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ABSTRACT. We are concerned with the Sinh-Gordon equation in bounded domains. We construct blow up solutions with
residual mass exhibiting either partial or asymmetric blow up, i.e. where both the positive and negative part of the solu-
tion blow up. This is the first result concerning residual mass for the Sinh-Gordon equation showing in particular that the
concentration-compactness theory of Brezis-Merle can not be extended to this class of problems.
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1. INTRODUCTION

We are concerned with the following Sinh-Gordon equation∆u + ρ+
eu´

Ω eudx
− ρ−

e−u´
Ω e−udx

= 0 in Ω

u = 0 on ∂Ω.
(1.1)

where Ω ⊂ R2 is smooth and bounded and ρ+, ρ− are two positive parameters. The latter problem arises as a
mean field equation in the study of the equilibrium turbulence [19, 22]. Moreover, it is also related to constant mean
curvature surfaces [18, 26]. Observe that for ρ− = 0 (1.1) reduces to the standard Liouville equation which has been
extensively studied in the literature. Therefore, many efforts have been done to study existence [3, 10–13] and blow
up phenomena [1, 8, 14, 15, 18, 21, 23–25] for this class of problems.

In the present paper we further explore the blow up phenomenon of (1.1). Let un be a sequence of solutions to
(1.1) corresponding to ρ±n ≤ C. Define the positive and negative blow up set as

S± :=
{

x ∈ Ω : ∃xn → Ω s.t. ± un(xn)− log
ˆ

Ω
e±un dx + log ρ±n → +∞ as n→ ∞

}
.

It is easy to see that S± are finite. Moreover, by [1] we have S± ∩ ∂Ω = ∅. For p ∈ S± the local mass is defined by

m±(p) = lim
r→0

lim
n→∞

ρ±n
´

Br(p) e±un dx´
Ω e±un dx

.

By [14, 18] we know that m±(p) satisfy a quantization property, i.e. m±(p) ∈ 8πN. Moreover, in view of the relation

(m+(p)−m−(p))2 = 8π(m+(p) + m−(p)),

see for example [21], the couple (m+, m−), up to the order, takes the value in the set

Σ =
{

8π

(
k(k− 1)

2
,

k(k + 1)
2

)
, k ∈N \ {0}

}
. (1.2)

Finally, by standard analysis [21] one has, for n→ +∞,

ρ±n
e±un´

Ω e±un dx
⇀ ∑

p∈S±

m±(p)δp + r±,

in the sense of measures, where r± ∈ L1(Ω) are residual terms. From the above convergence, ρ± will be called global
masses of the blow up solutions. Observe that both the local masses and the residual terms affect the global masses.
In striking contrast with the concentration-compactness theory of Brezis-Merle [4], the latter residuals may not be
zero a priori. This fact has important effects in the blow up analysis, variational analysis and Leray-Schauder degree
theory of (1.1). One of the goals of the present paper is to provide the first explicit example of blow up solutions
exhibiting residual terms, thus confirming that the concentration-compactness theory can not be extended to this
class of problems.
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1.1. Partial blow up. We start here with a related problem, that is partial blow up with prescribed global mass. More
precisely, we look for blowing up solutions −un with ρ−n → 8πk, k ∈ N, such that un have prescribed global mass
ρ+n = ρ+ ∈ (0, 8π). To this end we introduce

FkΩ :=
{
ξ := (ξ1, · · · , ξk) ∈ Ωk : ξi 6= ξ j for i 6= j

}
(1.3)

and consider the following singular (at ξi ∈ Ω) mean field equation:∆z(x, ξ) + ρ+
h(x, ξ)ez(x,ξ)´

Ω h(x, ξ)ez(x,ξ)dx
= 0 in Ω,

z(x, ξ) = 0 on ∂Ω
(1.4)

where ξ ∈ FkΩ and h(x, ξ) = e−8π ∑k
i=1 G(x,ξi). Here G(x, y) is the Green function of the Laplacian operator in Ω with

Dirichlet boundary condition and we denote its regular part by H(x, y). (1.4) is the Euler-Lagrange equation of the
functional

Iξ(z) :=
1
2

ˆ
Ω
|∇z|2dx− ρ+ log

(ˆ
Ω

h(x, ξ)ezdx
)

.

To the latter functional and (a combination of) the Green functions we associate the following map:

Λ(ξ) :=
1
2

Iξ(z(·, ξ))− 32π2
( k

∑
i=1

H(ξi, ξi) + ∑
j 6=i

G(ξi, ξ j)
)

. (1.5)

It is known by [2] that if Ω is simply connected and ρ+ ∈ (0, 8π), then for any ξ ∈ FkΩ there exists a unique solution
to (1.4) and the solution is non-degenerate, in the sense that the linearized problem admits only the trivial solution.
Then, by making use of the implicit function theorem it is not difficult to show that the function Λ is smooth, see
for example [6]. Finally, as in [20], a compact set K ⊂ FkΩ of critical points of Λ is said to be C1-stable if, fixed a
neighborhood U of K, any map Φ : U → R sufficiently close to Λ in C1-sense has a critical point in U .

The first result of this paper is the following.

Theorem 1.1. Let Ω be simply connected, ρ+ ∈ (0, 8π) and let K ⊂ FkΩ, k ∈ N, be a C1-stable set of critical points of Λ.
Then, there exists λ0 > 0 such that for any λ ∈ (0, λ0) there exists uλ solution of (1.1) with ρ±λ such that, for λ→ 0

1. ρ+λ = ρ+, ρ−λ → 8kπ.
2. There exist ξ(λ) ∈ FkΩ and δi(λ) > 0 such that d(ξ,K)→ 0, δi → 0 and

uλ(x)→ z(x, ξ)−
k

∑
i=1

(
log

1
(δ2

i + |x− ξi|2)2
+ 8πH(x, ξi)

)
in H1

0(Ω),

where z solves (1.4).

Some comments are in order. The assumptions Ω simply connected and ρ+ ∈ (0, 8π) guarantee the existence of
a unique non-degenerate solution to (1.4): in general, the above result holds true whenever such solution exists. For
example, one can drop the condition on Ω by assuming ρ+ to be sufficiently small, see for example [6].

On the other hand, if Ω is simply connected and ρ+ ∈ (0, 8π) it is not difficult to show that for k = 1 the minimum
of Λ is a C1-stable set of critical points of Λ, see for example [6]. Moreover, for non-simply connected domains the
function Λ always admits a C1-stable set of critical points [5].

Therefore, the conclusion of Theorem 1.1 holds true if either Ω is simply connected, ρ+ ∈ (0, 8π) and k = 1, or Ω
is multiply connected, ρ+ sufficiently small and k ≥ 1. Finally, the location of the blow up set can be determined by
using the following expression, which can be derived similarly as in [6]:

∂ξ j Λ(ξ) = 8π
∂z
∂x

(ξ j, ξ)− 32π2
(∂H

∂x
(ξ j, ξ j) + ∑

i 6=j

∂G
∂x

(ξi, ξ j)
)

. (1.6)
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1.2. Asymmetric blow up. We next construct blow up solutions with residual mass exhibiting asymmetric blow up,
i.e. where both the positive and negative part of the solution blow up. Since the local masses (m+, m−) belong to
the set Σ defined in (1.2), for k ≥ 2 we look for blowing up solution un with ρ−n → 4πk(k + 1) and ρ+n = ρ+ =
4πk(k − 1) + ρ0, where ρ0 ∈ (0, 8π) is a fixed residual mass. For simplicity of presentation we assume that k is
odd, the case of k even being similar. We consider here l-symmetric domains Ω with l ≥ 2 even, i.e. if x ∈ Ω then
Rl · x ∈ Ω, where

Rl :=

(
cos 2π

l sin 2π
l

− sin 2π
l cos 2π

l

)
, l ≥ 2 even. (1.7)

Consider then the following singular (at x = 0) mean field equation:∆z(x) + ρ0
ez(x)−8kπG(x,0)´

Ω ez(x)−8kπG(x,0)dx
= 0 in Ω,

z(x) = 0 on ∂Ω.
(1.8)

Again by [2] we know that if Ω is simply connected and ρ+ ∈ (0, 8π), then there exists a unique non-degenerate
solution to (1.8).

The second result of this paper is the following.

Theorem 1.2. Let Ω be a simply connected l-symmetric domain according to (1.7) and ρ+ = 4πk(k− 1) + ρ0 with k ∈ N

odd and ρ0 ∈ (0, 8π). Then, there exists λ0 > 0 such that for any λ ∈ (0, λ0), there exists uλ solution of (1.1) with ρ±λ such
that, for λ→ 0

1. ρ+λ = ρ+, ρ−λ → 4πk(k + 1).
2. There exists δi(λ)→ 0 such that

uλ(x)→ z(x) +
k

∑
i=1

(−1)i
(

log
1

(δαi
i + |x|αi )2

+ 4παi H(x, 0)
)

in H1
0(Ω), αi = 4i− 2,

where z solves (1.8).

Observe that the assumption Ω simply connected and ρ0 ∈ (0, 8π) is used only to ensure the existence of a non-
degenerate solution to (1.8): in general, the above result holds true whenever such solution exists. On the other hand,
the symmetry condition of the domain is imposed to rule out the degeneracy of the singular Liouville equation.

The argument follows the strategy introduced in [6,7] for the Toda system, that is a system of Liouville-type equa-
tions, and it is based on perturbation method starting from an approximate solution and studying the invertibility
of the linearized problem. The main difficulty is due to the coupling of the local and global nature of the problem
since we are prescribing both the local and global masses. In particular, blow up solutions of (1.1) with local masses
(4πk(k− 1), 4πk(k + 1)) have been constructed in [9] by superposing k different bubbles with alternating sign. Glu-
ing the solution of (1.8) to the latter blow up solutions we are able to construct blow up solutions with residual mass,
that is with ρ+n = ρ+ = 4πk(k− 1) + ρ0 and ρ−n → 4πk(k + 1) for any k ≥ 2. In this generality the latter construction
is quite delicate and technically more difficult compared to the one in [7,9]. We remark that the same strategy can be
carried out for more general asymmetric Sinh-Gordon equations, for example for the Tzitzéica equation [16].

The paper is organized as follows. Section 2 contains some notation and preliminary results which will be used in
the paper. Section 3 is devoted to the proof of Theorem 1.1 while the proof of Theorem 1.2 is derived in Section 4.

2. PRELIMINARIES

In this section we collect some notation and useful information that we will use in this paper. We shall write

‖u‖ =
( ˆ

Ω
|∇u|2dx

) 1
2

and ‖u‖p =
( ˆ

Ω
updx

) 1
p

to denote the norm in H1
0(Ω) and in Lp(Ω), respectively, for 1 ≤ p ≤ +∞. For α ≥ 2, let us define the Hilbert spaces:

Lα(R
2) := L2

(
R2,

|y|α−2

(1 + |y|α)2 dy
)

,

Hα(R
2) := {u ∈W1,2

loc (R
2) ∩ Lα(R

2) : ‖∇u‖L2(R2) < ∞},
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with ‖u‖Lα and ‖u‖Hα := (‖∇u‖2
L2(R2)

+ ‖u‖2
Lα
)

1
2 denoting their norms, respectively. For simplicity, we will denote

L2 and H2 by L and H, respectively. Let us recall that the embedding Hα(R2) → Lα(R2) is compact [7]. Moreover,
for v ∈ Lp(Ω) let u be the solution of

∆u = v in Ω, u = 0 on ∂Ω.
Then one has ‖u‖ ≤ cp‖v‖p for some constant cp > 0 depending only on Ω and p > 1.

The symbol Br(p) will stand for the open metric ball of radius r and center p. To simplify the notation we will
write Br for balls which are centered at 0. Throughout the whole paper c, C will stand for constants which are allowed
to vary among different formulas or even within the same line.

3. PARTIAL BLOW UP

3.1. Approximate solutions. In order to prove Theorem 1.1 we introduce the associated equation∆u + ρ+
eu´

Ω eu − λe−u = 0 in Ω,

u = 0 on ∂Ω
(3.1)

where λ > 0 will be suitably chosen small. First let us introduce the approximate solutions we will use. Recall that
solutions of the following regular Liouville equation:

∆w + ew = 0 in R2,
ˆ

R2
ewdx < ∞,

are given by

wδ,ξ(x) = log
8δ2

(δ2 + |x− ξ|2)2

for δ > 0, ξ ∈ R2 and we set

w(x) = log
8

(1 + |x|2)2 .

Since we are considering Dirichlet boundary condition, let us introduce the projection:

∆Pu = ∆u in Ω, Pu = 0 on ∂Ω.

It is well-known that
Pwδ,ξ(x) = wδ,ξ(x)− log 8δ2 + 8πH(x, ξ) + O(δ2) in C1-sense, (3.2)

where H(x, y) is the regular part of the Green’s function of the Dirichlet Laplacian in Ω, G(x, y) = 1
2π log 1

|x−y| +

H(x, y).
Let k ≥ 1, fix ξ ∈ FkΩ and consider z(x, ξ) the unique solution to (1.4). The approximate solutions we will use are

given by

W = z(x, ξ)−
k

∑
i=1

Pwi(x), wi(x) = wδi ,ξi (x), (3.3)

where the parameters δi are suitably chosen such that

8δ2
i = λdi(ξ), di(ξ) = exp

[
8π(H(ξi, ξi) + ∑

j 6=i
G(ξi, ξ j))− z(ξi, ξ)

]
. (3.4)

Our aim is to find a solution u to (3.1) of the form u = W + φ where φ is small in some sense. Before we go further,
let us first collect some useful well-known facts.

Any solution ψ ∈ H of
∆ψ + ewδ,ξ ψ = 0 in R2,

can be expressed as a linear combination of

Z0
δ,ξ(x) =

δ2 − |x− ξ|2
δ2 + |x− ξ|2 , Zi

δ,ξ(x) =
xi − ξi

δ2 + |x− ξ|2 , i = 1, 2.

Moreover, the projections of Zi
δ,ξ have the following expansion:

PZ0
δ,ξ(x) = Z0

δ,ξ(x) + 1 + O(δ2), PZi
δ,ξ(x) = Zi

δ,ξ(x) + O(1), i = 1, 2 in C1-sense. (3.5)
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Finally, by straightforward computations and taking into account the choice of λ in (3.4) the following estimates hold
true.

Lemma 3.1. For any C ⊂ FkΩ compact and ξ ∈ C, one has

‖Pwi‖ = O(| log λ|
1
2 ), ‖∇ξPwi‖ = O(λ−

1
2 ),

‖W‖ = O(| log λ|
1
2 ), ‖∇ξW‖ = O(λ−

1
2 ),

and there exists some a > 0 such that for any i = 1, · · · , k and j = 1, 2, it holds that

‖PZj
i‖ = aλ−

1
2 (1 + o(1)), ‖∇ξPZj

i‖ = O
(

1
λ

)
, (3.6)

and

〈PZj
i , PZk

l 〉 = o
(

1
λ

)
if i 6= l or j 6= k. (3.7)

3.2. Estimate of the error. We next estimate the error of the approximate solution:

R = ∆W + ρ+
eW´

Ω eW − λe−W .

Lemma 3.2. For any p ≥ 1 we have, for ξ ∈ C ⊂ FkΩ, C compact,

‖R‖p = O(λ
2−p
2p ), ‖∂ξR‖p = O(λ

1−p
p ).

Proof. By the definition of W,

R = ∆W + ρ+
eW´

Ω eW − λe−W

= ∆(z(x, ξ)−∑
i

Pwi) + ρ+
ez(x,ξ)−∑i Pwi´

Ω ez(x,ξ)−∑i Pwi
− λe∑i Pwi−z(x,ξ)

=
(

∑
i

ewi − λe∑i Pwi−z(x,ξ)
)
+
(

∆z(x, ξ) + ρ+
ez(x,ξ)−∑i Pwi´

Ω ez(x,ξ)−∑i Pwi

)
:= E1(x) + E2(x).

Estimate of E1 =
(

∑i ewi − λe∑i Pwi−z(x,ξ)
)

. Take η > 0 such that |ξi − ξ j| ≥ 2η and d(ξi, ∂Ω) ≥ 2η. First, using (3.2),
we have

W = z(x, ξ)−∑
i

Pwi = z(x, ξ)−∑
i

[
log

1
(δ2

i + |x− ξi|2)2
+ 8πH(x, ξi)

]
+ O(λ).

Hence, on Bη(ξi), writing x = ξi + δiy, one has

e−W(x) = e
∑k

i=1

[
log 1

(δ2
i +|x−ξi |2)2

+8πH(x,ξi)

]
−z(x,ξ)

(1 + O(λ))

= ew(y) · exp
(

8πH(ξi, ξi) + ∑
j 6=i

8πG(ξi, ξ j)− 4 log δi − log 8− z(ξi, ξ)
)
(1 + O(λ) + O(δi|y|))

=
di(ξ)

8δ4
i

ew(y)(1 + O(λ) + O(δi|y|)).

Thus

ewi − λe−W(x) =
8

δ2
i (1 + |y|2)2

[
1− λ

8δ2
i

di(ξ) + O(λ) + O(δi|y|)
]

= O
(

1
(1 + |y|2)2

)
+ O

(
|y|

λ
1
2 (1 + |y|2)2

)
.

(3.8)

It follows that
‖ewi − λe−W(x)‖Lp(B(ξi ,η)) = O(λ

2−p
2p ) for any p ≥ 1.
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Moreover,
‖ewj‖L∞(B(ξi ,η)) = O(λ) for j 6= i and ‖ewi − λe−W(x)‖L∞(Ω\∪i B(ξi ,η)) = O(λ).

Combining the above estimates,

‖E1‖p = O(λ
2−p
2p ) for p ≥ 1. (3.9)

Estimate of E2 =
(

∆z(x, ξ) + ρ+ ez(x,ξ)−∑i Pwi´
Ω ez(x,ξ)−∑i Pwi

)
. First of all,

W = z(x, ξ)−∑
i

Pwi

= z(x, ξ) + 2 ∑
i

log(δ2
i + |x− ξi|2)− 8π ∑

i
H(x, ξi) + O(λ)

= log h(x, ξ) + z(x, ξ) + 2 ∑
i

log
δ2

i + |x− ξi|2

|x− ξi|2
+ O(λ),

(3.10)

where

h(x, ξ) =
k

∏
i=1
|x− ξi|4 exp[−8πH(x, ξi)] =

k

∏
i=1

exp
(
− 8πG(x, ξi)

)
.

So
eW = h(x, ξ)ez(x,ξ) + O(λ). (3.11)

One has

E2 = ∆z(x, ξ) + ρ+
eW´

Ω eW = ∆z(x, ξ) + ρ+
h(x, ξ)ez(x,ξ)´

Ω h(x, ξ)ez(x,ξ)
+ O(λ) = O(λ),

since z(x, ξ) is a solution of (1.4). Thus
‖E2‖∞ = O(λ). (3.12)

Derivative of E1. Next we consider the derivatives. By straightforward computations we get

∂
ξ

j
i
E1 = ∑

`

ew`∂
ξ

j
i
w` + λe−W∂

ξ
j
i
W

= λe−W∂
ξ

j
i
z(x, ξ) + (∑

i
ewi − λe−W)

k

∑
`=1

∂
ξ

j
i
Pw` −∑

`

ew`∂
ξ

j
i
(Pw` − w`)−∑

` 6=i
ewi

∂
ξ

j
i
Pw`

:= I1 + I2 + I3 + I4.

It is then not difficult to show that

‖I1‖p ≤ ‖E1‖p + ∑
i
‖ewi‖p = O(λ

1−p
p ),

‖I2‖p ≤ ‖E1‖p‖∂ξPwj‖∞ = O(λ
1−p

p ),

‖I3‖p ≤ ‖ewi‖p‖∂ξ(Pwj − wj)‖∞ = O(λ
1−p

p ),

‖I4‖p = 0.

Combining all the above estimates,

‖∂ξE1‖p = O(λ
1−p

p ). (3.13)

Derivative of E2. The estimate of the derivative of E2 is analogous. Using the equation satisfied by z(x, ξ) in (1.4)
and (3.10),

1
ρ+

∂
ξ

j
i
E2 = −

(∂
ξ

j
i
z(x, ξ)h + ∂

ξ
j
i
h)ez(x,ξ)

´
Ω hez(x,ξ)dx

+
hez(x,ξ) ´

Ω(∂
ξ

j
i
z(x, ξ)h + ∂

ξ
j
i
h)ez(x,ξ)

(
´

Ω hez(x,ξ)dx)2

+
eW∂

ξ
j
i
W´

Ω eW −
eW ´

Ω eW∂
ξ

j
i
Wdx

(
´

Ω eW)2

= O(λ).
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Thus we have
‖∂ξE2‖∞ = O(λ). (3.14)

Finally, combining the estimates for E1 and E2, we have

‖R‖p = O(λ
2−p
2p ), ‖∂ξR‖p = O(λ

1−p
p ).

�

3.3. The linear operator. In this subsection, we consider the following problem: given h ∈ H1
0(Ω) we look for a

function φ ∈ H1
0(Ω) and cij such that

∆φ + ρ+

(
eWφ´

Ω eWdx
−

eW ´
Ω eWφdx

(
´

Ω eWdx)2

)
+ ∑k

i=1 ewi φ = ∆h + ∑i,j cijewi Zj
i ,

´
Ω∇φ∇PZj

i dx = 0, j = 1, 2, i = 1, · · · , k.

(3.15)

First we have the following apriori estimate:

Lemma 3.3. Let C ⊂ FkΩ be a fixed compact set. Then, there exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), ξ ∈ C
and h ∈ H1

0(Ω), any solution φ ∈ H1
0(Ω) of

∆φ + ρ+

(
eWφ´

Ω eWdx
−

eW ´
Ω eWφdx

(
´

Ω eWdx)2

)
+ ∑k

i=1 ewi φ = ∆h,

´
Ω∇φ∇PZj

i dx = 0, j = 1, 2, i = 1, · · · , k,

(3.16)

satisfies
‖φ‖ ≤ C| log λ|‖h‖.

Proof. We prove it by contradiction. Assume there exist λn → 0, ξn → ξ∗ ∈ FkΩ, hn ∈ H1
0(Ω) and φn ∈ H1

0(Ω)
which solves (3.16) with

‖φn‖ = 1, | log λn|‖hn‖ → 0 as n→ ∞.
For i = 1, · · · , k, define φ̃i(y) as

φ̃i(y) =

{
φi(δiy + ξi), y ∈ Ω̃i =

Ω−ξi
δi

,
0, y ∈ R2 \ Ω̃i.

Step 1. We claim that

φ̃i(y)→ γi
1− |y|2
1 + |y|2 weakly in H(R2) and strongly in L(R2), (3.17)

and
φ→ 0 weakly in H1

0(Ω) and strongly in Lq(Ω) for q ≥ 2. (3.18)
Let ψ ∈ C∞

0 (Ω \ {ξ∗1 , · · · , ξ∗k}), multiply equation (3.16) by ψ and integrate, then

−
ˆ

Ω
∇ψ∇φ +

k

∑
i=1

ˆ
Ω

ewi φψdx + ρ+

(´
Ω eWφψdx´

Ω eWdx
−
´

Ω eWφdx
´

Ω eWψdx
(
´

Ω eWdx)2

)

=

ˆ
Ω

∆hψdx.

By the assumption on φ, using the fact that in Ω \ {ξ∗1 , · · · , ξ∗k}, ewi = O(λ) and eW = h(x, ξ)ez(x,ξ) + O(λ), one has

φ→ φ∗ weakly in H1
0(Ω) and strongly in Lq(Ω) for q ≥ 2,

which gives

−
ˆ

Ω
∇φ∗∇ψdx + ρ+

(´
Ω hezφ∗ψdx´

Ω hezdx
−
´

Ω hezψdx
´

Ω hezφ∗dx
(
´

Ω hezdx)2

)
= 0.

So ‖φ∗‖H1
0 (Ω) ≤ 1 and it solves

∆φ∗ + ρ+
(

hezφ∗´
Ω hezdx

−
hez ´

Ω hezφ∗dx
(
´

Ω hezdx)2

)
= 0.



8 WEIWEI AO, ALEKS JEVNIKAR, AND WEN YANG

By the non-degeneracy of z(x, ξ), we can get that φ∗ = 0. Thus (3.18) is proved.
Now let us prove (3.17). Multiplying (3.16) again by φ and integrating,

ˆ
Ω
|∇φ|2dx−

k

∑
i=1

ˆ
Ω

ewi φ2dx− ρ+

(´
Ω eWφ2dx´

Ω eWdx
−

(
´

Ω eWφdx)2

(
´

Ω eWdx)2

)
=

ˆ
Ω
∇h∇φdx.

From the above equation, one can get that
ˆ

Ω̃i

ewφ̃2
i dx =

ˆ
Ω

ewi φ2dx

≤
ˆ

Ω
|∇φ|2dx− ρ+

(´
Ω eWφ2dx´

Ω eWdx
−

(
´

Ω eWφdx)2

(
´

Ω eWdx)2

)
−
ˆ

Ω
∇h∇φdx

≤ 1 + o(1) + ‖h‖ = O(1)

where we used (3.18). So we get that φ̃i is bounded in H(R2). There exists φ̃0 such that

φ̃i → φ̃0 weakly in H(R2) and strongly in L(R2).

Let ψ̃ ∈ C∞
0 (R2) and define ψi = ψ̃( x−ξi

δi
). Multiplying (3.16) by ψi and integrating over Ω,

ˆ
Ω
∇φ∇ψidx−∑

j

ˆ
Ω

ewj φψidx− ρ+

(´
Ω eWφψidx´

Ω eWdx
−
´

Ω eWφdx
´

Ω eWψidx
(
´

Ω eWdx)2

)

=

ˆ
Ω
∇h∇ψidx.

(3.19)

Since ψi(x) = 0 if |x− ξi| ≥ Rδi for some R > 0, we have
ˆ

Ω
ewj φψidx = O(δ2

j ) for j 6= i.

Passing to the limit in (3.19), we have
ˆ

R2
∇φ̃0∇ψ̃dx−

ˆ
R2

ewφ̃0ψ̃dx = 0.

Moreover, by the orthogonality condition in (3.16), we have
ˆ

R2
φ̃0ew yj

1 + |y|2 dy = 0, j = 1, 2.

So we deduce that

φ̃0 = γi
1− |y|2
1 + |y|2 .

Step 2. We claim that γi = 0 for i = 1, · · · , k. Multiplying equation (3.16) by PZ0
i and integrate over Ω,

ˆ
Ω
∇φ∇PZ0

i dx−∑
j

ˆ
Ω

ewj φPZ0
i dx− ρ+

(´
Ω eWφPZ0

i dx´
Ω eWdx

−
´

Ω eWφdx
´

Ω eW PZ0
i dx

(
´

eWdx)2

)

=

ˆ
Ω
∇h∇PZ0

i dx.

(3.20)

Since ˆ
Ω
∇φ∇PZ0

i dx =

ˆ
Ω

ewi φZ0
i dx =

ˆ
Ω̃i

ewZ0φ̃idy
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where Z0 = 1−|y|2
1+|y|2 and by (3.5),

∑
j

ˆ
Ω

ewj φPZ0
i dx =

ˆ
Ω

ewi φPZ0
i dx + ∑

j 6=i

ˆ
Ω

ewj φPZ0
i dx

=

ˆ
Ω̃i

ewφ̃i(1 + Z0(y) + O(δ2
i ))dy + ∑

j 6=i

ˆ
Ω

ewj φPZ0
i dx

=

ˆ
Ω̃i

ewφ̃i(1 + Z0(y))dy + O(λ
1
p ),

for some p > 1, by Hölder inequality. Moreover, by (3.18), (3.5) and (3.10), one has

ρ+

(´
Ω eWφPZ0

i dx´
Ω eWdx

−
´

Ω eWφdx
´

Ω eW PZ0
i dx

(
´

Ω eWdx)2

)
= O(λ).

From (3.20) and the above estimates, one has

lim
λ→0
| log λ|

ˆ
Ω̃i

ewφ̃idy = 0. (3.21)

Next we multiply equation (3.16) by Pwi and integrate over Ω,
ˆ

Ω
∇φ∇Pwidx−∑

j

ˆ
Ω

ewj φPwidx− ρ+

(´
Ω eWφPwidx´

Ω eWdx
−
´

Ω eWφdx
´

Ω eW Pwidx
(
´

Ω eWdx)2

)

=

ˆ
Ω
∇h∇Pwidx.

Now we estimate the above equation term by term.ˆ
Ω
∇φ∇Pwidx =

ˆ
Ω

ewi φdx =

ˆ
Ω̃i

ewφ̃idy = o(1)

by (3.17) and the fact that ˆ
R2

ew 1− |y|2
1 + |y|2 dy = 0.

By the expansion of Pwi,

∑
j

ˆ
Ω

ewj φPwidx =

ˆ
Ω

ewi φPwidx + ∑
j 6=i

ˆ
Ω

ewj φPwidx

=

ˆ
Ω̃i

ewφ̃i

(
− 4 log δi − 2 log(1 + |y|2) + 8πH(ξi, ξi) + O(δi|y|+ δ2

i )
)

dy

+ ∑
j 6=i

ˆ
Ω̃j

ewφ̃j(8πG(ξi, ξ j) + O(δj|y|+ δ2
j ))dy

= γi

ˆ
R2

ew 1− |y|2
1 + |y|2 [−2 log(1 + |y|2)]dy + o(1).

Moreover,

ρ+

(´
Ω eWφPwidx´

Ω eWdx
−
´

Ω eWφdx
´

Ω eW Pwidx
(
´

Ω eWdx)2

)
= o(1)

and ˆ
Ω
∇h∇Pwidx = O(‖h‖p‖Pwi‖) = O(log λ)

1
2 ‖h‖ = o(1).

Combining all the above estimates, we have

γi

ˆ
R2

ew 1− |y|2
1 + |y|2 [−2 log(1 + |y|2)]dy = 0,

which implies that γi = 0 since ˆ
R2

ew 1− |y|2
1 + |y|2 [−2 log(1 + |y|2)]dy 6= 0.
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Step 3. Finally, we derive a contradiction.

Multiply equation (3.16 ) by φ and integrate:

ˆ
Ω
|∇φ|2dx−∑

i

ˆ
Ω

ewi φ2dx− ρ+

(´
Ω eWφ2dx´

Ω eWdx
−

(
´

Ω eWφdx)2

(
´

Ω eWdx)2

)
=

ˆ
Ω
∇h∇φdx.

From the estimates in step 1-2 and the assumptions on φ and h, it is not difficult to show that the left hand side of
the above equation tends to 1, while the right hand side has limit 0. This is a contradiction which concludes the
proof. �

Now we can derive a priori estimates for problem (3.15).

Proposition 3.4. Let C ⊂ FkΩ be a compact set. Then, there exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), ξ ∈ C
and h ∈ H1

0(Ω), if (φ, cij) is a solution of (3.15), we have

‖φ‖ ≤ C| log λ|‖h‖.

Proof. By Lemma 3.3 and (3.6) , we know that

‖φ‖ ≤ C| log λ|
(
‖h‖+ ∑

ij
|cij|‖PZj

i‖
)
≤ C| log λ|

(
‖h‖+ ∑

ij

1√
λ
|cij|

)
.

In order to estimate cij, multiply the equation (3.15) by PZj
i and integrating over Ω,

ˆ
Ω

φewi (PZj
i − Zj

i )dx + ∑
` 6=i

ˆ
Ω

ew`φPZj
i dx + O

(ˆ
Ω
|φ||PZj

i |dx +

ˆ
Ω
|φ|
ˆ

Ω
|PZj

i |dx
)

=

ˆ
Ω
∇h∇PZj

i + cij

ˆ
Ω

ewi Zj
i PZj

i dx + ∑
k 6=i,` 6=j

o
(
|ck`|

λ

)
,

where in the last line we use (3.7). Since
ˆ

Ω
φewi (PZj

i − Zj
i )dx + ∑

` 6=i

ˆ
Ω

ew`φPZj
i dx = O(‖φ‖(‖ewi‖q + ‖ew`PZj

i‖q)) = O
(

λ
1−q

q ‖φ‖
)

,

O
(ˆ

Ω
|φ||PZj

i |+
ˆ

Ω
|φ|
ˆ

Ω
|PZj

i |
)
= O(‖PZj

i‖2‖φ‖) = O
(
| log λ|

1
2 ‖φ‖

)
,

ˆ
Ω
∇h∇PZj

i = ‖h‖‖PZj
i‖ = O

(
1√
λ
‖h‖

)
,

we have

|cij|+ o

(
∑

k 6=j,` 6=i
|ck,`|

)
= O

(
λ

1
q ‖φ‖+ λ| log λ|

1
2 ‖φ‖+ λ

1
2 ‖h‖

)
.

Summing all |cij| up and choosing suitable q ∈ (1, 2), we can get that

‖φ‖ ≤ C| log λ|‖h‖.

�

From the above a priori estimate and the Fredholm alternative it is then standard to derive the following existence
result, see for example Proposition 4.5 in [6].

Proposition 3.5. Let C ⊂ FkΩ be a compact set. Then, there exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), ξ ∈ C
and h ∈ H1

0(Ω), there exists a unique solution (φ, cij) of (3.15), which satisfies

‖φ‖ ≤ C| log λ|‖h‖.
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3.4. Nonlinear Problem. The aim of this subsection is to find (φ, {cij}) such that u = W + φ solves
∆u + ρ+

eu´
Ω eudx

− λe−u = ∑ij cijewi Zj
i ,

´
Ω∇φ∇PZj

i dx = 0, j = 1, 2, i = 1, · · · , k.

The latter can be rewritten as
∆φ + ρ+

( eWφ´
Ω eWdx

−
eW ´

Ω eWφdx
(
´

Ω eWdx)2

)
+ ∑k

i=1 ewi φ =
(

R + S(φ) +N (φ)
)
+ ∑ij cijewi Zj

i ,

´
Ω∇φ∇PZj

i dx = 0, j = 1, 2, i = 1, · · · , k.

(3.22)

where R is the error term defined in Subsection 3.2 and

N (φ) = λ
(

f (W + φ)− f (W)− f ′(W)φ
)
+ ρ+

(
g(W + φ)− g(W)− g′(W)φ

)
,

S(φ) =
(

k

∑
i=1

ewi + λ f ′(W)

)
φ,

and

f (W) = e−W , g(W) =
eW´

Ω eWdx
. (3.23)

Once the linear theory is carried out, the existence of a solution to the nonlinear problem (3.22) follows a standard
strategy. Observe that (3.22) resembles the linear problem (3.15). Therefore, the idea is to use the existence result of
the linear problem, see Proposition 3.5, to construct a contraction map, knowing that the term R + S(φ) +N (φ) is
small. We omit here the details referring to Proposition 4.10 in [6] for the full argument.

Proposition 3.6. Let C ⊂ FkΩ be compact set. For any ε > 0 sufficiently small, there exist λ0 > 0 and C > 0 such that for
any λ ∈ (0, λ0) and ξ ∈ C, there exists a unique (φ, {cij}) satisfying (3.22) and

‖φ‖ ≤ Cλ
1
2−ε, ‖∂

ξ
j
i
φ‖ ≤ Cλ−ε, |cij| ≤ Cλ.

3.5. The reduced problem. We introduce here the finite-dimensional reduction. In the previous subsection we have
found a solution u = W + φ to the problem

∆u + ρ+
eu´

Ω eudx
− λe−u = ∑ij cijewi Zj

i

´
Ω∇φ∇PZj

i dx = 0, j = 1, 2, i = 1, · · · , k.

Consider now the associated energy functional:

J(u) =
1
2

ˆ
Ω
|∇u|2dx− ρ+ log

ˆ
Ω

eudx− λ

ˆ
Ω

e−udx (3.24)

and let J̃(ξ) = J(Wξ + φξ).

Lemma 3.7. Let ξ ∈ FkΩ be a critical point of J̃, then for λ small, u = Wξ + φξ is a solution of (3.1).

Proof. If ξ is a critical point of J̃(ξ), then one has

〈J′(u), ∂ξ(Wξ + φξ)〉 = 0,

which is equivalent to

〈∑
ij

cijewi Zj
i , ∂ξs

`
(Wξ + φξ)〉 = 0 for ` = 1, · · · , k, s = 1, 2. (3.25)

Since ˆ
Ω

ewi Zj
i ∂ξs

`
φξdx = ‖ewi Zj

i‖q‖∂ξ φ‖ = O
(

λ
2−3q

2q −ε
)
= o

(
1
λ

)
,

ˆ
Ω

ewi Zj
i ∂ξs

`
Wξdx = −

ˆ
Ω

PZs
`e

wi Zj
i dx + O

(
1√
λ

)
=

a
λ

δi`δjs + o
(

1
λ

)
,
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we conclude that
cij + o(1) ∑

` 6=i,s 6=j
c`s = 0,

which implies that all cij are zero. So the corresponding u is a solution of (3.1) as desired. �

Recall the definition of Λ in (1.5). We next consider the expansion of the energy.

Proposition 3.8. It holds
J(W) = Λ(ξ)− 8πk log λ− (16π − 24π log 2)k + o(1),

C1 uniformly in ξ in compact sets of Ω.

Proof. By the definition of J(W) and W, one has

J(W) =
1
2

ˆ
Ω

(
|∇z|2 +

k

∑
i=1
|∇Pwi|2 − 2

k

∑
i=1
∇Pwi∇z + 2 ∑

i 6=j
∇Pwi∇Pwj

)
dx

− ρ+ log
ˆ

Ω
eWdx− λ

ˆ
Ω

e−Wdx.

Using (3.11),

1
2

ˆ
Ω
|∇z|2dx− ρ+ log

ˆ
Ω

eWdx =
1
2

ˆ
Ω
|∇z|2dx− ρ+ log

ˆ
Ω

h(x, ξ)ez(x,ξ)dx + O(λ).

While using (3.8) and the estimate for E1,

λ

ˆ
Ω

e−Wdx =
k

∑
i=1

ˆ
Ω

ewi dx + o(1) = 8kπ + o(1),

ˆ
Ω
∇Pwi∇zdx =

ˆ
Ω

ewi z(x, ξ)dx =

ˆ
Ω̃i

8
(1 + |y|2)2 z(δiy + ξi, ξ)dy = 8πz(ξi, ξ) + o(1),

where Ω̃i = (Ω− ξi)/δi. Moreover, using the expansion (3.2)ˆ
Ω
|∇Pwi|2dx =

ˆ
Ω

ewi Pwidx

=

ˆ
Ω

ewi
(

log
1

(δ2
i + |x− ξi|2)2

+ 8πH(x, ξi) + O(λ)
)

dx

= 64π2H(ξi, ξi)− 2
ˆ

Ω̃i

ewi (log δ2
i + log(1 + |y|2))dy + o(1)

= 64π2H(ξi, ξi)− 16π log δ2
i − 16π + o(1)

= 64π2H(ξi, ξi)− 16π log
λdi(ξ)

8
− 16π + o(1)

= −64π2H(ξi, ξi)− 128π2 ∑
j 6=i

G(ξi, ξ j) + 16πz(ξi, ξ)− 16π log λ− 16π + 48π log 2 + o(1),

and for i 6= j,ˆ
Ω
∇Pwi∇Pwjdx =

ˆ
Ω

ewi
(

log
1

(δ2
j + |x− ξ j|2)2

+ 8πH(x, ξ j) + O(λ)
)

dx = 64π2G(ξi, ξ j) + o(1).

Combining all the above estimates, we have

J(W) =
1
2

ˆ
Ω
|∇z|2dx− ρ+ log

ˆ
Ω

h(x, ξ)ez(x,ξ)dx− 8πk log λ

− 32π2
k

∑
i=1

(
H(ξi, ξi) + ∑

j 6=i
G(ξi, ξ j)

)
− (16π − 24π log 2)k + o(1)

= Λ(ξ)− 8πk log λ− (16π − 24π log 2)k + o(1).
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Next, we consider the derivative of J(W).

∂
ξ

j
i
J(W) =

ˆ
Ω

(
−∆W − ρ+

eW´
Ω eWdx

+ λe−W
)

∂
ξ

j
i
Wdx = −

ˆ
Ω
(E1(x) + E2(x))∂

ξ
j
i
Wdx

= 4
ˆ

Ω
E1(z)Zj

i dx + o(1) = 4
ˆ

Ω

(
∑
`

ew` − λe−W

)
Zj

i dx,

where E1, E2 were introduced in Lemma 3.2 and where we used

∂
ξ

j
i
W = −4PZj

i + O(1).

Using the definition of wi and Zj
i , for ` 6= i

ˆ
Ω

ew`Zj
i dx =

ˆ
Ω

8δ2
`

(δ2
` + |x− ξ`|2)2

xj − ξ
j
i

δ2
i + |x− ξi|2

dx = 8π
ξ

j
` − ξ

j
i

|ξ` − ξi|2
+ o(1).

Moreover, taking η > 0 such that |ξi − ξ j| ≥ 2η and d(ξi, ∂Ω) ≥ 2η, we have

ˆ
B(ξ`,η)

λe−W Zj
i dx = λ

ˆ
B(ξ`,η)

exp
[
8π ∑

i
H(x, ξi)− z(x, ξ) + O(λ)

] xj − ξ
j
i

δ2
i + |x− ξi|2

k

∏
i=1

1
(δ2

i + |x− ξi|2)2
dx

=
λ

δ2
`

ˆ
Ω̃`

exp
[
8πH(ξ`, ξ`) + 8π ∑

j 6=`

G(ξ`, ξ j)− z(ξ`, ξ)
] 1
(1 + |y|2)2

ξ
j
` − ξ

j
i

|ξ` − ξi|2
dx + o(1)

= 8π
ξ

j
` − ξ

j
i

|ξ` − ξi|2
+ o(1).

Let
γ(x, ξ) = 8πH(x, ξi) + 8π ∑

j 6=i
G(x, ξ j)− z(x, ξ).

Then,
ˆ

B(ξi ,η)
λe−W Zj

i dx = λ

ˆ
B(ξi ,η)

exp
[
8π ∑

i
H(x, ξi)− z(x, ξ) + O(λ)

] xj − ξ
j
i

δ2
i + |x− ξi|2

k

∏
i=1

1
(δ2

i + |x− ξi|2)2
dx

=
λ

δ3
i

ˆ
Ω̃i

1
(1 + |y|2)2

yj

1 + |y|2 exp
[
8πH(ξi + δiy, ξi) + 8π ∑

j 6=i
G(ξi + δiy, ξ j)

− z(ξi + δiy, ξ)
]
dy + o(1)

=
8
δi

ˆ
B(0, η

δi
)

yj

(1 + |y|2)3 exp[γ(ξi + δiy, ξ)− γ(ξi, ξ)]dy + o(1)

=
8
δi

ˆ
R2

yj

(1 + |y|2)3
∂γ

∂x
(ξi, ξ) · δiy dy + o(1)

= 2π
∂γ

∂x
(ξi, ξ) + o(1).

Finally, ˆ
Ω\⋃i B(ξi ,η)

λe−W Zj
i dx ≤ Cλ

ˆ
Ω\⋃i B(ξi ,η)

e∑` Pw` |Zj
i |dx ≤ Cλ = o(1).

Combining the above estimates, we have

∂
ξ

j
i
J(W) = −8π

∂γ

∂x
(ξi, ξ) + o(1) = ∂

ξ
j
i
Λ(ξ) + o(1),

as desired, where we used (1.6). �

Finally, we have the following expansion of the reduced energy.
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Proposition 3.9. It holds

J̃(ξ) := J(Wξ + φξ) = J(Wξ) + o(1),

C1 uniformly in ξ in compact sets of FkΩ.

Proof. To simplify the notation, we shall drop the sub-index ξ in the proof. It is not difficult to show that

J(W + φ)− J(W) =
1
2

ˆ
Ω
|∇φ|2dx +

ˆ
Ω
∇W∇φdx + λ

ˆ
Ω

e−W(1− e−φ)dx

+ ρ+
(

log
ˆ

Ω
eWdx− log

ˆ
Ω

eW+φ
)

dx

= −
ˆ

Ω
∆z(x, ξ)φdx− ρ+

ˆ
Ω

h(x, ξ)ez(x,ξ)φ´
Ω h(x, ξ)ez(x,ξ)dx

dx +

ˆ
Ω

∑
i

ewi φdx− λ

ˆ
Ω

e−Wφdx

+ ρ+
(

log
ˆ

Ω
eWdx− log

ˆ
Ω

eW+φdx +

ˆ
Ω

h(x, ξ)ez(x,ξ)φ´
Ω h(x, ξ)ez(x,ξ)dx

dx
)

+ λ

ˆ
Ω

e−W(1− e−φ + φ)dx + ‖φ‖2 = o(1).

Next we consider the derivatives.

∂
ξ

j
i
[J(W + φ)− J(W)] = −

ˆ
Ω

(
∆(W + φ) + ρ+

eW+φ´
Ω eW+φdx

− λe−(W+φ)

)
∂

ξ
j
i
φdx

−
ˆ

Ω

[
∆φ + ρ+

(
eW+φ´

Ω eW+φdx
− eW´

Ω eWdx

)
− λ(e−(W+φ) − e−W)

]
∂

ξ
j
i
Wdx

= ∑
i,j

ˆ
Ω

cijewi Zj
i ∂ξ

j
i
φdx−

ˆ
Ω

∆φ∂
ξ

j
i
Wdx−

ˆ
Ω

λe−Wφ∂
ξ

j
i
Wdx

+

ˆ
Ω

λ(e−(W+φ) − e−W + e−Wφ)∂
ξ

j
i
Wdx

+ ρ+
ˆ

Ω

(
eW+φ´
eW+φ

− eW´
eW

)
∂

ξ
j
i
Wdx.

Using the estimate for cij in Proposition 3.6, we have

∑
i,j

ˆ
Ω

cijewi Zj
i ∂ξ

j
i
φdx = ∑

i,j
|cij|‖∂ξ

j
i
φ‖ · ‖ewi Zj

i‖q = O(λ
2−3q

2q +1−ε
) = o(1),

provided q is sufficiently close to 1. Recalling the definitions of f , g in (3.23) we exploit now the estimates in [6, Lemma
4.7]. For some θ ∈ (0, 1) and p sufficiently close to 1 we have

ˆ
Ω

λ(e−(W+φ) − e−W + e−Wφ)∂
ξ

j
i
Wdx =

ˆ
Ω

λ f ′′(W + θφ)φ2∂
ξ

j
i
Wdx = ‖λ f ′′(W + θφ)φ2‖p‖∂ξ

j
i
W‖q

= O(λ
1−pq

pq −
1
2+1−2ε

) = o(1).

Moreover, for some θ̃ ∈ (0, 1) and suitable p, q

ρ+
ˆ

Ω

(
eW+φ´
eW+φ

− eW´
eW

)
∂

ξ
j
i
W dx = ρ+

ˆ
Ω

g′(W + θ̃φ)φ∂
ξ

j
i
W dx = ‖g′(W + θ̃φ)φ‖p‖∂ξ

j
i
W‖q

= O(λ
1
2−ε) = o(1).

Recall that

λe−W =
k

∑
i=1

ewi + O(λ) and ∂
ξ

j
i
W = −4PZj

i + O(1),
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for ξ in compact sets of FkΩ. Then

λ

ˆ
Ω

e−Wφ∂
ξ

j
i
Wdx = −4

k

∑
`=1

ˆ
Ω

ew`φPZj
i dx + o(1)

= −4
ˆ

Ω
ewi Zj

i φdx− 4 ∑
` 6=i

ˆ
Ω

ew`φZj
i dx + o(1)

= −4
ˆ

Ω
∇φ∇PZj

i dx + o(1) = o(1)

by the orthogonality condition satisfied by φ. Moreover, again by the orthogonality condition we haveˆ
Ω

∆φ∂
ξ

j
i
Wdx = −

ˆ
Ω
∇φ∇∂

ξ
j
i
Wdx = −4

ˆ
Ω
∇φ(∇PZj

i + O(1))dx

= O(1)
ˆ

Ω
|∇φ|dx = o(1).

Combining the above estimates, we have

∂
ξ

j
i
J̃(ξ) = ∂

ξ
j
i
J(W) + o(1),

as desired. �

Proof of Theorem 1.1. Let K ⊂ FkΩ be a C1-stable set of critical points of Λ. Then, by Propositions 3.8-3.9, for λ > 0
small, there exists ξλ critical point of J̃ and d(ξλ,K) → 0 as λ → 0. By Lemma 3.7, uλ = W + φ is a solution of (3.1).
It follows that uλ solves the original problem (1.1) with ρ+λ = ρ+ and

ρ−λ = λ

ˆ
Ω

e−udx = λ

ˆ
Ω

e−Wdx + o(1) = 8kπ + o(1).

�

4. ASYMMETRIC BLOW UP

4.1. Approximate solutions. In this section we will derive the proof of Theorem 1.2. To this end we will always
assume that Ω is l−symmetric for l ≥ 2 even according to (4.1). Therefore, we will consider symmetric functions
such that

u(x) = u(Rl · x), (4.1)

see (4.1), and define

Hl :=
{

u ∈ H1
0(Ω), u satisfies (4.1)

}
.

Consider problem (3.1) and let k ≥ 2 be an odd integer. In order to construct blow up solutions with local masses
(4πk(k− 1), 4πk(k + 1)), we need to consider the following singular Liouville equation. Let α ≥ 2. It is known that

wα
δ (x) = log

2α2δα

(δα + |x|α)2 , δ > 0,

solves the problem

∆w + |x|α−2ew = 0 in R2,
ˆ

R2
|x|α−2ewdx < ∞.

Similarly to the previous section, let Pu be the projection of the function u into H1
0(Ω). We look here for a sign

changing solution of the form

u = W + φ(x), W(x) = z(x) +
k

∑
i=1

(−1)iPwi(x),

where φ is a small error term, z(x) is a solution of (1.8) and Pwi = Pwαi
δi

with

αi = 4i− 2, δi = diλ
k−i+1
4i−2 , di > 0, i = 1, · · · , k. (4.2)
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The latter parameters are chosen such that the interaction of different bubbles is small. More precisely, the following
functions will play an important role in the interaction estimate:

Θi(y) = Pwi(δiy)− wi(δiy)− (αi − 2) log |δiy|+ ∑
j 6=i

(−1)j−iPwj − z(δiy) + log λ, i odd,

Ti(y) = Pwi(δiy)− wi(δiy)− (αi − 2) log |δiy|+ ∑
j 6=i

(−1)j−iPwj + z(δiy)− log Q, i even,

where

Q = ρ−1
0

ˆ
Ω

ez−8kπG(x,0)dx. (4.3)

As we will see in the sequel, in order to make these two functions small, we will need to choose δi and αi such that

(αi − 2) + ∑
j<i

(−1)j−i2αj = 0, i = 1, · · · , k, (4.4)

and

− αi log δi − log(2α2
i )− 2 ∑

j>i
(−1)j−iαj log δj − z(0) +

k

∑
j=1

(−1)j−ihj(0) + log λ = 0, i odd, (4.5)

− αi log δi − log(2α2
i )− 2 ∑

j>i
(−1)j−iαj log δj + z(0) +

k

∑
j=1

(−1)j−ihj(0)− log Q = 0, i even, (4.6)

hi(x) = 4παi H(x, 0). From (4.4) we deduce that α1 = 2 and αi = αi−1 + 4 for i ≥ 2 which implies the choice of αi in
(4.2). On the other hand, from (4.5) and (4.6) one easily deduces that

δ
αk
k = λe∑j(−1)j−khj(0)−z(0)−log(2α2

k) = λe8kπH(0,0)−z(0)−log(2α2
k).

Moreover,

δ
αi−1
i−1 =

δ
αi
i

4α2
i α2

i−1Q
λ.

From the above identities, one can get that

δi = diλ
k−i+1
4i−2 ,

for some di > 0, which implies (4.2).

We estimate now Θi and Ti. First, using the maximum principle it is not difficult to see that

Pwi(x) = wi(x)− log(2α2
i δ

αi
i ) + hi(x) + O(δαi

i )

= −2 log(δαi
i + |x|αi ) + hi(x) + O(δαi

i )

and for i, j = 1, · · · , k,

Pwi(δjy) =



−2αi log(δj|y|) + hi(0) + O
(

1
|y|αi

(
δi
δj

)αi
)

+O(δj|y|) + O(δαi
i ) if i < j

−2αi log δi − 2 log(1 + |y|αi ) + hi(0)
+O(δi(y)) + O(δαi

i ) if i = j

−2αi log δi + hi(0) + O
(
|y|αi

(
δj
δi

)αi
)

+O(δj|y|) + O(δαi
i ) if i > j.

(4.7)

where hi(x) = 4παi H(x, 0).

Remark 4.1. From the above expansion, one can get that for |x| ≥ δ0 for δ0 > 0 small, the following expansion holds:

k

∑
i=1

(−1)iPwi(x) = 4π ∑
i
(−1)iαi H(x, 0)− 2 ∑

i
(−1)iαi log |x|+ O(δ

αk
k )
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From the definition of αi we have ∑k
i=1(−1)iαi = (−1)k2k and hence, for k odd it holds

k

∑
i=1

(−1)iPwi(x) = −8kG(x, 0) + O(λ).

We next introduce the following shrinking annulus

Aj =
{

x ∈ Ω,
√

δj−1δj ≤ |x| ≤
√

δjδj+1

}
, j = 1, · · · , k, (4.8)

where δ0 := 0 and δk+1 := +∞.

Lemma 4.2. For any y ∈ Ai
δi

, the following estimates hold:

Θi(y) = O(δi|y|+ λ), i odd, (4.9)

Ti(y) = O(δi|y|+ λ), i even. (4.10)

In particular,

sup
y∈ Ai

δi

|Θi(y)|+ sup
y∈ Ai

δi

|Ti(y)| = O(1). (4.11)

Proof. Consider y ∈ Ai
δi

. From (4.7), and using (4.4) and (4.5), for i odd,

Θi(y) = − αi log δi − log(2α2
i ) + hi(0)− (αi − 2) log |δiy|+ O(δi|y|+ δ

αi
i )

+ ∑
j<i

(−1)i−j
[
− 2αj log(δi|y|) + hj(0) + O

( 1
|y|αj

( δj

δi

)αj
)
+ O(δi|y|+ δ

αj
j )
]

+ ∑
j>i

(−1)j−i
[
− 2αj log δj + hj(0) + O

(
|y|αj

( δi
δj

)αj
)
+ O(δi|y|+ δ

αj
j )
]

− z(0) + log λ + O(δi|y|)

=
[ k

∑
j=1

(−1)j−ihj(0)− αi log δi − log(2α2
i )− 2 ∑

j>i
(−1)j−iαj log δj − z(0) + log λ

]
(= 0 because of (4.5))

− log |δi|y||
[
(αi − 2) + ∑

j<i
(−1)i−j2αj

]
(= 0 because of (4.4))

+ O(δi|y|) + ∑
j

δ
αj
j + ∑

j>i
O
(
|y|αj

( δi
δj

)αj
)
+ ∑

j<i
O
( 1
|y|αj

( δj

δi

)αj
)

= O(δi|y|) + ∑
j

δ
αj
j + ∑

j>i
O
(
|y|αj

( δi
δj

)αj
)
+ ∑

j<i
O
( 1
|y|αj

( δj

δi

)αj
)

= O(δi|y|+ λ).
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Similarly, for i even,

Ti(y) =
[ k

∑
j=1

(−1)j−ihj(0)− αi log δi − log(2α2
i )− 2 ∑

j>i
(−1)j−iαj log δj + z(0)− log Q

]
(= 0 because of (4.6))

− log |δi|y||
[
(αi − 2) + ∑

j<i
(−1)i−j2αj

]
(= 0 because of (4.4))

+ O(δi|y|) + ∑
j

δ
αj
j + ∑

j>i
O
(
|y|αj

( δi
δj

)αj
)
+ ∑

j<i
O
( 1
|y|αj

( δj

δi

)αj
)

= O(δi|y|) + ∑
j

δ
αj
j + ∑

j>i
O
(
|y|αj

( δi
δj

)αj
)
+ ∑

j<i
O
( 1
|y|αj

( δj

δi

)αj
)

= O(δi|y|+ λ).

Finally, (4.11) follows from the above two estimates since δi|y| = O(1) when y ∈ Ai
δi

. �

Finally, we will need the following non-degeneracy result for entire singular Liouville equations which was de-
rived in [9, Theorem 6.1] for l = 2 and which can be extended to any l ≥ 2 even.

Proposition 4.3. Assume φ : R2 → R satisfying (4.1) is a solutions of

∆φ + 2α2 |y|α−2

(1 + |y|α)2 φ = 0 in R2,
ˆ

R2
|∇φ|2dy < ∞,

with α ≥ 2 and α
2 odd. Then,

φ(y) = γ
1− |y|α
1 + |y|α , for some γ ∈ R.

4.2. Estimate of the error term. In this subsection we estimate the error of the approximate solution. To this end, set

E1 = ρ+
eW´

Ω eWdx
− ∑

i even
|x|αi−2ewi − ρ0

ez−8kπG(x,0)´
Ω ez−8kπG(x,0)dx

,

E2 = λe−W − ∑
i odd
|x|αi−2ewi .

Lemma 4.4. For any q ≥ 1 sufficiently close to 1, the following holds:

‖E1‖q = O
(

λ
2−q

2q(2k−1)
)

, ‖E2‖q = O
(

λ
2−q

2q(2k−1)
)

.

Proof. First we consider E2. Recall the definition of the annulus Ai in (4.8).

ˆ
Ω

Eq
2dx =

k

∑
i=1

ˆ
Ai

Eq
2dx = ∑

i odd

ˆ
Ai

Eq
2dx + ∑

i even

ˆ
Ai

Eq
2dx = I1 + I2.

One has

I1 = ∑
i odd

ˆ
Ai

Eq
2dx = ∑

i odd

ˆ
Ai

|λe∑l odd Pwl−∑l even Pwl−z − ∑
j odd
|x|αj−2ewj |qdx

≤ C ∑
i odd

ˆ
Ai

||x|αi−2ewi − λe∑l odd Pwl−∑l even Pwl−z|qdx + C ∑
i,j odd, i 6=j

ˆ
Ai

||x|αj−2ewj |qdx

= I11 + I12.
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Let us estimate I11. For fixed i odd,ˆ
Ai

||x|αi−2ewi − λe∑l odd Pwl−∑l even Pwl−z|qdx

=

ˆ
Ai

|x|q(αi−2)eqwi |1− ePwi−wi−(αi−2) log |x|+∑j 6=i odd Pwj−∑l even Pwl−z+log λ|qdx

= Cδ
2−2q
i

ˆ
Ai
δi

|y|q(αi−2)

(1 + |y|αi )2q |1− eΘi(y)|qdy = Cδ
2−2q
i

ˆ
Ai
δi

|y|q(αi−2)

(1 + |y|αi )2q |Θi(y)|qdy

( using (4.9))

= O
(

δ
2−2q
i

ˆ
Ai
δi

|y|q(αi−2)

(1 + |y|αi )2q |δi|y|+ λ|qdy
)
= O(δ

2−2q
i λq + δ

2−q
i ) = O(δ

2−2q
1 λq + δ

2−q
k )

= O(λq+k(1−q) + λ
2−q

2(2k−1) ) = O(λ
2−q

2(2k−1) ),

provided that q is close to 1. Therefore, we get I11 = O(λ
2−q

2(2k−1) ).
For I12, fix j 6= i odd,

ˆ
Ai

||x|αj−2ewj |qdx = C
ˆ

Ai

 |x|αj−2δ
αj
j

(δ
αj
j + |x|αj)2

q

dx = Cδ
2−2q
j

ˆ
√

δi−1δi
δj

≤|y|≤
√

δiδi+1
δj

|y|q(αj−2)

(1 + |y|αj)2q dy

=


O
(

δ
2−2q
j

(√
δiδi+1
δj

)(αj−2)q+2
)

for j > i

O
(

δ
2−2q
j

(√
δiδi−1
δj

)−(αj+2)q+2
)

for j < i

=


O
(

δ
2−2q
3 (

δk−1
δk

)(αk−2)q+2
)
= O

(
λ

(k−2)(1−q)
5 +

(2k+1)(2(k−1)q+1)
4(k−1)2−1

)

O
(

δ
2−2q
1 (

δk−2
δk−1

)q(2+αk−2)−2
)
= O

(
λ

k(1−q)+ (2k+1)(2(k−2)q−1)
4(k−2)2−1

)
= O

(
λ

2−q
2(2k−1)

)
.

(4.12)

provided that q is close to 1. Therefore, ‖I1‖q = O
(

λ
2−q

2q(2k−1)
)

.

Next, let us estimate I2. For l even fixed,ˆ
Al

Eq
2dx ≤ C

ˆ
Al

|λe−W |qdx + C ∑
i odd

ˆ
Al

||x|αi−2ewi |qdx = I21 + I22.

We have,

I21 = C
ˆ

Al

|λe−Pwl−∑j 6=l even Pwj−z+∑i odd Pwi |qdx = Cλqδ2
l

ˆ
Al
δl

|e−wl(δl y)−(αl−2) log |δly|−Tl(y)−log Q|qdy

( using (4.10))

= O
(

δ
2+2q
l λq

ˆ√
δl−1

δl
≤|y|≤

√
δl+1

δl

(1 + |y|αl )2q

|y|(αl−2)q
(1 + δl |y|+ λ)qdy

)

= O
(

δ
2+2q
l λq

[( δl+1
δl

) (αl+2)q
2 +1

+
( δl

δl−1

) (αl−2)q
2 −1])

= O
(

δ
2+2q
2 λq

[( δ3

δ2

) (α2+2)q
2 +1

+
( δ2

δ1

) (α2−2)q
2 −1])

= O
(

λq+ (k−1)(1+q)
3 − (2k+1)(2q−1)

6

)
= O

(
λ

2−q
2(2k−1)

)
,

(4.13)

if q is close to 1. Moreover, similarly to the estimate of I12, one can also get that I22 = O
(

λ
2−q

2(2k−1)
)

.
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Combining all the above estimates, one has

ˆ
Ω

Eq
2dx = O(λ

2−q
2(2k−1) ). (4.14)

Next we consider E1. First we need to estimate
´

Ω eWdx. For i even fixed,

ˆ
Ai

eWdx =

ˆ
Ai

ePwi−wi+z+∑j 6=i(−1)j−i Pwj−(αi−2) log |x||x|αi−2ewi dx =

ˆ
Ai
δi

eTi(y)+log Q|δiy|αi−2ewi(δiy)δ2
i dy

=

ˆ
Ai
δi

elog Q+O(δi |y|+λ)|δiy|αi−2ewi(δiy)δ2
i dy = 4παiQ + O(λ

1
2(2k−1) ),

where we have used Lemma 4.2 for the estimate of Ti(y) and the fact that

ˆ
R2

2α2
i |y|αi−2

(1 + |y|αi )2 dy = 4παi.

For i < k odd and fixed, reasoning as in (4.13) with q = 1, one has

ˆ
Ai

eWdx =

ˆ
Ai

e−Pwi−∑j 6=i(−1)j−i Pwj+zdx = O(λ
2k−5

6 ).

Finally for i = k which is odd, using Remark 4.1,

ˆ
Ak

eWdx =

ˆ
Ak

eze−Pwk−∑j 6=k(−1)j−k Pwj dx =

ˆ
|x|>
√

δk−1δk

ez−8kπG(x,0)dx + O(δ
αk
k ) + O(λ

1
2(2k−1) )

=

ˆ
Ω

ez−8kπG(x,0)dx + O(λ
1

2(2k−1) ).

In conclusion, one has

ˆ
Ω

eWdx =

ˆ
Ω

ez−8kπG(x,0)dx + ∑
i even

4παiQ + O(λ
1

2(2k−1) ) =
ρ+

ρ0

ˆ
Ω

ez−8kπG(x,0)dx + O(λ
1

2(2k−1) ), (4.15)

where we used the definition of Q in (4.3) and the fact that

∑
i even

4παiQ =
ρ+ − ρ0

ρ0

ˆ
Ω

ez−8kπG(x,0)dx,

since ∑i even 4παi = 4πk(k− 1) = ρ+ − ρ0.

With the estimate for
´

Ω eWdx in hand, we now consider E1.

ˆ
Ω

Eq
1dx = ∑

i even

ˆ
Ai

Eq
1dx + ∑

l odd

ˆ
Al

Eq
1dx = J1 + J2.
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First for i even fixed,
ˆ

Ai

Eq
1dx =

ˆ
Ai

|ρ+ eW´
Ω eWex

− ρ0
ez−8kπG(x,0)´

Ω ez−8kπG(x,0)dx
− |x|αi−2ewi − ∑

j 6=i even
|x|αj−2ewj |qdx

≤ C
ˆ

Ai

|ρ+ eW´
Ω eWex

− |x|αi−2ewi |qdx + C
ˆ

Ai

|ρ0
ez−8kπG(x,0)´

Ω ez−8kπG(x,0)dx
|qdx + C ∑

j 6=i even

ˆ
Ai

||x|αj−2ewj |qdx

= C
ˆ

Ai

|ρ+ eW´
Ω eWdx

− |x|αi−2ewi |qdx + O(λ
2−q

2(2k−1) ) + O(δ
4kq+2
i+1 )

= Cδ
2−2q
i

ˆ
Ai
δi

|y|(αi−2)q

(1 + |y|αi )2q

∣∣∣∣∣1− e
Pwi(δiy)−wi(δiy)−(αi−2) log |δiy|+∑j 6=i(−1)j−i Pwj+z+log ρ+´

Ω eW dx

∣∣∣∣∣
q

dx

( by (4.10))

= Cδ
2−2q
i

ˆ
Ai
δi

|y|(αi−2)q

(1 + |y|αi )2q

∣∣∣∣∣∣1− e
Ti(y)+log Q+log ρ0´

Ω ez−8kπG(x,0)dx
+O(λ

1
2(2k−1) )

∣∣∣∣∣∣
q

dx

= Cδ
2−2q
i

ˆ
Ai
δi

|y|(αi−2)q

(1 + |y|αi )2q |δi|y|+ O(λ
1

2(2k−1) )|qdy = O(λ
2−q

2(2k−1) ).

So we have

J1 = O
(

λ
2−q

2(2k−1)
)

. (4.16)

Next, consider J2. For l < k odd and fixed, similarly to the estimates in (4.13), (4.12) and using (4.15)
ˆ

Al

|E1|qdx = O(1)
( ˆ

Al

|e−Pwl−∑j 6=l(−1)j−l Pwj+z|qdx +

ˆ
Al

∣∣∣∣∣ ez−8kπG(x,0)´
Ω ez−8kπG(x,0)dx

∣∣∣∣∣
q

dx

+ ∑
j even

ˆ
Al

||x|αj−2ewj |qdx
)
= O(λ

2−q
2(2k−1) ).

Finally, we consider the case l = k which is odd: using (4.15) and (4.12)
ˆ

Ak

Eq
1dx ≤ C

ˆ
Ak

∣∣∣∣∣ρ+ ez+∑i(−1)i Pwi´
Ω eWdx

− ρ0
ez−8kπG(x,0)´

Ω ez−8kπG(x,0)dx

∣∣∣∣∣
q

dx + C ∑
i even

ˆ
Ak

|x|(αi−2)qeqwi dx

= C
ˆ

Ak

∣∣∣∣∣ρ0
ez+∑i(−1)i Pwi´

Ω ez−8kπG(x,0)dx
− ρ0

ez−8kπG(x,0)´
Ω ez−8kπG(x,0)dx

∣∣∣∣∣
q

dx + O(λ
2−q

2(2k−1) )

= O(δ
2q
k ) + O(λ

2−q
2(2k−1) ) = O(λ

2−q
2(2k−1) ).

In conclusion, one has

‖E1‖q = O
(

λ
2−q

2q(2k−1)
)

.

�

4.3. The linear theory. In this subsection, we consider the linear problem: given h ∈ Hl , we look for φ ∈ Hl such
that

∆φ + ρ+

(
eWφ´

Ω eWdx
−

eW ´
Ω eWφdx

(
´

Ω eWdx)2

)
+ λe−Wφ = ∆h in Ω. (4.17)

First we have the following apriori estimate:

Lemma 4.5. There exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), h ∈ Hl and φ ∈ Hl solution of (4.17) we have

‖φ‖ ≤ C| log λ|‖h‖.

We start by listing some straightforward integrals which will be useful in the proof of Lemma 4.5.
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Lemma 4.6. The following hold: ˆ
R2

|y|αi−2

(1 + |y|αi )2
1− |y|αi

1 + |y|αi
dy = 0, (4.18)

ˆ
R2

2α2
i
|y|αi−2

(1 + |y|αi )2
1− |y|αi

1 + |y|αi
log(1 + |y|αi )2dy = −4παi, (4.19)

ˆ
R2

2α2
i
|y|αi−2

(1 + |y|αi )2
1− |y|αi

1 + |y|αi
log |y|dy = −4π. (4.20)

Proof of Lemma 4.5. We prove it by contradiction. Assume there exist λn → 0, hn ∈ Hl and φn ∈ Hl which solves
(4.17) such that

‖φn‖ = 1, | log λn|‖hn‖ → 0 as n→ ∞.

In the following, we omit the index n for simplicity. For i = 1, · · · , k, define φ̃i(y) as

φ̃i(y) =

{
φi(δiy), y ∈ Ω̃i =

Ω
δi

,
0, y ∈ R2 \ Ω̃i.

Step 1. We claim that
φ→ 0 weakly in H1

0(Ω) and strongly in Lq(Ω) for q ≥ 2. (4.21)

and
φ̃i is bounded in Hαi (R

2)

Letting ψ ∈ C∞
0 (Ω \ {0}) and multiplying equation (4.17) by ψ and integrating, one has

−
ˆ

Ω
∇ψ∇φdx +

ˆ
Ω

λe−Wφψdx + ρ+

(´
Ω eWφψdx´

Ω eWdx
−
´

Ω eWφdx
´

Ω eWψdx
(
´

Ω eWdx)2

)
=

ˆ
Ω

∆hψdx. (4.22)

By the assumption on φ, using the fact that in compact sets of Ω \ {0},

eW = ez(x)−8kπG(x,0) + O(λ) and λe−W = O(λ),

one has
φ→ φ∗ weakly in H1

0(Ω) and strongly in Lq(Ω) for q ≥ 2

where

−
ˆ

Ω
∇φ∗∇ψdx + ρ+

´
Ω ez−8kπG(x,0)φ∗ψdx´

Ω ez−8kπG(x,0)
− ρ+

´
Ω ez−8kπG(x,0)ψdx

´
Ω ez−8kπG(x,0)φ∗dx

(
´

Ω ez−8kπG(x,0)dx)2
= 0.

So ‖φ∗‖H1
0 (Ω) ≤ 1 and it solves

∆φ∗ + ρ+

(
ez−8kπG(x,0)φ∗´

Ω ez−8kπG(x,0)dx
−

ez−8kπG(x,0) ´
Ω ez−8kπG(x,0)φ∗dx

(
´

Ω ez−8kπG(x,0)dx)2

)
= 0.

By the non-degeneracy of z(x) we get φ∗ = 0. Thus (4.21) is proved.

Now we prove that φ̃i is bounded in Hαi (R
2). First it is easy to check thatˆ

R2
|∇φ̃i|2dy =

ˆ
Ω
|∇φi|2dx ≤ 1 for i = 1, · · · , k. (4.23)

We multiply (4.17) again by φ and integrate,
ˆ

Ω
|∇φ|2dx−

ˆ
Ω

λe−Wφ2dx− ρ+
(´

Ω eWφ2dx´
Ω eWdx

−
(
´

Ω eWφdx)2

(
´

Ω eWdx)2

)
=

ˆ
Ω
∇h∇φdx. (4.24)

From the above equation, one can get that,
ˆ

Ω
λe−Wφ2

i dx ≤
ˆ

Ω
|∇φ|2dx− ρ+

(´
Ω eWφ2dx´

Ω eWdx
−

(
´

Ω eWφdx)2

(
´

Ω eWdx)2

)
−
ˆ

Ω
∇h∇φdx

≤ 1 + o(1) + ‖h‖ = O(1)
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where we used (4.21). Let i be odd. Lemma 4.4 gives
ˆ

Ω
|x|αi−2ewi φ2dx ≤ C,

or equivalently ˆ
R2

|y|αi−2

(1 + |y|αi )2 φ̃2
i dy ≤ C.

Combined with (4.23), we deduce that φ̃i is bounded in Hαi (R
2) when i is odd.

We consider now the case for i even. From (4.15), eW = ez−8kπG(x,0) + O(λ) uniformly on compact sets of Ω \ {0}
and recalling (4.21), we get that ˆ

Ω
eWφdx = O(1). (4.25)

Moreover, by (4.24) one can get that

ρ+

(´
Ω eWφ2dx´

Ω eWdx
−

(
´

Ω eWφdx)2

(
´

Ω eWdx)2

)
= O(1). (4.26)

Combining (4.25) and (4.26), we have ˆ
Ω

eWφ2dx = O(1). (4.27)

By Lemma 4.4, (4.21) and (4.27),
´

Ω |x|αi−2ewi φ2dx = O(1) for i even, which implies that
ˆ

R2

|y|αi−2

(1 + |y|αi )2 φ̃2
i dy = O(1).

So we get that also for i even, φ̃i is bounded in Hαi (R
2).

Step 2. We claim that

φ̃i(y)→ γi
1− |y|2
1 + |y|2 weakly in Hαi (R

2) and strongly in Lαi (R
2), γi ∈ R. (4.28)

From Step 1, we know that φ̃i → φ̃∗i weakly in Hαi (R
2) and strongly in Lαi (R

2). Consider ψ̃ ∈ C∞
0 (R2 \ {0}) and

let K be its support. For n large, one has

K ⊂ Ai
δi

=

{
y ∈ Ω̃i,

√
δi−1

δi
≤ |y| ≤

√
δi+1

δi

}
.

Define ψi = ψ̃( x
δi
). Multiplying (4.17) by ψi and integrating over Ω,

ˆ
Ω
∇φ∇ψidx− ρ+

(´
Ω eWφψidx´

Ω eWdx
−
´

Ω eWφdx
´

Ω eWψidx
(
´

Ω eWdx)2

)
−
ˆ

Ω
λe−Wφψidx =

ˆ
Ω
∇h∇ψidx. (4.29)

Consider first i even. According to Lemma 4.4, one has

ρ+
´

Ω eWφdx´
Ω eWdx

= ∑
j even

ˆ
Ω
|x|αj−2ewj φdx + ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

+ o(1)

= ∑
j even

ˆ
R2

2α2
j |y|

αj−2φ̃j

(1 + |y|αi )2 dy + ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

+ o(1)

= ∑
j even

ˆ
R2

2α2
j |y|

αj−2φ̃∗j
(1 + |y|αi )2 dy + o(1)
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where in the last line we used (4.21). Similarly, one has

ρ+
´

Ω eWφψidx´
Ω eWdx

=

ˆ
R2

2α2
i |y|αi−2

(1 + |y|αi )2 ψ̃φ̃∗i dy + o(1),

ρ+
´

Ω eWψidx´
Ω eWdx

=

ˆ
R2

2α2
i |y|αi−2

(1 + |y|αi )2 ψ̃dy + o(1),

λ

ˆ
Ω

e−Wφψidx = ∑
j odd

ˆ
Ω
|x|αj−2ewj φψidx + o(1) = o(1).

Thus, φ̃∗i satisfies
ˆ

R2
∇φ̃∗i ∇ψ̃idy−

ˆ
R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗i ψ̃dy = − 1
ρ+

( ˆ
R2

2α2
i |y|αi−2

(1 + |y|αi )2 ψ̃dy
)( ˆ

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗i dy
)

.

From this we deduce that the function

φ̃∗i −
1

ρ+

ˆ
R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗i dy ∈ Hαi (R
2)

is a solution of

∆φ +
2α2

i |y|αi−2

(1 + |y|αi )2 φ = 0 in R2 \ {0}. (4.30)

Since
´
|∇φ̃∗i |2dy ≤ 1, φ̃∗i is a solution in the whole space R2. By Proposition 4.3, we get that φ̃∗i −

1
ρ+

´
R2

2α2
i |y|

αi−2

(1+|y|αi )2 φ̃∗i dy =

γi
1−|y|αi

1+|y|αi for some γi. By(4.18) one has
ˆ

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗i dy =
1

ρ+

ˆ
R2

2α2
i |y|αi−2

(1 + |y|αi )2 dy
ˆ

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗i dy

which implies that (
4παi
ρ+
− 1
) ˆ

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗i dy = 0.

Since ρ+ 6= 4παi we deduce that

φ̃∗i = γi
1− |y|αi

1 + |y|αi
.

Hence, (4.28) is proved for i even.
We next turn to i odd. In this case, we consider (4.29) with i odd and estimate each term separately,ˆ

Ω
eWψidx = o(1),

ˆ
Ω

eWφψidx = o(1),

and

λ

ˆ
Ω

e−Wφψidx =

ˆ
Ω
|x|αi−2ewi φψidx + o(1) =

ˆ
R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃iψ̃dy + o(1).

Hence, φ̃∗i satisfies ˆ
R2
∇φ̃∗i ∇ψ̃dy−

ˆ
R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗i ψ̃dy = 0,

namely φ̃∗i is a solution of

∆φ +
2α2

i |y|αi−2

(1 + |y|αi )2 φ = 0 in R2 \ {0},

and again we conclude by using Proposition 4.3.

Step 3. In this step, we will prove some estimates on the speed of convergence. We set

σi(λ) := | log λ|
ˆ

R2
2α2

i
|y|αi−2

(1 + |y|αi )2 φ̃idy. (4.31)
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We will show that
σi(λ) = o(1) for i odd

σi(λ)−
4παi
ρ+

(
∑j even σj(λ) + | log λ|ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
= o(1) for i even.

Set Z0
i =

δ
αi
i −|x|

αi

δ
αi
i +|x|αi

, we know that Z0
i is a solution of

∆Z + |x|αi−2ewi Z = 0 in R2.

Let PZ0
i be its the projection onto H1

0(Ω), that is

∆PZ0
i + |x|

αi−2ewi Z0
i = 0 in Ω, PZ0

i = 0 on ∂Ω.

By maximum principle one can show

PZ0
i = Zi + 1 + O(δαi

i ) =
2δ

αi
i

δ
αi
i + |x|αi

+ O(δαi
i ), (4.32)

which implies

PZ0
i (δjy) =



O
(

1
|y|αi (

δi
δj
)αi
)
+ O(δαi

i ) for i < j,

2
1+|y|αi + O(δαi

i ), for i = j,

2 + O
(
|y|αi (

δj
δi
)αi
)
+ O(δαi

i ) for i > j,

(4.33)

and

‖PZ0
i ‖

q
q = O(δ2

i ), q > 1. (4.34)

First we consider i even. Multiply (4.17) by PZ0
i and integrate over Ω,

ˆ
Ω
∇φ∇PZ0

i dx− ρ+

(´
Ω eWφPZ0

i dx´
Ω eWdx

−
´

Ω eWφdx
´

Ω eW PZ0
i dx

(
´

Ω eWdx)2

)
−
ˆ

Ω
λe−WφPZ0

i dx = −
ˆ

Ω
∇h∇PZ0

i dx. (4.35)

For the first term,

ˆ
Ω
∇φ∇PZ0

i dx = −
ˆ

Ω
φ∆PZ0

i dx =

ˆ
Ω
|x|αi−2ewi φZ0

i dx. (4.36)

By Lemma 4.4, (4.21), (4.32) and (4.34),

´
Ω eWφPZ0

i dx´
Ω eWdx

= ∑
j even

ˆ
Ω
|x|αj−2ewj φPZ0

i dx + ρ0

´
Ω ez−8kπG(x,0)PZ0

i φdx´
Ω ez−8kπG(x,0)dx

+ o
( 1
| log λ|

)
=

ˆ
Ω
|x|αi−2ewi φdx +

ˆ
Ω
|x|αi−2ewi φZ0

i dx + ∑
j 6=i even

ˆ
Ω
|x|αj−2ewj φPZ0

i dx + o
( 1
| log λ|

) (4.37)
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For j 6= i,
ˆ

Ω
|x|αj−2ewj φPZ0

i dx =

ˆ
Ω̃j

2α2
j |y|

αj−2

(1 + |y|αj)2 φ̃jPZ0
i (δjy)dy

=


´

R2
4α2

j |y|
αj−2

(1+|y|αj )2 φ̃jdy + O
( ´

Ω̃j

(
|y|αi (

δj
δi
)αi + δ

αi
i

)
|y|αj−2

(1+|y|αj )2 φ̃j

)
dy, for i > j,

O
( ´

Ω̃j

(
1
|y|αi (

δi
δj
)αi + δ

αi
i

) 2α2
j |y|

αj−2

(1+|y|αj )2 φ̃j

)
dy, for i < j,

=


2σj(λ)

| log λ| + o
( 1
| log λ|

)
, for i > j,

o
( 1
| log λ|

)
, for i < j,

(4.38)

where we used (4.33). Next, by Lemma 4.4 and (4.34),

ρ+
´

Ω eW PZ0
i dx´

Ω eWdx
= ∑

j even

ˆ
Ω
|x|αj−2ewj PZ0

i dx + ρ0

´
Ω ez−8kπG(x,0)PZ0

i dx´
Ω ez−8kπG(x,0)dx

+ o
( 1
| log λ|

)
=

ˆ
Ω
|x|αi−2ewi PZ0

i dx + ∑
j 6=i even

ˆ
Ω
|x|αj−2ewj PZ0

i dx + o
( 1
| log λ|

)
= 4παi + ∑

j<i even
8παj + o

( 1
| log λ|

)
,

(4.39)

where we replace φ by 1 in the estimate of (4.38) and (4.37). Moreover,

ρ+
´

Ω eWφdx´
Ω eWdx

= ∑
i even

ˆ
Ω
|x|αi−2ewi φdx + ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

+ o
( 1
| log λ|

)
(4.40)

and again by Lemma 4.4 and (4.38)

λ

ˆ
Ω

e−WφPZ0
i dx = ∑

j odd

ˆ
Ω
|x|αj−2ewj φPZ0

i dx + o
( 1
| log λ|

)
= ∑

j<i odd

2σj(λ)

| log λ| + o
( 1
| log λ|

)
. (4.41)

Finally, for the last term, ˆ
Ω
∇h∇PZ0

i dx = O(‖h‖‖PZ0
i ‖) = o

( 1
| log λ|

)
. (4.42)

Combining (4.35), (4.38), (4.36), (4.37), (4.39), (4.40), (4.41) and (4.42), we deduce that for i even,

4π(αi + ∑j<i even 2αj)

ρ+

(
∑

j even

σj(λ)

| log λ| + ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
− 1
| log λ| (σi(λ) + ∑

j<i
2σj(λ)) = o

( 1
| log λ|

)
. (4.43)

Next we consider (4.35) for i odd. In this case, again we estimate (4.35) term by term. Similarly to the estimate for
i even, first by Lemma 4.4, (4.34) and (4.38), one has

ρ+
´

Ω eWφPZ0
i dx´

Ω eWdx
= ∑

j even

ˆ
Ω
|x|αj−2ewj φPZ0

i dx + ρ0

´
Ω ez−8kπG(x,0)φPZ0

i dx´
Ω ez−8kπG(x,0)dx

+ o
( 1
| log λ|

)
= ∑

j<i even

2σj(λ)

| log λ| + o
( 1
| log λ|

)
,

ρ+
´

Ω eW PZ0
i dx´

Ω eWdx
= ∑

j even

ˆ
Ω
|x|αj−2ewj PZ0

i dx + ρ0

´
Ω ez−8kπG(x,0)PZ0

i dx´
Ω ez−8kπG(x,0)dx

+ o
( 1
| log λ|

)
= ∑

j<i even
8παj + o

( 1
| log λ|

)
,
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ρ+
´

Ω eWφdx´
eW = ∑

j even

ˆ
|x|αj−2ewj φdx + ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

+ o
( 1
| log λ|

)
= ∑

j even

σj(λ)

| log λ| + ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

+ o
( 1
| log λ|

)
,

and

λ

ˆ
Ω

e−WφPZ0
i dx = ∑

j odd

ˆ
Ω
|x|αj−2ewj φPZ0

i dx + o
( 1
| log λ|

)
=

ˆ
Ω
|x|αi−2ewi φZ0

i dx +
σi(λ)

| log λ| + ∑
j<i odd

2σj(λ)

| log λ| + o
( 1
| log λ|

)
.

Combining all these terms, one can get that for i odd,

8π ∑j<i even 2αj

ρ+

(
∑

j even

σj(λ)

| log λ| + ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
− 1
| log λ| (σi(λ) + ∑

j<i
2σj(λ)) = o

( 1
| log λ|

)
. (4.44)

By considering the difference of (4.43) and (4.44), one has the following:



4παi+1
ρ+

(
∑

j even
σj(λ) + | log λ|ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
− σi+1 − σi = o(1) for i odd,

4παi
ρ+

(
∑

j even
σj(λ) + | log λ|ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
− σi+1 − σi = o(1) for i even.

(4.45)

From (4.44), we first have σ1(λ) = o(1). From (4.45), we have


σi(λ) = o(1) for i odd

σi(λ)− 4παi
ρ+

(
∑j even σj(λ) + | log λ|ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
= o(1) for i even.

Step 4. We claim that γi = 0 for i = 1, · · · , k.

When i is even, multiplying equation (4.17) by Pwi and integrating over Ω,

ˆ
Ω
∇φ∇Pwidx− ρ+

(´
Ω eWφPwidx´

Ω eWdx
−
´

Ω eWφdx
´

Ω eW Pwidx
(
´

Ω eWdx)2

)
− λ

ˆ
Ω

e−WφPwidx =

ˆ
Ω
∇h∇Pwidx.

Now we estimate the above equation term by term. First we have

ˆ
Ω
∇φ∇Pwidx =

ˆ
Ω
|x|αi−2ewi φdx =

ˆ
R2
|y|αi−2ewi(δiy)φ̃idy = o(1)
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by (4.28) and (4.18). To estimate the other terms, by (4.7) and (4.2), we have

ˆ
Ω
|x|αj−2ewj φPwidx =

ˆ
Ω̃j

2α2
j |y|

αj−2

(1 + |y|αj)2 φ̃jPwi(δjy)dy

=



´
Ω̃j

2α2
j |y|

αj−2

(1+|y|αj )2 φ̃j(−2αi log δi + hi(0))dy

+O
( ´

Ω̃j

2α2
j |y|

αj−2

(1+|y|αj )2 φ̃j(|y|αj(
δj
δi
)αi + δj|y|+ δ

αi
i )dy

)
for j < i

´
Ω̃i

2α2
i |y|

αi−2

(1+|y|αi )2 φ̃i(−2αi log δi − 2 log(1 + |y|αi ) + hi(0))dy

+O
( ´

Ω̃i

2α2
i |y|

αi−2

(1+|y|αi )2 φ̃i(δi|y|+ δ
αi
i )dy

)
for j = i

´
Ω̃j

2α2
j |y|

αj−2

(1+|y|αj )2 φ̃j(−2αi log(δj|y|) + hi(0))dy

+O
( ´

Ω̃j

2α2
j |y|

αj−2

(1+|y|αj )2 φ̃j

(
1
|y|αi (

δi
δj
)αi + δj|y|+ δ

αi
i

)
dy
)

for j > i

=



´
Ω̃j

2α2
j |y|

αj−2

(1+|y|αj )2 φ̃j[−2αi log di − 2(k− i + 1) log λ + hi(0)]dy + o(1) for j < i

´
Ω̃i

2α2
i |y|

αi−2

(1+|y|αi )2 φ̃i[−2αi log di − 2(k− i + 1) log λ− 2 log(1 + |y|αi ) + hi(0)]dy + o(1) for j = i

´
Ω̃j

2α2
j |y|

αj−2

(1+|y|αj )2 φ̃j[−2αi log dj − 2(k− j + 1) 2i−1
2j−1 log λ− 2αi log |y|+ hi(0)]dy + o(1) for j > i.

(4.46)

Based on (4.46), by the definition of σj(λ), (4.31), (4.19) and (4.20), we get

ˆ
Ω
|x|αj−2ewj φPwidx

=



−2(k− i + 1)σj(λ) + o(1) for j < i

−2(k− i + 1)σi(λ) +
´

Ω̃i

2α2
i |y|

αi−2

(1+|y|αi )2 φ̃i[−2 log(1 + |y|αi )]dy + o(1) for j = i

−2(k− j + 1) 2i−1
2j−1 σj(λ) +

´
Ω̃j

2α2
j |y|

αj−2

(1+|y|αj )2 φ̃j[−2αi log |y|]dy + o(1) for j > i

=



−2(k− i + 1)σj(λ) + o(1) for j < i

−2(k− i + 1)σi(λ) + 4παiγi + o(1) for j = i

−2(k− j + 1) 2i−1
2j−1 σj(λ) + 8παiγj + o(1) for j > i,

(4.47)

where we used [9, (4.18)-(4.20) ].
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Then by Lemma 4.4, (4.47) and (4.21)

ρ+
´

Ω eWφPwidx´
Ω eWdx

= ∑
j even

ˆ
Ω
|x|αj−2ewj φPwidx + ρ0

´
Ω ez−8kπG(x,0)φPwi´

Ω ez−8kπG(x,0)dx
+ o
( 1
| log λ|

)
= ∑

j even

ˆ
Ω
|x|αj−2ewj φPwidx + o(1)

= 4παi

(
γi + ∑

j>i even
2γj

)
− 2(k− i + 1)

(
σi(λ) + ∑

j<i even
σj(λ)

)
− ∑

j>i even
2(k− j + 1)

2i− 1
2j− 1

σj(λ) + o(1).

Similarly, by replacing φ by 1 in (4.47), one can deduce that

ρ+
´

Ω eW Pwidx´
Ω eWdx

= −8π| log λ|
(

∑
j≤i even

(k− i + 1)αj + ∑
j>i even

(k− j + 1)
2i− 1
2j− 1

αj

)
+ O(1),

and

ρ+
´

Ω eWφdx´
Ω eWdx

= ∑
i even

σi(λ)

| log λ| + ρ0

´
Ω ez−8kπG(x,0)φ´

Ω ez−8kπG(x,0)dx
+ o
( 1
| log λ|

)
.

Moreover,

λ

ˆ
Ω

e−WφPwidx = ∑
j odd

ˆ
Ω
|x|αj−2ewj φPwidx + o(1)

= 8παi ∑
j>i odd

γj − ∑
j<i odd

2(k− i + 1)σj(λ)− ∑
j>i odd

2(k− j + 1)
2i− 1
2j− 1

σj(λ) + o(1),

and ˆ
Ω
∇φ∇Pwidx =

ˆ
Ω
|x|αi−2ewi φdx =

ˆ
R2
|y|αi−2ewφ̃idy = o(1)

by (4.28) and (4.18). Combining all the above estimates, we get that for i even,

4παi(γi + ∑
j>i

2γj)−∑
j≤i

2(k− i + 1)σj −∑
j>i

2(k− j + 1)
2i− 1
2j− 1

σj

+
8π

ρ+ ∑
j≤i even

(k− i + 1)αj

(
∑

l even
σl(λ) + | log λ|ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
+

8π

ρ+ ∑
j>i even

(k− j + 1)
2i− 1
2j− 1

αj

(
∑

l even
σl(λ) + | log λ|ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
= o(1).

(4.48)

Next we consider i odd. Similarly to the previous estimates, one has

ρ+
´

Ω eWφPwidx´
Ω eWdx

= ∑
j even

ˆ
Ω
|x|αj−2ewj φPwidx + ρ0

´
Ω ez−8kπG(x,0)φPwi´

Ω ez−8kπG(x,0)dx
+ o(

1
| log λ| )

= 8παi ∑
j>i even

γj − ∑
j<i even

2(k− i + 1)σj(λ)− ∑
j>i even

2(k− j + 1)
2i− 1
2j− 1

σj(λ) + o(1)

ρ+
´

Ω eW Pwidx´
Ω eWdx

= −8π| log λ|
(

∑
j<i even

(k− i + 1)αj + ∑
j>i even

(k− j + 1)
2i− 1
2j− 1

αj

)
+ O(1),

and

λ

ˆ
Ω

e−WφPwidx = ∑
j odd

ˆ
Ω
|x|αj−2ewj φPwidx + o(1)

= 4παiγi + 8παi ∑
j>i odd

γj − ∑
j≤i odd

2(k− i + 1)σj(λ)− ∑
j>i odd

2(k− j + 1)
2i− 1
2j− 1

σj(λ) + o(1).
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So we have for i odd,

4παi(γi + ∑
j>i

2γj)−∑
j≤i

2(k− i + 1)σj −∑
j>i

2(k− j + 1)
2i− 1
2j− 1

σj

+
8π

ρ+ ∑
j<i even

(k− i + 1)αj

(
∑

l even
σl(λ) + | log λ|ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
+

8π

ρ+ ∑
j>i even

(k− j + 1)
2i− 1
2j− 1

αj

(
∑

l even
σl(λ) + | log λ|ρ0

´
Ω ez−8kπG(x,0)φdx´
Ω ez−8kπG(x,0)dx

)
= o(1).

(4.49)

By step 3 we know that the terms in (4.48) and (4.49) containig σi are of order o(1), and thus

4παi

(
γi + ∑

j>i
2γj

)
= o(1),

from which we deduce that γi = 0 for i = 1, · · · , k.

Step 5. Finally, we derive a contradiction.

Multiplying equation (4.17 ) by φ and integrating, we getˆ
Ω
|∇φ|2dx− λ

ˆ
Ω

e−Wφ2dx− ρ+
(´

Ω eWφ2dx´
Ω eWdx

−
(
´

Ω eWφdx)2

(
´

Ω eWdx)2

)
=

ˆ
Ω
∇h∇φdx.

From Step 1-Step 4 and the assumptions on φ and h, we have that the left hand side of the above equation tends to 1
while the right hand side is of order o(1). This yields a contradiction. �

Once the a priori estimates are carried out, the existence of a solution to the linear problem (4.17) follows easily by
using the Fredholm alternative, see for example Proposition 5.1 in [7].

4.4. Conclusion. By exploiting the linear theory developed in the previous subsection it is then standard to derive
an existence result for the nonlinear problem (4.50) based on the contraction mapping, similarly to Proposition 3.6.
We skip here the full argument referring to Proposition 5.4 in [7] for full details.

Proposition 4.7. For any ε > 0 sufficiently small, there exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), there exists a
unique φ ∈ Hl solving

∆(W + φ) + ρ+
eW+φ´

Ω eW+φdx
− λe−W−φ = 0 in Ω (4.50)

and
‖φ‖ ≤ Cλ

1
2(2k−1)−ε. (4.51)

Proof of Theorem 1.2. By Proposition 4.7, uλ = Wλ + φλ is a solution to the original problem (1.1) with ρ+λ = ρ+ =

4πk(k− 1) + ρ0 and ρ−λ = λ
´

Ω e−udx. Then by Lemma 4.4 and (4.51)

ρ−λ = λ

ˆ
Ω

e−udx = λ

ˆ
Ω

e−Wdx + o(1) = ∑
i odd

ˆ
Ω
|x|αi−2ewi dx + o(1)

= ∑
i odd

4παi + o(1) = 4πk(k + 1) + o(1).

�
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