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We study the cases of equality and prove a rigidity theorem concerning the 1-
Bakry-Émery inequality. As an application, we prove the rigidity and identify the 
extremal functions of the Gaussian isoperimetric inequality, the logarithmic Sobolev 
inequality and the Poincaré inequality in the setting of RCD(K, ∞) metric measure 
spaces. This unifies and extends to the non-smooth setting the results of Carlen-
Kerce [19], Morgan [44], Bouyrie [18], Ohta-Takatsu [45], Cheng-Zhou [23].
Examples of non-smooth spaces fitting our setting are measured-Gromov Hausdorff 
limits of Riemannian manifolds with uniform Ricci curvature lower bound, and 
Alexandrov spaces with curvature lower bound. Some results including the rigidity of 
the 1-Bakry-Émery inequality, the rigidity of Φ-entropy inequalities are of particular 
interest even in the smooth setting.

© 2020 Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions les cas d’égalité et prouvons un théorème de rigidité sur l’inégalité 
de Bakry-Émery. En tant qu’application, nous prouvons la rigidité et identifions 
les fonctions extrêmes de l’inégalité isopérimétrique gaussienne, de l’inégalité de 
Sobolev logarithmique et de l’inégalité de Poincaré dans le cadre de espace métrique 
mesuré RCD(K, ∞). Cela unifie et étend aux espaces non-lisses les résultats de 
Carlen-Kerce [19], Morgan [44], Bouyrie [18], Ohta-Takatsu [45], Cheng-Zhou [23]
Des exemples d’espaces non-lisses satisfaisant notre cadre sont les limites mesuré de 
Gromov-Hausdorff des variétés riemanniennes de courbure de Ricci minorée, et les 
espaces d’Alexandrov de courbure minorée. Certains résultats, notamment la rigidité 
de l’inégalité de Bakry-Émery, la rigidité des inégalités d’entropie généralisée sont 
particulièrement intéressants même dans le cadre lisse.

© 2020 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In this paper, we prove some rigidity theorems concerning the 1-Bakry-Émery inequality and some other 
important functional inequalities on RCD(K, ∞) metric measure spaces for positive K. Metric measure 
spaces satisfying Riemannian curvature-dimension condition RCD(K, ∞) were introduced by Ambrosio-
Gigli-Savaré in [9], as a refinement of the Lott-Sturm-Villani’s CD(K, ∞) condition introduced in [43] and 
[49]. Important examples of spaces satisfying RCD(K, ∞) condition include: measured-Gromov Hausdorff 
limits of Riemannian manifolds with Ric ≥ K (cf. [32]), Alexandrov spaces with curvature ≥ K (cf. [51]). 
We refer the readers to the survey [1] for an overview of this fast-growing field and bibliography.

Let us briefly explain the primary motivation of this paper. It is now well-known that the Bakry-Émery 
theory is an efficient tool in the study of geometric and functional inequalities (cf. [13] and [14]). Many 
important inequalities such as the logarithmic-Sobolev inequality and the Gaussian isoperimetric inequality, 
have proofs using heat flow or the Γ2-calculus of Bakry-Émery. It was noticed (e.g. by Otto-Villani [46] or 
Bouyrie [18]) that the cases of equality in the Γ2-inequality Γ2 ≥ KΓ are closely related with the rigidity 
of these inequalities. More precisely, if there is a function attaining the equality in one of these inequalities, 
there exists a (possibly different) function attaining the equality in the Γ2-inequality. For example, when 
K > 0, any extreme function f = fp attaining the equality in the sharp Poincaré inequality

ˆ
f2 dm ≤ 1

K

ˆ
Γ(f) dm (1.1)

satisfies Γ2(fp) = KΓ(fp), and any extreme function f = fl attaining the equality in the sharp logarithmic-
Sobolev inequality

ˆ
f ln f dm ≤ 1

2K

ˆ Γ(f)
f

dm (1.2)

satisfies Γ2(ln fl) = KΓ(ln fl).
An interesting observation is that both fp, fl attain the equality in the same 1-Bakry-Émery inequality

√
Γ(Ptf) ≤ e−KtPt

√
Γ(f) (1.3)

where (Pt)t≥0 is the heat flow associated with the Dirichlet form E(·) :=
´

Γ(·) dm and the ‘carré du champ’ 
Γ. Furthermore, both div

(
∇Ptfp
|∇Ptfp|

)
and div

(
∇Ptfl
|∇Ptfl|

)
attain the equalities in the Γ2-inequality and the 2-

Bakry-Émery inequality. The main aim of this paper is to understand this observation in general cases and 
an abstract framework.
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1.1. Bakry-Émery’s curvature criterion

Let (M, g, e−V Volg) be a weighted Riemannian manifold equipped with a weighted volume measure 
e−V Volg. The canonical diffusion operator associated with this smooth metric measure space is L = Δ −∇V , 
where Δ is the Laplace-Beltrami operator. We say that (M, g, e−V Volg) satisfies the BE(K, ∞) condition 
for some K ∈ R, in the sense of Bakry-Émery if

RicV := Ric + HessV ≥ K,

where Ric denotes the Ricci curvature tensor and HessV denotes the Hessian of V .
There are several equivalent characterizations of BE(K, ∞) condition, which have their own advantages 

in studying different problems. For example, the following ones are known to be equivalent to the BE(K, ∞)
curvature criterion. Even in the non-smooth RCD(K, ∞) framework, these characterizations are equivalent 
(in proper forms), see [9,10,35,48] for more discussions on this topic.

a) Γ2-inequality: Γ2(f) ≥ KΓ(f) for all f ∈ C∞
c (M), where Γ2 and Γ are defined by

Γ2(f) := 1
2LΓ(f, f) − Γ(f,Lf), Γ(f, f) := 1

2L(f2) − fLf = g(∇f,∇f).

b) p-Bakry-Émery inequality for p > 1:

√
Γ(Ptf)

p
≤ e−pKtPt

(√
Γ(f)

p)
, ∀ f ∈ W 1,p(M, e−V Volg) (1.4)

where (Pt)t>0 is the semigroup generated by the diffusion operator L.
c) 1-Bakry-Émery inequality:

√
Γ(Ptf) ≤ e−KtPt

(√
Γ(f)

)
, ∀ f ∈ W 1,1(M, e−V Volg). (1.5)

Naturally, one would ask the following questions: what if the equalities hold in these different character-
izations of BE(K, ∞)? It will not be surprising that the equalities in the Γ2-inequality, the 2-Bakry-Émery 
inequality, and some other ‘second-order’ inequalities, are all equivalent and any non-constant extreme 
function is affine and induces a splitting map. For any p > 1, by Hölder inequality, the equality in the 
p-Bakry-Émery inequality yields the equality in the 1-Bakry-Émery inequality. Conversely, from the exam-
ples of the Poincaré inequality and the log-Sobolev inequality, the equality in the 1-Bakry-Émery inequality 
is strictly weaker than the equality in the 2-Bakry-Émery inequality. So we would ask: what if the equal-
ity in the 1-Bakry-Émery inequality is attained by a non-constant function. Inspired by a recent work of 
Ambrosio-Brué-Semola [2] concerning RCD(0, N) spaces, we conjecture that on an RCD(K, ∞) space with 
K > 0, the existence of a non-constant function attaining the equality in the 1-Bakry-Émery inequality 
yields the splitting theorem.

In the first theorem, we prove the rigidity of the 1-Bakry-Émery inequality on dimension-free RCD(K, ∞)
spaces with K > 0.

Theorem 1.1 (Lemma 2.9, Theorem 3.7, Proposition 3.13, 3.14). Let (X, d, m) be an RCD(K, ∞) probability 
space with K > 0. Let u ∈ D(Δ) be a non-constant function with Δu ∈ V . Then the following statements 
are equivalent.

1. (Γ2-inequality) Γ2(u; ϕ) = K
´
ϕΓ(u) dm for any ϕ ∈ L∞ with Δϕ ∈ L∞;
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2.
´

(Δu)2 dm = K
´

Γ(u) dm;
3. (Spectral gap) −Δu = Ku;
4. (Poincaré inequality) 

´
Γ(u) dm = K

´
u2 dm;

5. (2-Bakry-Émery inequality) Γ(Ptu) = e−2KtPtΓ(u) for some t > 0.

If u satisfies one of the properties above, it holds

a. (1-Bakry-Émery inequality) 
√

Γ(Ptu) = e−KtPt

√
Γ(u) for all t > 0;

b. Ric(u, u) = KΓ(u) dm;
c. u is an affine function, this means Hessu = 0 and Γ(u) is a positive constant;
d. the gradient flow of u induces a one-parameter semigroup of isometries of (X, d).

If u attains the equality in the 1-Bakry-Émery inequality (6), we have

e. ∇Ptu
|∇Ptu| =: b does not depend on t > 0;

f. Δdiv(b) = −Kdiv(b), thus div(b) attains the equality in the 2-Barky-Émery inequality;
g. ∇div(b) = −Kb;
h. there exists an RCD(K, ∞) probability space (Y, dY , mY ), such that the metric measure space (X, d, m)

is isometric to the product space
(
R, | · |,

√
K/(2π) exp(−Kt2/2) dt

)
× (Y,dY ,mY )

equipped with the L2-product metric and the product measure;
i. u can be represented in the coordinates of the product space R × Y by

u(r, y) =
rˆ

0

g(s) ds ∀(r, y) ∈ R× Y

for some non-negative g ∈ L2(R, 
√

K/(2π) exp(−Kt2/2) dt). In particular, if u attains equality in the 
2-Bakry-Émery inequality, there is a constant C such that

Ptu(r, y) = CeKtr ∀(r, y) ∈ R× Y, t > 0.

Remark 1.2. Concerning a RCD(K, ∞) probability space with negative K, we also prove in that the equality 
in the 1-Bakry-Émery inequality can not be attained by any non-constant function. For spaces with infinite 
volume measure, it is still unknown to us. But we conjecture that a similar splitting theorem also holds for 
negative K, at least for RCD(K, N) spaces with N < ∞.

1.2. Gaussian isoperimetric inequality

For K > 0, let φK(t) =
√

K
2π exp(−Kt2

2 ) be a Gaussian-type (probability) density function on R. It is 
known that (R, | · |, φKL1) is a model space with synthetic Ricci curvature lower bound K.

Let ΦK denote the error function

ΦK(t) :=
tˆ
φK(s) ds.
−∞
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It can be seen that ΦK is continuous and strictly increasing, so its inverse Φ−1
K is well-defined. We define 

the Gaussian isoperimetric profile IK : (0, 1) �→ [0, 
√

K
2π ] by

IK(t) := φK ◦ Φ−1
K (t), (1.6)

and we define IK(t) = 0 for t = 0, 1. It can be seen that IK =
√
KI1 and I ′′KIK = −K. In particular, IK(t)

is strictly concave in t and increasing in K.

Let γn = Πn
i=1φ1(xi)dxi be the n-dimensional standard Gaussian measure on Rn. Based on an isoperi-

metric inequality on the discrete cube and central limit theorem, Bobkov [16] proved the following functional 
version of the Gaussian isoperimetric inequality

I1

(ˆ
f dγn

)
≤
ˆ √

I1(f)2 + |∇f |2 dγn (1.7)

for any Lipschitz function f on (Rn, | · |, γn) with values in [0, 1].
In [15], Bakry and Ledoux proved Bobkov’s inequality (1.7) on smooth metric measure spaces using a 

semigroup method. Recently, by adopting the argument of Bakry-Ledoux, Ambrosio-Mondino [11] obtain 
Bobkov’s inequality in the non-smooth RCD(K, ∞) setting.

One interesting problem is: when does the equality hold in Bobkov’s inequality (1.7)? In [19, Section 
2], by extending ideas of Ledoux [39], Carlen and Kerce characterized the cases of equality in (1.7) for 
Gaussian space. Recently, Carlen-Kerce’s technique is adopted by Bouyrie [18] to study this problem on 
weighted Riemannian manifolds satisfying the BE(K, ∞) condition with K > 0.

In this paper, we will study the cases of equality in Bobkov’s inequality on RCD(K, ∞) spaces. We will 
identify all the extremal functions, and prove that any non-trivial extreme function induces an isometry 
map from this space to a product space.

Let us explain how to formulate Bobkov’s inequality on an RCD(K, ∞) metric measure space (X, d, m). 
Denote by V the space of 2-Sobolev functions, defined as the collection of functions f ∈ L2(X, m) such that 
there exists a sequence (fn)n ⊂ Lip(X, d) converging to f in L2 and lip(fn) → G in L2 for some G, where 
lip(fn) is the local Lipschitz constant of fn defined by

lip(fn)(x) := lim
y→x

|fn(y) − fn(x)|
d(y, x)

(and we define lip(fn)(x) = 0 if x is an isolated point). It is known that there exists a minimal function in 
m-a.e. sense, denoted by |∇f |, called minimal weak upper gradient. If (X, d) is a Riemannian manifold and 
m = Volg is its volume measure, it is known that |∇f | = lip(f) for any f ∈ Lip.

On RCD(K, ∞) spaces, it is known that (cf. [8,9]) the functional V  f �→ E(f) =
´
|∇f |2 dm is lower 

semi-continuous (w.r.t. weak L2-convergence), and it is a quasi-regular, strongly local, conservative Dirichlet 
form admitting a carré du champ Γ(f) := |∇f |2.

Let (Pt)t≥0 be the L2-gradient flow of E with generator Δ. If (X, d, m) is a smooth Riemannian manifold 
with boundary, it is known that (Pt) is the Neumann heat flow and Δ is the (Neumann) Laplace-Beltrami 
operator. For any f ∈ L1 with values in [0, 1] and K > 0, we define JK(f) ∈ [0, +∞] by

JK(f) := lim
ˆ √

IK(Ptf)2 + |∇Ptf |2 dm. (1.8)

t→0
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Definition 1.3 (Bobkov’s inequality on metric measure spaces). We say that a general metric measure space 
(X, d, m) supports the K-Bobkov’s isoperimetric inequality if for all measurable f ∈ L1(X, m) with values 
in [0, 1],

IK

(ˆ
f dm

)
≤ JK(f). (1.9)

Remark 1.4. It is known that m(X) < ∞ if (X, d, m) satisfies RCD(K, ∞) with K > 0 (cf. [49, Theo-
rem 4.26]). Without loss of generality, we can assume that m is a probability measure. Furthermore, the 
assumption ‘f ∈ L1(X, m)’ in Definition 1.3 could be removed.

Applying (1.9) with a characteristic function f = χE for a Borel set E ⊂ X, we get the following Gaussian 
isoperimetric inequality

P (E) ≥ IK
(
m(E)

)
(1.10)

where P (E) is the perimeter function defined by P (E) := |DχE |TV(X), and |DχE |TV is the total variation 
of χE (cf. [3,4] for more details above BV functions and the perimeter function on metric measure spaces).

By lower semi-continuity of weak gradients and Bakry-Émery’s gradient estimate |lip(Ptf)|2 ≤
e−2KtPt

(
|∇f |2

)
(see [9, Theorem 6.2]), we can see that

JK(f) =
ˆ √

IK(f)2 + |∇f |2 dm

for f ∈ Lip. In addition, we can see that Bakry-Émery’s gradient estimate yields the irreducible of E, i.e. 
|∇f | = 0 implies that f is constant. Since irreducibility implies ergodicity of the heat flow (see for instance 
[14, Section 3.8]), we know Ptf →

´
f dm in L2 as t → ∞. Notice that by 2-Bakry-Émery inequality, 

limt→∞ |∇Ptf | = 0 in L2. Thus we get

lim
t→∞

ˆ √
IK(Ptf)2 + |∇Ptf |2 dm = IK

(ˆ
f dm

)
.

In Proposition 4.1 we prove that the function t �→ JK(Ptf) is non-increasing on RCD(K, ∞) spaces with 
positive K. From the discussions above we know these spaces support Bobkov’s inequality. In particular, 
f attains the equality in Bobkov’s inequality if and only if JK(Ptf) is a constant function in t. Then, 
in Proposition 4.3 we prove the rigidity of Bobkov’s inequality, which extends [19, Theorem 1] and [18, 
Theorem 1.4] to the non-smooth setting.

Theorem 1.5 (Proposition 4.1 and 4.3). Assume that a metric measure space (X, d, m) satisfies RCD(K, ∞)
for some K > 0. Then (X, d, m) supports K-Bobkov’s isoperimetric inequality.

Furthermore, IK (
´
f dm) = JK(f) for some non-constant f ∈ L∞ if and only if

(X, d,m) ∼=
(
R, | · |,

√
K/(2π)e−Kt2/2 dt

)
× (Y,dY ,mY )

for some RCD(K, ∞) space (Y, dY , mY ), and up to change of variables, f is either the indicator function of 
a half space

f(r, y) = χE , E = (−∞, e] × Y , (r, y) ∈ R× Y

where e ∈ R ∪ {+∞} with 
´ e

−∞ φK(s) ds =
´
f dm; or else, there are a = (2 ́ f)−1 and b = Φ−1

K

(
f(0, y)

)
such that
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f(t, y) = ΦK(at + b) =
at+bˆ

−∞

φK(s) ds.

1.3. Φ-entropy inequalities

Let Φ be a continuous function defined on an interval I ⊂ R. For any I-valued function f , the Φ-entropy 
of f is defined by

EntΦm(f) :=
ˆ

Φ(f) dm.

Using a similar method as Chafaï [21] (see also Bolley-Gentil [17]), we can prove the following Φ-entropy 
inequality on RCD(K, ∞) spaces. It can be seen that the Poincaré inequality and the log-Sobolev inequality 
are both Φ-entropy inequalities.

Proposition 1.6 (Proposition 4.5). Let (X, d, m) be a metric measure space satisfying RCD(K, ∞) condition 
for some K > 0. Let Φ be a C2-continuous strictly convex function on an interval I ⊂ R such that 1

Φ′′ is 
concave. Then (X, d, m) supports the following Φ-entropy inequality:

EntΦm(f) − Φ
( ˆ

f dm
)
≤ 1

2K

ˆ
Φ′′(f)Γ(f) dm (1.11)

for any I-valued function f .

Furthermore, we completely characterize the cases of equality in Φ-entropy inequalities. In particular, 
we prove that the Poincaré inequality and the log-Sobolev inequality are essentially the only Φ-entropy 
inequalities, such that the corresponding equalities can be attained by non-trivial functions.

Theorem 1.7. Let (X, d, m) be a metric measure space satisfying RCD(K, ∞) for some K > 0. Assume there 
is a function Φ which fulfils the conditions in Proposition 1.6, and a non-constant function f attaining the 
equality in the corresponding Φ-entropy inequality. Then

1. f attains the equality in the 1-Bakry-Émery inequality, so that (X, d, m) is isometric to
(
R, | · |,

√
K/(2π)e−Kt2/2 dt

)
× (Y,dY ,mY )

for some RCD(K, ∞) space (Y, dY , mY );
2. Φ′(f) attains the equality in the 2-Bakry-Émery inequality;
3. up to affine coordinate transforms, additive and multiplicative constants, Φ = x2 or x ln x. In these 

cases, f(r, y) can be written as apr or ealr−a2
l /2K for some constants ap, al ∈ R.

Remark 1.8. It is known that Bobkov’s isoperimetric inequality yields some important inequalities (even 
without any curvature condition). For example, from [15, Theorem 3.2] we know K-Bobkov’s inequality 
yields the K-logarithmic Sobolev inequality

ˆ
f ln f dm ≤ 1

2K

ˆ |∇f |2
f

dm (1.12)

for any non-negative locally Lipschitz function f with 
´
f dm = 1. It is known (cf. Lott-Villani [42], Gigli-

Ledoux [31]) that the K-logarithmic Sobolev inequality implies the K-Talagrand inequality
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W 2
2 (fm,m) ≤ 2

K

ˆ
f ln f dm (1.13)

for any f with 
´
f dm = 1. It is known (using Hamilton-Jacobi semigroup, cf. [41, Theorem 1.8] and [8, 

Section 3]) that the K-Talagrand inequality implies the K-Poincaré inequality (or K-spectral gap)
ˆ

f2 dm ≤ 1
K

ˆ
|∇f |2 dm (1.14)

for any locally Lipschitz function f with 
´
f dm = 0.

Inspired by the implications of Bobkov’s inequality discussed above, one would ask whether we can deduce 
the rigidity of the Poincaré inequality and the log-Sobolev inequality (Theorem 1.7) from the rigidity of 
Bobkov’s inequality (Theorem 1.5) or not. For example, assume there is a non-constant function attaining 
the equality in the Poincaré inequality, then (X, d, m) does not support (K + 1

n )-Bobkov’s inequality for 
any n ∈ N. So for any n ∈ N there is fn ∈ Lip(X, d) ∩ L∞ such that

√
K

2π ≥ IK+ 1
n

(ˆ
fn dm

)
> JK+ 1

n
(fn) ≥ 0. (1.15)

Thus there is a subsequence of (fn) converging to some f in L2. Letting n → ∞ in (1.15), by continuity of 
(K, t) �→ IK(t), Fatou’s lemma and lower semi-continuity of E, we obtain

IK

(ˆ
f dm

)
≥ JK(f).

Combining with K-Bobkov’s inequality we get IK (
´
f dm) = JK(f).

However, we can not assert that f is not constant, because we do not know much about (fn) except its 
existence.

Remark 1.9. Concerning an extremal function f of the log-Sobolev inequality, it was conjectured by Otto-
Villani [46, Page 391] that ln f attains the equality in the Γ2-inequality Γ2 ≥ KΓ. Unfortunately, due to 
lack of regularity, we can not use second-order differentiation formula as suggested in [46] on curved spaces.

Recently, Ohta-Takatsu [45] give a rigorous proof to the rigidity of the log-Sobolev inequality on smooth 
metric measure spaces, using a localization argument which benefits from a breakthrough of Klartag [38]. As 
mentioned in [45, §4], the rigidity of the log-Sobolev inequality on RCD(K, ∞) spaces was an open problem 
due to lack of ‘needle decomposition’ on dimension-free RCD(K, ∞) spaces.

Thus the novelty of our result is that it gives an affirmative answer to the conjecture of Otto-Villani, and 
extends the result of Ohta-Takatsu to RCD(K, ∞) spaces.

1.4. Structure of the paper

In the first part of Section 2 we review some basic results about the non-smooth Bakry-Émery theory and 
calculus on metric measure spaces. Most of these results can be found in the papers of Ambrosio-Gigli-Savaré 
[8–10], Gigli [27] and Savaré [48]. In the second part, we study the cases of equality in the 2-Bakry-Émery 
inequality.

In Section 3 we prove the rigidity of the 1-Bakry-Émery inequality. This extends the result of Ambrosio-
Brué-Semola [2] to dimension-free RCD(K, ∞) spaces with K > 0. Some important tools used there are 
the continuity equation theory in the non-smooth framework developed by Ambrosio-Trevisan [12], and the 
functional analysis tools by Gigli [27]. We remark that the proof in [2] relies on a two-sides heat kernel 
estimate, and it seems that the proof works only for K = 0 case.



B.-X. Han / J. Math. Pures Appl. 145 (2021) 163–203 171
In Section 4, we apply the results obtained in the previous two sections to study the rigidity of Bobkov’s 
Gaussian isoperimetric inequality and Φ-inequalities. The arguments in this section are not totally new, 
similar semigroup arguments were used by Carlen-Kerce [19], Chafaï [21] etc. in the study of related problems 
on smooth metric measure spaces.

2. Synthetic curvature-dimension conditions

2.1. Γ2-calculus on metric measure spaces

Definition 2.1 (Lott-Sturm-Villani’s curvature-dimension condition, cf. [43,49]). We say that a metric mea-
sure space (X, d, m) is CD(K, ∞) for some K ∈ R if the entropy functional Entm is K-displacement convex 
on the L2-Wasserstein space (P2(X), W2). This means, for any two probability measures μ0, μ1 ∈ P2(X)
with μ0, μ1 � m, there is a L2-Wasserstein geodesic (μt)t∈[0,1] such that

K

2 t(1 − t)W 2
2 (μ0, μ1) + Entm(μt) ≤ tEntm(μ1) + (1 − t)Entm(μ0) (2.1)

where Entm(μt) is defined as 
´
ρt ln ρt dm if μt = ρt m, otherwise Entm(μt) = +∞.

As we introduced in the Introduction, the energy form E(·) is defined on L2(X, m) by

E(f) := inf
{

lim inf
n→∞

ˆ

X

lip(fn)2dm : fn ∈ Lipb(X), fn → f in L2(X,m)
}

=
ˆ

X

∣∣∇f |2 dm

where lip(f)(x) := lim supy→x |f(x) − f(y)|/d(x, y) denotes the local Lipschitz slope at x ∈ X and |∇f |
denotes the minimal weak upper gradient. We refer the readers to [8,22] for details about the theory of 
Sobolev space on metric measure spaces.

We say that (X, d, m) is an RCD(K, ∞) space if it is CD(K, ∞), and E(·) is a quadratic form. In this 
case, it is known that E defines a quasi-regular, strongly local, conservative Dirichlet form admitting a carré 
du champ Γ(f) := |∇f |2 (cf. [10] and [13]). Denote V = D(E) = {f : E(f) < ∞}. For any f, g ∈ V , by 
polarization, we define

Γ(f, g) := 1
4
(
Γ(f + g) − Γ(f − g)

)
,

and

E(f, g) =
ˆ

Γ(f, g) dm.

The heat flow (Pt) is defined as the gradient flow of E in L2(m). It is known that Pt is linear and self-
adjoint (cf. [9]). We recall the following regularization properties of (Pt), ensured by the theory of gradient 
flows and maximal monotone operators.

Lemma 2.2 (A priori estimates). For every f ∈ L2(m) and t > 0 it holds

1. ‖Ptf‖L2 ≤ ‖f‖L2 ;
2. E(Ptf) ≤ 1 ‖f‖2

2 ;
2t L
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3. ‖ΔPtf‖L2 ≤ 1
t ‖f‖L2 .

Let us recall the notion of non-smooth vector fields introduced by Weaver in [50] (see also [12] and [27]).

Definition 2.3. We say that a linear functional b : Lipbs(X, d) �→ L0(X, m) is an L2-derivation, and write 
b ∈ L2(TX) (or b ∈ L2

loc(TX) resp.), if it satisfies the following properties.

1. Leibniz rule: for any f, g ∈ Lipbs(X, d) it holds

b(fg) = b(f)g + fb(g).

2. L2-bound: there exists g ∈ L2(X, m) (or L2
loc(X, m) resp.) such that

|b(f)| ≤ g|lip(f)|, m− a.e. on X,

for any f ∈ Lipbs and we denote by |b| the minimal (in the m-a.e. sense) g satisfying such property.

In [27] Gigli introduces the so-called tangent and cotangent modules over metric measure spaces, and 
proves the identification results between L2-derivations and elements of the tangent module L2(TX).

Proposition 2.4 (Section 2.2, [27]). Let E be the Dirichlet form associated with the metric measure space 
(X, d, m), and let Γ be the carré du champ defined on V . Then there exists a L∞-Hilbert module L2(TX)
satisfying the following properties.

1. For any f ∈ V , there is a derivation ∇f ∈ L2(TX) defined by the formula

∇f(g) = Γ(f, g), ∀g ∈ Lip(X, d).

2. L2(TX) is a module over the commutative ring L∞(X, m).
3. L2(TX) is a Hilbert space equipped with the norm ‖ · ‖ which is compatible with the semi-norm E on V , 

i.e. it holds the following correspondence

V  f �→ ∇f ∈ L2(TX), s.t. ‖∇f‖2 = E(f).

4. The norm ‖ · ‖ is induced by a pointwise inner product 〈·, ·〉 satisfying

〈∇f,∇g〉 = Γ(f, g), m− a.e.

and

〈h∇f,∇g〉 = h〈∇f,∇g〉, m− a.e.

for any f, g ∈ V and h ∈ L∞
loc.

5. L2(TX) is generated by {∇g : g ∈ V} in the following sense. For any v ∈ L2(TX), there exists a 
sequence vn =

∑Mn

i=1 an,i∇gn,i with an,i ∈ L∞ and gn,i ∈ V , such that ‖v − vn‖ → 0 as n → ∞.

Via integration by parts, we can define the divergence of vector fields.
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Definition 2.5. Let b ∈ L2
loc(TX). We say that b ∈ D(div) if there exists g ∈ L2(X, m) such that

ˆ
〈b,∇f〉 dm =

ˆ
b(f) dm = −

ˆ
gf dm for any f ∈ Lipbs(X, d).

By a density argument it is easy to check that such function g is unique (when it exists) and we will 
denote it by div(b).

In particular, the Dirichlet form E induces a densely defined selfadjoint operator Δ : D(Δ) ⊂ V �→ L2

satisfying E(f, g) = − ́ gΔf dm for all g ∈ V .
Put

Γ2(f ;ϕ) := 1
2

ˆ
Γ(f)Δϕdm−

ˆ
Γ(f,Δf)ϕdm

and D(Γ2) :=
{

(f, ϕ) : f, ϕ ∈ D(Δ), Δf ∈ V , ϕ, Δϕ ∈ L∞
}

.
It is proved in [9] (and also [6] for σ-finite case) that RCD(K, ∞) implies the following non-smooth 

Bakry-Émery condition BE(K, ∞).

Proposition 2.6 (The Bakry-Émery condition). Let (X, d, m) be an RCD(K, ∞) space. Then the correspond-
ing Dirichlet form E satisfies the following BE(K, ∞) condition

Γ2(f ;ϕ) ≥ K

ˆ
ϕΓ(f) dm (2.2)

for all (f, ϕ) ∈ D(Γ2) with ϕ ≥ 0.

Under some natural regularity assumptions on the distance canonically associated with the Dirichlet 
form, the converse implication is also true, see [10] for more details.

We have the following crucial properties obtained by Savaré [48] and Gigli [27]. Recall that the space of 
test functions is defined as TestF :=

{
f ∈ D(Δ) ∩ L∞ : Δf ∈ V , Γ(f) ∈ L∞}

. It is known that TestF is 
dense in V (cf. [27, (3.1.6)]).

Proposition 2.7. Let (X, d, m) be an RCD(K, ∞) space. Then

1. For any f ∈ TestF, we have Γ(f) ∈ V and

E
(
Γ(f)

)
≤ −

ˆ (
2KΓ(f)2 + 2Γ(f)Γ(f,Δf)

)
dm.

2. For every f ∈ D(Δ), we have Γ(f)1/2 ∈ V and

E
(
Γ(f)1/2

)
≤
ˆ

(Δf)2 dm−K · E(f).

3. For any f ∈ D(Δ) there is a continuous symmetric L∞-bilinear map Hessf (·, ·) defined on [L2(TX)]2, 
with values in L0(X, m) (cf. [27, Corollary 3.3.9]). In particular, if f, g, h ∈ TestF (cf. [27, Proposition 
3.3.22], [48, Lemma 3.2]), Hessf (·, ·) is given by the following formula:

2Hessf (∇g,∇h) = Γ
(
g,Γ(f, h)

)
+ Γ

(
h,Γ(f, g)

)
− Γ

(
f,Γ(g, h)

)
. (2.3)
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To introduce the measure-valued ‘Ricci tensor’, we briefly recall the notion of measure-valued Laplacian 
Δ (cf. [26,48]). We say that f ∈ D(Δ) ⊂ V if there exists a signed Borel measure μ = μ+ − μ− ∈ Meas(X)
charging no capacity zero sets such that

ˆ
ϕdμ = −

ˆ
Γ(ϕ.f) dm

for any ϕ ∈ V with quasi-continuous representative ϕ ∈ L1(X, |μ|). If μ is unique, we denote it by Δf . If 
Δf � m, we also denote its density by Δf if there is no ambiguity.

Proposition 2.8 (See [27], §3 and [48], Lemma 3.2). Let (X, d, m) be a RCD(K, ∞) space. Then for any 
f ∈ TestFloc :=

{
f ∈ D(Δ) ∩ L∞

loc : Δf ∈ Vloc, Γ(f) ∈ L∞
loc

}
, it holds Γ(f) ∈ D(Δ) and the following 

non-smooth Bochner inequality

Γ2(f) := 1
2ΔΓ(f) − Γ(f,Δf)m ≥

(
KΓ(f) + ‖Hessf‖2

HS

)
m.

Denote TestVloc := {Σn
i=1ai∇fi : n ∈ N, ai, fi ∈ TestFloc}. There is a measure-valued symmetric bilinear 

map Ric : [TestVloc]2 �→ Meas(X) satisfying the following properties

1. for any f ∈ TestFloc,

Ric(∇f,∇f) := 1
2ΔΓ(f) − Γ(f,Δf)m︸ ︷︷ ︸

=Γ2(f)

−‖Hessf‖2
HS m;

2. for any f ∈ TestFloc,

Ric(∇f,∇f) ≥ KΓ(f)m;

3. for any f, g, h ∈ TestFloc,

Ric(h∇f,∇g) = hRic(∇f,∇g).

2.2. Equality in the 2-Bakry-Émery inequality

In the next lemma, we study the equality in the 2-Bakry-Émery inequality. The argument for the proof 
is standard, we just need to pay attention to the regularity issues appearing in the non-smooth framework.

Lemma 2.9 (Equality in the 2-Bakry-Émery inequality). Let (X, d, m) be a RCD(K, ∞) probability space for 
some K > 0 and let u ∈ V ∩ D(Δ) be a non-constant function with Δu ∈ V and 

´
u dm = 0. Then the 

following statements are equivalent.

1. u ∈ TestFloc and Γ2(u) = KΓ(u) m;
2. Γ2(u; ϕ) = K

´
ϕΓ(u) dm for all non-negative ϕ ∈ L∞ with Δϕ ∈ L∞;

3.
´

(Δu)2 dm = K
´

Γ(u) dm;
4. −Δu = Ku;
5.

´
Γ(u) dm = K

´
u2 dm;

6. Γ(Ptu) = e−2KtPtΓ(u) for some t > 0.
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In particular, Psu satisfies the properties above for all s > 0. Furthermore, Psu satisfies one of these 
properties for all s ∈ [0, t] if and only if

ˆ
(Ptu)2 dm = e−2Kt

ˆ
u2 dm.

If u attains the equality in the 2-Bakry-Émery inequality (6) above, it holds

a) |∇Ptu| = e−KtPt|∇u| for all t > 0;
b) u is a non-constant affine function, this means Hessu = 0 and Γ(u) is a positive constant;
c) u ∈ TestFloc and Ric(u, u) = KΓ(u) dm;
d) the gradient flow of u induces a one-parameter semigroup of isometries of (X, d).

Proof. Part 1: We will prove (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (5) =⇒ (4) =⇒ (6) =⇒ (2). Statement (1) is 
a consequence of b) and c) which will be proved in Part 2.

(1) =⇒ (2): Integrating ϕ w.r.t. the measures Γ2(u), KΓ(u) m we get the answer.
(2) =⇒ (3): Notice that the constant function ϕ ≡ 1 is admissible, and Γ2(u, 1) =

´
(Δu)2 dm.

(3) =⇒ (4): Applying Proposition 2.6 with ϕ ≡ 1 (or by Proposition 2.7, (2)), we can see that
ˆ

(Δf)2 dm ≥ K

ˆ
Γ(f) dm

for f ∈ D(Δ). Let f = u ± εg for some g ∈ D(Δ) and ε ∈ R. We obtain
ˆ (

Δ(u± εg)
)2 dm ≥ K

ˆ
Γ(u± εg) dm. (2.4)

Differentiating (2.4) (w.r.t. the variable ε), and combining with the equality in (3) we get

±
ˆ

ΔuΔg dm ≥ ±K

ˆ
Γ(u, g) dm.

Therefore
ˆ

ΔuΔg dm = K

ˆ
Γ(u, g) dm = −K

ˆ
uΔg dm. (2.5)

Notice that D(Δ) is dense in V , and by Poincaré inequality it holds

Δ
(
D(Δ)

)L2 ⊕{
u ≡ c : c ∈ R, c �= 0

}
= L2.

Hence (2.5) yields (4).
(4) =⇒ (5) Multiplying u on both sides of −Δu = Ku and integrating w.r.t. m, we obtain the equality 

in the Poincaré inequality.
(5) =⇒ (4): By Poincaré inequality, we have 

´
Γ(u +g) dm ≥ K

´
(u +g)2 dm for all g ∈ V with 

´
g dm = 0. 

Then similar to (3) =⇒ (4), we can prove the spectral gap equality by a standard variation argument.
(4) =⇒ (6): Denote φ(t) :=

´ (
Γ(Ptu) −e−2KtPtΓ(u)

)
dm. By (4) we have −ΔPtu = KPtu for any t ≥ 0, 

so 
´

(ΔPtu)2 dm = K
´

Γ(Ptu) dm. It is known that (cf. [10, Lemma 2.1]) φ ∈ C1, and

φ′(t) = 2
ˆ (

−
(
ΔPtu

)2 + Ke−2KtΓ(u)
)

dm
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= 2
ˆ (

−KΓ(Ptu) + Ke−2KtΓ(u)
)

dm

≥ 0.

Therefore φ(t) ≥ φ(0) = 0. Note that by 2-Barky-Émery inequality Γ(Ptu) ≤ e−2KtPtΓ(u), it holds φ ≤ 0. 
So φ ≡ 0 and Γ(Ptu) = e−2KtPtΓ(u) for all t > 0 which is the thesis.

(6) =⇒ (2): It is known (cf. [10, Lemma 2.1]) that [0, t]  s �→ Φt,ϕ(s) := 1
2
´
e−2KsPsϕΓ(Pt−su) dm is 

C1-continuous for any positive ϕ ∈ L∞ with Δϕ ∈ L∞, and

Φ′
t,ϕ(s) = e−2Ks

(
Γ2(Pt−su;Psϕ) −K

ˆ
PsϕΓ(Pt−su) dm

)
≥ 0.

By 2-Bakry-Émery inequality, (6) holds if and only if Φ′
t,ϕ(s) = 0 for any s ∈ [0, t] and any admissible 

function ϕ, i.e.

Γ2(Pt−su;Psϕ) = K

ˆ
PsϕΓ(Pt−su) dm, ∀s ∈ [0, t]. (2.6)

Notice that u attains the equality in the 2-Bakry-Émery inequality for t > 0 if and only if it holds for all 
t′ ∈ [0, t], thus (2.6) implies

Γ2(Psu;ϕ) = K

ˆ
ϕΓ(Psu) dm, ϕ,Δϕ ∈ L∞, 0 ≤ s ≤ t (2.7)

which yields (2).

Part 2: Let us = Psu. If u satisfies one of the properties (1)-(6), from the discussion in the first part we 
know Δu = −Ku. So Δus = PsΔu = −Kus, and us also satisfies these properties.

Note that d
dsus = Δus. By Poincaré inequality, we get

d
ds

1
2

ˆ
u2
s dm =

ˆ
us

d
dsus dm

=
ˆ

usΔus dm

= −
ˆ

Γ(us) dm

≤ −K

ˆ
u2
s dm.

By Grönwall’s lemma, we obtain
ˆ

u2
s dm ≤ e−2Ks

ˆ
u2 dm. (2.8)

Therefore, (2.8) is an equality for some t > 0 if and only if us attains the equality in the Poincaré 
inequality (5).

Part 3: Furthermore, by 1-Bakry-Émery inequality and Cauchy-Schwarz inequality, we have

|∇Ptu| ≤ e−KtPt|∇u| ≤ e−Kt
√
PtΓ(u).

So if u attains the equality in the 2-Bakry-Émery inequality (6), it holds |∇Ptu| = e−KtPt|∇u|.
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In addition, integrating the non-smooth Bochner inequality in Proposition 2.8 we obtain
ˆ

(Δu)2 dm ≥ K

ˆ
Γ(u) dm +

ˆ
‖Hessu‖2

HS dm.

Thus the validity of (3) yields Hessu = 0. In particular, for any v ∈ V , it holds

Γ
(
Γ(u), v

)
= 2Hessu(∇u,∇v) = 0,

so Γ(Γ(u)) = 0 and Γ(u) = |∇u|2 ≡ c for some constant c ≥ 0. In particular, u ∈ TestFloc. If c = 0, f is 
constant. If c �= 0, by [34, Theorem 1.2] we know that the regular Lagrangian flow (Fr)r∈R+ associated with 
∇u induces a family of isometries, i.e. d(Fr(x), Fr(y)) = d(x, y) for any x, y ∈ X and r > 0.

Furthermore, by definition of Ric (cf. Proposition 2.8) and statement (2) proved in Part 1, for any 
ϕ ∈ L∞ ∩ D(Δ) with Δϕ ∈ L∞ we have

Γ2(u;ϕ) =
ˆ

ϕ‖Hessu‖2
HS dm +

ˆ
ϕdRic(u, u) = K

ˆ
ϕΓ(u) dm.

Combining with Hessu = 0 we obtain

Γ2(u) = Ric(u, u) = KΓ(u)m

and we complete the proof. �
The following proposition plays a key role in studying Φ-entropy inequalities in §4.2.

Proposition 2.10. Let (X, d, m) be a metric measure space satisfying RCD(K, ∞) condition for some K > 0. 
Let Φ be a C2-continuous convex function on an interval I ⊂ R such that 1

Φ′′ is concave and strictly positive. 
Then for all t > 0, we have

Φ′′(Ptu)Γ(Ptu) ≤ e−2KtPt

(
Φ′′(u)Γ(u)

)
(2.9)

for any I-valued function u ∈ V . In particular, the function t �→ e2Kt
´

Φ′′(Ptu)Γ(Ptu) dm is non-increasing.
Furthermore, the equality holds in (2.9) if and only if the following properties are satisfied.

1. (Φ′′)−1 is affine on the image of u which is defined as suppu�m (by Lemma 2.11 below we know suppu�m

is a closed interval or a point).
2. For any s ∈ [0, t], there is a constant c = c(s) > 0 with c(s) = e−2Ksc(0), such that

√
Γ(Psu) = e−KsPs

√
Γ(u) and Γ

(
Φ′(Psu)

)
= c.

Proof. Denote Ptu by ut. We have the following 1-Bakry-Émery inequality,
√

Γ(ut) ≤ e−KtPt

√
Γ(u), ∀ t ≥ 0, ∀u ∈ V . (2.10)

By concavity of 1
Φ′′ and Jensen’s inequality, we have

Φ′′(ut) ≤
(
Pt

(
1/Φ′′(u)

))−1
. (2.11)

Combining with (2.10) we get the following inequality
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Φ′′(ut)Γ(ut) ≤ e−2Kt
(
Pt

√
Γ(u)

)2(
Pt

(
1/Φ′′(u)

))−1
. (2.12)

By Cauchy-Schwarz inequality we know

(
Pt

√
Γ(u)

)2
≤

(
Pt

(
Φ′′(u)Γ(u)

))(
Pt

(
1/Φ′′(u)

))
. (2.13)

Combining (2.12) and (2.13), we obtain

Φ′′(ut)Γ(ut) ≤ e−2KtPt

(
Φ′′(u)Γ(u)

)
(2.14)

which is (2.9). Integrating (2.14) w.r.t. m, we obtain

e2Kt

ˆ
Φ′′(ut)Γ(ut) dm ≤

ˆ
Φ′′(u)Γ(u) dm. (2.15)

By semigroup property, we can see that e2Kt
´

Φ′′(ut)Γ(ut) dm is non-increasing in t.

Therefore, the equality in (2.9) holds for some t0 if and only if

e2Kt0

ˆ
Φ′′(ut0)Γ(ut0) dm =

ˆ
Φ′′(u)Γ(u) dm. (2.16)

Furthermore, it holds

e2Kt

ˆ
Φ′′(ut)Γ(ut) dm =

ˆ
Φ′′(u)Γ(u) dm, (2.17)

for any t ≤ t0. Hence the equality in (2.9) holds for some t0 > 0 if and only if the equalities in (2.10) (2.11)
and (2.13) hold for all 0 ≤ t ≤ t0. The equality in (2.11) holds iff (Φ′′)−1 is affine on the image of u, and 
the validity of the equality in (2.13) if and only if

Φ′′(ut)Γ
(
ut

)
= c

Φ′′(ut)
(2.18)

for some constant c = c(t) > 0. Moreover, for any t ≤ t0 we have

√
c(t) (2.18)= Φ′′(ut)

√
Γ
(
ut

) (2.10)(2.11)= e−Kt Pt

(√
Γ(u)

)
Pt

(
1/Φ′′(u)

) (2.18)= e−Kt
√

c(0)

which is the thesis. �
Lemma 2.11. Let (X, d, m) be an RCD(K, ∞) metric measure space and u ∈ V . Then the image of u, defined 
as suppu�m, is a closed interval in R or a point in which case u is constant.

Proof. Denote ess supu = b ∈ R ∪{+∞} and ess inf u = a ∈ R ∪{−∞}. We will show that suppu�m = [a, b].
If a = b, u is constant, the assertion is obvious. Otherwise, a < b. For any c ∈ (a, b) and ε > 0 small 

enough such that (c − ε, c + ε) ⊂ (a + ε, b − ε). Pick bounded measurable sets A, B ⊂ X with positive 
m-volume such that A ⊂ u−1((a, a + ε)

)
and B ⊂ u−1((b − ε, b)

)
. By [33] there is a unique L2-Wasserstein 

geodesic (μt) from μ0 := χA

m(A)m to μ1 := χB

m(B)m. There is Π ∈ P2(Geod(X,d)) such that (et)�Π = μt (cf. 
[5, Theorem 2.10]). By [47, Lemma 3.1] we know dμt

dm is uniformly bounded, so Π is a test plan (in the sense 
of [8, Definition 5.1]). By an equivalent characterization of Sobolev functions using test plans (cf. [8, §5, 
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Proposition 5.7 and §6]), we know u ◦ γ ∈ W 1,2([0, 1]) for Π-a.e. γ. Hence for Π-a.e. γ, the map t �→ u ◦ γ(t)
has an absolutely continuous representative. So there is a set Iγ ⊂ [0, 1] with positive L1-measure such that 
u ◦ γ(Iγ) ⊂ (c − ε, c + ε). By Fubini’s theorem again, there is tc ∈ (0, 1) and Γc ⊂ supp Π with positive 
measure, such that u ◦ γ(tc) ∈ (c − ε, c + ε) for all γ ∈ Γc. Therefore

μtc

({
γ(tc) : γ ∈ Γc

})
= (etc)�Π|Γc

(X) > 0.

From the definition of CD(K, ∞) condition (see (2.1)) we know μtc � m, so

u�m
(
(c− ε, c + ε)

)
= m

(
u−1((c− ε, c + ε)

))
≥ m

({
γ(tc) : γ ∈ Γc

})
> 0.

Hence c ∈ suppu�m. Since the choice of c is arbitrary and suppu�m is closed, we know suppu�m = [a, b]. �
Corollary 2.12. Under the same assumption as Proposition 2.10, if there exists a non-constant u ∈ V

attaining the equality in (2.9) for all t > 0, then up to additive and multiplicative constants, and affine 
coordinate transforms, Φ(x) = x ln x or Φ(x) = x2. In any of these cases, the function Ptu attains the 
equality in the 1-Bakry-Émery inequality and the function Φ′(Ptu) attains the equality in the Poincaré 
inequality. In particular, Φ′(Ptu) −

´
Φ′(Ptu) dm satisfies the properties (1)-(6) in Lemma 2.9 for all t > 0.

Proof. By Proposition 2.10 and Lemma 2.11 we know (Φ′′)−1 is linear on an interval I. So for x ∈ I, Φ′′(x) =
1

c1x+c2
for some constants c1, c2. If c1 = 0, Φ = x2 up to an additive constant and an affine coordinate 

transformation. If c1 �= 0, up to an affine coordinate transform, Φ can be written as x lnx + c3x + c4. In the 
latter case, we can write Φ as Φ(x) = 1

ec3

(
(ec3x) ln(ec3x)

)
+ c4, which is the thesis.

Furthermore, by Proposition 2.10 we know Γ(us) = c(s)/
(
Φ′′(us)

)2 for all s > 0, and c(s) = e−2Ksc(0). 
Thus for any t > 0, we have

ˆ (
Φ′(ut)

)2 dm−
(
Φ′( ˆ u dm

))2

=
tˆ

+∞

d
ds

ˆ (
Φ′(us)

)2 dm ds

By [8, Theorem 4.16] =
+∞¨

t

2
((

Φ′′(us)
)2 + Φ′(us)Φ(3)(us)

)
Γ(us) dm ds

=
+∞ˆ

t

c(s)
ˆ

2
(
1 + Φ′Φ(3)

(Φ′′)2 (us)
)

dm ds

=
+∞ˆ

t

2e−2K(s−t)c(t)
ˆ (

1 + Φ′Φ(3)

(Φ′′)2 (us)
)

dm ds.

Similarly,

(ˆ
Φ′(ut) dm

)2
−

(
Φ′(ˆ u dm

))2

=
tˆ d

ds

( ˆ
Φ′(us) dm

)2
ds
+∞
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=
+∞ˆ

t

2
(ˆ

Φ′(us) dm
)ˆ

Φ(3)(us)Γ(us) dm ds

=
+∞ˆ

t

2c(s)
( ˆ

Φ′(us) dm
)ˆ Φ(3)

(Φ′′)2 (us) dm ds

=
+∞ˆ

t

2e−2K(s−t)c(t)
( ˆ

Φ′(us) dm
)ˆ Φ(3)

(Φ′′)2 (us) dm ds.

Since (Φ′′)−1 is linear, we can see that η := Φ(3)

(Φ′′)2 = −
(

1
Φ′′

)′
is constant, so

ˆ (
Φ′(ut)

)2 dm−
(ˆ

Φ′(ut) dm
)2

=
+∞ˆ

t

2e−2K(s−t)c(t)
( ˆ (

1 + ηΦ′(us)
)
dm− η

ˆ
Φ′(us) dm

)
ds

=
+∞ˆ

t

2e−2K(s−t)c(t) ds

= 1
K

c(t)

= 1
K

ˆ
Γ
(
Φ′(ut)

)
dm.

This means that Φ′(ut) attains the equality in the Poincaré inequality. �
2.3. One-dimensional cases

In this part, we will prove the rigidity of the 2-Bakry-Émery inequality in 1-dimensional cases. This result 
is a simple application of Lemma 2.9, and it will be used in the study of higher-dimensional spaces.

Proposition 2.13. Let h be a CD(K, ∞) probability density supported on a closed set I ⊂ R, this means, hL1

is a probability measure such that (I, | · |, hL1) is a CD(K, ∞) space. If there is a non-constant function f

satisfying one of the properties (1)-(6) in Lemma 2.9, then I = R and h(t) = φK(t) =
√

K
2π exp(−Kt2

2 ) up 
to a translation. Furthermore, there is a constant C = |f ′| > 0 such that

Ptf(x) = CeKtx, ∀ t ≥ 0.

Proof. Since h is a CD(K, ∞) density, it is known (cf. [7,37]) that − ln h is K-convex and supph is a 
closed interval I := [a, b] with a ∈ R ∪ {−∞} and b ∈ R ∪ {+∞}. In particular, h is locally Lipschitz. By 
Rademacher’s theorem, h′(x) exists for L1-a.e. x ∈ I. Furthermore, (lnh)′ is a BV function and −(ln h)′′ ≥ K

in weak sense, i.e.
ˆ

ϕ′(ln h)′ dL1 ≥ K

ˆ
ϕdL1 (2.19)

for all ϕ ∈ C1
c with ϕ ≥ 0 and ϕ′(a) = ϕ′(b) = 0.
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Consider the Γ2-calculus on the metric measure space (I, | · |, hL1). For f ∈ D(ΔI), by Proposition 2.7
and the fact that Γ operator on (I, | · |, hL1) coincides with the usual derivative, we know f ′ ∈ W 1,2(I). 
So it is absolutely continuous, and f ′′(x) exists at almost every x ∈ I. By assumption and Lemma 2.9, we 
know Hessf = 0. By (2.3), we know Hessf = f ′′ = 0 and f ′ is constant. By integration by part formula and 
Newton-Leibniz formula, for any ϕ ∈ C1

c we have
ˆ

I

ϕΔIf hdL1 = −
ˆ

ϕ′f ′ hdL1

=
ˆ

I

ϕ
(
f ′′ − (ln h)′f ′)hdL1 + ϕf ′h

(
δa − δb

)
.

By definition ΔIf ∈ L2, so we have f ′|{a,b}\{±∞} = 0, and

Δhf = f ′′ − (ln h)′f ′ = −(ln h)′f ′. (2.20)

Since f is not constant, there must be {a, b} = {±∞} and I = R.
By (2.20) and (2.19), for any ϕ ∈ C1

c , we have
ˆ (

Δhf
)2
ϕh dL1 =

ˆ (
(ln h)′f ′)2ϕh dL1

= (f ′)2
ˆ

(ln h)′ϕh′ dL1

≥ K

ˆ
(f ′)2ϕh dL1 − (f ′)2

ˆ
(ln h)′ϕ′h) d.

Letting ϕ → 1 we get
ˆ (

Δhf
)2
h dL1 ≥ K

ˆ
(f ′)2h dL1. (2.21)

By assumption, the equality holds in (2.21). Hence there must be (lnh)′′ = K in usual sense. Up to a 

translation, h(x) =
√

K
2π exp(−Kx2

2 ) = φK(x) for x ∈ supph = R.

Furthermore, by Lemma 2.9 we have (Ptf)′′ = 0, and (Ptf)′ is constant for any t ≥ 0. So there exist 
smooth functions a = a(t), b = b(t) ∈ R such that

Ptf(x) = a(t)x + b(t).

Notice that d
dtPtf = (Ptf)′′ − (ln h)′(Ptf)′, we have

d
dta(t)x + d

dtb(t) = Kxa(t).

Hence a(t) = CeKt with C = |f ′| > 0, and b ≡ 0. �
3. Rigidity of the 1-Bakry-Émery inequality

3.1. Equality in the 1-Barky-Émery inequality

In this part, we will prove one of the most important results in this paper, concerning the equality 
in the 1-Bakry-Émery inequality. Several intermediate steps, which corresponds to the results in [2, §2]



182 B.-X. Han / J. Math. Pures Appl. 145 (2021) 163–203
of Ambrosio-Brué-Semola, will be proved in separate lemmas before the main Theorem 3.7. We remark 
that some arguments used in [2] concerning RCD(0, N) spaces are not available now. For example, there 
is no two-sides heat kernel estimate or uniform volume doubling property for general RCD(K, ∞) spaces. 
Fortunately, we can overcome these difficulties by making full use of the heat flow and the functional analysis 
tools developed by Gigli in [27].

Lemma 3.1. Let (X, d, m) be an RCD(K, ∞) probability space with K ∈ R. Assume there exists a non-
constant function f ∈ V satisfying

|∇Pt0f | = e−Kt0Pt0 |∇f | for some t0 > 0.

For any s ∈ (0, t0), denote

As :=
{
|∇Psf | = 0

}
.

Then it holds

m(As) = 0.

In particular,

m

({
Psf = c

})
= 0, ∀ c ∈ R.

Proof. Assume by contradiction that m(As) > 0 for some s > 0. Since f is non-constant, we know m(As) ∈
(0, 1).

Recall that f attains the equality in the 1-Barky-Émery inequality, we have

Ps|∇f | = eKs|∇Psf | = 0, on As.

Thus

0 =
ˆ

As

Ps|∇f |dm =
ˆ

Ps(χAs
)|∇f |dm.

Denote Ac
0 :=

{
|∇f | > 0

}
. We can see that

ˆ

Ac
0

Ps(χAs
) dm = 0, (3.1)

i.e. Ps(χAs
) = 0 on Ac

0. Note that Ps(χAs
) is Lipschitz continuous, and by dimension-free Harnack inequality 

on RCD(K, ∞) spaces proved by H.-Q. Li in [40, Theorem 3.1], it holds

(
(PsχAs

)(y)
)2 ≤ (PsχAs

)(x) exp
{Kd2(x, y)

e2Ks − 1

}
.

So Ps(χAs
)(x) > 0 at every point x ∈ X. Thus m(Ac

0) = 0 and m(A0) = 1, which contradicts to the 
assumption that f is non-constant.

Finally, by locality of the weak gradient (cf. [8, Proposition 5.16]), it holds |∇Psf | = 0 m-a.e. on {Psf =
c}. So m

(
{Psf = c}

)
≤ m(As) = 0. �
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Lemma 3.2. Under the same assumption as Lemma 3.1. Denote bs := ∇Psf
e−Ks|∇Psf | . Then for any g ∈ V and 

s, t ∈ R+ with s + t < t0, it holds

〈bt+s,∇Ptg〉 = Pt〈bs,∇g〉.

Proof. By 1-Bakry-Émery inequality and the assumption, for any s, t, r ∈ (0, t0) with s + t + r = t0, we can 
see that

0 ≥ e−KrPr

(
|∇Pt+sf | − e−KtPt|∇Psf |

)

=
(
e−KrPr|∇Pt+sf | − e−K(t+s+r)Pt+s+r|∇f |︸ ︷︷ ︸

e−Kt0Pt0 |∇f |

)

+
(
e−K(t+s+r)Pt+s+r|∇f | − e−K(t+r)Pt+r|∇Psf |

)

=
(
e−KrPr|∇Pt+sf | − |∇Pt+s+rf |︸ ︷︷ ︸

|∇Pt0f |

)
+

(
e−K(t+s+r)Pt+s+r|∇f | − e−K(t+r)Pt+r|∇Psf |

)

≥ 0.

Thus

|∇Pt+sf | = e−KtPt|∇Psf | (3.2)

for any s, t ∈ R+ with s + t < t0 (cf. [2, Lemma 2.4, 2.7]).
Fix t > 0 and consider the Euler equation associated with the functional

Ψ(h) :=
ˆ (

e−KtPt|∇h| − |∇Pth|
)
ϕdm, h ∈ V , ϕ ∈ Lipbs(X, d).

From Lemma 3.1 we know ∇Psf
|∇Psf | is well-defined and 

∣∣∣ ∇Psf
|∇Psf |

∣∣∣ = 1 m-a.e. Using a standard variation 

argument (cf. [2, proof of Proposition 2.6]), for any g ∈ V and s > 0 with s + t < t0, we get

0 = d
dε |ε=0Ψ(Psf + εg)

=
ˆ (

e−KtPt

( 〈∇Psf,∇g〉
|∇Psf |

)
− 〈∇Pt+sf,∇Ptg〉

|∇Pt+sf |
)
ϕdm

= e−K(t+s)
ˆ (

Pt〈bs,∇g〉 − 〈bt+s,∇Ptg〉
)
ϕdm.

Then the conclusion follows from the arbitrariness of ϕ. �
Lemma 3.3. Let (X, d, m) be an RCD(K, ∞) probability space. Assume there is a non-constant function 
f ∈ V satisfying

|∇Pt0f | = e−Kt0Pt0 |∇f | for t0 > 0,

and denote bs := ∇Psf
e−Ks|∇Psf | .

Then bs ∈ D(div) for any s ∈ (0, t0). Furthermore, for any s, t > 0 with s + t < t0,

Ptdiv(bt+s) = div(bs). (3.3)
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In particular, div(bs) ∈ D(Δ) and Δdiv(bs) ∈ V .

Proof. For any g ∈ V , we have

∣∣∣∣
ˆ

〈bs,∇g〉 dm
∣∣∣∣ =

∣∣∣∣
ˆ

Pt〈bs,∇g〉 dm
∣∣∣∣

By Lemma 3.2 =
∣∣∣∣
ˆ

〈bt+s,∇Ptg〉 dm
∣∣∣∣

≤
ˆ

|bt+s||∇Ptg|dm

By |br| = eKr and Cauchy-Schwartz inequality ≤ e(t+s)K
√
E(Ptg).

Note that it holds a standard estimate (cf. Lemma 2.2) E(Ptg) ≤ 1
2t‖g‖2

L2 . Hence by Riesz representation 
theorem, bs ∈ D(div).

At last, the identity (3.3) follows immediately from Lemma 3.2. �
Proposition 3.4. Keep the same assumption and notations as in Lemma 3.3. It holds

ˆ (
div(bs)

)2 dm = e2Ks

ˆ (
div(b0)

)2 dm

for all s ∈ [0, t0].

Proof. Step 1:
Given g ∈ V . Consider the following function t �→ ψ(t, g) defined on R+

ψ(t, g) :=
ˆ

eKt|∇Ptg|dm.

From 1-Bakry-Émery inequality we know ψ is non-increasing in t and it is differentiable almost everywhere. 
Similar to the computation in Lemma 3.2, we can see that

d
dtψ(t, g) =

ˆ
KeKt|∇Ptg| + 〈bgt ,∇ΔPtg〉 dm ≤ 0

where bgt := eKt ∇Ptg
|∇Ptg| ∈ L2(TX). Note also that bft = bt.

Fix s ∈ (0, t0). By assumption, the function t �→ ψ(t, Psf) is constant on [0, t0 − s]. So d
dtψ(t, Psf) = 0

for t ∈ [0, t0 − s], this means

d
dtψ(t, Psf) =

ˆ
KeKt|∇Pt+sf |dm +

ˆ
〈bPsf

t ,∇ΔPt+sf〉dm = 0 ∀t ∈ [0, t0 − s].

Fix t and consider the following functional

V  g �→ d
dtψ(t, g) =

ˆ
KeKt|∇Ptg| + 〈bgt ,∇ΔPtg〉dm ≤ 0

which attains its maximum at g = Psf .
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Thus for any ε ∈ R,

0 ≥ d
dtψ(t, Psf + εg) − d

dtψ(t, Psf)

=
ˆ

KeKt
(
|∇Pt(Psf + εg)| − |∇Pt+sf |

)
dm︸ ︷︷ ︸

I

+
ˆ (

〈bPsf
t ,∇ΔPt(Psf + εg)〉 − 〈bPsf

t ,∇ΔPt+sf〉
)

dm︸ ︷︷ ︸
II

+
ˆ (

〈bPsf+εg
t ,∇ΔPt(Psf + εg)〉 − 〈bPsf

t ,∇ΔPt(Psf + εg)〉
)

dm︸ ︷︷ ︸
III

.

Define Ft ⊂ V by

Ft :=
{
g : g ∈ V ∩ L∞(X,m), |∇Ptg|

|∇Pt+sf |
∈ L∞(X,m)

}
. (3.4)

By Lemma 3.5,

F0 ⊂ Fr ⊂ Ft, ∀ 0 ≤ r ≤ t,

and F0 is an algebra.
For any g ∈ Ft and ε small enough, we can write I, II, III in the following ways

I = KeKt

ε̈

0

〈∇Pt(Psf + τg),∇Ptg〉
|∇Pt(Psf + τg)| dτ dm,

II = ε

ˆ
〈bPsf

t ,∇ΔPtg〉 dm,

and

III = eKt

ˆ
〈 |∇Pt+sf |∇Pt(Psf + εg) − |∇Pt(Psf + εg)|∇Pt+sf

|∇Pt+sf ||∇Pt(Psf + εg)| ,∇ΔPt(Psf + εg)〉 dm

= eKt

ˆ
〈 |∇Pt+sf |∇Pt(Psf + εg) − |∇Pt+sf |∇Pt+sf

|∇Pt+sf ||∇Pt(Psf + εg)| ,∇ΔPt(Psf + εg)〉dm

+eKt

ˆ
〈 |∇Pt+sf |∇Pt+sf − |∇Pt(Psf + εg)|∇Pt+sf

|∇Pt+sf ||∇Pt(Psf + εg)| ,∇ΔPt(Psf + εg)〉dm

= εeKt

ˆ
〈 ∇Ptg

|∇Pt(Psf + εg)| ,∇ΔPt(Psf + εg)〉 dm

+eKt

ˆ ( 0ˆ

ε

〈∇Pt(Psf + τg),∇Ptg〉
|∇Pt(Psf + τg)||∇Pt(Psf + εg)| dτ

)
〈 ∇Pt+sf

|∇Pt+sf |
,∇ΔPt(Psf + εg)〉dm.

Thus for any g ∈ Ft, there is ε0 > 0 small enough such that the function ε → d
dtψ(t, Psf+εg) = I+II+III

is absolutely continuous and hence differentiable on [0, ε0].
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Similar to the proof of Lemma 3.2, by a variational argument we get

0 = d
dε |ε=0

d
dtψ(t, Psf + εg)

=
ˆ (

K〈bPsf
t ,∇Ptg〉 + 〈bPsf

t ,∇ΔPtg〉
)

dm︸ ︷︷ ︸
V 1
t (∇Ptg)

+ eKt

ˆ ( 1
|∇Pt+sf |

〈∇Ptg,∇ΔPt+sf〉 −
1

|∇Pt+sf |3
〈∇Pt+sf,∇Ptg〉〈∇Pt+sf,∇ΔPt+sf〉

)
dm

︸ ︷︷ ︸
V 2
t (∇Ptg)

.

Step 2:
Define

Dt := Span
({

∇g : g ∈ V ,
|∇g|

|∇Pt+sf |
∈ L∞(X,m)

})
,

where Span(S) means the sub-module of L2(TX) consisting of all finite L∞-linear combinations of the 
elements in S. By definition of Ft, we can see that

{
∇Ptg : g ∈ Ft

}
⊂ Dt. (3.5)

Furthermore, by linearity V 1
t , V

2
t can be uniquely defined on Dt by:

V 1
t (∇g) :=

ˆ (
K〈bPsf

t ,∇g〉 + 〈bPsf
t ,∇Δg〉

)
dm

=
ˆ (

K〈bPsf
t ,∇g〉 + 〈∇div(bPsf

t ),∇g〉
)

dm

and

V 2
t (∇g) := eKt

ˆ ( 〈∇g,∇ΔPt+sf〉
|∇Pt+sf |

− 〈∇Pt+sf,∇g〉〈∇Pt+sf,∇ΔPt+sf〉
|∇Pt+sf |3

)
dm.

From the discussion above we can see that

V 1
t (∇Ptg) + V 2

t (∇Ptg) = 0, ∀g ∈ Ft. (3.6)

From Lemma 3.5, we know F0 ⊂ Ft for any t ∈ [0, t0 − s]. By (3.5) we get

{
∇Ptg : g ∈ F0

}
⊂

{
∇Ptg : g ∈ Ft

}
⊂ Dt.

Combining with (3.6) we know

V 1
t (∇Ptg) + V 2

t (∇Ptg) = 0, ∀g ∈ F0. (3.7)

Letting t → 0 in (3.7), by dominated convergence theorem we obtain

V 1
0
(
∇g

)
+ V 2

0
(
∇g

)
= 0, ∀g ∈ F0. (3.8)
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By Lemma 3.6 we know F0 includes Lipschitz functions with bounded support. Then by linearity of V1, V2
and an approximation argument (cf. [27], [36, Theorem 3.3, §4]), V1, V2 can be continuously extended to

{
g∇h : h, g ∈ F0

}
⊂ L2(TX).

In particular, we obtain

V 1
0
(
h∇Psf

)
+ V 2

0
(
h∇Psf

)
= 0, ∀ h ∈ F0. (3.9)

From the structure of V 2
0 , we can see that

V 2
0 (h∇Psf)

= eKt

ˆ
h
( 1
|∇Psf |

〈∇Psf,∇ΔPsf〉 −
1

|∇Psf |3
〈∇Psf,∇Psf〉〈∇Psf,∇ΔPsf〉

)
dm

= 0.

By (3.9), for any h ∈ F0, it holds

V 1
0
(
h∇Psf

)
=
ˆ (

K〈bs,∇Psf〉 + 〈∇div(bs),∇Psf〉
)
h dm = 0. (3.10)

By Lemma 3.6, (3.10) yields

K〈bs,∇Psf〉 + 〈∇div(bs),∇Psf〉 = 0.

Hence we can pick h = 1
|∇Psf | in (3.10), so that

ˆ
K|bs|2 −

(
div(bs)

)2 dm = 0.

Note that |bs| = eKs, it holds

ˆ (
div(bs)

)2 dm =
ˆ

K|bs|2 = e2Ks

ˆ
K|b0|2 = e2Ks

ˆ (
div(b0)

)2 dm

which is the thesis. �
In the following two lemmas, we keep the same notions as in the proof of Proposition 3.4.

Lemma 3.5. For any r ≤ t ≤ t0 − s, we have Fr ⊂ Ft. In particular, F0 is an algebra.

Proof. For any r ≤ t ≤ t0 − s and g ∈ Fr, there is C2 =
∥∥ |∇Prg|
|∇Pr+sf |

∥∥
L∞ > 0 such that

|∇Ptg| ≤ e−K(t−r)Pt−r|∇Prg|

≤ C2e
−K(t−r)Pt−r

(
|∇Pr+sf |

)
= C2|∇Pt+sf |.

Hence Fr ⊂ Ft.
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In particular, for any g, h ∈ F0, there is C3 > 0 such that

|∇(gh)| ≤ ‖g‖L∞ |∇h| + ‖h‖L∞ |∇g| ≤ C3|∇Psf |,

so by definition gh ∈ F0 and F0 is an algebra. �
Next we will show that the set F0 includes all Lipschitz functions with bounded support.

Lemma 3.6. The set Lipbs(X, d) of Lipschitz functions with bounded support is a subset of F0. In particular, 
if there is H ∈ L1(X, m) such that

ˆ
Hh dm, ∀ h ∈ F0,

then H = 0.

Proof. Given g ∈ Lipbs with supp g ⊂ BR(x) for some R > 0 and x ∈ X. By definition, |∇g| ≤ Lip(g) where 
Lip(g) is a non-negative real constant.

By assumption |∇Psf | = e−KsPs|∇f | and |∇f | �= 0. Pick a non-zero non-negative function G ∈ L∞

satisfying G2 ≤ min{|∇f |, 1}. So by Lipschitz regularization of the heat flow, PsG
2 is Lipschitz and

PsG
2 ≤ Ps|∇f | = e−Ks|∇Psf |.

By dimension-free Harnack inequality [40, Theorem 3.1], for any y1, y2 ∈ X,

(
(PsG

2)(y1)
)2 ≤

(
(PsG)(y1)

)2 ≤
(
PsG

2)(y2) exp
{Kd2(y1, y2)

e2Ks − 1

}
. (3.11)

Let y2 = x in (3.11), since G is non-zero, we know (PsG
2)(x) > 0. Let y1 = x and y2 ∈ BR(x) (3.11), we 

know infy∈BR(x) PsG
2 > 0. Thus there is C > 0 such that

|∇g| ≤ Lip(g) < C inf
y∈BR(x)

PsG
2 ≤ Ce−Ks|∇Psf | on BR(x)

which is the thesis.
Furthermore, if

ˆ
Hh dm, ∀ h ∈ F0.

Via approximation by Lipschitz function with bounded support, we can prove that 
´
E
H dm = 0 for all 

measurable set E ⊂ X. So H ≡ 0. �
Theorem 3.7 (Equality in the 1-Bakry-Émery inequality). Let (X, d, m) be an RCD(K, ∞) probability space 
with K ∈ R. Assume there exists a non-constant f ∈ V attaining the equality in the 1-Bakry-Émery 
inequality

|∇Pt0f | = e−Kt0Pt0 |∇f | for some t0 > 0.

Denote bs := eKs ∇Psf
|∇Psf | . Then the following properties hold:

a) ∇Psf = e−Ksbs =: b is independent of s ∈ (0, t0);
|∇Psf |
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b) ∇div(b) = −Kb;
c) Δdiv(b) = −Kdiv(b), thus f = div(b) attains the equality in the 2-Barky-Émery inequality.

Furthermore, denote by (Ft)t∈R+ the regular Lagrangian flow associated with b, we have

(Ft)�m = e−
K
2
(
t2+ 2

K tdiv(b)
)
m if K �= 0, (3.12)

and

(Ft)�m = m if K = 0. (3.13)

Proof. Part 1:
By Lemma 3.3 we know bs ∈ D(div) for any s ∈ (0, t0). For any ϕ ∈ D(Δ) and s, t, h > 0 with h < 1

2 t

and s + t + h < t0, we have

ˆ (
Pt+hϕ− Ptϕ

)
div(bt+s) dm

=
ˆ (

Pt+hϕ
)
div(bt+s+h) dm−

ˆ (
Ptϕ

)
div(bt+s) dm

−
ˆ (

Pt+hϕ
)(

div(bt+h+s) − div(bt+s)
)

dm

By Lemma 3.2 =
ˆ

ϕdiv(bs) dm−
ˆ

ϕdiv(bs) dm−
ˆ (

Phϕ
)(

div(bh+s) − div(bs)
)

dm

= −
ˆ (

Phϕ
)(

div(bh+s) − div(bs)
)

dm.

Therefore,

ˆ (Pt+hϕ− Ptϕ

h

)
div(bt+s) dm = −

ˆ (
Phϕ

)(div(bh+s) − div(bs)
h

)
dm. (3.14)

By Cauchy-Schwarz inequality and the estimate ‖ΔPtϕ‖L2 ≤ 1
t ‖ϕ‖L2 (cf. Lemma 2.2), we get the 

following estimate from (3.14)

∣∣∣∣
ˆ

Phϕ
(
div(bh+s) − div(bs)

)
dm

∣∣∣∣ ≤ ∥∥Pt+hϕ− Ptϕ
∥∥
L2

∥∥div(bt+s)
∥∥
L2

=

∥∥∥∥∥∥
t+hˆ

t

ΔPsϕds

∥∥∥∥∥∥
L2

∥∥div(bt+s)
∥∥
L2

≤
(
h

t+hˆ

t

‖ΔPs−h(Phϕ)‖2
L2 ds

) 1
2 ∥∥div(bt+s)

∥∥
L2

≤ h
2
t
‖Phϕ‖L2

∥∥div(bt+s)
∥∥
L2 .

Thus by arbitrariness of ϕ and the density of Ph

(
L2(X, m)

)
in L2(X, m), we obtain

∥∥div(bh+s) − div(bs)
∥∥

2 � h.

L
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Therefore s �→ div(bs) is absolutely continuous and differentiable in L2 for a.e. s ∈ [0, t0]. Furthermore, for 
s ∈ [0, t0] where d

dsdiv(bs) exists, it holds

ˆ
(Δϕ)div(bs) dm

By Lemma 3.2 =
ˆ

(ΔPtϕ)div(bt+s) dm

=
ˆ

( d
dtPtϕ)div(bt+s) dm

Letting h → 0 in (3.14) = −
ˆ

ϕ
d
dsdiv(bs) dm.

Therefore, for a.e. s ∈ [0, t0],

d
dsdiv(bs) = −Δdiv(bs). (3.15)

So by Poincaré inequality, we get

d
ds

1
2

ˆ (
div(bs)

)2 dm =
ˆ

div(bs)
d
dsdiv(bs) dm

By (3.15) = −
ˆ

div(bs)Δdiv(bs) dm

=
ˆ

|∇div(bs)|2 dm

By Poincaré inequality ≥ K

ˆ (
div(bs)

)2 dm.

By Grönwall’s lemma, we obtain
ˆ (

div(bs)
)2 dm ≥ e2Ks

ˆ (
div(b0)

)2 dm. (3.16)

By Proposition 3.4, the inequality in (3.16) is actually an equality. So for any s ∈ (0, t0), div(bs) attains the 
equality in the Poincaré inequality. By Lemma 2.9 we know

Δdiv(bs) = −Kdiv(bs). (3.17)

For any ϕ ∈ V , we have
ˆ

〈∇ϕ,∇div(bs)〉 = −
ˆ

ϕΔdiv(bs) =
ˆ

ϕKdiv(bs) =
ˆ

−K〈bs,∇ϕ〉.

Thus

∇div(bs) = −Kbs. (3.18)

In addition, by (3.15) and (3.17), it holds d
dsdiv(bs) = Kdiv(bs) and

d
e−Ksdiv(bs) = −Ke−Ksdiv(bs) + e−Ks d div(bs) = 0.
ds ds
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Combining with (3.18) we know b := e−Ksbs is independent of s.
Finally, by (3.17) and (3.18) we get

Δdiv(b) = −Kdiv(b) (3.19)

and

∇div(b) = −Kb. (3.20)

Part 2:
The identities (3.12) and (3.13) can be proved using similar argument as [30, §4] (and [2, §2]). For reader’s 

convenience, we offer more details here.
Firstly, by c) and Lemma 2.9, we know div(b) ∈ TestFloc and Hessdiv(b) = 0. Secondly, by b) and c) we 

know −K∇symb = Hessdiv(b) = 0 (cf. [12, §5] or [27, §3.4] for details about the covariant derivative). If 
K �= 0, ∇symb = 0. If K = 0, by b) it holds ∇div(b) = 0 so div(b) is constant. Note that 

´
div(b) dm = 0, 

so div(b) = 0. Then following the argument in [2, proof of Proposition 2.8] we can still prove ∇symb = 0.
Combining [12, Theorems 9.7] of Ambrosio-Trevisan and a truncation argument (cf. [30, Theorem 4.2]), 

we can prove that the regular Lagrangian flow Ft(x) associated with b exists for all (t, x) ∈ R+ ×X. Thus 
the curve (Ft)�m is well-defined for all t ∈ R+.

By definition of regular Lagrangian flow (Ft) (cf. [12, §8]), for any g ∈ V , μt = (Ft)�m solves the following 
continuity equation

μ0 = m,
d
dt

ˆ
g dμt =

ˆ
b(g) dμt =

ˆ
〈b,∇g〉 dμt (3.21)

for a.e. t ∈ R+. It has been proved in [12, §5] that the continuity equation (3.21) has a unique solution. If 
K = 0, it can be seen from div(b) = 0 that μt ≡ m solves (3.21). For K �= 0, we just need to check that 
μt := e−

K
2
(
t2+ 2

K tdiv(b)
)
m verifies (3.21).

Given g ∈ V , by computation,

d
dt

ˆ
g e−

K
2
(
t2+ 2

K tdiv(b)
)
dm

=
ˆ

g
(
−Kt− div(b)

)
e−

K
2
(
t2+ 2

K tdiv(b)
)
dm

By c) =
ˆ

g
(
−Kt + 1

K
Δ
(
div(b)

))
e−

K
2
(
t+ 2

K tdiv(b)
)
dm

By b) =
ˆ

−Ktg e−
K
2
(
t+ 2

K tdiv(b)
)
dm +

ˆ
〈b,∇g〉 e−K

2
(
t+ 2

K tdiv(b)
)
dm

+
ˆ

Ktg|b|2 e−K
2
(
t+ 2

K tdiv(b)
)
dm

=
ˆ

〈b,∇g〉 e−K
2
(
t+ 2

K tdiv(b)
)
dm

which is the thesis. �
Corollary 3.8. Let (X, d, m) be an RCD(K, ∞) probability space with K ≤ 0. Then there is no non-constant 
function attaining the equality in the 1-Bakry-Émery inequality.
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Proof. By c) of Theorem 3.7, Δdiv(b) = −Kdiv(b). Thus

0 ≤
ˆ

|∇div(b)|2 dm = −
ˆ

div(b)Δdiv(b) dm = K

ˆ
div(b)2 dm ≤ 0.

So div(b) = 0 and b = 0. �
In the rest of this section we will study the structure of metric measure space, the statements and proofs 

are almost all taken from the paper of Gigli-Ketterer-Kuwada-Ohta [30].
Let u be a non-constant affine function (cf. b) of Lemma 2.9). We know that |∇u| is a positive constant 

and u is Lipschitz. By [30, Theorem 4.4] (or [34, Theorem 3.16]), we know that the gradient flow (Ft)t≥0 of 
u, which can be seen as a representative of the regular Lagrangian flow associated with −∇u in the sense 
of Ambrosio-Trevisan [12, §8], satisfies the following equality (see also [28])

ˆ (
u(x) − u

(
Ft(x)

))
dm = 1

2

ẗ

0

|∇u|2 ◦ Fs dm ds + 1
2

ẗ

0

|Ḟs|2 ◦ Fs dm ds (3.22)

and it induces a family of isometries

d
(
Ft(x), Ft(y)

)
= d(x, y) (3.23)

for any x, y ∈ X, t > 0. More generally, if there is a vector field b ∈ L2(TX) with div(b) ∈ L∞
loc and 

∇symb = 0, by [2, Theorem 2.1] (or [34, Theorem 3.18]), the regular Lagrangian flow associated with b
induces a family of isometries.

In particular, there is a decomposition of X in the form {Xq}q∈Q, where Q is the set of indices, such 
that x0, x1 ∈ Xq for some q if and only if there is t ≥ 0 such that Ft(x0) = x1 or Ft(x1) = x0. In this case, 
Xq is an interval which can be parametrized by (Ft)t (or u). Define the quotient map Q : X �→ Q by

q = Q(x) ⇐⇒ x ∈ Xq.

There is a disintegration of m consistent with Q in the following sense.

Definition 3.9 (Disintegration on sets, cf. [7], Theorem 5.3.1 and [20], §3.2.3). Let (X, X , m) denote a 
measure space. Given any family {Xq}q∈Q of subsets of X, a disintegration of m on {Xq}q∈Q is a measure-
space structure (Q, Q, q) and a map

Q  q �−→ mq ∈ M(X,X )

so that:

1. For q-a.e. q ∈ Q, mq is concentrated on Xq.
2. For all B ∈ X , the map q �→ mq(B) is q-measurable.
3. For all B ∈ X , m(B) =

´
Q
mq(B) q(dq); this is abbreviated by m =

´
Q
mqq(dq).

From Theorem 3.7 and Lemma 2.9, we know there is a decomposition {Xq}q∈Q induced by b (or 
− 1

K∇div(b) when K > 0) satisfying the following properties.

Corollary 3.10. Keep the same assumptions and notations as in Theorem 3.7, assume further that K > 0. 
Then there exists a decomposition {Xq}q∈Q of X induced by the regular Lagrangian flow (Ft) associated 
with b, such that:
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1. for any q ∈ V, Xq is a geodesic line in (X, d);
2. for any q ∈ V, x1, x2 ∈ Xq, there is a unique t such that

t = t|b| = d(x1, x2),

and Ft(x0) = x1 or Ft(x1) = x0;
3. there exists a disintegration of m on {Xq}q∈Q

m =
ˆ

Q

mq q(dq), q(Q) = 1;

4. for q-a.e. q ∈ Q and any t > 0, it holds

(Ft)�mq = e−
K
2
(
t2+ 2

K tdiv(b)
)
mq,

and the 1-dimensional metric measure space (Xq, d, mq) satisfies CD(K, ∞);
5. for q-a.e. q ∈ Q, div(b)|Xq

can be represented by

div(b)(x) = sign
(
div(b)(x)

)
Kd(x, xq), x ∈ Xq,

where xq is the unique point in Xq such that div(b)(xq) = 0. In particular,
ˆ

div(b) dmq = 0, q− a.e. q ∈ Q. (3.24)

Proof. From the construction of the decomposition discussed before, it is not hard to see the validity of 
assertions (1)-(3) which are actually a variant of measure-decomposition theorem (see also [20]). Assertion 
(4) is a consequence of (3.12) in Theorem 3.7. We will just prove (5). For u := 1

Kdiv(b), by (3.22) and 
Lemma 3.11 below we have

ˆ

Q

ˆ

Xq

(
u(x) − u

(
Ft(x)

))
dmq dq(q)

=
ˆ (

u(x) − u
(
Ft(x)

))
dm

= 1
2

ẗ

0

|∇u|2 ◦ Fs dm ds + 1
2

ẗ

0

|Ḟs|2 ◦ Fs dm ds

≥ 1
2

ˆ

Q

( tˆ

0

ˆ

Xq

|lip(u|Xq
)|2 ◦ Fs dmq ds + 1

2

ẗ

0

|Ḟs|2 ◦ Fs dmq ds
)

dq(q).

Thus for a.e. q ∈ Q, Xq is the trajectories of the gradient flow of u = 1
K div(b):

∣∣∣∣ 1
K

div(b)(x1) −
1
K

div(b)(x2)
∣∣∣∣ = 1

K
|∇div(b)|d(x1, x2) = d(x1, x2), ∀x1, x2 ∈ Xq.

As u is non-constant, there is a unique point xq ∈ Xq such that div(b)(xq) = 0. So div(b) can be represented 
by

div(b)(x) = sign
(
div(b)(x)

)
Kd(x, xq), ∀x ∈ Xq, �
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Lemma 3.11. For any g ∈ V ∩ Lip(X, d) and s ∈ [0, t], the following inequality holds
ˆ

|∇g|2 ◦ Fs dm ≥
ˆ

Q

ˆ

Xq

|lip(g|Xq
)|2 ◦ Fs dmqdq(q). (3.25)

Proof. Let (gn)n ⊂ L2 be a sequence of Lipschitz functions such that gn → g and |lip(gn)| → |∇g| in 
L2(X, (Fs)�m). Note that (Fs)�m =

´
Q

(
(Fs)�mq

)
dq(q), there is a subsequence of (gn), still denoted by (gn), 

such that gn|Xq
→ g|Xq

in L2(Xq, (Fs)�mq) for q-a.e. q ∈ Q.
Notice that |lip(gn)||Xq

≥ |lip(gn|Xq
)|, and it is known that |lip(g|Xq

)| = |∇g|Xq
| mq-a.e. on Xq (since the 

values of local Lipschitz constant and weak upper gradient are independent of (locally Lipschitz) weighted 
measures). Then we have

ˆ
|∇g|2 ◦ Fs dm =

ˆ
|∇g|2 d(Fs)�m

= lim
n→∞

ˆ
|lip(gn)|2 d(Fs)�m

= lim
n→∞

ˆ

Q

( ˆ
Xq

|lip(gn)|2 d(Fs)�mq

)
dq(q)

By Fatou’s lemma ≥
ˆ

Q

lim
n→∞

( ˆ
Xq

|lip(gn)|2 d(Fs)�mq

)
dq(q)

≥
ˆ

Q

lim
n→∞

( ˆ
Xq

|lip(gn|Xq
)|2 d(Fs)�mq

)
dq(q)

By definition of the energy form E ≥
ˆ

Q

( ˆ
Xq

|∇g|Xq
|2 d(Fs)�mq

)
dq(q)

=
ˆ

Q

ˆ

Xq

|lip(g|Xq
)|2 d(Fs)�mqdq(q)

=
ˆ

Q

ˆ

Xq

|lip(g|Xq
)|2 ◦ Fs dmqdq(q)

which is the thesis. �
Remark 3.12. Unlike the well-known result of Cheeger [22, Theorem 6.1] which tells us that |∇g| = |lip(g)|
m-a.e. if (X, d, m) satisfies volume doubling property and supports a local Poincaré inequality, it is still 
unknown whether this result is still true on RCD(K, ∞) spaces or not. In [29], the author and Gigli prove 
that |∇g|p = |∇g| for all p > 1 on RCD(K, ∞) spaces. But it is still possible that |∇g| < |lip(g)|.

3.2. Proof of the rigidity

In this part, we will complete the proof of Theorem 1.1 by proving the following Proposition 3.13, 3.14.
In Proposition 2.13, we proved the rigidity of the 2-Bakry-Émery inequality for 1-dimensional spaces. 

Generally, it is proved by Gigli-Ketterer-Kuwada-Ohta [30] that (X, d, m) is isometric to the product space of 
the 1-dimensional Gaussian space and an RCD(K, ∞) space, if there is a non-constant function attaining the 
equality in the Poincaré inequality (see also [23] for the result on Riemmannian manifolds). As a consequence 
of Theorem 3.7, Lemma 2.9 and the result of Gigli-Ketterer-Kuwada-Ohta, we get the following proposition.
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Proposition 3.13 (cf. [30], Theorem 1.1). Let (X, d, m) be an RCD(K, ∞) space with K > 0. Assume there 
is a non-constant f ∈ V attaining the equality in the 1-Bakry-Émery inequality. Then there exists an 
RCD(K, ∞)-space (Y, dY , mY ), such that the metric space (X, d, m) is isometric to the product space

(
R, | · |,

√
K/(2π) exp(−Kt2/2) dt

)
× (Y,dY ,mY )

equipped with the L2-product metric and product measure.

Sketch of the proof. By (c) of Theorem 3.7 and Lemma 2.9, u = 1
K div

(
∇Ptf
|∇Ptf |

)
attains the equality in the 

Poincaré inequality. Then the assertion follows from [30, Theorem 1.1].
For reader’s convenience, we offer more details here. By Theorem 3.7 and Lemma 2.9, Hessu = 0 and 

|∇u| = 1, so that −∇u induces a family of isometries (Ft). By Corollary 3.10, there is a disintegration 
m = mqq(dq) associated with the one-to-one map Ψ : R × u−1(0)  (r, x) �→ Fr(x) ∈ X.

In addition, assume (in the coordinate of Ψ) that u
(
(0, y)

)
= 0. By (4) and (5) of Corollary 3.10, up to 

a reflection, we may write

u
(
(r, y)

)
= r,

and

(Fr)�mq = e−
K
2
(
r2+2ur

)
mq.

Hence mq � H1|Xq
with continuous density hq, and

hq

(
(r, y)

)
= e−

K
2
(
r2+2u((0,y))r

)
hq

(
(0, y)

)
= e−

Kr2
2 hq

(
(0, y)

)
.

So m is isomorphic to a product measure ΦK ×mY .
Following Gigli’s strategy of the splitting theorem [24], one can prove that the map Ψ induces an isometry 

between the Sobolev spaces W 1,2(Ψ−1(X)
)

and W 1,2(R ×u−1(0)
)
. Then from Sobolev-to-Lipschitz property 

we know that Ψ is an isometry between metric measure spaces (see [24, §6], [25], and [30, §5] for details). �
Finally, we have the following characterization of extreme functions.

Proposition 3.14. Under the same assumption and keep the same notations as Proposition 3.13, f can be 
represented in the coordinate of the product space R × Y , by

f(r, y) =
rˆ

0

g(s) ds, (r, y) ∈ R× Y

for some non-negative g ∈ L2(R, φKL1). In particular, if f attains the equality in the 2-Bakry-Émery 
inequality, then Ptf(r, y) = CeKtr for some constant C.

Proof. By Theorem 3.7 and the proof of Proposition 3.13, we know

∇f

|∇f | = ∇ 1
K

div
( ∇f

|∇f |
)

= ∇r. (3.26)

So for mY -a.e. y ∈ Y ,
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f(r, y) − f(0, y) =
rˆ

0

|∇f |(s, y) ds.

Given r ∈ R, from (3.26) we can see that f(r, y) is independent of y ∈ Y , so we can assume f(0, y) = 0 and 
denote g(s) := |∇f |(s, y) which is the thesis.

If f also attains the equality in the 2-Bakry-Émery inequality, by Lemma 3.11, (3.24), and a standard 
localization argument we can see that f(·, y) attains the quality in the 1-dimensional Poincaré inequality 
for mY -a.e. y ∈ Y . Then the second assertion follows from Proposition 2.13. �
4. Rigidity of some functional inequalities

4.1. Equality in Bobkov’s inequality

In this part, we will study the cases of equality in Bobkov’s inequality, as well as the Gaussian isoperimetric 
inequality, and prove the corresponding rigidity theorems.

Using an argument of Carlen-Kerce [19, Section 2] (which was firstly used by Ledoux in [39], see also 
a recent work of Bouyrie [18]), we can prove the following monotonicity formula concerning RCD(K, ∞)
spaces for K > 0.

Proposition 4.1. Let (X, d, m) be a RCD(K, ∞) space with K > 0. For any f : X �→ [0, 1], t > 0, denote 
ft = Ptf and define

JK(ft) :=
ˆ √

IK(ft)2 + Γ(ft) dm (4.1)

where IK is the Gaussian isoperimetric profile defined in (1.6).
Then for L1-a.e. t, we have

d
dtJK(ft)

= −
ˆ

G
− 3

2
K

(∥∥IKHessft − I ′K∇ft ⊗∇ft
∥∥2

HS + ‖Hessft‖2
HSΓ(ft) −

1
4Γ

(
Γ(ft)

))
dm

−
ˆ

G
− 1

2
K

(
dRic(ft, ft) −KΓ(ft) dm

)

where GK = IK(ft)2 + Γ(ft).
In particular, JK(ft) is non-increasing in t.

Proof. If f is constant, JK(ft) is also a constant function of t, there is nothing to prove. So we assume that 
f is not constant. In addition, similar to [11, Proof of Theorem 3.1, Step 1], it suffices to prove the assertion 
for every f ∈ Lip(X, d) taking values in [ε, 1 − ε], for some ε ∈ (0, 12 ). In fact, for general f , we can replace 
f by f ε := 1

1+2ε (f + ε), then letting ε ↓ 0 we will get the answer.
It is known that ft ∈ L∞(X, m) ∩D(Δ), and Δft ∈ V . By Lipschitz regularization of Pt (cf. [9, Theorem 

6.5]), we also have ft ∈ Lip(X, d) for any t ∈ (0, ∞), so ft ∈ TestF. From [11, Lemma 3.2] we know 
t �→ JK(ft) is Lipschitz, and for L1-a.e. t we have

dJK
dt = d

dt

ˆ √
GK(ft) dm

=
ˆ

GK(ft)−
1
2

(
IK(ft)I ′K(ft)Δft + Γ(ft,Δft)

)
dm,
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where GK(f) denotes the function IK(f)2 +Γ(f). Notice that by minimal (maximal) principle, GK(ft) > δ

for some δ > 0. Thus the formula above is well-posed.
From the definition of Ric in Proposition 2.8, we can see that

dJK
dt =

ˆ
G

− 1
2

K IK(ft)I ′K(ft)Δft dm︸ ︷︷ ︸
J1

−
ˆ 1

2Γ
(
G

− 1
2

K ,Γ(ft)
)

+ G
− 1

2
K

(
‖Hessft‖2

HS + KΓ(ft)
)

dm︸ ︷︷ ︸
J2

−
ˆ

G
− 1

2
K

(
dRic(ft, ft) −KΓ(ft) dm

)
.

Notice that GK admits a quasi continuous representative, so we can integrate it with respect to the measure-
valued Ricci tensor.

Thus the non-smooth Bochner inequality in Proposition 2.8 yields

dJK
dt ≤ J1 + J2. (4.2)

By computation,

J1 = −
ˆ

Γ
(
G

− 1
2

K IKI ′K , ft
)
dm

= −
ˆ

G
− 1

2
K (IKI ′K)′Γ(ft) dm + 1

2

ˆ
G

− 3
2

K IKI ′KΓ(GK , ft) dm

= −
ˆ

G
− 1

2
K (IKI ′K)′Γ(ft) dm

+1
2

ˆ
G− 3

2 IKI ′K

(
2IKI ′KΓ(ft, ft) + Γ

(
Γ(ft), ft

))
dm

= −
ˆ

G
− 1

2
K

(
(I ′K)2 −K

)
Γ(ft) dm +

ˆ
G

− 3
2

K (IKI ′K)2Γ(ft) dm

+
ˆ

G
− 3

2
K IKI ′KHessft(ft, ft) dm

= −
ˆ

G
− 3

2
K

(
(I ′K)2Γ(ft)2 −KI2

KΓ(ft) −KΓ(ft)2︸ ︷︷ ︸
=−KΓ(ft)GK(ft)

−IKI ′KHessft(ft, ft)
)

dm

where in the fourth equality we use the identity (IKI ′K)′ = (I ′K)2 −K which follows from IKI ′′K = −K.
Similarly,

−1
2

ˆ
Γ
(
G

− 1
2

K ,Γ(ft)
)
dm

=
ˆ 1

4G
− 3

2
K

(
2IKI ′KΓ

(
ft,Γ(ft)

)
+ Γ

(
Γ(ft)

))
dm

=
ˆ

G
− 3

2
K

(
IKI ′KHessft(ft, ft) + 1

4Γ
(
Γ(ft)

))
dm.

In summary, we get

J1 + J2

= −
ˆ

G
− 3

2
K

(
(I ′K)2Γ(ft)2 −

1Γ
(
Γ(ft)

)
− 2IKI ′KHessft(ft, ft) + ‖Hessft‖2

HS
(
I2
K + Γ(ft)

))
dm
4
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= −
ˆ

G
− 3

2
K

(∥∥IKHessft − I ′K∇ft ⊗∇ft
∥∥2

HS + ‖Hessft‖2
HSΓ(ft) −

1
4Γ

(
Γ(ft)

))
dm.

Recall that by definition

Γ
(
Γ(ft)

)
= 2Hessft

(
∇ft,∇Γ(ft)

)
≤ 2‖Hessft‖HS

√
Γ(ft)

√
Γ
(
Γ(ft)

)
,

thus

‖Hessft‖2
HSΓ(ft) ≥

1
4Γ

(
Γ(ft)

)
.

Combining with (4.2) we have

dJK
dt ≤ J1 + J2 ≤ 0,

so t �→ JK(ft) is non-increasing. �
Applying Proposition 4.1, we obtain the functional version of Gaussian isoperimetric inequality of Bobkov 

on RCD(K, ∞) spaces, which had been proved by Ambrosio-Mondino in [11] using a different proof (see 
also [14, Chapter 8.5.2] for more discussions).

Proposition 4.2. Let (X, d, m) be a metric measure space satisfying RCD(K, ∞) condition for some K > 0. 
Then (X, d, m) supports K-Bobkov’s isoperimetric inequality in the sense of Definition 1.3,

IK

(ˆ
f dm

)
≤ JK(f)

for all measurable function f with values in [0, 1].

Proof. Let f be a measurable function with values in [0, 1]. By Proposition 4.1 and definition of JK(f) we 
know

lim
t→+∞

JK(ft) ≤ lim
t→0

JK(ft) = JK(f).

Combining with the ergodicity of heat flow and the 2-Bakry-Émery inequality

lim
t→+∞

JK(ft) = IK

(ˆ
f dm

)
,

we get Bobkov’s isoperimetric inequality. �
In the next proposition, we discover the cases of equality in Bobkov’s inequality. By Proposition 4.1, 

we simultaneously obtain the rigidity of the Gaussian isoperimetric inequality. We refer the readers to [19, 
Section 2] for related discussions on Rn.

Proposition 4.3 (Equality in Bobkov’s inequality). Let (X, d, m) be a RCD(K, ∞) metric measure space with 
K > 0. Then there exists a non-constant f attaining the equality IK (

´
f dm) = JK(f) if and only if

(X, d,m) ∼=
(
R, | · |,

√
K/(2π)e−Kt2/2 dt

)
× (Y,dY ,mY )
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for some RCD(K, ∞) space (Y, dY , mY ), and up to change of variables, f is either the indicator function of 
a half space

f(r, y) = χE , E = (−∞, e] × Y ,

where e ∈ R ∪ {+∞} with 
´ e

−∞ φK(s) ds =
´
f dm; or else, there are a = (2 ́ f)−1 and b = Φ−1

K

(
f(0, y)

)
such that

f(y, t) = ΦK(at + b) =
at+bˆ

−∞

φK(s) ds.

Proof. Part 1: Denote ft = Ptf and ht = Φ−1
K (ft). We will show that ht satisfies Γ2(ht) = KΓ(ht) m (cf. 

Proposition 2.8), and thus satisfies (1) in Lemma 2.9.
By Proposition 4.1 we know IK (

´
f dm) = JK(f) if and only if

IK

(ˆ
f dm

)
= IK

(ˆ
ft dm

)
= JK(ft) for all t ≥ 0,

which is equivalent to dJK

dt = 0 for all t > 0. From Proposition 4.1, we know that dJK

dt = 0 if and only if the 
following equalities (4.3) (4.4) (4.5) are satisfied

Ric(ft, ft) = KΓ(ft)m, (4.3)

IKHessft − I ′K∇ft ⊗∇ft = 0 (4.4)

and

‖Hessft‖2
HSΓ(ft) −

1
4Γ

(
Γ(ft)

)
= 0. (4.5)

By definitions,

IK(ft) = φK(ht), ft = ΦK(ht). (4.6)

By (4.6) and chain rule (cf. [27, Theorem 2.2.6]), and the fact that the vector fields are fully supported (cf. 
Lemma 3.1), we get

I ′K(ft)∇ft = −htφK(ht)∇ht, ∇ft = φK(ht)∇ht.

Then we have

I ′K(ft) = −ht, ∇ft = IK(ft)∇ht,

and

Hessft = −htφK(ht)∇ht ⊗∇ht + φK(ht)Hessht
.

In conclusion, we obtain

∇ht = I−1
K (ft)∇ft (4.7)



200 B.-X. Han / J. Math. Pures Appl. 145 (2021) 163–203
and

Hessft = I ′K(ft)I−1
K (ft)∇ft ⊗∇ft + IK(ft)Hessht

. (4.8)

By (4.7) and the bi-linearity of Ric(·, ·), (4.3) is equivalent to

Ric(ht, ht) = KΓ(ht)m. (4.9)

Comparing (4.8) and (4.4), we can see that ft satisfies (4.4) if and only if Hessht
= 0, which is equivalent 

to

‖Hessht
‖HS = 0. (4.10)

By (4.8) and (4.10), we have

‖Hessft‖HS = ‖I ′KI−1
K ∇ft ⊗∇ft‖HS = I ′KI−1

K Γ(ft)

and

Γ
(
Γ(ft)

)
= 2Hessft

(
∇ft,∇Γ(ft)

)
By (4.8) = 2I ′KI−1

K Γ(ft)Γ
(
ft,Γ(ft)

)
= 4I ′KI−1

K Γ(ft)Hessft(∇ft,∇ft)

By (4.8) = 4I ′KI−1
K Γ(ft)

(
I ′KI−1

K

(
Γ(ft)

)2)
.

Therefore,

‖Hessft‖2
HSΓ(ft) −

1
4Γ

(
Γ(ft)

)
= (I ′KI−1

K )2
(
Γ(ft)

)3 − (I ′KI−1
K )2

(
Γ(ft)

)3 = 0 (4.11)

which is exactly (4.5).
In conclusion, (4.3) (4.4) (4.5) ⇐⇒ (4.9) (4.10), and the latter ones are equivalent to

Γ2(ht) = KΓ(ht)m (4.12)

which is the thesis.

Part 2: By Proposition 3.14 we just need to study the 1-dimensional cases. By Proposition 2.13 we know 
ht = Φ−1

K (ft) is an affine function on R for any t > 0, there exist a = a(t), b = b(t) ∈ R such that

ft(x) = ΦK(ax + b) =
ax+bˆ

−∞

φK(s) ds.

By [19, Theorem 1] there is s ≥ 0 such that

ft = Pt+s(χE), ∀ t ≥ 0

where E is the half-line such that 
´

φK dL1 =
´
f dm.
E
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Therefore, if s = 0, f = χE . Otherwise, a(t), b(t) are continuous on [0, +∞), so

f = ΦK(a0x + b0) =
a0x+b0ˆ

−∞

φK(s) ds

where a0 = (2 ́ f)−1, b0 = Φ−1
K (f(0)). �

Applying Proposition 4.3, we obtain the rigidity of the Gaussian isoperimetric inequality, see also [44]
for a proof using geometric measure theory.

Corollary 4.4 (Rigidity of the Gaussian isoperimetric inequality). Let (X, d, m) be a RCD(K, ∞) metric 
measure space with K > 0. If there is a Borel set E ⊂ X with positive m-measure such that

P (E) = JK(χE) = IK
(
m(E)

)
.

Then

(X, d,m) ∼=
(
R, | · |,

√
K/(2π)e−Kt2/2 dt

)
× (Y,dY ,mY )

for some RCD(K, ∞) space (Y, dY , mY ), and E ∼= (−∞, e] × Y with e = Φ−1
K

(
m(E)

)
.

4.2. Equalities in Φ-entropy inequalities

In this part we will characterize the cases of equalities in the logarithmic Sobolev inequality, the Poincaré 
inequality, and more generally, Φ-entropy inequalities of Chafaï [21] and Bolley-Gentil [17] on RCD(K, ∞)
metric measure spaces.

First of all, we prove a general Φ-entropy inequality. For more discussions about admissible Φ’s, see [21, 
Page 330], [17, Section 1.3] and the references therein.

Proposition 4.5. Let (X, d, m) be a metric measure space satisfying RCD(K, ∞) condition for some K > 0. 
Let Φ be a C2-continuous strictly convex function on an interval I ⊂ R such that 1

Φ′′ is concave. Then 
(X, d, m) satisfies the following Φ-entropy inequality:

EntΦm(f)︸ ︷︷ ︸
:=

´
Φ(f) dm

−Φ
( ˆ

f dm
)
≤ 1

2K

ˆ
Φ′′(f)Γ(f) dm (4.13)

for all I-valued functions f .

Proof. Let f be an I-valued function and denote ft := Ptf . By the ergodicity of the heat flow, we have

EntΦm(f) − Φ
( ˆ

f dm
)

= −
+∞ˆ

0

d
dtEntΦm(ft) dt

By [8, Theorem 4.16] =
+∞¨

0

Φ′′(ft)Γ(ft) dm dt

By (2.9), Proposition 2.10 ≤
+∞ˆ

e−2Kt

ˆ
Pt

(
Φ′′(f)Γ(f)

)
dm dt
0
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= 1
2K

ˆ
Φ′′(f)Γ(f) dm

which is the thesis. �
Finally, we complete the proof of Theorem 1.7.

Proof of Theorem 1.7. We keep the same notations as in § 1.3. If there is a function f attaining the equality 
in (4.13), from the proof of Proposition 4.5, we can see that

Φ′′(Ptf)Γ(Ptf) = e−2KtPt

(
Φ′′(f)Γ(f)

)
for almost every t > 0. If f is not constant, by Proposition 2.10 (or Corollary 2.12) and Proposition 3.13 we 
know (X, d, m) is isometric to the product 

(
R, | · |, φKL1)× (Y, dY , mY ) of two RCD(K, ∞) metric measure 

spaces. Concerning the extreme functions, by Corollary 2.12 and Proposition 3.14 we just need to consider 
the following two cases

a) Poincaré inequality: Φ = x2 for x ∈ R. If there is a non-constant function f ∈ V with 
´
f dm = 0 such 

that
ˆ

f2 dm = 1
K

ˆ
|∇f |2 dm.

Then f itself satisfies the properties in Lemma 2.9. In this case f(r, y) = apr for a constant ap ∈ R.
b) Logarithmic Sobolev inequality: Φ(x) = x lnx for x ∈ R+. If there is a non-negative function f ∈ V

with 
´
f dm = 1 such that

ˆ
f ln f dm = 1

2K

ˆ |∇f |2
f

dm.

Then by Corollary 2.12, ln f attains the equality in the 2-Bakry-Émery inequality. In this case f(r, y) =
ealr−a2

l /2K for a constant al ∈ R. �
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