ω)) = κ(ω), (2.6)

for P -a.e. ω ∈ Ω. We now show that, by Definition 2.8, the left hand-side of (2.6) can be estimated
from below by a positive constant independent of ω.

Let Nε denote the number of components εB(θi(ω), ri(ω)) of εK(ω) such that εB(θi(ω), ri(ω)+
δ) is contained in Q, namely the components of εK(ω) that do not intersect Q \ Q1−2εδ. Note
that the total number of perforations intersecting Q is Nε + N b

ε , where N b
ε denotes the number

of “boundary” perforations. We can neglect the boundary perforations in the estimate of Ln(Q∩
εK(ω)) (and hence of Ln(Q \ εK(ω))) since they provide an infinitesimal volume contribution.
The assumption of 2δε-separation of the components of εK(ω) ensures that Nε ≤ (2εδ)−n.

If Nε � ε−n we immediately get

Ln(Q ∩ εK(ω)) ≤ cnNεεnrn∗ → 0 as ε→ 0,

where cn := Ln(B(0, 1)) and therefore

Ln(Q \ εK(ω)) = Ln(Q)− Ln(Q ∩ εK(ω)) ≥ 1

2

for small enough ε > 0 and every ω ∈ Ω.
We now assume that Nε ∼ ε−n. First of all, by the definition of Nε, and by the 2δε-separation

of the components of εK(ω), we have that

εB(θj(ω), rj(ω) + δ) \ εB(θj(ω), rj(ω)) ⊂ Q \ εK(ω).

Consequently we have
Ln(Q \ εK(ω)) ≥ Nεcn(εδ)n,

where to establish the last inequality we have used that

Ln(εB(θj(ω), rj(ω) + δ) \ εB(θj(ω), rj(ω))) = εncn
(
(rj(ω) + δ)n − rj(ω)n

)
≥ cnεnδn.

Therefore also in this case we have that

lim
ε→0
Ln(Q \ εK(ω)) ≥ lim

ε→0
Nεcn(εδ)n = c > 0,

and this concludes the proof. �
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Figure 1. The randomly perforated domain A \ εK(ω).

εB(θi(ω), ri(ω))

2.4. Energy functionals and statement of the main result. We now introduce the sequence
of functionals we are going to study.

For ω ∈ Ω and ε > 0 we consider the random functionals Eε(ω) : L1
loc(Rn) × A −→ [0,+∞]

defined as

Eε(ω)(u,A) :=


∫
A\εK(ω)

f
(
ω,
x

ε
,∇u

)
dx+

∫
Su∩(A\εK(ω))

g
(
ω,
x

ε
, ν
)
dHn−1 if u|A ∈ GSBV p(A),

+∞ otherwise,

(2.7)
where f and g are stationary random integrands as in Definition 2.2, and K(ω) is as in Definition
2.8 (see Figure 1).

Let moreover F (ω), G(ω) : L1
loc(Rn)×A −→ [0,+∞] be defined as

F (ω)(u,A) :=


∫
A\K(ω)

f (ω, x,∇u) dx if u|A ∈W 1,p(A),

+∞ otherwise,

(2.8)

and

G(ω)(u,A) :=


∫
Su∩(A\K(ω))

g (ω, x, νu) dHn−1 if u|A ∈ GSBV p(A),

+∞ otherwise.

(2.9)

Let A ∈ A be fixed; for v ∈ L1
loc(Rn), with v|A ∈W 1,p(A), we define

m1,p
F (ω)(v,A) := inf

{
F (ω)(u,A) : u ∈ L1

loc(Rn), u|A ∈W 1,p(A), u = v near ∂A
}
. (2.10)

Similarly, for v ∈ L1
loc(Rn), with v|A ∈ P(A), we define

mpc
G(ω)(v,A) := inf

{
G(ω)(u,A) : u ∈ L1

loc(Rn), u|A ∈ P(A), u = v near ∂A
}
. (2.11)

In the formulas above, by “u = v near ∂A” we mean that there exists a neighbourhood U of ∂A
in Rn such that u = v Ln-a.e. in U ∩A.

The following theorem is the main result of this paper.

Theorem 2.11 (Homogenisation theorem). Let f and g be stationary random volume and surface
integrands, and let D ⊂ Rn be a random perforated domain as in Definition 2.8. Assume that
the stationarity of f , g and D is satisfied with respect to the same group (τy)y∈Rn of P -preserving
transformations on (Ω, T , P ). Let ε > 0, and let Eε be the functionals defined as in (2.7).

I) (Compactness) Let ω ∈ Ω and A ∈ A be fixed; let (uε) ⊂ L1
loc(Rn) be such that

sup
ε>0

(
Eε(ω)(uε, A) + ‖uε‖L∞(A\εK(ω))

)
< +∞.
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Then there exist a sequence (ũε) ⊂ SBV p(A)∩L1
loc(Rn) and a function u ∈ SBV p(A)∩L1

loc(Rn)
such that ũε = uε Ln-a.e. in A \ εK(ω) and (up to a subsequence not relabelled) ũε → u strongly
in L1(A).

II) (Almost sure Γ-convergence) There exists Ω′ ∈ T , with P (Ω′) = 1, such that for every
ω ∈ Ω′ the functionals Eε(ω) Γ-converge with respect to the L1

loc(Rn)-convergence, as ε → 0, to
the functional Ehom(ω) : L1

loc(Rn)×A −→ [0,+∞] given by

Ehom(u,A) =


∫
A

fhom(ω,∇u) dx+

∫
A∩Su

ghom(ω, νu) dHn−1 if u|A ∈ GSBV p(A),

+∞ otherwise.
(2.12)

In (2.12), for every ω ∈ Ω′, ξ ∈ Rn, and ν ∈ Sn−1,

fhom(ω, ξ) := lim
t→+∞

1

tn
m1,p
F (ω)(`ξ, Qt(0)),

and

ghom(ω, ν) := lim
t→+∞

1

tn−1
mpc
G(ω)(u0,1,ν , Q

ν
t (0)),

with m1,p
F (ω) and mpc

G(ω) defined as in (2.10) and (2.11), respectively.

III) (Properties of fhom and ghom) The homogenised volume integrand fhom satisfies the follow-
ing properties:

i. (measurability) fhom is (T ⊗Bn)-measurable;
ii. (bounds) there exists c̃0 > 0 such that

c̃0|ξ|p ≤ fhom(ω, ξ) ≤ c2(1 + |ξ|p),
for every ω ∈ Ω′ and every ξ ∈ Rn, with c2 as in (f2);

iii. (continuity) there exists L′ > 0 such that

|fhom(ω, ξ1)− fhom(ω, ξ2)| ≤ L′
(
1 + |ξ1|p−1 + |ξ2|p−1

)
|ξ1 − ξ2|,

for every ω ∈ Ω′ and every ξ1, ξ2 ∈ Rn.

Additionally, the homogenised surface integrand ghom satisfies:

iv. (measurability) ghom is (T ⊗B(Sn−1))-measurable;
v. (bounds) there exists c̃0 > 0 such that

c̃0 ≤ ghom(ω, ν) ≤ c4,
for every ω ∈ Ω′ and every ν ∈ Sn−1, with c4 as in (g2);

vi. (symmetry) ghom(ω, ν) = ghom(ω,−ν), for every ω ∈ Ω′ and every ν ∈ Sn−1.

If, in addition, f , g and D are ergodic, then fhom and ghom are independent of ω.

The proof of Theorem 2.11 will be broken up into three main steps which will be, respectively,
the object of Proposition 4.7, Theorem 5.1, and Theorem 5.3 below.

3. Preliminaries

In this short section we collect two known results which will be used in what follows. The first
one, Theorem 3.1 is an extension result for GSBV -functions. The second result, Lemma 3.3, is a
regularity result for minimal partitions.

For p > 1 and n ≥ 2 we introduce the shorthand MSp for the p-Mumford-Shah functional,
namely we write

MSp(u,A) :=

∫
A

|∇u|pdx+Hn−1(Su ∩A),

where A ∈ A and u ∈ GSBV p(A). Moreover, if u ∈ GSBV p(B), with B ∈ A and Ā ⊂ B, we use
the notation

MSp(u, Ā) := MSp(u,A) +Hn−1(Su ∩ ∂A).

We now recall [9, Theorem 1.1].
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Theorem 3.1. Let p > 1, let A,A′ ⊂ Rn be bounded open sets with Lipschitz boundary and
assume that A′ is connected, A′ ⊂ A and A \ A′ ⊂⊂ A. Then there exists a linear extension
operator T : GSBV p(A′) −→ GSBV p(A) and a constant c = c(n, p,A,A′) > 0 such that

• Tu = u Ln-a.e. in A′,

• Hn−1(STu ∩ (∂A′ ∩A)) = 0,

• MSp(Tu,A) ≤ cMSp(u,A′),

for every u ∈ GSBV p(A′). The constant c is invariant under translations and homotheties.
If in addition u ∈ L∞(A′), then Tu ∈ SBV p(A) ∩ L∞(A), and ‖Tu‖L∞(A) = ‖u‖L∞(A′).

Remark 3.2. The result in [9] is stated and proven in GSBV p for the most classical case p = 2,
but the general case of GSBV p for p > 1 follows immediately. In fact, a key tool of the proof in
[9] is the density lower bound proved in [19] (see also [18]), which is actually valid for any p > 1
(see for instance [2, Theorem 7.21]).

We now state a technical lemma (see [16, Lemma 4.5], and see also [17, Lemma 2.5] for a more
general version of the result) for (locally) minimal partitions.

Lemma 3.3. Let n > 2 and τ ∈ (0, 1] be fixed. There exists a constant γ = γ(n, τ) > 0 such that
if 0 < s ≤ r, and u ∈ P(Br,r+s) verifies the following hypotheses:

(H1) Hn−1(Su ∩ Br,r+s) ≤ Hn−1(Sv ∩ Br,r+s) for every competitor v ∈ P(Br,r+s) satisfying
supp(u− v) ⊂ Br,r+s;

(H2) Hn−1(Su ∩Br,r+s) ≤ γsn−1;

then for every r0 and s0 such that r ≤ r0 < r0 + s0 ≤ r + s and s0 ≥ τs, there exists a radius
r̄ ∈ (r + s0/3, r0 + 2s0/3) with the property that

Su ∩ ∂Br̄ = Ø.

4. Extension results and compactness

In this section we prove a compactness result for sequences (uε) ⊂ L1
loc(Rn) satisfying the bound

Eε(ω)(uε, A) + ‖uε‖L∞(A\εK(ω)) ≤ C for every ε > 0, (4.1)

for a constant C > 0 independent of ε > 0, where A ∈ A and Eε is defined as in (2.7), and ω ∈ Ω.

By definition of the functionals Eε(ω), the bound in (4.1) does not provide any information on
the BV -norm of uε in A ∩ εK(ω). To gain the desired bound, we show that (uε) can be actually
replaced by a sequence (ũε) ⊂ SBV p(A) satisfying the two following properties:

ũε = uε Ln-a.e. in A \ εK(ω) and sup
ε
‖ũε‖BV (A) < +∞. (4.2)

In particular, ũε is energetically equivalent to uε. To prove the existence of such a sequence, we
resort to a new extension result for functions defined on a perforated domain without assuming
any periodicity on the distribution of the perforations (cf. Cagnetti and Scardia [9] for the case
of periodically distributed perforations).

4.1. Extension. The main result of this subsection is a GSBV -extension result from A \ εK(ω)
to A (cf. Theorem 4.2). Since this result is proven for ω ∈ Ω fixed, in what follows we omit the
dependence of the set K(ω) on the random parameter ω. Hence below K denotes any subset of
Rn satisfying the two properties (2.4) and (2.5) (cf. Definition 2.8).

Loosely speaking, to prove the desired GSBV -extension result we would like to apply Theo-
rem 3.1 in a δ-neighbourhood of each component B(θi, ri) of K (which are pairwise disjoint by
assumption (2.5)). If we did it naively, however, we could have for each B(θi, ri) a different ex-
tension constant. Lemma 4.1 below ensures that the extension constant can be actually taken to
be independent of θi and ri.
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Lemma 4.1 (GSBV -extension in an annulus). Let n ≥ 2 and p > 1; let δ, r∗ > 0 be fixed,
with r∗ > δ. Let θ ∈ Rn and 0 < r < r∗; then there exist a linear extension operator Tθ,r :
GSBV p(Br,r+δ(θ))→ GSBV p(B(θ, r + δ)) and a constant c = c(n, p, δ, r∗) > 0 such that

Tθ,ru = u Ln-a.e. in Br,r+δ(θ),

Hn−1(STθ,ru ∩ ∂B(θ, r)) = 0,

MSp(Tθ,ru,B(θ, r + δ)) ≤ cMSp
(
u,Br,r+δ(θ)

)
for every u ∈ GSBV p(Br,r+δ(θ)). The constant c is invariant under translations and homoth-
eties. If in addition u ∈ L∞(Br,r+δ(θ)), then Tθ,ru ∈ SBV p(B(θ, r + δ)) ∩ L∞(B(θ, r + δ)), and
‖Tθ,ru‖L∞(B(θ,r+δ)) = ‖u‖L∞(Br,r+δ(θ)).

Proof. Let u ∈ GSBV p(Br,r+δ(θ)). We treat the cases r < δ and r ≥ δ separately.

Case 1: r < δ. Note that in this case Br,2r(θ) ⊂ Br,r+δ(θ).
Let v := u|Br,2r(θ) . By applying Theorem 3.1 with A′ = Br,2r(θ) and A = B(θ, 2r), we

deduce the existence of a constant c = c(n, p) > 0 (independent of θ and r) and a function
w ∈ GSBV p(B(θ, 2r)) satisfying w = v = u Ln-a.e. in Br,2r(θ) and

MSp(w,B(θ, 2r)) ≤ cMSp(v,Br,2r(θ)) = cMSp(u,Br,2r(θ)) ≤ cMSp(u,Br,r+δ(θ)). (4.3)

We now define the function ũ in B(θ, r + δ) as follows:

ũ :=

{
u in Br,r+δ(θ),

w|B(θ,r) in B(θ, r).
(4.4)

Clearly, ũ ∈ GSBV p(B(θ, r + δ)), ũ = u in Br,r+δ(θ), and

MSp(ũ, B(θ, r + δ)) = MSp(u,Br,r+δ(θ)) +MSp(w,B(θ, r))

= MSp(u,Br,r+δ(θ)) +MSp(w,B(θ, r))

≤ (1 + c)MSp(u,Br,r+δ(θ)),

where c > 0 is the same constant as in (4.3).
The desired extension operator Tθ,r : GSBV p(Br,r+δ(θ)) −→ GSBV p(B(θ, r+ δ)) is then the one
associating to any u ∈ GSBV p(Br,r+δ(θ)) the function ũ defined by (4.4).

Case 2: r ≥ δ. Since r < r∗, we have that Br,r(1+δ/r∗)(θ) ⊂ Br,r+δ(θ).
Let v := u|Br,r(1+δ/r∗)(θ)

. Proceeding as in Case 1, we apply Theorem 3.1 withA′ = Br,r(1+δ/r∗)(θ)

and A = B(θ, r(1 + δ/r∗)), and deduce the existence of a constant c = c(n, p, δ, r∗) > 0 (indepen-
dent of θ and r) and a function w ∈ GSBV p(B(θ, r(1 + δ/r∗))) satisfying w = v = u Ln-a.e. in
Br,r(1+δ/r∗)(θ) and

MSp(w,B(θ, r(1 + δ/r∗)) ≤ cMSp(v,Br,r(1+δ/r∗)(θ))

= cMSp(u,Br,r(1+δ/r∗)(θ)) ≤ cMSp(u,Br,r+δ(θ)). (4.5)

The desired extension operator Tθ,r : GSBV p(Br,r+δ(θ)) −→ GSBV p(B(θ, r+ δ)) is then the one
associating to any u ∈ GSBV p(Br,r+δ(θ)) the function Tθ,ru defined as

Tθ,ru :=

{
u in Br,r+δ(θ),

w|B(θ,r) in B(θ, r).

Indeed, clearly Tθ,ru ∈ GSBV p(B(θ, r + δ)), Tθ,ru = u in Br,r+δ(θ), and

MSp(Tθ,ru,B(θ, r + δ)) = MSp(u,Br,r+δ(θ)) +MSp(w,B(θ, r))

≤MSp(u,Br,r+δ(θ)) +MSp(w,B(θ, 2r))

≤ (1 + c)MSp(u,Br,r+δ(θ)),

where c > 0 is the same constant as in (4.5).
�

We now make use of Lemma 4.1 to prove the desired GSBV -extension result from A \ εK to A.
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Theorem 4.2 (GSBV -extension in A \ εK). Let A ∈ A, let K ⊂ Rn satisfy (2.4) and (2.5),
and let ε > 0. Let p > 1. Then there exists a linear extension operator Tε : GSBV p(A \ εK) −→
GSBV p(A) and a constant c = c(n, p, δ, r∗) > 0 such that

(E1) Tεu = u Ln-a.e. in A \ εK,
(E2) Hn−1(STεu ∩ (∂(εK) ∩A)) = 0,

(E3) MSp(Tεu,A) ≤ c
(
MSp(u,A \ εK) +Hn−1(∂A)

)
for every u ∈ GSBV p(A \ εK). Moreover, the constant c is invariant under homotheties and
translations.

If in addition u ∈ L∞(A \ εK), then

(E4) Tεu ∈ L∞(A), and ‖Tεu‖L∞(A) = ‖u‖L∞(A\εK).

Proof. Let ū : Rn \ εK → R denote the trivial extension of u to Rn \ εK; i.e.,

ū :=

{
u in A \ εK
0 in (Rn \A) \ εK.

Then ū = u in A \ εK, and

MSp(ū,Rn \ εK) ≤MSp(u,A \ εK) +Hn−1(∂A). (4.6)

Let Iε be the set of indices j ∈ I such that εB(θj , rj) intersects A. For j ∈ Iε we use the
shorthand Aj for the open annulus Brj ,rj+δ(θj), and we denote with Tj,ε : GSBV p

(
εAj

)
−→

GSBV p(εB(θj , rj + δ)) the extension operator provided by Lemma 4.1. Finally, we define the
function ũε : Rn → R as

ũε :=

{
Tj,ε
(
ū|εAj

)
in εB(θj , rj + δ), j ∈ Iε,

ū otherwise.

Clearly ũε ∈ GSBV p(A ∪
⋃
j∈Iε εB(θj , rj + δ)). Moreover,

MSp
(
ũε, A ∪

⋃
j∈Iε

εB(θj , rj + δ)

)
≤
∑
j∈Iε

MSp
(
Tj,ε
(
ū|εAj

)
, εB(θj , rj + δ)

)
+MSp(ū,Rn \ εK)

≤ c(n, p, δ, r∗)
∑
j∈Iε

MSp (ū, εAj) +MSp(ū,Rn \ εK)

≤ (c(n, p, δ, r∗) + 1)
(
MSp(u,A \ εK) +Hn−1(∂A)

)
,

where we have used (4.6), and the fact that, since for each of the operators Tj,ε the constant pro-
vided by Lemma 4.1 is invariant under translations and homotheties, it is in particular independent
of j and ε. Finally, the claim follows by defining Tεu := ũε|A. �

Remark 4.3. A careful inspection of the proof of Theorem 4.2 shows that, as in [1], one can obtain
the following estimate, alternative to (E3):

MSp(Tεu,A
′) ≤ cMSp(u,A \ εK), ∀A′ ∈ A, A′ ⊂⊂ A,

upon choosing ε > 0 small enough, so that perforations that are possibly cut by ∂A do not
intersect A′. Indeed, the additional boundary contribution in (E3) is due to the possible presence
of perforations that are cut by ∂A, and for which the extension result Lemma 4.1 does not apply.
This boundary term is clearly no longer necessary if we accept to control the Mumford-Shah of
the extended function only far from the boundary.

Remark 4.4. In Theorem 4.2 it is not necessary to assume that the connected components of K
are balls. For instance, the case where each component of K is a smooth strictly convex domain
does not essentially differ from the case of spherical inclusions.

For later use we also state the analogue of Lemma 4.1 for Sobolev functions (Lemma 4.5) and
for partitions (Lemma 4.6).
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Lemma 4.5 (Sobolev-extension in an annulus). Let n ≥ 2 and p > 1; let δ, r∗ > 0 be fixed, with
r∗ > δ. Let θ ∈ Rn and 0 < r < r∗; then there exist an extension operator Tθ,r : W 1,p(Br,r+δ(θ))→
W 1,p(B(θ, r + δ)) and a constant c = c(n, p, δ, r∗) > 0 such that

Tθ,ru = u Ln-a.e. in Br,r+δ(θ),

‖Tθ,ru‖Lp(B(θ,r+δ)) ≤ c ‖u‖Lp(Br,r+δ(θ)),

‖D(Tθ,ru)‖Lp(B(θ,r+δ)) ≤ c ‖Du‖Lp(Br,r+δ(θ)),

for every u ∈W 1,p(Br,r+δ(θ)). The constant c is invariant under translations and homotheties.

Proof. The proof can be obtained by repeating every step of the proof of Lemma 4.1, up to invoking
the extension result [1, Lemma 2.6] instead of Theorem 3.1. �

Lemma 4.6 (Extension of a partition in an annulus). Let n ≥ 2, and let δ, r∗ > 0 be fixed, with
r∗ > δ. Let θ ∈ Rn and 0 < r < r∗; then there exist an extension operator Tθ,r : P(Br,r+δ(θ)) →
P(B(θ, r + δ)) and a constant c = c(n, δ, r∗) > 0 such that

Tθ,ru = u Ln-a.e. in Br,r+δ(θ),

Hn−1(STθ,ru ∩B(θ, r + δ)) ≤ cHn−1(Su ∩Br,r+δ(θ)),

for every u ∈ P(Br,r+δ(θ)). The constant c is invariant under translations and homotheties.

Proof. The proof is obtained by combining an adaptation of the proof of Theorem 3.1 ([9, Theorem
1.1]) with the proof of Lemma 4.1.

Case 1: r < δ. In this case we extend from Br,2r(θ) ⊂ Br,r+δ(θ) to B(θ, 2r). Up to a translation
and a rescaling we reduce to extending a partition v from B1,2(0) to B(0, 2). Let Φ : B 1

2 ,1
(0) →

B1, 32
(0) denote the reflection map with Φ = Id on ∂B(0, 1), which associates to a point z ∈ B 1

2 ,1
(0)

the point z̃ ∈ B1, 32
(0) on the line joining z with 0, with (z + z̃)/2 ∈ ∂B(0, 1). Then the function

ṽ :=

{
v in B1,2(0)

v ◦ Φ in B 1
2 ,1

(0)

satisfies ṽ ∈ P(B 1
2 ,2

(0)) and

Hn−1(Sṽ ∩B 1
2 ,2

(0)) ≤ cHn−1(Sv ∩B1,2(0)), (4.7)

where c > 0 is a constant depending only on the dimension n. Finally, we modify ṽ in the annulus
B 1

2 ,1
(0), and substitute it with a minimiser of the perimeter. More precisely, we let v̂ ∈ P(B 1

2 ,2
(0))

be a solution of the following minimisation problem

inf
{
Hn−1(Sw ∩B 1

2 ,2
(0) : w ∈ L1

loc(Rn), w|B 1
2
,2

(0) ∈ P(B 1
2 ,2

(0)), w = v in B1,2(0)
}
.

Then, (4.7) gives

Hn−1(Sv̂ ∩B 1
2 ,2

(0)) ≤ Hn−1(Sṽ ∩B 1
2 ,2

(0)) ≤ cHn−1(Sv ∩B1,2(0)). (4.8)

We now distinguish the cases of a “small” or “large” jump set of v̂ in the annulus B 1
2 ,1

(0). We

say that v̂ has a small jump set if

Hn−1(Sv̂ ∩B 1
2 ,1

(0)) ≤ γ

2n−1
, (4.9)

where γ = γ(n) > 0 is the universal constant as in Lemma 3.3 (applied with τ = 1). We note that
if (4.9) holds true, then the function v̂ satisfies the assumptions of Lemma 3.3 in B 1

2 ,1
(0). Indeed,

(H1) follows by the local minimality of v̂ in the annulus, and (H2) is exactly (4.9). Therefore
Lemma 3.3 (with r = s = r0 = s0 = 1

2 and τ = 1) yields the existence of r̄ ∈ ( 4
6 ,

5
6 ) such that

Sv̂ ∩ ∂B(0, r̄) = Ø,
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namely the trace of v̂ is constant on ∂B(0, r̄). We denote this constant value by m, and we define
the function v̄ in B(0, 2) as

v̄ :=

{
v̂ in Br̄,2(0),

m in B(0, r̄).

Then v̄ ∈ P(B(0, 2)) and, by (4.8),

Hn−1(Sv̄ ∩B(0, 2)) = Hn−1(Sv̂ ∩Br̄,2(0)) ≤ Hn−1(Sv̂ ∩B 1
2 ,2

(0)) ≤ cHn−1(Sv ∩B1,2(0)).

Hence the function v̄ is the required extension.
If instead (4.9) is not satisfied, then the extension is obtained by simply filling the perforation

with, e.g., the constant value 0. In doing so the additional perimeter created by the discontinuity
on ∂B(0, 1) is comparable to γ

2n−1 , up to a multiplicative constant. More precisely, we set

v̄ :=

{
v in B1,2(0),

0 in B(0, 1).

Clearly v̄ ∈ P(B(0, 2)), and by (4.8)

Hn−1(Sv̄ ∩B(0, 2)) ≤ Hn−1(Sv ∩B1,2(0)) + sn

< Hn−1(Sv ∩B1,2(0)) +
sn2n−1

γ
Hn−1(Sv̂ ∩B 1

2 ,1
(0))

≤ cHn−1(Sv ∩B1,2(0)), (4.10)

where sn := Hn−1(∂B(0, 1)) and c = c(n) > 0. Hence also in this case the function v̄ is the
required extension.

Case 2: r ≥ δ. Since r < r∗, we have that

B(θ, r(1 + δ/r∗)) ⊂ B(θ, r + δ).

We now extend from B(θ, r(1+δ/r∗))\B(θ, r) to B(θ, r)\B(θ, r(1+δ/r∗)
−1). Up to a translation

and a rescaling, we can restrict our attention to the case θ = 0 and r = 1; i.e., we extend from the
set A1 := B(0, (1 + δ/r∗)) \B(0, 1) to A2 := B(0, 1) \B(0, (1 + δ/r∗)

−1). Let v ∈ P(A1); then by
denoting with Φ : A2 → A1 the reflection map with Φ = Id on ∂B(0, 1), we have that the function

ṽ :=

{
v in A1

v ◦ Φ in A2

satisfies ṽ ∈ P(A1 ∪A′2), where A′2 := A2 ∪ ∂B(0, 1), and

Hn−1(Sṽ ∩ (A1 ∪A′2)) ≤ cHn−1(Sv ∩A1), (4.11)

with c = c(n, δ, r∗) > 0. Again, as in Case 1, we denote with v̂ ∈ P(A1 ∪ A′2) a minimiser of the
perimeter in A1 ∪ A′2 such that v̂ = v in A1. We then apply Lemma 3.3 to obtain the desired
extension. Since A2 = B(0, 1) \ B(0, r∗

r∗+δ
), we have that r = r∗

r∗+δ
and s = δ

r∗+δ
(and note that

s ≤ r since δ < r∗).
In this case we say that v̂ has a small jump set in A2 if

Hn−1(Sv̂ ∩A2) ≤ γ
(

δ

r∗ + δ

)n−1

, (4.12)

where γ = γ(n) > 0 is the universal constant as in Lemma 3.3 (applied with τ = 1). We note that
the function v̂ satisfies the assumptions of Lemma 3.3 in A2. Therefore Lemma 3.3 (with r0 = r
and s0 = s) yields the existence of r̄ ∈ 1

3 ( 3r∗+δ
r∗+δ

, 3r∗+2δ
r∗+δ

) such that

Sv̂ ∩ ∂B(0, r̄) = Ø,

namely the trace of v̂ is constant on ∂B(0, r̄), with value, say, m ∈ {0, 1}. Proceeding as in the
previous case yields the conclusion.

�



FREE-DISCONTINUITY FUNCTIONALS IN RANDOMLY PERFORATED DOMAINS 15

4.2. Compactness. In this subsection we use Theorem 4.2 to prove that a sequence (uε) with
equibounded energy Eε(ω) can be replaced, without changing the energy, with a sequence which
is precompact with respect to the strong L1-convergence.

Proposition 4.7 (Compactness). Let ω ∈ Ω and A ∈ A be fixed. Let (uε) ⊂ L1(A) be a sequence
satisfying

sup
ε>0

(
Eε(ω)(uε, A) + ‖uε‖L∞(A\εK(ω))

)
< +∞. (4.13)

Then there exist a sequence (ũε) ⊂ SBV p(A) and a function u ∈ SBV p(A) such that ũε = uε
Ln-a.e. in A \ εK(ω) and (up to a subsequence) ũε → u strongly in L1(A).

Proof. We start observing that (4.13) yields (uε) ⊂ SBV p(A \ εK(ω)) ∩ L∞(A \ εK(ω)). Let Tωε
be the extension operator from A \ εK(ω) to A as in Theorem 4.2 and set

ũε := Tωε
(
uε|A\εK(ω)

)
.

Then ũε ∈ SBV p(A) ∩ L∞(A), ũε = uε Ln- a.e. in A \ εK(ω), and (E3) gives

MSp(ũε, A) ≤ c(n, p, δ, r∗)
(
MSp(uε, A \ εK(ω)) +Hn−1(∂A)

)
≤ c(n, p, δ, r∗)

(
1

c1 ∧ c3
+ 1

)(
Eε(ω)(uε, A) +Hn−1(∂A)

)
. (4.14)

Since moreover by (E4) the extension operator Tωε preserves the L∞-norm, by combining (4.13)
and (4.14) we immediately deduce that

sup
ε>0

(
MSp(ũε, A) + ‖ũε‖L∞(A)

)
< +∞.

Therefore by Ambrosio’s Compactness Theorem [2, Theorem 4.8], up to subsequences not rela-
belled, ũε → u strongly in L1(A), for some u ∈ SBV p(A).

�

Remark 4.8 (Weak coerciveness). Let ω ∈ Ω be fixed and let (uε) ⊂ L1(A) be such that

sup
ε>0

(
Eε(ω)(uε, A) + ‖uε‖L∞(A\εK(ω))

)
< +∞.

Then, for P -a.e. ω ∈ Ω, up to a subsequence not relabelled, we have

uεχ(Rn\εK(ω)) = uεκε(ω, ·) ⇀ uκ(ω) weakly in L1(A), (4.15)

for some u ∈ SBV p(A), with κ(ω) as in Definition 2.5.
Indeed, Proposition 4.7 yields the existence of a sequence (ũε) ⊂ SBV p(A) and a function

u ∈ SBV p(A) such that ũε = uε in A \ εK(ω) and (up to a subsequence not relabelled)

ũε → u strongly in L1(A). (4.16)

On the other hand, by the Birkhoff’s Ergodic Theorem (see Remark 2.7) for P -a.e. ω ∈ Ω we have

χ(Rn\εK(ω)) = κε(ω, ·) ⇀ κ(ω) weakly∗ in L∞(A). (4.17)

Then the conclusion follows from the equality uεχ(Rn\εK(ω)) = ũεχ(Rn\εK(ω)), by combining (4.16)
and (4.17).

5. Homogenisation result

In this section we prove both the existence of the homogenisation formulas defining fhom and ghom

and the almost sure Γ-convergence of Eε(ω) towards Ehom(ω) stated in Theorem 2.11.
The existence of the homogenisation formulas is achieved in two steps. The first step consists

in applying [11, Theorem 3.12] to a coercive perturbation of Eε. Then in the second step we pass
to the limit in the perturbation parameter and show that this procedure leads to fhom and ghom.
This last step requires the separate extension results for Sobolev functions (Lemma 4.5) and for
partitions (Lemma 4.6).
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Theorem 5.1 (Homogenisation formulas). Let f and g be stationary random volume and surface
integrands, and let D ⊂ Rn be a random perforated domain as in Definition 2.8. Assume that the
stationarity of f , g, and D is satisfied with respect to the same group (τy)y∈Rn of P -preserving
transformations on (Ω, T , P ). For ω ∈ Ω, let F (ω) and G(ω) be as in (2.8) and (2.9), respectively.

Let moreover m1,p
F (ω) and mpc

G(ω) be defined by (2.10) and (2.11), respectively. Then there exists

Ω′ ∈ T , with P (Ω′) = 1, such that for every ω ∈ Ω′, for every x, ξ ∈ Rn, and every ν ∈ Sn−1 the
limits

lim
t→+∞

m1,p
F (ω)(`ξ, Qt(tx))

tn
and lim

t→+∞

mpc
G(ω)(utx,1,ν , Q

ν
t (tx))

tn−1

exist and are independent of x. More precisely, there exist a (T ⊗ Bn)-measurable function
fhom : Ω × Rn → [0,+∞) and a (T ⊗B(Sn−1))-measurable function ghom : Ω × Sn−1 → [0,+∞)
such that, for every x ∈ Rn, ξ ∈ Rn, and ν ∈ Sn−1

fhom(ω, ξ) = lim
t→+∞

1

tn
m1,p
F (ω)(`ξ, Qt(tx)) = lim

t→+∞

1

tn
m1,p
F (ω)(`ξ, Qt(0)), (5.1)

ghom(ω, ν) = lim
t→+∞

1

tn−1
mpc
G(ω)(utx,1,ν , Q

ν
t (tx)) = lim

t→+∞

1

tn−1
mpc
G(ω)(u0,1,ν , Q

ν
t (0)). (5.2)

If, in addition, f , g, and D are ergodic, then fhom and ghom are independent of ω, and

fhom(ξ) = lim
t→+∞

1

tn

∫
Ω

m1,p
F (ω)(`ξ, Qt(0)) dP (ω),

ghom(ν) = lim
t→+∞

1

tn−1

∫
Ω

mpc
G(ω)(u0,1,ν , Q

ν
t (0)) dP (ω).

Proof. For k ∈ N∗ we set fk(ω, x, ξ) := ak(ω, x)f(ω, x, ξ) and gk(ω, x, ν) := ak(ω, x)g(ω, x, ν),
where

ak(ω, x) :=

{
1 if x ∈ Rn \K(ω),
1
k if x ∈ K(ω),

(5.3)

and consider the coercive functionals F k(ω), Gk(ω) : L1
loc(Rn)×A −→ [0,+∞] defined as

F k(ω)(u,A) :=


∫
A

fk (ω, x,∇u) dx if u|A ∈W 1,p(A),

+∞ otherwise,

and

Gk(ω)(u,A) :=


∫
Su∩A

gk (ω, x, νu) dHn−1 if u|A ∈ GSBV p(A),

+∞ otherwise.

Moreover, we denote with m1,p
Fk(ω)

and mpc
Gk(ω)

the corresponding minimisation problems as in

(2.10) and (2.11), respectively.
For every fixed k ∈ N∗ the functions fk and gk satisfy the assumptions of [11, Theorem 3.12].

Hence we can deduce the existence of a set Ωk ⊂ Ω, with Ωk ∈ T and P (Ωk) = 1, such that for
every ω ∈ Ωk and for every x, ξ ∈ Rn, ν ∈ Sn−1 it holds

lim
t→+∞

m1,p
Fk(ω)

(`ξ, Qt(tx))

tn
= lim
t→+∞

m1,p
Fk(ω)

(`ξ, Qt(0))

tn
=: fkhom(ω, ξ) (5.4)

and

lim
t→+∞

mpc
Gk(ω)

(utx,1,ν , Q
ν
t (tx))

tn−1
= lim
t→+∞

mpc
Gk(ω)

(u0,1,ν , Q
ν
t (0))

tn−1
=: gkhom(ω, ν). (5.5)

Furthermore, fkhom is (T ⊗Bn)-measurable while gkhom is (T ⊗B(Sn−1))-measurable. Now we set

Ω′ :=
⋂
k∈N∗

Ωk; (5.6)

clearly Ω′ ∈ T , P (Ω′) = 1, and for every ω ∈ Ω′ and every k ∈ N∗, the limits in (5.4) and (5.5)
exist. We note moreover that for every ω ∈ Ω′, ξ ∈ Rn, and ν ∈ Sn−1 the sequences fkhom(ω, ξ)



FREE-DISCONTINUITY FUNCTIONALS IN RANDOMLY PERFORATED DOMAINS 17

and gkhom(ω, ν) are decreasing in k. Therefore, for every ω ∈ Ω′, ξ ∈ Rn, and ν ∈ Sn−1 we define
the functions fhom and ghom as follows:

lim
k→+∞

fkhom(ω, ξ) = inf
k∈N∗

fkhom(ω, ξ) =: fhom(ω, ξ) (5.7)

and

lim
k→+∞

gkhom(ω, ν) = inf
k∈N∗

gkhom(ω, ν) =: ghom(ω, ν). (5.8)

By definition, we clearly have that fhom is (T ⊗ Bn)-measurable and ghom is (T ⊗ B(Sn−1))-
measurable. We now show that the functions fhom and ghom satisfy (5.1) and (5.2), respectively.

For every ω ∈ Ω′, x, ξ ∈ Rn, and ν ∈ Sn−1 set

f(ω, x, ξ) := lim sup
t→+∞

m1,p
F (ω)(`ξ, Qt(tx))

tn
,

f(ω, x, ξ) := lim inf
t→+∞

m1,p
F (ω)(`ξ, Qt(tx))

tn
,

and

g(ω, x, ν) := lim sup
t→+∞

mpc
G(ω)(utx,1,ν , Q

ν
t (tx))

tn−1
,

g(ω, x, ν) := lim inf
t→+∞

mpc
G(ω)(utx,1,ν , Q

ν
t (tx))

tn−1
.

Then, to conclude it is enough to show that

f = f = fhom (5.9)

and

g = g = ghom, (5.10)

with fhom and ghom as in (5.7) and (5.8), respectively. We prove the two claims above in two
separate steps.

Step 1: Proof of (5.9). By definition 0 ≤ fχA\K(ω) ≤ fk for every k ∈ N∗, hence by the

monotonicity of the integral we immediately deduce that f ≤ fkhom for every k ∈ N∗. Therefore

f(ω, x, ξ) ≤ inf
k∈N∗

fkhom(ω, ξ) = fhom(ω, ξ), (5.11)

for every ω ∈ Ω′, x, ξ ∈ Rn.
We now show that fhom ≤ f . To this end let t � 1, ω ∈ Ω′, x ∈ Rn and ξ ∈ Rn be fixed. For

η > 0 let û ∈W 1,p(Qt(tx)) be such that û = `ξ near ∂Qt(tx) and

F (ω)(û, Qt(tx)) ≤ m1,p
F (ω)(`ξ, Qt(tx)) + ηtn. (5.12)

Since `ξ is a competitor for m1,p
F (ω)(`ξ, Qt(tx)) we immediately get∫

Qt(tx)\K(ω)

|Dû|p dy ≤ 1

c1
F (ω)(û, Qt(tx))

≤ 1

c1

(
m1,p
F (ω)(`ξ, Qt(tx)) + ηtn

)
≤ 1

c1

(
c2(1 + |ξ|p)tn + ηtn

)
. (5.13)

Starting from û we now construct a competitor for m1,p
Fk(ω)

(`ξ, Qt(tx)). First of all, we extend

û by setting û = `ξ in Rn \ Qt(tx). Now, let J ⊂ I denote the set of indices j such that
B(θj(ω), rj(ω)) ∩Qt(tx) 6= Ø. We clearly have

Qt(tx) ⊂ Qt(tx) ∪
⋃
j∈J

B(θj(ω), rj(ω) + δ).

For every j ∈ J we set ûj := û|Aj(ω), where Aj(ω) denotes the open annulus Brj(ω),rj(ω)+δ(θj(ω)).
By applying Lemma 4.5 in every Aj(ω) we deduce the existence of an extension operator Tωj :
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W 1,p(Aj(ω)) −→ W 1,p(B(θj(ω), rj(ω) + δ) and a constant c > 0 independent of j and ω, such
that

‖D
(
Tωj ûj

)
‖Lp(B(θj(ω),rj(ω)+δ) ≤ c‖Dûj‖Lp(Aj(ω)).

We then define the function ũ : Rn → R as follows

ũ =
∑
j∈J

(Tωj ûj)χB(θj(ω),rj(ω)+δ) + û χQt(tx)\Kδ(ω),

where

Kδ(ω) :=
⋃
j∈J

B(θj(ω), rj(ω) + δ).

By construction ũ|Qt(tx) ∈W 1,p(Qt(tx)). Moreover,

‖Dũ‖pLp(Qt(tx)) ≤ c
(
‖Dû‖pLp(Qt(tx)\K(ω)) + |ξ|pLn

( ⋃
j∈J

Brj(ω),rj(ω)+δ(θj(ω)) \Qt(tx)

))
,

therefore from (5.13) we deduce that∫
Qt(tx)

|Dũ|p dy ≤ c
∫
Qt(tx)\K(ω)

|Dû|p dy + c̃ |ξ|ptn−1 ≤ c

c1

(
c2(1 + |ξ|p)tn + ηtn

)
+ c̃ |ξ|ptn−1,

(5.14)
where c̃ depends on r∗. We note that in general the function ũ does not coincide with `ξ in a
neighbourhood of ∂Qt(tx), since we might have altered the boundary value of û in the perforations
intersecting ∂Qt(tx). We then need to further modify ũ in a way such that it attains the boundary
datum. To this aim, let ϕ ∈ C∞0 (Qt(tx)) be a cut-off function between Qt−4(r∗+δ)(tx) and Qt(tx);
i.e., 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in Qt−4(r∗+δ)(tx), ϕ ≡ 0 in Rn \ Qt(tx), and ‖Dϕ‖∞ ≤ c, with c =
c(n, r∗, δ) > 0. Set

w := ϕ ũ+ (1− ϕ)`ξ;

clearly w ∈W 1,p(Qt(tx)), and w = `ξ in a neighbourhood of ∂Qt(tx). We now claim that

lim
t→+∞

1

tn

∫
Qt(tx)\Qt−4(r∗+δ)(tx)

|Dw|pdy = 0. (5.15)

To ease the notation, in what follows we set t′ := t− 4(r∗ + δ). We clearly have∫
Qt(tx)\Qt′ (tx)

|Dw|pdy ≤ c
∫
Qt(tx)\Qt′ (tx)

|Dũ|pdy

+ c

∫
Qt(tx)\Qt′ (tx)

|ũ− `ξ|pdy + c|ξ|ptn−1. (5.16)

We now cover Qt(tx) \Qt′(tx) with a finite number of possibly overlapping cubes with side-length
2(r∗ + δ), having one face on the boundary ∂Qt(tx). Thus we write

Qt(tx) \Qt′(tx) =
⋃
σ∈S

Qσ2(r∗+δ)
,

where Qσ2(r∗+δ)
:= σ + Q2(r∗+δ) and S ⊂ Rn is a finite set of translation vectors such that the

volume of this covering is asymptotically equal to the volume of Qt(tx) \Qt′(tx), for t→ +∞.
We now apply the Poincaré inequality to the function ũ − `ξ in Qt(tx) \Qt′(tx). To do so we

preliminarily observe that for every σ ∈ S it holds

Hn−1
(
∂Qσ2(r∗+δ)

∩ {ũ = `ξ}
)
≥ δn−1. (5.17)

This is clearly true if ∂Qσ2(r∗+δ)
∩K(ω) = Ø, since in that case ũ = `ξ on the whole face ∂Qσ2(r∗+δ)

∩
∂Qt(tx), whose Hn−1-measure is larger than δn−1. If instead ∂Qσ2(r∗+δ)

∩K(ω) 6= Ø, since each

ball in K(ω) has diameter smaller than 2r∗ and is separated from any other ball by a distance
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which is at least 2δ, inequality (5.17) holds in this case as well. Therefore the Poincaré inequality
applied in every cube Qσ2(r∗+δ)

gives∫
Qσ

2(r∗+δ)

|ũ− `ξ|pdy ≤ C
∫
Qσ

2(r∗+δ)

|Dũ− ξ|pdy,

where C = C(n, p, δ, r∗) > 0 is independent of σ. Hence by adding up all the cubes Qσ2(r∗+δ)
, with

σ ∈ S, we get ∫
Qt(tx)\Qt′ (tx)

|ũ− `ξ|pdy ≤ C
∫
Qt(tx)\Qt′ (tx)

|Dũ− ξ|pdy. (5.18)

Then, gathering (5.16) and (5.18) yields∫
Qt(tx)\Qt′ (tx)

|Dw|pdy ≤ c
∫
Qt(tx)\Qt′ (tx)

|Dũ|pdy + c|ξ|ptn−1.

Hence to prove (5.15) it is enough to show that

lim
t→+∞

1

tn

∫
Qt(tx)\Qt′ (tx)

|Dũ|pdy = 0.

The latter is a consequence of the equality

1

tn

∫
Qt(tx)\Qt′ (tx)

|Dũ|pdy =

∫
Q1(x)\Q

1− 4(r∗+δ)
t

(x)

|Dv|pdz,

where v(z) := 1
t ũ(tz) for every z ∈ Q1(x). In fact, by (5.14) we have∫
Q1(x)

|Dv|pdz =
1

tn

∫
Qt(tx)

|Dũ|p dy ≤ c

c1

(
c2(1 + |ξ|p) + η

)
+
c̃

t
|ξ|p,

thus

lim
t→+∞

∫
Q1(x)\Q

1− 4(r∗+δ)
t

(x)

|Dv|pdz = 0,

by the absolute continuity of the Lebesgue integral.
Since w is a competitor for m1,p

Fk(ω)
(`ξ, Qt(tx)), we clearly have

m1,p
Fk(ω)

(`ξ, Qt(tx)) ≤ F k(ω)(w,Qt(tx)). (5.19)

We now estimate the right-hand side of the inequality above in terms of F (ω)(û, Qt(tx)), and

hence in terms of m1,p
F (ω)(`ξ, Qt(tx)), thanks to (5.12). By the definition of F k and by (f2) we

bound

F k(ω)(w,Qt(tx)) ≤ F (ω)(w,Qt(tx)) +
c2
k

∫
Qt(tx)

(1 + |Dw|p) dy

≤ F (ω)(ũ, Qt′(tx)) + F (ω)(w,Qt(tx) \Qt′(tx)) +
c2
k

∫
Qt(tx)

(1 + |Dw|p) dy

≤ F (ω)(û, Qt′(tx)) + c2

∫
Qt(tx)\Qt′ (tx)

(1 + |Dw|p) dy +
c2
k

∫
Qt(tx)

(1 + |Dw|p) dy,

where we have used the definition of w and the fact that ũ = û in Qt(tx) \K(ω). Again by the
definition of w we estimate∫

Qt(tx)

(1 + |Dw|p) dy ≤
∫
Qt′ (tx)

(1 + |Dũ|p) dy +

∫
Qt(tx)\Qt′ (tx)

(1 + |Dw|p) dy,

so that, by (5.19) and (5.12), and by invoking (5.14) we find

m1,p
Fk(ω)

(`ξ, Qt(tx)) ≤ m1,p
F (ω)(`ξ, Qt(tx) + ηtn + 2c2

∫
Qt(tx)\Qt′ (tx)

(1 + |Dw|p) dy

+
c2
k

(
tn + C

(
(1 + |ξ|p) + η) + c |ξ|ptn−1

)
.
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Therefore, by (5.4) and (5.15), passing to the liminf as t→ +∞ we get

fkhom(ω, ξ) ≤ f(ω, x, ξ) + η +
c

k
(1 + |ξ|p),

for every ω ∈ Ω′, x, ξ ∈ Rn, and k ∈ N∗. Thus letting k → +∞ yields

fhom(ω, ξ) = inf
k∈N∗

fkhom(ω, ξ) ≤ f(ω, x, ξ) + η (5.20)

for every ω ∈ Ω′ and x, ξ ∈ Rn. Hence, by the arbitrariness of η > 0, gathering (5.11) and (5.20)
eventually gives (5.9) and thus (5.1).

Step 2: Proof of (5.10). By definition 0 ≤ gχA\K(ω) ≤ gk for every k ∈ N∗, hence by the

monotonicity of the integral we immediately deduce that g ≤ gkhom for every k ∈ N∗. Therefore

g(ω, x, ν) ≤ inf
k∈N∗

gkhom(ω, ν) = ghom(ω, ν), (5.21)

for every ω ∈ Ω′, x ∈ Rn and ν ∈ Sn−1.
We now show that ghom ≤ g. To this end let t� 1, ω ∈ Ω′, x ∈ Rn and ν ∈ Sn−1 be fixed. For

η > 0 let û ∈ P(Qνt (tx)) be such that û = utx,1,ν near ∂Qνt (tx) and

G(ω)(û, Qνt (tx)) ≤ mpc
G(ω)(utx,1,ν , Q

ν
t (tx)) + ηtn−1. (5.22)

Since utx,1,ν is a competitor for mpc
G(ω)(utx,1,ν , Q

ν
t (tx)), by (g1) and (g2) we immediately get

Hn−1(Sû ∩ (Qνt (tx) \K(ω)))

tn−1
≤ G(ω)(û, Qνt (tx))

c3tn−1

≤
mpc
G(ω)(utx,1,ν , Q

ν
t (tx))

c3tn−1
+
η

c3
≤ c4 + η

c3
. (5.23)

We now modify û in order to obtain a competitor for mpc
Gk(ω)

(utx,1,ν , Q
ν
t (tx)). We preliminarily

extend û to the whole Rn by setting û = utx,1,ν in Rn \Qνt (tx)). Now, we denote with J ⊂ I the
set of indices j such that B(θj(ω), rj(ω))∩Qνt (tx) 6= Ø. For each j ∈ J we set ûj := û|Aj(ω), with
Aj(ω) := Brj(ω),rj(ω)+δ(θj(ω)).

We divide the proof into three substeps.

Substep 2.1: Extension of û in the inner perforations. Let JI ⊂ J denote the set of indices j
such that B(θj(ω), rj(ω) + δ) ⊂ Qνt (tx). By Lemma 4.6 there exists an extension vj := Tj ûj ∈
P(B(θj(ω), rj(ω) + δ)) of ûj whose jump set in B(θj(ω), rj(ω) + δ) is controlled, in measure, by
the jump set of ûj (and hence by the jump of û in Aj(ω)).

Substep 2.2: Modification of û in the boundary perforations. Let JB := J \JI , and let j ∈ JB .
We set

wj :=

{
ûj in Aj(ω),

utx,1,ν in B(θj(ω), rj(ω)).

Clearly, for every j ∈ JB , the additional jump created by wj is controlled by the perimeter of
the boundary perforations B(θj(ω), rj(ω)). Since the perforations in K(ω) are pairwise disjoint
(and in particular this is true for the boundary perforations), the total additional jump due to the
boundary perforations is controlled by the perimeter of Qνt (tx); i.e., it is equal to c tn−1 for some
c > 0 independent of t.

Substep 2.3: Adding up all the contributions. We now denote with ũ ∈ P(Qνt (tx)) the function
defined as

ũ :=


û in Qνt (tx) \Kδ(ω),

vj in B(θj(ω), rj(ω) + δ), j ∈ JI
wj in B(θj(ω), rj(ω) + δ) ∩Qνt (tx), j ∈ JB .

By construction the function ũ satisfies the following properties:

a. ũ = utx,1,ν in a neighbourhood of ∂Qνt (tx);

b. Hn−1(Sũ ∩ (Qνt (tx) \K(ω))) ≤ Hn−1(Sû ∩ (Qνt (tx) \K(ω)));
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c. Hn−1(Sũ ∩Qνt (tx)) ≤ c(Hn−1(Sû ∩ (Qνt (tx) \K(ω))) + tn−1), for some c > 0 independent
of t.

Since ũ is a competitor for mpc
Gk(ω)

(utx,1,ν , Q
ν
t (tx)), by combining b., c., and (5.23) we get

mpc
Gk(ω)

(utx,1,ν , Q
ν
t (tx))

tn−1
≤ 1

tn−1
Gk(ω)(ũ, Qνt (tx))

≤ 1

tn−1
G(ω)(ũ, Qνt (tx)) +

c4
k tn−1

Hn−1(Qνt (tx) ∩ Sũ)

≤ 1

tn−1
G(ω)(û, Qνt (tx)) +

c

k

≤
mpc
G(ω)(utx,1,ν , Q

ν
t (tx))

tn−1
+ η +

c

k
,

where we have also used (5.22). Therefore passing to the liminf as t→ +∞ we get

gkhom(ω, ν) ≤ g(ω, x, ν) + η +
c

k
,

for every ω ∈ Ω′, x ∈ Rn, ν ∈ Sn−1, and k ∈ N∗. Thus finally letting k → +∞ and then η → 0
yields

ghom(ω, ν) := inf
k∈N∗

gkhom(ω, ν) ≤ g(ω, x, ν), (5.24)

for every ω ∈ Ω′, x ∈ Rn and ν ∈ Sn−1. Hence gathering (5.21) and (5.24) eventually gives (5.10)
and thus (5.2).

If f , g, and K are stationary with respect to an ergodic group of P -preserving transformations,
then [11, Theorem 3.12] ensures that fkhom and gkhom (and hence fhom and ghom) are independent of
ω. Then, the thesis follows by integrating (5.9) and (5.10) over Ω, by the Dominated Convergence
Theorem. �

Remark 5.2 (Γ-convergence of the perturbed functionals). Let f , g and D be as in Theorem 5.1.
For k ∈ N∗ we set fk(ω, x, ξ) := ak(ω, x)f(ω, x, ξ) and gk(ω, x, ν) := ak(ω, x)g(ω, x, ν), where ak is
defined as in (5.3). For ε > 0 and k ∈ N∗, let Ekε (ω) : L1

loc(Rn)×A −→ (0,+∞] be the functionals
defined as

Ekε (ω)(u,A) :=


∫
A

fk
(
ω,
x

ε
,∇u

)
dx+

∫
Su∩A

gk
(
ω,
x

ε
, νu

)
dHn−1 if u|A ∈ GSBV p(A),

+∞ otherwise.

If Ω′ is the set in the statement of Theorem 5.1 (defined as in (5.6)), we deduce from [11, Theorem
3.13] that for every ω ∈ Ω′ and k ∈ N∗ the functionals Ekε (ω) Γ-converge to the homogeneous
free-discontinuity functional Ekhom(ω) : L1

loc(Rn)×A −→ (0,+∞] given by

Ekhom(u,A) :=


∫
A

fkhom(ω,∇u) dx+

∫
Su∩A

gkhom(ω, νu) dHn−1 if u|A ∈ GSBV p(A),

+∞ otherwise,
(5.25)

where fkhom and gkhom are as in (5.4) and (5.5), respectively.

Theorem 5.3 (Γ-convergence). Let f and g be stationary random volume and surface integrands,
and let D ⊂ Rn be a random perforated domain as in Definition 2.8. Assume that the stationarity
of f , g and D is satisfied with respect to the same group (τy)y∈Rn of P -preserving transformations
on (Ω, T , P ). Let Eε be as in (2.7), let Ω′ ∈ T (with P (Ω′) = 1), fhom, and ghom be as in Theorem
5.1. Then, for every ω ∈ Ω′ and every A ∈ A, the functionals Eε(ω)(·, A) Γ-converge in L1

loc(Rn)
to the homogeneous functional Ehom(ω) : L1

loc(Rn)×A −→ [0,+∞] defined as

Ehom(u,A) :=


∫
A

fhom(ω,∇u) dx+

∫
A∩Su

ghom(ω, νu) dHn−1 if u|A ∈ GSBV p(A),

+∞ otherwise.
(5.26)
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Moreover, for every ω ∈ Ω′, ξ, ξ1, ξ2 ∈ Rn and ν ∈ Sn−1 we have that

c̃0|ξ|p ≤ fhom(ω, ξ) ≤ c2(1 + |ξ|p), (5.27)

and
c̃0 ≤ ghom(ω, ν) ≤ c4, (5.28)

where c̃0 = c̃0(n, δ) > 0, and c2 and c4 are as in (f2) and (g2). Furthermore, there exists L′ > 0
such that

|fhom(ω, ξ1)− fhom(ω, ξ2)| ≤ L′
(
1 + |ξ1|p−1 + |ξ2|p−1

)
|ξ1 − ξ2|. (5.29)

Proof. In view of (5.7) and (5.8), the Monotone Convergence Theorem yields

Ehom(ω)(u,A) = inf
k∈N∗

Ekhom(ω)(u,A) = lim
k→+∞

Ekhom(ω)(u,A) (5.30)

for every ω ∈ Ω′, A ∈ A and u ∈ GSBV p(A), where Ekhom is as in (5.25).
We prove the Γ-convergence of Eε to Ehom in two steps.

Step 1: liminf-inequality. Let ω ∈ Ω′ and A ∈ A be fixed. Let u ∈ GSBV p(A) and let
(uε) ⊂ L1

loc(Rn) be a sequence satisfying uε → u strongly in L1(A) and supεEε(ω)(uε, A) < +∞.
Note in particular that (uε) ⊂ GSBV p(A). For M > 0 we consider the truncated function uM :=
(u∧M)∨ (−M) ∈ GSBV p(A)∩L∞(A) and the truncated sequence (uMε ) ⊂ GSBV p(A)∩L∞(A);
clearly (uMε ) converges to uM in L1(A) as ε→ 0.

Let (ũε) ⊂ SBV p(A)∩L∞(A) be the extension provided by Proposition 4.7, such that ũε = uMε
a.e. in A \ εK(ω), and let ũ ∈ SBV p(A) ∩ L∞(A) be such that (up to a subsequence) ũε → ũ
strongly in L1(A). Since the sequences (uε) and (ũε) coincide in A\εK(ω), we deduce by Property
2.10 that ũ = uM a.e. in A. Furthermore, (4.14) gives

MSp(ũε, A) ≤ c(n, p, δ, r∗)

c1 ∧ c3
(
Eε(ω)(uMε , A) +Hn−1(∂A)

)
,

and therefore we have

Ekε (ω)(ũε, A) ≤ Eε(ω)(uMε , A) +
c2 ∨ c4
k

MSp(ũε, A ∩ εK(ω)) +
c2
k
Ln(A ∩ εK(ω))

≤
(

1 +
c

k

)
Eε(ω)(uMε , A) +

c

k
Hn−1(∂A) +

c2
k
Ln(A),

where c = c(n, p, δ, r∗). Then, by Remark 5.2 we deduce that for every ω ∈ Ω′, A ∈ A and k ∈ N∗

Ekhom(ω)(uM , A) ≤ lim inf
ε→0

Ekε (ω)(ũε, A)

≤
(

1 +
c

k

)
lim inf
ε→0

Eε(ω)(uMε , A) +
c

k
Hn−1(∂A) +

c2
k
Ln(A).

By letting k → +∞ and using (5.30), we then get

Ehom(ω)(uM , A) = lim
k→+∞

Ekhom(ω)(uM , A) ≤ lim inf
ε→0

Eε(ω)(uMε , A), (5.31)

and hence the liminf-inequality is proved for the truncations, for every M > 0. Now we observe
that Eε decreases by truncations up to a quantifiable error, namely

Eε(ω)(uMε , A) ≤ Eε(ω)(uε, A) +

∫
A∩{|uε|>M}

f(ω, x, 0)dx ≤ Eε(ω)(uε, A) + c2Ln(A ∩ {|uε| > M}).

Therefore, from (5.31) we obtain the improved estimate

Ehom(ω)(uM , A) ≤ lim inf
ε→0

(Eε(ω)(uε, A) + c2Ln(A ∩ {|uε| > M}))

≤ lim inf
ε→0

Eε(ω)(uε, A) + c2 lim sup
ε→0

Ln(A ∩ {|uε| > M}).

Since uε → u in L1(A) we have that lim supε→0 Ln(A ∩ {|uε| > M}) ≤ Ln(A ∩ {|u| > M}), and
hence

Ehom(ω)(uM , A) ≤ lim inf
ε→0

Eε(ω)(uε, A) + c2Ln(A ∩ {|u| > M}).

Finally, since uM → u in L1(A) as M → +∞, the liminf-inequality follows by the lower semicon-
tinuity of Ehom(ω)(·, A).
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Step 2: limsup-inequality. Let ω ∈ Ω′ and A ∈ A be fixed. Let u ∈ GSBV p(A); in view of
Remark 5.2 there exists (uε) ⊂ GSBV p(A) such that uε → u in L1(A) and limε→0E

k
ε (ω)(uε, A) =

Ekhom(u,A). Then by the definition of Ekε we have

Ekhom(u,A) = lim
ε→0

Ekε (ω)(uε, A) ≥ lim sup
ε→0

Eε(ω)(uε, A),

for every k ∈ N∗. Then, letting k → +∞, from (5.30) we finally deduce

Ehom(u,A) = lim
k→+∞

Ekhom(u,A) ≥ lim sup
ε→0

Eε(ω)(uε, A)

and hence the limsup-inequality is proved.

Step 3: Lower bounds on the limit integrands. We start by proving the lower bound in (5.27).
To do so, let ω ∈ Ω′ and ξ ∈ Rn, and let uε be a recovery sequence for Eε(ω) at `ξ in Q. With no
loss of generality we can assume that the sequence is bounded in L∞. If not, we replace uε with
uMε := (uε ∧M) ∨ (−M), with M := 2|ξ|. Then we still have that uMε → `ξ in L1, and by the
estimate of the energy of the truncation in Step 1 we have

Eε(ω)(uMε , A) ≤ Eε(ω)(uε, A) + c2Ln(A ∩ {|uε| > M}).
By letting ε→ 0 in the previous inequality, since Ln(A ∩ {|uε| > M})→ 0 as ε→ 0, we conclude
that

lim sup
ε→0

Eε(ω)(uMε , A) ≤ lim sup
ε→0

Eε(ω)(uε, A) = Ehom(ω)(`ξ, Q),

hence also uMε is a recovery sequence for Eε(ω) at `ξ in Q.
Let Tωε uε denote the extension of uε in Q provided by Theorem 4.2; note that by Ambrosio’s

Compactness Theorem Tωε uε converges in L1, and since Tωε uε = uε in A\εK(ω), by Property 2.10
we have that Tωε uε → `ξ in L1, up to a subsequence. By [2, Theorem 4.7], for every Q′ ⊂⊂ Q, we
have

MSp(`ξ, Q
′) ≤ lim inf

ε→0
MSp(Tωε uε, Q

′) ≤ c lim inf
ε→0

MSp(uε, Q \ εK(ω))

≤ c

c1 ∧ c3
lim inf
ε→0

Eε(ω)(uε, Q) =
c

c1 ∧ c3
Ehom(ω)(`ξ, Q),

where we have also used Remark 4.3. In conclusion,

Ln(Q′)|ξ|p ≤ c

c1 ∧ c3
fhom(ω, ξ),

which gives the lower bound in (5.27) for c̃0 := c1∧c3
c , by letting Q′ ↗ Q.

For the proof of the lower bound in (5.28) we proceed similarly. Let ω ∈ Ω′, 0 < σ < 1, and
ν ∈ Sn−1, and let Rνσ denote the rectangle obtained by shrinking the square Qν by the factor σ in
the direction ν. Let uε be a recovery sequence for Eε(ω) at u0,1,ν in Rνσ, and let Tωε uε denote the
extension of uε in Rνσ provided by Theorem 4.2. Again by [2, Theorem 4.7] and by Remark 4.3,
for every R′ ⊂⊂ Rνσ, we have

MSp(u0,1,ν , R
′) ≤ lim inf

ε→0
MSp(Tωε uε, R

′) ≤ c lim inf
ε→0

MSp(uε, R
ν
σ \ εK(ω))

≤ c

c1 ∧ c3
lim inf
ε→0

Eε(ω)(uε, R
ν
σ) =

c

c1 ∧ c3
Ehom(ω)(u0,1,ν , R

ν
σ),

where the constant c is independent of σ. In conclusion,

Hn−1(Su0,1,ν ∩R′) ≤
c

c1 ∧ c3
(σ fhom(ω, 0) + ghom(ω, ν)) ,

which, gives the lower bound in (5.28) for c̃0 defined above, by letting R′ ↗ Rνσ and σ → 0.

Step 4: Upper bounds on the limit integrands. The upper bound in (5.27) follows immediately
by taking, for ω ∈ Ω′ and ξ ∈ Rn, the sequence uε = `ξ and by using the liminf inequality for Eε
in Q and the bound (f2), since

c2(1 + |ξ|p) ≥ lim inf
ε→0

Eε(ω)(uε, Q) ≥ Ehom(ω)(`ξ, Q) = fhom(ω, ξ).

The proof of the upper bound in (5.28) is completely analogous.



24 X. PELLET, L. SCARDIA, AND C.I. ZEPPIERI

Step 5: Lipschitz continuity of fhom. Property (5.29) follows from the bounds in (5.27) and
from the convexity of fhom(ω, ·), see, e.g., [4, Remark 4.13 (iii)]. �

Remark 5.4. In Theorem 5.3 the L1-topology can be replaced by the weak convergence in (4.15).

In view of Remark 5.4, as a corollary of Theorem 5.3 we obtain a Γ-convergence result for the
following (asymptotically degenerate coercive) functionals.

Let ε > 0, and let (αε) and (βε) be two positive sequences, infinitesimal as ε→ 0. For ω ∈ Ω,
x, ξ ∈ Rn and ν ∈ Sn−1 we define

aε(ω, x) :=

{
1 if x ∈ Rn \K(ω),

αε if x ∈ K(ω),
bε(ω, x) :=

{
1 if x ∈ Rn \K(ω),

βε if x ∈ K(ω),

fε(ω, x, ξ) := aε(ω, x)f(ω, x, ξ) and gε(ω, x, ν) := bε(ω, x)g(ω, x, ν).

We now consider the functionals Eαε,βεε (ω) : L1
loc(Rn)×A −→ (0,+∞] defined as

Eαε,βεε (ω)(u,A) :=


∫
A

fε

(
ω,
x

ε
,∇u

)
dx+

∫
Su∩A

gε

(
ω,
x

ε
, νu

)
dHn−1 if u|A ∈ GSBV p(A),

+∞ otherwise.

(5.32)
For an overview on the behaviour of the functionals in (5.32) in the deterministic case see [8, 28].

Corollary 5.5. Let Ω′ ∈ T (with P (Ω′) = 1), fhom, and ghom be as in Theorem 5.1. Then, for
every ω ∈ Ω′ and every A ∈ A, the functionals Eαε,βεε (ω)(·, A) in (5.32) Γ-converge with respect
to the weak convergence in (4.15) to the homogeneous functional Ehom(ω)(·, A) defined in (5.26).

Proof. The liminf inequality follows immediately from Theorem 5.26 and Remark 5.4, due to the
lower bound Eαε,βεε ≥ Eε. Let now A ∈ A. For the limsup inequality, by a standard truncation
argument we can reduce to the case of u ∈ SBV p(A) ∩ L∞(A). Let (uε) ⊂ L1

loc(Rn) be a
sequence such that uε → u in L1

loc(Rn) and limε→0Eε(ω)(uε, A) = Ehom(ω)(u,A). With no loss
of generality we can assume that ‖uε‖L∞(A) ≤ ‖u‖L∞(A). Let (ũε) ⊂ SBV p(A) ∩ L∞(A) be the

extension provided by Theorem 4.2. By Property 2.10, ũε → u strongly in L1(A). Furthermore,

Eαε,βεε (ω)(ũε, A) = Eε(ω)(uε, A) + αε

∫
εK(ω)∩A

f
(
ω,
x

ε
,∇ũε

)
dx

+ βε

∫
Sũε∩(εK(ω)∩A)

g
(
ω,
x

ε
, νũε

)
dHn−1.

Since ∫
εK(ω)∩A

f
(
ω,
x

ε
,∇ũε

)
dx ≤ c2

∫
εK(ω)∩A

(1 + |∇ũε|p)dx ≤ c2Ln(A) + c2MSp(ũε, A),

and ∫
Sũε∩(εK(ω)∩A)

g
(
ω,
x

ε
, νũε

)
dHn−1 ≤ c4MSp(ũε, A),

by Theorem 4.2 we deduce that

lim
ε→0

Eαε,βεε (ω)(ũε, A) = lim
ε→0

Eε(ω)(uε, A) = Ehom(ω)(u,A).

�
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