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Abstract. We obtain asymptotic representation formulas for harmonic functions in the viscosity
sense with respect to the fractional p-Laplacian and to gradient dependent nonlocal operators.
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1. Introduction

One of the most famous basic fact of partial differential equations is that a smooth function
u : Ω ⊂ Rn → R is harmonic (i.e. ∆u = 0) if and only if it satisfies the mean value property, that is

(1.1) u(x) = −
∫
Br(x)

u(y)dy, whenever Br(x) ⊂⊂ Ω.

Such a characterization holds in some sense for harmonic functions with respect to more general
differential operators. In fact, similar properties can be obtained for quasi-linear operators such as
the p-Laplace operator ∆pu, in an asymptotic form. More precisely, in 2010 Manfredi, Parviainen
and Rossi proved in [14] that, if p ∈ (1,∞], a continuous function u : Ω → R is p-harmonic in Ω if
and only if (in the viscosity sense)

(1.2) u(x) =
2 + n

p+ n
−
∫
Br(x)

u(y)dy +
p− 2

2p+ 2n

(
max
Br(x)

u+ min
Br(x)

u
)

+ o(r2),

as the radius r of the ball vanishes. Notice that formula (1.2) boils down to (1.1) for p = 2, up to
a rest of order o(r2) and that it holds true in the classical sense at those points x ∈ Ω for which u
is C2 around x and the gradient of u does not vanish. In the case p = ∞ the formula fails in the
classical sense, since |x|4/3 − |y|4/3 is ∞-harmonic in R2 in the viscosity sense but (1.2) fails to hold
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point-wisely. If p ∈ (1,∞) and n = 2 the characterization holds in the classical sense (see [2, 13]).
Finally, the limiting case p = 1 was investigated in 2012 in [9].

Once the local (linear and nonlinear) case is rather well understood, it is natural to investigate the
validity of some kind of asymptotic mean value property in the nonlocal case, for instance, letting
s ∈ (0, 1), for s-harmonic functions (i.e. such that (−∆)su = 0), where formally

(−∆)su(x) := C(n, s) lim
r→0

∫
Rn\Br

u(x)− u(x− y)

|y|n+2s
dy, C(n, s) =

22ssΓ
(
n
2 + s

)
π
n
2 Γ(1− s)

.

The equivalence between s-harmonic functions and the fractional mean value property is proved in [1]
(see also [11], [5]), with the fractional mean kernel given by

(1.3) M s
r u(x) = c(n, s)r2s

∫
Rn\Br

u(x− y)

(|y|2 − r2)s|y|n
dy,

where c(n, s) = Γ(n/2) sinπs/πn/2+1. Furthermore, in [6] the authors obtain an asymptotic expansion
for harmonic functions with respect to a fractional anisotropic operator (that includes the case of
the fractional Laplacin). Precisely, a continuous function u is harmonic in the viscosity sense if and
only if (1.3) holds in a viscosity sense up to a rest of order two, namely

(1.4) u(x) = c(n, s)r2s
∫
Rn\Br

u(x− y)

(|y|2 − r2)s|y|n
dy + o(r2),

The goal of this paper is to continue the analysis of the nonlocal case and to provide a nonlocal
counterpart (in some sense) of the result by Manfredi, Parviainen and Rossi [14] for the (s, p)-
Laplacian (−∆)sp. Up to the authors’ knowledge, this is the first attempt to obtain similar properties
in the nonlocal, nonlinear, case.

Namely, the fractional p-Laplacian is the differential (in a suitable Banach space) of the convex
functional

u 7→ 1

p
[u]ps,p :=

1

p

∫∫
R2n

|u(x)− u(y)|p

|x− y|n+ps
dxdy.

More precisely, the (s, p)-Laplacian is formally defined as

(−∆)spu(x) = lim
r→0
Ls,pr u(x), Ls,pr u(x) :=

∫
|y|>r

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+sp
dy.

This definition is consistent, up to a normalization, with the linear operator (−∆)s.
We suppose here and all through Section 2 that u is not a constant function and that p ≥ 2. Then
we define

Ds,pr u(x) :=

∫
|y|>r

(
|u(x)− u(x− y)|

|y|s

)p−2 dy

|y|n(|y|2 − r2)s
,

which, to make an analogy with the local case, plays the “nonlocal” role of ∇u(x) (see also and
Proposition 2.9, for the limit as s↗ 1), and

(1.5) M s,p
r u(x) := (Ds,pr u(x))−1

∫
|y|>r

(
|u(x)− u(x− y)|

|y|s

)p−2 u(x− y)

|y|n(|y|2 − r2)s
dy,

playing the role of a (s, p)-mean kernel. Both Ds,pr and M s,p
r naturally appear when we make an

asymptotic expansion for smooth functions (see Theorem 2.3). Notice also that for p = 2, M s,2
r u is

given by (1.4) (and Ds,2r u(x) = c(n, s)−1r−2s).

The main result relative to the fractional p-Laplacian, that we prove in Section 2 (Theorem 2.7),
is the following.
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Main result 1. Let p ≥ 2, Ω ⊂ Rn be an open set and let u ∈ C(Ω) ∩ L∞(Rn) be a non constant
function. Then

(−∆)spu(x) = 0

in the viscosity sense if and only if

(1.6) lim
r↘0
Ds,pr u(x)

(
u(x)−M s,p

r u(x)
)

= 0

holds in the viscosity sense for all x ∈ Ω.

Notice that for p = 2 the result in [6] is recovered. In the case we consider here, however, the
dependence of Ds,pr of the function u does not allow a simplification of the formula obtained.

In the second part of the paper (Section 3) we investigate a different nonlocal version of the p-
Laplace operator (−∆)sp,±u and of the infinity Laplace operator (−∆)s∞u, that arise in tug-of war
games, introduced in [3, 4]. For these operators we obtain an asymptotic representation formula
in the viscosity sense, see Theorems 3.6 and 3.10. We summarize the results on these two nonlocal

operators in the following theorem, denoting by (−∆)#s the nonlocal p-Laplace and infinity Laplacian

respectively, and M#
r playing the role of the nonlocal mean kernel and of the infinity mean kernel,

respectively.

Main result 2. Let Ω ⊂ Rn be an open set and let u ∈ C(Ω) ∩ L∞(Rn). Then

(−∆)#s u(x) = 0

in the viscosity sense if and only if

u(x)−M#
r u(x) = o(r2s)

holds for all x ∈ Ω in the viscosity sense.

Furthermore, both in Sections 2 and 3 we study the asymptotic properties of the Laplace operators
and mean kernels as s↗ 1. In Appendix A we insert some basic integral asymptotics.

2. The fractional p-Laplacian

2.1. An asymptotic expansion. Let p ≥ 2. Throughout Section 2, we consider u to be a non
constant function. The next proposition motivates this choice, and justifies (1.5) as a good definition.

Proposition 2.1. Unless u is a constant function, for any x ∈ Rn there exist some rx > 0 and
cx > 0 such that, for all r < rx, it holds that Ds,pr u(x) ≥ cx.

Proof. We have that

|y|2 − r2 ≤ |y|2,
hence

Ds,pr u(x) ≥
∫
|y|>r

|u(x)− u(x− y)|p−2

|y|n+sp
dy,

and by changing variables

Ds,pr u(x) ≥
∫
CBr(x)

|u(x)− u(y)|p−2

|x− y|n+sp
dy.

If u is not constant, for any x ∈ Rn there exists zx such that u(x) 6= u(zx), hence there exists
rx < |x− zx|/2 such that

u(x) 6= u(z), for all z ∈ Brx(zx).
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Let r̃ = |zx − x|/2, then for any r < r̃

Ds,pr u(x) ≥
∫
CBr̃(x)

|u(x)− u(y)|p−2

|x− y|n+sp
dy ≥

∫
Brx (zx)

|u(x)− u(y)|p−2

|x− y|n+sp
dy := cx,

with cx positive, independent of r. �

Remark 2.2. Notice that it is quite natural to assume that u is not constant and it is similar to
what is required in the local case, namely ∇u(x) 6= 0 (see the proof of [14, Theorem 2]).

We obtain an asymptotic property for smooth functions.

Theorem 2.3. Let u ∈ C2
loc(Rn) ∩ L∞(Rn). Then

Ds,pr u(x)
(
u(x)−M s,p

r u(x)
)

= (−∆)spu(x) +O(r2−2s)

as r → 0.

Proof. We note that the constants may change value from line to line. We fix an arbitrary ε̄, the
corresponding r := r(ε̄) as in (2.8), and some number 0 < ε < min{ε̄, r}, to be taken arbitrarily
small.

Starting from the definition, we have that

Ls,pε u(x) =

∫
ε<|y|<r

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+sp
dy

+

∫
|y|>r

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+s(p−2)

(
1

|y|2s
− 1

(|y|2 − r2)s

)
dy

+

∫
|y|>r

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+s(p−2)(|y|2 − r2)s
dy.

Thus we obtain that

(2.1)

Ls,pε u(x) +

∫
|y|>r

|u(x)− u(x− y)|p−2u(x− y)

|y|n+s(p−2)(|y|2 − r2)s
dy

= u(x)

∫
|y|>r

|u(x)− u(x− y)|p−2

|y|n+s(p−2)(|y|2 − r2)s
dy

+

∫
ε<|y|<r

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+sp
dy

+

∫
|y|>r

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+s(p−2)

(
1

|y|2s
− 1

(|y|2 − r2)s

)
dy

:= u(x)

∫
|y|>r

|u(x)− u(x− y)|p−2

|y|n+s(p−2)(|y|2 − r2)s
dy + Isε (r) + J(r).

Since u ∈ C2
loc(Rn), using (2.10), (2.14) and (2.16), we get that

(2.2) lim
ε↘0

Isε (r) = O(rp(1−s)),
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(see also [10, Lemma 3.6]). Looking for an estimate on J(r), we split it into two parts

J(r) =

∫
|y|>r

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+s(p−2)

(
1

|y|2s
− 1

(|y|2 − r2)s

)
dy

= r−sp
∫
|y|>1

|u(x)− u(x− ry)|p−2(u(x)− u(x− ry))

|y|n+s(p−2)

(
1

|y|2s
− 1

(|y|2 − 1)s

)
dy

= r−sp
[ ∫
|y|> 1

r

|u(x)− u(x− ry)|p−2(u(x)− u(x− ry))

|y|n+s(p−2)

(
1

|y|2s
− 1

(|y|2 − 1)s

)
dy

+

∫
1<|y|< 1

r

|u(x)− u(x− ry)|p−2(u(x)− u(x− ry))

|y|n+s(p−2)

(
1

|y|2s
− 1

(|y|2 − 1)s

)]
dy

=: r−sp (J1(r) + J2(r)) .

We have that

|u(x)− u(x− y)|p−1 ≤ c(|u(x)|p−1 + |u(x− y)|p−1),
thus we obtain the bound

|J1(r)| ≤ C‖u‖p−1L∞(Rn)

∫ ∞
1
r

dt

tsp+1

∣∣∣∣1− 1

(1− 1
t2

)s

∣∣∣∣.
The fact that

J1(r) = O(r2+sp)

follows from Proposition A.1. For J2, by symmetry we write

J2(r) =
1

2

∫
1<|y|< 1

r

|u(x)− u(x− ry)|p−2(u(x)− u(x− ry))

|y|n+s(p−2)

(
1

|y|2s
− 1

(|y|2 − 1)s

)
dy

+
1

2

∫
1<|y|< 1

r

|u(x)− u(x+ ry)|p−2(u(x)− u(x+ ry))

|y|n+s(p−2)

(
1

|y|2s
− 1

(|y|2 − 1)s

)
dy

=
1

2

∫
1<|y|< 1

r

|u(x)− u(x− ry)|p−2(2u(x)− u(x− ry)− u(x+ ry))

|y|n+s(p−2)

(
1

|y|2s
− 1

(|y|2 − 1)s

)
dy

+
1

2

∫
1<|y|< 1

r

(
|u(x)− u(x+ ry)|p−2 − |u(x)− u(x− ry)|p−2

)
(u(x)− u(x+ ry))

|y|n+s(p−2)(
1

|y|2s
− 1

(|y|2 − 1)s

)
dy.

We proceed using (2.13) and (2.15) (and passing ε̄ to 0). We have that

(2.3)

|J2(R)| ≤ Crp
∫ 1/r

1
ρp−1−s(p−2)

(
1

(ρ2 − 1)s
− 1

ρ2s

)
dρ

≤ Crp−(p−2)(1−s)
∫ 1/r

1
ρ

(
1

(ρ2 − 1)s
− 1

ρ2s

)
dρ.

≤ Crp−(p−2)(1−s).

This yields that J2(r) = O(r2+sp−2s).

It follows that

J(r) = O(r2−2s).
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Looking back at (2.1), using this and recalling (2.2), by sending ε→ 0+, we obtain that

(−∆)spu(x) +

∫
|y|>r

|u(x)− u(x− y)|p−2u(x− y)

|y|n+s(p−2)(|y|2 − r2)s
dy =u(x)Ds,pr u(x) +O(r2−2s).

This concludes the proof of the Theorem. �

It is a property of mean value kernels that Mru(x) converges to u(x) as r ↘ 0 both in the local
(linear and nonlinear) and in the nonlocal linear setting. In our case, due to the presence of Ds,pr u,
we have this property when ∇u(x) 6= 0 only for a limited range of values of p depending on s and
becoming larger as s ↗ 1. For other ranges of p, we were not able to obtain such a result. More
precisely, we have the following proposition.

Proposition 2.4. If u ∈ C2
loc(Rn) ∩ L∞(Rn) and s, p are such that

p ∈
[
2,

2

1− s

)
then for any x ∈ Rn such that ∇u(x) 6= 0, it holds that

lim
r↘0

M s,p
r u(x) = u(x).

Proof. There is some r > 0 such that ∇u(y) 6= 0 for all y ∈ B2r(x). Then

Ds,pr u(x) ≥
∫
B2r\Br

|u(x)− u(x− y)|p−2

|y|n+s(p−2)(|y|2 − r2)s
dy

=

∫
B2r\Br

∣∣∣∣∇u(ξ) · y
|y|

∣∣∣∣p−2 |y|(p−2)(1−s)−n(|y|2 − r2)−s dy,

where ξ ∈ B2r(x). Therefore, using (2.22)

Ds,pr u(x) ≥ Cp,n|∇u(ξ)|p−2r(p−2)(1−s)−2s,
which for p in the given range, allows to say that

lim
r↘0
Ds,pr u(x) =∞.

From Proposition 2.1 and Theorem 2.3, we obtain

lim
r↘0

(u(x)−M s,p
r u(x)) = lim

r↘0
(Ds,pr u(x))−1

(
(−∆)spu(x) +O(r2−2s)

)
,

and the conclusion is settled. �

2.2. Viscosity setting. For the viscosity setting of the (s, p)-Laplacian, see the paper [12] (and
also [7, 10,15]). As a first thing, we recall the definition of viscosity solutions.

Definition 2.5. A function u ∈ L∞(Rn), upper (lower) semi-continuous in Ω is a viscosity subso-
lution (supersolution) in Ω of

(−∆)spu = 0, and we write (−∆)spu ≤ (≥) 0

if for every x ∈ Ω, any neighborhood U = U(x) ⊂ Ω and any ϕ ∈ C2(U) such that

(2.4)
ϕ(x) = u(x)

ϕ(y) > (<)u(y), for any y ∈ U \ {x},
if we let

(2.5) v =

{
ϕ, in U

u, in Rn \ U
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then

(−∆)spv(x) ≤ (≥) 0.

A viscosity solution of (−∆)spu = 0 is a (continuous) function that is both a subsolution and a
supersolution.

We define here what we mean for an asymptotic expansion to hold in the viscosity sense.

Definition 2.6. Let ε > 0 be fixed and let u ∈ L∞(Rn) be upper (lower) semi-continuous in Ω. We
say that

lim
r→0
Ds,pr u(x)

(
u(x)−M s,p

r u(x)
)

= 0

holds in the viscosity sense if for any neighborhood U = U(x) ⊂ Ω and any ϕ ∈ C2(U) such that
(2.4) holds, and if we let v be defined as in (2.5), then both

lim inf
r↘0

Ds,pr u(x)
(
u(x)−M s,p

r u(x)
)
≥ 0

and
lim sup
r↘0

Ds,pr u(x)
(
u(x)−M s,p

r u(x)
)
≤ 0

hold point wisely.

The result for viscosity solutions is a consequence of the asymptotic expansion for smooth functions,
and goes as follows.

Theorem 2.7. Let Ω ⊂ Rn be an open set and let u ∈ C(Ω) ∩ L∞(Rn). Then

(−∆)spu(x) = 0

in the viscosity sense if and only if

(2.6) lim
r→0
Ds,pr u(x)

(
u(x)−M s,p

r u(x)
)

= 0

holds for all x ∈ Ω in the viscosity sense.

Proof. For x ∈ Ω and any U(x) neighborhood of x, defining v as in (2.5), we have that v ∈ C2(U(x))∩
L∞(Rn). By Theorem 2.3 we have that

(2.7) Ds,pr v(x)
(
v(x)−M s,p

r v(x)
)

= (−∆)spv(x) +O(r2−2s),

which allows to obtain the conclusion. �

2.3. Asymptotics as s↗ 1. We prove here that sending s↗ 1, for a smooth enough function the
fractional p-Laplace operator approaches the p-Laplacian. The result is known in the mathematical
community, see [8]. We give here a complete proof, on the one hand for the reader convenience and
on the other hand since some estimates here introduced are heavily used throughout Section 2.

Theorem 2.8. Let u ∈ C2
loc(Rn) ∩ L∞(Rn) be such that ∇u(x) 6= 0. Then

lim
s↗1

(1− s)(−∆)spu(x) = −Cp,n ∆pu(x),

where Cp,n > 0.

Proof. Since u ∈ C2
loc(Rn) we have that for any ε̄ > 0 there exists r = r(ε̄) > 0 such that

(2.8) for any |y| < r, |D2u(x)−D2u(x+ y)| < ε̄.
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We fix an arbitrary ε̄, the corresponding r and some number 0 < ε < min{ε̄, r}, to be taken arbitrarily
small.
We notice that

(−∆)spu(x) = lim
ε→0
Ls,pε u(x) = Ls,pr u(x) + lim

ε→0
(Ls,pε u(x)− Ls,pr u(x)) .

As for the first term in this sum, we have that

Ls,pr u(x) =

∫
|y|>r

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+sp
dy ≤ 2p−1‖u‖p−1L∞(Rn)ωn

∫ ∞
r

ρ−1−sp dρ

= C(n, p, ‖u‖L∞(Rn))
r−sp

sp
.

Notice that

(2.9) lim
s↗1

(1− s)Ls,pr u(x) = 0.

Now by symmetry

(2.10)

2
(
Ls,pε u(x)− Ls,pr u(x)

)
= 2

∫
Br\Bε

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+sp
dy

=

∫
Br\Bε

|u(x)− u(x− y)|p−2(u(x)− u(x− y))

|y|n+sp
dy

+

∫
Br\Bε

|u(x)− u(x+ y)|p−2(u(x)− u(x+ y))

|y|n+sp
dy

=

∫
Br\Bε

|u(x)− u(x− y)|p−2(2u(x)− u(x− y)− u(x+ y))

|y|n+sp
dy

+

∫
Br\Bε

(
|u(x)− u(x+ y)|p−2 − |u(x)− u(x− y)|p−2

)
(u(x)− u(x+ y))

|y|n+sp
dy

= Ir,ε(x) + Jr,ε(x).

Using a Taylor expansion, there exist δ, δ ∈ (0, 1) such that

u(x)−u(x−y) = ∇u(x)·y− 1

2
〈D2u(x−δy)y, y〉, u(x)−u(x+y) = −∇u(x)·y− 1

2
〈D2u(x+δy)y, y〉.

Having that |δy|, |δy| ≤ |y| < r, recalling (2.8), we get that
∣∣〈(D2u(x)−D2u(x− δy))y, y〉

∣∣ ≤ ε̄|y|2,
hence

(2.11)

2u (x)− u(x− y)− u(x+ y) = −〈D2u(x)y, y〉

+
1

2
(〈D2u(x)y, y〉 − 〈D2u(x− δy)y, y〉) +

1

2
(〈D2u(x)y, y〉 − 〈D2u(x+ δy)y, y〉)

= − 〈D2u(x)y, y〉+ T1, with |T1| ≤ ε̄|y|2,
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according to (2.8). Also denoting ω = y/|y| ∈ Sn−1 and taking the Taylor expansion for the function
f(x) = |a− xb|p−2, we obtain
(2.12)

|u(x)− u(x− y)|p−2 = |y|p−2
∣∣∇u(x) · ω − |y|

2
〈D2u(x− δy)ω, ω〉

∣∣p−2
= |y|p−2

∣∣∇u(x) · ω − |y|
2

(
〈D2u(x)ω, ω〉+ 〈

(
D2u(x− δy)−D2u(x)

)
ω, ω〉

) ∣∣p−2
= |y|p−2

∣∣∇u(x) · ω − |y|
2

(
〈D2u(x)ω, ω〉+O(ε̄)

) ∣∣p−2
= |y|p−2|∇u(x) · ω|p−2 + T2, with |T2| ≤ C(1 + ε̄)|y|p−1.

Thus we have that

(2.13)

|u(x)− u(x− y)|p−2(2u(x)− u(x− y)− u(x+ y)) = − |y|p|∇u(x) · ω|p−2〈D2u(x)ω, ω〉
+ T1|y|p−2|∇u(x) · ω|p−2 + T3,

with |T3| ≤ C(1 + ε̄)|y|p+1.

Passing to hyper-spherical coordinates, we have that

(2.14)

Ir,ε(x) = −
∫ r

ε
ρp−1−sp dρ

∫
Sn−1

|∇u(x) · ω|p−2〈D2u(x)ω, ω〉 dω + I1r,ε(x) + I2r,ε(x)

= − rp(1−s) − εp(1−s)

p(1− s)

∫
Sn−1

|∇u(x) · ω|p−2〈D2u(x)ω, ω〉 dω + I1r,ε(x) + I2r,ε(x).

Here

I1r,ε ≤ ε̄ C
rp(1−s) − εp(1−s)

p(1− s)
and

|I2r,ε| ≤ C(1 + ε̄)

∫
Br\Bε

|y|p−sp dy = C(1 + ε̄)
rp−sp+1 − εp−sp+1

p(1− s) + 1
.

This means that

lim
s↗1

lim
ε↘0

(1− s)
(
I1r,ε(x) + I2r,ε(x)

)
= O(ε̄).

Thus we get

lim
s↗1

lim
ε↘0

(1− s)Ir,ε(x) = −1

p

∫
Sn−1

|∇u(x) · ω|p−2〈D2u(x)ω, ω〉 dω +O(ε̄).

Using again that
∣∣〈(D2u(x)−D2u(x− δy))y, y〉

∣∣ ≤ ε̄|y|2, we also have that

u(x)− u(x− y) = ∇u(x) · y − 1

2
〈D2u(x)y, y〉+

1

2

(
〈D2u(x)y, y〉 − 〈D2u(x− δy)y, y〉

)
= ∇u(x) · y − 1

2
〈D2u(x)y, y〉+O(ε̄)|y|2

u(x)− u(x+ y) = −∇u(x) · y − 1

2
〈D2u(x)y, y〉+

1

2

(
〈D2u(x)y, y〉 − 〈D2u(x+ δy)y, y〉

)
= −∇u(x) · y − 1

2
〈D2u(x)y, y〉+O(ε̄)|y|2.
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Taking the second order expansion (i.e, taking the following order of the expansion in (2.12), with
third order reminder) we obtain

|u(x)− u(x+ y)|p−2 − |u(x)− u(x− y)|p−2

= |y|p−1(p− 2)(∇u(x) · ω)|∇u(x) · ω)|p−4
(
〈D2u(x)ω, ω〉+O(ε̄)

)
+ T4, |T4| ≤ C|y|p.

Thus

(2.15)
(|u(x)− u(x+ y)|p−2 − |u(x)− u(x− y)|p−2)(u(x)− u(x+ y))

= −|y|p(p− 2)|∇u(x) · ω)|p−2
(
〈D2u(x)ω, ω〉+O(ε̄)

)
+ T5, |T5| ≤ C|y|p+1.

Therefore we get that

(2.16) Jr,ε(x) = −(p− 2)
rp−sp − εp−sp

p(1− s)

(∫
Sn−1

|∇u(x) · ω)|p−2〈D2u(x)ω, ω〉+O(ε̄)

)
+ J̃r,ε(x),

and

|J̃r,ε(x)| ≤ C r
p+1−sp − εp+1−sp

p(1− s) + 1
.

We obtain that

lim
s↗1

lim
ε↘0

Jr,ε(x) = −p− 2

p

∫
Sn−1

|∇u(x) · ω)|p−2〈D2u(x)ω, ω〉 dω +O(ε̄).

It follows that

lim
s↗1

(1− s)(−∆)spu(x) = lim
s↗1

(1− s)
(
Ls,pr u(x) + lim

ε↘0
(Ls,pε u(x)− Ls,pr u(x))

)
= − p− 1

2p

∫
Sn−1

|∇u(x) · ω)|p−2〈D2u(x)ω, ω〉 dω +O(ε̄).

Sending ε̄ to zero, we get that

lim
s↗1

(1− s)(−∆)spu(x) = −p− 1

2p
|∇u(x)|p−2

∫
Sn−1

|z(x) · ω|p−2〈D2u(x)ω, ω〉 dω,

with z(x) = ∇u(x)/|∇u(x)|. We follow here the ideas in [8]. Let U(x) ∈Mn×n(R) be an orthogonal
matrix, such that z(x) = U(x)en, where ek denotes the kth vector of the canonical basis of Rn.
Changing coordinates ω′ = U(x)ω we obtain

I =

∫
Sn−1

|z(x) · ω′|p−2〈D2u(x)ω′, ω′〉 dω =

∫
Sn−1

|en · ω|p−2〈U(x)−1D2u(x)U(x)ω, ω〉 dω

=

∫
Sn−1

|ωn|p−2〈B(x)ω, ω〉 dω

where B(x) = U(x)−1D2u(x)U(x) ∈Mn×n(R). Then we get that

I =

n∑
i,j=1

bij(x)

∫
Sn−1

|ωn|p−2ωiωjdω =
n∑
j=1

bjj(x)

∫
Sn−1

|ωn|p−2ω2
j dω

by symmetry. Now ∫
Sn−1

|ωn|p−2ω2
j dω =

{
γp, if j 6= n

γ′p, if j = n
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with γp, γ
′
p two constants1 for which γ′p/γp = p− 1, so

I = = γp

n∑
j=1

bjj(x) + (γ′p − γp)bnn(x) = γp

 n∑
j=1

bjj(x) + (p− 2)bnn(x)

 .

We notice that, since U(x) is orthogonal and A is symmetric,

n∑
j=1

bjj(x) = TrB(x) = Tr(U(x)−1D2u(x)U(x)) = Tr(D2u(x)) = ∆u(x)

and

bnn(x) = 〈U(x)−1D2u(x)U(x)en, en〉 = 〈D2u(x)U(x)en, U(x)en〉 = 〈D2u(x)z(x), z(x)〉
= |∇u|−2〈D2u(x)∇u(x),∇u(x)〉 = ∆∞u(x).

Therefore

(2.17) I =
γp(p− 1)

p
(∆u(x) + (p− 2)∆∞u(x)),

and this leads to

lim
s↗1

(1− s)(−∆)spu(x) = −γp(p− 1)

2p
|∇u(x)|p−2(∆u(x) + (p− 2)∆∞u(x)).

Recalling that

∆pu(x) = |∇u(x)|p−2(∆u(x) + (p− 2)∆∞u(x))

we conclude the proof of the Lemma. �

Next we study the asymptotic behaviour of M p
r as s↗ 1 and we obtain an asymptotic expansion

for the p-Laplace operator.

Proposition 2.9. For any u ∈ C2
loc(Rn) ∩ L∞(Rn), denoting

M p
r u(x) :=

∫
Sn−1

|u(x)− u(x− rω)|p−2u(x− rω) dω

(∫
Sn−1

|u(x)− u(x− rω)|p−2 dω
)−1

it holds that

(2.18) lim
s↗1

M s,p
r u(x) = M p

r u(x)

and that

(2.19) lim
s↗1

(1− s)Ds,pr u(x) =

∫
Sn−1

|u(x)− u(x− rω)|p−2 dω.

In addition,

(2.20)
(
|∇u|p−2 +O(r)

)(
u(x)−M p

r u(x)
)

= −cn,pr2∆pu(x) +O(r3).

1Precisely (see Lemma 2.1 in [8])

γp =
Γ
(
1
2

)n−2
Γ
(
3
2

)
Γ
(
p−1
2

)
Γ
(
p+n
2

) , γ′p =
Γ
(
1
2

)n−1
Γ
(
p−1
2

)
Γ
(
p+n
2

) .
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Proof. Let ε ∈ (0, 1/2), to be take arbitrarily small in the sequel. We have that

Ds,pr u(x) =

∫
|y|>(1+ε)r

|u(x)− u(x− y)|p−2

|y|n+sp−2s(|y|2 − r2)s
dy +

∫
r<|y|<(1+ε)r

|u(x)− u(x− y)|p−2

|y|n+sp−2s(|y|2 − r2)s
dy

= Is,ε1 + Is,ε2 .

Given that for |y| > r(1 + ε) one has that |y|2 − r2 ≥ ε(ε+ 2)(1 + ε)−2|y|2, we get

(2.21)

|Is,ε1 | ≤
(1 + ε2)s

εs(ε+ 2)s
cn,p,‖u‖L∞(Rn)

∫ ∞
(1+ε)r

ρ−1−sp dρ

=
(1 + ε2)s

εs(ε+ 2)s
cn,p,‖u‖L∞(Rn)

[(1 + ε)r]−sp

s

and it follows that

lim
s↗1

(1− s)Is,ε1 = 0.

On the other hand, integrating by parts we get that

Is,ε2 =

∫
Sn−1

dω

(∫ (1+ε)r

r
|u(x)− u(x− ρω)|p−2ρ−1−sp+2s(ρ2 − r2)−s dρ

)

=

∫
Sn−1

dω

[
(ρ− r)1−s

1− s
|u(x)− u(x− ρω)|p−2ρ−1−sp+2s(ρ+ r)−s

∣∣∣∣∣
(1+ε)r

r

−
∫ (1+ε)r

r

(ρ− r)1−s

1− s
d

dρ

(
|u(x)− u(x− ρω)|p−2ρ−1−sp+2s(ρ+ r)−s

)
dρ

]

=

∫
Sn−1

dω

[
(εr)1−s

1− s
|u(x)− u(x− (1 + ε)rω)|p−2[(1 + ε)r]−1−sp+2s[(2 + ε)r]−s

−
∫ (1+ε)r

r

(ρ− r)1−s

1− s
d

dρ

(
|u(x)− u(x− ρω)|p−2ρ−1−sp+2s(ρ+ r)−s

)
dρ

]
Notice that ∣∣∣∣ ∫ (1+ε)r

r

(ρ− r)1−s

1− s
d

dρ

(
|u(x)− u(x− ρω)|p−2ρ−1−sp+2s(ρ+ r)−s

)
dρ

∣∣∣∣
≤ C max{r−sp, r1−sp} ε

2−s

1− s
,

hence

lim
s↗1

(1− s)
∫
Sn−1

dω

[∫ (1+ε)r

r

(ρ− r)1−s

1− s
d

dρ

(
|u(x)− u(x− ρω)|p−2ρ−1−sp+2s(ρ+ r)−s

)
dρ

]
= O(ε).

On the other hand

lim
s↗1

(1− s)
∫
Sn−1

dω
(εr)1−s

1− s
|u(x)− u(x− (1 + ε)rω)|p−2[(1 + ε)r]−1−sp+2s[(2 + ε)r]−s

=
1

(1 + ε)p−1(2 + ε)−1rp

∫
Sn−1

dω|u(x)− u(x− (1 + ε)rω)|p−2.
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Finally,

lim
ε↘0

lim
s↗1

(1− s)Is,ε2 =
2

rp

∫
Sn−1

|u(x)− u(x− rω)|p−2 dω

and one gets (2.19). In exactly the same fashion, one proves that

lim
s↗1

(1− s)
∫
|y|>r

(
|u(x)− u(x− y)|

|y|s

)p−2 u(x− y)

|y|n(|y|2 − r2)s
dy

=
2

rp

∫
Sn−1

|u(x)− u(x− rω)|p−2u(x− rω) dω

and (2.18) can be concluded.
In order to prove (2.20), one uses (2.13) and (2.15), the computations and notations in Theorem

2.8 (in particular (2.13), (2.15) and (2.17)) to obtain that(∫
Sn−1

|u(x)− u(x− rω)|p−2 dω
)

(u(x)−M p
r u(x))

= − p− 1

2
rp
∫
Sn−1

|∇u(x) · ω|p−2〈D2u(x)ω, ω〉+O(rp+1)

= − rpγp(p− 1)

2p
|∇u(x)|p−2(∆u(x) + (p− 2)∆∞u(x)) +O(rp+1)

= − rpγp(p− 1)

2p
∆pu(x) +O(rp+1).

Proving in the same way by (2.12), that∫
Sn−1

|u(x)− u(x− rω)|p−2 dω = rp−2
∫
Sn−1

|∇u(x) · ω|p−2 dω +O(rp−1),

and recalling that

(2.22)

∫
Sn−1

|∇u(x) · ω|p−2 dω = Cn,p|∇u(x)|p−2,

we get that (
|∇u(x)|p−2 +O(r)

)(
u(x)−M p

r u(x)
)

= −c̃n,pr2∆pu(x) +O(r3),

with

c̃n,p =
γp(p− 1)

pCn,p
=

(p− 1)(p− 3)

2p(p+ n− 2)
.

This concludes the proof of the Theorem. �

Remark 2.10. Let us point out that (2.20) gives an asymptotic expansion for the p-Laplace which
differs from the one given in [14]. The very nice formula in [14] says that

|∇u|p−2
(
u(x)− M̃pu(x)

)
= −c̄p,nr2∆pu(x) + o(r2),

with

M̃pu(x) =
2 + n

p+ n
−
∫
Br(x)

u(y) dy +
p− 2

2(p+ n)

(
max
Br(x)

u(y) + min
Br(x)

u(y)

)
and

c̄p,n =
1

2(p+ n)
.
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The statement (2.20), even though it appears weaker, still allows us to conclude that in the viscosity
sense, at points x ∈ Rn for which the test functions v(x) satisfy ∇v(x) 6= 0, if u satisfies the mean
value property, then ∆pu(x) = 0.

3. Gradient dependent operators

3.1. The “nonlocal” p-Laplacian. In this section, we are interested in a nonlocal version of the
p-Laplace operator, that arises in tug-of war game, introduced in [3].

This operator is the nonlocal version of the p-Laplacian given in a non-divergence form, and
deprived of the |∇u|p−2 factor. Let p ∈ (1,+∞) and denote for any A ∈M n×n(R) and ξ ∈ Rn,

〈Aξ, ξ〉 =

n∑
i,j=1

aijξiξj .

Precisely, in the classical setting, the p-Laplace operator for ∇u 6= 0 is

∆pu := ∆p,±u = ∆u+ (p− 2)|∇u|−2〈D2u∇u,∇u〉.

By convention, when ∇u = 0, as in [3],

∆p,+u := ∆u+ (p− 2) sup
ξ∈Sn−1

〈D2u ξ, ξ〉

and

∆p,−u := ∆u+ (p− 2) inf
ξ∈Sn−1

〈D2u ξ, ξ〉.

Let s ∈ (1/2, 1) and p ∈ [2,+∞). In the nonlocal setting we have the following definition given
in [3, Section 4].

Definition 3.1. When ∇u(x) = 0 we define

(−∆)sp,+u(x) :=
1

αp
sup

ξ∈Sn−1

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
χ[cp,1]

(
y

|y|
· ξ
)
dy

and

(−∆)sp,−u(x) :=
1

αp
inf

ξ∈Sn−1

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
χ[cp,1]

(
y

|y|
· ξ
)
dy.

When ∇u(x) 6= 0 then

(−∆)spu(x) = (−∆)sp,± =
1

αp

∫
Rn

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
χ[cp,1]

(
y

|y|
· z(x)

)
dy

with

z(x) =
∇u(x)

|∇u(x)|
.

Here, cp, αp are positive constants.

We remark that the case p ∈ (1, 2) is defined with the kernel χ[0,cp]

(
y
|y| · z(x)

)
for some cp > 0,

and can be treated in the same way.
In particular, for p ∈ [2,+∞) we consider

(3.1)

αp :=
1

2

∫
Sn−1

(ω · e2)2χ[cp,1](ω · e1) dω,

βp :=
1

2

∫
Sn−1

(ω · e1)2χ[cp,1](ω · e1) dω − αp,
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and

(3.2) cp such that
βp
αp

= p− 2.

With these constants, one gets [3, Subsections 4.2.1, 4.2.2], which affirms that if u ∈ C2(Rn)∩L∞(Rn),
then

lim
s↗1

(1− s)∆s
pu(x) = ∆pu(x).

We define now a (s, p)-mean kernel for the nonlocal p-Laplacian.

Definition 3.2. For any r > 0 and u ∈ L∞(Rn), when ∇u(x) 6= 0, let

M s,p
r u(x) :=

Cs,pr
2s

2

∫
CBr

u(x+ y) + u(x− y)

|y|n(|y|2 − r2)s
χ[cp,1]

(
y

|y|
· z(x)

)
dy, z(x) =

∇u(x)

|∇u(x)|
,

where2.

Cs,p = csγp, with cs :=

(∫ ∞
1

dρ

ρ(ρ2 − 1)s

)−1
, γp :=

(∫
Sn−1

χ[cp,1](ω · e1)dω
)−1

.

When ∇u(x) = 0, we define

M s,p,+
r u(x) :=

Cs,p,+r
2s

2
sup

ξ∈Sn−1

∫
CBr

u(x+ y) + u(x− y)

|y|n(|y|2 − r2)s
χ[cp,1]

(
y

|y|
· ξ
)
dy,

and

M s,p,−
r u(x) :=

Cs,p,−r
2s

2
inf

ξ∈Sn−1

∫
CBr

u(x+ y) + u(x− y)

|y|n(|y|2 − r2)s
χ[cp,1]

(
y

|y|
· ξ
)
dy,

with

Cs,p,+ = csγp,+ with γp,+ :=

(
sup

ξ∈Sn−1

∫
Sn−1

χ[cp,1](ω · ξ)dω

)−1
respectively

Cs,p,− = csγp,− with γp,− :=

(
inf

ξ∈Sn−1

∫
Sn−1

χ[cp,1](ω · ξ)dω
)−1

.

We have the next asymptotic expansion for smooth functions.

Theorem 3.3. Let u ∈ C2
loc(Rn) ∩ L∞(Rn). Then

u(x) = M s,p,±
r u(x) + c(n, s, p)r2s(−∆)sp,±u(x) +O(r2s+2),

as r ↘ 0.

Proof. We prove the result for ∇u(x) 6= 0 (the proof goes the same for ∇u(x) = 0).
Since u ∈ C2

loc(Rn) we have that for any ε̄ > 0 there exists r = r(ε̄) > 0 such that (2.8) is satisfied.
Passing to spherical coordinates we have that

Cs,pr
2s

∫
CBr

dy

|y|n(|y|2 − r2)s
χ[cp,1]

(
y

|y|
· z(x)

)
= Cs,p

∫ ∞
1

dρ

ρ(ρ2 − 1)s

∫
Sn−1

χ[cp,1] (ω · z(x)) dω

= Cs,p

∫ ∞
1

dy

ρ(ρ2 − 1)s

∫
Sn−1

χ[cp,1] (ω · e1) dω = 1,

where the last line follows after a rotation (one takes U ∈M n×n(R) an orthogonal matrix such that
U−1(x)z(x) = e1 and changes variables).

2It holds that c(s) = 2 sinπs
π
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It follows that for any r > 0,

u(x)−M s,p
r u(x) =

Cs,pr
2s

2

∫
CBr

2u(x)− u(x+ y)− u(x− y)

|y|n(|y|2 − r2)s
χ[cp,1]

(
y

|y|
· z(x)

)
dy.

Therefore we have that

u(x)−M s,p
r u(x) =

Cs,pαpr
2s

2
(−∆)spu(x)

− Cs,pr
2s

2

∫
Br

2u(x)− u(x+ y)− u(x− y)

|y|n+2s
χ[cp,1]

(
y

|y|
· z(x)

)
dy

+
Cs,pr

2s

2

∫
CBr

2u(x)− u(x+ y)− u(x− y)

|y|n+2s

(
|y|2s

(|y|2 − r2)s
− 1

)
χ[cp,1]

(
y

|y|
· z(x)

)
dy

=:
Cs,pαpr

2s

2
(−∆)spu(x)− Ir + Jr

and

Jr =
Cs,p

2

∫
CB1

2u(x)− u(x+ ry)− u(x− ry)

|y|n+2s

(
|y|2s

(|y|2 − 1)s
− 1

)
χ[cp,1]

(
y

|y|
· z(x)

)
dy

=
Cs,p

2

∫
B 1
r
\B1

2u(x)− u(x+ ry)− u(x− ry)

|y|n+2s

(
|y|2s

(|y|2 − 1)s
− 1

)
χ[cp,1]

(
y

|y|
· z(x)

)
dy

+
Cs,p

2

∫
CB 1

r

2u(x)− u(x+ ry)− u(x− ry)

|y|n+2s

(
|y|2s

(|y|2 − 1)s
− 1

)
χ[cp,1]

(
y

|y|
· z(x)

)
dy

= J1
r + J2

r .

We obtain

|J2
r | ≤ 4‖u‖L∞(Rn)

Cn,s,p
2

∫ ∞
1
r

dρ

ρ1+2s

(
ρ2s

(ρ2 − 1)s
− 1

)∫
Sn−1

χ[cp,1] (ω · z(x)) dω

≤ Cs,p
∫ ∞

1
r

dρ

ρ1+2s

(
ρ2s

(ρ2 − 1)s
− 1

)
,

and using Proposition A.1

J2
r = O(r2+2s).

We have that

J1
r − Ir =

Cs,p
2

[ ∫
B 1
r
\B1

2u(x)− u(x+ ry)− u(x− ry)

|y|n(|y|2 − 1)s
χ[cp,1]

(
y

|y|
· z(x)

)
dy

−
∫
B 1
r

2u(x)− u(x+ ry)− u(x− ry)

|y|n+2s
χ[cp,1]

(
y

|y|
· z(x)

)
dy

]
which, by (2.11) and Proposition A.1, gives that

J1
r − Ir = O(r2s+2).

It follows that

u(x)−M s,p
r u(x) = C(s, p)r2s(−∆)spu(x) +O(r2s+2)

for r ↘ 0, hence the conclusion. �

We recall the viscosity setting introduced in [3].
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Definition 3.4. A function u ∈ L∞(Rn), upper (lower) semi-continuous in Ω is a viscosity subso-
lution (supersolution) in Ω of

(−∆)sp,±u = 0, and we write (−∆)sp,±u ≤ (≥) 0

if for every x ∈ Ω, any neighborhood U = U(x) ⊂ Ω and any ϕ ∈ C2(U) such that (2.4) holds if we
let v as in (2.5)

(−∆)sp,±v(x) ≤ (≥) 0.

A viscosity solution of (−∆)sp,±u = 0 is a (continuous) function that is both a subsolution and a
supersolution.

Furthermore, we define an asymptotic expansion in the viscosity sense.

Definition 3.5. Let u ∈ L∞(Rn) upper (lower) semi-continuous in Ω. We say that

lim
r↘0

(u(x)−M s,p
r u(x)) = o(r2s)

holds in the viscosity sense if for any neighborhood U = U(x) ⊂ Ω and any ϕ ∈ C2(U) such that
(2.4) holds, and if we let v be defined as in (2.5), then both

lim inf
r↘0

u(x)−M s,p
r u(x)

r2s
≥ 0

and

lim sup
r↘0

u(x)−M s,p
r u(x)

r2s
≤ 0

hold point wisely.

The result for viscosity solutions, which is a direct consequence of Theorem 3.3 applied to the test
function v, goes as follows.

Theorem 3.6. Let Ω ⊂ Rn be an open set and let u ∈ C(Ω) ∩ L∞(Rn). Then

(−∆)sp,±u(x) = 0

in the viscosity sense if and only if

lim
r↘0

(u(x)−M s,p
r u(x)) = o(r2s)

holds for all x ∈ Ω in the viscosity sense.

We study also the limit case as s ↗ 1 of this version of the (s, p)-mean kernel, and obtain an
asymptotic expansion in the local case.

Proposition 3.7. Let Ω ⊂ Rn be an open set and u ∈ C1(Ω) ∩ L∞(Rn). For any r > 0 small
denoting

Mp
r u(x) :=

1

2

∫
∂Br

(u(x+ y)− u(x− y))χ[cp,1]

(
y

|y|
· z(x)

)
dy

it holds that

(3.3) lim
s↗1

M s,p
r u(x) = Mp

r u(x),

for every x ∈ Ω, r > 0 such that B2r(x) ⊂ Ω. In addition,

(3.4) u(x)−Mp
r u(x) = −cn,pr2(−∆)p,±u(x) +O(r3).
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Proof. It holds that

M s,p
r u(x) =

Cs,p
2

∫
CB1

u(x+ ry) + u(x− ry)

|y|n(|y|2 − 1)s
χ[cp,1]

(
y

|y|
· z(x)

)
dy.

Let ε > 0 be fixed (to be taken arbitrarily small). Then

|Jε(x)| :=

∣∣∣∣∣
∫
B1+ε

u(x+ ry) + u(x− ry)

|y|n(|y|2 − 1)s
χ[cp,1]

(
y

|y|
· z(x)

)
dy

∣∣∣∣∣ ≤ 2‖u‖L∞(Rn)

γp

∫ ∞
1+ε

dt

t(t2 − 1)s
,

which from Proposition A.1 gives that

lim
s↗1

Cs,pJε(x) = 0.

On the other hand, we have that

Iε(x) =

∫
B1+ε\B1

u(x+ ry) + u(x− ry)

|y|n(|y|2 − 1)s
χ[cp,1]

(
y

|y|
· z(x)

)
dy

=

∫
Sn−1

(∫ 1+ε

1

u(x+ rρω) + u(x− rρω)

ρ(ρ2 − 1)s
dρ

)
χ[cp,1] (ω · z(x)) dω

and integrating by parts, that∫ 1+ε

1

u(x+ rρω) + u(x− rρω)

ρ(ρ2 − 1)s
dρ =

ε1−s

1− s
u(x+ r(1 + ε)ω) + u(x− r(1 + ε)ω)

(1 + ε)(2 + ε))s
− Ioε (x)

with

Ioε (x) :=

∫ 1+ε

1

(ρ− 1)1−s

1− s
d

dρ

(
u(x+ rρω) + u(x− rρω)

ρ(ρ+ 1)s

)
dρ.

We notice that

|Ioε (x)| ≤ C ε2−s

1− s
,

hence we get

lim
s↗1

Cs,pI
o
ε (x) = O(ε).

Therefore we obtain

lim
s↗1

M s,p
r u(x) =

1

(1 + ε)(2 + ε)

∫
Sn−1

(u(x+ rω) + u(x− rω))χ[cp,1] (ω · z(x)) dy +O(ε),

and (3.3) follows by sending ε→ 0. �

3.2. The infinity fractional Laplacian. In this section, we deal with the infinity fractional Lapla-
cian, arising in a nonlocal tug-of-war game, as introduced in [4]. Therein, the authors deal with
viscosity solutions of a Dirichlet monotone problem and a monotone double obstacle problem, pro-
viding a comparison principle on compact sets and Hölder regularity of solutions.

The infinity Laplacian in the non-divergence form is defined by omitting the term |∇u|2. Precisely,
by convention, denoting for any A ∈M n×n(R) and ξ ∈ Rn,

〈Aξ, ξ〉 =

n∑
i,j=1

aijξiξj .

we define when ∇u = 0,

∆∞,+u := sup
ξ∈Sn−1

〈D2u ξ, ξ〉 and ∆∞,−u := inf
ξ∈Sn−1

〈D2u ξ, ξ〉,
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whereas when ∇u = 0,

∆∞u := ∆∞,±u = 〈D2u z(x), z(x)〉, where z(x) =
∇u(x)

|∇u(x)|
.

The definition in the fractional case is well posed for s ∈ (1/2, 1), given in [4, Definition 1.1].

Definition 3.8. Let s ∈ (12 , 1). The infinity fractional Laplacian (−∆)s∞ : C1,1(x) ∩ BC(Rn) at a
point x is defined in the following way:

• If ∇u(x) 6= 0 then

(3.5) (−∆)s∞u(x) =

∫ ∞
0

2u(x)− u(x+ ρz(x))− u(x− ρz(x))

ρ1+2s
dρ,

where z(x) = ∇u(x)
|∇u(x)| ∈ Sn−1.

• If ∇u(x) = 0 then

(3.6) (−∆)s∞u(x) = sup
ω∈Sn−1

inf
ζ∈Sn−1

∫ ∞
0

2u(x)− u(x+ ρω)− u(x− ρζ)

ρ1+2s
dρ.

In the above,
BC(Rn) := {u : Rn → R |u ∈ C(Rn) ∩ L∞(Rn)}

and u ∈ C1,1(x) if there exists a vector p ∈ Rn and numbers M,η0 > 0 such that

|u(x+ y)− u(x)− p · y| ≤M |y|2

for |y| < η0. We define ∇u(x) := p.
As an example, it is proved in [4] that the function

C(x) = A|x− x0|2s−1 +B

satisfies
(−∆)s∞u(x) = 0 for any x 6= x0.

We denote

Lu(x, ω, ζ) :=

∫ ∞
0

2u(x)− u(x+ ρω)− u(x− ρζ)

ρ1+2s
dρ

and for r > 0

M s
ru(x, y, z) := csr

2s

∫ ∞
r

u(x+ ρω) + u(x− ρζ)

(ρ2 − r2)sρ
dρ,

with

cs :=

(∫ ∞
1

dρ

ρ(ρ2 − 1)s

)−1
=

2 sinπs

π
.

We define the operators

• If ∇u(x) 6= 0

M s,∞
r u(x) = M s

ru(x, z(x), z(x)), with z(x) =
∇u(x)

|∇u(x)|
.

• If ∇u(x) = 0
M s,∞

r u(x) = sup
ω∈Sn−1

inf
ζ∈Sn−1

M s
ru(x, ω, ζ)

We obtain the asymptotic mean value property for smooth functions, as follows.

Theorem 3.9. Let u ∈ C1,1(x) ∩BC(Rn). Then

u(x) = M s,∞
r u(x) + c(s)r2s(−∆)s∞u(x) +O(r2+2s)

as r → 0.
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Proof. Since u ∈ C2
loc(Rn) we have that for any ε̄ > 0 there exists r = r(ε̄) > 0 such that (2.8) is

satisfied. We have that

u(x)−M s
ru(x, y, z) = csr

2s

∫ ∞
r

2u(x)− u(x+ ρω)− u(x− ρζ)

ρ(ρ2 − r2)s
dρ,

hence

u(x)−M s
ru(x, y, z) = cs

[
r2sLu(x, ω, ζ)−

∫
B1

2u(x)− u(x+ rρω)− u(x− rρζ)

ρ1+2s
dρ

+

∫
CB1

2u(x)− u(x+ rρω)− u(x− rρζ)

ρ1+2s

(
ρ2s

(ρ2 − 1)2s
− 1

)
dρ

]
=: cs

(
r2sLu(x, ω, ζ)− Ir + Jr

)
.

Then

Jr =

∫
B 1
r \B1

2u(x)− u(x+ rρω)− u(x− rρζ)

ρ1+2s

(
ρ2s

(ρ2 − 1)2s
− 1

)
dρ

+

∫
CB 1

r

2u(x)− u(x+ rρω)− u(x− rρζ)

ρ1+2s

(
ρ2s

(ρ2 − 1)2s
− 1

)
dρ

=: J1
r + Jr2 .

We proceed as in the proof of Theorem 3.3, using also (2.11) and Proposition A.1, and obtain that

J2
r = O(r2s+2s) and J1

r − Ir = O(r2s+2s).

This concludes the proof of the Theorem. �

The main result of this section, which follows from Theorem 3.9, is stated next.

Theorem 3.10. Let Ω ⊂ Rn be an open set and u ∈ BC(Rn). The asymptotic expansion

(3.7) u(x) = M s,∞
r u(x) + o(r2s), as r → 0

holds for all x ∈ Ω in the viscosity sense if and only if

(−∆)s∞u(x) = 0

in the viscosity sense.

We investigate also the limit case s↗ 1.

Proposition 3.11. Let Ω ⊂ Rn be an open set and u ∈ C1(Ω) ∩ L∞(Rn). Then

lim
s↗1

M s
r u(x) =


1

2

(
u
(
x+ rz(x)

)
+ u
(
x− rz(x)

))
when ∇u(x) 6= 0,

1

2

(
sup

ω∈Sn−1

u(x+ rω) + inf
ζ∈Sn−1

u(x− rζ)

)
when ∇u(x) = 0,

for every x ∈ Ω, r > 0 such that B2r(x) ⊂ Ω.

Proof. For some ε > 0 small enough, we have that

(3.8)
M s
ru(x, ω, ζ) = cs

(∫ ∞
1+ε

u(x+ rρω) + u(x− rρζ)

(ρ2 − 1)sη
dρ+

∫ 1+ε

1

u(x+ rρω) + u(x− rρζ)

(η2 − 1)sρ
dρ

)
=: I1s + I2s .

Using Proposition A.1, we get that
lim
s→1

csI
1
s = 0.
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Integrating by parts in I2s , we have∣∣∣∣∫ 1+ε

1

u(x+ rρω)

(η2 − 1)sρ
dρ− ε1−su (x+ r(1 + ε)ω)

(1− s)(ε+ 2)s(1 + ε)

∣∣∣∣ ≤ C|y| ε2−s1− s
,

thus ∣∣∣∣I2s− ε1−s

(1− s)(ε+ 2)s(1 + ε)

(
u (x+ r(1 + ε)ω) + u (x− r(1 + ε)ζ)

)∣∣∣∣ ≤ C ε2−s

1− s
.

We get that

lim
s↗1

csI2s =
1

(ε+ 2)(ε+ 1)

(
u(x+ r(1 + ε)y) + u(x− r(1 + ε)z)

)
+ Cε.

Sending ε→ 0 we get the conclusion. �

For completeness, we show the following, already known, result.

Proposition 3.12. Let u ∈ C2
loc(Rn) ∩ L∞(Rn). For all x ∈ Rn for which |∇u(x)| 6= 0 it holds that

lim
s↗1

(1− s)(−∆)s∞u(x) = −∆∞u(x).

Proof. Since u ∈ C2
loc(Rn) we have that for any ε̄ > 0 there exists r = r(ε̄) > 0 such that (2.8) holds.

We prove the result for ∇u(x) 6= 0 (the other case can be proved in the same way). We have that

(−∆)s∞ =

∫ r

0

2u(x)− u (x+ ρz(x))− u (x− ρz(x))

ρ1+2s
dρ

+

∫ ∞
r

2u(x)− u (x+ ρz(x))− u (x− ρz(x))

ρ1+2s
dρ = Ir + Jr.

We have that

|Jr| ≤ C‖u‖L∞(Rn)
r−2s

2s
, and lim

s↗1
(1− s)Jr = 0.

On the other hand, using (2.11) we have that

Ir = −
∫ r

0

〈D2u(x)z(x), z(x)〉
ρ

1−2s
dρ+ Ior = −〈D2u(x)z(x), z(x)〉 r2−2s

2(1− s)
+ Ior ,

with
lim
s↗1

(1− s)Ior = O(ε̄).

The conclusion follows by sending ε̄→ 0. �

Appendix A. Useful asymptotics

Proposition A.1. Let s ∈ (0, 1). There exists r̃ > 0 such that for all r < r̃ the following hold∫ 1
r

1
t

(
1

(t2 − 1)s
− 1

t2s

)
dt = O(1),∫ r

0
t1−2s −

∫ 1
r

1

t

(t2 − 1)s
dt = O(r2s),∫ ∞

1
r

1

t

(
t2s

(t2 − 1)s
− 1

)
dt = O(r2).

Furthermore,

lim
s↗1

(1− s)
∫ ∞
1+r

dt

t(t2 − 1)s
dt = 0.
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Proof. Integrating, we have that∫ 1
r

1
t

(
1

(t2 − 1)s
− 1

t2s

)
dt =

1

2(1− s)

(
(1− r2)1−s − 1

r2(1−s)
+ 1

)
=

1

2(1− s)
(
O(r2s) + 1

)
.

Since 1
t < r < 1, with a Taylor expansion we get that

1

(1− 1
t2

)s
− 1 = s

1

t2
+ o

(
1

t2

)
.

Integrating, we obtain the second result. Furthermore∫ ∞
1+r

dt

t(t2 − 1)s
dt =

∫ 2

1+r

dt

t(t2 − 1)s
dt+

∫ ∞
2

dt

t(t2 − 1)s
dt ≤ c(1− r1−s)

1− s
+
c

s
.

The conclusion follows by multiplying by (1− s) and taking the limit. �
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