
LOCAL ASYMPTOTICS

FOR NONLOCAL CONVECTIVE CAHN-HILLIARD EQUATIONS

WITH W 1,1 KERNEL AND SINGULAR POTENTIAL
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Abstract. We prove existence of solutions and study the nonlocal-to-local asymptotics
for nonlocal, convective, Cahn-Hilliard equations in the case of a W 1,1 convolution kernel
and under homogeneous Neumann conditions. Any type of potential, possibly also of
double-obstacle or logarithmic type, is included. Additionally, we highlight variants and
extensions to the setting of periodic boundary conditions and viscosity contributions, as
well as connections with the general theory of evolutionary convergence of gradient flows.
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1. Introduction

In this paper we continue the study of the nonlocal-to-local asymptotics of Cahn-Hilliard
equations initiated in [43, 27, 28]. In contrast to the results in [43, 27, 28], we focus here
on the complementary case of long-range interaction kernels, possibly including the Riesz,
Newtonian, and Bessel potentials. In particular, we provide the first nonlocal-to-local con-
vergence result for a class of convective Cahn-Hilliard equations, under homogeneous Neu-
mann boundary conditions, and in the absence of regularizing viscosity terms.

The Cahn-Hilliard equation is considered the pivotal model for spinodal decomposition: an
irreversible process occurring in multiple composites (such as alloys, glasses, gels, ceramics,
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liquid solutions, and polymer solutions), and determined by local fluctuations in the con-
centrations of mixture components which eventually lead to a decomposition of the material
into stable phases. This evolution equation was originally introduced in [14], and has since
then acquired a key role in materials science due to its aptitude to characterize a variety of
different settings, ranging from biology to image reconstruction [15, 19, 52].

The mathematical analysis of the classical Cahn-Hilliard equation has been the subject of
a very intense research activity in the past decades. Among the extensive literature, we
mention the contributions [16, 18] about existence and uniqueness of solution in domains
with nonpermeable walls, the analysis in [17] including logarithmic double-well potentials,
and the works in [20, 39] incorporating dynamic boundary conditions and irregular poten-
tials, as well as all the references therein. A detailed analysis on the asymptotic behavior
of solutions has been carried out in [21, 26] (see also the references therein).
An augmented Cahn-Hilliard equation including additional convective contributions, and
related to stirring of fluids and biological realizations of thin films is the subject of [10].
Relevant studies in coupling the Cahn-Hilliard equation with a further equation for the
velocity field have been the focus of [2, 3, 13, 36].

A key feature of the Cahn-Hilliard equation is the fact that it describes the H−1-gradient
flow of the Cahn-Hilliard-Modica-Mortola-energy functional, defined as

ECH(ϕ) :=
1

2

ˆ
Ω
|∇ϕ(x)|2 dx+

ˆ
Ω
F (ϕ(x)) dx, (1.1)

where ϕ : Ω → R denotes a concentration parameter, and where F : R → R is a suitable
nonlinear double-well potential. With the above notation, and under the assumption of
constant mobility (which, for simplicity, we assume identically equal to one), the Cahn-
Hilliard equation reads as follows:

∂tϕ−∆µ = 0 in (0, T )× Ω ,

µ ∈ −∆ϕ+ ∂F (ϕ) in (0, T )× Ω ,

∂nϕ = ∂nµ = 0 in (0, T )× ∂Ω ,

ϕ(0) = ϕ0 in Ω

(1.2)

where µ represents the chemical potential associated to the energy ECH , ∂F is the subdif-
ferential (in the sense of convex analysis, see, e.g. [6]) of the double-well potential F , ϕ0 is
a suitable initial datum, T > 0 is a fixed final time, and Ω is a smooth bounded domain in
Rd (with d = 2, 3).

In the early 90’s a nonlocal counterpart of the above equation has been introduced by G. Gi-
acomin and J. Lebowitz in [38] in order to provide a microscopical model of a d-dimensional
lattice gas evolving via a Poisson nearest-neighbor process. The corresponding nonlocal
Cahn-Hilliard equation is introduced as gradient flow of the nonlocal energy functional

ENLε (ϕ) =
1

4

ˆ
Ω

ˆ
Ω
Jε(x, y)|ϕ(x)− ϕ(y)|2 dx dy +

ˆ
Ω
F (ϕ(x)) dx. (1.3)

where, for every ε > 0, Jε(x, y) is a positive and symmetric convolution kernel.
The connection between the nonlocal and local gradient flows can be seen by a formal com-
putation: in the case in which Jε(x, y) = Jε(|x − y|) is suitably regular and concentrates
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around the origin as ε→ 0, the nonlocal interface evolution approaches that in (1.2). This
observation is supported by the rigorous variational analysis of the asymptotic behavior
of (1.3) as ε tends to zero. Indeed a whole nonlocal-to-local framework for functionals in
the form (1.3) has been developed in the seminal papers by J. Bourgain, H. Brezis, and P.
Mironescu [11, 12], as well as in the Γ-convergence analysis carried out by A.C. Ponce in
[45, 46].

The interest in these nonlocal formulations is motivated by the fact that they exhibit a
closer connection, compared to local models, to atomistic descriptions, and provide the
ideal tool to describe pattern-formation phenomena. The main novelty with respect to
the local models is the presence of the possible long-range interaction kernel Jε, taking
into account also the interaction between particles at a large scale (let’s say ε−1). As a
result, nonlocal Cahn-Hilliard equations find applications in multiple settings, ranging from
the modeling of tumor growth [33, 47], to the mechanisms describing phase transitions in
polymer blends.
The recent years have witnessed an intense and increasing research activity on nonlocal
Cahn-Hilliard equations: we point out in this direction the contributions [1, 7, 35, 37, 40]
and the references therein. The main assumption on the interaction kernel in such studies
is that Jε is symmetric and of class W 1,1. This is well motivated both in the direction
of applications to diffuse interface modelling and from a mathematical perspective as well.
Indeed, on the one hand these assumptions allow to consider all relevant examples of New-
tonian and Bessel potentials, and on the other hand they ensure enough integrability and
regularity on the solutions to the corresponding nonlocal evolutions as it is expected in
diffuse interface models.

The variational convergence of the nonlocal energy to the local one gives rise naturally to
the study of the asymptotics of the corresponding evolution problems. Such analysis has
been initiated in some previous works of ours in different settings. In [43], assuming ex-
istence of the nonlocal evolution, the authors have shown nonlocal-to-local convergence of
the Cahn-Hilliard equations in the case of polynomial double-well potentials satisfying a
further concavity assumption. Very recently, in [27, 28], we have provided a first existence
result for solutions to the nonlocal Cahn-Hilliard equations for singular kernels not falling
within the W 1,1-existence theory and under possible degeneracy of the double-well poten-
tial. We worked under the assumption of constant mobility, first in the case of periodic
boundary conditions, and afterwards with Neumann boundary conditions in the viscous
(and vanishing viscosity) setting. Additionally, in [27, 28] we have shown convergence to
the classical Cahn-Hilliard equation, as the singular kernels {Jε}ε concentrate around the
origin (as ε→ 0) and approach a Dirac delta. We point out that, aside from the two recent
works [4, 5] dealing with the fractional Cahn-Hilliard equation, and from the general setting
introduced in [34] (both not directly falling within our setting), the two papers [27, 28] are
the first contributions dealing with the case of non-regular interaction kernels.

The focus of this paper is on a counterpart to the analysis in [27, 28]. Indeed, in the men-
tioned papers we were forced to choose interaction kernels with a singularity of order 2 in
the origin in order to guarantee at least a suitable convergence of the energies. Clearly, in
dimension two and three such choice does not ensure W 1,1 regularity. As a consequence,
the local asymptotics of nonlocal Cahn-Hilliard equations with W 1,1 kernels is currently an
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open problem: we give here a first positive answer in this direction. Indeed, we provide
a full characterization of existence and nonlocal-to-local asymptotics in the case of singu-
lar double-well potential, interaction kernels satisfying W 1,1 integrability assumptions, and
in the presence of a further convection term. The main idea of the work is to propose a
different scaling of the interaction kernels, allowing to obtain both a suitable Gamma con-
vergence of the energies and the required W 1,1 regularity. From a modeling point of view,
the additional regularity of the interaction kernel corresponds to enhancing the effects of
long-range interactions and the diffuse interface nature of the model. From a mathematical
perspective, the W 1,1 integrability of Jε allows to streamline all a-priori estimates involving
integrations by parts. As a by-product, we are able here to provide the first nonlocal-to-local
convergence result for a Cahn-Hilliard model involving homogeneous Neumann boundary
conditions, and without any additional regularizing viscous terms (as it was necessary in
[28]).

In order to present our main results we need to introduce some basic notation. We introduce
below both the nonlocal system that we consider in this paper

∂tuε −∆µε = −div(uεv) in (0, T )× Ω , (1.4)

µε ∈ (Jε ∗ 1)uε − Jε ∗ uε + γ(uε) + Π(uε) in (0, T )× Ω , (1.5)

∂nµε = 0 in (0, T )× ∂Ω , (1.6)

uε(0) = u0,ε in Ω , (1.7)

and its local counterpart

∂tu−∆µ = −div(uv) in (0, T )× Ω , (1.8)

µ ∈ −∆u+ γ(u) + Π(u) in (0, T )× Ω , (1.9)

∂nu = ∂nµ = 0 in (0, T )× ∂Ω , (1.10)

u(0) = u0 in Ω. (1.11)

Here γ is a maximal monotone graph, and Π is a Lipschitz map. Together, they form the
subdifferential of a suitable double-well potential F . The map v represents a velocity field.
The parameter ε identifies, roughly speaking, the amplitude of the range of nonlocal inter-
actions. We refer to Section 2 below for the precise regularity assumptions.

Our main results are the following. First, in Theorem 2.2 we prove well-posedness of the
system in (1.4)–(1.7). Second, in Theorem 2.3, relying on the a-priori estimates identified
in the proof of Theorem 2.2, we analyze nonlocal-to-local asymptotics. Our proof strategy
is quite general: we collect in Section 6 both an application to the case of periodic bound-
ary conditions, and an analysis of the viscous Cahn-Hilliard case, in which some regularity
assumptions on the velocity field v can be relaxed. Due to the presence of the velocity
field, our setting does not follow within the general theory of evolutionary Γ-convergence
for gradient flows developed in [48, 49]. Additionally, even in the absence of convective con-
tributions, our general assumptions on the double-well potential make the energy functional
not C1, thus situating our analysis outside the classical theory in [48, 49] but rather closer
to the abstract metric framework in [50]. We devote the last section of this paper to show
how some crucial estimates in the proof strategy of Theorems 2.2 and 2.3 directly relate to
this general methodology.
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The assumptions on the double-well potentials F considered in our formulation are quite
general. One the one hand, in fact, our class of double-well potentials includes the classical
choice for F as the fourth-order polynomial Fpol(r) := 1

4(r2 − 1)2, r ∈ R, with minima in
±1 (corresponding to the pure phases). On the other hand, it also incorporated logarithmic
double-well potentials, such as

Flog(s) =
θ

2
((1 + s) log(1 + s) + (1− s) log(1− s))− θc

2
s2

for 0 < θ < θc, which by contrast is defined on the bounded domain (−1, 1) and possesses
minima within the open interval (−1, 1), and so-called double-obstacle potential (see [9, 44]),
having the form

Fob(s) = I[−1,1](s) +
1

2
(1− s2), I[−1,1](s) :=

{
0 if s ∈ [−1, 1]

+∞ otherwise .

The system in (1.4)–(1.7) is additionally driven by a convection term in divergence form,
destroying the gradient-flow structure of the equation. Cahn-Hilliard diffusions under the
action of convective terms play a central role both in the modeling of mixing and stirring
of fluids, and in biological thin-films deposition via Langmuir-Blodgett transfer [8, 42]. We
recall here the recent works [10, 25, 31, 53] on local Cahn-Hilliard models with convection,
[29, 30, 47] studying nonlocal Cahn-Hilliard under local convection, and [32, 41] on a non-
local model with stellar convection. Phase separation in nonlocal convective Cahn-Hilliard
systems is the subject of [23, 24]. Further couplings of Cahn-Hilliard equations under evolv-
ing velocity fields have been analyzed in [2, 3, 13, 36].

The paper is organized as follows: Section 2 contains the mathematical setting and the
precise statements of the main results. Section 3 focuses on some useful preliminary results.
Section 4 is devoted to the proof of well-posedness of the nonlocal system (1.4)–(1.7), while
Section 5 focuses on nonlocal-to-local asymptotics. Eventually, Section 6 and Section 7
contain some generalizations of the results, and highlight their connections with evolutionary
Γ-convergence of gradient flows, respectively. The main contributions of the paper are
summarized in Section 8.

2. Setting and main result

Throughout the paper, Ω ⊂ Rd is a smooth bounded domain, with d = 2, 3, and T > 0 is a
fixed final time. We set Q := (0, T ) × Ω and Qt := (0, t) × Ω for all t ∈ (0, T ). We define
the functional spaces

H := L2(Ω) , V := H1(Ω) , V0 := H1
0 (Ω) , W := {ϕ ∈ H2(Ω) : ∂nϕ = 0 a.e. on ∂Ω} ,

endowed with their natural norms ‖ · ‖H , ‖ · ‖V , ‖ · ‖V0 , and ‖ · ‖W , respectively. The duality
pairing between V ∗ and V and the scalar product in H will be denoted by 〈·, ·〉V and
(·, ·)H , respectively. We also recall that the inverse of the −∆ operator with homogeneous
Neumann conditions is a well-defined isomorphism

N : {ϕ ∈ V ∗ : ϕΩ = 0} → {ϕ ∈ V : ϕΩ = 0} ,

where ϕΩ := 1
|Ω|〈ϕ, 1〉 for every ϕ ∈ V ∗.

Throughout the work, we will consider the following assumptions.
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H1: α ∈ (0, d− 1) is a fixed real number.
H2: ρ : [0,+∞)→ [0,+∞) is of class C1, and such that

s 7→ |ρ′(s)|sd−1−α ∈ L1(R+),

with the renormalizationˆ +∞

0
ρ(s)sd+1−α ds =

2

Cd
, Cd :=

ˆ
Sd−1

|σ · e1|2 dHd−1(σ) .

The family of mollifiers (ρε)ε>0 is defined as

ρε(r) :=
1

εd
ρ(r/ε) , r ≥ 0 , ε > 0 .

The convolution kernel Jε : Rd → R is given by

Jε(z) :=
1

ε2−α ρε(|z|)
1

|z|α
, z ∈ Rd ,

and we set

(Jε ∗ ϕ)(x) :=

ˆ
Ω
Jε(x− y)ϕ(y) dy , x ∈ Ω , ϕ ∈ L1(Ω) .

H3: γ : R → 2R is a maximal monotone graph with 0 ∈ γ(0), and γ̂ : R → [0,+∞] is
the unique proper, convex and lower semicontinuous function such that ∂γ̂ = γ
and γ̂(0) = 0. For every λ > 0, the Yosida approximation of γ is denoted by

γλ : R → R. Moreover, Π : R → R is Lipschitz-continuous, and we set Π̂ : R → R
as Π̂(r) :=

´ r
0 Π(s) ds, r ∈ R. We will assume, with no loss of generality, that

γ̂ + Π̂ ≥ 0, and that for every ε > 0 there exist c0
ε, λ

0
ε > 0 such that

γ′λ(r) + Π′(r) + (Jε ∗ 1)(x) ≥ c0
ε for a.e. (r, x) ∈ R× Ω , ∀λ ∈ (0, λ0

ε) .

H4: v ∈ L2(0, T ; (L∞(Ω) ∩ V0)d).

Assumption H1 is needed in order to guarantee that the kernel is of class W 1,1 in Ω.
The assumptions on the mollifiers stated in H2 correspond to the requirements in [45, 46];

assumption H3 includes any type of double-well potential F represented by γ̂ + Π̂ such
as the logarithmic, the the fourth-order polynomial but also the double-obstacle potential;
finally we observe that our analysis includes quite general velocity fields v, possibly varying
both in space and time.
The local limiting energy functional is defined as

E : H → [0,+∞] , E(ϕ) :=

{
1
2

´
Ω |∇ϕ(x)|2 dx if ϕ ∈ V ,

+∞ if ϕ ∈ H \ V .

Furthermore, thanks to the assumption H2, it follows that Jε ∈ W 1,1(Rd) for every ε > 0
(see Lemma 3.1 below). This implies in particular that the nonlocal energy satisfies

Eε(ϕ) :=
1

4

ˆ
Ω×Ω

Jε(x− y)|ϕ(x)− ϕ(y)|2 dx dy < +∞ ∀ϕ ∈ H . (2.1)

For further details we refer to Section 3.
The local problem is well-posed (see [22, 25]) in the following sense.
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Theorem 2.1. For every u0 ∈ V such that γ̂(u0) ∈ L1(Ω) and (u0)Ω ∈ IntD(γ), there
exists a triplet (u, µ, ξ), where u is uniquely determined, such that

u ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) ,

µ ∈ L2(0, T ;V ) ,

ξ ∈ L2(0, T ;H) ,

u(0) = u0

µ = −∆u+ ξ + Π(u) ,

ξ ∈ γ(u) a.e. in Q ,

and

〈∂tu, ϕ〉V +

ˆ
Ω
∇µ(x) · ∇ϕ(x) dx =

ˆ
Ω
u(x)v(x) · ∇ϕ(x) dx ∀ϕ ∈ V , a.e. in (0, T ) .

The two main results of this paper are the following: the first one deals with the existence
and uniqueness of solutions to the nonlocal problem for ε fixed; the latter concerns the
nonlocal-to-local convergence.

Theorem 2.2. Let ε > 0 be fixed. Then, under assumptions H1–H4, for every u0,ε ∈ H
such that γ̂(u0,ε) ∈ L1(Ω) and (u0,ε)Ω ∈ IntD(γ), there exists a triplet (uε, µε, ξε), where uε
is uniquely determined, such that

uε ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ) ,

µε ∈ L2(0, T ;V ) ,

ξε ∈ L2(0, T ;V ) ,

uε(0) = u0,ε

µε = (Jε ∗ 1)uε − Jε ∗ uε + ξε + Π(uε) ,

ξε ∈ γ(uε) a.e. in Q ,

and

〈∂tuε, ϕ〉V +

ˆ
Ω
∇µε(x) · ∇ϕ(x) dx =

ˆ
Ω
uε(x)v(x) · ∇ϕ(x) dx ∀ϕ ∈ V , a.e. in (0, T ) .

(2.2)

Theorem 2.3. Assume H1–H4, let (u0,ε)ε>0 ⊂ H, and let u0 ∈ V be such that

sup
ε>0

(
Eε(u0,ε) + ‖γ̂(u0,ε)‖L1(Ω)

)
< +∞ ,

∃ [a0, b0] ⊂ IntD(γ) : a0 ≤ (u0,ε)Ω ≤ b0 ∀ ε > 0 ,

u0,ε → u0 in H as ε↘ 0 .

Then, if (uε, µε, ξε) is the solution to the nonlocal problem given by Theorem 2.2, there exists
a solution (u, µ, ξ) to the local problem local problem such that

uε → u in C0([0, T ];H) ,

uε
∗
⇀ u in L∞(0, T ;H) ∩H1(0, T ;V ∗) , (2.3)

µε ⇀ µ in L2(0, T ;V ) , (2.4)

ξε ⇀ ξ in L2(0, T ;H) . (2.5)
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3. Preliminaries

We collect in this section some preliminary results that will be used in the sequel. We first
show that for our choice of α the kernel Jε is of class W 1,1.

Lemma 3.1. For every ε > 0 it holds that Jε ∈W 1,1(Rd).

Proof. An elementary computation yieldsˆ
Rd

Jε(z) dz =

ˆ
Rd

1

ε2−α
1

εd
ρ(|z|/ε) 1

|z|α
dz =

1

ε2

ˆ
Rd

ρ(|w|)|w|−α dw

=
1

ε2
|Sd−1|

ˆ +∞

0
ρ(r)rd−1−α dr ,

where the right-hand side is finite thanks to H1–H2. Hence, Jε ∈ L1(Rd). Furthermore,
note that for every i ∈ {1, . . . , d},

∂ziJε(z) =
1

ε2−α

ρ′ε(|z|) zi|z| |z|
α − ρε(|z|)α|z|α−1 zi

|z|

|z|2α
=

1

εd+2−α

1
ερ
′(|z|/ε)zi|z| − αρ(|z|/ε)zi

|z|α+2
,

yielding

|∇Jε(z)| ≤
1

εd+2−α

(
1

ε

|ρ′(|z|/ε)|
|z|α

+ α
ρ(|z|/ε)
|z|α+1

)
. (3.1)

The two terms on the right-hand side of (3.1) satisfy

1

ε

ˆ
Rd

|ρ′(|z|/ε)|
|z|α

dz =
1

εα+1−d

ˆ
Rd

|ρ′(|w|)|
|w|α

dw =
1

εα+1−d |S
d−1|
ˆ +∞

0
|ρ′(r)|rd−1−α dr

and

α

ˆ
Rd

ρ(|z|/ε)
|z|α+1

dz =
α

εα+1−d

ˆ
Rd

ρ(|w|)
|w|α+1

dw =
α

εα+1−d |S
d−1|
ˆ +∞

0
ρ(r)rd−2−α dr ,

so that by comparison we haveˆ
Rd

|∇Jε(z)| dz ≤
|Sd−1|
ε3

ˆ +∞

0

(
r|ρ′(r)|+ αρ(r)

)
rd−2−α dr .

The right-hand side is finite again by H1–H2, hence Jε ∈W 1,1(Rd). �

As we have anticipated, the fact that Jε ∈W 1,1(Rd) implies that the nonlocal energy Eε is
well defined on the whole space H, i.e. Eε : H → [0,+∞). Indeed, it easily follows by the
properties of the convolution that

Eε(ϕ) =
1

2
((Jε ∗ 1)ϕ− Jε ∗ ϕ,ϕ)H ≤ ‖Jε‖L1(Rd)‖ϕ‖2H ∀ϕ ∈ H .

We proceed by studying the regularity of Eε, and by characterizing its differential.

Lemma 3.2. For all ε > 0, Eε : H → [0,+∞) is of class C1 and DEε : H → H is given
by

〈DEε(ϕ), ζ〉 =

ˆ
Ω

((Jε ∗ 1)ϕ− Jε ∗ ϕ) (x)ζ(x) dx

=
1

2

ˆ
Ω×Ω

Jε(x− y)(ϕ(x)− ϕ(y))(ζ(x)− ζ(y)) dx dy ϕ, ζ ∈ H .
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Proof. The proof is a direct consequence of the definition of Gâteaux differentiability and
of the linearity of the convolution operator: see [27, 28] for details. �

The next lemma provides a characterization of the asymptotic behavior of the energies Eε.

Lemma 3.3. For every ϕ, ζ ∈ V it holds that

lim
ε→0

Eε(ϕ) = E(ϕ) ,

lim
ε→0

ˆ
Ω

((Jε ∗ 1)ϕ− Jε ∗ ϕ) (x)ζ(x) dx =

ˆ
Ω
∇ϕ(x) · ∇ζ(x) dx .

Moreover, for every sequence (ϕε)ε>0 ⊂ H and ϕ ∈ H it holds that

sup
ε>0

Eε(ϕε) < +∞ ⇒ (ϕε)ε is relatively compact in H ,

ϕε → ϕ in H ⇒ E(ϕ) ≤ lim inf
ε→0

Eε(ϕε) .

Proof. Note that

Eε(ϕ) =
1

4

ˆ
Ω×Ω

ρε(|x− y|)
|ϕ(x)− ϕ(y)|2

ε2−α|x− y|α
dx dy =

1

4

ˆ
Ω×Ω

ρ̃ε(|x− y|)
|ϕ(x)− ϕ(y)|2

|x− y|2
dx dy ,

where

ρ̃ε(r) := ρε(r)
r2−α

ε2−α , r ≥ 0 .

The three statements are then a consequence of the results in [45, 46] and [28] provided
that the new sequence (ρ̃ε)ε of mollifiers satisfies the following properties:ˆ +∞

0
ρ̃ε(r)r

d−1 dr =
2

Cd
∀ ε > 0 ,

lim
ε→0

ˆ +∞

δ
ρ̃ε(r)r

d−1 dr = 0 ∀ δ > 0 .

The first condition follows from H2 and the computationˆ +∞

0
ρ̃ε(r)r

d−1 dr =
1

εd+2−α

ˆ +∞

0
ρ(r/ε)rd+1−α dr =

ˆ +∞

0
ρ(s)sd+1−α ds =

2

Cd
,

while the second condition follows from the equalityˆ +∞

δ
ρ̃ε(r)r

d−1 dr =

ˆ +∞

δ/ε
ρ(s)sd+1−α ds

and the dominated convergence theorem. �

Lemma 3.3 above can be used to study the asymptotic behaviour of DEε as ε→ 0. To this
aim, we introduce the operators

Bε : H → H , Bε(ϕ) := DEε(ϕ) = (Jε ∗ 1)ϕ− Jε ∗ ϕ , ϕ ∈ H ,

and

B : V → V ∗ , 〈B(ϕ), ζ〉 :=

ˆ
Ω
∇ϕ(x) · ∇ζ(x) dx , ϕ, ζ ∈ V .

Lemma 3.3 implies that Bε(ϕ) ⇀ B(ϕ) in V ∗ for every ϕ ∈ V as ε ↘ 0. As an im-
mediate consequence, for every sequence (ϕε)ε ⊂ V such that ϕε → ϕ in V , there holds
Bε(ϕε) ⇀ B(ϕ) in V ∗. While this identification result is surely enough for standard pur-
poses, it is not entirely satisfactory. Indeed, in several applications the strong convergence
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ϕε → ϕ in V is far beyond reach. The main reason is that the regularity ϕε ∈ V can be
generally obtained at ε > 0 fixed, but not uniformly in ε (as the gradient of Jε blows up as
ε→ 0, as shown in the proof of Lemma 3.1).

The following proposition provides a far more general sufficient condition to identify the
limit of the operators Bε, without requiring any control in the space V . The main idea is to
observe that for any suitable test function ζ, by symmetry of Bε, we can write 〈Bε(ϕε), ζ〉 =
〈Bε(ζ), ϕε〉. Hence, if only ϕε → ϕ in H and ζ ∈ W is such that Bε(ζ) ⇀ −∆ζ in H, then
we can still conclude. However, it is absolutely not trivial to show that (Bε(ζ))ε is bounded
in H for a specific class of functions ζ: in particular, the natural choice ζ ∈ W does not
seem to work. The main novelty of the following proposition consists in showing that,
nevertheless, any ζ ∈W can be suitably approximated by a sequence (ζε)ε for which ζε → ζ
in H and Bε(ζε)→ −∆ζ in H, and that this is enough to conclude.

Proposition 3.1. Let (ϕε)ε ⊂ H and ϕ ∈ H be such that ϕε → ϕ in H and (Eε(ϕε))ε is
uniformly bounded. Then, ϕ ∈ V and Bε(ϕε) ⇀ B(ϕ) in V ∗.

Proof. Since (Eε(ϕε))ε is uniformly bounded in ε, the family (Bε(ϕε))ε is uniformly bounded
in V ∗. Indeed, for every ψ ∈ V there holds

|〈Bε(ϕε), ψ〉V | ≤ 2
√
Eε(ϕε)

√
Eε(ψ) ≤ C‖ψ‖V ,

where the last step is a direct consequence of [11, Theorem 1].
Hence, there exists η ∈ V ∗ such that Bε(ϕε) ⇀ η weakly* in V ∗ along a subsequence.
Moreover, the uniform boundedness of (Eε(ϕε))ε also ensures, thanks to Lemma 3.3, that
ϕ ∈ V . Now, we have to show that η = B(ϕ). To this end, let ζ ∈ W be arbitrary and
define

ζε := ζΩ + ζ̃ε , εζ̃ε +Bε(ζ̃ε) = −∆ζ .

Testing by ζ̃ε we get, by the Young inequality,

ε‖ζ̃ε‖2H + 2Eε(ζ̃ε) = (−∆ζ, ζ̃ε)H ≤ δ‖ζ̃ε‖2H +
1

4δ
‖∆ζ‖2H

for every δ > 0. By definition (ζ̃ε)Ω = 0, owing to the symmetry of the kernel Jε and the
definition of W . Thus, from the generalized Poincaré inequality contained in [45, Theorem

1.1], there exists cp > 0, independent of ε, such that ‖ζ̃ε‖2H ≤ cpEε(ζ̃ε). Choosing then δ
sufficiently small (for example δ < 2/cp), we deduce that there exists M > 0 independent
of δ such that

‖ζ̃ε‖2H + Eε(ζ̃ε) ≤M .

Thanks to the compactness result in [45, Theorem 1.2], we deduce that there exists ζ̃ ∈ V
such that ζ̃ε → ζ̃ strongly in H. By comparison in the equation for ζ̃ε it follows that

Bε(ζ̃ε)→ −∆ζ strongly in H.

Now, as Bε = DEε on H, we have that

Eε(ζ̃ε) + (Bε(ζ̃ε), ζ − ζ̃ε)H ≤ Eε(ζ).

Letting ε→ 0, this yields thanks to Lemma 3.3

E(ζ̃) + (−∆ζ, z − ζ̃)H ≤ E(ζ),

which implies in turn that ∇ζ = ∇ζ̃ almost everywhere in Ω. Consequently, recalling that
ζ̃Ω = 0, we have that ζ̃ = ζ − ζΩ. This implies in particular that ζε → ζ in H, and
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Bε(ζε) → −∆ζ in H. Moreover, the symmetry of Bε and the definition of Eε ensure also
that

Eε(ζε − ζ) =
1

2
(Bε(ζε − ζ), ζε − ζ)H = Eε(ζε)−

1

2
(Bε(ζε), ζ)H −

1

2
(Bε(ζ), ζε)H + Eε(ζ)

= Eε(ζε)− (Bε(ζε), ζ)H + Eε(ζ)→ 1

2
‖∇ζ‖2H − (−∆ζ, ζ)H +

1

2
‖∇ζ‖2H = 0 .

Now we can conclude. Indeed, on the one hand we have

(Bε(ϕε), ζε)H = (Bε(ϕε), ζε − ζ)H + (Bε(ϕε), ζ)H → (η, ζ)H

since, by Lemma 3.3 and the fact that Eε(ϕε) ≤M ,

|(Bε(ϕε), ζε − ζ)H | ≤ 2
√
Eε(ϕε)

√
Eε(ζε − ζ) ≤ 2M

√
Eε(ζε − ζ)→ 0 .

On the other hand,

(Bε(ϕε), ζε)H = (ϕε, Bε(ζε))H → (ϕ,−∆ζ)H = 〈B(ϕ), ζ〉V .

Since ζ ∈ W is arbitrary and W is dense in V , we deduce that η = B(ϕ), and that the
convergence holds along the entire sequence by uniqueness of the limit, as required. �

We conclude this section with a technical result that will play a key role in the study of
nonlocal-to-local asymptotics.

Lemma 3.4. For every δ > 0, there exist Cδ > 0 and εδ > 0 such that, for every sequence
(ϕε)ε>0 ⊂ H it holds

‖ϕε1 − ϕε2‖2H ≤ δ (Eε1(ϕε1) + Eε2(ϕε2)) + Cδ‖ϕε1 − ϕε2‖2V ∗ ∀ ε1, ε2 ∈ (0, εδ) .

Proof. The proof follows from the compactness property in Lemma 3.3, as in [28, Lem. 3]
and [27, Lem. 4]. �

4. The nonlocal problem

This section is devoted to the proof of Theorem 2.2. Our analysis is performed for a fixed
ε > 0. In what follows, we will denote by Mε a generic constant independent of λ.
We consider the auxiliary problem

∂tuελ −∆µελ = −div(uελv) in (0, T )× Ω , (4.1)

µελ = (Jε ∗ 1)uελ − Jε ∗ uελ + γλ(uελ) + Π(uελ) in (0, T )× Ω , (4.2)

∂nµελ = 0 in (0, T )× ∂Ω , (4.3)

uελ(0) = u0,ε in Ω , (4.4)

where, for every λ > 0, γλ : R → R is the Yosida approximation of γ, having Lipschitz
constant 1/λ.
Since Jε ∈ W 1,1(Rd), from classical results (see [29, 35]) it follows that the approximated
problem (4.1)–(4.4) admits a unique solution (uελ, µελ), with

uελ ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ) , µελ ∈ L2(0, T ;V ) .
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4.1. Uniform estimates. In this subsection, we show that the solutions to (4.1)–(4.4)
satisfy uniform estimates independent of λ. Recall that here ε > 0 is fixed.
Testing (4.1) by µελ, (4.2) by ∂tuελ, and taking the difference, by Lemma 3.2 we obtainˆ

Qt

|∇µελ(s, x)|2 dx ds+ Eε(uελ(t)) +

ˆ
Ω

(γ̂λ(uελ(t, x)) + Π̂(uελ(t, x))) dx

= Eε(u0,ε) +

ˆ
Ω

(γ̂λ(u0,ε(x)) + Π̂(u0,ε(x))) dx+

ˆ
Qt

uελ(s, x)v(s, x) · ∇µελ(s, x) dx ds ,

for every t ∈ (0, T ). From the Young inequality, we infer that

1

2

ˆ
Qt

|∇µελ(s, x)|2 dx ds+ Eε(uελ(t)) +

ˆ
Ω

(γ̂λ(uελ(t, x)) + Π̂(uελ(t, x))) dx

≤ Eε(u0,ε) + ‖γ̂(u0,ε) + Π̂(u0,ε)‖L1(Ω) +
1

2

ˆ t

0
‖v(s)‖2L∞(Ω)‖uελ(s)‖2H ds .

(4.5)

By the generalized Poincaré inequality in [45], we deduce the existence of a constant cp > 0,
independent of λ, such that

‖uελ − (uελ)Ω‖2H ≤ cpEε(uελ) .

Since (uελ)Ω = (u0,ε)Ω from (4.1), summing and subtracting (u0,ε)Ω in the third term on
the right-hand side of (4.5), we have

1

2

ˆ
Qt

|∇µελ(s, x)|2 dx ds+ Eε(uελ(t)) +

ˆ
Ω

(γ̂λ(uελ(t, x)) + Π̂(uελ(t, x))) dx

≤ Eε(u0,ε) + ‖γ̂(u0,ε) + Π̂(u0,ε)‖L1(Ω) + ‖v‖2L2(0,T ;L∞(Ω))‖u0,ε‖2H

+ cp

ˆ t

0
‖v(s)‖2L∞(Ω)Eε(uελ(s)) ds .

By the Gronwall lemma and the assumptions on u0,ε and v, there exists a constant Mε > 0,
independent of λ, such that

‖∇µελ‖2L2(0,T ;H) + ‖Eε(uελ)‖L∞(0,T ) + ‖uελ‖2L∞(0,T ;H) ≤Mε . (4.6)

By comparison in (4.1) we also infer that

‖∂tuελ‖L2(0,T ;V ∗) ≤Mε . (4.7)

Now, testing (4.1) by N (uελ−(u0,ε)Ω), equation (4.2) by uελ−(u0,ε)Ω, taking the difference,
and using the symmetry of the kernel Jε, yields

〈∂tuελ,N (uελ − (u0,ε)Ω)〉V + 2Eε(uελ) +

ˆ
Ω
γλ(uελ(x))(uελ(x)− (u0,ε)Ω) dx

=

ˆ
Ω
uελ(x)v(x) · ∇N (uελ(x)− (u0,ε)Ω) dx−

ˆ
Ω

Π(uελ(x))(uελ(x)− (u0,ε)Ω) dx .

(4.8)

The first two terms on the left-hand side of (4.8) are bounded in L2(0, T ) independently
of λ thanks to the estimates (4.6)–(4.7). Owing to the properties of N and the Hölder
inequality, the right-hand side of (4.8) can be estimated from above by

‖uελ‖H‖v‖L∞(Ω)‖uελ − (u0,ε)Ω‖V ∗ + ‖Π(uελ)‖H‖uελ − (u0,ε)Ω‖H ,
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hence they are bounded in L2(0, T ) thanks to the Lipschitz-continuity of Π, assumption H4,
and again (4.6). Moreover, since (u0,ε)Ω ∈ IntD(γ), there exist two constants cε, c

′
ε > 0,

independent of λ, such thatˆ
Ω
γλ(uελ(x))(uελ(x)− (u0,ε)Ω) dx ≥ cε‖γλ(uελ)‖L1(Ω) − c′ε .

By comparison, we deduce that

‖γλ(uελ)‖L2(0,T ;L1(Ω)) ≤Mε .

This yields, after integrating equation (4.2) on Ω and using (4.6), the estimate

‖(µελ)Ω‖L2(0,T ) ≤Mε ,

which together with (4.6) implies

‖µελ‖L2(0,T ;V ) ≤Mε . (4.9)

Since Jε ∈W 1,1(Rd), we directly obtain

‖Jε ∗ 1‖L∞(Ω) ≤ ‖Jε‖L1(Rd) ,

‖∇(Jε ∗ 1)‖L∞(Ω) = ‖(∇Jε) ∗ 1‖L∞(Ω) ≤ ‖∇Jε‖L1(Rd) ,

‖Jε ∗ uελ‖H ≤ ‖Jε‖L1(Rd)‖uελ‖H ,
‖∇(Jε ∗ uελ)‖H = ‖(∇Jε) ∗ uελ‖H ≤ ‖∇Jε‖L1(Rd)‖uελ‖H ,

(4.10)

which imply, together with (4.6), that

‖Jε ∗ uελ‖L∞(0,T ;V ) ≤Mε . (4.11)

Differentiating (4.2) and testing it against ∇uελ, we have
ˆ

Ω

(
γ′λ(uελ(x)) + Π′(uελ(x)) + (Jε ∗ 1)(x)

)
|∇uελ(x)|2 dx

=

ˆ
Ω

(∇µελ(x) +∇(Jε ∗ uελ)(x)−∇(Jε ∗ 1)(x)) · ∇uελ(x) dx .

Recalling now assumption H3 and using the Young inequality yields

c0
ε‖∇uελ‖2H ≤

c0
ε

2
‖∇uελ‖2H +

3c0
ε

2
‖∇µελ‖2H +

3c0
ε

2
‖∇(Jε ∗ uελ)‖2H +

3c0
ε

2
‖∇Jε‖2L1(Rd) . (4.12)

By combining (4.12) with (4.6) and (4.11), we infer that

‖uελ‖L2(0,T ;V ) ≤Mε . (4.13)

Since ∇((Jε ∗ 1)uελ) = (∇(Jε ∗ 1))uελ + (Jε ∗ 1)∇uελ, estimates (4.12) and (4.13) yield

‖(Jε ∗ 1)uελ‖L2(0,T ;V ) ≤Mε . (4.14)

By comparison in equation (4.2), in view of (4.9)–(4.14) and the Lipschitz regularity of Π,
we deduce the bound

‖γλ(uελ)‖L2(0,T ;V ) ≤Mε . (4.15)
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4.2. Passage to the limit as λ↘ 0. We conclude by passing to the limit as λ↘ 0 in the
approximating problem (4.1)–(4.4), with ε > 0 fixed.
Estimates (4.6)–(4.15) and the classical Aubin-Lions compactness results (see [51, Cor. 4])
ensure that there exist

uε ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ) , µε ∈ L2(0, T ;V ) , ξε ∈ L2(0, T ;V )

such that, as λ↘ 0,

uελ → uε in L2(0, T ;H) ,

uελ ⇀ uε in H1(0, T ;V ∗) ∩ L2(0, T ;V ) ,

µελ ⇀ µε in L2(0, T ;V ) ,

γλ(uελ) ⇀ ξε in L2(0, T ;V ) .

The strong-weak closure of the maximal monotone operator γ (see [6, § 2]) readily implies
that ξε ∈ γ(uε) almost everywhere in Q, while the Lipschitz-continuity of Π ensures that

Π(uελ)→ Π(uε) in L2(0, T ;H) .

Moreover, since H1(0, T ;V ∗) ∩ L2(0, T ;V ) ↪→ C0([0, T ];H), we also have uε(0) = u0,ε.
Finally, the properties of the convolution and the strong convergence of (uελ)λ yield

(Jε ∗ 1)uελ → (Jε ∗ 1)uε in L2(0, T ;H) ,

Jε ∗ uελ → Jε ∗ uε in L2(0, T ;H) .

Passing then to the weak limit in the approximated problem (4.1)–(4.4), we complete the
proof of Theorem 2.2. The uniqueness of solution is obtained arguing analogously to [27, 28].

5. The nonlocal-to-local asymptotics

In this section, we perform the limit as ε↘ 0 in the nonlocal problem in Theorem 2.2, and
we prove Theorem 2.3.
We first note that the assumptions of Theorem 2.3 ensure that the constants (Mε)ε>0

in estimates (4.6), (4.7), and (4.9) are uniformly bounded in ε. Hence, by weak lower
semicontinuity we infer that there exists a constant M > 0, independent of ε, such that

‖µε‖2L2(0,T ;V ) + ‖Eε(uε)‖L∞(0,T ) + ‖uε‖2H1(0,T ;V ∗)∩L∞(0,T ;H) ≤M . (5.1)

Testing (1.5) by ξε, rearranging the terms, and taking (5.1) into account yieldsˆ
Q
|ξε(s, x)|2 dx ds+

1

2

ˆ
Q
Jε(x− y)(ξε(s, x)− ξε(s, y))(uε(s, x)− uε(s, y)) dx dy ds

=

ˆ
Q

(µε −Π(uε))(s, x)ξε(s, x) dx ds ≤ 1

2

ˆ
Q
|ξε(s, x)|2 dx ds+M .

(5.2)

The second term on the left hand side of (5.2) is nonnegative as ξε ∈ γ(uε), and because of
H3. Thus, we infer that

‖ξε‖L2(0,T ;H) ≤M . (5.3)

By comparison in (1.5), it follows that

‖(Jε ∗ 1)uε − Jε ∗ uε‖L2(0,T ;H) ≤M . (5.4)

Thanks to Aubin-Lions compactness results, estimates (5.1)–(5.4) imply that there exist

u ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H) , µ ∈ L2(0, T ;V ) , ξ, η ∈ L2(0, T ;H) ,
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such that, as ε↘ 0,

uε → u in C0([0, T ];V ∗) ,

uε
∗
⇀ u in L∞(0, T ;H) ∩H1(0, T ;V ∗) ,

µε ⇀ µ in L2(0, T ;V ) ,

ξε ⇀ ξ in L2(0, T ;H) ,

(Jε ∗ 1)uε − Jε ∗ 1 ⇀ η in L2(0, T ;H) .

The strong convergence of (uε)ε yields u(0) = u0. Furthermore, Lemma 3.4 and estimate
(5.1) imply that for every δ > 0 there exists Cδ > 0 and εδ > 0 such that

‖uε1 − uε2‖2C0([0,T ];H) ≤ δ‖Eε1(uε1) + Eε2(uε2)‖L∞(0,T ) + Cδ‖uε1 − uε2‖2C0([0,T ];V ∗)

≤ 2Mδ + Cδ‖uε1 − uε2‖2C0([0,T ];V ∗) .

Since δ > 0 is arbitrary and (uε)ε converges strongly in C0([0, T ];V ∗), we deduce that

uε → u in C0([0, T ];H) .

This readily implies that ξ ∈ γ(u) by the strong-weak closure of γ, and that

Π(uε)→ Π(u) in C0([0, T ];H)

by the Lipschitz-continuity of Π.
Passing to the limit in the weak formulation of (1.4)–(1.7) we infer, by the dominated
convergence theorem, that

〈∂tu, ϕ〉V +

ˆ
Ω
∇µ(x) · ∇ϕ(x) dx =

ˆ
Ω
u(x)v(x) · ∇ϕ(x) dx

for every ϕ ∈ V , almost everywhere in (0, T ), and that µ = η + ξ + Π(u).
It only remains to show that u ∈ L∞(0, T ;V ) ∩ L2(0, T ;W ) and η = −∆u. To this end,
note that Lemma 3.3 and estimate (5.1) imply that

‖E(u)‖L∞(0,T ) ≤ lim inf
ε→0

‖Eε(uε)‖L∞(0,T ) ≤M ,

which ensures that u ∈ L∞(0, T ;V ).
Moreover, by Lemma 3.2 we know that, for every ϕ ∈ L2(0, T ;V ),ˆ T

0
Eε(uε(s)) ds+

ˆ
Q

((Jε ∗ 1)uε − Jε ∗ uε) (s, x)(ϕ− uε)(s, x) dx ds ≤
ˆ T

0
Eε(ϕ(s)) ds .

Since uε → u in C0([0, T ];H), Lemma 3.3, [11, Theorem 1], and Fatou’s lemma imply that

1

2

ˆ
Q
|∇u(s, x)|2 dx ds+

ˆ
Q
η(s, x)(ϕ− u)(s, x) dx ds ≤ 1

2

ˆ
Q
|∇ϕ(s, x)|2 dx ds

for every ϕ ∈ L2(0, T ;V ). Hence, we deduce that η ∈ ∂E(u), so thatˆ
Ω
η(x)ϕ(x) dx =

ˆ
Ω
∇u(x) · ∇ϕ(x) dx ∀ϕ ∈ V .

By the classical elliptic regularity theory we infer that u ∈ L2(0, T ;W ), η = −∆u, and
∂nu = 0 almost everywhere on ∂Ω, as required. For more details, we refer the reader to
[28]. This completes the proof of Theorem 2.3.
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6. Extensions and applications

In this section we present an overview of some settings in which a direct adaptation of
Theorems 2.2 and 2.3 provides existence and nonlocal-to-local convergence.

Periodic boundary conditions. This modeling assumption is equivalent to consider Ω
as the d-dimensional flat torus. Existence, regularity, and nonlocal-to-local convergence
have been analyzed in [43, 27] for interaction kernels enjoying much weaker integrability
assumptions, and under slightly different hypotheses on the convection velocity v. As a
consequence of the periodicity of the problem, Jε ∗ 1 is constant over the domain and
∇(Jε ∗ uε) = Jε ∗ ∇uε = ∇Jε ∗ uε hold. The arguments in the proofs of Theorems 2.2 and
2.3 directly yield an extension of the results for regular kernel also to the setting of periodic
boundary conditions.

Viscous case and forcing term. Consider the following viscous nonlocal problem

∂tuε −∆µε = −div(uεv) in (0, T )× Ω , (6.1)

µε = τε∂tuε + (Jε ∗ 1)uε − Jε ∗ uε + γ(uε) + Π(uε)− gε in (0, T )× Ω , (6.2)

∂nµε = 0 in (0, T )× ∂Ω , (6.3)

uε(0) = u0,ε in Ω , (6.4)

and its local counterpart

∂tu−∆µ = −div(uv) in (0, T )× Ω , (6.5)

µ = τ∂tu−∆u+ γ(u) + Π(u)− g in (0, T )× Ω , (6.6)

∂nu = ∂nµ = 0 in (0, T )× ∂Ω , (6.7)

u(0) = u0 in Ω . (6.8)

For the nonlocal problem τε ≥ 0 is a viscosity coefficient and gε represents a distributed
forcing term, while for the local one τ ≥ 0 is the limiting viscosity parameter. In particular,
the choices τ > 0 and τ = 0 correspond to the viscous case and pure case. The above
setting, without the convection term in divergence form, has been studied in [27] under much
weaker regularity assumptions on the interaction kernels. In particular, in [27] existence
and convergence were proven by assuming τε > 0 for every ε > 0.
Under W 1,1-regularity of the kernel, in problem (6.1)–(6.4) (involving viscosity, a convective
contribution, and a forcing term) we can prove existence also for τε = 0, and we can weaken
hypothesis H3 on v.
To be precise, the statement of the existence result reads as follows.

Theorem 6.1. Let ε > 0 and τε ≥ 0 be fixed. Then, for every (u0,ε, gε) such that

u0,ε ∈ H, τεu0,ε ∈ V , γ̂(u0,ε) ∈ L1(Ω), (u0,ε)Ω ∈ IntD(γ),

and
gε ∈ L2(0, T ;H) if τε > 0 , gε ∈ H1(0, T ;H) if τε = 0 ,

there exists a triplet (uε, µε, ξε), where uε is uniquely determined, such that

uε ∈ H1(0, T ;V ∗) ∩ L2(0, T ;V ) , µε ∈ L2(0, T ;V ) , ξε ∈ L2(0, T ;V ) ,

τεuε ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) , τεµε ∈ L2(0, T ;W ) ,

uε(0) = u0,ε
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µε = τε∂tuε + (Jε ∗ 1)uε − Jε ∗ uε + ξε + Π(uε)− gε ,
ξε ∈ γ(uε) a.e. in Q .

We observe that if τε is strictly positive we can relax the hypothesis on v. Since the
computations are standard, we omit here the details. The nonlocal-to-local convergence
reads exactly as in [28, Thm. 3.3].

7. Connections with the theory of convergence of gradient flows

We conclude this paper by highlighting the connection between the results in Theorem 2.2
and the notion of evolutionary Γ-convergence for gradient flows introduced by E. Sandier
and S. Serfaty in [49] (see also [50] for an overview). In the absence of convection (v = 0),
the nonlocal-to-local convergence in Theorem 2.3, as well as some of the a-priori estimates
established in the proofs of Theorems 2.2 and 2.3 present many similarities with the abstract
scheme developed in [49, Theorem 1.4]. For convenience of the reader, we recall this seminal
result below, and proceed by showing the connection between the theorem below and the
proof strategy in our setting.

Theorem 7.1 ([49]). For every ε > 0, let Xε be a Hilbert space, and let

Eε : Xε → [0; +∞)

be a C1-functional. Assume also that X is a Hilbert space, and that

E : X → [0; +∞)

is a C1-functional. For every ε > 0, let u0
ε ∈ Xε, let u0 ∈ X, and assume that u0

ε →τ u0 in
a suitable topology τ , and that

lim
ε→0
Eε(u0

ε) = E(u0).

Let (uε)ε be a family of conservative solutions for Eε on [0, T ) starting from (u0
ε)ε, namely

such that uε ∈ H1(0, T ;Xε), for almost every t ∈ [0, t),

∂tuε = −DXεEε(uε) ∈ Xε,

and for every t ∈ [0, T ),

Eε(u0
ε)− Eε(uε(t)) =

ˆ t

0
‖∂tuε(s)‖2Xε

ds. (7.1)

Assume also that the energy functionals (Eε)ε and E enjoy the following two properties:

C1) if for every ε > 0 there holds vε ∈ H1(0, T ;Xε), and for a subsequence vε(t)→τ v(t)

for every t ∈ [0, T ), then v ∈ H1(0, T ;X), and for every s ∈ [0, t),

lim inf
ε

ˆ s

0
‖∂tvε(s)‖2ds ≥

ˆ s

0
‖∂tv(s)‖2ds;

C2) if for every ε > 0 there holds wε ∈ Xε, and wε →τ w with w ∈ X, then

lim inf
ε
‖DXεEε(wε)‖Xε ≥ ‖DXE(w)‖X .

Eventually, assume that there exists a map u ∈ H1(0, T ;X) such that, for every t ∈ [0, T ),
uε(t)→τ u(t), and

lim inf
ε
Eε(uε(t)) ≥ E(u(t)).
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Then, u is the solution in [0, T ) to the gradient flow associated to the energy functional E,
in the structure given by X, and with initial datum u0.

The theorem above can not directly be applied in our framework. Indeed, despite the
nonlocal energy functional Eε in (2.1) is of class C1 (see Lemma 3.2), the overall driving
energy functional for the evolution equation in Theorem 2.2 does not satisfy this regularity
assumption, owing to the presence of the singular double-well potential. As pointed out in
[50, Section 2.2], our convergence result should thus be read within the theory of evolution-
ary Γ-convergence of gradient flows in the more general setting of metric spaces. We refrain
from introducing the full formalism here: we proceed by just briefly highlighting the main
connections between the general theory in [49, 50] and our proof strategy.
We first point out that the solutions to the nonlocal Cahn-Hilliard equations constructed in
Theorem 2.2 (with v = 0) satisfy uε ∈ H1(0, T ;V ∗) and −∂tuε ∈ ∂V ∗ENLε (uε) as elements
of V ∗, where the subdifferential ∂V ∗ is intended in the dual space V ∗, ENLε is the functional

defined in (2.1), and the double-well potential F is defined as F = γ̂ + Π̂ (see also H3).
Additionally, the fact that uε is a conservative solution for ENLε in the sense of (7.1) with
the choice Xε = X = V ∗ follows directly by testing (2.2) with (−∆)−1∂tuε and integrating
the resulting equation with respect to time. Consider now a sequence of initial data (u0,ε)ε
as in Theorem 2.3. In view of Theorem 2.3 and Lemma 3.3, we deduce that there exists
u ∈ C([0, T ];H) for which

lim inf
ε
ENLε (uε(t)) ≥ E(u(t)) +

ˆ
Ω
F (u(t, x))dx for every t ∈ [0, T ).

Eventually, conditions C1) and C2) follow directly by (2.3) and (2.4). A crucial peculiarity
of our setting is in the fact that, in order to guarantee the convergence of the gradient
flows, it is also necessary to prove (2.5). The thesis follows then in Theorem 2.3 owing
to the closure of the subdifferential of the double-well potential with respect to the above
convergences.

8. Conclusions

We have presented an existence result for a nonlocal Cahn-Hilliard equation with W 1,1

interaction kernel, under Neumann boundary conditions, and keeping track of the effects
of a convective term in divergence form. Relying on the a-priori estimates identified in the
proof of the existence result, we have shown convergence to a local Cahn-Hilliard equation
as the kernel approaches a Dirac delta. This is the first nonlocal-to-local asymptotics for
nonlocal Cahn-Hilliard equations satisfying homogeneous Neumann conditions and in the
absence of regularizing viscous terms. Eventually, we have presented some extensions to
the setting of periodic boundary conditions and to that of viscous Cahn-Hilliard equations,
as well as a comparison with the classical theory of evolutionary convergence of gradient
flows.
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