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ABSTRACT. We study the cases of equality and prove a rigidity theorem concerning the 1-Bakry-
Émery inequality. As an application, we prove the rigidity and identify the extremal functions of the
Gaussian isoperimetric inequality, the logarithmic Sobolev inequality and the Poincaré inequality
in the setting of RCD(K,∞) metric measure spaces. This unifies and extends to the non-smooth
setting the results of Carlen-Kerce [20], Morgan [43], Bouyrie [19], Ohta-Takatsu [44], Cheng-Zhou
[23].

Examples of non-smooth spaces fitting our setting are measured-Gromov Hausdorff limits of
Riemannian manifolds with uniform Ricci curvature lower bound, and Alexandrov spaces with cur-
vature lower bound. Some results including the rigidity of the 1-Bakry-Émery inequality, the rigidity
of Φ-entropy inequalities are of particular interest even in the smooth setting.
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1. INTRODUCTION1

In this paper, we prove some rigidity theorems concerning the 1-Bakry-Émery inequality and2

some other important functional inequalities on RCD(K,∞) metric measure spaces for positive3

K. Metric measure space satisfying Riemannian curvature-dimension condition RCD(K,∞) was4

introduce by Ambrosio-Gigli-Savaré in [9], as a refinement of the Lott-Sturm-Villani’s CD(K,∞)5

condition introduced in [42] and [48]. Important examples of spaces satisfying RCD(K,∞) con-6

dition include: measured-Gromov Hausdorff limits of Riemannian manifolds with Ric ≥ K (c.f.7

[32]), Alexandrov spaces with curvature ≥ K (c.f. [50]). We refer the readers to the survey [1] for8

an overview of this fast-growing field and bibliography.9

Let us briefly explain the primary motivation of this paper. It is now well-known that the Bakry-10

Émery theory is an efficient tool in the study of geometric and functional inequalities (c.f. [14] and11

[15]). Many important inequalities such as the logarithmic-Sobolev inequality and the Gaussian12

isoperimetric inequality, have proofs using heat flow or the Γ2-calculus of Bakry-Émery. It was13

noticed (e.g. by Otto-Villani [45] and Bouyrie [19]) that the cases of equality in the Γ2-inequality14

Γ2 ≥ KΓ is a key to proving rigidity of these inequalities. More precisely, if there is a function15

attaining the equality in one of these inequalities, there exists a (possibly different) function at-16

taining the equality in the Γ2-inequality. For example, when K > 0, any extreme function f = fp17

attaining the equality in the sharp Poincaré inequality18 ∫
f 2 dm ≤ 1

K

∫
Γ(f) dm (1.1)

satisfies Γ2(fp) = KΓ(fp), and any extreme function f = fl attaining the equality in the sharp19

logarithmic-Sobolev inequality20 ∫
f ln f dm ≤ 1

2K

∫
Γ(f)

f
dm (1.2)

satisfies Γ2(ln fl) = KΓ(ln fl).21

An interesting observation is that both fp, fl attain the equality in the same 1-Bakry-Émery22

inequality23 √
Γ(Ptf) ≤ e−KtPt

√
Γ(f) (1.3)

where (Pt)t≥0 is the heat flow associated with the Dirichlet form E(·) :=
∫

Γ(·) dm and the24

‘carré du champ’ Γ. Furthermore, both div
(
∇Ptfp
|Ptfp|

)
and div

(
∇Ptfl
|Ptfl|

)
attain the equalities in the25

Γ2-inequality and the 2-Bakry-Émery inequality. The main aim of this paper is to understand this26

observation in general cases and an abstract framework.27

1.1. Bakry-Émery’s curvature criterion. Let (M, g, e−V Volg) be a weighted Riemannian man-28

ifold equipped with a weighted volume measure e−V Volg. The canonical diffusion operator asso-29

ciated with this smooth metric measure space is L = ∆ − ∇V , where ∆ is the Laplace-Beltrami30

operator. We say that (M, g, e−V Volg) satisfies the BE(K,∞) condition for some K ∈ R, in the31

sense of Bakry-Émery if32

RicV := Ric + HessV ≥ K,

where Ric denotes the Ricci curvature tensor and HessV denotes the Hessian of V .33

There are several equivalent characterizations of BE(K,∞) condition, which have their own34

advantages in studying different problems. For example, the following ones are known to be35

equivalent to the BE(K,∞) curvature criterion. Even in the non-smooth RCD(K,∞) framework,36
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these characterizations are equivalent (in proper forms), see [9, 10, 35, 47] for more discussions1

on this topic.2

a) Γ2-inequality: Γ2(f) ≥ KΓ(f) for all f ∈ C∞c (M), where Γ2 and Γ are defined by3

Γ2(f) :=
1

2
LΓ(f, f)− Γ(f,Lf), Γ(f, f) :=

1

2
L(f 2)− fLf = g(∇f,∇f).

b) p-Bakry-Émery inequality for p > 1:4 √
Γ(Ptf)

p
≤ e−pKtPt

(√
Γ(f)

p)
, ∀ f ∈ W 1,p(M, e−V Volg) (1.4)

where (Pt)t>0 is the semigroup generated by the diffusion operator L.5

c) 1-Bakry-Émery inequality:6 √
Γ(Ptf) ≤ e−KtPt

(√
Γ(f)

)
, ∀ f ∈ W 1,1(M, e−V Volg). (1.5)

Naturally, one would ask the following questions: what if the equalities hold in these different7

characterizations of BE(K,∞)? It will not be surprising that the equalities in Γ2-inequality, 2-8

Bakry-Émery inequality, and some other ‘second-order’ inequalities, are all equivalent and any9

non-constant extreme function is affine and induces a splitting map. For any p > 1, by Hölder10

inequality, the equality in the p-Bakry-Émery inequality yields the equality in the 1-Bakry-Émery11

inequality. Conversely, from the examples of the Poincaé inequality and the log-Sobolev inequality,12

the equality in the 1-Bakry-Émery inequality is strictly weaker than the equality in the 2-Bakry-13

Émery inequality. So we would ask: what if the equality in the 1-Bakry-Émery inequality is14

attained by a non-constant function. Inspired by a recent work of Ambrosio-Brué-Semola [2]15

concerning RCD(0, N) spaces, we conjecture that on an RCD(K,∞) space with K > 0, the16

existence of a non-constant function attaining the equality in the 1-Bakry-Émery inequality yields17

the splitting theorem.18

In the first theorem, we prove the rigidity of the 1-Bakry-Émery inequality on dimension-free19

RCD(K,∞) spaces with K > 0.20

Theorem 1.1 (Lemma 2.9, Theorem 3.7, Proposition 3.13, 3.14). Let (X, d,m) be an RCD(K,∞)21

probability space with K > 0. Let u ∈ D(∆) be a non-constant function with ∆u ∈ V. Then the22

following statements are equivalent.23

(1) (Γ2-inequality) Γ2(u;ϕ) = K
∫
ϕΓ(u) dm for any ϕ ∈ L∞ with ∆ϕ ∈ L∞;24

(2)
∫

(∆u)2 dm = K
∫

Γ(u) dm;25

(3) (Spectral gap) −∆u = Ku;26

(4) (Poincaré inequality)
∫

Γ(u) dm = K
∫
u2 dm;27

(5) (2-Bakry-Émery inequality) Γ(Ptu) = e−2KtPtΓ(u) for some t > 0.28

If u satisfies one of the properties above, it holds29

(6) (1-Bakry-Émery inequality)
√

Γ(Ptu) = e−KtPt
√

Γ(u) for all t > 0;30

(7) Ric(u, u) = KΓ(u) dm;31

(8) u is an affine function, this means Hessu = 0 and Γ(u) is a positive constant;32

(9) the gradient flow of u induces a one-parameter semigroup of isometries of (X, d).33

If u attains the equality in the 1-Bakry-Émery inequality (6), we have34

(10) ∇Ptu
|∇Ptu| =: b does not depend on t > 0;35

(11) ∆div(b) = −Kdiv(b), thus div(b) attains the equality in the 2-Barky-Émery inequality;36
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(12) ∇div(b) = −Kb;1

(13) there exists an RCD(K,∞) probability space (Y, dY ,mY ), such that the metric measure
space (X, d,m) is isometric to the product space(

R, | · |,
√
K/(2π) exp(−Kt2/2) dt

)
× (Y, dY ,mY )

equipped with the L2-product metric and the product measure;2

(14) u can be represented in the coordinate of the product space R× Y by

u(r, y) =

∫ r

0

g(s) ds ∀(r, y) ∈ R× Y

for some non-negative g ∈ L2(R,
√
K/(2π) exp(−Kt2/2) dt). In particular, if u attains

equality in the 2-Bakry-Émery inequality, there is a constant C such that

Ptu(r, y) = CeKtr ∀(r, y) ∈ R× Y, t > 0.

1.2. Gaussian isoperimetric inequality. ForK > 0, let φK(t) =
√

K
2π

exp(−Kt2

2
) be a Gaussian-3

type (probability) density function on R. It is known that (R, | · |, φKL1) is a model space with4

synthetic Ricci curvature lower bound K.5

Let ΦK denote the error function6

ΦK(t) :=

∫ t

−∞
φK(s) ds.

It can be seen that ΦK is continuous and strictly increasing, so its inverse Φ−1
K is well-defined. We7

define the Gaussian isoperimetric profile IK : (0, 1) 7→ [0,
√

K
2π

] by8

IK(t) := φK ◦ Φ−1
K (t), (1.6)

and we define IK(t) = 0 for t = 0, 1. It can be seen that IK =
√
KI1 and I ′′KIK = −K. In9

particular, IK(t) is strictly concave in t and increasing in K.10

Let γn = Πn
i=1φ1(xi)dxi be the n-dimensional standard Gaussian measure on Rn. Based on an11

isoperimetric inequality on the discrete cube and central limit theorem, Bobkov [17] proved the12

following functional version of the Gaussian isoperimetric inequality13

I1

(∫
f dγn

)
≤
∫ √

I1(f)2 + |∇f |2 dγn (1.7)

for any Lipschitz function f on (Rn, | · |, γn) with values in [0, 1].14

In [16], Bakry and Ledoux proved the Bobkov’s inequality (1.7) on smooth metric measure15

spaces using a semigroup method. Recently, by adopting the argument of Bakry-Ledoux, Ambrosio-16

Mondino [11] obtain the Bobkov’s inequality in the non-smooth RCD(K,∞) setting.17

One interesting problem is: when does the equality hold in the Bobkov’s inequality (1.7)? In18

[20, Section 2], by extending ideas of Ledoux [38], Carlen and Kerce characterized the cases of19

equality in (1.7) for Gaussian space. Recently, Carlen-Kerce’s technique is adopted by Bouyrie20

[19] to study this problem on weighted Riemannian manifolds satisfying the BE(K,∞) condition21

with K > 0.22
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In this paper, we will study the cases of equality in the Bobkov’s inequality on RCD(K,∞)1

spaces. We will identify all the extremal functions, and prove that any non-trivial extreme function2

induces an isometry map from this space to a product space.3

Let us explain how to formulate Bobkov’s inequality on an RCD(K,∞) metric measure space4

(X, d,m). Denote by V the space of 2-Sobolev functions, defined as the collection of functions5

f ∈ L2(X,m) such that there exists a sequence (fn)n ⊂ Lip(X, d) converging to f in L2 and6

lip(fn)→ G in L2 for some G, where lip(fn) is the local Lipschitz constant of fn defined by7

lip(fn)(x) := lim
y→x

|fn(y)− fn(x)|
d(y, x)

(and we define lip(fn)(x) = 0 if x is an isolated point). It is known that there exists a minimal8

function in m-a.e. sense, denoted by |∇f |, called minimal weak upper gradient. If (X, d) is a9

Riemannian manifold and m = Volg is its volume measure, we know that |∇f | = lip(f) for any10

f ∈ Lip (c.f. [22, Theorem 6.1]).11

On RCD(K,∞) spaces, it is known that (c.f. [8, 9]) the functional V 3 f 7→ E(f) =12 ∫
|∇f |2 dm is lower semi-continuous (w.r.t. weak L2-convergence), and it is a quasi-regular,13

strongly local, conservative Dirichlet form admitting a carré du champ Γ(f) := |∇f |2.14

Let (Pt)t≥0 be the L2-gradient flow of E with generator ∆. If (X, d,m) is a smooth Riemannian15

manifold with boundary, it is known that (Pt) is the Neumann heat flow and ∆ is the (Neumann)16

Laplace-Beltrami operator. For any f ∈ L1 with values in [0, 1] and K > 0, we define JK(f) ∈17

[0,+∞] by18

JK(f) := lim
t→0

∫ √
IK(Ptf)2 + |∇Ptf |2 dm. (1.8)

Definition 1.2 (Bobkov’s inequality on metric measure spaces). We say that a general metric19

measure space (X, d,m) supports the K-Bobkov’s isoperimetric inequality if for all measurable20

f ∈ L1(X,m) with values in [0, 1],21

IK

(∫
f dm

)
≤ JK(f). (1.9)

Remark 1.3. It is known that m(X) < ∞ if (X, d,m) satisfies RCD(K,∞) with K > 0 (c.f.22

[48, Theorem 4.26]). Without loss of generality, we can assume that m is a probability measure.23

Furthermore, the assumption ‘f ∈ L1(X,m)’ in Definition 1.2 could be removed.24

Applying (1.9) with a characteristic function f = χE for a Borel set E ⊂ X , we get the25

following Gaussian isoperimetric inequality26

P (E) ≥ IK
(
m(E)

)
(1.10)

where P (E) is the perimeter function defined by P (E) := |DχE|TV(X), and |DχE|TV is the total27

variation of χE (c.f. [3, 4] for more details above BV functions and the perimeter function on28

metric measure spaces).29

By lower semi-continuity of weak gradients and the Bakry-Émery’s gradient estimate |lip(Ptf)|2 ≤
e−2KtPt

(
|∇f |2

)
(see [9, Theorem 6.2]), we can see that

JK(f) =

∫ √
IK(f)2 + |∇f |2 dm

for f ∈ Lip. In addition, we can see that the Bakry-Émery’s gradient estimate yields the irreducible
of E, i.e. |∇f | = 0 implies that f is constant. Since irreducibility implies ergodicity of the heat
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flow (see for instance [15, Section 3.8]), we know Ptf →
∫
f dm in L2 as t→∞. Notice that by

2-Bakry-Émery inequality, limn→∞ |∇Ptf | = 0 in L2. Thus we get

lim
t→∞

∫ √
IK(Ptf)2 + |∇Ptf |2 dm = IK

(∫
f dm

)
.

In Proposition 4.1 we prove that the function t 7→ JK(Ptf) is non-increasing on RCD(K,∞)1

spaces with positive K. From the discussions above we know these spaces support the Bobkov’s2

inequality. In particular, f attains the equality in the Bobkov’s inequality if and only if JK(Ptf) is3

a constant function in t. Then, in Proposition 4.3 we prove the rigidity of the Bobkov’s inequality,4

which extends [20, Theorem 1] and [19, Theorem 1.4] to the non-smooth setting.5

Theorem 1.4 (Proposition 4.1 and 4.3). Assume that a metric measure space (X, d,m) satisfies6

RCD(K,∞) for some K > 0. Then (X, d,m) supports the K-Bobkov’s isoperimetric inequality.7

Furthermore, IK
(∫

f dm
)

= JK(f) for some non-constant f ∈ L∞ if and only if

(X, d,m) ∼=
(
R, | · |,

√
K/(2π)e−Kt

2/2dt
)
× (Y, dY ,mY )

for some RCD(K,∞) space (Y, dY ,mY ), and up to change of variables, f is either the indicator8

function of a half space9

f(r, y) = χE, E = (−∞, e]× Y , (r, y) ∈ R× Y
where e ∈ R ∪ {+∞} with

∫ e
−∞ φK(s) ds =

∫
f dm; or else, there are a = (2

∫
f)−1 and

b = Φ−1
K

(
f(0, y)

)
such that

f(t, y) = ΦK(at+ b) =

∫ at+b

−∞
φK(s) ds.

1.3. Φ-entropy inequalities. Let Φ be a continuous function defined on an interval I ⊂ R. For10

any I-valued function f , the Φ-entropy of f is defined by11

EntΦ
m(f) :=

∫
Φ(f) dm.

Using a similar method as Chafaı̈ [21] (see also Bolley-Gentil [18]), we can prove the following12

Φ-entropy inequality on RCD(K,∞) spaces. It can be seen that the Poincaré inequality and the13

log-Sobolev inequality are both Φ-entropy inequalities.14

Proposition 1.5 (Proposition 4.5). Let (X, d,m) be a metric measure space satisfying RCD(K,∞)15

condition for some K > 0. Let Φ be a C2-continuous strictly convex function on an interval I ⊂ R16

such that 1
Φ′′

is concave. Then (X, d,m) supports the following Φ-entropy inequality:17

EntΦ
m(f)− Φ

(∫
f dm

)
≤ 1

2K

∫
Φ′′(f)Γ(f) dm (1.11)

for any I-valued function f .18

Furthermore, we completely characterize the cases of equality in Φ-entropy inequalities. In19

particular, we prove that the Poincaré inequality and the log-Sobolev inequality are essentially the20

only Φ-entropy inequalities that the equalities could be attained.21

Theorem 1.6. Let (X, d,m) be a metric measure space satisfying RCD(K,∞) for some K > 0.22

Assume there is a function Φ which fulfils the conditions in Proposition 1.5, and a non-constant23

function f attaining the equality in the corresponding Φ-entropy inequality. Then24
6



(1) f attains the equality in the 1-Bakry-Émery inequality, so that (X, d,m) is isometric to(
R, | · |,

√
K/(2π)e−Kt

2/2dt
)
× (Y, dY ,mY )

for some RCD(K,∞) space (Y, dY ,mY );1

(2) Φ′(f) attains the equality in the 2-Bakry-Émery inequality;2

(3) up to affine coordinate transforms, additive and multiplicative constants, Φ = x2 or x lnx.3

In these cases, f(r, y) can be written as apr or ealr−a
2
l /2K for some constants ap, al ∈ R.4

Remark 1.7. It is known that the Bobkov’s isoperimetric inequality yields some important inequal-5

ities (even without any curvature condition). For example, from [16, Theorem 3.2] we know the6

K-Bobkov’s inequality yields the K-logarithmic Sobolev inequality7 ∫
f ln f dm ≤ 1

2K

∫
|∇f |2

f
dm (1.12)

for any non-negative locally Lipschitz function f with
∫
f dm = 1. It is known (c.f. Lott-Villani8

[41], Gigli-Ledoux [31]) that the K-logarithmic Sobolev inequality implies the K-Talagrand in-9

equality10

W 2
2 (fm,m) ≤ 2

K

∫
f ln f dm (1.13)

for any f with
∫
f dm = 1. It is known (using Hamilton-Jacobi semigroup, c.f. [40, Theorem11

1.8] and [8, Section 3]) that the K-Talagrand inequality implies the K-Poincaré inequality (or12

K-spectral gap)13 ∫
f 2 dm ≤ 1

K

∫
|∇f |2 dm (1.14)

for any locally Lipschitz function f with
∫
f dm = 0.14

Inspired by the implications of the Bobkov’s inequality discussed above, one would ask whether15

we can deduce the rigidity of the Poincaré inequality and the log-Sobolev inequality (Theorem16

1.6) from the rigidity of the Bobkov’s inequality (Theorem 1.4) or not. For example, assume17

there is a non-constant function attaining the equality in the Poincaré inequality, then (X, d,m)18

does not support the (K + 1
n
)-Bobkov’s inequality for any n ∈ N. So for any n ∈ N there is19

fn ∈ Lip(X, d) ∩ L∞ such that20 √
K

2π
≥ IK+ 1

n

(∫
fn dm

)
> JK+ 1

n
(fn) ≥ 0. (1.15)

Thus there is a subsequence of (fn) converging to some f in L2. Letting n → ∞ in (1.15), by21

continuity of (K, t) 7→ IK(t), Fatou’s lemma and lower semi-continuity of E, we obtain22

IK

(∫
f dm

)
≥ JK(f).

Combining with the K-Bobkov’s inequality we get IK
(∫

f dm
)

= JK(f).23

However, we can not assert that f is not constant, because we do not know much about (fn)24

except its existence.25

Remark 1.8. Concerning an extremal function f of the log-Sobolev inequality, it was conjectured26

by Otto-Villani [45, Page 391] that ln f attains the equality in the Γ2-inequality Γ2 ≥ KΓ. Unfor-27

tunately, due to lack of regularity, we can not use second-order differentiation formula as suggested28

in [45] on curved spaces.29
7



Recently, Ohta-Takatsu [44] give a rigorous proof to the rigidity of the log-Sobolev inequality1

on smooth metric measure spaces, using a localization argument which benefits from a break-2

through of Klartag [37]. As mentioned in [44, §4], the rigidity of the log-Sobolev inequality on3

RCD(K,∞) spaces was an open problem due to lack of ‘needle decomposition’ on dimension-free4

RCD(K,∞) spaces.5

Thus the novelty of our result is that it gives an affirmative answer to the conjecture of Otto-6

Villani, and extends the result of Ohta-Takatsu to RCD(K,∞) spaces.7

1.4. Structure of the paper. In the first part of Section 2 we review some basic results about the8

non-smooth Bakry-Émery theory and calculus on metric measure spaces. Most of these results9

can be found in the papers of Ambrosio-Gigli-Savaré [10, 8, 9], Gigli [27] and Savaré [47]. In the10

second part, we study the cases of equality in the 2-Bakry-Émery inequality.11

In Section 3 we prove the rigidity of the 1-Bakry-Émery inequality. This extends the result of12

Ambrosio-Brué-Semola [2] to dimension-free RCD(K,∞) spaces with K > 0. Some important13

tools used there are the continuity equation theory in the non-smooth framework developed by14

Ambrosio-Trevisan [13], and the functional analysis tools by Gigli [27]. We remark that the proof15

in [2] relies on a two-sides heat kernel estimate, and it seems that the proof works only for K = 016

case.17

In Section 4, we apply the results obtained in the previous two sections to study the rigidity of18

the Bobkov’s Gaussian isoperimetric inequality and Φ-inequalities. The arguments in this section19

are not totally new, similar semigroup arguments were used by Carlen-Kerce [20], Chafaı̈ [21] etc.20

in the study of related problems on smooth metric measure spaces.21

2. SYNTHETIC CURVATURE-DIMENSION CONDITIONS22

2.1. Γ2-calculus on metric measure spaces.23

Definition 2.1 (Lott-Sturm-Villani’s curvature-dimension condition, c.f. [42, 48]). We say that a24

metric measure space (X, d,m) is CD(K,∞) for some K ∈ R if the entropy functional Entm is25

K-displacement convex on the L2-Wasserstein space (P2(X),W2). This means, for any two prob-26

ability measures µ0, µ1 ∈ P2(X) with µ0, µ1 � m, there is a L2-Wasserstein geodesic (µt)t∈[0,1]27

such that28
K

2
t(1− t)W 2

2 (µ0, µ1) + Entm(µt) ≤ tEntm(µ1) + (1− t)Entm(µ0) (2.1)

where Entm(µt) is defined as
∫
ρt ln ρt dm if µt = ρtm, otherwise Entm(µt) = +∞.29

As we introduced in the Introduction section, the energy form E(·) is defined on L2(X,m) by30

E(f) := inf
{

lim inf
n→∞

∫
X

lip(fn)2dm : fn ∈ Lipb(X), fn → f in L2(X,m)
}

=

∫
X

∣∣∇f |2 dm

where lip(f)(x) := lim supy→x |f(x) − f(y)|/d(x, y) denotes the local Lipschitz slope at x ∈ X31

and |∇f | denotes the minimal weak upper gradient. We refer the readers to [8, 22] for details about32

the theory of Sobolev space on metric measure spaces.33

We say that (X, d,m) is an RCD(K,∞) space if it is CD(K,∞), and E(·) is a quadratic form.
In this case, it is known that E defines a quasi-regular, strongly local, conservative Dirichlet form
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admitting a carré du champ Γ(f) := |∇f |2 (c.f. [10] and [14]). Denote V = D(E) = {f : E(f) <
∞}. For any f, g ∈ V, by polarization, we define

Γ(f, g) :=
1

4

(
Γ(f + g)− Γ(f − g)

)
,

and

E(f, g) =

∫
Γ(f, g) dm.

The heat flow (Pt) is defined as the gradient flow of E in L2(m). It is known that Pt is linear1

and self-adjoint (c.f. [9]). We recall the following regularization properties of (Pt), ensured by the2

theory of gradient flows and maximal monotone operators.3

Lemma 2.2 (A priori estimates). For every f ∈ L2(m) and t > 0 it holds4

(1) ‖Ptf‖L2 ≤ ‖f‖L2;5

(2) E(Ptf) ≤ 1
2t
‖f‖2

L2;6

(3) ‖∆Ptf‖L2 ≤ 1
t
‖f‖L2 .7

Let us recall the notion of non-smooth vector fields introduced by Weaver in [49] (see also [13]8

and [27]).9

Definition 2.3. We say that a linear functional b : Lip(X, d) 7→ L0(X,m) is an L2-derivation, and10

write b ∈ L2(TX) (or b ∈ L2
loc(TX) resp.), if it satisfies the following properties.11

(1) Leibniz rule: for any f, g ∈ Lip(X, d) it holds12

b(fg) = b(f)g + fb(g).

(2) L2-bound: there exists g ∈ L2(X,m) (or L2
loc(X,m) resp.) such that13

|b(f)| ≤ g|lip(f)|, m− a.e. on X,

for any f ∈ Lip and we denote by |b| the minimal (in the m-a.e. sense) g satisfying such14

property.15

In [27] Gigli introduces the so-called tangent and cotangent modules over metric measure spaces,16

and proves the identification results between L2-derivations and elements of the tangent module17

L2(TX).18

Proposition 2.4 (Section 2.2, [27]). Let E be the Dirichlet form associated with the metric measure19

space (X, d,m), and let Γ be the carré du champ defined on V. Then there exists a L∞-Hilbert20

module L2(TX) satisfying the following properties.21

(1) For any f ∈ V, there is a derivation∇f ∈ L2(TX) defined by the formula22

∇f(g) = Γ(f, g), ∀g ∈ Lip(X, d).

(2) L2(TX) is a module over the commutative ring L∞(X,m).23

(3) L2(TX) is a Hilbert space equipped with the norm ‖ · ‖ which is compatible with the24

semi-norm E on V, i.e. it holds the following correspondence25

V 3 f 7→ ∇f ∈ L2(TX), s.t. ‖∇f‖2 = E(f).
9



(4) The norm ‖ · ‖ is induced by a pointwise inner product 〈·, ·〉 satisfying1

〈∇f,∇g〉 = Γ(f, g), m− a.e.

and2

〈h∇f,∇g〉 = h〈∇f,∇g〉, m− a.e.

for any f, g ∈ V and h ∈ L∞loc.3

(5) L2(TX) is generated by {∇g : g ∈ V} in the following sense. For any v ∈ L2(TX),4

there exists a sequence vn =
∑Mn

i=1 an,i∇gn,i with an,i ∈ L∞ and gn,i ∈ V, such that5

‖v − vn‖ → 0 as n→∞.6

Via integration by parts, we can define the divergence of vector fields.7

Definition 2.5. Let b ∈ L2
loc(TX). We say that b ∈ D(div) if there exists g ∈ L2(X,m) such that8 ∫

〈b,∇f〉 dm =

∫
b(f) dm = −

∫
gf dm for any f ∈ Lipbs(X, d).

By a density argument it is easy to check that such function g is unique (when it exists) and we9

will denote it by div(b).10

In particular, the Dirichlet form E induces a densely defined selfadjoint operator ∆ : D(∆) ⊂11

V 7→ L2 satisfying E(f, g) = −
∫
g∆f dm for all g ∈ V.12

Put

Γ2(f ;ϕ) :=
1

2

∫
Γ(f)∆ϕ dm−

∫
Γ(f,∆f)ϕ dm

and D(Γ2) :=
{

(f, ϕ) : f, ϕ ∈ D(∆), ∆f ∈ V, ϕ,∆ϕ ∈ L∞
}

.13

It is proved in [9] (and also [6] for σ-finite case) that RCD(K,∞) implies the following non-14

smooth Bakry-Émery condition BE(K,∞).15

Proposition 2.6 (The Bakry-Émery condition). Let (X, d,m) be an RCD(K,∞) space. Then the16

corresponding Dirichlet form E satisfies the following BE(K,∞) condition17

Γ2(f ;ϕ) ≥ K

∫
ϕΓ(f) dm (2.2)

for all (f, ϕ) ∈ D(Γ2) with ϕ ≥ 0.18

Under some natural regularity assumptions on the distance canonically associated with the19

Dirichlet form, the converse implication is also true, see [10] for more details.20

We have the following crucial properties obtained by Savaré [47] and Gigli [27]. Recall that the21

space of test functions is defined as TestF :=
{
f ∈ D(∆) ∩ L∞ : ∆f ∈ V, Γ(f) ∈ L∞

}
. It is22

known that TestF is dense in V (c.f. [27, (3.1.6)]).23

Proposition 2.7. Let (X, d,m) be an RCD(K,∞) space. Then24

(1) For any f ∈ TestF, we have Γ(f) ∈ V and25

E
(

Γ(f)
)
≤ −

∫ (
2KΓ(f)2 + 2Γ(f)Γ(f,∆f)

)
dm.

10



(2) For every f ∈ D(∆), we have Γ(f)1/2 ∈ V and

E
(

Γ(f)1/2
)
≤
∫

(∆f)2 dm−K · E(f).

(3) For any f ∈ D(∆) there is a continuous symmetric L∞-bilinear map Hessf (·, ·) defined on1

[L2(TX)]2, with values in L0(X,m) (c.f. [27, Corollary 3.3.9]). In particular, if f, g, h ∈2

TestF (c.f. [27, Proposition 3.3.22], [47, Lemma 3.2]), Hessf (·, ·) is given by the following3

formula:4

2Hessf (∇g,∇h) = Γ
(
g,Γ(f, h)

)
+ Γ

(
h,Γ(f, g)

)
− Γ

(
f,Γ(g, h)

)
. (2.3)

To introduce the measure-valued ‘Ricci tensor’, we briefly recall the notion of measure-valued5

Laplacian ∆ (c.f. [47, 26]). We say that f ∈ D(∆) ⊂ V if there exists a signed Borel measure6

µ = µ+ − µ− ∈ Meas(X) charging no capacity zero sets such that7 ∫
ϕ dµ = −

∫
Γ(ϕ.f) dm

for any ϕ ∈ V with quasi-continuous representative ϕ ∈ L1(X, |µ|). If µ is unique, we denote it8

by ∆f . If ∆f � m, we also denote its density by ∆f if there is no ambiguity.9

Proposition 2.8 (See [27], §3 and [47], Lemma 3.2). Let (X, d,m) be a RCD(K,∞) space. Then
for any f ∈ TestFloc :=

{
f ∈ D(∆) ∩ L∞loc : ∆f ∈ Vloc, Γ(f) ∈ L∞loc

}
, it holds Γ(f) ∈ D(∆)

and the following non-smooth Bochner inequality

Γ2(f) :=
1

2
∆Γ(f)− Γ(f,∆f)m ≥

(
KΓ(f) + ‖Hessf‖2

HS

)
m.

Furthermore, define TestVloc := {Σn
i=1ai∇fi : n ∈ N, ai, fi ∈ TestFloc}, there is a measure-10

valued symmetry bilinear map Ric : [TestVloc]
2 7→ Meas(X) satisfying the following properties11

(1) for any f ∈ TestFloc,12

Ric(∇f,∇f) :=
1

2
∆Γ(f)− Γ(f,∆f)m︸ ︷︷ ︸

=Γ2(f)

−‖Hessf‖2
HS m;

(2) for any f ∈ TestFloc,
Ric(∇f,∇f) ≥ KΓ(f)m;

(3) for any f, g, h ∈ TestFloc,

Ric(h∇f,∇g) = hRic(∇f,∇g).

2.2. Equality in the 2-Bakry-Émery inequality. In the next lemma, we study the equality in the13

2-Bakry-Émery inequality. The argument for the proof is standard, we just need to pay attention14

to the regularity issues appearing in the non-smooth framework.15

Lemma 2.9 (Equality in the 2-Bakry-Émery inequality). Let (X, d,m) be a RCD(K,∞) proba-16

bility space for some K > 0 and let u ∈ V ∩ D(∆) be a non-constant function with ∆u ∈ V and17 ∫
u dm = 0. Then the following statements are equivalent.18

(1) u ∈ TestFloc and Γ2(u) = KΓ(u)m;19

(2) Γ2(u;ϕ) = K
∫
ϕΓ(u) dm for all non-negative ϕ ∈ L∞ with ∆ϕ ∈ L∞;20

(3)
∫

(∆u)2 dm = K
∫

Γ(u) dm;21

(4) −∆u = Ku;22
11



(5)
∫

Γ(u) dm = K
∫
u2 dm;1

(6) Γ(Ptu) = e−2KtPtΓ(u) for some t > 0.2

In particular, Psu satisfies the properties above for all s > 0. Furthermore, Psu satisfies one of3

these properties for all s ∈ [0, t] if and only if4 ∫
(Ptu)2 dm = e−2Kt

∫
u2 dm.

If u attains the equality in the 2-Bakry-Émery inequality (6) above, it holds5

a) |∇Ptu| = e−KtPt|∇u| for all t > 0;6

b) u is a non-constant affine function, this means Hessu = 0 and Γ(u) is a positive constant;7

c) u ∈ TestFloc and Ric(u, u) = KΓ(u) dm;8

d) the gradient flow of u induces a one-parameter semigroup of isometries of (X, d).9

Proof. Part 1: We will prove (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (4) =⇒ (6) =⇒ (2).10

Statement (1) is a consequence of b) and c) which will be proved in Part 2.11

(1) =⇒ (2): Integrating ϕ w.r.t. the measures Γ2(u), KΓ(u)m we get the answer.12

(2) =⇒ (3): Notice that the constant function ϕ ≡ 1 is admissible, and Γ2(u, 1) =
∫

(∆u)2 dm.13

(3) =⇒ (4): Applying Proposition 2.6 with ϕ ≡ 1 (or by Proposition 2.7, (2)), we can see that∫
(∆f)2 dm ≥ K

∫
Γ(f) dm

for f ∈ D(∆). Let f = u± εg for some g ∈ D(∆) and ε ∈ R. We obtain14 ∫ (
∆(u± εg)

)2
dm ≥ K

∫
Γ(u± εg) dm. (2.4)

Differentiating (2.4) (w.r.t. the variable ε), and combining with the equality in (3) we get15

±
∫

∆u∆g dm ≥ ±K
∫

Γ(u, g) dm.

Therefore16 ∫
∆u∆g dm = K

∫
Γ(u, g) dm = −K

∫
u∆g dm. (2.5)

Notice that D(∆) is dense in V, and by Poincaré inequality it holds ∆
(
D(∆)

)L2

= V \ {u ≡ c :17

c ∈ R, c 6= 0}. Hence (2.5) yields (4).18

(4) =⇒ (5) Multiplying u on both sides of −∆u = Ku and integrating w.r.t. m, we obtain the19

equality in the Poincaré inequality.20

(5) =⇒ (4): By Poincaré inequality, we have
∫

Γ(u + g) dm ≥ K
∫

(u + g)2 dm for all g ∈ V21

with
∫
g dm = 0. Then similar to (3) =⇒ (4), we can prove the spectral gap equality by a standard22

variation argument.23

(4) =⇒ (6): Denote φ(t) :=
∫ (

Γ(Ptu)− e−2KtPtΓ(u)
)

dm. By (4) we have −∆Ptu = KPtu24

for any t ≥ 0, so
∫

(∆Ptu)2 dm = K
∫

Γ(Ptu) dm. It is known that (c.f. [10, Lemma 2.1]) φ ∈ C1,25
12



and1

φ′(t) = 2

∫ (
−
(
∆Ptu

)2
+Ke−2KtΓ(u)

)
dm

= 2

∫ (
−KΓ(Ptu) +Ke−2KtΓ(u)

)
dm

≥ 0.

Therefore φ(t) ≥ φ(0) = 0. Note that by 2-Barky-Émery inequality Γ(Ptu) ≤ e−2KtPtΓ(u), it2

holds φ ≤ 0. So φ ≡ 0 and Γ(Ptu) = e−2KtPtΓ(u) for all t > 0 which is the thesis.3

(6) =⇒ (2): It is known that [0, t] 3 s 7→ Φt,ϕ(s) := 1
2

∫
e−2KsPsϕΓ(Pt−su) dm is C1-4

continuous for any positive ϕ ∈ L∞ with ∆ϕ ∈ L∞, and5

Φ′t,ϕ(s) = e−2Ks
(

Γ2(Pt−su;Psϕ)−K
∫
PsϕΓ(Pt−su) dm

)
≥ 0.

By 2-Bakry-Émery inequality, (6) holds if and only if Φ′t,ϕ(s) = 0 for any s ∈ [0, t] and any6

admissible function ϕ, i.e.7

Γ2(Pt−su;Psϕ) = K

∫
PsϕΓ(Pt−su) dm, ∀s ∈ [0, t]. (2.6)

Notice that u attains the equality in the 2-Bakry-Émery inequality for t > 0 if and only if it holds8

for all t′ ∈ [0, t], thus (2.6) implies9

Γ2(Psu;ϕ) = K

∫
ϕΓ(Psu) dm, ϕ,∆ϕ ∈ L∞, 0 ≤ s ≤ t (2.7)

which yields (2).10

Part 2: Let us = Psu. If u satisfies one of the properties (1)-(6), from the discussion in the first11

part we know ∆u = −Ku. So ∆us = Ps∆u = −Kus, and us also satisfies these properties.12

Note that d
ds
us = ∆us. By Poincaré inequality, we get13

d

ds

1

2

∫
u2
s dm =

∫
us

d

ds
us dm

=

∫
us∆us dm

= −
∫

Γ(us) dm

≤ −K
∫
u2
s dm.

By Grönwall’s lemma, we obtain14 ∫
u2
s dm ≤ e−2Ks

∫
u2 dm. (2.8)

Therefore, (2.8) is an equality for some t > 0 if and only if us attains the equality in the Poincaré15

inequality (5).16

Part 3: Furthermore, by 1-Bakry-Émery inequality and Cauchy-Schwarz inequality, we have17

|∇Ptu| ≤ e−KtPt|∇u| ≤ e−Kt
√
PtΓ(u).

13



So if u attains the equality in the 2-Bakry-Émery inequality (6), it holds |∇Ptu| = e−KtPt|∇u|.1

In addition, integrating the non-smooth Bochner inequality in Proposition 2.8 we obtain2 ∫
(∆u)2 dm ≥ K

∫
Γ(u) dm +

∫
‖Hessu‖2

HS dm.

Thus the validity of (3) yields Hessu = 0. In particular, for any v ∈ V, it holds

Γ
(
Γ(u), v

)
= 2Hessu(∇u,∇v) = 0,

so Γ(Γ(u)) = 0 and Γ(u) = |∇u|2 ≡ c for some constant c ≥ 0. In particular, u ∈ TestFloc. If3

c = 0, f is constant. If c 6= 0, by [34, Theorem 1.2] we know that the regular Lagrangian flow4

(Fr)r∈R+ associated with ∇u induces a family of isometries, i.e. d(Fr(x), Fr(y)) = d(x, y) for5

any x, y ∈ X and r > 0.6

Furthermore, by definition of Ric (c.f. Proposition 2.8) and statement (2) proved in Part 1, for7

any ϕ ∈ L∞ ∩D(∆) with ∆ϕ ∈ L∞ we have8

Γ2(u;ϕ) =

∫
ϕ‖Hessu‖2

HS dm +

∫
ϕ dRic(u, u) = K

∫
ϕΓ(u) dm.

Combining with Hessu = 0 we obtain

Γ2(u) = Ric(u, u) = KΓ(u)m

and we complete the proof.9

�10

The following proposition plays a key role in studying Φ-entropy inequalities in §4.2.11

Proposition 2.10. Let (X, d,m) be a metric measure space satisfying RCD(K,∞) condition for12

some K > 0. Let Φ be a C2-continuous convex function on an interval I ⊂ R such that 1
Φ′′

is13

concave and strictly positive. Then for all t > 0, we have14

Φ′′(Ptu)Γ(Ptu) ≤ e−2KtPt
(
Φ′′(u)Γ(u)

)
(2.9)

for any I-valued function u ∈ V. In particular, the function t 7→ e2Kt
∫

Φ′′(Ptu)Γ(Ptu) dm is15

non-increasing.16

Furthermore, it holds the equality in (2.9) if and only if the following properties are satisfied.17

(1) (Φ′′)−1 is affine on the image of u which is defined as suppu]m (by Lemma 2.11 below we18

know suppu]m is a closed interval or a point).19

(2) For any s ∈ [0, t], there is a constant c = c(s) > 0 with c(s) = e−2Ksc(0), such that√
Γ(Psu) = e−KsPs

√
Γ(u) and Γ

(
Φ′(Psu)

)
= c.

Proof. Denote Ptu by ut. We have the following 1-Bakry-Émery inequality,20 √
Γ(ut) ≤ e−KtPt

√
Γ(u), ∀ t ≥ 0, ∀u ∈ V. (2.10)

By concavity of 1
Φ′′

and Jensen’s inequality, we have21

Φ′′(ut) ≤
(
Pt
(
1/Φ′′(u)

))−1

. (2.11)

Combining with (2.10) we get the following inequality22

Φ′′(ut)Γ(ut) ≤ e−2Kt
(
Pt
√

Γ(u)
)2(

Pt
(
1/Φ′′(u)

))−1

. (2.12)
14



By Cauchy-Schwarz inequality we know1 (
Pt
√

Γ(u)
)2

≤
(
Pt
(
Φ′′(u)Γ(u)

))(
Pt
(
1/Φ′′(u)

))
. (2.13)

Combining (2.12) and (2.13), we obtain2

Φ′′(ut)Γ(ut) ≤ e−2KtPt
(
Φ′′(u)Γ(u)

)
(2.14)

which is (2.9). Integrating (2.14) w.r.t. m, we obtain3

e2Kt

∫
Φ′′(ut)Γ(ut) dm ≤

∫
Φ′′(u)Γ(u) dm. (2.15)

By semigroup property, we can see that e2Kt
∫

Φ′′(ut)Γ(ut) dm is non-increasing in t.4

Furthermore, since t 7→ e2Kt
∫

Φ′′(ut)Γ(ut) dm is non-increasing in t, equality in (2.9) holds for5

some t0 implies the equality for any t ≤ t0. Hence the equality in (2.9) holds for some t0 > 0 if6

and only if the equalities in (2.10) (2.11) and (2.13) hold for all 0 ≤ t ≤ t0. The equality in (2.11)7

holds iff (Φ′′)−1 is affine on the image of u, and the validity of the equality in (2.13) if and only if8

Φ′′(ut)Γ
(
ut
)

=
c

Φ′′(ut)
(2.16)

for some constant c = c(t) > 0. Moreover, for any t ≤ t0 we have9 √
c(t)

(2.16)
= Φ′′(ut)

√
Γ
(
ut
) (2.10)(2.11)

= e−Kt
Pt
(√

Γ(u)
)

Pt
(
1/Φ′′(u)

) (2.16)
= e−Kt

√
c(0)

which is the thesis.10

�11

Lemma 2.11. Let (X, d,m) be an RCD(K,∞) metric measure space and u ∈ V. Then the image12

of u, defined as suppu]m, is a closed interval in R or a point in which case u is constant.13

Proof. Denote ess supu = b ∈ R ∪ {+∞} and ess inf u = a ∈ R ∪ {−∞}. We will show that14

suppu]m = [a, b].15

If a = b, u is constant, the assertion is obvious. Otherwise, a < b. For any c ∈ (a, b) and
ε > 0 small enough such that (c − ε, c + ε) ⊂ (a + ε, b − ε). Pick bounded measurable sets
A,B ⊂ X with positive m-volume such that A ⊂ u−1

(
(a, a + ε)

)
and B ⊂ u−1

(
(b − ε, b)

)
. By

[33] there is a unique L2-Wasserstein geodesic (µt) from µ0 := χA

m(A)
m to µ1 := χB

m(B)
m. There is

Π ∈ P2(Geod(X, d)) such that (et)]Π = µt (c.f. [5, Theorem 2.10]). By [46, Lemma 3.1] we
know dµt

dm
is uniformly bounded, so Π is a test plan (in the sense of [8, Definition 5.1]). By an

equivalent characterization of Sobolev functions using test plans (c.f. [8, §5, Proposition 5.7 and
§6]), we know u ◦ γ ∈ W 1,2([0, 1]) for Π-a.e. γ. Hence t 7→ u ◦ γ(t) is absolutely continuous for
Π-a.e. γ. So for almost every γ, there is an open interval Iγ such that u ◦ γ(Iγ) ⊂ (c − ε, c + ε).
By Fubini’s theorem, there is tc ∈ (0, 1) and Γc ⊂ supp Π with positive measure, such that
u ◦ γ(tc) ∈ (c− ε, c+ ε) for all γ ∈ Γc. Therefore

µtc

({
γ(tc) : γ ∈ Γc

})
= (etc)]Π|Γc

(X) > 0.

From the definition of CD(K,∞) condition (see (2.1)) we know µtc � m, so

u]m
(
(c− ε, c+ ε)

)
= m

(
u−1
(
(c− ε, c+ ε)

))
≥ m

({
γ(tc) : γ ∈ Γc

})
> 0.

15



Hence c ∈ suppu]m. Since the choice of c is arbitrary and suppu]m is closed, we know suppu]m =1

[a, b]. �2

Corollary 2.12. Under the same assumption as Proposition 2.10, if there exists a non-constant3

u ∈ V attaining the equality in (2.9) for all t > 0, then up to additive and multiplicative constants,4

and affine coordinate transforms, Φ(x) = x lnx or Φ(x) = x2. In any of these cases, the function5

Ptu attains the equality in the 1-Bakry-Émery inequality and the function Φ′(Ptu) attains the6

equality in the Poincaré inequality. In particular, Φ′(Ptu)−
∫

Φ′(Ptu) dm satisfies the properties7

(1)-(6) in Lemma 2.9 for all t > 0.8

Proof. By Proposition 2.10 and Lemma 2.11 we know (Φ′′)−1 is linear on an interval I . So for9

x ∈ I , Φ′′(x) = 1
c1x+c2

for some constants c1, c2. If c1 = 0, Φ = x2 up to an additive constant10

and an affine coordinate transformation. If c1 6= 0, up to an affine coordinate transform, Φ can be11

written as x lnx+ c3x+ c4. In the latter case, we can write Φ as Φ(x) = 1
ec3

(
(ec3x) ln(ec3x)

)
+ c4,12

which is the thesis.13

Furthermore, by Proposition 2.10 we know Γ(us) = c(s)/
(
Φ′′(us)

)2 for all s > 0, and c(s) =14

e−2Ksc(0). Thus for any t > 0, we have15

∫ (
Φ′(ut)

)2
dm−

(
Φ′
( ∫

u dm
))2

=

∫ t

+∞

d

ds

∫ (
Φ′(us)

)2
dm ds

By [8, Theorem 4.16] =

∫ +∞

t

∫
2
((

Φ′′(us)
)2

+ Φ′(us)Φ
(3)(us)

)
Γ(us) dm ds

=

∫ +∞

t

c(s)

∫
2
(

1 +
Φ′Φ(3)

(Φ′′)2
(us)

)
dm ds

=

∫ +∞

t

2e−2K(s−t)c(t)

∫ (
1 +

Φ′Φ(3)

(Φ′′)2
(us)

)
dm ds.

Similarly,16

(∫
Φ′(ut) dm

)2

−
(

Φ′
( ∫

u dm
))2

=

∫ t

+∞

d

ds

(∫
Φ′(us) dm

)2

ds

=

∫ +∞

t

2
(∫

Φ′(us) dm
)∫

Φ(3)(us)Γ(us) dm ds

=

∫ +∞

t

2c(s)
(∫

Φ′(us) dm
)∫ Φ(3)

(Φ′′)2
(us) dm ds

=

∫ +∞

t

2e−2K(s−t)c(t)
(∫

Φ′(us) dm
)∫ Φ(3)

(Φ′′)2
(us) dm ds.

16



Since (Φ′′)−1 is linear, we can see that η := Φ(3)

(Φ′′)2
= −

(
1

Φ′′

)′
is constant, so1 ∫ (

Φ′(ut)
)2

dm−
(∫

Φ′(ut) dm
)2

=

∫ +∞

t

2e−2K(s−t)c(t)
(∫ (

1 + ηΦ′(us)
)

dm− η
∫

Φ′(us) dm
)

ds

=

∫ +∞

t

2e−2K(s−t)c(t) ds

=
1

K
c(t)

=
1

K

∫
Γ
(
Φ′(ut)

)
dm.

This means that Φ′(ut) attains the equality in the Poincaré inequality.2

�3

2.3. One-dimensional cases. In this part, we will prove the rigidity of the 2-Bakry-Émery in-4

equality in 1-dimensional cases. This result is a simple application of Lemma 2.9, and it will be5

used in the study of higher-dimensional spaces.6

Proposition 2.13. Let h be a CD(K,∞) probability density supported on a closed set I ⊂ R,7

this means, hL1 is a probability measure such that (I, | · |, hL1) is a CD(K,∞) space. If there8

is a non-constant function f satisfying one of the properties (1)-(6) in Lemma 2.9, then I = R9

and h(t) = φK(t) =
√

K
2π

exp(−Kt2

2
) up to a translation. Furthermore, there is a constant10

C = |f ′| > 0 such that11

Ptf(x) = CeKtx, ∀ t ≥ 0.

Proof. Since h is a CD(K,∞) density, by [36] we know− lnh isK-convex and supph is a closed12

interval I := [a, b] with a ∈ R ∪ {−∞} and b ∈ R ∪ {+∞}. In particular, h is locally Lipschitz.13

By Rademacher’s theorem, h′(x) exists for L1-a.e. x ∈ I . Furthermore, (lnh)′ is a BV function14

and −(lnh)′′ ≥ K in weak sense, i.e.15 ∫
ϕ′(lnh)′ dL1 ≥ K

∫
ϕ dL1 (2.17)

for all ϕ ∈ C1 with ϕ ≥ 0 and ϕ′(a) = ϕ′(b) = 0.16

Consider the Γ2-calculus on the metric measure space (I, | · |, hL1). For f ∈ D(∆I), by Propo-17

sition 2.7 we know f ′ ∈ W 1,2(I). So it is absolutely continuous, and f ′′(x) exists at almost every18

x ∈ I . By assumption and Lemma 2.9, we know Hessf = f ′′ = 0 and f ′ is constant. By integration19

by part formula, we know f ′|{a,b}\{±∞} = 0, and20

∆hf = f ′′ − (lnh)′f ′ = −(lnh)′f ′. (2.18)

Since f is not constant, there must be {a, b} = {±∞} and I = R.21

By (2.18) and (2.17), we have22 ∫ (
∆hf

)2
h dL1 =

∫ (
(lnh)′f ′

)2
h dL1 = (f ′)2

∫
(lnh)′h′ dL1 ≥ K

∫
(f ′)2h dL1. (2.19)

17



By assumption, it holds the equality in (2.19). Hence there must be (lnh)′′ = K in usual sense.1

Up to a translation, h(x) =
√

K
2π

exp(−Kx2

2
) = φK(x) for x ∈ supph = R.2

Furthermore, by Lemma 2.9 we have (Ptf)′′ = 0, and (Ptf)′ is constant for any t ≥ 0. So there
exist smooth functions a = a(t), b = b(t) ∈ R such that

Ptf(x) = a(t)x+ b(t).

Notice that d
dt
Ptf = (Ptf)′′ − (lnh)′(Ptf)′, we have3

d

dt
a(t)x+

d

dt
b(t) = Kxa(t).

Hence a(t) = CeKt with C = |f ′| > 0, and b ≡ 0.4

�5

3. RIGIDITY OF THE 1-BAKRY-ÉMERY INEQUALITY6

3.1. Equality in the 1-Barky-Émery inequality. In this part, we will prove one of the most7

important results in this paper, concerning the equality in the 1-Bakry-Émery inequality. Several8

intermediate steps, which corresponds to the results in [2, §2] of Ambrosio-Brué-Semola, will be9

proved in separate lemmas before the main Theorem 3.7. We remark that some arguments used in10

[2] concerning RCD(0, N) spaces are not available now. For example, there is no two-sides heat11

kernel estimate or uniform volume doubling property for general RCD(K,∞) spaces. Fortunately,12

we can overcome these difficulties by making full use of the heat flow and the functional analysis13

tools developed by Gigli in [27].14

Lemma 3.1. Let (X, d,m) be an RCD(K,∞) space with K ∈ R. Assume there exists a non-
constant function f ∈ V satisfying

|∇Pt0f | = e−Kt0Pt0|∇f | for some t0 > 0.

For any s ∈ (0, t0), denote

As :=
{
|∇Psf | = 0

}
.

Then it holds
m(As) = 0.

In particular,15

m
({
Psf = c

})
= 0, ∀ c ∈ R.

Proof. Assume by contradiction that m(As) > 0 for some s > 0. Since f is non-constant, we16

know m(As) ∈ (0, 1).17

Recall that f attains the equality in the 1-Barky-Émery inequality, we have18

Ps|∇f | = eKs|∇Psf | = 0, on As.

Thus19

0 =

∫
As

Ps|∇f | dm =

∫
Ps(χAs)|∇f | dm.

18



Denote Ac0 :=
{
|∇f | > 0

}
. We can see that1 ∫

Ac
0

Ps(χAs) dm = 0, (3.1)

i.e. Ps(χAs) = 0 onAc0. Note that Ps(χAs) is Lipschitz continuous, and by dimension-free Harnack2

inequality on RCD(K,∞) spaces proved by H.-Q. Li in [39, Theorem 3.1], it holds3

(
(PsχAs)(y)

)2 ≤ (PsχAs)(x) exp
{Kd2(x, y)

e2Ks − 1

}
.

So Ps(χAs)(x) > 0 at every point x ∈ X . Thus m(Ac0) = 0 and m(A0) = 1, which contradicts to4

the assumption that f is non-constant.5

Finally, by locality of the weak gradient (c.f. [8, Proposition 5.16]), it holds |∇Psf | = 0 m-a.e.6

on {Psf = c}. So m
(
{Psf = c}

)
≤ m(As) = 0.7

�8

Lemma 3.2. Under the same assumption as Lemma 3.1. Denote bs := ∇Psf
e−Ks|∇Psf | . Then for any

g ∈ V and s, t ∈ R+ with s+ t < t0, it holds

〈bt+s,∇Ptg〉 = Pt〈bs,∇g〉.

Proof. By 1-Bakry-Émery inequality and the assumption, for any s, t, r ∈ (0, t0) with s+t+r = t0,9

we can see that10

0 ≥ e−KrPr

(
|∇Pt+sf | − e−KtPt|∇Psf |

)
=

(
e−KrPr|∇Pt+sf | − e−K(t+s+r)Pt+s+r|∇f |︸ ︷︷ ︸

e−Kt0Pt0 |∇f |

)
+
(
e−K(t+s+r)Pt+s+r|∇f | − e−K(t+r)Pt+r|∇Psf |

)
=

(
e−KrPr|∇Pt+sf | − |∇Pt+s+rf |︸ ︷︷ ︸

|∇Pt0f |

)
+
(
e−K(t+s+r)Pt+s+r|∇f | − e−K(t+r)Pt+r|∇Psf |

)
≥ 0.

Thus11

|∇Pt+sf | = e−KtPt|∇Psf | (3.2)

for any s, t ∈ R+ with s+ t < t0 (c.f. [2, Lemma 2.4, 2.7]).12

Fix t > 0 and consider the Euler equation associated with the functional13

Ψ(h) :=

∫ (
e−KtPt|∇h| − |∇Pth|

)
ϕ dm, h ∈ V, ϕ ∈ Lipbs(X, d).

From Lemma 3.1 we know ∇Psf
|∇Psf | is well-defined and

∣∣∣ ∇Psf
|∇Psf |

∣∣∣ = 1 m-a.e.. Using a standard14

variation argument (c.f. [2, proof of Proposition 2.6]), for any g ∈ V and s > 0 with s + t < t0,15
19



we get1

0 =
d

dε |ε=0
Ψ(Psf + εg)

=

∫ (
e−KtPt

(〈∇Psf,∇g〉
|∇Psf |

)
− 〈∇Pt+sf,∇Ptg〉

|∇Pt+sf |

)
ϕ dm

= e−K(t+s)

∫ (
Pt〈bs,∇g〉 − 〈bt+s,∇Ptg〉

)
ϕ dm.

Then the conclusion follows from the arbitrariness of ϕ.2

�3

Lemma 3.3. Let (X, d,m) be an RCD(K,∞) probability space. Assume there is a non-constant
function f ∈ V satisfying

|∇Pt0f | = e−Kt0Pt0|∇f | for t0 > 0,

and denote bs := ∇Psf
e−Ks|∇Psf | .4

Then bs ∈ D(div) for any s ∈ (0, t0). Furthermore, for any s, t > 0 with s+ t < t0,5

Ptdiv(bt+s) = div(bs). (3.3)

In particular, div(bs) ∈ D(∆) and ∆div(bs) ∈ V.6

Proof. For any g ∈ V, we have7 ∣∣∣∣∫ 〈bs,∇g〉 dm∣∣∣∣ =

∣∣∣∣∫ Pt〈bs,∇g〉 dm
∣∣∣∣

By Lemma 3.2 =

∣∣∣∣∫ 〈bt+s,∇Ptg〉 dm∣∣∣∣
≤

∫
|bt+s||∇Ptg| dm

By |br| = eKr and Cauchy-Schwartz inequality ≤ e(t+s)K
√

E(Ptg).

Note that it holds a standard estimate (c.f. Lemma 2.2) E(Ptg) ≤ 1
2t
‖g‖2

L2 . Hence by Riesz8

representation theorem, bs ∈ D(div).9

At last, the identity (3.3) follows immediately from Lemma 3.2. �10

Proposition 3.4. Keep the same assumption and notations as in Lemma 3.3. It holds11 ∫ (
div(bs)

)2
dm = e2Ks

∫ (
div(b0)

)2
dm

for all s ∈ [0, t0].12

Proof. Step 1:13

Given g ∈ V. Consider the following function t 7→ ψ(t, g) defined on R+14

ψ(t, g) :=

∫
eKt|∇Ptg| dm.

From 1-Bakry-Émery inequality we know ψ is non-increasing in t, thus15

d

dt
ψ(t, g) =

∫
KeKt|∇Ptg|+ 〈bgt ,∇∆Ptg〉 dm ≤ 0

20



where bgt := eKt ∇Ptg
|∇Ptg| ∈ L

2(TX). Note also that bft = bt.1

Fix s ∈ (0, t0). By assumption, the function t 7→ ψ(t, Psf) is constant on [0, t0 − s]. So
d
dt
ψ(t, Psf) = 0 for t ∈ [0, t0 − s], this means

d

dt
ψ(t, Psf) =

∫
KeKt|∇Pt+sf | dm +

∫
〈bPsf
t ,∇∆Pt+sf〉 dm = 0 ∀t ∈ [0, t0 − s].

Fix t and consider the following functional2

V 3 g 7→ d

dt
ψ(t, g) =

∫
KeKt|∇Ptg|+ 〈bgt ,∇∆Ptg〉 dm ≤ 0

which attains its maximum at g = Psf .3

Thus for any ε ∈ R,4

0

≥ d

dt
ψ(t, Psf + εg)− d

dt
ψ(t, Psf)

=

∫
KeKt

(
|∇Pt(Psf + εg)| − |∇Pt+sf |

)
dm︸ ︷︷ ︸

I

+

∫ (
〈bPsf
t ,∇∆Pt(Psf + εg)〉 − 〈bPsf

t ,∇∆Pt+sf〉
)

dm︸ ︷︷ ︸
II

+

∫ (
〈bPsf+εg
t ,∇∆Pt(Psf + εg)〉 − 〈bPsf

t ,∇∆Pt(Psf + εg)〉
)

dm︸ ︷︷ ︸
III

.

Define Ft ⊂ V by5

Ft :=
{
g : g ∈ V ∩ L∞(X,m),

|∇Ptg|
|∇Pt+sf |

∈ L∞(X,m)
}
. (3.4)

By Lemma 3.5,6

F0 ⊂ Fr ⊂ Ft, ∀ 0 ≤ r ≤ t,

and F0 is an algebra.7

For any g ∈ Ft and ε small enough, we can write I, II, III in the following ways8

I = KeKt
∫ ∫ ε

0

〈∇Pt(Psf + τg),∇Ptg〉
|∇Pt(Psf + τg)|

dτ dm,

9

II = ε

∫
〈bPsf
t ,∇∆Ptg〉 dm,
21



and1

III = eKt
∫
〈|∇Pt+sf |∇Pt(Psf + εg)− |∇Pt(Psf + εg)|∇Pt+sf

|∇Pt+sf ||∇Pt(Psf + εg)|
,∇∆Pt(Psf + εg)〉 dm

= eKt
∫
〈|∇Pt+sf |∇Pt(Psf + εg)− |∇Pt+sf |∇Pt+sf

|∇Pt+sf ||∇Pt(Psf + εg)|
,∇∆Pt(Psf + εg)〉 dm

+eKt
∫
〈 |∇Pt+sf |∇Pt+sf − |∇Pt(Psf + εg)|∇Pt+sf

|∇Pt+sf ||∇Pt(Psf + εg)|
,∇∆Pt(Psf + εg)〉 dm

= εeKt
∫
〈 ∇Ptg
|∇Pt(Psf + εg)|

,∇∆Pt(Psf + εg)〉 dm

+eKt
∫ (∫ 0

ε

〈∇Pt(Psf + τg),∇Ptg〉
|∇Pt(Psf + τg)||∇Pt(Psf + εg)|

dτ
)
〈 ∇Pt+sf
|∇Pt+sf |

,∇∆Pt(Psf + εg)〉 dm

= O(ε).

From the discussions above, for any g ∈ Ft, we can see that ε→ d
dt
ψ(t, Psf+εg) = I+II+III2

is absolutely continuous and hence differentiable when ε is small.3

Similar to the proof of Lemma 3.2, by a variational argument we get4

0 =
d

dε |ε=0

d

dt
ψ(t, Psf + εg)

=

∫ (
K〈bPsf

t ,∇Ptg〉+ 〈bPsf
t ,∇∆Ptg〉

)
dm︸ ︷︷ ︸

V 1
t (∇Ptg)

+ eKt
∫ ( 1

|∇Pt+sf |
〈∇Ptg,∇∆Pt+sf〉 −

1

|∇Pt+sf |3
〈∇Pt+sf,∇Ptg〉〈∇Pt+sf,∇∆Pt+sf〉

)
dm︸ ︷︷ ︸

V 2
t (∇Ptg)

.

Step 2:5

Define6

Dt := Span

({
∇g : g ∈ V,

|∇g|
|∇Pt+sf |

∈ L∞(X,m)
})

.

where Span(S) means the sub-module of L2(TX) consisting of all finite L∞-linear combinations7

of the elements in S. By definition of Ft, we can see that8 {
∇Ptg : g ∈ Ft

}
⊂ Dt. (3.5)

Furthermore, by linearity V 1
t , V

2
t can be uniquely defined on Dt by:9

V 1
t (∇g) :=

∫ (
K〈bPsf

t ,∇g〉+ 〈bPsf
t ,∇∆g〉

)
dm

=

∫ (
K〈bPsf

t ,∇g〉+ 〈∇div(bPsf
t ),∇g〉

)
dm

and10

V 2
t (∇g) := eKt

∫ (〈∇g,∇∆Pt+sf〉
|∇Pt+sf |

− 〈∇Pt+sf,∇g〉〈∇Pt+sf,∇∆Pt+sf〉
|∇Pt+sf |3

)
dm.
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From the discussion above we can be seen that1

V 1
t (∇Ptg) + V 2

t (∇Ptg) = 0, ∀g ∈ Ft. (3.6)

Define2

Adm :=
{
ϕ : ϕ ∈ C1(R) ∩ Lip(R) ∩ L∞(R)

}
and3

F :=
{
g : g = ϕ(Psf), ϕ ∈ Adm

}
.

From Lemma 3.5, we know F ⊂ F0 ⊂ Ft for any t ∈ [0, t0 − s]. By (3.5) we get4 {
∇Ptg : g ∈ F

}
⊂
{
∇Ptg : g ∈ F0

}
⊂
{
∇Ptg : g ∈ Ft

}
⊂ Dt.

Combining with (3.6) we know5

V 1
t (∇Ptg) + V 2

t (∇Ptg) = 0, ∀g ∈ F0. (3.7)

Letting t → 0 in (3.7), by dominated convergence theorem and the fact that F0 is an algebra, we6

obtain7

V 1
0

(
∇(gh)

)
+ V 2

0

(
∇(gh)

)
= 0, ∀g ∈ F, h ∈ F0. (3.8)

Thus for any h ∈ F0, g = ϕ(εPsf) ∈ F with ϕ = arctan ∈ Adm and ε > 0, it holds8

V 1
0

(
g∇h

)
+ εV 1

0

(
hϕ′(εPsf)∇Psf

)
+ V 2

0

(
g∇h

)
+ εV 2

0

(
hϕ′(εPsf)∇Psf

)
= 0, (3.9)

Dividing ε on both sides of (3.9) and letting ε→∞, by dominated convergence theorem, we obtain9

10

V 1
0

(
h∇Psf

)
+ V 2

0

(
h∇Psf

)
= 0, ∀ h ∈ F0. (3.10)

From the structure of V 2
0 , we can see that11

V 2
0 (h∇Psf)

= eKt
∫
h
( 1

|∇Psf |
〈∇Psf,∇∆Psf〉 −

1

|∇Psf |3
〈∇Psf,∇Psf〉〈∇Psf,∇∆Psf〉

)
dm

= 0.

By (3.10), for any h ∈ F0, it holds12

V 1
0

(
h∇Psf

)
=

∫ (
K〈bs,∇Psf〉+ 〈∇div(bs),∇Psf〉

)
h dm = 0. (3.11)

By Lemma 3.6, (3.11) yields13

K〈bs,∇Psf〉+ 〈∇div(bs),∇Psf〉 = 0.

Hence we can pick h = 1
|∇Psf | in (3.11), so that14 ∫

K|bs|2 −
(
div(bs)

)2
dm = 0.

Note that |bs| = eKs, it holds15 ∫ (
div(bs)

)2
dm =

∫
K|bs|2 = e2Ks

∫
K|b0|2 = e2Ks

∫ (
div(b0)

)2
dm

which is the thesis.16

�17
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In the following two lemmas, we keep the same notions as in the proof of Proposition 3.4.1

Lemma 3.5. For any r ≤ t ≤ t0 − s, we have F ⊂ Fr ⊂ Ft. In particular, F0 is an algebra.2

Proof. For any g = ϕ(Psf) ∈ F, by chain rule (c.f. [27, Theorem 2.2.6]) we know3

∇g = ∇ϕ(Psf) = ϕ′(Psf)∇Psf, ∀ϕ ∈ Adm. (3.12)

Since ϕ ∈ Adm, ϕ′ ∈ L∞(R), we know ϕ′(Psf) ∈ L∞(X,m). So by 1-Bakry-Émery inequality4

and the assumption that f attains the equality in the 1-Bakry-Émery inequality, we have5

|∇Ptg| ≤ e−KtPt|∇g|
By (3.12) ≤ e−KtPt

(
|ϕ′(Psf)||∇Psf |

)
≤ ‖ϕ′(Psf)‖L∞e−KtPt|∇Psf |

By (3.2) = ‖ϕ′(Psf)‖L∞|∇Pt+sf |.
Thus by definition of Ft (see (3.4)), F ⊂ Ft for any t ≤ t0−s. Furthermore, for any r ≤ t ≤ t0−s6

and g ∈ Fr, there is C2 =
∥∥ |∇Prg|
|∇Pr+sf |

∥∥
L∞

> 0 such that7

|∇Ptg| ≤ e−K(t−r)Pt−r|∇Prg|
≤ C2e

−K(t−r)Pt−r
(
|∇Pr+sf |

)
= C2|∇Pt+sf |.

Hence Fr ⊂ Ft.8

In particular, for any g, h ∈ F0, there is C3 > 0 such that9

|∇(gh)| ≤ ‖g‖L∞|∇h|+ ‖h‖L∞|∇g| ≤ C3|∇Psf |,
so by definition gh ∈ F0 and F0 is an algebra.10

�11

Next we will show that the set F0 includes all Lipschitz functions with bounded support.12

Lemma 3.6. The set Lipbs(X, d) of Lipschitz functions with bounded support is a subset of F0. In13

particular, if there is H ∈ L1(X,m) such that14 ∫
Hh dm, ∀ h ∈ F0.

Then H = 0.15

Proof. Given g ∈ Lipbs with supp g ⊂ BR(x) for some R > 0 and x ∈ X . By definition,16

|∇g| ≤ Lip(g) where Lip(g) is a non-negative real constant.17

By assumption |∇Psf | = e−KsPs|∇f | and |∇f | 6= 0. Pick a non-zero non-negative function18

G ∈ L∞ satisfying G2 ≤ min{|∇f |, 1}. So by Lipschitz regularization of the heat flow, PsG2 is19

Lipschitz and20

PsG
2 ≤ Ps|∇f | = e−Ks|∇Psf |.

By dimension-free Harnack inequality [39, Theorem 3.1], for any y1, y2 ∈ X ,21 (
(PsG

2)(y1)
)2 ≤

(
(PsG)(y1)

)2 ≤
(
PsG

2
)
(y2) exp

{Kd2(y1, y2)

e2Ks − 1

}
. (3.13)

24



Let y2 = x in (3.13), since G is non-zero, we know (PsG
2)(x) > 0. Let y1 = x and y2 ∈ BR(x)1

(3.13), we know infy∈BR(x) PsG
2 > 0. Thus there is C > 0 such that2

|∇g| ≤ Lip(g) < C inf
y∈BR(x)

PsG
2 ≤ Ce−Ks|∇Psf | on BR(x)

which is the thesis.3

Furthermore, if4 ∫
Hh dm, ∀ h ∈ F0.

Via approximation by Lipschitz function with bounded support, we can prove that
∫
E
H dm = 05

for all measurable set E ⊂ X . So H ≡ 0. �6

Theorem 3.7 (Equality in the 1-Bakry-Émery inequality). Let (X, d,m) be an RCD(K,∞) prob-7

ability space with K ∈ R. Assume there exists a non-constant f ∈ V attaining the equality in the8

1-Bakry-Émery inequality9

|∇Pt0f | = e−Kt0Pt0|∇f | for some t0 > 0.

Denote bs := eKs ∇Psf
|∇Psf | . Then it holds the following properties:10

a) ∇Psf
|∇Psf | = e−Ksbs =: b is independent of s ∈ (0, t0);11

b) ∇div(b) = −Kb;12

c) ∆div(b) = −Kdiv(b), thus f = div(b) attains the equality in the 2-Barky-Émery inequal-13

ity.14

Furthermore, denote by (Ft)t∈R+ the regular Lagrangian flow associated with b, we have15

(Ft)]m = e−
K
2

(
t2+ 2

K
tdiv(b)

)
m if K 6= 0, (3.14)

and16

(Ft)]m = m if K = 0. (3.15)

Proof. Part 1:17

By Lemma 3.3 we know bs ∈ D(div) for any s ∈ (0, t0). For any ϕ ∈ D(∆) and s, t, h > 018

with h < 1
2
t and s+ t+ h < t0, we have19 ∫ (

Pt+hϕ− Ptϕ
)

div(bt+s) dm

=

∫ (
Pt+hϕ

)
div(bt+s+h) dm−

∫ (
Ptϕ
)
div(bt+s) dm

−
∫ (

Pt+hϕ
)(

div(bt+h+s)− div(bt+s)
)

dm

By Lemma 3.2 =

∫
ϕdiv(bs) dm−

∫
ϕdiv(bs) dm−

∫ (
Phϕ

)(
div(bh+s)− div(bs)

)
dm

= −
∫ (

Phϕ
)(

div(bh+s)− div(bs)
)

dm.

Therefore,20 ∫ (Pt+hϕ− Ptϕ
h

)
div(bt+s) dm = −

∫ (
Phϕ

)(div(bh+s)− div(bs)

h

)
dm. (3.16)
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By Cauchy-Schwarz inequality and the estimate ‖∆Ptϕ‖L2 ≤ 1
t
‖ϕ‖L2 (c.f. Lemma 2.2), we get1

the following estimate from (3.16)2 ∣∣∣∣∫ Phϕ
(

div(bh+s)− div(bs)
)

dm

∣∣∣∣ ≤ ∥∥Pt+hϕ− Ptϕ∥∥L2

∥∥div(bt+s)
∥∥
L2

=

∥∥∥∥∫ t+h

t

∆Psϕ ds

∥∥∥∥
L2

∥∥div(bt+s)
∥∥
L2

≤
(
h

∫ t+h

t

‖∆Ps−h(Phϕ)‖2
L2 ds

) 1
2 ∥∥div(bt+s)

∥∥
L2

≤ h
2

t
‖Phϕ‖L2

∥∥div(bt+s)
∥∥
L2 .

Thus by arbitrariness of ϕ and the density of Ph
(
L2(X,m)

)
in L2(X,m), we obtain3 ∥∥div(bh+s)− div(bs)

∥∥
L2 . h.

Therefore s 7→ div(bs) is absolutely continuous and differentiable in L2 for a.e. s ∈ [0, t0].4

Furthermore, for s ∈ [0, t0] where d
ds

div(bs) exists, it holds5 ∫
(∆ϕ)div(bs) dm

By Lemma 3.2 =

∫
(∆Ptϕ)div(bt+s) dm

=

∫
(

d

dt
Ptϕ)div(bt+s) dm

Letting h→ 0 in (3.16) = −
∫
ϕ

d

ds
div(bs) dm.

Therefore, for a.e. s ∈ [0, t0],6

d

ds
div(bs) = −∆div(bs). (3.17)

So by Poincaré inequality, we get7

d

ds

1

2

∫ (
div(bs)

)2
dm =

∫
div(bs)

d

ds
div(bs) dm

By (3.17) = −
∫

div(bs)∆div(bs) dm

=

∫
|∇div(bs)|2 dm

By Poincaré inequality ≥ K

∫ (
div(bs)

)2
dm.

By Grönwall’s lemma, we obtain8 ∫ (
div(bs)

)2
dm ≥ e2Ks

∫ (
div(b0)

)2
dm. (3.18)
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By Proposition 3.4, the inequality in (3.18) is actually an equality. So for any s ∈ (0, t0), div(bs)1

attains the equality in the Poincaré inequality. By Lemma 2.9 we know2

∆div(bs) = −Kdiv(bs). (3.19)

For any ϕ ∈ V, we have3 ∫
〈∇ϕ,∇div(bs)〉 = −

∫
ϕ∆div(bs) =

∫
ϕKdiv(bs) =

∫
−K〈bs,∇ϕ〉.

Thus4

∇div(bs) = −Kbs. (3.20)

In addition, by (3.17) and (3.19), it holds d
ds

div(bs) = Kdiv(bs) and5

d

ds
e−Ksdiv(bs) = −Ke−Ksdiv(bs) + e−Ks

d

ds
div(bs) = 0.

Combining with (3.20) we know b := e−Ksbs is independent of s.6

Finally, by (3.19) and (3.20) we get7

∆div(b) = −Kdiv(b) (3.21)

and8

∇div(b) = −Kb. (3.22)

Part 2:9

The identities (3.14) and (3.15) can be proved using similar argument as [30, §4] (and [2, §2]).10

For reader’s convenience, we offer more details here.11

Firstly, by c) and Lemma 2.9, we know div(b) ∈ TestFloc and Hessdiv(b) = 0. Secondly, by12

b) and c) we know −K∇symb = Hessdiv(b) = 0 (c.f. [13, §5] or [27, §3.4] for details about the13

covariant derivative). If K 6= 0, ∇symb = 0. If K = 0, by b) it holds ∇div(b) = 0 so div(b) is14

constant. Note that
∫

div(b) dm = 0, so div(b) = 0. Then following the argument in [2, proof of15

Proposition 2.8] we can still prove∇symb = 0.16

Combining [13, Theorems 9.7] of Ambrosio-Trevisan and a truncation argument (c.f. [30, The-17

orem 4.2]), we can prove that the regular Lagrangian flow Ft(x) associated with b exists for all18

(t, x) ∈ R+ ×X . Thus the curve (Ft)]m is well-defined for all t ∈ R+.19

By definition of regular Lagrangian flow (Ft) (c.f. [13, §8]), for any g ∈ V, µt = (Ft)]m solves20

the following continuity equation21

µ0 = m,
d

dt

∫
g dµt =

∫
b(g) dµt =

∫
〈b,∇g〉 dµt (3.23)

for a.e. t ∈ R+. It has been proved in [13, §5] that the continuity equation (3.23) has a unique22

solution. If K = 0, it can be seen from div(b) = 0 that µt ≡ m solves (3.23). For K 6= 0, we just23

need to check that µt := e−
K
2

(
t2+ 2

K
tdiv(b)

)
m verifies (3.23).24
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Given g ∈ V, by computation,1

d

dt

∫
g e−

K
2

(
t2+ 2

K
tdiv(b)

)
dm

=

∫
g
(
−Kt− div(b)

)
e−

K
2

(
t2+ 2

K
tdiv(b)

)
dm

By c) =

∫
g
(
−Kt+

1

K
∆
(
div(b)

))
e−

K
2

(
t+ 2

K
tdiv(b)

)
dm

By b) =

∫
−Ktg e−

K
2

(
t+ 2

K
tdiv(b)

)
dm +

∫
〈b,∇g〉 e−

K
2

(
t+ 2

K
tdiv(b)

)
dm

+

∫
Ktg|b|2 e−

K
2

(
t+ 2

K
tdiv(b)

)
dm

=

∫
〈b,∇g〉 e−

K
2

(
t+ 2

K
tdiv(b)

)
dm

which is the thesis.2

�3

Corollary 3.8. Let (X, d,m) be an RCD(K,∞) probability space with K ≤ 0. Then there is no4

non-constant function attaining the equality in the 1-Bakry-Émery inequality.5

Proof. By c) of Theorem 3.7, ∆div(b) = −Kdiv(b). Thus6

0 ≤
∫
|∇div(b)|2 dm = −

∫
div(b)∆div(b) dm = K

∫
div(b)2 dm ≤ 0.

So div(b) = 0 and b = 0. �7

Let u be a non-constant affine function (c.f. b) of Lemma 2.9). We know that |∇u| is a positive8

constant and u is Lipschitz. By [30, Theorem 4.4] (or [34, Theorem 3.16]), we know that the9

gradient flow (Ft)t≥0 of u, which is also the regular Lagrangian flow associated with −∇u in the10

sense of Ambrosio-Trevisan [13, §8], satisfies the following equality (see also [28])11 ∫ (
u(x)− u

(
Ft(x)

))
dm =

1

2

∫ t

0

∫
|∇u|2 ◦ Fs dm ds+

1

2

∫ t

0

∫
|Ḟs|2 ◦ Fs dm ds (3.24)

and it induces a family of isometries12

d
(
Ft(x), Ft(y)

)
= d(x, y) (3.25)

for any x, y ∈ X, t > 0. More generally, if there is a vector field b ∈ L2(TX) with div(b) ∈ L∞loc13

and ∇symb = 0, by By [2, Theorem 2.1] (or [34, Theorem 3.18]), the regular Lagrangian flow14

associated with b induces a family of isometries.15

In particular, there is a decomposition of X in the form {Xq}q∈Q, where Q is the set of indices,16

such that x0, x1 ∈ Xq for some q if and only if there is t ≥ 0 such that Ft(x0) = x1 or Ft(x1) = x0.17

In this case, Xq is an interval which can be parametrized by (Ft)t (or u). Define the quotient map18

Q : X 7→ Q by19

q = Q(x)⇐⇒ x ∈ Xq.

There is a disintegration of m consistent with Q in the following sense.20
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Definition 3.9 (Disintegation on sets, c.f. [7], Theorem 5.3.1). Let (X,X ,m) denote a measure1

space. Given any family {Xq}q∈Q of subsets of X , a disintegration of m on {Xq}q∈Q is a measure-2

space structure (Q,Q, q) and a map3

Q 3 q 7−→ mq ∈M(X,X )

so that:4

(1) For q-a.e. q ∈ Q, mq is concentrated on Xq.5

(2) For all B ∈X , the map q 7→ mq(B) is q-measurable.6

(3) For all B ∈X , m(B) =
∫
Q
mq(B) q(dq); this is abbreviated by m =

∫
Q
mqq(dq).7

From Theorem 3.7 and Lemma 2.9, we know there is a decomposition {Xq}q∈Q induced by b8

(or − 1
K
∇div(b) when K > 0) satisfying the following properties.9

Corollary 3.10. Keep the same assumptions and notations as in Theorem 3.7, assume further that10

K > 0. Then there exists a decomposition {Xq}q∈Q of X induced by the regular Lagrangian flow11

(Ft) associated with b, such that:12

(1) for any q ∈ V, Xq is a geodesic line in (X, d);13

(2) for any q ∈ V, x1, x2 ∈ Xq, there is a unique t such that

t = t|b| = d(x1, x2).

and Ft(x0) = x1 or Ft(x1) = x0;14

(3) there exists a disintegration of m on {Xq}q∈Q15

m =

∫
Q

mq q(dq), q(Q) = 1;

(4) for q-a.e. q ∈ Q and any t > 0, it holds

(Ft)]mq = e−
K
2

(
t2+ 2

K
tdiv(b)

)
mq,

and the 1-dimensional metric measure space (Xq, d,mq) satisfies CD(K,∞);16

(5) for q-a.e. q ∈ Q, div(b)|Xq
can be represented by17

div(b)(x) = sign
(
div(b)(x)

)
Kd(x, xq), x ∈ Xq,

where xq is the unique point in Xq such that div(b)(xq) = 0. In particular,18 ∫
div(b) dmq = 0, q− a.e. q ∈ Q. (3.26)

Proof. From the construction of the decomposition discussed before, it is not hard to see the va-19

lidity of assertions (1)- (3). Assertion (4) is a consequence of (3.14) in Theorem 3.7. We will just20
29



prove (5). For u := 1
K

div(b), by (3.24) and Lemma 3.11 below we have1

∫
Q

∫
Xq

(
u(x)− u

(
Ft(x)

))
dmq dq(q)

=

∫ (
u(x)− u

(
Ft(x)

))
dm

=
1

2

∫ t

0

∫
|∇u|2 ◦ Fs dm ds+

1

2

∫ t

0

∫
|Ḟs|2 ◦ Fs dm ds

≥ 1

2

∫
Q

(∫ t

0

∫
Xq

|lip(u|Xq
)|2 ◦ Fs dmq ds+

1

2

∫ t

0

∫
|Ḟs|2 ◦ Fs dmq ds

)
dq(q).

Thus for a.e. q ∈ Q, Xq is the trajectories of the gradient flow of u = 1
K

div(b):

∣∣∣∣ 1

K
div(b)(x1)− 1

K
div(b)(x2)

∣∣∣∣ =
1

K
|∇div(b)|d(x1, x2) = d(x1, x2), ∀x1, x2 ∈ Xq.

As u is non-constant, there is a unique point xq ∈ Xq such that div(b)(xq) = 0. So div(b) can be2

represented by3

div(b)(x) = sign
(
div(b)(x)

)
Kd(x, xq), ∀x ∈ Xq,

�4

Lemma 3.11. For any g ∈ V ∩ Lip(X, d) and s ∈ [0, t], it holds the following inequality5

∫
|∇g|2 ◦ Fs dm ≥

∫
Q

∫
Xq

|lip(g|Xq
)|2 ◦ Fs dmqdq(q). (3.27)

Proof. Let (gn)n ⊂ L2 be a sequence of Lipschitz functions such that gn → g and |lip(gn)| → |∇g|6

in L2(X, (Fs)]m). Note that (Fs)]m =
∫
Q

(
(Fs)]mq

)
dq(q), there is a subsequence of (gn), still7

denoted by (gn), such that gn|Xq
→ g|Xq

in L2(Xq, (Fs)]mq) for q-a.e. q ∈ Q.8
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Notice that |lip(gn)||Xq
≥ |lip(gn|Xq

)|, and it is known that |lip(g|Xq
)| = |∇g|Xq

| mq-a.e. on Xq1

(c.f. [22, Theorem 6.1]). Then we have2 ∫
|∇g|2 ◦ Fs dm =

∫
|∇g|2 d(Fs)]m

= lim
n→∞

∫
|lip(gn)|2 d(Fs)]m

= lim
n→∞

∫
Q

(∫
Xq

|lip(gn)|2 d(Fs)]mq

)
dq(q)

By Fatou’s lemma ≥
∫
Q

lim
n→∞

(∫
Xq

|lip(gn)|2 d(Fs)]mq

)
dq(q)

≥
∫
Q

lim
n→∞

(∫
Xq

|lip(gn|Xq
)|2 d(Fs)]mq

)
dq(q)

By definition of the energy form E ≥
∫
Q

(∫
Xq

|∇g|Xq
|2 d(Fs)]mq

)
dq(q)

=

∫
Q

∫
Xq

|lip(g|Xq
)|2 d(Fs)]mqdq(q)

=

∫
Q

∫
Xq

|lip(g|Xq
)|2 ◦ Fs dmqdq(q)

which is the thesis. �3

Remark 3.12. Unlike the well-known result of Cheeger [22, Theorem 6.1] which tells us that4

|∇g| = |lip(g)| m-a.e. if (X, d,m) satisfies volume doubling property and supports a local5

Poincaré inequality, it is still unknown whether this result is still true on RCD(K,∞) spaces or6

not. In [29], the author and Gigli prove that |∇g|p = |∇g| for all p > 1 on RCD(K,∞) spaces.7

But it is still possible that |∇g| < |lip(g)|.8

3.2. Proof of the rigidity. In this part, we will complete the proof of Theorem 1.1 by proving the9

following Proposition 3.13, 3.14.10

In Proposition 2.13, we proved the rigidity of the 2-Bakry-Émery inequality for 1-dimensional11

spaces. Generally, it is proved by Gigli-Ketterer-Kuwada-Ohta [30] that (X, d,m) is isometric to12

the product space of the 1-dimensional Gaussian space and an RCD(K,∞) space, if there is a non-13

constant function attaining the equality in the Poincaré inequality. As a consequence of Theorem14

3.7, Lemma 2.9 and the result of Gigli-Ketterer-Kuwada-Ohta, we get the following proposition.15

Proposition 3.13 (c.f. [30], Theorem 1.1). Let (X, d,m) be an RCD(K,∞) space with K > 0.
Assume there is a non-constant f ∈ V attaining the equality in the 1-Bakry-Émery inequality. Then
there exists an RCD(K,∞)-space (Y, dY ,mY ), such that the metric space (X, d,m) is isometric
to the product space (

R, | · |,
√
K/(2π) exp(−Kt2/2)dt

)
× (Y, dY ,mY )

equipped with the L2-product metric and product measure.16

Sketch of the proof. By (c) of Theorem 3.7 and Lemma 2.9, u = 1
K

div
(
∇Ptf
|∇Ptf |

)
attains the equality17

in the Poincaré inequality. Then the assertion follows from [30, Theorem 1.1].18
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For reader’s convenience, we offer more details here. By Theorem 3.7 and Lemma 2.9, Hessu =1

0 and |∇u| = 1, so that −∇u induces a family of isometries (Ft). By Corollary 3.10, there is2

a disintegration m = mqq(dq) associated with the one-to-one map Ψ : R × u−1(0) 3 (r, x) 7→3

Fr(x) ∈ X .4

In addition, assume (in the coordinate of Ψ) that u
(
(0, y)

)
= 0. By (4) and (5) of Corollary5

3.10, up to a reflection, we may write6

u
(
(r, y)

)
= r,

and7

(Fr)]mq = e−
K
2

(
r2+2ur

)
mq.

Hence mq � H1|Xq
with continuous density hq, and8

hq
(
(r, y)

)
= e−

K
2

(
r2+2u((0,y))r

)
hq
(
(0, y)

)
= e−

Kr2

2 hq
(
(0, y)

)
.

So m is isomorphic to a product measure ΦK ×mY .9

Following Gigli’s strategy of the splitting theorem [24], one can prove that the map Ψ induces an10

isometry between the Sobolev spacesW 1,2
(
Ψ−1(X)

)
andW 1,2

(
R×u−1(0)

)
. Then from Sobolev-11

to-Lipschitz property we know that Ψ is an isometry between metric measure spaces (see [24, §6],12

[25], and [30, §5] for details). �13

Finally, we have the following characterization of extreme functions.14

Proposition 3.14. Under the same assumption and keep the same notations as Proposition 3.13,
f can be represented in the coordinate of the product space R× Y , by

f(r, y) =

∫ r

0

g(s) ds, (r, y) ∈ R× Y

for some non-negative g ∈ L2(R, φKL1). In particular, if f attains the equality in the 2-Bakry-15

Émery inequality, it holds Ptf(r, y) = CeKtr for some constant C.16

Proof. By Theorem 3.7 and the proof of Proposition 3.13, we know17

∇f
|∇f |

= ∇ 1

K
div
( ∇f
|∇f |

)
= ∇r. (3.28)

So for mY -a.e. y ∈ Y ,

f(r, y)− f(0, y) =

∫ r

0

|∇f |(s, y) ds.

Given r ∈ R, from (3.28) we can see that f(r, y) in independent of y ∈ Y , so we can assume18

f(0, y) = 0 and denote g(s) := |∇f |(s, y) which is the thesis.19

If f also attains the equality in the 2-Bakry-Émery inequality, by Lemma 3.11, (3.26), and20

a standard localization argument we can see that f(·, y) attains the quality in the 1-dimensional21

Poincaré inequality for mY -a.e. y ∈ Y . Then the second assertion follows from Proposition22

2.13. �23
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4. RIGIDITY OF SOME FUNCTIONAL INEQUALITIES1

4.1. Equality in the Bobkov’s inequality. In this part, we will study the cases of equality in the2

Bobkov’s inequality, as well as the Gaussian isoperimetric inequality, and prove the corresponding3

rigidity theorems,4

Using an argument of Carlen-Kerce [20, Section 2] (which was firstly used by Ledoux in [38],5

see also a recent work of Bouyrie [19]), we can prove the following monotonicity formula con-6

cerning RCD(K,∞) spaces for K > 0.7

Proposition 4.1. Let (X, d,m) be a RCD(K,∞) space with K > 0. For any f : X 7→ [0, 1],8

t > 0, denote ft = Ptf and define9

JK(ft) :=

∫ √
IK(ft)2 + Γ(ft) dm (4.1)

where IK is the Gaussian isoperimetric profile defined in (1.6).10

Then for L1-a.e. t, it holds11

d

dt
JK(ft)

= −
∫
G
− 3

2
K

(∥∥IKHessft − I ′K∇ft ⊗∇ft
∥∥2

HS
+ ‖Hessft‖2

HSΓ(ft)−
1

4
Γ
(
Γ(ft)

))
dm

−
∫
G
− 1

2
K

(
dRic(ft, ft)−KΓ(ft) dm

)
where GK = IK(ft)

2 + Γ(ft).12

In particular, JK(ft) is non-increasing in t.13

Proof. If f is constant, JK(ft) is also a constant function of t, there is nothing to prove. So we14

assume that f is not constant. In addition, similar to [11, Proof of Theorem 3.1, Step 1], it suffices15

to prove the assertion for every f ∈ Lip(X, d) taking values in [ε, 1 − ε], for some ε ∈ (0, 1
2
). In16

fact, for general f , we can replace f by f ε := 1
1+2ε

(f+ε), then letting ε ↓ 0 we will get the answer.17

It is known that ft ∈ L∞(X,m) ∩ D(∆), and ∆ft ∈ V. By Lipschitz regularization of Pt (c.f.18

[9, Theorem 6.5]), we also have ft ∈ Lip(X, d) for any t ∈ (0,∞), so ft ∈ TestF. From [11,19

Lemma 3.2] we know t 7→ JK(ft) is Lipschitz, and for L1-a.e. t we have20

dJK
dt

=
d

dt

∫ √
GK(ft) dm

=

∫
GK(ft)

− 1
2

(
IK(ft)I

′
K(ft)∆ft + Γ(ft,∆ft)

)
dm,

where GK(f) denotes the function IK(f)2 + Γ(f). Notice that by minimal (maximal) principle,21

GK(ft) > δ for some δ > 0. Thus the formula above is well-posed.22

From the definition of Ric in Proposition 2.8, we can see that23

dJK
dt

=

∫
G
− 1

2
K IK(ft)I

′
K(ft)∆ft dm︸ ︷︷ ︸

J1

−
∫

1

2
Γ
(
G
− 1

2
K ,Γ(ft)

)
+G

− 1
2

K

(
‖Hessft‖2

HS +KΓ(ft)
)

dm︸ ︷︷ ︸
J2

−
∫
G
− 1

2
K

(
dRic(ft, ft)−KΓ(ft) dm

)
.
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Thus the non-smooth Bochner inequality in Proposition 2.8 yields1

dJK
dt
≤ J1 + J2. (4.2)

By computation,2

J1 = −
∫

Γ
(
G
− 1

2
K IKI

′
K , ft

)
dm

= −
∫
G
− 1

2
K (IKI

′
K)′Γ(ft) dm +

1

2

∫
G
− 3

2
K IKI

′
KΓ(GK , ft) dm

= −
∫
G
− 1

2
K (IKI

′
K)′Γ(ft) dm

+
1

2

∫
G−

3
2 IKI

′
K

(
2IKI

′
KΓ(ft, ft) + Γ

(
Γ(ft), ft

))
dm

= −
∫
G
− 1

2
K

(
(I ′K)2 −K

)
Γ(ft) dm +

∫
G
− 3

2
K (IKI

′
K)2Γ(ft) dm

+

∫
G
− 3

2
K IKI

′
KHessft(ft, ft) dm

= −
∫
G
− 3

2
K

(
(I ′K)2Γ(ft)

2−KI2
KΓ(ft)−KΓ(ft)

2︸ ︷︷ ︸
=−KΓ(ft)GK(ft)

−IKI ′KHessft(ft, ft)
)

dm

where in the fourth equality we use the identity (IKI
′
K)′ = (I ′K)2−K which follows from IKI

′′
K =3

−K.4

Similarly,5

−1

2

∫
Γ
(
G
− 1

2
K ,Γ(ft)

)
dm

=

∫
1

4
G
− 3

2
K

(
2IKI

′
KΓ
(
ft,Γ(ft)

)
+ Γ

(
Γ(ft)

))
dm

=

∫
G
− 3

2
K

(
IKI

′
KHessft(ft, ft) +

1

4
Γ
(
Γ(ft)

))
dm.

In summary, we get6

J1 + J2

= −
∫
G
− 3

2
K

(
(I ′K)2Γ(ft)

2 − 1

4
Γ
(
Γ(ft)

)
− 2IKI

′
KHessft(ft, ft) + ‖Hessft‖2

HS

(
I2
K + Γ(ft)

))
dm

= −
∫
G
− 3

2
K

(∥∥IKHessft − I ′K∇ft ⊗∇ft
∥∥2

HS
+ ‖Hessft‖2

HSΓ(ft)−
1

4
Γ
(
Γ(ft)

))
dm.

Recall that by definition7

Γ
(
Γ(ft)

)
= 2Hessft

(
∇ft,∇Γ(ft)

)
≤ 2‖Hessft‖HS

√
Γ(ft)

√
Γ
(
Γ(ft)

)
,

thus
‖Hessft‖2

HSΓ(ft) ≥
1

4
Γ
(
Γ(ft)

)
.
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Combining with (4.2) we have
dJK
dt
≤ J1 + J2 ≤ 0,

so t 7→ JK(ft) is non-increasing. �1

Appying Proposition 4.1, we obtain the functional version of Gaussian isoperimetric inequality2

of Bobkov on RCD(K,∞) spaces, which had been proved by Ambrosio-Mondino in [11] using a3

different proof (see also [15, Chapter 8.5.2] for more discussions).4

Proposition 4.2. Let (X, d,m) be a metric measure space satisfying RCD(K,∞) condition for5

some K > 0. Then (X, d,m) supports the K-Bobkov’s isoperimetric inequality in the sense of6

Definition 1.2,7

IK

(∫
f dm

)
≤ JK(f)

for all measurable function f with values in [0, 1].8

Proof. Let f be a measurable function with values in [0, 1]. By Proposition 4.1 and definition of9

JK(f) we know10

lim
t→+∞

JK(ft) ≤ lim
t→0

JK(ft) = JK(f).

Combining with the ergodicity of heat flow and the 2-Bakry-Émery inequality11

lim
t→+∞

JK(ft) = IK

(∫
f dm

)
,

we get the Bobkov’s isoperimetric inequality. �12

In the next proposition, we discover the cases of equality in the Bobkov’s inequality. By Propo-13

sition 4.1, we simultaneously obtain the rigidity of the Gaussian isoperimetric inequality. We refer14

the readers to [20, Section 2] for related discussions on Rn.15

Proposition 4.3 (Equality in the Bobkov’s inequality). Let (X, d,m) be a RCD(K,∞) metric
measure space withK > 0. Then there exists a non-constant f attaining the equality IK

(∫
f dm

)
=

JK(f) if and only if

(X, d,m) ∼=
(
R, | · |,

√
K/(2π)e−Kt

2/2dt
)
× (Y, dY ,mY )

for some RCD(K,∞) space (Y, dY ,mY ), and up to change of variables, f is either the indicator16

function of a half space17

f(r, y) = χE, E = (−∞, e]× Y ,
where e ∈ R ∪ {+∞} with

∫ e
−∞ φK(s) ds =

∫
f dm; or else, there are a = (2

∫
f)−1 and

b = Φ−1
K

(
f(0, y)

)
such that

f(y, t) = ΦK(at+ b) =

∫ at+b

−∞
φK(s) ds.

Proof. Part 1: Denote ft = Ptf and ht = Φ−1
K (ft). We will show that ht satisfies Γ2(ht) =18

KΓ(ht)m (c.f. Proposition 2.8), and thus satisfies (1) in Lemma 2.9.19

By Proposition 4.1 we know IK
(∫

f dm
)

= JK(f) if and only if

IK

(∫
f dm

)
= IK

(∫
ft dm

)
= JK(ft) for all t ≥ 0,
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which is equivalent to dJK
dt

= 0 for all t > 0. From Proposition 4.1, we know that dJK
dt

= 0 if and1

only if the following equalities (4.3) (4.4) (4.5) are satisfied2

Ric(ft, ft) = KΓ(ft)m, (4.3)

3

IKHessft − I ′K∇ft ⊗∇ft = 0 (4.4)
and4

‖Hessft‖2
HSΓ(ft)−

1

4
Γ
(
Γ(ft)

)
= 0. (4.5)

By definitions,5

IK(ft) = φK(ht), ft = ΦK(ht). (4.6)
By (4.6) and chain rule (c.f. [27, Theorem 2.2.6])6

I ′K(ft)∇ft = −htφK(ht)∇ht, ∇ft = φK(ht)∇ht.
Then we have

I ′K(ft) = −ht, ∇ft = IK(ft)∇ht,
and7

Hessft = −htφK(ht)∇ht ⊗∇ht + φK(ht)Hessht .

In conclusion, we obtain8

∇ht = I−1
K (ft)∇ft (4.7)

and9

Hessft = I ′K(ft)I
−1
K (ft)∇ft ⊗∇ft + IK(ft)Hessht . (4.8)

By (4.7) and the bi-linearity of Ric(·, ·), (4.3) is equivalent to10

Ric(ht, ht) = KΓ(ht)m. (4.9)

Compare (4.8) and (4.4), we can see that ft satisfies (4.4) if and only if Hessht = 0, which is11

equivalent to12

‖Hessht‖HS = 0. (4.10)
By (4.8) and (4.10), we have13

‖Hessft‖HS = ‖I ′KI−1
K ∇ft ⊗∇ft‖HS = I ′KI

−1
K Γ(ft)

and14

Γ
(
Γ(ft)

)
= 2Hessft

(
∇ft,∇Γ(ft)

)
By (4.8) = 2I ′KI

−1
K Γ(ft)Γ

(
ft,Γ(ft)

)
= 4I ′KI

−1
K Γ(ft)Hessft(∇ft,∇ft)

By (4.8) = 4I ′KI
−1
K Γ(ft)

(
I ′KI

−1
K

(
Γ(ft)

)2
)
.

Therefore,15

‖Hessft‖2
HSΓ(ft)−

1

4
Γ
(
Γ(ft)

)
= (I ′KI

−1
K )2

(
Γ(ft)

)3 − (I ′KI
−1
K )2

(
Γ(ft)

)3
= 0 (4.11)

which is exactly (4.5).16

In conclusion, (4.3) (4.4) (4.5)⇐⇒ (4.9) (4.10), and the latter ones are equivalent to17

Γ2(ht) = KΓ(ht)m (4.12)
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which is the thesis.1

Part 2: By Proposition 3.14 we just need to study the 1-dimensional cases. By Proposition 2.13
we know ht = Φ−1

K (ft) is an affine function on R for any t > 0, there exist a = a(t), b = b(t) ∈ R
such that

ft(x) = ΦK(ax+ b) =

∫ ax+b

−∞
φK(s) ds.

By [20, Theorem 1] there is s ≥ 0 such that

ft = Pt+s(χE), ∀ t ≥ 0

where E is the half-line such that
∫
E
φK dL1 =

∫
f dm.2

Therefore, if s = 0, f = χE . Otherwise, a(t), b(t) are continuous on [0,+∞), so

f = ΦK(a0x+ b0) =

∫ a0x+b0

−∞
φK(s) ds

where a0 = (2
∫
f)−1, b0 = Φ−1

K (f(0)). �3

Applying Proposition 4.3, we obtain the rigidity of the Gaussian isoperimetric inequality.4

Corollary 4.4 (Rigidity of the Gaussian isoperimetric inequality). Let (X, d,m) be a RCD(K,∞)5

metric measure space with K > 0. If there is a Borel set E ⊂ X with positive m-measure such6

that7

P (E) = JK(χE) = IK
(
m(E)

)
.

Then

(X, d,m) ∼=
(
R, | · |,

√
K/(2π)e−Kt

2/2dt
)
× (Y, dY ,mY )

for some RCD(K,∞) space (Y, dY ,mY ), and E ∼= (−∞, e]× Y with e = Φ−1
K

(
m(E)

)
.8

4.2. Equalities in Φ-entropy inequalities. In this part we will characterize the cases of equali-9

ties in the logarithmic Sobolev inequality, the Poincaré inequality, and more generally, Φ-entropy10

inequalities of Chafaı̈ [21] and Bolley-Gentil [18] on RCD(K,∞) metric measure spaces.11

First of all, we prove a general Φ-entropy inequality. For more discussions about admissible12

Φ’s, see [21, Page 330], [18, Section 1.3] and the references therein.13

Proposition 4.5. Let (X, d,m) be a metric measure space satisfying RCD(K,∞) condition for14

some K > 0. Let Φ be a C2-continuous strictly convex function on an interval I ⊂ R such that 1
Φ′′

15

is concave. Then (X, d,m) satisfies the following Φ-entropy inequality:16

EntΦ
m(f)︸ ︷︷ ︸

:=
∫

Φ(f) dm

−Φ
(∫

f dm
)
≤ 1

2K

∫
Φ′′(f)Γ(f) dm (4.13)

for all I-valued functions f .17
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Proof. Let f be an I-valued function and denote ft := Ptf . By the ergodicity of the heat flow, we1

have2

EntΦ
m(f)− Φ

(∫
f dm

)
= −

∫ +∞

0

d

dt
EntΦ

m(ft) dt

By [8, Theorem 4.16] =

∫ +∞

0

∫
Φ′′(ft)Γ(ft) dm dt

By (2.9), Proposition 2.10 ≤
∫ +∞

0

e−2Kt

∫
Pt
(
Φ′′(f)Γ(f)

)
dm dt

=
1

2K

∫
Φ′′(f)Γ(f) dm

which is the thesis. �3

Finally, we complete the proof of Theorem 1.6.4

Proof of Theorem 1.6. We keep the same notations as in §1.3. If there is a function f attaining the5

equality in (4.13), from the proof of Proposition 4.5, we can see that6

Φ′′(Ptf)Γ(Ptf) = e−2KtPt
(
Φ′′(f)Γ(f)

)
for almost every t > 0. If f is not constant, by Proposition 2.10 (or Corollary 2.12) and Propo-7

sition 3.13 we know (X, d,m) is isometric to the product
(
R, | · |, φKL1

)
× (Y, dY ,mY ) of two8

RCD(K,∞) metric measure spaces. Concerning the extreme functions, by Corollary 2.12 and9

Proposition 3.14 we just need to consider the following two cases10

a) Poincaré inequality: Φ = x2 for x ∈ R. If there is a non-constant function f ∈ V with∫
f dm = 0 such that ∫

f 2 dm =
1

K

∫
|∇f |2 dm.

Then f itself satisfies the properties in Lemma 2.9. In this case f(r, y) = apr for a constant11

ap ∈ R.12

b) Logarithmic Sobolev inequality: Φ(x) = x lnx for x ∈ R+. If there is a non-negative
function f ∈ V with

∫
f dm = 1 such that∫

f ln f dm =
1

2K

∫
|∇f |2

f
dm.

Then by Corollary 2.12, ln f attains the equality in the 2-Bakry-Émery inequality. In this13

case f(r, y) = ealr−a
2
l /2K for a constant al ∈ R.14

�15
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