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ABSTRACT. We are concerned with the Sinh-Gordon equation in bounded domains. We construct blow up solutions with
residual mass exhibiting either partial or asymmetric blow up, i.e. where both the positive and negative part of the solu-
tion blow up. This is the first result concerning residual mass for the Sinh-Gordon equation showing in particular that the
concentration-compactness theory of Brezis-Merle can not be extended to this class of problems.
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1. INTRODUCTION

We are concerned with the following Sinh-Gordon equation

+_ & - — ;
Autp Joetdx P Joetdx 0 in ) (1.1)

u=20 on 9Q).

where QO C R? is smooth and bounded and p*,p~ are two positive parameters. The latter problem arises as a
mean field equation in the study of the equilibrium turbulence [19,22]]. Moreover, it is also related to constant mean
curvature surfaces [18}[26]. Observe that for p~ = 0 reduces to the standard Liouville equation which has been
extensively studied in the literature. Therefore, many efforts have been done to study existence [3,{10-13] and blow
up phenomena [1/8}(14}/15,[18,]21}123-25] for this class of problems.

In the present paper we further explore the blow up phenomenon of (L.I). Let u, be a sequence of solutions to
(1.1) corresponding to p;- < C. Define the positive and negative blow up set as

Sy = {x eQ: Jxy, = Qst. Fuy(xy,) —log/ ei”"dx—l—logpff — 4ooasn — oo} )
@)
It is easy to see that S+ are finite. Moreover, by [1] we have S+ NdQ) = @. For p € S4 the local mass is defined by

=+ *u
o fo(p)e ndx
ma(p) = limy i, e
By [14,[18] we know that m 4 (p) satisfy a quantization property, i.e. m4(p) € 8TIN. Moreover, in view of the relation
(my(p) —m(p))* = 87(m (p) +m_(p)),
see for example [21], the couple (m., m_), up to the order, takes the value in the set

z_{Sn(k(kz_l),k(k;l)>,keN\{o}}. 1.2)

Finally, by standard analysis [21] one has, for n — +co,

n e:i:un .
On fQ etundy p;ﬁ mi(P)5P + 7+,

in the sense of measures, where r4. € L! (Q)) are residual terms. From the above convergence, pjE will be called global
masses of the blow up solutions. Observe that both the local masses and the residual terms affect the global masses.
In striking contrast with the concentration-compactness theory of Brezis-Merle [4], the latter residuals may not be
zero a priori. This fact has important effects in the blow up analysis, variational analysis and Leray-Schauder degree
theory of (1.I). One of the goals of the present paper is to provide the first explicit example of blow up solutions
exhibiting residual terms, thus confirming that the concentration-compactness theory can not be extended to this
class of problems.
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1.1. Partial blow up. We start here with a related problem, that is partial blow up with prescribed global mass. More
precisely, we look for blowing up solutions —u, with p,; — 87k, k € IN, such that u, have prescribed global mass
o7 =p" € (0,87). To this end we introduce

Fi O :—{5:— (&1, ,C) c Ok Ci#ﬁjfori#j} (1.3)
and consider the following singular (at ¢; € (2) mean field equation:
h(x/ é’)gz(xrg) .
Az(x, + =0 Q,
2we)+p Jo h(x, §)exx8)dx n (1.4)
z(x,€) =0 on 90}

where £ € FyQ and h(x, &) = =871 G(x&) Here G(x,y) is the Green function of the Laplacian operator in () with
Dirichlet boundary condition and we denote its regular part by H(x,y). is the Euler-Lagrange equation of the

functional
Ig(2) == 1/ |Vz|?dx — pT log </ h(x,g)ezdx> )
2 /o Q

To the latter functional and (a combination of) the Green functions we associate the following map:

k
M) = e (=(,€)) — 3272 (Y HE, &) + L6 15
i=1 i

It is known by [2] that if Q) is simply connected and p™* € (0,871), then for any & € F() there exists a unique solution
to (1.4) and the solution is non-degenerate, in the sense that the linearized problem admits only the trivial solution.
Then, by making use of the implicit function theorem it is not difficult to show that the function A is smooth, see
for example [6]. Finally, as in [20], a compact set K C F;Q of critical points of A is said to be C!-stable if, fixed a
neighborhood U of K, any map @ : &/ — R sufficiently close to A in C'-sense has a critical point in /.

The first result of this paper is the following.

Theorem 1.1. Let Q be simply connected, p* € (0,87) and let K C FiQ, k € N, be a Cl-stable set of critical points of A.
Then, there exists Ag > 0 such that for any A € (0, Ag) there exists u, solution of with pf such that, for A — 0

1. py =p*, p, — 8km.
2. There exist £(A) € FrQ and 5;(A) > 0 such that d(€,K) — 0, 6; — 0and

k

1 .
up(x) = z(x,§) - l; <logm +87rH(x,§i)) in Hy(Q),

where z solves (1.4).

Some comments are in order. The assumptions () simply connected and p* € (0,87) guarantee the existence of
a unique non-degenerate solution to (1.4): in general, the above result holds true whenever such solution exists. For
example, one can drop the condition on () by assuming p™ to be sufficiently small, see for example [6].

On the other hand, if () is simply connected and p™* € (0, 87) it is not difficult to show that for k = 1 the minimum
of A is a Cl-stable set of critical points of A, see for example [6]. Moreover, for non-simply connected domains the
function A always admits a C!-stable set of critical points [5].

Therefore, the conclusion of Theoremholds true if either () is simply connected, p™ € (0,87) and k = 1, or Q)
is multiply connected, p™ sufficiently small and k > 1. Finally, the location of the blow up set can be determined by
using the following expression, which can be derived similarly as in [6]:

0z oH 9G
agA(E) — 87(@(6]‘/5) — 327(2(g(gjrgj) + ; N

]

(Gir Cj))- (1.6)
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1.2. Asymmetric blow up. We next construct blow up solutions with residual mass exhibiting asymmetric blow up,
i.e. where both the positive and negative part of the solution blow up. Since the local masses (m.,m_) belong to
the set & defined in ([.2), for k > 2 we look for blowing up solution u, with p;, — 4nk(k+1) and p;f = p™ =
4rtk(k — 1) + po, where pg € (0,87) is a fixed residual mass. For simplicity of presentation we assume that k is
odd, the case of k even being similar. We consider here [-symmetric domains () with [ > 2 even, i.e. if x € () then
R;-x € O, where

Ry= 2 2

( cos 27” sin ZT”
— Sin T COS T

) , I>2even. 1.7)
Consider then the following singular (at x = 0) mean field equation:

2(x) =8k G(x,0)
Az(x) + po

fQ e2(x)—8kmtG(x,0) 4 =0 in Q, (1.8)

z(x) =0 on 0Q).
Again by [2] we know that if () is simply connected and p™ € (0,87), then there exists a unique non-degenerate

solution to (1.8).
The second result of this paper is the following.

Theorem 1.2. Let Q) be a simply connected I-symmetric domain according to and pt = 4rtk(k — 1) + po with k € N
odd and py € (0,871). Then, there exists Ao > 0 such that for any A € (0, Ag), there exists u, solution of with p)jf such
that, for A — 0

L oy =p", py — 4mk(k+1).
2. There exists 6;(A) — 0 such that

k
uy(x) = z(x) + ;(—1)i(log

where z solves (1.8).

1 . .
W +47TIXI'H(X, 0)) m Hé(Q), o, = 4 — 2,
i

Observe that the assumption Q) simply connected and py € (0,87) is used only to ensure the existence of a non-
degenerate solution to (1.8): in general, the above result holds true whenever such solution exists. On the other hand,
the symmetry condition of the domain is imposed to rule out the degeneracy of the singular Liouville equation.

The argument follows the strategy introduced in [6,7] for the Toda system, that is a system of Liouville-type equa-
tions, and it is based on perturbation method starting from an approximate solution and studying the invertibility
of the linearized problem. The main difficulty is due to the coupling of the local and global nature of the problem
since we are prescribing both the local and global masses. In particular, blow up solutions of with local masses
(4rtk(k —1),47tk(k + 1)) have been constructed in [9] by superposing k different bubbles with alternating sign. Glu-
ing the solution of to the latter blow up solutions we are able to construct blow up solutions with residual mass,
that is with p;7 = p™ = 4nk(k — 1) + pg and p,, — 47k(k + 1) for any k > 2. In this generality the latter construction
is quite delicate and technically more difficult compared to the one in [7,9]. We remark that the same strategy can be
carried out for more general asymmetric Sinh-Gordon equations, for example for the Tzitzéica equation [16].

The paper is organized as follows. Section 2] contains some notation and preliminary results which will be used in
the paper. Section [B]is devoted to the proof of Theorem|[I.Iwhile the proof of Theorem|[1.2]is derived in Section [4]

2. PRELIMINARIES

In this section we collect some notation and useful information that we will use in this paper. We shall write

= ([ 1vuae)’ ana pul, = ( [ wa)’

to denote the norm in H}(Q) and in L?(Q)), respectively, for 1 < p < +oco. For a > 2, let us define the Hilbert spaces:

2 22 TP
Lo(R?) := 1*(R ’Wdy)'

Hy(R?) := {u € W2(R?) N Ly (R?) : [| V]| 22y < o0},

loc
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2
L2(R?

Ly and Hp by L and H, respectively. Let us recall that the embedding H,X(]Rz) — La(]Rz) is compact [7]. Moreover,
for v € LP(Q) let u be the solution of

with ||u||r, and ||u|| g, = (|[Vu]l )t Hu||%’x)% denoting their norms, respectively. For simplicity, we will denote

Au=1vin (), u = 0 on 9Q).
Then one has [|u|| < cp||v||, for some constant ¢, > 0 depending only on Q2 and p > 1.

The symbol B, (p) will stand for the open metric ball of radius r and center p. To simplify the notation we will
write B, for balls which are centered at 0. Throughout the whole paper ¢, C will stand for constants which are allowed
to vary among different formulas or even within the same line.

3. PARTIAL BLOW UP

3.1. Approximate solutions. In order to prove Theorem [I.T|we introduce the associated equation
u

e _ .
Au+p+fﬂeu—)\e =0 inQ,
u=0 ondQ)

where A > 0 will be suitably chosen small. First let us introduce the approximate solutions we will use. Recall that
solutions of the following regular Liouville equation:

(3.1)

Aw+e? =0 inR? / eVdx < oo,
]RZ

are given by
wsz(x) =lo 8%
5, =g =2
R e &
for § > 0, ¢ € R? and we set
w(x) =1o 8
ST P
Since we are considering Dirichlet boundary condition, let us introduce the projection:
APu=Au inQ), Pu=0 onoQ.
It is well-known that
Pws¢(x) = wse(x) —log 86% +8mH(x, &) +O(6%) in Cl-sense, (3.2)
where H(x,y) is the regular part of the Green’s function of the Dirichlet Laplacian in ), G(x,y) = % log ﬁ +
H(x,y).
Letk > 1, fix ¢ € F;Q) and consider z(x, £) the unique solution to (1.4). The approximate solutions we will use are
given by

k
W =z(x,€) = ) Pwi(x), wi(x)=wsz(x), (3.3)
i=1
where the parameters J; are suitably chosen such that
867 = Adi(€), di(€) = exp [Bm(H(G: &) + L0 5) - 2(2,€)|. (3.4)
Eals

Our aim is to find a solution u to (3.1) of the form u = W + ¢ where ¢ is small in some sense. Before we go further,
let us first collect some useful well-known facts.
Any solution ¢ € H of

Ap+eip =0 in TR?
can be expressed as a linear combination of

82— |x—¢f? Yi—&
29 (x) = Z5(x) = 2" =1,2.
5,§<x) 62 4 |x — &2’ Jré(x) 02 + |x — 2’ ! ¢

Moreover, the projections of Z(is,g have the following expansion:

PZ3s(x) = Z3(x) + 1+ 0(8%), PZss(x) = Zjz(x) +0(1), i =1,2 inCl-sense. (3.5)
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Finally, by straightforward computations and taking into account the choice of A in (3.4) the following estimates hold
true.
Lemma 3.1. For any C C Fi Q) compact and § € C, one has
1 ~1
[Pwi|| = O(llog A[2), [[VePwi]| = O(A"2),

1 _1
W] =O(|1log A|2), [[VeW| =0(A"2),
and there exists some a > 0 such that foranyi =1,--- ,kand j = 1,2, it holds that

IPZI| = aA~}(1 4+ 0(1)), |VePZi =0 ()1\) , (3.6)
and
(PZ},PZ}) = 0 (i) if itlorj#k 3.7)
3.2. Estimate of the error. We next estimate the error of the approximate solution:
— o -W
R=AW+p oo —Ae” .

Lemma 3.2. Forany p > 1 we have, for £ € C C FQ), C compact,

2-r 1=p
IRl[p =0@A2), 9gR|[p = O(A 7).
Proof. By the definition of W,

W

Ja€"
(xrg)_Zi Pwi
— _ , + et _ A pLi Pwi—z(x,€)
A(Z(x/g) Xl:Pwl) +p fQ ez(xrg),):i Pwi A@
ez(xlg)_Zi Pw;
NGRS )

—Ae W

R=AW+p"

= (Zewi — ek Pwi—z(xfﬁ)) + (AZ(x,{) +po"
i= Eq(x) + Ex(x).

Estimate of E; = (Ei eVi — \eLi Pwifz(xlﬁ))_ Take 17 > O such that [¢; — ;| > 277 and d(g;,9Q)) > 27. First, using lb

we have

1
W =z(x,€&) =) Pw;=z(x,&) = ) | log ————— +87H(x, ;)| + O(A).
( ) - ( ) - |: g(512+|x_§z|2)2 ( l):| ( )
Hence, on By (;), writing x = ¢; + 4;, one has

e_w(x> _ 625:1 [log W*SHH(X@)] —z(x,€)

i) (1+0(\))
= ") exp (87H(&i, &) + Y 87G (G, &j) — 4logd; — log8 — 2(:,€) ) (1+ O(A) + O(&ily]))
j#i
di w
_ <5§>e W) (14 0(A) + O3 ly]))-
Thus
et _pe W =8 A ey o) 1oy
AP | "
y (3.8)
1 Yy
=0 — oO| ——— .
((1 + |y|2)2> * (A%(l + |y2)2>
It follows that

2_
e — )\e_w(x)||LP(B(§i,r])) = O(}\TPP) for any p > 1.
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Moreover,
[ ]HL"" B(&m) = O(A) forj #i and |l — Aeiw(x)HLw(Q\uiB(dj,v,r;)) =0(A).
Combining the above estimates,

|E1]lp = O(A 2 5 ) forp > 1. 3.9)
Estimate of E; = (Az(x &)+ +%) First of all,
= Z(x1£ - prl
i
= 2(x,€) +2 L log(8? + v — &) — 87 L H(x, &) +O() 510)
1 1 :
824 |x— &2
=logh(x, &) +z(x,&) +2) log W +0(A),
i —6Gi
where
H|x—§1|4exp[ 8H(x,&;)] Hexp( 87G(x, (’,‘,))
i=1
So
eV = h(x, €)F ™) + O(A). (3.11)
One has :
e” h(x, 5) i
E - A 12 * - A ’ /\ = O A 4
2 = Meln €)' o = A2 ot S O =00
since z(x, €) is a solution of (1.4). Thus
[E2llc = O(A). (3.12)
Derivative of E;. Next we consider the derivatives. By straightforward computations we get
ad}sl = ;ewadw +Ae*Wadw
k
= /\e*Waaz x, &)+ Zew' e W) E;Bdeg — ;ew‘fad(Pwe —wy) ;e 8§,ng
= #i
=hLh4+L+L+ 1.
It is then not difficult to show that
1-p
allp < [1Exlp +Z|l€w’|\p =01 7)),
12]lp < [[E1llpllog Pwjlleo = ont"),
, 1-p
153][p < [l [[pll0g (Pw;j — wj)[le = O(A 7)),
[allp = 0.
Combining all the above estimates,
1-p
[0gEx][p = O(A 7). (3.13)

Derivative of E;. The estimate of the derivative of E; is analogous. Using the equation satisfied by z(x, £) in (1.4)

and (3.10),

1 (ag,:z(x,ﬁ)h + ag,;h)ez(x@ he*(x€) fQ(E)C]_-z(x, £)h+ agjh)ez(x'ﬁ)
- E [ ! 1 + i i
pt e Jo he(8)dx ([ hez€)dx)?
eWadw eV g eWBCZ-de
Jae™ (g™

—0(M).
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Thus we have
I8¢ Ex |0 = O(A). (3.14)
Finally, combining the estimates for E; and E, we have

2-p 1p
IR[lp = O(A2), [9¢R][[p = O(A 7).
(]

3.3. The linear operator. In this subsection, we consider the following problem: given h € H}(Q) we look for a
function ¢ € H}(Q) and cij such that

w ve €W¢dx .
A + 4 (P _ Q k Wiy — Ah A zuizj
e (erde (ednz ) im0 = AL ie 2y

(3.15)

Jo VVPZdx =0,j=1,2,i=1,--- k.
First we have the following apriori estimate:

Lemma 3.3. Let C C FQ) be a fixed compact set. Then, there exist Ay > 0 and C > 0 such that for any A € (0,A9), & € C
and h € H}(Q), any solution ¢ € HL(Q) of

o eV [ eV pdx ko
Ap+p* (fQ Wiy (Jy eVdx)? +Liz €V = Ah,

(3.16)

JaV¢VPZldx =0, j=1,2,i=1,--- ,k
satisfies
9]l < C[log Af[[A]].
Proof. We prove it by contradiction. Assume there exist A, — 0, & — £* € FQ, hy, € H}(Q) and ¢, € H}(Q)
which solves with
lpnll =1, |log Anl||hn]| — 0asn — co.
Fori=1,---,k, define ¢;(y) as

Fily) = $i(6y+8),  yel= “gff,
' 0, y € R\ Q.
Step 1. We claim that
2
$i(y) — 'y,; n Ii:z weakly in H(IR?) and strongly in L(IR?), (3.17)
and
¢ — Oweakly in H}(Q) and strongly in L9(Q) for g > 2. (3.18)

Letp € C5°(Q\ {7, -+ , ¢ }), multiply equation (3.16) by ¢ and integrate, then

k w; Jo"oypdx [ e pdx [ e pdx
—/QVIIJV(I)+1_21 QE 4>lpdx+P+< erde - (fnewdx)z

= / Ahdx.
Q
By the assumption on ¢, using the fact thatin Q\ {&}, -+, &}, e% = O(A) and " = h(x, £)e*("%) + O(A), one has

¢ — ¢* weakly in H}(Q) and strongly in L7(Q) for g > 2,

which gives

o o fohegrpdy fy hepdx f, he2¢*dx> -
/Q Ve Vpdx +p ( [ hedx (G, herdx)? =0

So H‘P*HH(l)(m < 1and it solves

hegt et [ hergtdx
* + _ [9) —
AP+ (fQ hezdx ([ hezdx)? ) 0
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By the non-degeneracy of z(x, £), we can get that ¢* = 0. Thus (3.18) is proved.
Now let us prove (3.17). Multiplying (3.16) again by ¢ and integrating,

k W ;2 w
2 -y w2+ Jae"e dx (Joe" pdx)
/Q‘ plax i=1 a0’ ydx—p < Joedx (JoeWdx)? > / IVgdx.

From the above equation, one can get that

/0 ¢2dx—/new"<p2dx

2 4 erW¢>2dx (Joe"eodx)?
S/Q|V4>| dx —p ( [ ix (o dx)? /Vthpdx

<1+o0(1)+|h] =0(1)

where we used (3.18). So we get that §; is bounded in H(IR?). There exists ¢ such that
$; — o weakly in H(RR?) and strongly in L(IR?).

Let € C3(IR?) and define ¢; = gE(XE—F’) Multiplying l) by ¥; and integrating over (),

, Wi g Jae"opidx [ e pdx [ eV pidx
/Q V¢Vipidx — ;/ﬂe Tpipidx —P+ < fQ WNdx (fQ erx)Z

= / VhVipdx.
Q
Since ¢;(x) = 01if |[x — ;| > RJ; for some R > 0, we have
/ Cigpyidx = O(67)  for j # .
Q
Passing to the limit in (3.19), we have
/ VoV fdx — / e Goddx = 0.
IR2 IR2

Moreover, by the orthogonality condition in (3.16), we have

~w Y .
dy = =1,2
P T p Y =0i=1t

So we deduce that

R e s
¢0_711+‘y|2

Step 2. We claim thaty; =0fori=1,--- k. Multiplying equation 1i by PZ? and integrate over (),

WorZ0%dx  [eVpdx [, eV PZ%x
PZOd _ Wi PZod _ At fﬂe 4) i _JO Q i
/QV(PV 1 X ;/Qe ]4) 1 X p ( fQ ewdx (fewdx)2

= / VhVPZldx.
Q

Since

/ VoV PZodx = / evipZ0dx = / e Z°idy
0 Q 0

i

(3.19)

(3.20)
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where Z0 = 1+} iz and by .
Y / eVipPZdx = / eigpPZdx + Y / eipPZ)dx
7 /0 j#i

i
= [ eh1+ 22y +0(01),
for some p > 1, by Holder inequality. Moreovler, by (3.18), and (3.10), one has
ot (fQ eWpPZ0dx o Wedx | eWPZZde> _ o),

JoeWdx (JoeWdx)?
From (3.20) and the above estimates, one has
lim |log Al / e“idy = 0. (3.21)
A—=0 Q;
Next we multiply equation (3.16) by Pw; and integrate over (),

eWoPwidx [, eVpdx [, eV Pw;dx
V¢V Pw;dx — /ewf Pw;dx —p* Jo 2220 O !
/Q ¢ i ; 0 ¢ % < o eWdx (Jy eWdx)2

= / VhV Pw;dx.
Q

Now we estimate the above equation term by term.

/()V(])VPwidx:/Qewhpdx:/O e“gidy = o(1)

1-y/®

v dy = 0.
/mze T+ [y

By the expansion of Pw;,

2/ e’ipPw;dx :/ eVipPw; dx—i—Z/ e“ipPw;dx
~Jo
]

7
:/(z ew‘f;i(_4log5i_210g(1+|y| )+87TH(Ci,Ci)+O(5i\}/|+5i2)>d}/

by (3.17) and the fact that

» / (870G (€, 8j) + O(3lyl + 82))dy
j#i

— |yl
= 2log(1+ dy+o0(1).
%/]Rze 1+ [y 5 [—2log( y1%))dy +o(1)

Moreover,

v JaVpPwidx [ eV dx [ eV Pwidx\ .
feVdx (JoeWdx)? =o(1)
and

1
/Q VIV Pwidx = O(|[1|p[|Pw;]|) = O(log A)2 [|1]| = o(1).

Combining all the above estimates, we have

|]/|
; 2log(1 + dy =0,
’)’1/26 1 |]/| [ g( |]/| )] Y

which implies that ; = 0 since

[t g 4 lyPjay # 0
Rz 14y .
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Step 3. Finally, we derive a contradiction.

Multiply equation (3.16]) by ¢ and integrate:

24 w2 JoeVPdx ([ e"edx)?
/Q\ch| dx Zi:/ﬂe p-dx —p <erde (e dz)? /VhV(pdx

From the estimates in step 1-2 and the assumptions on ¢ and #, it is not difficult to show that the left hand side of
the above equation tends to 1, while the right hand side has limit 0. This is a contradiction which concludes the
proof. O

Now we can derive a priori estimates for problem (3.15).

Proposition 3.4. Let C C FQ) be a compact set. Then, there exist Ag > 0 and C > 0 such that for any A € (0,A¢), & € C
and h € Hy(QY), if (¢, cij) is a solution of (B15), we have

9]l < Cllog Af[A]-
Proof. By Lemma [3.3]and , we know that
9]l < Cllog Al <|lh| +ZC1]|HPZ]”> < C[log A (IIhII +Z flczﬂ)
o
In order to estimate c;;, multiply the equation (3.15) by PZ] and integrating over (),

/4>ewt'(Pz{—zf dx+ Y wﬂ<pPZ{dx+O</ |4>||Pz{f\dx+/ |4>y/ |PZ{|dx>
Q 0£i Q Q Q

_ j i7ipyi | kel
7/vazvzi+cij/0ew ZlpZlax+ Y] o(A),

kAT U]
where in the last line we use (3.7). Since

o ‘ | 4 1y
[ genpz]~ 2zt + X [ egpziax = ool (el + e PZl,)) =0 (A ; ||4>||) ,
(i

o [1elipzjl+ [ 10l [ 1p]1) = otlpZllel) = 0 (1og1 ol

[ wnvrz] = piez) =o (i),

we have

|cij| +o ( ),

k£l
Summing all [c;;| up and choosing suitable g € (1,2), we can get that

1 1 1
g > =0 (/\q 19l + A[log A2 [|¢]| + A2 ||h||> :

o]l < Cllog Al[|R]].
O

From the above a priori estimate and the Fredholm alternative it is then standard to derive the following existence
result, see for example Proposition 4.5 in [6].

Proposition 3.5. Let C C FyQ) be a compact set. Then, there exist Ag > 0 and C > 0 such that for any A € (0,A), & € C
and h € H{(Q), there exists a unique solution (¢, c;j) of B15), which satisfies

¢l < C[log Af[[A]].
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3.4. Nonlinear Problem. The aim of this subsection is to find (¢, {c;j}) such that u = W + ¢ solves

u

e
Joetdx
Ja V(])VPZde =0, j=1,2i=1,---,k

Au+p* —AeT" =Y cijet Z{,

The latter can be rewritten as

) eV [ eV dx A e
Ap+pt <f0 Ny (fQ(;deV ) + Y evip= (R +S(¢) +,/\/'(4))) + Zi]' cije Zgl

(3.22)
JoV¢VPZldx =0, j=1,2,i=1,--- k
where R is the error term defined in Subsection[3.2]and
N(@) = A(FW+¢) = W) = F(W)9) + 0™ (W +9) — (W) =g (W)g)),
k
S(9) = <Ze“’f +Af’<W>> ¢,
i=1
and
S 3.23
fW)=e"", g( )—W- (3.23)

Once the linear theory is carried out, the existence of a solution to the nonlinear problem follows a standard
strategy. Observe that resembles the linear problem (3.15). Therefore, the idea is to use the existence result of
the linear problem, see Proposition to construct a contraction map, knowing that the term R + S(¢) + N (¢) is
small. We omit here the details referring to Proposition 4.10 in [6] for the full argument.

Proposition 3.6. Let C C Fi Q) be compact set. For any € > 0 sufficiently small, there exist Ag > 0 and C > 0 such that for
any A € (0,Ag) and & € C, there exists a unique (¢, {c;; }) satisfying (3.22) and

1_ —
lpll = CA2™, o ¢l = CA™, eyif < CA.

3.5. The reduced problem. We introduce here the finite-dimensional reduction. In the previous subsection we have
found a solution u = W + ¢ to the problem

u

e —
Jo etdx
fQVq)VPZ{dx =0,j=12i=1,---,k

Au+p* Ae ™ =¥ ci]-ewiZf

Consider now the associated energy functional:
J(u) = 1/ |Vul?dx —p" log/ e'dx —/\/ e tdx (3.24)
2 Jo o 0
and let (&) = J(Wg + ¢¢).
Lemma 3.7. Let & € FiQ be a critical point of ], then for A small, u = W + ¢y is a solution of (3.T).

Proof. If £ is a critical point of J(£), then one has

(J'(u),0¢(We + o)) =0,
which is equivalent to

<Zcijvez§,a§;(w€ +¢¢)) =0 forl=1,--,k s=1,2 (3.25)
1
Since

i i 2-39 1
e ziaggeds = e Zllosgl = 0 (1) =o (7).

i i 1 a 1
i 7] _ i 7] — 2 5..5. il
/Qew Z]9gs Wedx = /szzew Zldx +0 (ﬁ) = 0udjs +o (A) )



12 WEIWEI AO, ALEKS JEVNIKAR, AND WEN YANG

we conclude that

cij +o(1) Z cps =0,
(4154

which implies that all ¢;; are zero. So the corresponding u is a solution of (3.1) as desired.

Recall the definition of A in (1.5). We next consider the expansion of the energy.

Proposition 3.8. It holds
J(W) = A(&) — 8rtklog A — (167t — 24tlog2)k +o(1),

Cl uniformly in & in compact sets of Q).

Proof. By the definition of J(W) and W, one has
JW) =5 / <|Vz|2 + 2 |V Pw;|* — 2 2 VPw;Vz+2) VszVPw]>

=1 i#]
—p+log/ eWdx — )\/ e Wdx.

1/ |Vz\2dx—p+log/ eWdx = 1/ |Vz|2dx—p+log/ h(x, €)e* 58 dx + O(A).
2 Ja 0 2 Ja 0

While using and the estimate for E;,

Using (3.11),

A/ _de—z eVidx +0(1) = 8km +0(1),

" 8
/Q VPw;Vzdx = /Qe iz(x,€)dx = /(1,- Wz(&y—k ¢i,&)dy = 8mz(g;, &) +o(1),

where Q); = (Q — &;)/J;. Moreover, using the expansion

/|VPwi\2dx:/ eVi Pw;dx
o) o)

Wi 1 .
:/Qe (logw—_(:i'z)Z+8nH(x,C,)+O(A))dx

— 64 H(E,8) —2 [ (105 + log(L+[y)dy +o(1)

= 6472 H(&;, &) — 16mlog 62 — 167t +0(1)

= 6472 H(E;, &) — 167 log /\d;(é) — 167w+ 0(1)

= —64m*H(E;, &) — 1287 Y G(&;, &) + 167z(;, &) — 16mlog A — 167 + 487log 2 + 0(1),
j#i
and fori # j,

w; 1
/(; valva]dx = /(;6 l<10g m + 87TH(.X, (:]) + O(A))dx = 647'(2G(§i, g]) + 0(1)

Combining all the above estimates, we have

W)= 5 [ V2Pdx—p*log | i, )€z ~smklog
Q

—32n22 ( (&, ¢i) +)_G(&:, &) > — (16T — 247log2)k +0(1)
J#i
= A(¢) — 8rtklog A — (1671 — 247tlog 2)k + 0(1).
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Next, we consider the derivative of J(W).
W

9] (W) =/Q< AW —p™" T dex-l—/\e—W) 0, Wdx = —/Q(El(x)—l—Ez(x))adex

:4/Q 1(z )Z]dx—i—o / (Zew@ W) ngx,

where E;, E; were introduced in Lemma [3.2land where we used

adw = —4PZ/ + 0(1).

Using the definition of w; and Z{ Jfor 0 #i
. 852 x; — (:.(] g g]
e Z)dx :/ £ |21 gy =8n2L i 4 0(1).
fodte= | e e o
Moreover, taking 77 > 0 such that |¢; — ¢;| > 277 and d(g;,0Q)) > 277, we have

“Woig _ N : 1
/B(gm) Ae™ " Zidx = A/B(Q,ﬂ) exp [SN;H(X,CI) z(x, &) + O(/\)} o |x — §1|2 H G §i|2)2dx
_A N 1 g -é
- 52/~ exp [SNH(€ZI€/)+87T]§[G(C%€]) Z(Cf/é)} (1+|y|2) |€ 7§|2dx+0( )
Cg C’
=87 1).
E—er oW
Let
v(x,€) = 8mH(x, &) +8m ) G(x,&}) —z(x, ).
j#i
Then,
W] g, _ AR
/B(gw) Ae” " Zidx = A/B(Ci,ii) exp [SHXi:H(x,CZ) z(x, &) +O()\)} (52 n |x (;" 2l H (52 " |x— 2 dx
_A 1 Yi s & Sy
B /Q T+ P21+ [y P e+ w20 + SH;G@Z e
2+ 8y, €) ] dy +o(1)
_8 Yj Sy € — o (E
=5 /B(o,g) A5 |y erPl @+ 0w, &) = 7(Gu&)ldy +o(1)
S8 e sydy+o(1)
5 Jro (T [yP3 o o750
= 2727 (5,,€) + (1)
Finally,
/ Ae WZldx < C/\/ eZr Pt 701 dx < CA = o(1).
O\U; B(&i1) O\U; (&)

Combining the above estimates, we have

0
0, J(W) = =851 (2;,€) +0(1) = ,1A(€) +o(1),
as desired, where we used (L.6).

Finally, we have the following expansion of the reduced energy.

13
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Proposition 3.9. It holds
J(&) :=J(Wg + g¢) = J(We) +0(1),
Cl uniformly in & in compact sets of FiQ.

Proof. To simplify the notation, we shall drop the sub-index § in the proof. It is not difficult to show that
JW+¢)—J(W) = / |V¢\2dx+/VWV¢dx+A/ (1—e )dx

+p* log/ ewdx—log/ eW“P dx
/Az(x&cpdx—p /fQ x!;“ezxfdx /Zew1¢dx / e Wepdx

+p* log/ eWdx — log/ W+¢dx+/ el dx)
Jo h( x£eng dx

A [ Wt )+ 9 = (1),

Next we consider the derivatives.
aiJ(w W AW b)) 5 e
GUOV+9) = W] = = [ (AW ) 40" S e 9
W¢ W
_ A + € _ —AMe~WHe) _ p—Wyig
/Q[ Pte (erW+¢dx erde> Ae ¢ )}adex
= 2 / cl-]-ewl'z{ag,;gbdx— / Apd,Wix — / Ae™ g0 Wi
/A —(WH¢) _ ‘W+e‘w4>)a Wix

W+ W
+p* /<few+4’ Tew )8 iWdx.

Using the estimate for ¢;; in Proposition[3.6] we have

o i 230 9
¥ [ cieZlogdx = eyl o0l |2l = 0+ = o(1),
ij ! ij !

provided g is sufficiently close to 1. Recalling the definitions of f, g in (3.23) we exploit now the estimates in [6, Lemma
4.7]. For some 6 € (0,1) and p sufficiently close to 1 we have

[ MW W e gy, Wax = [ A5 (W -+ 69920, Wax = S (W + 69)g2] [0, W
O i 9] i i
— (AT TRy (),

Moreover, for some 6 € (0,1) and suitable p, q

W+ W i )
P /(feW+¢ Tew )a de_er/Qg/(W-l-G(P)(Peé{de:||g/(W+9¢)4)||p||adWHq
Recall that

. .
AeW =Y e +0(A) and agfw = —4PZ; +0(1),
i=1 l
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for £ in compact sets of F; (2. Then

k .
A / e Wi Wax = 4 )" [ gpZidx+o(1)
Q i =170

= —4/ ewileq)dx—éLZ Ut pZldx +o(1)
0O 0+£i (@)

= —4/ V¢VPZldx +o(1) = o(1)
O
by the orthogonality condition satisfied by ¢. Moreover, again by the orthogonality condition we have

/ Apd jWdx = —/ VeV Wix = —4/ V¢(VPZ + 0(1))dx
O 'in Q éz‘ Q !

—o(1) /Q IVeldx = o(1).
Combining the above estimates, we have
9,47() = 2,1 (W) + o(1),
as desired. O

Proof of Theorem Let K C F;Q be a C!-stable set of critical points of A. Then, by Propositions forA >0
small, there exists £, critical point of ] and d(£,,K) — 0as A — 0. By Lemma uy = W+ ¢ is a solution of .
It follows that u, solves the original problem with p} = p™ and

Py = A/ e Mdx = A/ e Wdx +o(1) = 8kt +o(1).
0 0

4. ASYMMETRIC BLOW UP

4.1. Approximate solutions. In this section we will derive the proof of Theorem To this end we will always
assume that ) is [ —symmetric for I > 2 even according to (4.1). Therefore, we will consider symmetric functions
such that

u(x) = u(R; -x), (@.1)

H, = {u € H&(Q), u satisfies }

Consider problem and let k > 2 be an odd integer. In order to construct blow up solutions with local masses
(4rtk(k —1),47tk(k + 1)), we need to consider the following singular Liouville equation. Let & > 2. It is known that
2026%

(0% + [x[*)?’

see [.1), and define

wj(x) =log 0 >0,

solves the problem
Aw + |x|*%e¥ = 0in R?, / |x|*2e¥dx < oo.
R2
Similarly to the previous section, let Pu be the projection of the function u into H}(€2). We look here for a sign

changing solution of the form

u=W+e(x), Wx)=z(x)+ i(—l)iPwi(X),
i=1

where ¢ is a small error term, z(x) is a solution of 1i and Pw; = Pwj' with

k—i+
4i—

W=4i—2, &=dAT2,d; >0, i=1,---k 4.2)
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The latter parameters are chosen such that the interaction of different bubbles is small. More precisely, the following
functions will play an important role in the interaction estimate:

©i(y) = Pw;(5iy) — wi(6y) — (a; — 2)log |6;y| + Y (—1)/""Pw; — z(6;y) + log A, iodd,

jF#i
T;(y) = Pw;(6;y) — w;(6;y) — (a; — 2) log |6;y| + Z(—l)j_iij +z(0;y) —logQ, ieven,
j#i
where
Q= pal / eZ—SkHG(x,O)dx‘ (4.3)
@)
As we will see in the sequel, in order to make these two functions small, we will need to choose ¢; and «; such that
(i —2)+ Y (-1)720;=0, i=1,--,k (4.4)
j<i
and
. k .
— ajlogd; —log(2a7) —2Y (—1)/"'ajlogd; — z(0) + Y (—1)"'h;(0) + logA = 0, iodd, (4.5)
j>i j=1
— a;log &; —log(2a7) —2 Y (—1)"ajlog d; + z(0) + Z 1))7'1;(0) —log Q =0, ieven, (4.6)

j>i
hi(x) = 4ma;H(x,0). From (4.4) we deduce that a1 = 2 and a; = «;_1 + 4 for i > 2 which implies the choice of «; in
(4.2). On the other hand, from (4.5) and one easily deduces that
(52% — AeLi(—1)Fhj(0)~2(0)~log(2a}) _ ) 8krH(0,0)—2(0)—log(243)

Moreover,
o
Q-1 _ 51
i-1 4a2a2 Q

From the above identities, one can get that

5= diA'T2
for some d; > 0, which implies (#.2).
We estimate now ®; and T;. First, using the maximum principle it is not difficult to see that
Pw;(x) = w;(x) — log(Zalzéf“') + hi(x) + O(é;"")
= —2log (! + |x|%) + hi(x) + O(5:")
and fori,j=1,---,k
—2a;1og(6ily[) + hi(0) + O(‘ 7 (%)al>
+0(Silyl) +O(5;") if i<

—2u;log d; — 21og(1 + |y|*) + h;(0)

+0(5i(y)) + 05 ifi=j 4.7)

Pw;(djy) =

_2“i10g5i+hi<0)+O(|y|ai(%) i)
+0(%ilyl) +O(s;")  if i>j.

where h;(x) = 4ma;H(x,0).
Remark 4.1. From the above expansion, one can get that for |x| > g for &g > 0 small, the following expansion holds:

k
Y (—1)' Pw;(x) = 47'[2 Ya;H(x,0) Z )ia;log |x| + O(6*)

i=1
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From the definition of a; we have Y¥_, (—1)'a; = (—1)*2k and hence, for k odd it holds

(=1)'Pw;(x) = —8kG(x,0) + O(A).

M-

Il
—_

We next introduce the following shrinking annulus

Aj={xe /516 <Ixl <\ [651}, =1k

where Jp := 0 and Jy, 1 1= o00.

Lemma 4.2. Foranyy € %", the following estimates hold:

@i(y) = O(|y| +A), iodd,
T;(y) = O(d;|ly| + A), ieven.

In particular,

sup 19i(y)| + sup IT:(y)| = O(1).
yest yest

Proof. Consider y € 4i. From (4 , and usmg and b for i odd,
Oi(y) = — a;logd; —log(2a}) + 1 (0) — (a; —2) log |5y| + O(dily| + 6}
j<i

j>i

—z(0) +1log A + O(4;ly|)

k H : .
= [Z(—l)]ﬂh]-(O) —w;logd; —log( sz 22 ’zleogéj —z(0) +log)\]
j=1

j>i

(= 0 because of )
~ log |5:]y]| [(ucl- —2)+ Z(—l)isz“f}
]<z
(= O because of (4.4
+0(Silyl) + )6, *ZO(W ((5*1) )+ZO(|yI“ (i)a‘)

j j>i j<i

O(5:y]) +25f+20(|y|"‘f( ) )+Z (W, (*)aj)

j j>i
— O(ilyl + ).

+ X[ 2ayto(aly + 150) + O (2)”) + Oty + o))

+ Z(*l)]‘_i { - ZIXJ' 10g5]‘ + hj(O) + O(|y|“i ((S;)a]) + O(5i|y| 4 5;‘]')}

17

(4.8)

(4.9)
(4.10)

(4.11)
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Similarly, for i even,

k . . . .
Y (=1)7'h;j(0) — a;log ; — log(2a7) —2 Y (1) 'a;log 6; + z(0) — log Q}
j=1 j>i

(= O because of (4.6))
—log |&ily|[ (& —2) + Y (1) 2]

j<i

(= 0 because of (4.4

O(Gily!) +D’+ZO(W‘ (5 )+ZO( PE (ﬁ)%)
j>i ] j<i t
ot + Loy + Lol (£)") + Ko ks (1))
j j>i J j<i W !
= O0(ilyl + 7).
Finally, follows from the above two estimates since ¢;|y| = O(1) wheny € ‘2—1,". O

Finally, we will need the following non-degeneracy result for entire singular Liouville equations which was de-
rived in [9, Theorem 6.1] for I = 2 and which can be extended to any / > 2 even.

Proposition 4.3. Assume ¢ : R? — R satisfying is a solutions of

ly|* 2

A¢+20¢2W¢ =0 in R? /]R2 |Vo|*dy < o,

with « > 2 and 5 odd. Then,

1— |y
1+ [yl

P(y) =7 , forsomey € R.

4.2. Estimate of the error term. In this subsection we estimate the error of the approximate solution. To this end, set

z—8k7tG(x,0)

— w;—2 Vi e
=0 f erx lgnlx‘ f o2 8knG(x,0) 4y’
Ep=Xe W — Y |x| %= 2%,
i odd

Lemma 4.4. Forany q > 1 sufficiently close to 1, the following holds:

o 2
|E1llq = O()\Zq(zk—l)), |Ealq = O(Azqum))_

Proof. First we consider E;. Recall the definition of the annulus A; in (4.8).

k
/Egdxzz E"dx— Y Equ—l— Y / Eldx = L + Ip.
0 i=1

iodd i even
One has
Z Egdx = Z |)\€):l odd PW01—=Y1 even Pw1—2 _ 2 |x|rx -2 w] ‘qu
i odd iodd  Ai jodd
<C Z ||x|"‘i*23wi — \eXt odd PWI—=Y1 even Pw1*2|qu +C / ||x|“1 26w1|’7dx
i odd J Ai 1]odd i#j

= I11 + L1p.
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Let us estimate I1;. For fixed i odd,

/ ||X|ai_2ewi — /\e):l odd P01 =Y even Pw1—2|qu

:/ || 1(81=2) 0| ] — Pi i = (% =2)108 |¥|+Ljzi 0d P0j =1 coon Por—2+10g A g

s q(2;=2) 2-2 9(8i-2)
= [, T ey = it [, e, ay
5 %

1+ [y[® 1+ [y|*)2
(using )
2-2g |y|9(ai— 2-2g 24\ ~2-29 24
_o(s / Wwywwdy) O822I 45771y = O(67 2127 4+ 6271

2—

— O(AT+k(1=q) +/\m) _ O(/\z(le))/

2—¢
provided that q is close to 1. Therefore, we get I;; = O(A22-1)).
For I, fix j # i odd,

- i q
22 22 [y~
x|% zwiqu—C/ | dx= q/ o
J e =c |, (<éi‘f+|x|“f>2 I g (14

5. i—2)g+2
O (5}22‘7(\/ 0i0i11 ) (&j=2)q ) for j>1i

oj

5 —(a;+2)g+2
o) (52211(\/51511) (aj+2)7+ ) for j<i

j Jj (4.12)

(k—=2)(1—q) + (2k+1)(2(k—1)g+1) )

0(5572‘7(5':57;1)(%*2)%+2) =0 (/\ 5 a(k-12-1

_ (2k+1)(2(k—2)g—1)
O(éf—Zq(%)q(HaH)ﬂ) =0 <Ak(1 LT )

2
-0 (Aiz(zk—ql) ) .
2—q
provided that g is close to 1. Therefore, || I;|; = O (/\ZW’H) )

Next, let us estimate I,. For [ even fixed,

/ Eldx < c/ AeWpide +C Y [ (a5 260 9y = Iy + L.
A A i odd /Al

We have,

| Ae™ P11 coon PO =2+ 0da P01 |4 — CA14? / |e~i(0y)—(1=2) log oy =Ty (y)~log Q|4 4y,
A
A T]
I

(using (4.10))
_O 2+2‘7)\q/\/ﬁ<yl<\/m 1|y+Ly|"‘l 1+51|y|+)»)”7dy) )
=0 (%) " (F) ) <o (2) 4 ()

— _ 2—
_ O(/\q+ (k 1)3(1+q) _ (2k+1)6(2q 1)) _ O(/\%le)),

In==C

2—q
if g is close to 1. Moreover, similarly to the estimate of I;, one can also get that I, = O (A 2(%-1) ) .
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Combining all the above estimates, one has
2—q
/ Eldx = O(A2%-T),
O

Next we consider E;. First we need to estimate [, ¢"dx. For i even fixed,

/ erx :/ ePw,v—wi-i—z—i—Zj#i(—1)f_iij—(uci—2)log\x||x‘a172ewidx _ [q eTi(y)+10gQ|5iy|ai726w,v(5iy)5i2dy
A; A A

i 5;

1
— /4 elog QJ"O(&IWH_/\) ‘5iy‘lxi_2ewi(5iy)5i2dy — 47-“le + O(Am ),

where we have used Lemma {4.2| for the estimate of T;(y) and the fact that

2 2 tXl‘—Z
/ A vl —dy = 47a;.
r> (1+ |y[*)

For i < k odd and fixed, reasoning as in (4.13) with 4 = 1, one has

/ eWVdx :/ efpwi*):j#i(fl)]‘_ipwj+zdx = O(/\ZI(%)
A A

i

Finally for i = k which is odd, using Remark 4.1}

/ My — / o P T~ 1)K Pujg / ¢ STG(0) gy 1 O(53) + O(A 23T
A A |x|>/6k—10k

- / ¢TG4y 4 O(A 2T,
@)
In conclusion, one has

+
/ ewdx _ / 6278k7rG(x,0)dx + Z 471'061‘Q + O()\zi(z;}fl)) _ L eszknG(x,O)dx —|—O()\27(2k1*1> >’
Q Q i even Po Jo

where we used the definition of Q in and the fact that

Y 4mQ = P —po / oSG (x0)
i even £o Q

since Y, ppep 47100; = 471k(k — 1) = p* — po.

With the estimate for fQ eWdx in hand, we now consider E;.

Eldx = /Equ+ /Equ: + .
/Q 1 Z A 1 Z A 1 Ji+ )2

i even 1 odd

(4.14)

(4.15)
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21
First for i even fixed,
g N W oz~ 8kmG(x,0) 2w wi-2 01 1q
de:/ — 00 — |x|* e — x| e |1dx
[, i = [ 0" vy 0 s~ T e
N W ) 6278k7'[G(x,0) w2
SC/ —x“f’ewiqu—kC/ 0 Tdx 4+ C x|% e |dx
" lo TreWex x| | N o A Sk C(e0) j#gen N ||| |
W 2—
e 2w o 4kq+2
=C T x|%2eWi gy 4 O(N 2D O(s5™
1o g — e 9 + O+ 0(6f
- i + 4
:Céiszq [4, Iyl("‘l j.)qzq _epwi(lsiy)—wi(&iy)—(“i—z)108\5iy|+2j;ei(—1)] ij'*‘z‘*‘logm dx
& T+ )
(by (4.10))
19
(;—2) T (y)+1 log——Ff0 1 0(A22k-T)
— C(Siz_zq /4. |y| ,x.qu 1—¢ (y)+log Q-+log fQL,Z—SknG(x,O)dxjL ( ) dx
4 T+ TyI)
92 |y|(@i—2)q 1 2-g
= C&° q/ 5 O(A2Z=T1))|9dy = O(A2@-T)),
[
So we have
2—q
I = O(AZ(Zk—1)>. (4.16)
Next, consider J,. For I < k odd and fixed, similarly to the estimates in (4.13), (4.12) and using (4.15)
[ (Eax =o( [ e mat Py | o
X = e i j X+ X
A 1 A A fQ e2—8kntG(x,0) 4
2—¢
+ Y / ||x|“f*2ewf'|qu) = O(A2e-T),
j even A
Finally, we consider the case I = k which is odd: using (4.15) and (4.12)
z+Yi(—1) Pw; oz —8kmG(x,0) q
Eldx <C +¢ - dx+C x| (i=2)64%i g
/Ak P A o JoeWdx 70 Joy =80l dx ign Ag :
ez+):f(71)"Pwi o2~ 8kmG(x,0) q 24
_ o k—
=C Ay Po fQ e2—8krtG(x,0) d Po fQ e2—8krtG(x,0) 4y dx + O(/\2<2 1))
2q 2—q 2—q
— O(5k ) + O(AZ(Zkfl)) — O(/\Z(Zk—l) )
In conclusion, one has
2—¢
[Exlly = O(a5@).
O

4.3. The linear theory. In this subsection, we consider the linear problem: given i € H;, we look for ¢ € H; such
that

W w Wpd
Ap+p* <fQ€eV‘?dx - e(ffzvidf)zx> +Ae o= Al inQ. (4.17)

First we have the following apriori estimate:

Lemma 4.5. There exist Ay > 0 and C > 0 such that for any A € (0,Ag), h € H; and ¢ € H, solution of we have
o]l < Cllog Al[|R]].

We start by listing some straightforward integrals which will be useful in the proof of Lemma
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Lemma 4.6. The following hold:

y|*2 11— |yl
— 4.1
/Rz A+ R r e =% (4.18)

[ 2 L oga 1 2y = e (419)
R (1 y[*)2 1+ Jy|* !

/ 2u? 7 e 7 log |y|dy = —4m (4.20)
R (L [y[)2 1yl ' '

Proof of Lemma We prove it by contradiction. Assume there exist A, — 0, h, € H; and ¢, € H; which solves

{.17) such that
lpnll =1, |logAul|||hn]] =0 asn — co.

In the following, we omit the index n for simplicity. Fori =1, - - - , k, define (f),'(y) as

q'S(y) _ 4)1'(51']/)/ y S Qi = %/

Z 0, yER?\ Q.
Step 1. We claim that
¢ — 0 weakly in H}(Q) and strongly in L7(Q) forgq > 2. (4.21)
and
¢; is bounded in Hy, (R?)
Letting ¢ € C(Q\ {0}) and multiplying equation (4.17) by ¢ and integrating, one has

3 W [ Ja eWppdx B Jaoe™pdx [ e"Vpdx B
/Q V¢V¢dx+/0/\e Ppdx +p ( TV (o V)2 = /QAhtpdx. (4.22)

By the assumption on ¢, using the fact that in compact sets of Q \ {0},
eV = BTG L O(A) and Ae”W =0()),

one has
¢ — ¢* weakly in H}(Q) and strongly in L7(Q) for g > 2
where
B V(P*ledx e fQ ez—8k7TG(x,0)¢*1pdx . fQ ez—SkHG(x,O)wdx fQ ez—8k7tG(x,O)¢*dx .
o P Joy & BnGx0) P (Jy = G0 )2 :
So H¢*||Hé(0) <1 and it solves
A(P* +p+ 6278k7TG(x,0)¢* B oz~ 8kmG(x,0) fQ ez—8k7TG(x,0)¢*dx )
fQ 02— 8ktG(x,0) 4 (fQ ez—Skr(G(x,O)dx)Z ’
By the non-degeneracy of z(x) we get ¢* = 0. Thus is proved.
Now we prove that ¢; is bounded in Hy, (R?). First it is easy to check that
/ |V(ﬁi|2dy:/ V¢ [?dx <1 fori=1,--- k. (4.23)
R2 Q
We multiply again by ¢ and integrate,
Werdx (o eV pdx)?
Zd—/AWZd—+fﬂe‘P — Yo :/hd. 424
/()|v¢| * Q ¢ e ( JoeWdx (JoeVdx)? ) Qv vz (429

From the above equation, one can get that,
Weldx  (Joe™pdx)?
W20 2d_+f034’_0 —/hd
/Q)\e (p,dx7/0|v¢| XxX—p ( JoyeVdx (erde)z) QV Vdx
<1+o0(1)+ ||k =0O(1)
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where we used (#21)). Let i be odd. Lemma 4.4 gives

/ |x|%2e%ip?dx < C,
0

or equivalently

/ WM gy < c
R (L4 [y[)?™ 7 =
Combined with (4.23), we deduce that ¢; is bounded in H,, (IR?) when i is odd.
We consider now the case for i even. From (4.15), ¢"V = ¢*~87G(x0) 1 O(A) uniformly on compact sets of O\ {0}

and recalling (4.21), we get that
/ Nopdx = 0(1). (4.25)
0
Moreover, by (4.24) one can get that

Wp24 Wodx)2
+ [ Jae ch x (Jae W<P x)2 _oq). 426
JoeWdx (Joedx)
Combining (#.25) and [#.26), we have
/ eVp2dx = O(1). (4.27)
Q
By Lemma (4.21) and (4.27), [ |x|%2ei¢*dx = O(1) for i even, which implies that
ly|*2
— O
o s ey = 00
So we get that also for i even, §; is bounded in H,, (IR?).
Step 2. We claim that
_yl2
Fi(y) — %H:i:z weakly in Hy, (R?) and strongly in Ly (R?),7; € R. (4.28)

From Step 1, we know that ¢; — ¢; weakly in H,, (IR?) and strongly in Ly, (IR?). Consider § € CP(R?\ {0}) and
let K be its support. For n large, one has

~ 01 dit1
il - 1/ <yl < /2L
{y S Ql’ 5i — |y| — 51' }

Define i; = §(§ ). Multiplying by ; and integrating over (),

1

e+ erW‘PlPidx7erw¢dfoeW¢idx B W g }
/QVQDVI[Jldx 1Y ( [ eWix (o )2 /Q)Le 4>lp1dx—/QVhV1pldx. (4.29)

Consider first i even. According to Lemma one has

ktG(x,0)
+er (de / oj— -2 eVibd f e 8 (de
+ +o(1
Py Wax ]gn %] Ppax =+ po Joy e SFCE0) o(1)
20(2|y|“ f ez—8k7IG(x,O)¢dx
_ L a 1
]%n R2 1 T+ ‘y| ) y + 00 fQ 2—8kmtG(x,0) 45 + 0( )

|

2"‘2|y 4"

]
E ————dy+o(1
/IR2 (1+ |y|*)? ytold)

j even
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where in the last line we used (4.21). Similarly, one has

oo Nopidx _ / 207 |y
JoeWdx r2 (1 + [y[%

)zllKPl dy +o(1),

+erWl/Jz'dx 7/ 2“2|]/|'X’
P ~ Je

[ Vdx A+ [y Py + o),

Aoy = ¥ [ e gy +o(1) = o),

j odd
Thus, ¢ satisfies

2‘ |0¢1 2| |2 ~ 2| |
/W’W’dy / 1+Ty\ 209 = - pl (/1112my3/|)¢ )(/Rzlﬁy“)ij’ Y)

From this we deduce that the function

R :
P VL g dy € H, (R
= 5% o T g € Fa )

is a solution of

A2yl
A9+ +|Ty"‘f)2¢ —0 in R2\{0l. (4.30)
Since [ |V$7|2dy < 1, 7 is a solution in the whole space R. By Proposition we get that ¢ — f]Rz ijlyyl‘a 7 Prdy =
Vi er“ for some ;. By(4.18) one has
oyl 1 [ 23y|u2 aily|i2
o TR = 5 fo T o s
which implies that

47 202 |y|%i—2 B
(p+ ‘1) /R At yredi =0

5 1—|y[*
* f— .
Ty

Since p* # 47ta; we deduce that

Hence, (4.28) is proved for i even.

We next turn to i odd. In this case, we consider (4.29) with i odd and estimate each term separately,

/ eWipidx = 0(1), / eWoidx = 0(1),
o) o)

and

)t/ efw(ptp'dx:/ |x|”"'*2€wi¢lp‘dx+o(1):/ 720‘2'%% $iPpdy + o(1).
o) l o) ' r2 (14 [y[*)2""
Hence, ¢; satisfies

2 o=
[ varvda - [ 2 Gy =

namely ¢ is a solution of

A¢+ﬂ¢ =0 in R2\{0},
L+ lyo7
and again we conclude by using Proposition 4.3}

Step 3. In this step, we will prove some estimates on the speed of convergence. We set

_|1og;\\/ 202 1'_{ ST (4.31)
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We will show that
oi(A) =0(1) for iodd
A7 f pz—8knG(x,0) ¢dx .
i) = = (D cen 05 3) + [og Mo 2o ®) = o(1) - for i even.
Set Z0 o " we know that ZO is a solution of

:"z + x| 4
AZ+ |x|%2"Z=0 in R
Let PZ? be its the projection onto H} (Q)), that is
APZ? + |x|06i*2eT,UiZ? =0in Q, leQ —0 on 2Q.

By maximum principle one can show

PZ) = Z;+1+0(5) = 2 (6%9)
AR i
which implies
o(‘yll,x,(%) )+o<5 i) fori < j,
PZ)(6y) = { titym + O], fori=j,
00\ o . .
240 (\y|m(54)az) +O(8Y)  fori>j,

and
IPZY||T = O(57), g > 1.

First we consider i even. Multiply (4.17) by PZ? and integrate over ),

WoPz0d Wodx [ " PZ0d
/VWPZ?dx—p* (er IPZdx_ Joe 9dve P2 x) —/ Ae_W¢PZ?dx:—/ VhVPZVdx.
Q Q Q

T Uy eV 2
For the first term,
/Q V¢VPZx = — /Q PAPZVdx = /Q |x|%2eipZ0dx.

By Lemma 4.4, (4.21), (4.32) and (4.34),

Ja eW(pPZ?dx
JoeWdx

8knG(x,0) p70
k-2 0 0 fQ e“- PZ}pdx #
Z / X[ "% ¢PZdx + po N 8k7rG(xO)dx (|10g/\|>

j even

1
:/ \x|"‘f—2ewf¢dx+/ x| 2% 20%dx + Y /|x|“f_2ewi¢PZ?dx+o( )
0 o [ log Al

j#i even

25

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
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Forj #1,
20 |y| "
a;i—2 w; 0 _
/Q|x| i~“e"ipPZ;dx = /j 7(1+ e )24)] ( y)dy
4a2|y\ ; - . .
Jee (1+ly[") 24>]dy+0<f0 <|y|a (‘Tj) o > (1|z‘\y| i )dy’ fori > j,
(f (; (%) g o2 )M )d fori < i (4.38)
Qi \Jy]% \6; i (1+]y |]) 4) Y, 1
20;(A) . .
|10g/\\ +O(|log/\|) fori>j,
O(HOlw), fori < j,
where we used (#33). Next, by Lemma [4.4and (4.34),
eWPZ0dx > 8knG(x0) pZ0dx 1
p+fQ Wdl _ Z / |x|o¢] -2 w/PZOdX—FpOfQ pemeE 0( : A)
er x j even f dx | og |
1
= [ |x|%2e%iPZ%x + / x|% 2% PZ%dx 4 0 439
[ 1 paxs 3 [ (rtog 1) (4.39)
:47mi+' Z 87T0(]'+0<|1 g)tl)
j<i even
where we replace ¢ by 1 in the estimate of (#.38) and (#.37). Moreover,
W z—8kntG(x,0)
+Joe" pdx / &-2,0; g Jae Ppdx 1 440
P erde l;ﬂ Bl pdx + po [ & SkC(x0) g +0(|log/\|> (449
and again by Lemma 4.4 and
2w 1 205(A) 1
/\/ e Woprz%x = x| 2e%ipPZ%x + o —— ) = 2 4o ) 441
Q Prz; j%d Q' | Pre; <|log)\|) j<gdd|log/\| <|logA|) (4.41)
Finally, for the last term,
1
0 pr— .O =
/QVhVPZl-dx — o(In]||IPZ°)) o(“OgM). (4.42)

Combining (4.35), (4.38), [@.36), (]WD “.39), (@#.40), (@.47) and (#.42), we deduce that for i even,

47-[(0‘1' + Ej<i even 2"‘] fQ erSknG(x,O)(de 1 )
pt <] ;;n |10g/\| fQ 02— 8kG(x,0) 1y ) |10g)t| )+ ZZ(T] o<m)_ (4.43)

]<l

Next we consider (4.35) for 1 odd. In this case, again we estimate (4.35) term by term. Similarly to the estimate for
i even, first by Lemma 4.4} (4.34) and (4.38), one has

+ae ¢PZ?dx

) 0 j‘ i~ 8kt G(x,0) (PPZde 1
Z / |x|04] w](pPZ dx+p f o SkﬂG(XO)dx ( )

0
JoeVdx  eoen |log Al
20 (A 1
D L A T
j<i even |10g/\| |10g)\|
o eVPZldx

P 8knG(xO)ondx 1
= x|% 2" PZYdx + Jo o
Joyeax j?%n/o' | P e+ (Togar)

Y. 8ma; +0(|101g/\|)'

j<i even
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W d z—8kmtG(x,0) d
p+er (PX_ Z /|x|a/ 2w]¢dx+p0f € 4)x+0( 1 )
j even

feW j‘ z—8kmG(x, O)dx |10g/\|
fQ P 8kmtG(x,0) (de 1
]gn |10g/\| fO e2—8kG(x,0) 0(|10g/\|>/

and

1
—-W 0 _ ai—2 w; 0
A/Qe pPZ0dx = };/ |x|% 2 /¢PZldx+o(7|log)L|)

jodd /O
o w, oi(A) 20;(A) 1
= [ |x|%2e%ipZ0dx + + +o0 :
et emgztan s 50+ B gt *fiog)
Combining all these terms, one can get that for i odd,
81 Ej<i even 20 f 6278k7rG(x,0)¢dx 1 1
' i T - (;(A)+) 20i(A) =0 ——— ). 4.44
p+ (] %n | log/\| fQ ez—SknG(x,O)dx ) | 10g/\| i ; ] ( ‘ log)\| ) ( )

By considering the difference of (4.43) and (4.44), one has the following:

8ktG(x,0)
4ra; fQ e ‘de . .
ﬁ“(zcw)+u%ﬂmj‘Z%m@mi)_““_”_omeI“¢

j even

(4.45)

6278k7zG(x,0) dx
16 (F () + |log Moo 22 ?

— — 011 —0; =0(1) for ieven.
j even fQ e2—8kmtG(x,0) 45 )

From (4.44), we first have 07 (A) = 0(1). From (4.45), we have

o;(A) =0(1) for iodd

4mx f oz~ 8kmG(x,0) gbdx B ]
oi(A) — (Z] even Tj(A) + | log A|pg 22 [ B0 4y ) =o0(1) for i even.

Step 4. We claim thaty; =0fori=1,--- k.

When i is even, multiplying equation (4.17) by Pw; and integrating over (),

w w w
o Ja " Pw;dx B Jae" pdx [ e" Pw;dx B / W o / 4
/Q VoV Pwidx — p ( Ty eWdx (o) ) A L° pPw;dx = A VhV Pw;dx.

Now we estimate the above equation term by term. First we have

/chVPwidx:/ \x|"‘f_zewiq‘)dx:/ |y| %26V Gidy = o(1)
0 0 RR?
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by (@.28) and ([@.18). To estimate the other terms, by and {2), we have

;=2 w; 2w2|y|“
/Q|x| i~“e"ipPw;dx = /j(l_HWqJ]Pwl( ]y) y

202]y|"”
fQ ) z‘P]( 2u;log d; + h;(0))dy

zw -
(fQ a4yl ,)24’](|y|a (5*])“" + 4]yl +(5f’)dy) forj<i

2
Joy, 222402 6, (—2log 5, — 2og(1+ [y1*) + 1y (0))dy

+0( Ja, (1+‘|yy"i Bi(Bily| + 6)dy for j = i

(4.46)
202"

fQ] (1+]y| ])2¢]( 20 108(5]|3/|) + hl(o))dy

o ly|i” o
+O( o, G (sl ()% +1lyl +67")ay) forj > i

202]y|"

f()]_ ng][ 2a;logd; —2(k—i+1)log A+ h;(0)]dy +o(1) forj<i

2|4/
= S o, B il ~2ailog d; — 2(k — i+ 1) log A — 2log(1 + |yl*) + hi(0))dy +0(1) forj=1i

I 202]y|"i
Qj (1+]y| )2

ilog |y| +h;i(0)]dy +0(1) forj > i.

(])[ 2u;logd; —2(k— ]—1—1)2] i

Based on (4.46), by the definition of ¢;(A), @31), @.19) and (@.20), we get

/ |x|%2eYip Pw;dx
0

—2(k—i+1)oj(A) +o(1) forj<i

. 2 . . .
) 2k i Do) + fo, A G ~210g(1 + [yl*)ldy +0(1)  forj=i

2ajlul . (4.47)
+f0 1+\y|/2¢][ 2a;log [y|Jdy +o(1) forj>i

2k j+ 13k

—2(k—i+1)0;(A) +o(1) forj < i

= 2(k—i+1)o;(A) +4ma;y; +0(1) forj=i

—2(k—j+1) g;ijaj(A) +8ma;yj+o(l) forj>i,

where we used [9, (4.18)-(4.20) ].
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Then by Lemma 4.4} (4.47) and (#.21)

W . z—8ktG(x,0) .
L Joe" ¢Pw;dx _ / 42,0 Prpd Jae pPw; 1
fQ eWdx j;e:n a |x] e pPw;dx + po fQ e2—8kmtG(x,0) 4 0 ( |log Al )

=) /Q|x|”‘f*2ewf¢Pw,-dx+o(1)
j even

:47'c(xi<'yl-+ ) 2'yj>—2(k—1+1< )+ ), (A )

j>i even j<i even

y 2(k—j+1)§;_10]~()\) +o(1).

j>i even

Similarly, by replacing ¢ by 1 in (4.47), one can deduce that

w
4 Joe" Pwidx , 2i—1
-t = 8nullogAl( Y (k—i+Daj+ Y. a; ) +0(1),
fQ eWdx <j§i even ! j>i even 2j—1 ])
and
+er ¢dx 2 f P 8k7TG(xO)4> N ( 1 )
0 .
P JoeWdx &= |logA| f ez—8knG(x,0) 4y |log A|
Moreover,
)\/ e WoPwidx =Y [ |x| 2e¥igPwidx +o(1)
Q j odd
. o 2i—1
=8ma; Y, yvi— Y, 2(k—i+1)oi(A)— ) 2(kf]+1)214710j()\)+0(1),
j>i odd j<i odd j>i odd ]~
and

/ V¢V Pw;dx = / |x|%2eipdx = / ly|%2e%;dy = o(1)
Q o) RR?
by (4.28) and (4.18). Combining all the above estimates, we get that for i even,

2i—1
drai(yi+ Y 279;) — Y 2(k—i+1)0; — Y 2(k— Rty
j>i j<i j>i ]

87T ] f z—8k7tG(x,0) 4>dx
+ Y i ( T ) + ogAjpy 2 »

P+ ]<§)€1’l ](lgn f ez —8knG(x,0) gy ) ( )

87T 2i -1 fQ o7 8kG( xO)q)dx
+ 5 L (k—]+1)2] ~o;( ¥ ai(A) + | log Alpo o i) =

j>i even 1 even

Next we consider i odd. Similarly to the previous estimates, one has

w z—8kmG(x,0)
L Joe"V ¢Pwidx / 0 Jae )¢ Pw; 1

Toedx b o @W”+”bz%ﬂwM+“mmﬂ

) ) 2i—1

=8ma; Y, yj— Y, 2(k—i+1oi(A)— ), 2(k—j+1) ! oi(A) +o(1)
j>i even j<i even j>i even 2] -1
w
+ Jo " Pwdx 2i—1
S ——— = —87|log A (k—i+1)a —j+1) aj) +0(1),
fQ eWdx <j<izeven ]>§J€7’l 2j—1 ])

and

/\/ e WoPwidx = Y [ |x|%%eipPwidx +o(1)
0

j odd

. 2i —
=dmapyi+8ma; Y yi— Y, 2k—i+1)oi(A) - ) 2(k— ]+1)
j>i odd j<i odd j>i odd 2j—

22000 + o).
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So we have for i odd,

2' -1
drrai(yi+ Y 2vj) — Y 2(k—i+1)oj =) 2(k— 21. 19
j>i j<i j>i ]~
871 f o2 —8knG( x,0) (de
+5 2 (=it Dag( 3 or(A) +[log Alpo=2 4.49
P+ j<i even ](l even f 2 8kmGx0) ) ( )
87 o201 [y €8GO pdx
+ — Z (k—j4+1)7—a; Z 1(A) + |log Alpo =0
P+ j>i even 2j—1 ](leven f e=~8kmGx0) g )
By step 3 we know that the terms in (4.48) and (4.49) containig o; are of order o(1), and thus
47 ('y,- + 227]») =0(1),
j>i
from which we deduce that y; =0fori=1,--- k.
Step 5. Finally, we derive a contradiction.
Multiplying equation (£.17]) by ¢ and integrating, we get
W 32 W
_ epfdx  (Jpe Pdx)?
Ve|2dx — A Wordx — (10 /Vth
/Q‘ ¢l dx /Qe prax —p ( JoeWdx (JoeWdx)? Ppix.
From Step 1-Step 4 and the assumptions on ¢ and /1, we have that the left hand side of the above equation tends to 1
while the right hand side is of order 0(1). This yields a contradiction. O

Once the a priori estimates are carried out, the existence of a solution to the linear problem (4.17) follows easily by
using the Fredholm alternative, see for example Proposition 5.1 in [7].

4.4. Conclusion. By exploiting the linear theory developed in the previous subsection it is then standard to derive
an existence result for the nonlinear problem (4.50) based on the contraction mapping, similarly to Proposition
We skip here the full argument referring to Proposition 5.4 in [7] for full details.

Proposition 4.7. For any € > 0 sufficiently small, there exist Ag > 0 and C > 0 such that for any A € (0, Ag), there exists a
unique ¢ € H; solving

N eW+¢ W )
Q
and :
gl < CAZED . (451)

Proof of Theorem By Proposition@ uy=Wy+¢,isa solution to the original problem with pf = p* =
4rtk(k — 1) 4+ po and p;, = A [, e *dx. Then by Lemmaand

5% =)\/ e*”dx:/\/ e Wdx+o(1) = / |x|%2eVidx 4 0(1)
Q Q lodd

=) 4na;+o(1) = 4mk(k+1) +o(1).
iodd
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