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Abstract. We extend two celebrated theorems on closed geodesics of Rie-

mannian 2-spheres to the larger class of reversible Finsler 2-spheres: Lusternik-
Schnirelmann’s theorem asserting the existence of three simple closed geodesics,

and Bangert-Franks-Hingston’s theorem asserting the existence of infinitely

many closed geodesics. In order to prove the first theorem, we employ the gen-
eralization of Grayson’s curve shortening flow developed by Angenent-Oaks.
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1. Introduction

Since the seminal work of Hadamard [Had98], Poincaré [Poi05], Birkhoff [Bir66],
and Morse [Mor96], it became evident that closed Riemannian manifolds of dimen-
sion at least 2 tend to have many closed geodesics (that is, periodic orbits of the
geodesic flow). This evidence was supported by celebrated theorems of Gromoll-
Meyer [GM69b] and Vigué Poirrier-Sullivan [VPS76], which together assert that
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simply connected closed Riemannian manifolds with a non-monogenic rational co-
homology ring always have infinitely many closed geodesics. This statement covers
a large class of simply connected closed manifolds, leaving out those with the co-
homology of a compact rank-one symmetric space: Sn, CPn,HPn, and CaP2. As
of 2019, it is an open conjecture whether these spaces admit infinitely many closed
geodesics for any choice of the Riemannian metric. The only known case is the one
of S2, for which the proof required a combination of spectacular work by Bangert
[Ban93], Franks [Fra92], and Hingston [Hin93] (either Franks’ or Hingston’s work,
together with Bangert’s one, provide the full result). The starting point for this
work is another celebrated result due to Lusternik-Schnirelmann [LS34], asserting
that every Riemannian 2-sphere possesses at least three simple closed geodesics
(that is, closed geodesics that are embedded circle in the Riemannian manifold).
For many decades Lusternik-Schnirelmann’s theorem was considered controversial
due to a gap in their construction of a pseudo-gradient flow for the length function
of simple closed curves, that have been subsequently addressed by many authors.
Nowadays, the gap is considered filled, for instance thanks to the work of Grayson
[Gra89] on the curve shortening flow.

The closed geodesic problem can be studied on closed Finsler manifolds as well.
A Finsler metric on a manifold M is a continuous function F : TM → [0,∞),
smooth outside the zero-section of TM , positively homogeneous of degree 2 (i.e.
F (x, λv) = λF (x, v) for all (x, v) ∈ TM and λ ≥ 0), and such that the restriction of
its square F 2 to any fiber of TM has positive definite Hessian everywhere outside
the origin. In the literature, a more general notion of Finsler metric is sometimes
employed, but the one given here is the most appropriate for the study of geodesic
flows. Many results, such as Gromoll-Meyer’s one, remain valid essentially with the
same proof in the Finsler category (see [Lu15] and references therein). However, a
striking example due to Katok [Kat73], and further explored by Ziller [Zil83], shows
that Lusternik-Schnirelmann’s and Bangert-Franks-Hingston’s theorems fail: there
exists a Finsler metric on S2 having only two closed geodesics.

A Finsler metric F : TM → [0,∞) is called reversible when F (x,−v) = F (x, v)
for all (x, v) ∈ TM . The Katok’s Finsler metric does not satisfy this property. In
the current paper, we show that all the above mentioned results valid for Riemann-
ian 2-spheres remain valid for reversible Finsler 2-spheres.

1.1. The curve shortening semi-flow. In [Oak94], Oaks provided a generalization
of Grayson’s curve shortening flow [Gra89]. As remarked by Angenent [Ang08],
such generalization allows to provide a curve shortening flow on orientable Finsler
surfaces: a tool to shrink embedded circles without creating self-intersections. In
this section, we state a theorem that summarizes all the properties of this flow
(actually, a semi-flow) that we will need for the application to the closed geodesics
problem.

Let M be a closed oriented surface, equipped with a reversible Finsler metric F .
We denote by S1 := R/Z the 1-periodic circle, and by Emb(S1,M) the space of
smooth embedded loops γ : S1 ↪→M , endowed with the C∞ topology (that is, the
topology whose basis is given by the open sets U ⊂ Emb(S1,M) of the Ck topology,
for all k ∈ N). We consider the Finsler length functional

L : Emb(S1,M)→ (0,∞), L(γ) =

∫ 1

0

F (γ(u), γ̇(u)) du. (1.1)
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The group of diffeomorphisms Diff(S1) acts freely on Emb(S1,M) by reparametriza-
tions. Notice that, since the Finsler metric F is homogeneous of degree 1 and re-
versible, the length functional is invariant by the Diff(S1)-action, i.e. L(γ) = L(γ◦θ)
for all γ ∈ Emb(S1,M) and θ ∈ Diff(S1).

We fix an auxiliary Riemannian metric g on M , and we will simply write ‖ · ‖
or ‖ · ‖g for its associated norm on tangent vectors. Since (M, g) is an orientable
Riemannian surface, it admits a canonical complex structure J ∈ End(TM), i.e.
Jv is obtaining by rotating v ∈ TxM by a positive angle of π/2 measured with g.
The positive normal to γ ∈ Emb(S1,M) is the vector field

Nγ(u) :=
1

‖γ̇(u)‖
Jγ̇(u),

where ‖ · ‖ is the Riemannian norm associated to g. We set

Vγ(u) :=

(
d

duFv(γ(u), γ̇(u))− Fx(γ(u), γ̇(u))
)
Nγ(u)

‖γ̇(u)‖
. (1.2)

In the expression of Vγ , the terms Fx and Fv denote the partial derivatives of F
with respect to some local coordinates on M (or, more precisely, local coordinates
on TM induced by local coordinates on M). However, the covector

d
duFv(γ(u), γ̇(u))− Fx(γ(u), γ̇(u)) ∈ T∗γ(u)M (1.3)

is independent of the choice of local coordinates, and vanishes identically if and
only if γ is a closed geodesic of (M,F ). Since γ̇ is always in its kernel, we actually
conclude that Vγ vanishes identically if and only if γ is a closed geodesic of (M,F ).
Therefore, for each ` ≥ injrad(M,F ) and ε > 0, the open subset

U(`, ε) :=
{
γ ∈ Emb(S1,M)

∣∣∣ L(γ) ∈ (`− ε2, `+ ε2), max
s∈S1

|Vγ(s)| < ε
}
. (1.4)

is a neighborhood of the set of simple closed geodesics of (M,F ) with length `. We
will employ the notation

Emb(S1,M)<` := {γ ∈ Emb(S1,M) | L(γ) < `}

to denote the sublevel sets of the length functional.

Theorem 1.1. Let (M,F ) be a closed, orientable, reversible Finsler manifold, and
ρ0 > 0. There exists a continuous map

ψ : [0,∞)× Emb(S1,M)→ Emb(S1,M), ψ(t, γ) = ψt(γ),

with the following properties:

(i) It is a semi-flow, i.e. ψ0 = id and ψt2 ◦ ψt1 = ψt1+t2 for all t1, t2 ≥ 0.
(ii) It is equivariant with respect to the action of circle diffeomorphisms, i.e.

ψt(γ ◦ θ) = ψt(γ) ◦ θ for all γ ∈ Emb(S1,M) and θ ∈ Diff(S1).
(iii) The length function is not increasing along the trajectories of ψt. More

precisely d
dtL(φt(γ)) ≤ 0 with equality if and only if γ is a closed geodesic

or L(γ) ≤ ρ0.
(iv) For each ` > 2ρ0 and ε > 0 there exists δ ∈ (0, ε2) such that, for all t > 0

large enough, we have

ψt(Emb(S1,M)<`+δ) ⊂ U(`, ε) ∪ Emb(S1,M)<`−δ.
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(v) If there are no simple closed geodesics with length in [`1, `2] ⊂ (2ρ0,∞),
then for all t > 0 large enough

ψt(Emb(S1,M)<`2) ⊂ Emb(S1,M)<`1 .

Most of the points in this theorem follow from Oaks [Oak94], except point (iv),
which is crucial for the applications.

1.2. Closed geodesics on Finsler 2-spheres. We already anticipated that the semi-
flow of Theorem 1.1 allows to extend the celebrated Lusternik-Schnirelmann’s theo-
rem [LS34] to the reversible Finsler setting. Actually, it will also allow to extend the
characterization of simple Zoll geodesic flows on the 2-sphere, originally claimed in
the Riemannian case by Lusternik [Lju66] and rigorously proved in [MS18]. We re-
call that a Finsler manifold is called Zoll when all its unit-speed geodesics are closed
with the same minimal period, and simple Zoll if, in addition, all the geodesics are
simple closed. We denote by σs(S

2, F ) the simple length spectrum of a Finsler
2-sphere, which is the set of lengths of its simple closed geodesics.

Theorem 1.2. Every reversible Finsler 2-sphere (S2, F ) has at least three geometri-
cally distinct simple closed geodesics. More precisely:

(i) If σs(S
2, F ) is a singleton, then (S2, F ) is simple Zoll.

(ii) If σs(S
2, F ) contains exactly two elements, then there exists ` ∈ σs(S

2, F )
such that every point of S2 lies on a simple closed geodesic of (S2, F ) of
length `.

(iii) Assume that, for any compact interval [`1, `2] ⊂ (0,∞), (S2, F ) has only
finitely many simple closed geodesics with length in [`1, `2]. Then, (S2, F )
has three simple closed geodesics γ1, γ2, γ3 of (S2, F ) with lengths L(γ1) <
L(γ2) < L(γ3) and such that, for each i = 1, 2, 3, γi has non-trivial local
homology in degree i with with Z2 coefficients.

For the definition of the local homology of a closed geodesic, we refer the reader
to Section 4.3. Point (iii) in Theorem 1.2 may look technical, but it is a crucial
ingredient for the proof of Theorem 1.3. Even though it is claimed in [Hin93], it
does not have a proper proof in the published literature.

Finally, we can state the last result, that generalizes Bangert-Franks-Hingston’s
theorem.

Theorem 1.3. Every reversible Finsler 2-sphere (S2, F ) has infinitely many geomet-
rically distinct closed geodesics.

The main ideas for this theorem remain the same as in the Riemannian case,
but nevertheless we provide a full and rather self-contained account, which insures
that certain arguments of the original proof that looked Riemannian can indeed
be carried over in the Finsler case. At the same time, our treatment fills some
expository gaps present in the literature.

1.3. Organization of the paper. In Section 2 we provide a construction of the curve
shortening semi-flow, and prove Theorem 1.1. In Section 3 we prove Theorem 1.2,
except the technical point (iii). In Section 4, we provide the background on the
classical critical point theory for the Finsler energy function, and we will prove The-
orem 1.2(iii) at the end of the section. Finally, in Section 5 we prove Theorem 1.3.
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2. The curve shortening semi-flow

2.1. The evolution equation. We consider a 1-parameter family of curves γt ∈
Emb(S1,M) evolving according to the partial differential equation

∂tγt(u) = wt(u)nt(u) (2.1)

where wt := Vγt and nt := Nγt . For every γ0 ∈ Emb(S1,M), we denote by
τγ0 ∈ [0,∞] the largest extended real number such that there is a well defined
solution γt ∈ Emb(S1,M) of (2.1) for all t ∈ [0, τγ0

), with γt|t=0 = γ0. We set

U :=
{

(t, γ0)
∣∣ γ0 ∈ Emb(S1,M), t ∈ [0, τγ0)

}
.

Theorem 2.1. There is a well defined unique map

φ : U → Emb(S1,M), φ(t, γ0) = φt(γ0) = γt,

where γt is the solution of (2.1) with initial condition γ0, satisfying the following
properties:

(i) The subset U ⊂ [0,∞) × Emb(S1,M) is an open neighborhood of {0} ×
Emb(S1,M), and φ is continuous.

(ii) The map φ is equivariant under the action of Diff(S1) on Emb(S1,M), i.e.
φt(γ ◦ θ) = φt(γ) ◦ θ for all γ ∈ Emb(S1,M) and θ ∈ Diff(S1).

(iii) For each γ ∈ Emb(S1,M) we have d
dtL(φt(γ)) ≤ 0, with equality if and

only if γ is a closed geodesic of (M,F ).
(iv) For each γ ∈ Emb(S1,M), if

`γ := lim
t→τ−γ

L(φt(γ)) > 0

then τγ =∞.

The proof of this theorem will be carried over in the rest of the section: point (i)
will be proved in Subsection 2.3; point (ii) is a consequence of Lemma 2.3; point (iii)
will be proved in Subsection 2.2. The fact that φ is well-defined as a map of the
above form (i.e. mapping the space Emb(S1,M) into itself) and point (iv) will be
proved in Section 2.4. In analogy with the analogous map in the Riemannian case,
we call φt the curve shortening semi-flow of (M,F ). Notice that φt is not a flow
(despite in the Riemannian literature it is often called a flow): indeed, it is only
defined for t ≥ 0, and thus satisfies φt1 ◦ φt2 = φt1+t2 only for t1, t2 ≥ 0.

Every closed geodesics of a closed Finsler surface (M,F ) have length strictly
larger than the injectivity radius injrad(M,F ). It is sometimes convenient to have
a well defined curve shortening semi-flow defined for all positive times even for
those trajectories that are not converging to a closed geodesic. We can achieve this
by slowing down the curve shortening semi-flow lines in the sublevel set {L <
injrad(M,F )}, as follows. We fix ρ0 > 0 (which will be chosen smaller than
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injrad(M,F ) in the applications), and consider a monotone increasing smooth func-
tion χ : [0,∞)→ [0, 1] such that supp(χ) = [ρ0,∞) and χ(`) = 1 for all ` ∈ [2ρ0,∞).
We define

ψ : [0,∞)× Emb(S1,M)→ Emb(S1,M), ψ(t, γ0) = ψt(γ0) = γt,

where γt is the solution of the partial differential equation

∂tγt(u) = χ(L(γt))Vγt(u)Nγt(u) (2.2)

The semi-flow ψt is the one that we employ for Theorem 1.1. Its properties, except
Theorem 1.1(iv) and (v), will be direct consequences of the above Theorem 2.1 by
means of the following lemma.

Lemma 2.2. There exists a smooth function T : Emb(S1,M) × [0,∞) → [0,∞)
monotone increasing in the second variable such that T (γ, ·) < τγ and

ψt(γ) = φT (γ,t)(γ), ∀γ ∈ Emb(S1,M), t ∈ [0,∞).

Moreover

(i) T (γ, t1 + t2) = T (φT (γ,t1)(γ), t2),
(ii) T (γ, t) = t if L(φt(γ)) ≥ 2ρ0,

(iii) T (γ, t) = 0 if L(γ) ≤ ρ0,
(iv) T (γ ◦ θ, t) = T (γ, t) for all θ ∈ Diff(S1).

Proof. We denote γ0 := γ and γt := φt(γ0). The smooth map (s, t) 7→ γT (γ,t)(s) is
a solution of (2.2) if and only if

χ(L(γT (γ,t)))VγT (γ,t)
NγT (γ,t)

= ∂tγT (γ,t) = (∂tT (γ, t))VγT (γ,t)
NγT (γ,t)

.

Therefore, the desired function t 7→ T (γ, t) is a solution of the ordinary differential
equation

∂tT (γ, t) = χ(L(γT (γ,t))),

T (γ, 0) = 0.
(2.3)

This readily implies that T is smooth as a function of (γ, t), and not decreasing.
Point (i) readily follows from the semi-flow property φt1+t2 = φt1 ◦φt2 of the curve
shortening. If L(γT (γ,t)) ≥ 2ρ0, then L(γT (γ,t′)) ≥ 2ρ0 and χ(L(γT (γ,t′))) = 1
for all t′ ∈ [0, t], which implies point (ii). If L(γ) ≤ ρ0, then L(γt) ≤ ρ0 and
χ(L(γT (γ,t))) = 0 for all t ∈ (0, τγ), which implies point (iii). Finally, if we set

Tθ(γ, t) := T (γ◦θ, t) for some θ ∈ Diff(S1), we readily see that Tθ is also a solution of
the ordinary differential equation (2.3). Since such equation has a unique solution,
we have point (iv). �

The function Vγ is a generalization of the Riemannian curvature of embedded
curves on oriented Riemannian surfaces. Theorem 2.1(ii) readily follows from the
following statement.

Lemma 2.3. For each θ ∈ Diff(S1), we have

Nγ◦θ = sign(θ̇)Nγ ◦ θ, Vγ◦θ = sign(θ̇)Vγ ◦ θ.

Proof. The statement concerning the normal vector Nγ is clear. Since the Finsler
metric F is 1-homogeneous in the fibers TqM , we have Fv(q, λv) = Fv(q, v) for all
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λ > 0. Moreover, we have Fx(q, λv) = λFx(q, v), Fqv(q, λv) = Fqv(q, v), Fvv(q, v) =
λFvv(q, λv). Therefore, if we set r = θ(u),

Vγ◦θ(u) :=

(
d

duFv(γ(θ(u)), γ̇(θ(u)))− θ̇(u)Fx(γ(θ(u)), γ̇(θ(u)))
)
Nγ◦θ(u)

‖γ̇(θ(u))‖ |θ̇(u)|

=
θ̇(u)

(
d
drFv(γ(r), γ̇(r))− Fx(γ(r), γ̇(r))

)
Nγ◦θ(u)

‖γ̇(r)‖ |θ̇(u)|

= sign(θ̇(u))

(
d
drFv(γ(r), γ̇(r))− Fx(γ(r), γ̇(r))

)
Nγ(r)

‖γ̇(r)‖
= sign(θ̇(s))Vγ(θ(u)). �

2.2. The anti-gradient of the length. Let X ∈ TγEmb(S1,M), that is, X is a
smooth 1-periodic vector field along γ. The differential of L can be computed as

dL(γ)X =

∫ 1

0

(
Fx(γ(u), γ̇(u))− d

duFv(γ(u), γ̇(u))
)
X(u) du. (2.4)

Lemma 2.4. For each a ∈ C∞(S1,R), we have dL(γ)aγ̇ = 0.

Proof. If we set γε(u) := γ(u + εa(u)), we have aγ̇ = ∂εγε|ε=0. Since, for all |ε|
small enough, γε is an embedded curve obtained by reparametrization of γ, we
have L(γε) = L(γ) and dL(γ)aγ̇ = d

dε

∣∣
ε=0

L(γε) = 0. �

The Riemannian metric g introduces an L2 Riemannian metric on Emb(S1,M)
given by

〈〈X,Y 〉〉γ =

∫
S1

g(X(u), Y (u))‖γ̇(u)‖ du, ∀X,Y ∈ TγEmb(S1,M). (2.5)

Thanks to the factor ‖γ̇(u)‖ in the integrand, the inner product is invariant under
the action of Diff(S1), i.e.

〈〈X ◦ θ, Y ◦ θ〉〉γ◦θ = 〈〈X,Y 〉〉γ , ∀θ ∈ Diff(S1). (2.6)

We denote by ∇L the gradient of the length functional with respect to this inner
product. Namely, ∇L is the vector field on Emb(S1,M) given by

dL(γ)X = 〈〈∇L(γ), X〉〉γ .

Lemma 2.5. ∇L(γ) = −VγNγ .

Proof. Consider an arbitrary X ∈ TγEmb(S1,M), which we can uniquely write
as X(u) = a(u)γ̇ + b(u)Nγ , where b(u) = g(X(u), Nγ(u)). By Lemma 2.4 and
Equation (2.4), we compute

dL(γ)X = dL(γ)aγ̇ + dL(γ)bNγ = dL(γ)bNγ

=

∫ 1

0

(
Fx(γ(u), γ̇(u))− d

duFv(γ(u), γ̇(u))
)
b(u)N(u) du

=

∫ 1

0

g(−Vγ(u)Nγ(u), X(u)) ‖γ̇(u)‖du. �

Therefore, the curve shortening equation (2.1) can be seen as the anti-gradient
flow equation of L associated to the L2-Riemannian metric on Emb(S1,M), i.e.

∂tγt = −∇L(γt). (2.7)
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The invariance (2.6), together with Lemma 2.5, provides an alternative proof of
Lemma 2.3. Moreover, if a solution γt is well defined for t ∈ [a, b], then

L(γa)− L(γb) =

∫ b

a

‖∇L(γt)‖2dt =

∫ b

a

∫
S1

Vγt(u)2 ‖γ̇t(u)‖dudt. (2.8)

It is well known that the closed geodesics of (M,F ) are critical points of L, that is,
those γ such that Vγ ≡ 0. Therefore, ∂tL(γt) ≤ 0 with equality if and only if γt is
a closed geodesic of (M,F ). This settles Theorem 2.1(iii).

Remark 2.6 (Alternative curve shortening). The PDE (2.1) of the curve shortening
is not canonically associated to the Finsler metric F , as it also involves the auxil-
iary Riemannian metric g. This choice of curve shortening semi-flow turns out to
be the most convenient for the later computations. Alternatively, one could also
study a curve shortening semi-flow whose definition does not involve an auxiliary
Riemannian metric: this is done by replacing, in (2.7), the gradient ∇ with the one
induced by the following Riemannian metric on Emb(S1,M)

〈〈X,Y 〉〉′γ =

∫
S1

F (γ(u), γ̇(u))( 1
2F

2)vv(γ(u), γ̇(u))[X(u), Y (u)] du,

∀X,Y ∈ TγEmb(S1,M).

For each v ∈ TqM , we define vF to be the positive orthogonal to v with respect to
the inner product (F 2)vv(q, v)[·, ·] with norm F (q, vF ) = F (q, v). If we set

Zγ(u) :=

(
d

duFv(γ(u), γ̇(u))− Fx(γ(u), γ̇(u))
)
γ̇(u)F

F (γ(u), γ̇(u))
,

the alternative curve shortening semi-flow is precisely given by

∂tγt(u) =
Zγt(u)

F (γt(u), γ̇t(u))
γ̇t(u)F . �

2.3. Short-time existence. In order to prove Theorem 2.1(i), it is convenient to
work in suitable local coordinates around a fixed curve γ0 ∈ Emb(S1,M). We
denote by exp : TM → M the exponential map of (M, g). There exists ρ > 0 and
an open set U ⊂M of γ0(S1) such that the map

ξ : S1 × (−ρ, ρ)→ U, ξ(u, r) = expγ0(u)(r Nγ0(u))

is a diffeomorphism.
We define the smooth map

Ξ : C∞(S1, (−ρ, ρ))→ Emb(S1,M), Ξ(z)(u) = ξ(u, z(u)).

Let us show that this map is open and injective. We first define the vector field N
on U by

N(ξ(u, r)) =
d

dr
ξ(u, r) = d expγ0(u)(r Nγ0

(u))Nγ0
(u),

and notice that ‖N(q)‖ = 1 for all q ∈ U . Thus, we have dΞ(z)w = W , where

W (u) = w(u)N(Ξ(z)(u)),

and this latter vector field along Ξ(z) is non-zero provided the function w is non-
zero. Hence Ξ is an immersion. Clearly, Ξ is injective, for ξ is a diffeomorphism.
Finally, the equality

dist(Ξ(z)(u), γ0(u)) = |z(u)|, ∀z ∈ C∞(S1, (−ρ, ρ)), u ∈ S1
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implies that Ξ is an open map onto its image.
Since Diff(S1) acts freely on Emb(S1,M), the map

Ψ : C∞(S1, (−ρ, ρ))×Diff(S1)→ Emb(S1,M),

Ψ(z, θ)(u) = Ξ(z)(θ(u)) = expγ0(θ(u))

(
z(θ(u))Nγ0(θ(u))

)
is open and injective onto a neighborhood of γ0. The differential of Ψ is given by

dΨ(z, θ)(v, τ) = V,

where

V (u) = v(θ(u))N(Ψ(z, θ)(u)) + τ(θ(u))Ξ(z)·(θ(u)).

Here, we have denoted Ξ(z)·(u) := ∂
∂uΞ(z)(u)

The map Ψ pulls-back the L2 inner product (2.5) to

〈〈〈(v, τ), (w, σ)〉〉〉(z,θ)
:= 〈〈dΨ(z, θ)(v, τ),dΨ(z, θ)(w, σ)〉〉Ψ(z,θ)

=

∫
S1

(
v(u)w(u) + v(u)σ(u) az(u) + w(u) τ(u) az(u)

+ τ(u)σ(u) bz(u)2
)
bz(u) du,

where

az(u) := g(N(Ξ(z)(u)),Ξ(z)·(u)),

bz(u) := ‖Ξ(z)·(u)‖.

Notice that this inner product is actually independent of θ ∈ Diff(S1), and therefore
we will simply write

〈〈〈(v, τ), (w, σ)〉〉〉(z,θ) = 〈〈〈(v, τ), (w, σ)〉〉〉z (2.9)

In order to write expressions in local coordinates, let us pull-back the Finsler
metric F by ξ. We obtain the Finsler metric G := ξ∗F on S1 × (−ε, ε) given by

G(q, v) = F (ξ(q),dξ(q)v), ∀q ∈ S1 × (−ρ, ρ), v ∈ R2.

The composition of the length functional L with Ψ reads

L ◦Ψ(z, θ) = L ◦ Ξ(z) =

∫
S1

F
(

d
duΞ(z)(u)

)
du =

∫
S1

G((u, z(u))︸ ︷︷ ︸
q

, (1, ż(u))︸ ︷︷ ︸
v

) du.

Let us compute the derivative

d(L ◦ Ξ)(z)w =

∫
S1

(
Gq2 w + ∂v2Gẇ

)
du

=

∫
S1

(
Gq2 −Gq1v2

−Gq2v2
ż −Gv2v2

z̈
)
w du.

(2.10)

We denote by (vz, τz) := ∇(L◦Ψ)(z) the gradient of L◦Ψ with respect to the inner
product (2.9), i.e.

〈〈〈(vz, τz), (w, σ)〉〉〉z = d(L ◦Ψ)(z, θ)(w, σ).

Since L ◦Ψ(z, θ) is independent of θ ∈ Diff(S1), we have

0 = 〈〈〈(vz, τz), (0, σ)〉〉〉z =

∫
S1

(
vz(u) az(u) bz(u) + τz(u) bz(u)3

)
σ(u) du,



10 G. DE PHILIPPIS, M. MARINI, M. MAZZUCCHELLI, AND S. SUHR

which implies that

τz(u) = −vz(u)
az(u)

bz(u)2
, ∀u ∈ S1.

On the other hand, we have

〈〈〈(vz, τz), (w, 0)〉〉〉z =

∫
S1

(
vz(u) + τz(u) az(u)

)
bz(u)w(u) du

=

∫
S1

(
1− az(u)2

bz(u)2

)
vz(u) bz(u)w(u) du

= d(L ◦ Ξ)(z)w.

(2.11)

Notice that the quotient az(u)/bz(u) is well defined. Indeed, the curve s 7→ Ξ(z)(u)
is transverse to the vector field N , and therefore

az(u)2

bz(u)2 = g
(
N(Ξ(z)(u)), Ξ(z)·(u)

|Ξ(z)·(u)|Ξ(z)(u)

)2
< 1.

Equations (2.10) and (2.11) imply that

vz =
(

1− a2
z

b2z

)−1

bz(u)−1
(
Gq2 −Gq1v2

−Gq2v2
ż −Gv2v2

z̈
)
.

The integral curves of the anti-gradient −∇(L ◦ Ξ) are solutions

(z, θ) : [0, T )× S1 → (−ρ, ρ)× S1

of the partial differential equation

∂t(z, θ) = (−vz, vza/b2). (2.12)

In particular, z is a solution of the partial differential equation

∂tz = bz
b2z−a2

z

(
Gv2v2

∂2
uz +Gq2v2

∂uz +Gq1v2
−Gq2

)
. (2.13)

Since G is a Finsler metric, the second derivative Gvv(q, v) is positive semidefi-
nite and its kernel is generated by v. Therefore, Gv2v2((u, z(u)), (1, ż(u))) 6= 0,
and (2.13) is a parabolic partial differential equation. The local theory for this
class of equations (see, e.g., [MM12]) provides the following statement.

Proposition 2.7. For each z0 ∈ C∞(S1, (−ρ, ρ)) there exists ε > 0 and a unique
smooth solution z : [0, ε)×S1 → (−ρ, ρ) of (2.13) such that z(0, ·) = z0. Moreover,
z depends continuously on the initial condition z0 in the C∞ topology. �

Assume that z : [0, ε) × S1 → (−ρ, ρ) is the smooth solution given by Proposi-
tion 2.7. Up to reducing ε > 0, we can easily find a smooth θ : [0, ε)×S1 → S1 such
that (z, θ) is a solution of the curve shortening equation (2.12) with θ(0, ·) = id.
Indeed, for each s ∈ S1, such a θ is the unique smooth solution of the ordinary
differential equation

∂tθ(t, s) = −τz(θ(t, s)).

The smooth map

γ : [0, ε)× S1 →M, γ(t, s) = Ψ(z(t, ·), θ(t, ·))(s) = ξ(θ(t, s), z(t, θ(t, s)))

is thus the unique smooth solution of the curve shortening equation (2.1) with
γ(0, ·) = Ξ(z) = γ0. Summing up, we have proved the following statement, which
implies Theorem 2.1(i).
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Theorem 2.8 (Local existence and uniqueness). For each γ0 ∈ Emb(S1,M) there
exists ε > 0 and a unique smooth solution γ : [0, ε)×S1 →M of the curve shortening
equation (2.1) such that γ(0, ·) = γ0. Moreover, γ depends continuously on the
initial condition γ0 in the C∞ topology. �

2.4. Long-time existence. We denote by SM the unit tangent bundle of M with
respect to the auxiliary Riemannian metric g, i.e.

SM =
{

(x, v) ∈ TM
∣∣ ‖v‖ = 1

}
. (2.14)

In order to prove that φ is well-defined as a map onto Emb(S1,M), and that that
there is long-time existence of solutions of the curve shortening equation (Theo-
rem 2.1(iv)), it suffices to show that the factor wt in the right-hand side of (2.1)
can be expressed by means of a suitable smooth function

V : R× SM → R, V (κt(u), γt(u), τt(u)),

and invoke the general results of Angenent [Ang90] and Oaks [Oak94]. Here, κt
denotes the Riemannian curvature of γt measured with respect to the auxiliary Rie-
mannian metric g, and τt(u) := γ̇t(u)/‖γ̇t(u)‖ its unit tangent vector. By expanding
the definition of wt, we have

wt =

(
d

duFv(γt, γ̇t)− Fx(γt, γ̇t)
)
nt

‖γ̇t‖
= Fvv(γt, τt)[γ̈t/‖γ̇t‖2, nt] + Fxv(γt, τt)[τt, nt]− Fx(γt, τt)nt.

Since Fvv(x, v)v = 0, the first summand in the last line can be rewritten as

Fvv(γt, τt)[γ̈t/‖γ̇t‖2, nt] = Fvv(γt, τt)[nt, nt] g(γ̈t/‖γ̇t‖2, nt)
= Fvv(γt, τt)[nt, nt]κt − Fvv(γt, τt)[nt, nt]g(Γγt [τt, τt], nt).

Here,
Γx[v, w] = Γkij(x)viwj∂xk ,

where Γkij are the Christoffel symbols of the metric g with respect to the local
coordinates employed in the above expression. Inserting this into the expression of
wt, we obtain

wt = Fvv(γt, τt)[nt, nt]κt − Fvv(γt, τt)[nt, nt]g(Γγt [τt, τt], nt)

+ Fxv(γt, τt)[τt, nt]− Fx(γt, τt)nt.

Notice that the first summand Fvv(γt, τt)[nt, nt]κt is well defined independently of
the local coordinates, as Fvv is simply the fiberwise Hessian of F . Therefore, since
wt is also well defined, the remaining summands

−Fvv(γt, τt)[Jτt, Jτt]g(Γγt [τt, τt], Jτt) + Fxv(γt, τt)[τt, Jτt]− Fx(γt, τt)

are well defined independently of the local coordinates as well. The expression
above shows that wt is of the form wt = V (κt, γt, τt), where V : R × SM → R is
the smooth function

V (κ, x, v) = Fvv(x, v)[Jv, Jv]κ− Fvv(x, v)[Jv, Jv]g(Γx[v, v], Jv)

+ Fxv(x, v)[v, Jv]− Fx(x, v)Jv

=: A(x, v)κ+B(x, v).

(2.15)

The reversibility of F readily imply that V (κ, x, v) = −V (−κ, x,−v). The func-
tion V thus satisfies in particular the assumptions required in [Ang90, Oak94]. By
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[Ang91, Theorem 1.3], the map φ takes values inside Emb(S1,M). Finally, Theo-
rem 2.1(iv) follows from [Oak94, Corollary 6.2].

2.5. L∞ bounds on Vγ . For any γ0 ∈ Emb(S1,M), we will write γt = φt(γ0) for the
corresponding solution of (2.1), and `t := L(γt) for its length. We denote by ∇t,
∇u, and ∇s the covariant derivatives associated with the Levi-Civita connection of
g. It is convenient to introduce the vector field Ds = ‖γ̇t(u)‖−1∂u on R×S1, which
acts on smooth real-valued functions f : R× S1 → R, f(t, u) = ft(u) by

Dsft(u) =
∂uft(u)

‖γ̇t(u)‖
.

We recall the classical Frenet formulas from plane Riemannian geometry:

∇uτt = κt‖γ̇t‖nt, ∇unt = −κtγ̇t.

By means of the PDE (2.1), we also have the following formulas.

Lemma 2.9. ∇tτt = (Dswt)nt, ∇tnt = −(Dswt)τt.

Proof. Let us compute the covariant derivative ∇tτt. Since ‖τt‖ = ‖nt‖ ≡ 1, we
have

g(∇tτt, τt) = g(∇tnt, nt) = g(∇unt, nt) = g(∇uτt, τt) = 0.

Moreover

g(∇tγ̇t, nt) = g(∇u∂tγt, nt) = g(∇u(wtnt), nt) = ẇt,

which readily implies

∇tτt = g(∇tτt, nt)nt =
ẇt
‖γ̇t‖

nt = (Dswt)nt,

∇tnt = g(∇tnt, τt)τt = −g(nt,∇tγ̇t)
‖γ̇t‖

τt = − ẇt
‖γ̇t‖

τt = −(Dswt)τt. �

Lemma 2.10. ∂t‖γ̇t(u)‖ = −κt(u)wt(u)‖γ̇t(u)‖.

Proof. By means of the commutativity ∇t∂u = ∇u∂t and of the PDE (2.1), we
compute

∂t‖γ̇t(u)‖ =
g(∇tγ̇t(u), γ̇t(u))

‖γ̇t(u)‖
=
g(∇u∂tγt(u), γ̇t(u))

‖γ̇t(u)‖
=
g(∇u(wtnt), γ̇t(u))

‖γ̇t(u)‖

= wt(u)
g(∇unt, γ̇t(u))

‖γ̇t(u)‖
= −wt(u)

g(∇uγ̇t, nt(u))

‖γ̇t(u)‖
= −κt(u)wt(u)‖γ̇t(u)‖.

�

Lemma 2.11. The curvature κt evolves according to the PDE

∂tκt(u) = D2
swt(u) + wt(u)κ2

t (u) + wt(u)kg(γt(u)),

where kg denotes the Gaussian curvature of (M, g), i.e. kg(x) = g(R(v, Jv)v, Jv)
for all v ∈ SxM .
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Proof. The lemma follows by direct computation:

∂tκt = ∂t
g(∇uτt, nt)
‖γ̇t‖

=

(
∂t

1

‖γ̇t‖

)
κt‖γ̇t‖+

1

‖γ̇t‖
g(∇t∇uτt, nt) +

1

‖γ̇t‖
g(∇uτt,∇tnt)︸ ︷︷ ︸

=0

=
κtwt‖γ̇t‖
‖γ̇t‖2

κt‖γ̇t‖+
1

‖γ̇t‖
g(∇u∇tτt, nt) +

1

‖γ̇t‖
g(R(γ̇t, ∂tγt)τt, nt)

= wtκ
2
t +D2

swt + wtkg ◦ γt. �

We set `t := L(γt), and denote by Γt : R/`tZ → M the reparametrized γt with
unit speed with respect to the auxiliary Riemannian metric g. Namely Γt(s) =
γt ◦ σ−1

t (s), where

σt(u) =

∫ u

0

‖γ̇t(r)‖ dr,

and therefore `t = σt(1). We also set

Wt(s) := wt ◦ σ−1
t (s),

Nt(s) := nt ◦ σ−1
t (s),

Kt(s) := κt ◦ σ−1
t (s).

(2.16)

Notice that

Kt(s) = g(∇sΓ̇t, Nt), Wt(s) = V (Kt(s), Γ̇t(s)).

Moreover

Ẇt ◦ σt = Dswt, K̇t ◦ σt = Dsκt.

If f : SM → R is a smooth function, we will denote by ∇hf and ∇vf the duals
of the horizontal and vertical projections respectively of its gradient with respect
to the Sasaki metric of SM induced by g. These operators allow to express ∂twt as

∂twt = (∂κV )∂tκt + (∇hV )∂tγt + (∇vV )∇tτt
= (∂κV )

(
D2
swt + wtκ

2
t + wtkg(γt)

)
+ (∇hV )nt wt + (∇vV )ntDswt.

We set

A(x, v) := ∂κV (x, v) = Fvv(x, v)[Jv, Jv].

Notice that A is uniformly bounded from below by a positive constant. From
now on, we will consider it evaluated at (γt(u), τt(u)). Notice that AD2

swt =
Ds(ADswt)− (DsA)(Dswt), and

DsA = 1
‖γ̇t‖

(
(∇hA)γ̇t + (∇vA)∇uτt

)
= (∇hA)τt + (∇vA)nt κt.

Therefore, ∂twt can be written as

∂twt = AD2
swt +Awtκ

2
t +BDswt + C wt

= Ds(ADswt) +Awtκ
2
t + EDswt +H κtDswt + C wt,

where B, C, E, and H are smooth functions on SM evaluated at (γt(u), τt(u)).
We are now going to employ the open sets U(`, ε) defined in (1.4).
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Lemma 2.12. For all ` > 0 there exist constants c > 0 and ε0 > 0 with the following
properties: for all ε ∈ (0, ε0], γ0 ∈ U(`, ε), and t ≥ 0 such that L(γ0)− L(γt) ≤ ε2,
we have ‖Wt‖L2 ≤ c ε.

Proof. We consider an arbitrary γ0 ∈ U(`, ε), and its evolution γt. We recall that
the corresponding wt has the form wt = V (κt, γt, τt), where τt := γ̇t/‖γ̇t‖.

We compute

∂t‖Wt‖2L2 =

∫ 1

0

(
2wt (∂twt) σ̇t + w2

t (∂tσ̇t)
)

du

=

∫ 1

0

(
2wtDs(ADswt) + 2Aw2

t κ
2
t + 2E wtDswt + 2H κtwtDswt

+ 2Cw2
t − κtw3

t

)
σ̇t du

=

∫ `t

0

(
− 2A(Ẇt)

2 + 2AW 2
t K

2
t + 2EWtẆt + 2HKtWtẆt

+ 2CW 2
t −KtW

3
t

)
ds.

From now on, we will denote by c ≥ 1 a positive constant (independent of γt), that
may increase on different inequalities. The above expression for ∂t‖Wt‖2L2 readily
implies

∂t‖Wt‖2L2 ≤ −c−1‖Ẇt‖2L2 + c
(
‖WtẆt‖L1 + ‖KtWtẆt‖L1 + ‖W 2

t K
2
t ‖L1

+ ‖KtW
3
t ‖L1 + ‖Wt‖2L2

)
.

(2.17)

By the Peter-Paul inequality, for every ρ > 0, the term ‖WtẆt‖L1 can be
bounded as

‖WtẆt‖L1 ≤ ρ2‖Ẇt‖2L2 + 1
4ρ2 ‖Wt‖2L2 ,

and the term ‖KtWtẆt‖L1 as

‖KtWtẆt‖L1 ≤ ρ2‖Ẇt‖2L2 + 1
4ρ2 ‖KtWt‖2L2 ≤ ρ2‖Ẇt‖2L2 + 1

4ρ2 ‖Kt‖2L∞‖Wt‖2L2 .

We will fix a sufficiently small constant ρ > 0 so that, in the inequality (2.17),

the term −c−1‖Ẇt‖2L2 will be able to absorb the terms ρ2‖Ẇt‖2L2 , still producing a

negative factor in front of ‖Ẇt‖2L2 .
Equation (2.15) readily implies that the curvature Kt is related to Wt by Kt =

A−1Wt + P , where, once again, P is a smooth function on SM evaluated at
(Γt(s), Γ̇t(s)). Therefore ‖Kt‖L∞ ≤ c (‖Wt‖2L∞ + 1).

Inserting these estimates in (2.17), we obtain

∂t‖Wt‖2L2 ≤ c‖Wt‖2L2 + c‖Wt‖2L∞‖Wt‖2L2 − c−1‖Ẇt‖2L2 .

We require ε > 0 to be small enough so that, since `0 − `t ≤ ε2,

c−1 ≤ `t ≤ c.
If we bound from above the term −c−1‖Ẇt‖2L2 by means of the inequality

‖Wt‖2L∞ ≤ 2`−1
t ‖Wt‖2L2 + 2`t‖Ẇt‖2L2 ≤ c‖Wt‖2L2 + c‖Ẇt‖2L2 ,

we further obtain

∂t‖Wt‖2L2 ≤ c‖Wt‖2L2 + c‖Wt‖2L∞(‖Wt‖2L2 − c−1).
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We claim that, if ε > 0 is small enough (independently of γ), then ‖Wt‖2L2 < c−1

for all t ≥ 0 such that `0 − `t < ε2. Indeed, assume that this is not the case.
If ε2 < 1/(c`0), since ‖W0‖2L2 ≤ `0ε

2 < c−1, there must be τ > 0 such that
‖Wt‖2L2 < c−1 for all t ∈ [0, τ), ‖Wτ‖2L2 = c−1, and `0 − `τ < ε2. For all t ∈ [0, τ ]
we have the inequality ∂t‖Wt‖2L2 ≤ c‖Wt‖2L2 , and thus

c−1 = ‖Wτ‖2L2 ≤ ecτ‖W0‖2L2 ≤ ecτ ε2`0.

If ε2 ≤ e−cc−1`−1
0 , then τ ≥ 1. Therefore, since ‖Wτ‖2L2 ≤ ec(τ−t)‖Wt‖L2 for all

t ∈ [0, τ ], by (2.8) we have

c−1 = ‖Wτ‖2L2 ≤ ec
∫ τ

τ−1

‖Wt‖2L2dt = ec(`τ−1 − `τ ) ≤ ecε2,

which is impossible if ε2 < e−cc−1.
Summing up, we showed that ∂t‖Wt‖2L2 ≤ c‖Wt‖2L2 provided `0 − `t ≤ ε2, and

therefore

‖Wt‖2L2 ≤ ect
∫ t

0

‖Wr‖2L2 dr ≤ ec(`0 − `t) ≤ ecε2,

∀t ≥ 0 such that `0 − `t ≤ ε2. �

Lemma 2.13. For all ` > 0 there exist constants c > 0 and ε0 > 0 with the following
properties: for all ε ∈ (0, ε0], γ0 ∈ U(`, ε), and t ≥ 0 such that L(γ0)− L(γt) ≤ ε2,

we have ‖Ẇt‖L2 ≤ c ε.

Proof. We consider an arbitrary γ0 ∈ U(`, ε) and its evolution γt. Once again, we
will denote by c ≥ 1 a large enough constant independent of γt and ε, possibly
growing throughout the computations.

∂t‖Ẇt‖2L2 =

∫ 1

0

(
2(Dswt)∂t(Dswt) σ̇t − (Dswt)

2κtwtσ̇t

)
du

=

∫ 1

0

(
2(Dswt)∂tẇt + (Dswt)

2κtwtσ̇t

)
du

=

∫ 1

0

(
2(Dswt)Ds

(
AD2

swt +Awtκ
2
t +BDswt + C wt

)
+ (Dswt)

2κtwt

)
σ̇tdu

=

∫ `t

0

(
− 2A(Ẅt)

2 − 2AẄtWtK
2
t − 2BẄtẆt − CẄtWt

+ (Ẇt)
2KtWt

)
ds

≤ −c−1‖Ẅt‖2L2 + c
(
‖ẄtWtK

2
t ‖L1 + ‖ẄtẆt‖L1 + ‖ẄtWt‖L1

+ ‖(Ẇt)
2KtWt‖L1

)
.
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As before, by employing the Peter-Paul inequality and expressing Kt as an affine
function of Wt, we have

∂t‖Ẇt‖2L2 ≤ −c−1‖Ẅt‖2L2 + c
(
‖W 3

t ‖2L2 + ‖W 2
t ‖2L2 + ‖Wt‖2L2 + ‖Ẇt‖2L2

+ ‖(Ẇt)
2W 2

t ‖L1 + ‖(Ẇt)
2Wt‖L1

)
= −c−1‖Ẅt‖2L2 + c

(
‖W 6

t ‖L1 + ‖W 4
t ‖L1 + ‖Wt‖2L2 + ‖Ẇt‖2L2

+ ‖(Ẇt)
2W 2

t ‖L1 + ‖(Ẇt)
2Wt‖L1

)
.

(2.18)

Now, let ε > 0 be small enough so that Lemma 2.12 holds, and c−1 ≤ `t ≤ c.
Therefore, if τ > 0 is such that `0− `τ < ε2, we have ‖Wt‖2L2 < c ε2 for all t ∈ [0, τ ].
We introduce a large constant d ≥ 1 that we will fix later. We set

I :=
{
t ∈ [0, τ ]

∣∣ ‖Ẇt‖2L2 ≥ d‖Wt‖2L2

}
.

Notice that it is enough to prove the assertion of the lemma for all t ∈ I, and
thus from now on we will fix one such t. By means of an integration by parts and
Cauchy-Schwarz’s inequality, we have

‖Ẇt‖2L2 ≤ −
∫ `t

0

WtẄt ds ≤ ‖Wt‖L2‖Ẅt‖L2 ≤ d−1‖Ẇt‖L2‖Ẅt‖L2 ,

and thus

‖Ẇt‖L2 ≤ d−1‖Ẅt‖L2 .

We employ this inequality to bound from above the positive terms in (2.18) as
follows.

‖W 4
t ‖L1 ≤ ‖Wt‖2L2‖Wt‖2L∞ ≤ c ε2

(
‖Wt‖2L1 + ‖Ẇt‖2L1

)
≤ c ε2‖Ẇt‖2L2 ,

‖W 6
t ‖L1 ≤ ‖Wt‖2L2‖Wt‖4L∞ ≤ c ε2

(
‖Wt‖4L1 + ‖Ẇt‖4L1

)
≤ c ε2

(
‖Wt‖4L1 + ‖WtẄt‖2L1

)
≤ c ε2

(
‖Wt‖4L1 + ‖Wt‖2L2‖Ẅt‖2L2

)
≤ c ε4

(
‖Ẇt‖2L2 + ‖Ẅt‖2L2

)
,

‖(Ẇt)
2Wt‖L1 ≤ ‖Wt‖L1‖Ẇt‖2L∞ ≤ c‖Wt‖L2‖Ẅt‖2L2 ≤ c ε‖Ẅt‖2L2 ,

‖(Ẇt)
2W 2

t ‖L1 ≤ ‖Wt‖2L2‖Ẇt‖2L∞ ≤ c ε2‖Ẅt‖2L2 .

We require ε > 0 to be small enough so that the negative term −c−1‖Ẅt‖2L2 can

absorb the terms c ε‖Ẅt‖2L2 , c ε2‖Ẅt‖2L2 , c ε4‖Ẅt‖2L2 , thus obtaining

∂t‖Ẇt‖2L2 ≤ −c−1‖Ẅt‖2L2 + c‖Ẇt‖2L2 ≤ (cd−1 − c−1)‖Ẅt‖2L2 , ∀t ∈ I.

We now fix d > c2, so that (cd−1 − c−1) < 0 and

∂t‖Ẇt‖2L2 ≤ 0, ∀t ∈ I.

Namely, for all t ∈ [0, τ ], either ‖Ẇt‖2L2 ≤ d‖Wt‖2L2 or ∂t‖Ẇt‖2L2 ≤ 0, and we
conclude

max
t∈[0,τ ]

‖Ẇt‖2L2 ≤ d max
t∈[0,τ ]

‖Wt‖2L2 ≤ d c ε2. �

Lemmas 2.12 and 2.13 readily imply the following.

Lemma 2.14. For all ` ≥ injrad(M,F ) there exist constants c ≥ 1 and ε0 > 0
with the following properties: for all ε ∈ (0, ε0], γ ∈ U(`, ε), and t ≥ 0 such that
L(γ)− L(φt(γ)) ≤ ε2, we have ‖Vφt(γ)‖L∞ < c ε. �
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The analog of Theorem 1.1(iv) is well known in the classical setting of Lusternik-
Schnirelmann theory: it is based on the fact that a smooth function drops of at
least a fixed amount along a gradient flow line that crosses a given shell around
a critical set at a given level. In the context of the Riemannian curve shortening
semi-flow, the analogous property is claimed1 by Grayson [Gra89]. We now employ
the L∞ bound of Lemma 2.14 to provide a complete proof of Theorem 1.1(iv) in
our general Finsler setting.

Proof of Theorem 1.1(iv). Since the surface M is compact, we have a positive con-
stant

a := min
(x,v)∈SM

‖v‖g
F (x, v)

> 0

where ‖ · ‖g is the norm associated to the auxiliary Riemannian metric g. For a

given ` > 2ρ0, we consider the constants c ≥ 1 and ε0 ∈ (0, (` − 2ρ0)1/2) given by
Lemma 2.14. For a given ε ∈ (0, ε0), we set

δ :=
ε2

4c2
, τ :=

1

(`− δ)a
,

so that in particular U(`, (2δ)1/2) ⊂ U(`, ε). We fix an arbitrary γ0 ∈ Emb(S1,M)
with L(γ0) < ` + δ, and denote by γt := ψt(γ0), for t ≥ 0, its evolution by means
of the semi-flow ψt. Assume that

L(γτ ) ≥ `− δ. (2.19)

We claim that there exists τ ′ ∈ [0, τ ] such that γτ ′ ∈ U(`, (2δ)1/2). Otherwise, we
would have ‖Vγt‖L∞ ≥ (2δ)1/2 for all t ∈ [0, τ ] and, by (2.8),

L(γτ ) = L(γ0)−
∫ τ

0

∫
S1

Vγt(u)2‖γ̇(u)‖ dudt ≤ L(γ0)− τ2δaL(γτ ) < `− δ,

contradicting (2.19). By Lemma 2.14, for every t ≥ τ ′ such that L(γt) ≥ ` − δ we
have γt ∈ U(`, ε). �

2.6. Compactness. Finally Theorem 1.1(v) will be a consequence of the following
compactness result. We denote by PTM →M the projectivized tangent bundle of
M , whose fiber over any x ∈M is the real projective space

P(TxM) =
TxM \ {0}
∼

where [v] = [λv] for all v ∈ TxM \ {0} and λ ∈ R.

Lemma 2.15. Let K ⊆ PTM be a compact subset. If no element of K is tangent
to a simple closed geodesic of (M,F ) of length `, then for all ε > 0 small enough
no vector in K is tangent to some curve γ ∈ U(`, ε).

Proof. If the Lemma does not hold, then there exists a sequence γn ∈ U(`, 1/n)
such that F (γn, γ̇n) ≡ L(γn) and [γ̇n(0)] ∈ K. The lifted curves (γn, γ̇n/L(γn)) are
contained in the Finsler unit tangent bundle {(x, v) ∈ TM | F (x, v) = 1}, which
is a compact subset of TM . We consider the function Vγ defined in (1.2). Since
‖Vγn‖L∞ < 1/n → 0 as n → ∞, the sequence γn is bounded in the C2-topology.

1Quoted from the last sentence in [Gra89, page 109]: “Any curve leaving a small neighborhood
of a geodesic shortens a fixed amount before moving very far.”
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Therefore, up to a subsequence, γn converges in the C1-topology to some γ such
that F (γ, γ̇) ≡ L(γ) = ` and γ̇(0) ∈ K. Now, consider the Finsler energy

E : W 1,2(S1,M)→ [0,∞), E(ζ) =

∫
S1

F (ζ(u), ζ̇(u))2 du,

Since each γn has constant speed, we have

dE(γn)X = 2

∫
S1

F (γn(u), γ̇n(u))
(
Fx(γn(u), γ̇n(u))− d

duFv(γn(u), γ̇n(u))
)
X(u) du

= 2L(γn) dL(γn)X = 2L(γn)

∫
S1

Vγn(u) g(Nγn(u), X(u)) ‖γ̇n(u)‖g du.

This, together with ‖Vγn‖L∞ → 0 and the fact that E is a C1,1 function, readily
implies that the limit curve γ is a critical point of E, and therefore a closed geodesic.
In order to reach a contradiction, we simply have to show that γ is simple closed.

On an orientable reversible Finsler surface, a closed geodesic that is the C1-
limit of embedded circles is itself simple. Indeed, γ cannot have a transverse self-
intersection, for the same would be true for γn for n large enough. Moreover, γ
cannot have a self-tangency with opposite orientation, i.e. of the form γ(u1) = γ(u2)
and γ̇(u1) = −γ̇(u2) for some u1 < u2; indeed, since F is reversible, we would
have γ(u1 + r) = γ̇(u2 − r) for all r > 0, and then γ̇(u1+u2

2 ) = 0, contradicting
the fact that γ is a geodesic. Finally, γ cannot be an iterated curve, i.e. of the
form γ(u) = ζ(mu) for some simple closed geodesic ζ : S1 → M and m ≥ 2;
otherwise, since M is an orientable surface, a tubular neighborhood of ζ would be
diffeomorphic to the annulus S1 × (−1, 1), ζ being its zero section S1 × {0}; any
closed curve sufficiently C1-close to γ would wind m ≥ 2 times around the annulus
S1 × (−1, 1), and therefore would have self-intersections. �

Proof of Theorem 1.1(v). As in the proof of Theorem 1.1(iv)], we set

a := min
(x,v)∈SM

‖v‖g
F (x, v)

> 0.

By choosing K = PTM in Lemma 2.15, we infer that there exists ε > 0 such
that U(`, ε) = ∅ for all ` ∈ [`1, `2]. Namely, for all γ0 ∈ Emb(S1,M) with length
L(γ0) ∈ [`1, `2] we have ‖Vγ0

‖L∞ ≥ ε. We fix such a γ0, and denote by γt := ψt(γ0)
its evolution with the semi-flow ψt. Equation (2.8) implies that, for all τ ≥ 0 such
that L(γτ ) ≥ `1, we have

L(γτ ) ≤ L(γ0)−
∫ τ

0

∫
S1

Vγt(u)2 ‖γ̇t(u)‖ dudt ≤ `2 − τε2aL(γτ ),

and thus

τ ≤ τ0
`2 − `1
ε2a`1

.

Therefore, for all t > τ0, we have ψt(Emb(S1,M)<`2) ⊂ Emb(S1,M)<`1 . �

3. Existence of simple closed geodesics

3.1. Lusternik-Schnirelmann theory. Let (M,F ) be a closed, orientable, reversible,
Finsler surface. We consider the space of unparametrized embedded loops

Π =
Emb(S1,M)

Diff(S1)
.
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Here, Diff(S1) acts by reparametrization on Emb(S1,M). From now on, the length
functional (1.1) will be considered as a continuous function on Π, i.e.

L : Π→ [0,∞).

For any subset W ⊂ Π and ` ∈ (0,∞], we set

W<` := {γ ∈ W | L(γ) < `}. (3.1)

Throughout this paper, we shall denote by H∗( · ;F) the singular homology with
coefficients in a field F; we shall remove F from the notation whenever the argu-
ments will not require a specific field. If σ is a singular chain in Π, we denote by
supp(σ) its support, which is a compact subset of Π. Each non-zero homology class
h ∈ H∗(Π<b,Π<a), where 0 < a < b ≤ ∞, defines a min-max value

`(h) := inf
[σ]=h

maxL|supp(σ) ∈ [a, b).

Such value turns out to be the (positive) length of a simple closed geodesic of
(M,F ). This will be a rather direct consequence of the existence of the semi-flow
of Theorem 1.1 and of the following statement. We will employ the open subsets
U(`, ε) ⊂ Emb(S1,M) defined in (1.4), which depend on an auxiliary Riemannian
metric g on M . Since such open subsets are invariant under the action of Diff(S1),
we can consider their quotients

W(`, ε) :=
U(`, ε)

Diff(S1)
,

which are open subset in Π.

Lemma 3.1. For each non-zero h ∈ H∗(Π<b,Π<a), the associated min-max ` = `(h)
is the length of a simple closed geodesic of (M,F ). For each ε > 0 there exists
δ ∈ (0, ε2) such that h can be represented by a relative cycle σ with

supp(σ) ⊂ Π<`−δ ∪W(`, ε). (3.2)

Moreover, if there are only finitely many simple closed geodesics with length in
(` − ε2, ` + ε2), there exists a simple closed geodesic γ of length ` such that, if we
denote by V(γ, ε) the connected component of W(`, ε) containing γ, the inclusion
induces a non-zero homomorphism Hd(V(γ, ε),V(γ, ε)<`−δ)→ Hd(Π,Π

<`).

Proof. We set ρ0 := a/3, and consider the semi-flow ψt of Theorem 1.1. Since, by
Theorem 1.1(ii), ψt is equivariant with respect to the action of Diff(S1), it induces
a well-defined continuous semi-flow on the quotient of its domain, which we still
denote by ψt : Π→ Π. Given ε > 0, we consider the associated δ ∈ (0, ε2) provided
by Theorem 1.1(iv). By the definition of the min-max value ` := `(h), we can find
a relative cycle σ representing h and such that maxL|supp(σ) < ` + δ. For each
t > 0, the relative cycle (ψt)∗σ still represents h. By Theorem 1.1(iv), if we choose
t > 0 large enough, we have supp((ψt)∗σ) ⊂ Π<`−δ ∪W(`, ε). This proves (3.2).

Now, assuming by contradiction that ` is not the length of a simple closed ge-
odesic of (M,F ), by choosing K = PTM in Lemma 2.15 we would have that
W(`, ε) = ∅ for all ε > 0 small enough. However, by the result of the previous
paragraph, this would allow us to find a relative cycle σ representing h and such
that supp(σ) ⊂ Π<`−δ, contradicting the definition of ` = `(h).

We are left to prove the moreover part of the statement. For that, notice that
we can assume that ε > 0 is arbitrarily small (if the theorem holds for some ε, it
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also holds for larger values of ε). In particular, we assume that ε is small enough
so that, by our assumptions, there are only finitely many simple closed geodesics
γ1, ..., γk with length in the interval [`− ε2, `+ ε2], and they all have length `. We
denote by Vε,i the connected component of Wε :=W(`, ε) containing γi. If needed,
we further lower ε > 0, so that Vε,i ∩ Vε,j = ∅ if i 6= j. We set

Vε := Vε,1 ∪ ... ∪ Vε,k.

We can also lower δ > 0 so that a ≤ `− δ. The inclusions induce the commutative
diagram

H∗(Π
<`−δ ∪Wε,Π

<a)
i∗ //

��

H∗(Π,Π
<a)

j∗

��
H∗(Π

<`−δ ∪Wε,Π
<`−δ) // H∗(Π,Π<`)

H∗(Wε,W<`−δ
ε )

∼=

OO

k∗

55

The homology class h is contained in the image of i∗ according to (3.2), and the
lower vertical arrow is an isomorphism by excision. Moreover, by the very definition
of the min-max value ` = `(h), we have that j∗(h) 6= 0. Overall, this shows that
the homomorphism k∗ is non-zero.

We set W ′ε :=Wε \ (Vε,1 ∪ ... ∪ Vε,k), and claim that

ε′ := inf
{
‖Vγ‖L∞

∣∣ γ ∈ W ′ε} > 0,

where Vγ is the function defined in (1.2). Otherwise, we could find a sequence
γn ∈ W ′ε with ‖Vγn‖L∞ < 1/n. As in the proof of Lemma 2.15, one can easily show
that, up to extracting a subsequence, γn converges to a simple closed geodesic γ
with length L(γ) ∈ [`− ε2, `+ ε2]. But this would imply that Vγ ≡ 0 and L(γ) = `,
and thus that γ ∈ Vε,1 ∪ ... ∪ Vε,k, which is impossible since γn ∈ W ′ε for all n ∈ N.

Notice thatWε′ ⊂ Vε, and once again the inclusion induces a non-zero homomor-
phism H∗(Wε′ ,W<`−δ

ε′ )→ H∗(Π,Π
<`), and therefore a non-zero homomorphism

k⊕
i=1

Hd(Vε,i,V<`−δε,i )→ Hd(Π,Π
<`).

We denote by Iε ⊆ {1, ..., k} the subset of those i such that the homomorphism

Hd(Vε,i,V<`−δε,i ) → Hd(Π,Π
<`) is non-zero. Notice that Iε1 ⊆ Iε2 if 0 < ε1 < ε2.

Therefore, there exists

i ∈
⋂

ε∈(0,ε0]

Iε,

and the simple closed geodesic γi satisfies the desired properties. �

Assume now to have a homology class w ∈ Hd+i(Π,Π
<ρ) and a cohomology class

w ∈ Hi(Π) whose cap product w _ h ∈ Hd(Π,Π
<ρ) is non-zero. Given any relative

cycle σ representing h we can produce a relative cycle σ′ representing w _ h and
such that supp(σ′) ⊂ supp(σ). This readily implies that

`(w _ h) ≤ `(h).
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We can now state a version of the classical Lusternik-Schnirelmann theorem for the
length functional.

Theorem 3.2. If w _ h 6= 0 and `(w _ h) = `(h), then for every ε > 0 we have
w|W(`(h),ε) 6= 0 in H∗(W(`(h), ε)) .

Proof. Let ε > 0 be given, and set ` := `(h) and W := W(`, ε). By Lemma 3.1,
h can be represented by a relative cycle σ such that supp(σ) ⊂ W ∪ Π<`. By
applying sufficiently many barycentric subdivisions to the singular simplexes in σ,
we can assume that the relative cycle decomposes as σ = σ′ + σ′′, where σ′ and
σ′′ are chains with supp(σ′) ⊂ Π<` and supp(σ′′) ⊂ W. Let w ∈ H∗(Π) be a
cohomology class such that w|W = 0 in H∗(W) and w _ h 6= 0. The cohomology
long exact sequence of the pair W ⊂ Π provides a relative cocycle µ representing
w that vanishes on all singular simplexes contained in W. This implies

w _ h = [µ _ (σ′ + σ′′)] = [µ _ σ′].

Namely, w _ h is represented by the relative cycle µ _ σ′ whose support is
contained in the sublevel set Π<`, which implies that `(w _ h) < `. �

3.2. Topology of the space of embedded circles on the 2-sphere. Once the results
of the previous subsection are established, the proofs of points (i) and (ii) in Theo-
rem 1.2 are analogous to ones of the Riemannian case in [MS18]. In this subsection,
we provide the arguments for the reader’s convenience. We will adopt the notation
of the previous section, with M equal to the unit sphere S2 ⊂ R3. It will be crucial
to consider the singular homology H∗ with coefficients in Z2 = Z/2Z, and therefore
we will include it in the notation.

We first recall, from [Bal78, MS18], some basic information concerning the topol-
ogy of the space of its unparametrized embedded loops Π. It is convenient to slightly
enlarge this space as follows: we denote by Π0 the space of constant loops on S2,
and set Π := Π ∪ Π0. We endow Π with the quotient C∞-topology as a subspace
of C∞(S1,M)/Diff(S1). The relevant topology of Π, at least for what concerns
the application to Theorem 1.2, is provided by the subspace of round circles. More
precisely, let

E =
{

([x], λx) ∈ RP2 ×R3 | x ∈ S2, λ ∈ [−1, 1]
}
.

Namely, E is the total space of the canonical line bundle π : E → RP2 with fiber
[−1, 1]. We consider the embedding

ι : E → Π, ι(e) = γe,

where, if e = ([x], y), γe ∈ Π is the (possibly constant) loop in the intersection of S2

with the affine plane orthogonal to x and passing through y. The fundamental group
of this space is π1(E) ∼= π1(RP2) ∼= Z2. Its cohomology ring with Z2 coefficient
is given by H∗(E;Z2) = Z2[u]/(u3), where u is the generator of H2(E;Z2) ∼=
H2(RP2;Z2) ∼= Z2. Moreover, by the Thom isomorphism theorem,

H∗(E, ∂E;Z2) ∼= H∗−1(E;Z2) = 〈v, v ^ u, v ^ u2〉,
where v ∈ H1(E, ∂E) denotes the Thom class of the bundle π : E → RP2. Since we
work with Z2 coefficients, the homology becomes simply the dual of the cohomology,
and in particular there exists k3 ∈ H3(E, ∂E;Z2) such that (v ^ u2)k3 = 1.
Therefore, we also have the classes k2 := u _ k3 and ki = u _ k2, and overall we
have H∗(E, ∂E;Z2) = 〈k1, k2, k3〉.
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It is not hard to show that the map ι induces an injective homomorphism of
fundamental groups ι∗ : π1(E) ↪→ π1(Π), see [MS18, Section 2.2]. Since π1(E) ∼=
H1(E;Z2) ∼= Z2 and since H1(Π;Z2) is the tensor product of Z2 with the abelian-
ization of π1(Π), then ι also induces an injective homomorphism of homology groups
ι∗ : H1(E;Z2) ↪→ H1(Π;Z2). Dually, ι induces a surjective cohomology homomor-
phism ι∗ : H1(Π;Z2) � H1(E;Z2). We fix, once for all, a cohomology class
w ∈ H1(Π;Z2) such that ι∗w = u. Since ∂E = Π0

∼= S2 is simply connected,
the long exact sequence of homology groups readily implies that H1(E, ∂E;Z2) ∼=
H1(E;Z2) and H1(Π,Π0;Z2) ∼= H1(Π;Z2), and therefore ι induces an injective
homomorphism of relative homology groups ι∗ : H1(E, ∂E;Z2) ↪→ H1(Π,Π0;Z2).
This readily implies that ι∗k2 and ι∗k3 are both non-zero in H∗(Π,Π0;Z2), since

w2 _ ι∗k3 = w _ ι∗(u _ k3) = w _ ι∗k2 = ι∗(u _ k2) = ι∗k1 6= 0.

Now, let us get rid of the space of constant curves Π0. We recall that the systole
sys(S2, F ) is the length of the shortest closed geodesic of (S2, F ).

Lemma 3.3. For all ρ ∈ (0, sys(S2, F )), the inclusion Π0 ⊂ Π<ρ is a homotopy
equivalence. Therefore, the inclusions induce the homology isomorphisms

H∗(Π,Π0;Z2)
j∗−→∼= H∗(Π,Π

<ρ;Z2)
l∗←−∼= H∗(Π,Π

<ρ;Z2).

Proof. We fix ρ2 ∈ (0, sys(S2, F )), and we consider a small enough ρ1 ∈ (0, ρ2)
that we will fix later on. Since there are no simple closed geodesics of (S2, F ) with
length in [ρ1, ρ2], Theorem 1.1(v) (with choice of parameter ρ0 ∈ (0, ρ1/2)) implies
that ψt(Π

<ρ2) ⊂ Π<ρ1 .
We recall that we consider S2 as the unit sphere in R3. If ‖ · ‖ denotes the

Euclidean norm on R3, we fix a sufficiently large constant a ≥ 1 so that

a−1‖v‖ ≤ F (x, v) ≤ a‖v‖, ∀(x, v) ∈ TS2.

For each γ ∈ Π, we denote by γ̂ ∈ R3 its average, i.e. if we parametrize γ with
constant speed F (γ, γ̇) ≡ L(γ), we have

γ̂ :=

∫
S1

γ(u) du.

Notice that

max
u∈S1

‖γ(u)− γ̂‖ ≤ aL(γ)/2.

We require ρ1 < a−1, so that γ̂ ∈ A := B2(3/2) \ B2(1/2) for all γ ∈ Π<ρ1 ,
where B2(R) ⊂ R3 denotes the open ball of radius R centered at the origin. We
consider the radial projection π : A→ S2, π(x) = x/‖x‖, and define the continuous
homotopy

rt : Π<ρ1 → Π, rt(γ)(u) = π((1− t)γ(u) + tγ̂).

Notice that the time-1 map is a retraction r1 : Π<ρ1 → Π0. Moreover

L(rt(γ)) ≤ a‖dπ‖L∞
∫
S1

‖γ̇(u)‖ du ≤ a2‖dπ‖L∞L(γ).

We require ρ1 < ρ2a
−2‖dπ‖−1

L∞ , so that every rt is a map of the form

rt : Π<ρ1 → Π<ρ2 .
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Therefore the inclusion Π0 ⊂ Π<ρ is a homotopy equivalence. The homology long
exact sequence of the triple Π0 ⊂ Π<ρ ⊂ Π readily implies that j∗ is an isomor-
phism. Finally, the excision property implies that l∗ is an isomorphism as well. �

We consider the isomorphisms j∗ and l∗ provided by Lemma 3.3, and define

hi := l−1
∗ j∗ι∗ki ∈ H∗(Π,Π<ρ;Z2), i = 1, 2, 3. (3.3)

Notice that

w|Π _ hi+1 = hi.

We denote by E0 ⊂ E the zero-section of the line bundle π : E → RP2. Notice
that ι restricts as a map of the form ι0 := ι|E0 : E0 → Π.

Lemma 3.4. For each z ∈ H2(Π;Z2) such that ι∗0z 6= 0 in H2(E0;Z), we have

z _ h3 = h1.

Proof. For each r ∈ [0, 1], we consider the subset

Er =
{

([x], λx) ∈ E | λ ∈ [−r, r]
}
. ⊂ E,

Notice that this notation agrees with the definition of E0 as the zero-section of
the line bundle π : E → RP2. We fix r ∈ (0, 1) sufficiently close to 1 so that
ι(∂Er) ⊂ Π<ρ. By deformation and excision, we have that the inclusions induce
isomorphisms

H∗(E, ∂E;Z2)
∼=−→H∗(E,E \ E0;Z2)

∼=←−H∗(Er, Er \ E0;Z2)
∼=←−H∗(Er, ∂Er;Z2).

We denote by k′i ∈ H∗(Er, ∂Er;Z2) the image of ki ∈ H∗(E, ∂E;Z2) under the
composition of the above isomorphisms. Notice that k′1 = u|Er _ k′3. The restric-
tion ιr = ι|Er : Er → Π induces a homomorphism

(ιr)∗ : H∗(Er, ∂Er;Z2)→ H∗(Π,Π
<ρ;Z2),

which allows to express the homology classes (3.3) as hi = (ιr)∗k
′
i. Since the

inclusion E0 ⊂ Er is a homotopy equivalence, a cohomology class z ∈ H2(Π;Z2)
satisfies ι∗0z 6= 0 if and only if ι∗rz 6= 0, and thus if and only if ι∗rz _ k′3 = k′1.
Therefore, if this is the case, we have

z _ h3 = z _ (ιr)∗k
′
3 = (ιr)∗(ι

∗
rz _ k′3) = (ιr)∗k

′
1 = h1. �

We set

`i := `(hi), i = 1, 2, 3. (3.4)

Since every `i is the length of a simple closed geodesic of (S2, F ), if the simple length
spectrum σs(S

2, F ) is a singleton we have `1 = `2 = `3. In this case Theorem 1.2(i)
is a consequence of the following statement.

Theorem 3.5. If `1 = `2 = `3, then (S2, F ) is simple Zoll.

Proof. We consider a circle bundle pr : P → Π, whose total space is given by
P = {(γ, x) ∈ Π × S2 | x ∈ γ} and whose projection is pr(γ, x) = γ. We consider
the projectivized tangent bundle

PTS2 =
{
Vx
∣∣ x ∈ S2, Vx 1-dimensional vector subspace of TxS

2
}
,
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and define the continuous evaluation map ev : P → PTS2, ev(γ, x) = Txγ. Since
PTS2 is a closed 3-manifold, we have H3(PTS2;Z2) ∼= Z2, and we denote by m a
generator of H3(PTS2;Z2). We consider the pull-back bundle

P0 = ι∗0P =
{

(e, p) ∈ E0 × P | ι0(e) = pr(p)
}
,

and the commutative diagram

P0
� � ι̃0 //

pr

��

P
ev //

pr

��

PTS2

E0
� � ι0 // Π

Here, ι̃0(e, p) = p is the projection onto the second factor. Notice that ev ◦ ι̃0 is
a homeomorphism. Moreover, since H3(E0;Z2) and H4(E0;Z2) are trivial, the
Gysin sequence of the pull-back bundle pr : P0 → E0 readily implies that

pr∗ : H3(P0;Z2)→ H2(E0;Z2)

is an isomorphism. This implies that pr∗ι̃
∗
0ev∗m 6= 0 in H2(E0;Z2). We set

z := pr∗ev∗m ∈ H2(Π;Z2).

Since ι∗0z = pr∗ι̃
∗
0ev∗m 6= 0, Lemma 3.4 implies that h1 = z _ h3.

Now, assume by contradiction that `1 = `2 = `3 =: `, but there exists (x, v) ∈
SS2 such that the geodesic γx,v(t) := expx(tv) is not a simple closed geodesic of
minimal period ` (namely, γx,v is not a closed geodesic, or it is closed but not simple
closed, or it is simple closed but its length is not `). By Lemma 2.15 there exists
ε > 0 small enough so that v is not tangent to any curve γ ∈ W :=W(`, ε) passing
through x. Namely, if we set P ′ := pr−1(W), the restriction ev|P ′ : P ′ → PTS2

is not surjective. Since `1 = `3 and h1 = z _ h3, Theorem 3.2 implies that
z|W 6= 0 in H2(W;Z2). However, since z|W = (pr|P ′)∗ev|∗P ′m, this implies that the
homomorphism

ev|∗P ′ : H3(PTS2;Z2)→ H3(P ′;Z2)

is non-zero, which is impossible since ev|P ′ is not surjective. �

If the simple length spectrum σs(S
2, F ) contains exactly two elements, we must

have `1 = `2 or `2 = `3. In this case Theorem 1.2(i) is a consequence of the following
statement.

Theorem 3.6. If `i = `i+1 for some i ∈ {1, 2}, then every point of S2 lies on a
simple closed geodesic of (S2, F ) of length `i.

Proof. Assume by contradiction that ` := `i = `i+1, but that some point x ∈ S2

does not lie on a simple closed geodesic of length `. We consider the subset U =
{γ ∈ Π | x 6∈ γ}. It is easy to see that U is contractible: if we denote by B2 ⊂ R2

the unit open ball, and we consider a homeomorphism θ : S2 \ {x} → B2, the
homotopy rt : U → U , t ∈ [0, 1], given by

rt(γ) = θ−1((1− t)θ(γ))

defines a contraction of U onto a point curve in Π0 ∩ U . In particular H1(U ;Z2) is
trivial.

By applying Lemma 2.15 with K = P(TxS
2), we infer that there exists W =

W(`, ε), for ε > 0 small enough, such that none of the curves γ ∈ W passes through
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x. Since hi = w|Π _ hi+1 and `i = `i+1, Theorem 3.2 implies that w|W 6= 0
in H1(W;Z2). However, since W ⊂ U , we have w|U 6= 0 in H1(U ;Z2) as well,
contradicting the conclusion of the previous paragraph. �

4. Critical point theory of the energy functional

In this section we shall recall the background on the variational theory of Finsler
closed geodesics. The reader can find more details and proofs in [Rad92, BL10,
CJM11, AM18] and references therein. Throughout the section, we shall consider a
Finsler manifold (M,F ) of arbitrary dimension, except in certain statements where
we will assume M to be a surface. The Finsler metric F is not required to be
reversible, unless specifically stated.

4.1. The energy functional. We denote by Λ = W 1,2(S1,M) the free loop space of
M of regularity W 1,2, and consider the energy functional

E : Λ→ [0,∞), E(γ) =

∫
S1

F (γ(u), γ̇(u))2 du.

Unlike in the Riemannian case, in the Finsler setting E is C1,1, but possibly not
C2. Its critical points with positive critical value are precisely those γ ∈ Λ that are
closed geodesics of (M,F ) parametrized with constant speed F (γ, γ̇) ≡ E(γ)1/2.
For each γ ∈ Λ, we denote by

γm ∈ Λ, γm(t) = γ(mt)

its m-th iterate, whose energy is E(γm) = m2E(γ). Clearly, iterates of critical
points of E are again critical points. Identifying different iterates of the same
closed geodesic detected with global variational methods is the crux of the matter
in the closed geodesics problem.

The C1 regularity of E is actually enough to define a smooth pseudo-gradient flow
of E on Λ. It is well known that E satisfies the Palais-Smale condition with respect
to a suitable complete Riemannian metric on Λ, and therefore we can perform the
usual deformations of critical point theory. Since E is even C1,1, it has a well define
Gateaux Hessian d2E(γ) at every critical point. However, the C2 regularity would
be needed in order to apply the classical Morse-Gromoll-Meyer lemma [GM69a]. A
simple way to circumvent the potential lack of C2 regularity and, at the same time,
work in a finite dimensional setting consists in employing Morse’s finite dimensional
approximations of Λ. We consider the (non-symmetric) Finsler distance

d : M ×M → [0,∞), d(x, y) = min
γ

∫ 1

0

F (γ(u), γ̇(u)) du, (4.1)

where the minimum ranges over all absolutely continuous curves γ : [0, 1] → M
joining x and y. For each integer k ≥ 2, we consider the space

Λk =

{
x = (x0, ..., xk−1) ∈M×k

∣∣∣∣∣ ∑
i∈Zk

d(xi, xi+1)2 < injrad(M,F )2 ∀i ∈ Zk

}
.

We identify Λk with a subspace of Λ as follows: every x ∈ Λk corresponds to the
curve γx ∈ Λ such that each restriction γx|[i/k,(i+1)/k], for i ∈ Zk, is the shortest
geodesic parametrized with constant speed joining xi and xi+1. In the following,
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we will indistinctively write x or γx for the same object. The restriction of the
energy to Λk has the form

Ek = E|Λk : Λk →
[
0, k injrad(M,F )2

)
, Ek(x) = k

∑
i∈Zk

d(xi, xi+1)2.

Since the distance d is smooth away from the diagonal, Ek is smooth on the subspace
of those x with xi 6= xi+1 for all i ∈ Zk. The critical points of Ek are precisely those
x such that γx is a closed geodesic of (M,F ) parametrized with constant speed and
having energy Ek(x) = E(γx) < k2injrad(M,F )2. In particular Ek is smooth on a
sufficiently small neighborhood of its critical points with positive energy. Finally,
for each compact interval [a, b] ⊂ (−∞, k injrad(M,F )2

)
, the preimage E−1

k [a, b]
is compact, which allows us to apply the gradient flow deformations from critical
point theory.

4.2. The Morse index and nullity. Let h : V ×V → R be a symmetric bilinear form
on a vector space V . Its index ind(h) is defined as the supremum of the dimension
of the subspaces W ⊂ V such that h|W is negative definite. Its nullity nul(h) is
defined as the dimension of ker(h) = {v ∈ V | h(v, ·) = 0}. Notice that the sum
ind(h) + nul(h) is the supremum of the dimension of the subspaces Z ⊂ V such
that h|Z is negative semi-definite.

Let us consider a closed geodesic γ ∈ crit(E) ∩ E−1(0,∞), and the associated
Gateaux Hessian h := d2E(γ). The Morse index and nullity of γ are defined by

ind(γ) := ind(h), nul(γ) := nul(h)− 1.

It is well known that the indices are always finite. The reason for the −1 appearing
in the definition of the nullity is that nul(h) is always larger than or equal to 1, as
the vector field γ̇ belongs to ker(h). If x0 := γ(0), we denote by

Ω := {ζ ∈ Λ | ζ(0) = x0}
the space of loops based at x0. The critical points of E|Ω are the geodesic loops, that
is, those ζ ∈ Λ whose restriction ζ|(0,1) is a geodesic parametrized with constant
speed. The Morse index and nullity of γ in the based loop space are defined as

indΩ(γ) := ind(h|TγΩ), nulΩ(γ) := nul(h|TγΩ).

The behavior of the Morse indices under iteration of the closed geodesic has been
thoroughly studied since the seminal work of Bott [Bot56]. Without invoking Bott’s
theory, one has the following properties, which are rather immediate or can be
proved as an exercise.

Lemma 4.1. Let (M,F ) be a Finsler manifold with a closed geodesic γ ∈ crit(E).
The Morse indices of γ satisfy the following properties.

(i) ind(γ) ≥ indΩ(γ).
(ii) ind(γ) + nul(γ) ≥ indΩ(γ) + nulΩ(γ).
(iii) If ind(γ) > 0, then ind(γm)→∞ as m→∞.
(iv) ind(γm) ≥ ind(γ) and nul(γm) ≥ nul(γ) for all m ∈ N.
(v) indΩ(γm) ≥ m indΩ(γ) and indΩ(γm) + nulΩ(γm) ≥ m (indΩ(γ) + nulΩ(γ))

for all m ∈ N. �

The following proposition summarizes those subtler results concerning the Morse
indices of closed geodesics that we will need in the proof of Theorem 1.3. In the
literature, most of these results are proved in the Riemannian setting: points (i–iv)
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can be found in [BTZ82], point (vi) in [Kli95], and point (vii) in [Ban93]. In the
Finsler setting, the differences in the proofs are essentially cosmetic, but we include
them for the reader’s convenience.

Proposition 4.2. Let (M,F ) be an orientable Finsler manifold, and γ ∈ crit(E) ∩
E−1(0,∞) a closed geodesic. The indices of γ satisfy the following properties.

(i) nul(γ) ≤ 2 dim(M)− 2.
(ii) nulΩ(γ) ≤ dim(M)− 1.
(iii) ind(γ) ≤ indΩ(γ) + dim(M)− 1.

(iv) ind(γ) + nul(γ) ≤ indΩ(γ) + nulΩ(γ) + dim(M)− 1.

Moreover, if M is an orientable surface, they further satisfy the following properties.

(v) If nulΩ(γ) = 1 then indΩ(γm) = m indΩ(γ)+m−1 and nulΩ(γm) = nulΩ(γ)
for all m ∈ N,

(vi) If nul(γ) = 2 then nul(γm) = 2 and ind(γm) is odd for all m ∈ N.
(vii) If indΩ(γm) > 0 for some m ≥ 1, then ind(γ) > 0 and indeed there ex-

ists a nowhere vanishing smooth vector field ζ along γ that is 1-periodic,
everywhere transverse to γ̇, and such that d2E(γ)(ζ, ζ) < 0.

Proof. We can assume without loss of generality that E(γ) = 1, so that F (γ, γ̇) ≡ 1.
We set

G : TM → [0,∞), G(x, v) = 1
2F (x, v)2,

which is a C1,1 function, smooth outside the zero-section, and fiberwise positively
homogeneous of degree 2. The function G defines a 1-form λ on TM by

λ(x,v)(w) = Gv(x, v) ◦ dπ(x, v)w, ∀w ∈ T(x,v)(TM),

which is the dual of the classical Liouville one form on T∗M . The 2-form −dλ is
a symplectic form on the complement of the zero-section in TM . We treat G as
a Hamiltonian, and consider its associated Hamiltonian vector field X defined by
−dλ(X, ·) = dG. We denote by φt : TM → TM the associated Hamiltonian flow of
X. Its flow lines are the speed vectors of the geodesics of (M,F ) parametrized with
constant speed. In particular, the curve γ̃(t) := (γ(t), γ̇(t)) is the periodic orbit of
φt corresponding to the closed geodesic γ. Since G is autonomous, the Hamiltonian
flow φt preserves each level set G−1(`2). The energy level of γ̃ is

G(γ̃(t)) = 1
2F (γ̃(t))2 = 1/2,

and we denote by SM := G−1(1/2) = F−1(1) the corresponding energy hyper-
surface, which is the unit tangent bundle of (M,F ). The 1-form λ restricts to
a contact form α := λ|SM , and X restricts to the Reeb vector field of (SM,α).
Namely α(X) = 1 and dα(X, ·) = 0. In particular φ∗tα = α. Notice that

dπ(γ̃(t))ξγ̃(t) = ker(Gv(γ̃(t))).

Let L be the vector field on TM defined by

L(x, v) = d
dt

∣∣
t=1

(x, tv).

This is a Liouville vector field, meaning that dλ(L, ·) = λ, and is transverse to SM .
The vector bundle TTM splits as a direct sum

TTM = span{X,L} ⊕ ξ, (4.2)
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and this decomposition is symplectically orthogonal, i.e.

dλ(V,W ) = 0, ∀V ∈ span{X,L}, W ∈ ξ.

We denote by Φt := dφt(γ̃(0)) : Tγ̃(0)TM → Tγ̃(t)TM the linearized Hamilton-
ian flow along γ̃. Its flow lines have the form

ζ̃(t) = Φt(ζ̃(0)) = (ζ(t), ζ̇(t)).

where ζ is a Jacobi vector field along γ, that is, a solution of the Jacobi equation

∂t(Gvv ζ̇ +Gxv ζ)−Gxx ζ −Gvx ζ̇ = 0,

which is the linearization of the Hamiltonian equation ˙̃γ = X ◦ γ̃ at γ. Here and in
the following, the second derivatives Gxx, Gxv, Gvx, Gvv are meant to be evaluated
at γ̃(t). The linearized flow Φt preserves the splitting (4.2). Indeed, φ∗tα = α
implies that Φt(ξ) = ξ. Moreover, Φt(X) = X and Φt(L) = tX + L, that is,
Φt|span{X,L} can be written in the frame X,L as the symplectic matrix

Φt|span{X,L} =

(
1 t
0 1

)
∈ Sp(2). (4.3)

Let W 1,2(S1, γ∗TM) be the Hilbert space of 1-periodic W 1,2-vector fields along
γ. The Hessian h := d2E(γ) is the symmetric bilinear form on W 1,2(S1, γ∗TM)
given by

h(ζ, η) = 2

∫
S1

(
〈Gxx ζ, η〉+ 〈Gvx ζ̇, η〉+ 〈Gxv ζ, η̇〉+ 〈Gvv ζ̇, η̇〉

)
dt. (4.4)

In this expression, we adopt a common abuse of notation: we write the integrand in
local coordinates (this can be made precise by splitting the domain of integration
S1 as a finite union of intervals over which the local coordinates are available).
A bootstrap argument, together with an integration by parts, implies that the
kernel of h is precisely given by the 1-periodic Jacobi vector fields. In particular
nul(h) = dim ker(Φ1− I), and therefore nul(γ) = nul(h)−1 = dim ker(Φ1|ξγ̃(0)

− I),

which implies point (i).
We consider the subspace

Z =
{
ζ ∈W 1,2(S1, γ∗TM)

∣∣ Gv(γ, γ̇)ζ ≡ 0
}
.

We claim that

ind(h|Z) = ind(h), nul(h|Z) = nul(h)− 1.

Indeed, a straightforward computation shows that the h-orthogonal

Zh :=
{
ζ ∈W 1,2(S1, γ∗TM)

∣∣ h(ζ, ·)|Z = 0
}

is precisely the space of those ζ ∈ W 1,2(S1, γ∗TM) of the form ζ(t) = f(t)γ̇(t)
for some f : S1 → R, and we have W 1,2(S1, γ∗TM) = Z ⊕ Zh, ind(h|Zh) = 0,
ker(h|Zh) = spanR{γ̇}, and nul(h|Zh) = 1. From now on, we will simply write h
for the restriction h|Z , so that in particular

nul(γ) = nul(h) = dim ker(Φ1|ξγ̃(0)
− I).

Analogously, if we set

Z0 =
{
ζ ∈ Z

∣∣ ζ(0) = ζ(1) = 0
}
,
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we have

indΩ(γ) = ind(h|Z0
), nulΩ(γ) = nul(h|Z0

).

The kernel of h|Z0
is the space of Jacobi fields ζ such that ζ(0) = ζ(1) = 0 and

Gv(γ, γ̇)ζ ≡ 0, and thus

nul(h|Z0) = dim kerGv(γ(t), γ̇(t)) = dim(M)− 1,

which proves point (ii).
Let us reduce the setting to finite dimension. Let k ≥ 2 be a large enough integer

such that no restriction γ|[a,b] with b− a < k−1 contains conjugate points; namely,
there are no Jacobi vector fields along γ vanishing on more than one point of [a, b].
We consider the finite dimensional vector space V ⊂ Z of those vector fields ζ ∈ Z
such that, for all i = 0, ..., k − 1, each restriction ζ|[i/k,(i+1)/k] is a Jacobi vector
field. The Morse indices of h and h|V are the same

ind(h|V ) = ind(h), nul(h|V ) = nul(h).

Indeed, an integration by parts in (4.4) shows that the h-orthogonal to V is the
subspace

V h =
{
ζ ∈ Z

∣∣ h(ζ, ·)|V = 0
}

=
{
ζ ∈ Z

∣∣ ζ( ik ) = 0 ∀i = 0, ..., k − 1
}
,

and we have Z = V ⊕ V h and ind(h|V h) + nul(h|V h) = 0. Analogously, if we set
V0 := V ∩ Z0, we have

ind(h|V0
) = ind(h|Z0

) (4.5)

nul(h|V0
) = nul(h|Z0

)

From now on, we will simply write h for the restriction h|V .
The h-orthogonal V h0 =

{
ζ ∈ V

∣∣ h(ζ, ·)|V0
= 0
}

is precisely the space of vector
fields ζ ∈ Z such that ζ|(0,1) is a Jacobi vector field. We denote by Ver := ker dπ ⊂
TTM the vertical sub-bundle of TTM . Each intersection

(ξ ∩Ver)γ̃(t) = (SM ∩Ver)γ̃(t)

has dimension dim(M)− 1. For each ζ ∈ V h0 , we set

ζ̃(t) := (ζ(t), ζ̇(t)) = Φt(ζ̃(0+)), ∀t ∈ (0, 1).

Notice that there is an isomorphism

V h0 → (Φ1 − I)|−1
ξγ̃(0)

(ξ ∩Ver)γ̃(0), ζ 7→ ζ̃(0+).

In particular

dim(V h0 ) ≤ dim ker(Φ1 − I)|ξγ̃(0)
+ dim(ξ ∩Ver)γ̃(0)

= nul(h) + dim(M)− 1.
(4.6)

Moreover, the evaluation map V h0 → ker(Gv(γ̃(0))), ζ 7→ ζ(0) is surjective, and its
kernel is precisely ker(h|V0). Therefore

dim(V h0 ) = dim ker(h|V0
) + dim ker(Gv(γ(0), γ̇(0)))

= nul(h|V0
) + dim(M)− 1.

(4.7)

The general formula relating the Morse indices of a quadratic form to the ones of
its restriction to a subspace (see, e.g., [Maz16, Section A.2]) gives

ind(h) = ind(h|V0
) + ind(h|V h0 ) + nul(h|V h0 )− nul(h). (4.8)
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In particular, by (4.6), we have

ind(h) ≤ ind(h|V0) + dim(V h0 )− nul(h) ≤ ind(h|V0) + dim(M)− 1,

which proves point (iii). By (4.7) and (4.8), we have

ind(h) + nul(h) ≤ ind(h|V0
) + dim(V h0 ) ≤ ind(h|V0

) + nul(h|V0
) + dim(M)− 1,

which proves point (iv).
From now on, let us now assume that M is an orientable surface. The classical

index theorem of Morse [Mor96] allows us to express ind(h|Z0
) and nul(h|Z0

) as

ind(h|V0
) =

∑
t∈(0,1)

dim
(
Φt(Verγ̃(0)) ∩Verγ̃(t)

)
,

nul(h|V0
) = dim

(
Φ1(Verγ̃(0)) ∩Verγ̃(1)

)
.

Notice that the Liouville vector field L takes values in the vertical sub-bundle Ver,
and Equation (4.3) implies that

Φt(Verγ̃(0)) ∩Verγ̃(t) = Φt((ξ ∩Ver)γ̃(0)) ∩ (ξ ∩Ver)γ̃(t), ∀t 6= 0.

Since the fibers of the bundle ξ ∩Ver have dimension 1, we can express these index
formulas by means of a single vector field η, as follows. Let us fix an arbitrary
non-zero vector η̃0 ∈ (ξ ∩Ver)γ̃(0), and define

η̃(t) = (η(t), η̇(t)) := Φt(η̃0),

so that η is a Jacobi field along γ such that η(0) = 0 and Gv(γ, γ̇)η ≡ 0. Since M is
an orientable surface, the normal bundle of γ is trivial, and we can find a nowhere-
vanishing 1-periodic smooth vector field µ along γ such that Gv(γ, γ̇)µ ≡ 0, so that
we can express η as

η(t) = f(t)µ(t)

for some smooth function f : R → R. Notice that, since η is a Jacobi vector field
that does not vanish identically, it has isolated zeroes, and in particular ḟ(t) 6= 0
whenever f(t) = 0. The index theory of Morse reduces to

ind(h|Z0
) = #{t ∈ (0, 1) | f(t) = 0}, nul(h|Z0

) =

{
1 if f(1) = 0,
0 if f(1) 6= 0.

If nul(h|Z0
) = 1, then η(1) = 0, and therefore

η̃(t+ 1) = ḟ(1)

ḟ(0)
η̃(t), ∀t ∈ R

This readily implies that nulΩ(γm) = 1 and

indΩ(γm) = #{t ∈ (0,m) | f(t) = 0} = m indΩ(γ) +m− 1.

This proves point (v).
With an integration by parts in (4.4), we readily see that the quadratic form h

on the space V h0 can be expressed in local coordinates as

h(ζ, ζ) = 〈Gvv ζ̇(1−) +Gxvζ(1)−Gvv ζ̇(0+)−Gxvζ(0), ζ(0)〉

= dλ((Φ1 − I)ζ̃(0+), ζ̃(0+)).
(4.9)

Let us assume that nul(γ) = 2, so that Φ1|ξγ̃(0)
= I, (Φ1 − I)ζ̃(0+) = 0 for all

ζ ∈ V h0 , and nul(h|V0
) = 1. Equation (4.9) implies that h|V h0 = 0. Since dim(V h0 ) =

1 + nul(h|V0
) = 2, this implies that ind(h|V h0 ) = 0 and nul(h|V h0 ) = 2. Therefore,
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Equation (4.8) becomes ind(h) = ind(h|V0
). Since Φ1|ξγ̃(0)

= I, in particular the

above Jacobi field η is (smoothly) 1-periodic, and so is the function f . Therefore,
since f has non-zero derivative at his zeroes, it must vanish an odd number of times
in the open interval (0, 1). Equation (4.5) allows to conclude that ind(γ) = ind(h) =
ind(h|V0) is odd. We can now repeat the same argument for all the iterates γm,
since

nul(γm) = dim ker(Φ1|mξγ̃(0)
− I) = 2,

and conclude that ind(γ)m is odd as well for all m ∈ N. This proves point (vi).
Finally, let us assume that indΩ(γm) > 0 for some m ≥ 1, which is equivalent

to the fact that the Jacobi field η introduced above vanishes at some positive time.
Let τ > 0 be the minimum t > 0 such that η(t) = 0. Up to replacing µ with −µ, we

can assume that f |(0,τ) > 0, so that ḟ(0) > 0 and ḟ(τ) < 0. If τ ≤ 1, we consider
the 1-periodic vector field along γ

θ(t) =

{
η(t), if t ∈ [0, τ ],
0, if t ∈ [τ, 1],

which satisfies h(θ, θ) = 0 and

h(θ, µ) = 〈Gvv η̇(τ)−Gvv η̇(0), µ(0)〉

= ḟ(τ) 〈Gvv µ(τ), µ(τ)〉 − ḟ(0) 〈Gvv µ(0), µ(0)〉
< 0.

For each ε > 0 the piecewise smooth vector field θ+εµ is 1-periodic and everywhere
transverse to γ̇. Moreover,

h(θ + εµ, θ + εµ) = 2εh(µ, θ) + ε2h(µµ)

which is negative if ε > 0 is sufficiently small. Assume now that τ > 1. In this
case, there exists t > 0 such that f(t) = f(t + 1) > 0, ḟ(t) > 0 and ḟ(t + 1) < 0.
We define θ to be the 1-periodic vector field along γ such that θ|[t,t+1] = η|[t,t+1].
Notice that θ is everywhere transverse to γ̇, and satisfies

h(θ, θ) = 〈Gvv η̇(t+ 1), η(t+ 1)〉 − 〈Gvv η̇(t), η(t)〉
= 〈Gvv (η̇(t+ 1)− η̇(t)), η(t)〉

= (ḟ(t+ 1)− ḟ(t)) f(t) 〈Gvv µ(t), µ(t)〉
< 0.

In both cases, we can approximate θ with a C0-close 1-periodic smooth vector field
ζ. Such a ζ will still be everywhere transverse to γ̇ and will still satisfy h(ζ, ζ) < 0.
This completes the proof of point (vii). �

4.3. Local homology. The last index that is usually employed in critical point the-
ory is the local homology, whose construction we now recall for closed geodesics of
Finsler manifolds (M,F ). For any U ⊂ Λ, U ⊂ Λk, and ` > 0, we set

U<` :=
{
γ ∈ U

∣∣ E(γ) < `2
}
, U<` :=

{
x ∈ U

∣∣ Ek(x) < `2
}
.

Notice that U<` and U<` are sublevel sets of the energy functional E, whereas
in (3.1) we denoted byW<` a sublevel set of the length functional L. Nevertheless,
the notation is consistent: W was indeed a subset of the space of unparametrized
loops Π, and if we parametrize any γ ∈ W with constant speed and period 1 we
have L(γ)2 = E(γ).



32 G. DE PHILIPPIS, M. MARINI, M. MAZZUCCHELLI, AND S. SUHR

The energy functional E is invariant under the circle action

u · γ = γ(u+ ·) ∈ Λ, ∀u ∈ S1, γ ∈ Λ.

Therefore, every closed geodesic γ ∈ crit(E) ∩ E−1(`2) (with ` > 0) belongs to a
circle of critical points of E

S1 · γ :=
{
γ(u+ ·) ∈ Λ

∣∣ u ∈ S1
}

A closed geodesic γ is said to be isolated when the critical circles of its iterates
S1 ·γm are isolated in crit(E). Under this assumption, the local homology of γ and
of S1 · γ are the relative homology groups

C∗(γ) := H∗(Λ
<` ∪ {γ},Λ<`), C∗(γ) := H∗(Λ

<` ∪ S1 · γ,Λ<`).
As we already mentioned, we will denote the coefficient field in the notation only
when we will need to employ a specific one.

The local homology groups of the critical circles of closed geodesics are the
“building blocks” for the homology of the free loop space Λ. Indeed, if γ ∈ crit(E)∩
E−1(`2) is an isolated closed geodesic and the interval (`, ` + ε) does not contain
critical values of E, the inclusion induces an injective homomorphism

C∗(S
1 · γ) ↪→ H∗(Λ

<`+ε,Λ<`)

The local homology of an isolated closed geodesic often embeds into the local
homology of its critical circle. For instance, at least when we employ coefficients
in Q, if γ is prime (that is, γ = ζm if and only if ζ = γ and m = 1), then for all
odd numbers m ∈ N such that nul(γ) = nul(γm) the inclusion induces an injective
homomorphism

C∗(γ
m;Q) ↪→ C∗(S

1 · γm;Q).

The local homology of an isolated closed geodesic γ does not vary (up to a shift in
degree) under iterations that preserve the nullity. In particular, if ind(γ) = ind(γm)
and nul(γ) = nul(γm), the iteration map ψm : Λ ↪→ Λ, ψm(ζ) = ζm induces the
local homology isomorphisms

ψm∗ : C∗(γ)
∼=−→C∗(γ

m), ψm∗ : C∗(S
1 · γ)

∼=−→C∗(S
1 · γm).

Even though the energy function E may not be C2, the local homology C∗(γ)
is isomorphic to the local homology of a smooth function at an isolated critical
point of index ind(γ) and nullity nul(γ). Indeed, if k ∈ N is large enough so that
the closed geodesic γ ∈ crit(E) ∩ E−1(`2) belongs to Λk, the inclusion induces the
homology isomorphism

H∗(Λ
<`
k ∪ {γ},Λ

<`
k )

∼=−→C∗(γ).

The energy Ek = E|Λk is smooth in a neighborhood of the critical point γ (indeed,
Ek is smooth at all those ζ ∈ Λk such that ζ( ik ) 6= ζ( i+1

k ) for all i ∈ Zk). Let
Σ ⊂M be an embedded hypersurface intersecting γ transversely at x0 := γ(0). We
define the smooth hypersurface

Σk :=
{
ζ ∈ Λk

∣∣ ζ(0) ∈ Σ
}
⊂ Λk.

Now, γ becomes an isolated critical point of Ek|Σk of index ind(γ) and nullity
nul(γ), and the inclusions induce the homology isomorphisms

H∗(Σ
<`
k ∪ {γ},Σ

<`
k )

∼=−→C∗(γ).
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Since x is an isolated critical point of Ek|Σk , its local homology can also be
expressed by means of the so-call Gromoll-Meyer neighborhoods [GM69a]: these
are suitable arbitrarily small compact neighborhoods W ⊂ Σk of x such that, for
all δ ≥ 0 small enough, the inclusion induces the homology isomorphism

H∗(Σ
<`
k ∪ {x},Σ

<`
k )

∼=←−H∗(W<` ∪ {x},W<`−δ)
∼=−→H∗(W,W

<`−δ).

These neighborhoods are particularly useful to prove certain technical statements
concerning the local homology, for instance the following one that we will employ in
the proof of Corollary 5.6: if a closed geodesic γ ∈ crit(E)∩E−1(`2) whose critical
circle S1 · γ is isolated in crit(E) admits an arbitrarily small open neighborhood
U ⊂ Λ or U ⊂ Λk such that U<` is not connected, then the local homology C1(γ)
is non-zero.

We close this section by proving the following proposition relating the local
homology in the setting Λ to the one in the setting Π of Section 3. By applying
the proposition to the three min-max values `(hi), for i = 1, 2, 3, defined in (3.4),
we will infer Theorem 1.2(iii).

Proposition 4.3. Let (M,F ) be a closed, orientable, reversible Finsler surface, ρ > 0
a constant, and h ∈ Hd(Π,Π

<ρ) a non-trivial homology class. Assume that there are
only finitely many simple closed geodesics of (M,F ) having length in a neighborhood
of `(h). Then, there exists a simple closed geodesic γ ∈ crit(E)∩E−1(`(h)1/2) with
non-zero local homology Cd(γ) 6= 0.

Proof. We first apply Lemma 3.1 and obtain a simple closed geodesic γ of length
` := `(h) and, for every ε > 0, an open neighborhood V(γ, ε) ⊂ Π and a constant
δ ∈ (0, ε2) such that the homomorphism

H∗(V(γ, ε),V(γ, ε)<`−δ)→ H∗(Π,Π
<`)

induced by the inclusion is non-zero.
Let Σ ⊂ M be an embedded open hypersurface (i.e. an open segment) inter-

secting γ transversely. We choose Σ and ε0 > 0 small enough so that every
ζ ∈ V(γ, ε0) intersect Σ in a single point and, by the implicit function theorem,
the map V(γ, ε0) → Σ, ζ 7→ ζ ∩ Σ is continuous. Throughout this section, we
uniquely parametrize every ζ ∈ V(γ, ε0) so that

ζ : S1 →M, F (ζ, ζ̇) ≡ L(ζ), ζ(0) ∈ Σ.

With this choice of parametrizations, V(γ, ε0) is compact in the C1 topology. More-
over, every C1-open neighborhood of γ contains V(γ, ε) for a sufficiently small
ε ∈ (0, ε0].

Let us consider an embedding M ↪→ R3, which exists since M is an orientable
closed surface. Let U ⊂ R3 be a tubular neighborhood of M with associated
smooth retraction π : U →M . We consider a family of mollifiers θs(u) = θ(u/s)/s,
where s ∈ (0, 1) and θ : S1 → [0,∞) is a smooth function supported in (−1/2, 1/2)
and with integral 1. We denote by ∗ the convolution operation. Since V(γ, ε0) is
C1-compact and θs tends to the Dirac delta as s → 0, there exists s0 > 0 and
ε1 ∈ (0, ε0] such that we have a well defined continuous map

c : [0, s0]× V(γ, ε1)→ Emb(S1,M), c(s, ζ)(u) = cs(ζ)(u) = π(ζ ∗ θs(u)).



34 G. DE PHILIPPIS, M. MARINI, M. MAZZUCCHELLI, AND S. SUHR

Notice that c0(ζ) = ζ for all ζ ∈ V(γ, ε1). Since the length function is continuous
on the C1-compact subset V(γ, ε1), there exists s1 ∈ (0, s0] such that

L(cs(ζ)) < L(ζ) + δ/2, ∀s ∈ [0, s1], ζ ∈ V(γ, ε). (4.10)

By the continuity of the convolution, there exists an open subset U ⊂W 1,2(S1,M)
containing V(γ, ε) such that cs1 extends as a continuous map

cs1 : U → Emb(S1,M), cs1(ζ)(u) = π(ζ ∗ θs1(u)),

and

L(cs1(ζ)) < L(ζ) + δ, ∀ζ ∈ U . (4.11)

We consider an integer

k >
`+ ε21

injrad(M,F )

that we will soon fix, and the space Σk of broken closed geodesics intersecting Σ at
time 0. We define a continuous homotopy

rt : V(γ, ε1)→W 1,2(S1,M), t ∈ [0, 1],

as follows: we uniquely parametrize every ζ ∈ V(γ, ε0) so that

F (ζ, ζ̇) ≡ L(ζ), ζ(0) ∈ Σ;

for all i = 0, ..., k − 1, we define

rt(ζ)|[i/k,(i+1−t)/k] := ζ|[i/k,(i+1−t)/k],

and rt(ζ)|[(i+1−t)/k,(i+1)/k] as the shortest geodesic of (M,F ) parametrized with
constant speed and joining its endpoints. We require k to be large enough so that
every rt has image inside the open subset U ⊂W 1,2(S1,M). Clearly,

E(rt(ζ)) ≤ E(ζ) = L(ζ)2, ∀t ∈ [0, 1].

We consider a Gromoll-Meyer neighborhood W ⊂ Σk ∩ U of γ = r1(γ). Notice
that, by (4.11), we have

L(cs1(ζ)) < L(ζ) + δ ≤ E(ζ)1/2 + δ, ∀ζ ∈W,

and in particular cs1(W<`−δ) ⊂ Π<`. We fix a constant ε2 ∈ (0, ε1] small enough
so that r1(V(γ, ε1)) ⊂W . Overall, we have the homomorphisms

H∗(V(γ, ε2),V(γ, ε2)<`−δ)
i∗ //

(r1)∗ ))

H∗(Π,Π
<`)

H∗(W,W
<`−δ)

(cs1 )∗

66
(4.12)

where i∗ is the non-zero homomorphism induced by the inclusion (see the first
paragraph of the proof). All we need to do in order to complete the proof is to
show that the diagram (4.12) commutes. This is a consequence of the fact that the
inclusion i is homotopic to the composition cs1 ◦ r1 via the continuous homotopy

ht : V(γ, ε2)→ Π, ht =

{
c2ts1 , if t ∈ [0, 1/2],
cs1 ◦ r2t−1, if t ∈ [1/2, 1],

which satisfies h0 = i, h1 = cs1 ◦ r1, and ht(V(γ, ε2)<`−δ) ⊂ Π<` for all t ∈ [0, 1]
according to (4.10) and (4.11). �
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5. Infinitely many closed geodesics

5.1. The Birkhoff map. Let (S2, F ) be a reversible Finsler sphere, and SS2 =
{(x, v) | F (x, v) = 1} its Finsler unit tangent bundle with base projection π :
SM →M , π(x, v) = x. As we already recalled in the proof of Proposition 4.2, SS2

admits the contact form α = Gv dπ, where G(x, v) = 1
2F (x, v)2, and the associated

Reeb vector field X on SM defined by α(X) ≡ 1 and dα(X, ·) ≡ 0. The flow
φt : SM → SM of X is precisely the geodesic flow of (S2, F ).

Let γ : S1 ↪→ S2 a simple closed geodesic of (S2, F ). Without loss of generality,
let us assume that F (γ, γ̇) ≡ 1. The complement S2 \ γ is the disjoint union of two
open balls B0, B1 ⊂ S2. We consider the open annuli

Ai :=
{

(x, v) ∈ SS2
∣∣ x ∈ γ(S1), v t γ̇(t) and points inside Bi

}
, i = 0, 1.

Since the Reeb vector field X is transverse to Ai, we readily see that

dα|Ai = (Xy(α ∧ dα))|Ai
is a symplectic form on Ai. We assume that the first return time

τi : Ai → (0,∞], τi(x, v) := inf
{
t > 0

∣∣ φt(x, v) ∈ A1−i
}
∈ (0,+∞]

is finite for all (x, v) ∈ Ai (here, we adopt the usual convention inf ∅ = +∞).
Under this assumption, there is a well defined first return map

ψi : Ai → A1−i, ψi(x, v) = φτi(x,v)(x, v),

which is a diffeomorphism. Since

ψ∗i α− α = φ∗tα|t=τi + α(∂tφt(z))|t=τidτi − α = α+ α(X)dτi − α = dτi,

the first return map is an exact symplectomorphism ψi : (Ai,dα) → (A1−i,dα).
Notice that

∂A0 = ∂A1 = {(γ(t), γ̇(t)), (γ(t),−γ̇(t)) | t ∈ S1},
and we readily see that dα|Ai vanishes on ∂Ai.

For each t ∈ [0, 1), we choose a non-zero wt ∈ ker dπ(γ̃(0)) depending smoothly
on t, and we extend it to a vector field

η̃t(s) = (ηt(s), η̇t(s)) := dφs−t(γ̃(t))wt. (5.1)

Namely, ηt is a non-trivial Jacobi vector field along γ such that Gv(γ, γ̇)ηt ≡ 0
and ηt(t) = 0. We recall that the points γ(t), γ(s), with t 6= s, are conjugate when
ηt(s) = 0. For each t ∈ [0, 1), we set

t−1 := sup{s < t | ηt(s) = 0}, t1 := inf{s > t | ηt(s) = 0},

and t±2 := (t±1)±1 (here, once again, we set sup∅ = −∞ and inf ∅ = +∞).
Namely, ti is the time of the |i|-th conjugate point to γ(t) after t if i > 0, or before
t if i < 0.

Lemma 5.1. Assume that, for some t ∈ [0, 1), t1 is finite. Then, for all t ∈ [0, 1)
both t1 and t−1 are finite, and the first return maps ψi can be extended as homeo-
morphisms

ψi : Ai → A1−i, ψi(γ(t),±γ̇(t)) = (γ(t±1),±γ̇(t±1)). (5.2)
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v

v0

sv

0

SxM

Figure 1. The value of s ∈ [0, 1] such that v0−s v ∈ kerGv(x, v) can be found

geometrically: the parallel to the tangent line Tv(SxM) passing through v0

intersects the segment joining the origin and v at sv.

Proof. Let µ be a nowhere vanishing 1-periodic vector field along γ such that
Gv(γ, γ̇)µ ≡ 0. The Jacobi fields ηt can be written as ηt(s) = f(t, s)µ(s) for
some smooth function f : R×R→ R. Up to replacing µ with −µ, we can assume
that f(t, t + ε) > 0 for all t ∈ S1 and ε > 0 small enough. Since the Jacobi fields
ηt are non-trivial, we have ∂sf(t, s) 6= 0 whenever f(t, s) = 0. This readily implies
that, if t1 is finite for some t ∈ R, the same is true for all t ∈ R, and the function
t 7→ t1 is continuous and monotone increasing. Since (t1)−1 = t, we infer that the
function t 7→ t−1 is well defined, continuous and monotone increasing as well.

We fix an arbitrary t ∈ [0, 1) and (x, v) := (γ(t), γ̇(t)). In order to complete the
proof, we are left to show that, for each sequence vn ∈ SxS2 of vectors pointing
inside Ai and such that vn → ±v, we have τi(x, vn) → ±(t±1 − t). Indeed, this
implies that φτi(x,vn)(x, vn)→ (γ(t±1),±γ̇(t±1)), and therefore the extension (5.2)

of ψi is continuous and bijective. Since the annuli Ai and Ai−1 are compact and
Hausdorff, such an extension is a homeomorphism.

Let us focus on the case vn → v, the other one being analogous. We set γn(s) :=
expx((s− t) vn) and σn := τi(x, vn). We claim that

lim inf
n→∞

σn ≥ t1 − t.

Otherwise, we could extract a subsequence such that σn → σ ∈ (0, t1− t); however,
since the geodesic γ|[t,t+σ] has no conjugate points, this would contradict the fact
that the exponential map expx is a local diffeomorphism at σv. The fact that
f(t1 + ε) < 0 if ε > 0 is small enough readily implies that γn(t1 + ε) ∈ A1−i for all
n large enough, and therefore σn < t1 − t+ ε. This implies that σn → t1 − t. �

We set A := A0. The previous lemma implies that the annulus A is a surface
of sections for the geodesic flow: a surface that is transverse to the vector field X
on its interior, and whose boundary is the union of periodic orbits of the flow. The
composition ψ := ψ1 ◦ ψ0 : A→ A is the first return map of the surface of section
A, and extends to a homeomorphism of A as

ψ(γ(t),±γ̇(t)) = (γ(t±2),±γ̇(t±2)).

As customary in the Riemannian literature, we will call ψ the Birkhoff map of γ.
With a suitable change of coordinates, A becomes the standard symplectic annulus.

Lemma 5.2. There exists a smooth homeomorphism

σ : S1 × [−1, 1]→ A
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of the form σ(t, s) = (γ(t), ν(t, s)), where ν(t, s) ∈ Sγ(t)M is the unique tangent
vector (pointing inside B0 or tangent to γ) such that

γ̇(t)− s ν(t, s) ∈ kerGv(γ(t), ν(t, s)).

The map σ restrict to a diffeomorphism σ : S1 × (−1, 1)→ A, and σ∗α = sdt.

Proof. We fix x = γ(t) and v0 = γ̇(t). For each v ∈ SxM there is a unique
s(v) ∈ [−1, 1] such that v0 − s(v)v ∈ kerGv(x, v), see Figure 1. Clearly, s(v)
depends smoothly on v. We choose an arbitrary parametrization of the fiber

v : [0, 1]
∼=−→A ∩ SxM

such that v(0) = v0 and v(1) = −v0. Notice that v̇(r) ∈ kerGv(x, v(r)), and there
exists λ(r) ∈ R such that v0 = s(v(r))v(r) + λ(r)v̇(r). By the strict convexity of
SxM , we have λ(r) = 0 if and only if r ∈ {0, 1}. Since

Gv(x, v)v0 = Gv(x, v)s(v)v = s(v),

we have

ds(v(r))v̇(r) = d
dr s(v(r)) = d

drGv(x, v(r))v0 = Gvv(x, v(r))v̇(r) v0

= s(v(r))Gvv(x, v(r))v̇(r) v(r) + λ(r)Gvv(x, v(r))v̇(r) v̇(r)

= s(v(r))Gv(x, v(r))v̇(r) + λ(r)Gvv(x, v(r))v̇(r) v̇(r)

= λ(r)Gvv(x, v(r))v̇(r) v̇(r).

The last term is non-zero for all r ∈ (0, 1). Therefore, s : A ∩ SxM → [−1, 1] is a
diffeomorphism that restricts to a diffeomorphism s : A ∩ SxM → (−1, 1). We set
σ(x, ·) to be the inverse homeomorphism. The obtained map σ : S1 × [−1, 1]→ A
is thus a homeomorphism that restricts to a diffeomorphism σ : S1 × (−1, 1)→ A.
The pull-back of the contact form α by σ is

(σ∗α)(t,s) = Gv(γ(t), ν(t, s))γ̇(t) dt = Gv(γ(t), ν(t, s))s ν(t, s) dt = sdt. �

From now on, the annulus S1 × [−1, 1] will be implicitly equipped with the
Euclidean area form ds ∧ dt. By means of Lemma 5.2, we will always consider the
Birkhoff map of a simple closed geodesic γ as a homeomorphism ψ : S1× [−1, 1]→
S1 × [−1, 1] that restricts to a symplectomorphism of (S1 × (−1, 1),ds ∧ dt) and
acts on the boundary as ψ(t,±1) = (t±2,±1).

5.2. Periodic points of twist maps. Let ψ : S1 × [−1, 1] → S1 × [−1, 1] be an area
preserving homeomorphism preserving the boundary components S1 × {−1} and
S1 × {1}. Such a ψ is called a twist map when it admits a lift

ψ̃ : R× [−1, 1]→ R× [−1, 1], ψ̃(t, s) = (a(t, s), b(t, s)), (5.3)

satisfying the twist conditions a(t, 1) < t and a(t,−1) > t for all t ∈ R. If ψ is the
Birkhoff map of a simple closed geodesic γ of (S2, F ), the set of its periodic orbits is
in one-to-one correspondence with the set of closed geodesics intersecting γ (other
than γ itself). In particular, the existence of infinitely many periodic points of ψ
implies the existence of infinitely many closed geodesics on (S2, F )

By the celebrated Poincaré-Birkhoff theorem [Bir66], any twist map has at least
two fixed points in the interior of the annulus. Indeed, more is true: any lift (5.3)
satisfying the twist condition has at least two fixed points. A simple argument
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due to Neumann [Neu77] further implies that any twist map ψ has infinitely many
periodic points. Indeed, consider the translation

τ : R× [−1, 1]→ R× [−1, 1], τ(t, s) = (t+ 1, s).

For each integer q > 0 there exists another relatively prime integer p > 0 that is
large enough so that

pmin
x∈R

(
x− a(x, 1)

)
> q.

This condition guarantees that φ̃ := ψ̃p ◦ τ q is a lift of φ = ψp satisfying the twist
condition, and therefore has at least a fixed point z ∈ R× [−1, 1]. Such a z projects
to a p-periodic point [z] of ψ, and since p, q are relatively prime the minimal period
of [z] is p.

Let us now apply this results to the Birkhoff map of a simple closed geodesic γ
of (S2, F ). For each t ∈ S1, we denote t · γ := γ(t + ·) the closed geodesic γ with
the parametrization translated by t, and by indΩ(t · γ) the Morse index of t · γ in
its corresponding based loop space Ωt = {ζ ∈ Λ | ζ(0) = γ(t)} (see Section 4.2).

Theorem 5.3. If the simple closed geodesic γ satisfies indΩ(t · γ) ≥ 2 for all t ∈ S1

and has a well defined Birkhoff map ψ, then ψ is a twist map, and in particular
(S2, F ) has infinitely many closed geodesics.

Proof. Let us consider the family of Jacobi fields ηt introduced in (5.1). As we
already mentioned in the proof of Proposition 4.2, the classical Morse index theorem
[Mor96] allows to relate indΩ(t · γ) to the zeros of ηt by

indΩ(t · γ) = #{s ∈ (t, t+ 1) | ηt(s) = 0} = #{s ∈ (t− 1, t) | ηt(s) = 0}.

Therefore, indΩ(t · γ) ≥ 2 is equivalent to t2 − t < 1 and t− t−2 < 1. If this holds
for all t ∈ R, we claim that the Birkhoff map ψ is a twist map. Indeed, ψ can be
lifted to a continuous map

ψ̃ : R× [−1, 1]→ R× [−1, 1],

as follows. Let σ : S1× [−1, 1]→ A, σ(t, s) = (γ(t), ν(t, s)) be the homeomorphism
of Lemma 5.2. For each (t, s) ∈ R× (−1, 1), we consider the geodesic ray ζ starting

at ζ(0) = γ(t) with speed ζ̇(0) = ν(t, s). Let a′, a′′ ∈ (0, 1] be the such that the
first intersection of ζ at positive time with with γ is at γ(t + a′), and the second
one is at γ(t + a′ + a′′). Let 0 < b′ < b′′ be the first positive times such that
ζ(b′) = γ(t+ a′) and ζ(b′′) = γ(t+ a′ + a′′). We denote by i′, i′′ ∈ Z the algebraic
count of self-intersections of the geodesics ζ|(0,b′) and ζ|(b′,b′′) respectively; here a
double-point intersection is counted positively if and only if ζ crosses itself from
left to right (up to isotoping ζ|[0,b′′] without moving ζ(0), ζ(b′), and ζ(b′′), we can
assume that all the self-intersections of ζ|[0,b′′] are double points). We define the
lift

ψ̃(t, s) = (a(t, s), b(t, s)),

by setting the first component to be

a(t, s) = t+ a′ + a′′ + i′ + i′′ − 1.

It is straightforward to verify that such a function a is continuous. Since indΩ(t·γ) ≥
2, if |s| is close to 1 (that is, if ζ̇(0) is close to ±γ̇(0)), we have i′ = i′′ = 0; if s is



CLOSED GEODESICS ON REVERSIBLE FINSLER 2-SPHERES 39

γ(t)

γ(t′)

γ(t′′)
ζ

γ

Figure 2. Example of geodesic ray ζ on a reversible Finsler sphere intersecting
the simple closed geodesic γ at subsequent points γ(t), γ(t′) and γ(t′′), with

t′ = t+a′ ∈ (t, t+1] and t′′ = t′+a′′ ∈ (t′, t′+1], such that i′ = 1 and i′′ = 0.

close to 1 we have a′+a′′ ∈ (0, 1), whereas if s is close to −1 we have a′+a′′ ∈ (1, 2).
Therefore

a(t, 1)− t = t2 − t− 1 ∈ (−1, 0), a(t,−1)− t = 1− (t− t−2) ∈ (0, 1),

namely ψ̃ satisfies the twist condition. Since ψ is a twist map, it has infinitely many
periodic points corresponding to infinitely many closed geodesics of (S2, F ). �

5.3. Hingston’s theorems. A celebrated theorem due to Hingston [Hin93], that ex-
tends previous results of Bangert [Ban80, Ban93], implies the existence of infinitely
many closed geodesics on (S2, F ) when there is a simple closed geodesic with non-
zero local homology in degree 3 and a Birkhoff map not of twist type. Hingston’s
original proof was phrased for Riemannian manifolds, but is valid as well in the
Finsler setting, and indeed even in the non-reversible Finsler setting. We include
the full argument here for the reader’s convenience.

Theorem 5.4. Let (M,F ) be a closed Finsler manifold of dimension d ≥ 2, and γ
a closed geodesic such that

(i) The local homology Ci(γ) with coefficient in an arbitrary field is non-zero
in degree i = ind(γ) + nul(γ).

(ii) ind(γm) + nul(γm) ≤ m(ind(γ) + nul(γ))− (d− 1)(m− 1) for all m ∈ N.

Then (M,F ) has infinitely many closed geodesics.

Proof. Condition (ii), together with Lemma 4.1(ii,v), implies that

indΩ(γ) + nulΩ(γ) ≤ 1
m

(
indΩ(γm) + nulΩ(γm)

)
≤ ind(γ) + nul(γ)− m−1

m (d− 1).

In the limit m → ∞ the latter term converges to d − 1. This, together with the
opposite inequality provided by Proposition 4.2(iv), implies

indΩ(γ) + nulΩ(γ) = ind(γ) + nul(γ)− (d− 1). (5.4)

Let Σ ⊂ M be an embedded hypersurface diffeomorphic to a compact (d − 1)-
dimensional disk intersecting in its interior the closed geodesic γ transversely at
γ(0). As in Section 4.3, we introduce the space

Σk := {ζ ∈ Λk | ζ(0) ∈ Σ},
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for an integer k large enough so that γ ∈ Λk. Therefore, γ is an isolated critical
point of the restricted energy functional E|Σk with non-trivial local homology

Hi(Σ
<`
k ∪ {γ},Σ

<`
k ) ∼= Hi(Λ

<` ∪ {γ},Λ<`) = Ci(γ),

where `2 := E(γ). Since i = ind(γ) + nul(γ), we can find a generator of this local
homology that is an embedded ball B ⊂ Σk of dimension i containing γ in its
interior, and such that E|B\{γ} < `2. This can be easily seen by considering a
tubular neighborhood N ⊂ Σk of B diffeomorphic to the normal bundle of B in
Σk, since the restriction of the energy functional E to any fiber F of N has a non-
degenerate local minimizer at F∩B; thus, the local homology of E at γ is isomorphic
to the local homology of E|B at its local maximizer γ, and the local homology at a
local maximizer is generated by the relative cycle covering the whole domain (see,
e.g., [Maz13, Proposition 2.6] for a detailed proof of this general Morse-theoretic
fact). This argument is independent of the choice of the coefficient field, and in
particular [B] 6= 0 in Ci(γ;Q) as well.

We consider the evaluation map ev : B → Σ, ev(ζ) = ζ(0), whose differential
has the form

d ev(γ) : TγB → Tγ(0)Σ, d ev(γ)ξ = ξ(0).

We claim that d ev(γ) is surjective. Indeed, if as usual Ω =
{
ζ ∈ Λ | ζ(0) = γ(0)

}
denotes the based loop space, we have

ker(d ev(ζ)) = TγΩ ∩ TγB.

Since the Hessian d2E(γ) is negative semi-definite on TγB, Equation (5.4) implies

dim ker(d ev(ζ)) ≤ indΩ(γ) + nulΩ(γ)

≤ ind(γ) + nul(γ)− (d− 1)

= dim(B)− (d− 1).

Since dim(Σ) = d− 1, we infer that d ev(γ) is surjective. By the implicit function
theorem, up to shrinking B around γ, we find a diffeomorphism φ : Σ × U → B
such that ev ◦ φ(x, y) = x.

If ζi : [0, τi]→M are continuous paths such that ζi(τi) = ζi+1(0) for all i ∈ Zm,
we define ζ := ζ0 ∗ ... ∗ ζm−1 ∈ Λ to be the 1-periodic curve obtained by first
concatenating the ζi’s with their original parametrization, and then by linearly
reparametrizing the resulting curve so that it becomes 1-periodic. Namely,

ζ(t) = ζ̃((τ0 + ...τm−1)t),

where

ζ̃(τ0 + ...τi−1 + u) = ζi(u), ∀u ∈ [0, τi].

If the ζi’s are W 1/2 paths, the energy of ζ0 ∗ ... ∗ ζm−1 is

E(ζ0 ∗ ... ∗ ζm−1) = (τ0 + ...τm−1)

m−1∑
i=0

∫ τi

0

F (ζi, ζ̇i)
2 dt. (5.5)

We now employ φ to construct a relative cycle representing a non-zero element
of the local homology group of γm. We first define the smooth embedding

φm : Σ× U×m ↪→ Σmk, φm(x, y0, ..., ym−1) = φ(x, y0) ∗ ... ∗ φ(x, ym−1),

where U×m = U × ... × U denotes the m-fold cartesian product. The fact that
that φm is a smooth embedding can be easily seen if we identify the loops ζi =
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φi(x, yi) ∈ Σk with the tuple xi = (ζi(0), ζi(
1
k ), ..., ζi(

k−1
k )) as explained in Sec-

tion 4.1: indeed, the curve φm(x, y0, ..., ym−1) ∈ Σmk is then identified with the
juxtaposition (x0, ...,xm−1). The image of φm is an embedded ball

Bm := φm(Σ× U×m) ⊂ Σmk

containing γm in its interior. By assumption (ii) of the lemma, its dimension is
bounded from below as

dim(Bm) = d− 1 +m(i− (d− 1)) ≥ ind(γm) + nul(γm). (5.6)

Since our ζi’s are 1-periodic loops (that is, we consider them as closed paths
parametrized on [0, 1]), Equation (5.5) reduces to

E(ζ0 ∗ ... ∗ ζm−1) = m
(
E(ζ0) + ...+ E(ζm−1)

)
.

Since E(ζi) < E(γ), we have

E|Bm\{γm} < E(γm) = m2`2.

This, together with (5.6), implies that dim(Bm) = ind(γm) + nul(γm) =: im, and
Bm is a generator of the local homology group

Him(Σ<m`mk ∪ {γ
m},Σ<m`mk ;Q) ∼= Cim(γm;Q).

We claim that, for each ε > 0 sufficiently small, there exists m = mε ∈ N such
that, for all integers m ≥ m, the homomorphism

Cim(γm;Q)→ Him(Λ<m`+ε/`,Λ<m`;Q)

induced by the inclusion is the zero one. Indeed, let ε ∈ (0, 1) be small enough so
that

max
Σ×∂U

E ◦ φ < `2 − ε.

If needed, we shrink Σ around γ(0) so that

diam(Σ) := max
x1,x2∈Σ

d(x1, x2) <
ε

2(`2 + 2)
,

where d : M ×M → [0,∞) denotes the (possibly non-symmetric) distance (4.1)
induced by the Finsler metric F . Let δ > 0 be such that

max
∂Σ×U

E ◦ φ = `2 − δ,

and notice that

max
∂Σ×U×m

E ◦ φm = m2(`2 − δ).

We define the continuous map

ψm : Σ× Σ× U×bm/2c × U×dm/2e → Λ,

ψm(x1, x2, y1, y2) = φbm/2c(x1, y1) ∗ γx1x2
∗ φdm/2e(x2, y2) ∗ γx2x1

,

where γxixj : [0, d(xi, xj)] → M is the shortest geodesic parametrized with unit
speed joining xi and xj . Let us compute the composition E ◦ ψm. If we set

ζ1 := φbm/2c(x1, y1), ζ2 := φdm/2e(x2, y2), ζ := ψm(x1, x2, y1, y2),
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Σ

Σ

U×m U×m

Σ

Σ

(a) (b)

Figure 3. The shaded region in (a) is the relative cycle diagΣ × Um, which
is null-homologous in H∗(Σ × Σ × U×m, ∂(Σ × Σ × U×m);Q), for instance

because it is homologous to the shaded region in (b).

we have

E(ζ) =
(
m+ d(x1, x2) + d(x2, x1)

)(E(ζ1)

bm2 c
+ d(x1, x2) +

E(ζ2)

dm2 e
+ d(x2, x1)

)
≤
(
m+ 2 diam(Σ)

)(
m`2 + 2 diam(Σ)

)
< m2`2 + 2 diam(Σ)(m+ `2m+ 2 diam(Σ))

< m2`2 +mε < (m`+ ε/`)2.

If y1 ∈ ∂U×bm/2c or y2 ∈ ∂U×dm/2e, we have the estimate

E(ζ) <
(
m+ 2 diam(Σ)

) (
m`2 − ε+ 2 diam(Σ)

)
= m2`2 +m

(
2 diam(Σ)(1 + `2)− ε

)
+ 2 diam(Σ)

(
2 diam(Σ)− ε

)
< m2`2.

If instead x1 ∈ ∂Σ or x2 ∈ ∂Σ, we have

E(ζ) ≤
(
m+ 2 diam(Σ)

) (
m`2 − bm2 cδ + 2 diam(Σ)

)
≤ m2`2 +

(
2 diam(Σ)(2 + `2)− bm2 cδ

)
m

≤ m2`2 +
(
ε− bm2 cδ

)︸ ︷︷ ︸
(∗)

m,

and the term (∗) is negative for m ≥ m = 2ε/δ + 2. Summing up, our map ψm
satisfies

E ◦ ψm|∂(Σ×Σ×Um) < m2`2. (5.7)

The relative cycle diagΣ × Um is null-homologous in

H∗(Σ× Σ× Um, ∂(Σ× Σ× Um);Q),

since it is homologous to a relative cycle contained in ∂(Σ×Σ×Um), see Figure 3.
Therefore, (5.7) implies that the relative cycle Bm = φm(Σ × Um) = ψm(diagΣ ×
Um) is null-homologous in Him(Λ<m`+ε/`,Λ<m`;Q), i.e.

[Bm] = 0 in Him(Λ<m`+ε/`,Λ<m`;Q). (5.8)

We now employ Morse theory. We choose a sequence of positive numbers εn → 0,
and for each of them a large enough prime number mn such that (5.8) holds for m =
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mn and ε = εn. We can assume in particular that mn →∞. Since each mn is prime,
the inclusion induces an injective homomorphism C∗(γ

mn ;Q) ↪→ C∗(S
1 · γmn ;Q).

Therefore, the commutative diagram

Cimn (γmn ;Q)
� � //

0 **

Cimn (S1 · γmn ;Q)

ι∗

��
Himn

(Λ<mn`+ε/`,Λ<mn`;Q)

whose homomorphisms are all induced by the inclusion, implies that ι∗ is not in-
jective. This, in turn, implies that there exists a closed geodesic ζn ∈ crit(E) with
length

L(ζn) = E(ζn)1/2 ∈ (mn`,mn`+ εn/`].

We claim that the sequence {ζn | n ∈ N} contains infinitely many geometrically
distinct closed geodesics. Indeed, let us assume by contradiction that there exists a
closed geodesic ζ ∈ crit(E) of length `1 := E(ζ)1/2 and a sequence qn ∈ N such that
ζqn = ζn for infinitely many n ∈ N. This implies that mn` < qn`1 ≤ mn` + εn/`,
and therefore ⌈

mn`

`1

⌉
< qn ≤

⌊
mn`

`1
+

εn
` `1

⌋
.

However, these two inequalities cannot simultaneously hold for n large enough so
that εn/(` `1) < 1. �

We now derive the two corollaries that we will need for proving Theorem 1.3.

Corollary 5.5. Let (M,F ) be an orientable Finsler surface, and γ ∈ crit(E) a closed
geodesic such that indΩ(γ) = nulΩ(γ) = 1 and the local homology C3(γ) with some
coefficient field is non-zero. Then (M,F ) has infinitely many closed geodesics.

Proof. Since C3(γ) is non-trivial, we have

ind(γ) ≤ 3 ≤ ind(γ) + nul(γ).

We now employ Proposition 4.2. Since nulΩ(γ) = 1, we have

indΩ(γm) = m indΩ(γ) + (m− 1)nulΩ(γ) = 2m− 1, nulΩ(γm) = 1.

Moreover

ind(γ) ≤ indΩ(γ) + 1 = 2, nul(γ) ≥ 3− ind(γ) ≥ 1.

If nul(γ) = 2, then nul(γm) = 2 and ind(γm) is odd for all m ∈ N; since indΩ(γm) ≤
ind(γm) ≤ indΩ(γm) + 1, we infer

ind(γm) = indΩ(γm) = 2m− 1.

If instead nul(γ) = 1, then ind(γ) = 2, and

ind(γm) + nul(γm) ≤ indΩ(γm) + nulΩ(γm) + 1

= 2m+ 1

= m(ind(γ) + nul(γ))− (m− 1).

In both cases, γ satisfies the assumptions of Theorem 5.4, and we infer that (S2, F )
has infinitely many closed geodesics. �



44 G. DE PHILIPPIS, M. MARINI, M. MAZZUCCHELLI, AND S. SUHR

The second corollary of Theorem 5.4 was established in the Riemannian case
by Bangert [Ban80, Ban93]. Even though we present it here as a corollary of
Theorem 5.4, Bangert’s proof came historically earlier than [Hin93]. Let us recall,
once again, the classical notion of conjugate points: two points γ(t) and γ(s) along
a geodesic γ : [t, s] → M are conjugate when there exists a Jacobi field along γ
that is not identically zero, but vanishes at both γ(t) and γ(s). When dim(M) =
2 this condition can be expressed in terms of the Jacobi field ηt introduced in
Equation (5.1): γ(t) and γ(s) are conjugate points if and only if ηt(s) = 0. A closed
geodesic γ on a Finsler surface has no conjugate points if and only if indΩ(t ·γm) =
nulΩ(t · γm) = 0 for all t ∈ S1 and m ∈ N; equivalently, ind(γm) = 0 for all m ∈ N,
according to Lemma 4.1(iii) and Proposition 4.2(iii).

Corollary 5.6. Any reversible Finsler 2-sphere with a simple closed geodesic without
conjugate points possesses infinitely many closed geodesics.

Proof. Let γ ∈ crit(E) ∩ E−1(`2) be a simple closed geodesic without conjugate
points in the reversible Finsler 2-sphere (S2, F ). We claim that there exists a
neighborhood U ⊂ Λ of the critical circle S1 · γ := {t · γ | t ∈ S1} such that every
ζ ∈ U that intersects the curve γ has energy E(ζ) ≥ E(γ). Indeed, if this were
not true, we could find a sequence ζn ∈ Λ such that ζn(0) = γ(tn), E(ζn) < E(γ),
tn → t and ζn → t · γ as n→∞. We consider the based loop spaces

Ωs := {ζ ∈ Λ | ζ(0) = γ(s)}, s ∈ S1,

and the space of broken closed geodesics Λk introduced in Section 4.1. Here k ∈ N
must be large enough so that γ ∈ Λk. Since γ has no conjugate points, indΩ(s ·γ) =
nulΩ(s·γ) = 0. Therefore, every s·γ is a non-degenerate local minimizer of E|Λk∩Ωt .
Since Ek := E|Λk is smooth in a neighborhood of the critical circle of γ, we can apply
the parametric Morse lemma, which provides an ε > 0 and an open neighborhood
U ⊂ Λk of γ such that, for all t ∈ (−ε, ε), t · γ is the unique global minimizer of
E|U∩Ωt . Let γn ∈ Λk ∩ Ωtn be the sequence of broken closed geodesics such that
γn(i/k) = ζn(i/k) for all i ∈ Zk, which have energy E(γn) ≤ E(ζn) < E(γ). Since
ζ → t · γ in Λ, we would have that γn → γ in Λk, and in particular γn ∈ U for
all n ∈ N large enough, contradicting the fact that E|U∩Ωtn

has a strict global
minimizer at tn · γ.

We denote by B0 and B1 the connected components of S2 \γ, and by Bi ⊂ Λ the
open subset of those ζ ∈ Λ such that ζ(S1) ⊂ Bi. Since we are looking for infinitely
many closed geodesics, we can assume that γ is an isolated closed geodesic (i.e.,
the critical circle of each iterate γm is isolated in crit(E)). We set `2 := E(γ). We
have two possible cases, which we deal with separately.

Case 1: For every open neighborhood V ⊂ Λ of S1 · γ, the intersections V ∩
B0 ∩ Λ<` and V ∩ B1 ∩ Λ<` are both non-empty. If we choose V to be connected
and contained in U , we infer that V<` := V ∩ Λ<` is the disjoint union of the
open subsets V<` ∩ B0 and V<` ∩ B1. In particular V<` is not connected. Since
V can be chosen arbitrarily small, we infer that the local homology C1(γ;Q) is
non-zero (see Section 4.3). Since ind(γm) = 0, Proposition 4.2(vi) implies that
nul(γm) < 2 for all m ∈ N. Since the local homology C1(γ;Q) is non-zero, we must
have ind(γ) + nul(γ) ≥ 1, and thus nul(γ) = 1. Since nul(γ) ≤ nul(γm) < 2, we
infer that nul(γm) = 1 for all m ∈ N. Therefore, γ satisfies the assumptions of
Theorem 5.4, which implies that (S2, F ) has infinitely many closed geodesics.



CLOSED GEODESICS ON REVERSIBLE FINSLER 2-SPHERES 45

γ

ζ

γ

(a) (b)

Figure 4. (a) The simple closed geodesic γ (dotted), and a curve ζ ∈ Λ close to
γ2 with a self-intersection. (b) The support of the curve ζ can be decomposed

as the union of ζ1 (dashed curve) and ζ2 (solid curve), both close to γ.

Case 2: For some i ∈ {0, 1}, there exists an open neighborhood V ⊂ Λ of γ
such that V ∩ Bi ∩ Λ<` = ∅. This implies the analogous property for γm: there
exists an open neighborhood Vm ⊂ Λ of γm such that Vm ∩ Bi ∩Λ<` = ∅. Indeed,
since we are on an orientable surface, a tubular neighborhood of the simple closed
geodesic γ is diffeomorphic to the annulus S1 × (−1, 1), γ being its zero section
S1 × {0}; therefore, any curve ζ sufficiently close to the iterated curve γm has
at least m − 1 self-intersections counted with multiplicity (see Figure 4), and its
support can be decomposed as the union of the supports of ζ1, ..., ζm ∈ V, and
E(ζ) = m(E(ζ1) + ... + E(ζm)); if E(ζ) < E(γm) = m2E(γ), we would have
E(ζj) < E(γ) for some j, contradicting the fact that V ∩ Bi ∩ Λ<` = ∅.

Since γ is an isolated closed geodesic, if we choose Vm to be small enough we have
that E(ζ) > E(γm) for all ζ ∈ Vm∩Bi. Let us fix a homotopy u : [0, 1]→ Bi∪{γm},
u(t) = ut, such that u0 = γm and E(u1) = 0; namely, ut defines a contraction of γ
to a point within the disk Bi. We choose an integer

k ≥ max{E ◦ u}
injrad(S2, F )2

,

and consider the space of broken closed geodesics Λk and the restricted energy
functional Ek = E|Λk . We have the associated retraction

r : Λ<
√
k injrad(S2,F ) → Λk, r(ζ) = ζ̃,

where ζ̃ ∈ Λk is the broken closed geodesics such that ζ̃(i/k) = ζ(i/k) for all i ∈ Zk.
We recall that Ek ◦r ≤ E. Since the boundary of the disk Bi is geodesic, we readily
see that r preserves Bi. Consider an open neighborhood V ⊂ Λk of γm such that
V ⊂ Vm. Since ∂V is compact, we have

b2 := min
∂V

Ek > Ek(γm).

Let W ⊂ V be a small enough open neighborhood of γm such that

Ek(γm) < a2 := max
W

Ek < b2.
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We consider

c2 := inf
v

max{Ek ◦ v},

where the infimum ranges over all homotopies v : [0, 1]→ Λk∩Bi∪{γm}, v(t) = vt,
such that v0 = γm and Ek(v1) = 0. Notice that the space of such homotopies is
non-empty, as it contains r ◦u. We have c > b, since every such a homotopy v must
eventually intersect ∂W . We fix an arbitrary d ∈ (c, k injrad(S2, F )1/2). Notice
that E−1

k [a2, d2]∩Bi is compact, since it is a connected component of the compact

set E−1
k [a2, d2] \W . Therefore, the classical min-max theorem implies that c2 is a

critical value of Ek. Since we are looking for infinitely many closed geodesics, we
can assume that (S2, F ) has only isolated closed geodesic (i.e. any critical circle
is isolated in crit(E) ∩ E−1(0,∞)). Under this assumption, there exists at least
one closed geodesic ζm ∈ crit(Ek) ∩ E−1

k (c2) ∩ Bi such that every connected open
neighborhood U ⊂ Λk ∩ Bi of it has a non-connected intersection U<c = U ∩ Λ<ck .

Indeed, if no closed geodesic in crit(Ek) ∩ E−1
k (c2) ∩ Bi satisfied this property, we

could find a homotopy v as above such that max{Ek ◦ v} < c2, contradicting the
definition of the min-max value c2. Since U can be chosen arbitrarily small, we
infer that the local homology C1(ζm;Q) is non-trivial.

Now, either the family {ζm | m ∈ N} that we found contains infinitely many
geometrically distinct closed geodesics, or there exists a non-iterated closed geodesic
ζ, an infinite subset K ⊂ N, and a function µ : K → N such that µ(m) → ∞ as
m → ∞ and ζm = ζµ(m) for all m ∈ N. Since every iterate ζµ(m) has non-
trivial local homology C1(ζµ(m)), we have ind(ζµ(m)) ≤ 1 for all m ∈ K, and
therefore ind(ζm) = 0 for all m ∈ N according to Lemma 4.1(iii). We cannot have
nul(ζ) = 0, for otherwise ζ would be a local minimizer of Ek, and the same would
be true for all its iterates according to analogous argument of Figure 4. Therefore
1 ≤ nul(ζ) ≤ nul(ζm) ≤ 2 for all m ∈ N. By Proposition 4.2(vi), since the Morse
indices ind(ζm) vanish, we must have nul(ζm) = 1 for all m ∈ N.

Since ind(ζ) = ind(ζm) and nul(ζ) = nul(ζm) for all m ∈ N, we have an isomor-
phism of local homology groups C∗(ζ;Q) ∼= C∗(ζ

m;Q). In particular C1(ζ;Q) does
not vanish. Therefore, ζ satisfies the assumptions of Theorem 5.4, which implies
that (S2, F ) has infinitely many closed geodesics. �

5.4. Bangert’s theorem. As it turns out, the statements proved so far allow us to
conclude the existence of infinitely many closed geodesics on any reversible (S2, F ),
except when none of its simple closed geodesics has a well-defined Birkhoff map.
We recall that a simple closed geodesic γ of a reversible (S2, F ) does not have a well
defined Birkhoff map when, for some x = γ(t) and v ∈ TxS

2 transverse to γ̇(t), the
geodesic ζ(t) = expx(tv) does not intersect γ at any positive time t > 0. In this
section, we show that this last case is covered by Corollary 5.6. For Riemannian
2-spheres, this is a theorem due to Bangert [Ban93].

Theorem 5.7. Any reversible Finsler 2-sphere having a simple closed geodesic with-
out a well-defined Birkhoff map possesses infinitely many closed geodesics.

The proof is based on the following two lemmas of independent interest.

Lemma 5.8. Let (M,F ) be a (not necessarily reversible) Finsler surface, and γ :
[−T, T ]→M a geodesic parametrized with constant speed. If there exists a sequence
of geodesics γn : [−T, T ]→M parametrized with constant speed, not intersecting γ,
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and such that (γn(0), γ̇n(0))→ (γ(0), γ̇(0)) in TM , then γ|(−T,T ) has no conjugate
points.

Proof. Since the problem is local to γ, we can assume without loss of generality
that M = R2 and γ(t) = (t, 0) for all t ∈ [−T, T ], so that we can write expressions
in coordinates. Without loss of generality, we can assume that F (γ, γ̇) ≡ 1. We
reparametrize the geodesics γn so that they have speed F (γn, γ̇n) ≡ 1. By doing
this, we change the interval of definition of γn: the reparametrized curve has the
form γn : [−Tn, Tn]→M with Tn → T as n→∞.

We set (x, v) = (γ(0), γ̇(0)) = (0, γ̇(0)), G = 1
2F

2, and consider the line

Σ := {y ∈ R2 | y ∈ kerGv(x, v)}.

For all n ∈ N large enough, the geodesic γn : [−Tn, Tn] → R2 intersects Σ in a
unique point xn, and clearly xn → x. We shift the parametrization of γn, so that
we have a sequence of geodesics γn : [−Tn + εn, Tn + εn] → R2 not intersecting
γ and such that εn → 0 and vn := γ̇n(0) → v. Up to extracting a subsequence,
we can assume that each γn lies on the same side of γ. Therefore we have a well
defined non-zero vector

w′ :=
xn − x
‖xn − x‖

∈ Σ

independent of n. Here, ‖ · ‖ denotes the Euclidean norm. We consider the vectors

zn :=
vn − v
‖xn − x‖

.

Since the geodesics γn and γ do not intersect on the time interval [−T/2, T/2] and
the second derivative of γn−γ is uniformly bounded on [−T/2, T/2] independently
of n, we readily obtain that the sequence ‖zn‖ is uniformly bounded from above.
In particular, up to extracting a subsequence, we have zn → z′ as n→∞.

We set λ := (1 + ‖z′‖2)−1/2, w := λw′, and z := λz′, so that

lim
n→∞

(xn, vn)− (x, v)

‖(xn, vn)− (x, v)‖
= lim
n→∞

(xn, vn)− (x, v)

‖xn − x‖
√

1 + ‖zn‖2
= (w, z) ∈ T(x,v)SR

2,

where SR2 = {(x′, v′) ∈ TR2 | F (x′, v′) = 1}. Therefore,

lim
n→∞

φt(xn, vn)− φt(x, v)

‖(xn, vn)− (x, v)‖
= dφt(x, v)(w, z).

The Jacobi field ζ : (−T, T )→ R2 along γ defined by

(ζ(t), ζ̇(t)) = dφt(x, v)(w, z)

satisfies Gv(γ(t), γ̇(t))ζ(t) = 0.
We claim that ζ is nowhere vanishing. Indeed, let ν : (−T, T )→ R2 the smooth

vector field along γ defined by ν(t) ∈ kerGv(γ(t), γ̇(t)), ‖ν(t)‖ = 1, and ν(t)
pointing to the the side of γ containing the γn’s. We can write ζ(t) = z(t)ν(t)
for some continuous function z = (−T, T )→ R. Notice that

ζ(t) = lim
n→∞

γn(t)− γ(t)

‖(xn, vn)− (x, v)‖
.

If ζ(t) = 0 for some t, since γn(t) − γ(t) and ν(t) point to the same side of γ,
we readily obtain that z(t) = 0 and ż(t) = 0. But this would imply that ζ(t) =
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ζ̇(t) = 0, and since ζ is a Jacobi field we would conclude that ζ vanishes identically,
contradicting ζ(0) = w.

If γ had conjugate points γ(t1), γ(t2) for some −T < t1 < t2 < T , there would ex-
ists a Jacobi field η : [t1, t2]→ R2 such that η(t1) = η(t2) = 0, η̇(t1) 6= 0, and η(t) ∈
kerGv(γ(t), γ̇(t)) for all t ∈ [t1, t2]. Since we are on a surface, kerGv(γ(t), γ̇(t)) is
1-dimensional. Therefore, by the Sturm separation theorem, η and ζ would have
alternating zeroes, contradicting the fact that ζ is nowhere vanishing. �

Proof of Theorem 5.7. Let γ0 ∈ crit(E) ∩ E−1(0,∞) be a simple closed geodesic
that does not have a well defined Birkhoff map. We only need to consider the
case in which γ0 has conjugate points (i.e. indΩ(γm) > 0 for some integer m ≥ 1),
for otherwise the existence of infinitely many closed geodesics is already provided
by Corollary 5.6. The fact that γ0 does not have a well defined Birkhoff map
means that, for some x0 = γ0(t0) and v0 ∈ SxS2 transverse to γ̇0(t0), the geodesic
ζ : (0,∞) → S2, ζ(t) = expx0

(tv0) does not intersect γ0 in positive time, and

therefore stays trapped in a connected component B ⊂ S2 \ γ(S1). We consider
the compact subset

K :=
⋂
t>0

ζ[t,∞) ⊂ B.

We claim that K ∩ γ0(S1) = ∅. Otherwise we can find a sequence tn →∞ and
s ∈ R such that ζ(tn) → γ(s). Since ζ does not intersect γ in positive time, up

to extracting a subsequence we must have ζ̇(tn) → γ̇0(s). Since γ0 has conjugate
points, there exists δ > 0 such that γ0|(s−δ,s+δ) has conjugate points. Lemma 5.8
thus provides a contradiction: since ζ|[tn−δ,tn+δ] does not intersect γ0|[s−δ,s+δ],
γ0|(s−δ,s+δ) cannot have conjugate points.

Let U ⊂ B \K be the connected component whose closure contains γ0(S1). One
would expect this open set to be locally geodesically convex. We prove a slightly
weaker convexity: for all x, y ∈ U that can be joined by means of an absolutely
continuous curve in U of length strictly less than ρ := injrad(S2, F ), the shortest
geodesic joining x and y is entirely contained in U . Indeed, let γx,y : [0, 1] → S2,
γx,y(t) = expx(t exp−1

x (y)) be such a geodesic, and assume by contradiction that
some z = γx,y(s) belongs to K. Then, by the definition of K, there exists a
sequence tn → ∞ such that ζ(tn) → z. Up to extracting a subsequence, the

sequence ζ̇(tn) converges to some w ∈ SzS2 that is transverse to γ̇x,y(s), since the
geodesic θ : R → S2, θ(t) = expz(tw) is entirely contained in K. We denote the
geodesic balls centered at z by

B(z, r) :=
{
z′ ∈ S2

∣∣ d(z, z′) < injrad(S2, F )/2
}
, r > 0,

where d : S2 × S2 → [0,∞) is the distance (4.1) induced by the Finsler metric F .
The points x and y are contained in different connected components of B(z, ρ) \
ζ(−ρ, ρ). Therefore, every continuous curve θ : [0, 1] → U such that θ(0) = x and
θ(1) = y must leave the geodesic ball B(z, ρ); since d(x, z) + d(z, y) < ρ, we readily
obtain that the length of such a θ is larger than ρ, contradicting our assumption
on x, y.

We consider the space

W :=
{
γ ∈ Λ

∣∣ γ(S1) ⊂ U, γ not contractible in U, E(γ) < E(γ0)
}
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We claim that W is not empty. Indeed, since γ0 has conjugate points, by Proposi-
tion 4.2(vii) there exists a nowhere vanishing 1-periodic vector field ξ along γ such
that d2E(γ)[ξ, ξ] < 0, and ξ(t) points inside U for all t ∈ S1. We define γs ∈ Λ by

γs(t) = expγ0(t)(sξ(t)).

If s > 0 is small enough, then γs is contained in U , non-contractible in U (since it
is homotopic to γ0 within U ∪ γ0(S1)), and since

E(γs) ≤ E(γ0) + 1
2s

2 d2E(γ)[ξ, ξ] + o(s2)

we have E(γs) < E(γ0). Thus any such γs belongs to W .
We fix k ∈ N large enough so that γ0 is contained in the space of broken closed

geodesics Λk ⊂ Λ. We define the continuous map r : W → Λk by r(γ)( ik ) = γ( ik )
for all i ∈ Zk. The above convexity property of U implies that, for each γ ∈ W ,
r(γ) is a curve contained in U and homotopic to γ within U . Therefore, r is a
retraction r : W →W ∩ Λk. Since E(r(γ)) ≤ E(γ), we have

`2 := inf
W
E = inf

W∩Λk
E.

We choose a sequence γn ∈W ∩Λk such that E(γn)→ `2. We can assume that
each γn is without self-intersection. Indeed, if γn has self-intersections, we can find
an interval [a, b] ( [0, 1] such that γn|[a,b] is a non-contractible loop. If i0, i1 are
positive integers such that

[ i0+1
k , i1−1

k ] ⊆ [a, b] ⊆ [ i0k ,
i1
k ],

we define γ̃n ∈W ∩Λk by setting γ̃n( ik ) = γn(a) for all i ∈ {0, ..., i0}∪{i1, ..., k−1},
and γ̃n( ik ) = γn( ik ) for all i ∈ {i0 + 1, ..., i1 − 1}. The curve γ̃n has less self-
intersections than γn, and energy E(γ̃n) ≤ E(γn). Since a broken closed geodesic
has only finitely many self intersections, by repeating this procedure a finite number
of times we eliminate all of them.

Since W ∩ Λk is compact, up to extracting a subsequence we have that

γn → γ ∈W ∩ Λk,

and E(γ) = `2. We claim that γ is a closed geodesic. This is clear if γ is contained
in W ∩ Λk, for in this case it would be a critical point of the energy functional E.
Assume now that γ ∈ ∂(W ∩ Λk), and consider the unique θ, θn ∈ Λk such that

θ( ik ) = γ( i+1/2
k ), θn( ik ) = γn( i+1/2

k ), ∀i ∈ Zk.
Clearly, θn → θ. Moreover, E(θ) ≤ E(γ) with equality if and only if γ is a closed
geodesic. The above convexity property of U implies that θn ∈W ∩Λk. Therefore
E(θn) ≥ inf E|W = E(γ) and E(θ) = E(γ), and we conclude that γ is a closed
geodesic.

Since the approximating loops γn are without self-intersections, γ is a simple
closed geodesic. Therefore, the union γ0(S1) ∪ γ(S1) bounds an open annulus
A ⊂ U . Since E(γ) = inf E|W , in particular there is no γ̃ ∈ Λ with energy
E(γ̃) < E(γ) and support γ̃(S1) ⊂ A. Therefore, by applying Proposition 4.2(vii)
as above, we infer that γ has no conjugate points. Corollary 5.6 implies that (S2, F )
has infinitely many closed geodesics. �

Proof of Theorem 1.3. By Theorem 1.2, if (S2, F ) has only finitely many simple
closed geodesics, there exists at least one simple closed geodesic γ ∈ crit(E) with
non-zero local homology C3(γ;Z2). If γ does not have a well defined Birkhoff map,
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Theorem 5.7 implies that there are infinitely many closed geodesics. Assume now
that γ has a well defined Birkhoff map. Since C3(γ;Z2) is non-zero, C3(t · γ;Z2) is
non-zero as well, and

ind(t · γ) ≤ 3 ≤ ind(t · γ) + nul(t · γ), ∀t ∈ S1.

By Proposition 4.2(iv), we have

indΩ(t · γ) + nulΩ(t · γ) ≥ ind(t · γ) + nul(t · γ)− 1 ≥ 2, ∀t ∈ S1.

Since nulΩ(t·γ) ≤ 1, this inequality implies that indΩ(t·γ) ≥ 1. If indΩ(t·γ) ≥ 2 for
all t ∈ S1, Theorem 5.3 implies that there are infinitely many closed geodesics. If
instead indΩ(t·γ) = 1 for some t ∈ S1, the above inequality implies that nulΩ(t·γ) =
1, and Corollary 5.5 implies that there are infinitely many closed geodesics. �
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Pures Appl. 5 (1898), no. 4, 27–74.

[Hin93] N. Hingston, On the growth of the number of closed geodesics on the two-sphere, Inter-

nat. Math. Res. Notices (1993), no. 9, 253–262.
[Kat73] A. B. Katok, Ergodic perturbations of degenerate integrable Hamiltonian systems, Izv.

Akad. Nauk SSSR Ser. Mat. 37 (1973), 539–576.
[Kli95] W. P. A. Klingenberg, Riemannian geometry, second ed., De Gruyter Studies in Math-

ematics, vol. 1, Walter de Gruyter & Co., Berlin, 1995.

[Lju66] L. A. Ljusternik, The topology of the calculus of variations in the large, Translated
from the Russian by J. M. Danskin. Translations of Mathematical Monographs, Vol. 16,
American Mathematical Society, Providence, R.I., 1966.



CLOSED GEODESICS ON REVERSIBLE FINSLER 2-SPHERES 51
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