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Abstract

We analyze some parabolic PDEs with different drift terms which are gradient flows in
the Wasserstein space and consider the corresponding discrete-in-time JKO scheme. We
prove with optimal transport techniques how to control the Lp and L∞ norms of the iterated
solutions in terms of the previous norms, essentially recovering well-known results obtained
on the continuous-in-time equations. Then we pass to higher order results, and in particulat
to some specific BV and Sobolev estimates, where the JKO scheme together with the so-called
“five gradients inequality” allows to recover some inequalities that can be deduced from the
Bakry-Emery theory for diffusion operators, but also to obtain some novel ones, in particular
for the Keller-Segel chemiotaxis model.

1 Short introduction

The goal of this paper is to present some estimates on evolution PDEs in the space of proba-
bility densities which share two important features: they include a linear diffusion term, and
they are gradient flows in the Wasserstein space W2. These PDEs will be of the form

∂tρ−∆ρ−∇ · (ρ∇u[ρ]) = 0,

complemented with no-flux boundary conditions and an intial condition on ρ0.
We will in particular concentrate on the Fokker-Plack case, where u[ρ] = V and V is a

fixed function (with possible regularity assumptions) independent of ρ, on the case where
u[ρ] = W ∗ ρ is obtained by convolution and models interaction between particles, and on the
parabolic-elliptic Keller-Segel case where u[ρ] is related to ρ via an elliptic equation. This
last case models the evolution of a biological population ρ subject to diffusion but attracted
by the concentration of a chemo-attractant, a nutrient which is produced by the population
itself, so that its distribution is ruled by a PDE where the density ρ appears as a source
term. Under the assumption that the production rate of this nutrient is much faster than the
motion of the cells, we can assume that its distribution is ruled by a statical PDE with no
explicit time-dependence, and gives rise to a system which is a gradient flow in the variable
ρ (the parabolic-parabolic case, where the time scale for the cells and for the nutrient are
comparable, is also a gradient flow, in the product space W2 × L2, but we will not consider
this case). Since we mainly concentrate on the case of bounded domains, in the Keller-Segel
case the term u[ρ] cannot be expressed as a convoluton and requires ad-hoc computations.

In all the paper, the estimates will be studied on a time-discretized version of these PDEs,
consisting in the so-called JKO (Jordan-Kinderleherer-Otto) scheme, based on iterated op-
timization problems involving the Wasserstein distance W2. We will first present 0-order
estimates, on the Lp and L∞ norms of the solution. This is just a translation into the JKO
language of well-known properties of these equations. The main goal of this part is hence to
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popularize the techniques which allow to handle these estimates at a discrete level. However,
there is an interest in studying these estimates at a discrete level, in particular since many
numerical schemes have now been developed using the JKO approach, and these estimates
can justify their convergence.

Then, we will turn to 1st order estimates, i.e. on the gradient of the solutions. This
includes in particular estimates on the BV norm of the solution ρ and W 1,p-like estimates
(in particular, the quantity that we will consider is related to ||ρ1/p||W1,p). We point out
that a first result in this direction (estimates on the gradient for the JKO scheme) can be
found in [32], where the Lipschitz constant of the solution is bounded for the JKO scheme
corresponding to a Fokker-Planck equation. However, the technique and the result in this
paper are quite different than those in [32].

The estimates we present are non-trivial and seem novel at least in the Keller-Segel case.
In the Fokker-Planck case they correspond to a suitable integral version of the well-known
Bakry-Emery estimate |∇(Ptf)| ≤ Pt(|∇f |) for drift-diffusion operators Pt (see [2]). The
interest in this case is to obtain them at a discrete level, on the JKO scheme. Note that,
as the Bakry-Emery analogy suggests, these estimates should for sure be obtainable at a
continuous level as well, but the computations are not at all easy (and most likely there is
some term in the estimates which cannot easily be seen to have a sign, while the discrete-in-
time approach allows to handle it without difficulties). This is an extra reason to study also
the 0-order estimate at a discrete level, since some of these 1st order estimates require to use
the corresponding 0-order ones.

The JKO scheme provides, for fixed time step τ > 0, a sequence (ρτn)n, where each ρτn+1

optimizes a functional depending on ρτn. All the estimates that we provide are of the following
form: a norm, or a quantity comparable to a norm, computed at ρτn+1 can be bounded in
terms of the same expression computed at ρτn. Of course, we only want estimates which can
be iterated (i.e. the possible increase passing from ρτn to ρτn+1 should be of the order of τ)
and which do not explode when τ → 0. When a same quantity is really decreasing along
iterations - in particular if an exponential decreasing behavior is obtained - this can be used
to study the asymptotic behavior of the solution ρt of the PDE as t→∞. When there is no
decreasing behavior, but the increase is controlled, this can be used to justify local-in-time
bounds which can provide compactness (to be used either for the convergence of numerical
schemes or for other stability results, when data are varying, for instance).

The paper and the results are organized as follows. After this introduction, we present in
Section 2 the background that we need to use about the JKO scheme for gradient flows in the
Wasserstein space, including some useful tools such as displacement convexity and the five-
gradients-inequality, together with general facts on optimal transportation and some details
on the functionals that we will use. Section 3 presents the main estimates on the Lp and
L∞ norms of the solution of one step of the JKO scheme in the case where the functional is
either a potential energy ρ 7→

∫
V dρ or an interaction energy ρ 7→ 1

2

∫
W (x−y)dρ(x)dρ(y). In

particular we prove iterable bounds on the Lp norm, for p <∞, when V or W are Lipschitz, as
well as better bounds (which include an L∞ estimate and an Lp one which can be used in the
limit p→∞ and also provide an exponential L∞ bound) in the case of the potential energy
under second-order condition on V . As far as the L∞ norm is concerned, we also provide a
uniform bound stating that the maximal value of ρeV is decreasing in time under essentially
no assumption on V , together with an adaptation for the interaction case, when W is Lipschitz
continuous. These results are summarized in Proposition 3.8. Section 4 concentrates, then,
on the Keller-Segel case, and reproduces, in this discretized JKO setting, a well-known two-
dimensional result (based on [22] and [27]) which states that the Lp norm and the L∞ norms
do not grow too much in time as soon as we are in the subcritical regime, an assumption
which allows to control the entropy with the total energy itself. This very technical result is
contained in Theorem 4.3. Finally, Section 5 is devoted to higher-order estimates, which are
the core of the paper. The results are expressed in terms of the following quantity: given a
convex function H : Rd → R, we consider

∫
H(Zρ)dρ, where

Zρ :=
∇ρ
ρ

+∇u[ρ].

When H(z) = |z|p and ∇u[ρ] is bounded, this quantity (usually denoted by J(p)(ρ)), is
comparable to

∫
|∇ρ|pρ1−pdx, which can be related by simple algebraic computations to the
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W 1,p norm of ρ1/p. On these quantities we prove iterable bounds in the case of the potential
energy when V is semi-convex (Proposition 5.4); it is also useful to consider other convex
functions H than only powers, which can provide Lipschitz bounds and W 1,1 regularity. A
variant of this result exists for interaction energies, possibly combined with potential energies
(Proposition 5.8, where we assume semiconvexity of V and C1,1 regularity for W ). The
results for the potential and interaction cases are contained in the sub-section 5.1, while the
sub-section 5.2 is devoted to the Keller-Segel case. In this case, the lack of semiconcavity for
u[ρ], which is only defined as a solution of an elliptic PDE involving ρ, prevents from having
easy estimates on the error terms, and a different technique is required to bound them: finally,
we obtain an iterable estimate on J(p)(ρ) only for p < 2, and under the extra assumption that
ρ is bounded in an Lr space, with r = (4− p)/(2− p) depending on p and explosing as p→ 2.
This explains the interest for the 0-order estimates at the JKO level for Keller-Segel, which
can indeed guarantee such an Lr assumption.

2 Preliminaries on the JKO scheme

We refer to [1, 37, 38] for the whole theory about gradient flows in the Wasserstin space which
justifies the few facts that we list below.

Whenever a functional F : P(Ω) → R ∪ {+∞} is given, we fix a time step τ > 0 and a
measure η ∈ P(Ω), and consider the following minimization problem

min
ρ

F(ρ) +
W 2

2 (ρ, η)

2τ
, (2.1)

where W2 is the Wasserstein distance of order 2 (see [1, 39, 37]). Before goind on with the
discussion, let us remind few important facts about optimal transport and the W2 distance.

If two probabilities µ, ν ∈ P(Ω) are given on a compact domain, the Monge-Kantorovitch
problem reads as

inf
{∫
|x− T (x)|2dµ : T : Ω→ Ω, T#µ = ν

}
.

This problem, introduced by Monge [35] has been reformulated by Kantorovich, [29] in the
following convex form

inf
{∫
|x− y|2dγ : γ ∈ P(Ω× Ω), (πx)#γ = µ, (πy)#γ = ν

}
.

The square root of the optimal value above defines a distance on the set of probability measures
on a given compact space (in case of non-compactness a condition on the second moments has
to be added), which by the way metrizes the weak-* convergence of probabilities (on compact
spaces, without compactness there is again a condition on the moments). Kantorovich also
provided a dual formulation for the above minimization problem, that we can state, for
simplicity, using the cost function |x− y|2/2:

1

2
W 2

2 (µ, ν) = sup
{∫

ϕdµ+

∫
ψ dν : ϕ(x) + ψ(y) ≤ 1

2
|x− y|2

}
.

It is possible to prove the existence of an optimal γ and of an optimal pair (ϕ,ψ), and, as
soon as µ is absolutely continuous, there exists as well an optimal transport map T (and the
optimal γ will be a measure on Ω×Ω concentrated on the graph of such a map T ) . Moreover,
the optimal ϕ, called Kantorovich potential, is Lipschitz continuous. and is connected to the
optimal T via T (x) = x−∇ϕ(x) (we can also write T = ∇u with u(x) = |x|2/2− ϕ(x), and
u is a convex function, which is the result of the celebrated Brenier’s Theorem, [10, 11]).

Using these tools from optimal transport theory, if Ω is compact and F is l.s.c. for the weak
convergence of probability measures, then Problem (2.1) admits at least a solution. We will
denote the set of solutions as ProxτF(η), mimicking the notations for the proximal operator
which are used in hilbertian settings. In some cases (in particular if F is stricty convex) this
proximal operator is single-valued (i.e. the minimizer is unique), but this will not be crucial
in our analysis.
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The JKO scheme (introduced in [28]) consists in iterating the above minimization problem,
i.e.starting from ρ0 and, for fixed τ > 0, defining a sequence (ρτn)n satisfying

ρτ0 = ρ0, ρτn+1 ∈ ProxτF(ρτn).

The above sequence can be used to define a curve of measure ρτ (t) for t ∈ [0, T ], with
ρτ (nτ) = ρτn (for instance by piecewise constant interpolation). Under suitable conditions on
F it can be proven that he curves ρτ uniformly converge (as curves valued into the Wasserstein
space) to a continuous curve ρ which is a solution of the PDE

∂tρ−∆ρ−∇ · (ρ∇δF
δρ

) = 0

(complemented with no-flux boundary conditions and the intial condition ρ0), where δF
δρ

is
the first variation of the functional F (see Chapter 7 in [37]).

In this paper we will always consider the case where F = E + G, and

E(ρ) =

{∫
ρ log ρ dx if ρ� Ld

+∞ otherwise

is the entropy functional. For the functional G, we will often write u[ρ] = δG/δρ and we will
consider three cases:

• either we consider G(ρ) =
∫
V dρ, for a fixed function V : Ω → R acting as a potential,

in which case we have u[ρ] = V ; this case will be called the Fokker-Planck case;

• either we consider G(ρ) =
∫
W (x − y)dρ(x)dρ(y), for an even function W : Rd → R, in

which case we have u[ρ] = W ∗ ρ; this case will be called the interaction case; it can be
mixed with the previous one by considering u[ρ] = V +W ∗ ρ, if explicitly indicated;

• finally, we consider a particular case arising from mathematical biology: we take G(ρ) :=
−χ

2

∫
|∇h[ρ]|2dx = −χ

2

∫
h[ρ]dρ, where χ > 0 is a given constant and h[ρ] is the only

solution of {
−∆h = ρ in Ω,

h = 0 on ∂Ω
.

Note the negative sign before the integral in the definition of G. It is not difficult to
check that we have

δG

δρ
= −χh[ρ].

Indeed h[ρ+ εδρ] = h[ρ] + εh[δρ] and

G(ρ+ εδρ) = G(ρ)− εχ
∫
∇h[ρ] ·∇h[δρ]dx+O(ε2) = G(ρ) + εχ

∫
h[ρ]∆h[δρ]dx+O(ε2),

which allows to conclude using ∆h[δρ] = −δρ. This case will be called the Keller-Segel
case and is motivated by chemotaxis modeling (see [30, 25] for the description of the
model). In dimension d = 2, it is well-known that this model is well-posed and that
there is existence (both for the minimization problems in the JKO scheme and for the
continuous-in-time PDE, with global-in time existence) as soon as χ < 8π. This is due
to the a crucial inequality which states that we can bound E(ρ) in terms of E(ρ) + G(ρ)
(the problem being that G is in general not bounded from below, but E + G is bounded
from below on probability measures as soon as χ ≤ 8π: this implies

E(ρ) ≤ A+B(E(ρ) + G(ρ))

with B = 8π/(8π − χ)). For the mathematical analysis of the Keller-Segel PDE and of
the corresponding JKO scheme we refer to [3, 5, 7, 15, 18] and to Chapter 5 in [36].

The reader may need to be convinced of the bound from below of E(ρ) + G(ρ) when
χ ≤ 8π in dimension 2, if we are on a bounded domain and h[ρ] is defined with Dirich-
let boundary conditions on ∂Ω. This can be seen by observing the following facts. The
logarithmic Hardy-Littlewood-Sobolev inequality provides a uniform bound from below on∫
ρ log ρ dx − 4π

∫
h̃[ρ] dρ where h̃[ρ](x) := −(2π)−1

∫
R2 log(|x − y|)dρ(y). Noting that we
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have −∆h̃[ρ] = ρ and h̃[ρ] + log(R)/(2π) ≥ 0 on Ω (where R is the diameter of Ω), we de-
duce h[ρ] ≤ h̃[ρ] + log(R)/(2π) (since h̃[ρ] + log(R)/(2π)− h[ρ] is harmonic and nonnegative
on the boundary). Hence, for χ ≤ 8π we have E(ρ) + G(ρ) ≥

∫
ρ log ρ dx − 4π

∫
h[ρ] dρ ≥∫

ρ log ρ dx− 4π
∫
h̃[ρ] dρ− 2 logR and this provides the desired bound from below.

A useful tool, introduced in [21] and already used in the framework of the JKO scheme in
the same paper in order to obtain BV estimates is the so-called five-gradients inequality (note
that this name is not present in [21], but the inequality has been popularized under this name
later on). This inequality states the following:

Lemma 2.1 Let Ω ⊂ Rd be bounded and convex, ρ, η ∈ W 1,1(Ω) be two probability densities
and H ∈ C1(Rd) be a radially symmetric convex function. Then the following inequality holds∫

Ω

(
∇ρ · ∇H(∇ϕ) +∇η · ∇H(∇ψ)

)
dx ≥ 0, (2.2)

where ϕ and ψ are the corresponding Kantorovich potentials.

Note that the above result is first proven for H ∈ C2 (second derivatives are used in the proof)
and then, by approximation, it stays true for H ∈ C1; the same approximation can also be
applied to the quite common case H ∈ C1(Rd \ {0}), setting ∇H(0) := 0 (which is coherent
with the fact that H is radial), and the result stays true. In particular, we will sometimes
apply this to H(z) = |z|.

Another useful notion in the study of gradient flow is that of displacement convexity,
introduced by McCann in [34]. It corresponds to the convexity of a functional along the
geodesics of the metric space (P(Ω),W2).

Definition 2.2 Let H : P(Ω) → R ∪ {+∞} be a functional defined on probability measures
on a compact convex domain Ω. We say that H is displacement convex if for every pair of
measures ρ, η ∈ P(Ω) there exists a curve ρt which is geodesic for the W2 distance, which
connects ρ and ν (i.e. ρ0 = ρ, ρ1 = ν) and such that H(ρt) ≤ (1− t)H(ρ0) + tH(ν).

We recall that, whenever ρ is absolutely continuous, the geodesic curve between ρ and ν is
unique and is given by

ρt = (id− t∇ϕ)#ρ,

where ϕ is the Kantorovich potential between ρ and ν for the cost c(x, y) = 1
2
|x−y|2. Indeed,

id− t∇ϕ is the convex interpolation between the identity map and the optimal transport map
T = id−∇ϕ.

In [34] McCann provided the condition for the displacement convexity of functionals of
the form H(ρ) :=

∫
F (ρ(x))dx.

Definition 2.3 Let F be a convex increasing function on [0,+∞) such that F (0) = 0. Then
we say that F satisfies the d-McCann condition if s 7→ F ( 1

sd
)sd is convex and decreasing.

Note that s 7→ F ( 1
sd

)sd being convex and decreasing is enough to guarantee that F itself
is convex.

The main result of [34] is indeed the fact that, if F satisfies the d-McCann condition, then
the functional H, defined via H(ρ) :=

∫
F (ρ(x))dx, is displacement convex in dimension d.

In particular, this applies to F (s) = sq, q > 1, and to F (s) = s log s (hence to H = E).
In [1] the general theory for gradient flows in metric space is presented, and the assumption

of geodesic convexity is crucial, in particular for uniqueness and stability. Here we do not
insist on this aspect (by the way, the functional G in the Keller-Segel case is in general
not displacement convex), but we are interested in another property related to displacement
convexity. As it was first observed in [33], estimates can be provided on H(ρτn+1) in terms of
H(ρτn) when H is displacement convex, even when the gradient flow that we are considering is
the gradient flow of another functional F (in the case F = H, the inequality H(ρτn+1) ≤ H(ρτn)
is trivial). The key point is to use the following general estimate.

Lemma 2.4 Let us consider two absolutely continuous measures ρ, η ∈P(Ω), and a convex
function F , such that F (0) = 0 satisfying the d-McCann condition. Suppose that the density of
ρ is Lischitz continuous, and that Ω is convex. Then, denoting by ϕ the Kantorovich potential
in the transport from ρ to η, we have∫

Ω

F (η) dx ≥
∫

Ω

F (ρ) dx−
∫

Ω

ρ∇(F ′(ρ)) · ∇ϕdx. (2.3)
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Proof. Using the displacement convexity of H, we have

H(η)−H(ρ) = H(ρ1)−H(ρ0) ≥ d

dt
H(ρt)|t=0,

where (ρt)t is the geodesic interpolation between η = ρ1 and ρ = ρ0. We just need to prove
that we have

d

dt
H(ρt)|t=0 ≥ −

∫
Ω

ρ∇(F ′(ρ)) · ∇ϕdx. (2.4)

A formal computation gives

d

dt
H(ρt) =

∫
F ′(ρt)∂tρt =

∫
∇(F ′(ρt)) · vtdρt, (2.5)

where vt is the velocity field of the geodesic curve (ρt)t, solving ∂tρT +∇ · (ρtvt) = 0. The
equality v0 = −∇ϕ provides the result.

The reader should be aware that this argument is only formal because of lack of regularity.
Yet, everything could be justified by a precise computation of the density of the measure ρt.
This is classical but technicaly delicate, and it is done, for instance, in Appendix A2 in [9]. In
particular, the possible presence of singular parts in the second derivatives of ϕ justifies the
inequality in (2.4), instead of the equality we found using (2.5). �

Then, this can provide estimates on F(ρ) once we suppose ρ ∈ ProxτF(η) and use the
optimality condition in the optimization problem solved by ρ, which is of the form

ϕ

τ
+
δF

δρ
= const on {ρ > 0},

(see Chapter 7 in [37] for precise statements and justifications on these optimality conditions).
The consequence in the case F = E + G is presented in the next section.

3 Warm-up: Lp and L∞ estimates for Fokker-Planck
and interaction equations

In this section we present various computations leading to Lp estimates (including p = ∞)
for the simplest case that we consider, i.e. the linear Fokker-Planck case with G(ρ) =

∫
V dρ.

We will then adapt them to the case where the first variation u[ρ] depends on ρ (while for the
Fokker-Planck case we do have u[ρ] = V for every ρ) but in a very simple way, by convolution.

We start from the following result.

Proposition 3.1 Let η be a probability measure, Ω ⊂ Rd a convex domain, and F ∈
C([0,∞)) ∩ C2((0,∞)) be a convex function satisfying the d−McCann condition. Let G :
P(Ω) → R be a given functional, ρ ∈ ProxτE+G(η), and u[ρ] := δG/δρ. Suppose that u[ρ]
is Lipschitz continuous. Then ρ is also Lipschitz continuous, and bounded from below by a
positive constant, and, if Ω is convex, we have∫

Ω

F (η) dx ≥
∫

Ω

F (ρ) dx+ τ

∫
Ω

(
F ′′(ρ)|∇ρ|2 + ρF ′′(ρ)∇ρ · ∇u[ρ])

)
. (3.1)

Proof. This estimate is a combination of the one in Lemma 2.4 with the optimality conditions
characterizing ρ. Indeed, we have (see Chapter 8 in [37] and adapt the computations which
are just presented there in the case u[ρ] = V )

log ρ+ u[ρ] +
ϕ

τ
= const hence

∇ρ
ρ

+∇u[ρ] +
∇ϕ
τ

= 0,

these equalities being true a.e. on Ω since we have ρ > 0 a.e. (for this, see the proof in
Chapter 8 in [37]). As a consequence, log ρ is Lipschitz continuous, and we can apply the
result of Lemma 2.4, replacing ∇ϕ with −τ(∇u[ρ]−∇ρ/ρ). �
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Let us analyze first the purely linear Fokker-Planck case, i.e. the case where u[ρ] = V
does not depend on ρ and let us concentrate on Lp estimates.

Proposition 3.2 Let η ∈ Lp, with p < ∞, be a probability measure and G : P(Ω) → R be
defined via G(ρ) :=

∫
V dρ for a given function V : Ω→ R. Take ρ ∈ ProxτE+G(η) and suppose

Ω convex and V Lipschitz continuous. Then ρ is Lipschitz continuous and bounded from below
by a positive constant, and

• denoting by Lip(V ) the Lipschitz constant of V , we have∫
ηp dx ≥

(
1− τ p(p− 1)

4
Lip(V )2

)∫
ρp dx;

• if ∆V ≤ A in Ω and ∇V · n ≥ 0 on ∂Ω, then∫
ηp dx ≥ (1− τ(p− 1)A)

∫
ρp dx.

In the case p =∞ the result is the following: if ∆V ≤ A in Ω and ∇V ·n ≥ 0 on ∂Ω, then

||ρ||∞ ≤ ||η||∞
(

1 + τ
A

d

)d
.

Proof. The estimates on the Lp norm are consequences of the estimate in Proposition 3.1,
applied to F (s) = sp. In this case we obtain∫

Ω

ηp dx ≥
∫

Ω

ρp dx+ τp(p− 1)

(∫
Ω

ρp−2|∇ρ|2 + ρp−1∇ρ · ∇V dx)

)
.

For the first estimate, we apply a Young inequality which gives∫
ρp−2∇ρ · (ρ∇V ) dx ≥ −

∫
ρp−2|∇ρ|2 − 1

4

∫
ρp|∇V |2 dx,

which proves the claim.
For the second, we ignore the positive term

∫
Ω
ρp−2|∇ρ|2 and we rewrite the remaining as

τp(p− 1)

∫
Ω

ρp−1∇ρ · ∇V dx = τ(p− 1)

∫
Ω

∇(ρp) · ∇V dx

and we integrate by parts, using our assumptions on V .
The last statement, about the L∞ norm, can be proven proven differently, following the

same strategy as in Proposition 7.32 in [37]. The adaptations to be performed in the proof
are the following: instead of a minimum point of ϕ we take a minimum point for ϕ + τV ;
we first use det(I −D2ϕ) ≤ (1−∆ϕ/d)d, which is a consequence of the geometric-arithmetic
mean inequality, and then −∆ϕ ≤ τ∆V ≤ A. The assumption on ∂V/∂n is needed to handle
a possible maximizer on the boundary. This statement can be first proven for V ∈ C2 and
then by approximation, for a less regular V , where the assumptions on the Laplacian and on
the sign of the normal derivaitve should be interpreted as a condition on the distributional
divergence of the vector field ∇V , extended as 0 outside Ω. �

Remark 3.3 We observe that, in the continous-time limit, the second estimate gives∫
ρpt dx ≤ e(p−1)At

∫
ρp0dx. It is then possible to raise to power 1/p and take the limit p→∞

and obtain ||ρt||∞ ≤ eAt||ρ0||∞. Unfortunately, this cannot be done in discrete time since if
we first send p → ∞ for fixed τ > 0 the coefficient in the r.h.s. in front of

∫
ρp can become

negative. This is why we presented a different technique for the L∞ estimate, but we can
notice that, asymptotically as τ → 0, the the two results coincide.

Also, we observe that the first estimate is not suitable for a limit p → ∞, as the co-
efficient in the r.h.s. is quadratic in p, so that its continuous-in-time version is

∫
ρpt dx ≤

ep(p−1) Lip(V )2t/4
∫
ρp0dx.

Proposition 3.4 Let η ∈ L∞, be a probability measure G : P(Ω)→ R be defined via G(ρ) :=∫
V dρ for a given bounded function V : Ω→ R. Take ρ ∈ ProxτE+G(η) and suppose Ω convex.

Then ρ is bounded, and satisfies

||ρeV ||∞ ≤ ||ηeV ||∞.
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Proof. The proof, consisting in looking at the maximum point of ρeV , i.e. of log ρ + V , is
exactly the same as in Lemma 2.4 of [26]. Indeed, we can write

E(ρ) +

∫
V dρ =

∫
(ρ log ρ+ ρV )dx =

∫
F
( ρ
m

)
dm,

for F (s) = s log s and m = e−V . �

Remark 3.5 Actually, as it is proven in [26], the same bound also holds from below. More-
over, morally this upper bound weighted by eV should also work for the Lp estimates, but it
would require the geodesic convexity of the Lp norm w.r.t. e−V , which requires V to be convex
(and if V is only λ-convex, it does not work). It is interesting to see that the assumption is
the opposite of the one in Proposition 3.2, where we needed upper bounds on D2V .

The case where u[ρ] depends on ρ, but in a very good way, is easy to handle. Take an
even function W : Rd → R and consider

u[ρ] = W ∗ ρ, i.e. G(ρ) =
1

2

∫
W (x− y) dρ(x) dρ(y).

The first of the two estimates in Proposition 3.2 is easy to adapt, while unfortunately the
other one, based on second-order assumptions but also on the boundary behavior, cannot be
easily translated in terms of W . The same problem occurrs for the L∞ estimate of Proposition
3.2. We can therefore state the following:

Proposition 3.6 Let η ∈ Lp, with p < ∞, be a probability measure G : P(Ω) → R be
defined via G(ρ) := 1

2

∫
W (x − y) dρ(x) dρ(y) for a given even function W : Rd → R. Take

ρ ∈ ProxτE+G(η) and suppose Ω convex and W Lipschitz continuous. Then ρ is Lipschitz
continuous and bounded from below by a positive constant, and∫

ηp dx ≥
(

1− τ p(p− 1)

4
Lip(W )2

)∫
ρp dx.

Proof. The proof is identical to that in Proposition 3.2, which does not depend on the fact
that u[ρ] depends or not upon ρ, but only on its Lipschitz bounds. Hence, we just have to
observe that we have Lip(W ∗ ρ) ≤ Lip(W ). �

On the other hand, it is easier to extend the estimate in Proposition 3.4, but this requires
an adaptation if one wants to iterate it.

Proposition 3.7 Let η ∈ L∞ be a probability measure and G : P(Ω) → R be defined via
G(ρ) := 1

2

∫
W (x−y) dρ(x) dρ(y) for a given even function W : Rd → R. Take ρ ∈ ProxτE+G(η)

and suppose Ω convex and W Lipschitz continuous. Then ρ is Lipschitz continuous and
bounded from below by a positive constant, and

||ρeu[ρ]||∞ ≤ ||ηeu[ρ]||∞.

This implies in particular the (more useful estimate)

||ρeu[ρ]||∞eE(ρ)+G(ρ) ≤ ||ηeu[η]||∞eE(η)+G(η)eτ Lip(W )2/2.

Proof. The estimate ||ρeu[ρ]||∞ ≤ ||ηeu[ρ]||∞ can be trivially obtained in the same way as in
the case where u[ρ] = V does not depend on ρ. Then we observe that we have

u[ρ] ≤ u[η] + ||W ∗ (ρ− η)||∞ ≤ u[η] + Lip(W )W1(ρ, η).

We then use

Lip(W )W1(ρ, η) ≤ Lip(W )W2(ρ, η) ≤ τ

2
Lip(W )2 +

W 2
2 (ρ, η)

2τ
≤ τ

2
Lip(W )2 + F(η)− F(ρ),

where F = E + G. This provides the claimed result. �
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We can now deduce, frome the various estimates of this section, the following bounds,
whose proofs are just a combination of the arguments above.

Proposition 3.8 Suppose ρ0 ∈ Lp and consider the JKO scheme for the functional F = E+G

with G(ρ) =
∫
V dρ. Then we have

• if p < +∞ and V is Lipschitz continuous, then the norm ||ρt||p grows at most exponen-
tially in time;

• if p ∈ [1,+∞] is arbitrary and V is such that ∆V is bounded from above and ∇V ·n ≥ 0
on ∂Ω, then ||ρt||p grows at most exponentially in time.

• if p =∞ and V is bounded, then the norm ||ρteV ||∞ is non-increasing in time.

In the case of the interaction functional G(ρ) = 1
2

∫
W (x− y) dρ(x) dρ(y), we have

• if p < +∞ and W is Lipschitz continuous, then the norm ||ρt||p grows at most exponen-
tially in time;

• if p =∞ and W is Lipschitz continuous, then the quantity

||ρteW∗ρt ||∞eF(ρt)

is non-increasing in time, and in particular the norm ||ρ||∞ is uniformly bounded.

4 Lp and L∞ estimates for the Keller-Segel case

Proposition 4.1 The following functions are convex and satisfy the d-McCann condition:

• Fp,K(s) = (sp −Ks
d−1
d )+ for every p ≥ 1 and K > 0.

• F̃p,K(s) = (s−K)p+ for p ≥ 4d
3d+1

and every K > 0;

We will mainly use the functions Fp,K(s), so as to avoid restrictions on p, but it is quite
apparent that computations are easier with F̃p,K(s), which is the reason for presenting both.

Proof. It is clear that both Fp and F̃p are convex and increasing. In the case of Fp it is
sufficient to compute

Fp

(
1

sd

)
sd =

(
1

sd(p−1)
−Ks

)
+

,

which is clearly convex. For the functions F̃p,K(s), we need to compute the derivatives:

d

ds

(
F̃p(s

−d)sd
)

= dsd−1

(
1

sd
−K

)p
+

−pd
s

(
1

sd
−K

)p−1

+

= −d
(
p− 1

s
+Ksd−1

)
·
(

1

sd
−K

)p−1

+

d2

ds2

(
F̃p(s

−d)sd
)

d(s−d −K)p−2
+

=

(
p− 1

s2
−K(d− 1)sd−1

)
·
(

1

sd
−K

)
+

(
p− 1

s
+Ksd−1

)
· (p− 1)d

sd+1

= K2(d− 1)sd−2 +
((p− 1)d+ 1)(p− 1)

sd+2
− K(d− 1)(2− p)

s2
.

This expression is s−d−2 times a quadratic polynomial in sd and with easy calculation we see
that it is nonnegative in [0,K−1] if and only if p ≥ 4d

3d+1
. �

For the study of the Keller-Segel case we will use the following functional G:

G(ρ) := −χ
2

∫
|∇h[ρ]|2dx = −χ

2

∫
h[ρ]dρ,

where χ > 0 is a given constant and h[ρ] is the only solution of{
−∆h = ρ in Ω,

h = 0 on ∂Ω.
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Note the negative sign before the integral in the definition of G. As we already did in Section
2, it is not difficult to check that we have

δG

δρ
= −χh[ρ].

Proposition 4.2 Let η be a probability measure and F be a convex (but not necessarily
smooth) function satisfying the McCann condition and let H(ρ) = 1

q

∫
Ω
ρq dx with q > d/2.

Then, let δ > 0 and consider ρ ∈ ProxτE+δH+G(η): if Ω is convex we have∫
Ω

F (η) dx ≥
∫

Ω

F (ρ) dx− τχ
∫

Ω

[ρF ′+(ρ)− F (ρ)]ρ dx+ τ

∫
Ω

|∇ρ|2F ′′ac(ρ) dx, (4.1)

Where F ′′ac is the absolutely continuous part of the derivative of F ′ and F ′+ is the right deriva-
tive of F .

Proof. Since ρ ∈ Lq with q > d/2 we have that h[ρ] ∈ W 2,q is bounded and HÃ¶lder
continuous. Looking at the optimality condition

log ρ+ δρq−1 = c− ϕ/τ + χh[ρ]

we deduce that ρ is also Höder continuous, and bounded from above and below. As a con-
sequence, by elliptic regularity, h[ρ] is a C2 function. Then ρ has the same regularity as the
worse between ϕ and h[ρ], and in particular ρ is Lipschitz continuous. Now let us assume for
a while that F is convex and C2: we start from (4.1) and replace u[ρ] with δρq−1 − χh[ρ].
This provides

∫
Ω

F (η) dx ≥
∫

Ω

F (ρ) dx + τ

∫
Ω

F ′′(ρ)|∇ρ|2dx

+ δτ

∫
Ω

ρF ′′(ρ)∇ρ · ∇(ρp−1) dx− χτ
∫

Ω

ρF ′′(ρ)∇ρ · ∇h[ρ] dx.

Noting that s 7→ sF ′′(s) is the derivative of s 7→ sF ′(s)− F (s), we can integrate by parts
the last term, thus obtaining∫

Ω

ρF ′′(ρ)∇ρ · ∇h[ρ] dx = −
∫

Ω

(ρF ′(ρ)− F (ρ))∆h[ρ] dx+

∫
∂Ω

(ρF ′(ρ)− F (ρ))∇h[ρ] · ν dσ

≤
∫

Ω

(ρF ′(ρ)− F (ρ))ρ dx.

In the above inequality, dσ denotes the uniform (d−1)-measure on the boundary ∂Ω (and the
terms we integrate on the boundary make sense, because of regularity). Moreover, we used
∇h[ρ] · ν ≤ 0 (as a consequence of the positivity of h[ρ] with its Dirichlet boundary condition
on ∂Ω) and ρF ′(ρ)− F (ρ) ≥ 0 (a onsequence of the convexity of F together with F (0) = 0).
Using this information, and the positivity of ∇ρ · ∇(ρp−1), we get∫

Ω

F (η) dx ≥
∫

Ω

F (ρ) dx+ τ

∫
Ω

F ′′(ρ)|∇ρ|2 − χτ
∫

Ω

(ρF ′(ρ)− F (ρ))ρ dx. (4.2)

Now let us consider any convex function F (also not smooth) and let us approximate it
by smooth convex functions satisfying McCann conditions. In order to do this, instead of
directly approximating F by convolution, we approximate by convolution s 7→ sdF (s−d) and
obtain some corresponding Fε which satisfy Fε(0) = 0, Fε → F uniformly F ′ε → F ′ at any
differentiability point of F (and lim supF ′ε ≤ F ′+ at every non-differentiability point, where
F ′+ stands for the right-derivative of F ), and F ′′ε → F ′′ac almost everywhere, where F ′′ac is
the absolutely continuous part of F ′′. This implies |∇ρ|2F ′′ε (ρ) → |∇ρ|2F ′′ac(ρ) since the
convergence holds on a.e. level set of ρ, and we have |∇ρ| = 0 a.e. on {x ∈ Ω : ρ(x) ∈ A},
where A is the set of values on which we do not have the convergence F ′′ε → F ′′ac. Finally, we
note that F ′ε(ρ), F ′(ρ) are bounded since ρ is bounded from above and from below.
In particular we can pass to the limit in (4.2) using Fatou’s lemma, thus obtaining∫

Ω

F (η) dx ≥
∫

Ω

F (ρ) dx+ τ

∫
Ω

F ′′ac(ρ)|∇ρ|2dx− χτ
∫

Ω

(ρF ′+(ρ)− F (ρ))ρ dx,

which proves the claim. �
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The following estimates requires d = 2 and χ sufficiently small.
Indeed, we first use the following fact, which we already mentioned in Section 2: for

χ ≤ 8π, if d = 2, the functional F := E + G is bounded from below; hence, if χ < 8π, then
there exist constants A,B > 0 such that E(ρ) ≤ A+B(E(ρ)+G(ρ)) is true for every ρ ∈ P(Ω).

Moreover, another point of the proof where we use d = 2 is an inequality where we use
the BV norm to estimate the L2 norm of a given function, which is a two dimensional fact.

Theorem 4.3 Let Ω ⊂ R2 be a convex set and η ∈P(Ω)∩Lp(Ω) be given. For every positive
number e0 there is a D1 = D1(e0, p) > 0 such that whenever F(η) := E(η) + G(η) ≤ e0, for
K ≥ K(e0, p) there exists ρ ∈ ProxτE+G(η) with∫

Ω

Fp,K(ρ) dx ≤
∫

Ω

Fp,K(η) dx+ τD1. (4.3)

In particular ρ ∈ Lp(Ω); furthermore, denoting ρ0 = η and ρn+1 ∈ ProxτE+G(ρn) a measure
selected so that the above estimate applies, we have ‖ρn‖pp ≤ ‖ρ0‖pp+(1+nτ)D2 with D2 again
depending only on e and p.

Turning to the L∞ norm, we also have ‖ρn‖∞ ≤ (1 + nτ)C(e, ‖ρ0‖∞).

Proof. Let us consider ρδ = ProxτE+δH+G(η) as in Proposition 4.2. Then, we use F = Fp,K

with K = kp−
d−1
d in (4.1). First note that we have Fp,K > 0 if and only if s > k as well as

0 ≤ ρ(F ′p,K)+(ρ)− Fp,K(ρ)) ≤ pρp1ρ≥k, (F ′′p,K)ac(ρ) ≥ p(p− 1)ρp−2
1ρ≥k.

This allows to write the inequality∫
Ω

Fp,K(η) dx−
∫

Ω

Fp,K(ρδ) dx ≥ −τχp
∫
ρδ≥k

ρp+1
δ dx+ τp(p−1)

∫
ρδ≥k

|∇ρδ|2ρp−2
δ dx, (4.4)

Consider a constant c1 = c1(Ω)such that we have |Du|(Ω) ≥ c1‖u‖2 for every function u
satisfying 2|{|u| > 0}| ≤ |Ω|. Then, whenever 2|{ρ ≥ k}| ≤ Ω (note that |Ω| ≥ 2/k is enough)
and p > −1, we have:

∫
ρ≥k

ρ dx

∫
ρ≥k
|∇ρ|2ρp−2dx ≥

(∫
ρ≥k
|∇ρ|ρ

p−1
2 dx

)2

=
4

(p+ 1)2

(∫
Ω

|∇(ρ
p+1
2 − k

p+1
2 )+| dx

)2

≥ 4c21
(p+ 1)2

∫
Ω

(ρ
p+1
2 − k

p+1
2 )2

+ dx

Now we can use the inequality (valid for p > 0)

ρp+1 ≤

 (ρ
p+1
2 −k

p+1
2 )2+

(1−2−(p+1)/2p)2
if ρ ≥ 21/pk

2kpρ if 0 ≤ ρ ≤ 21/pk.

Using p+1
2p

> 1
2
, we have 1/(1− 2

− p+1
2p )2 ≤ (1− 1/

√
2)−2 = 6 + 4

√
2 ≤ 12, and we find∫

Ω

ρp+1 dx ≤ 2kp
∫

Ω

ρ dx+ 12

∫
Ω

(ρ
p+1
2 − k

p+1
2 )2

+ dx

12

∫
Ω

(ρ
p+1
2 − k

p+1
2 )2

+ dx ≥
∫

Ω

ρp+1 dx− 2kp.

In particular we find that∫
ρδ≥k

|∇ρδ|2ρp−2
δ dx ≥ c21

3(p+ 1)2
∫
ρδ≥k

ρδ dx

(∫
Ω

ρp+1
δ dx− 2kp

)
.

Now, it is sufficient to find k such that∫
ρδ≥k

ρδ dx ≤ α(p) :=
(p− 1)c21

3(p+ 1)2χ
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in order to obtain ∫
Ω

Fp,K(η) dx−
∫

Ω

Fp,K(ρδ) dx ≥ −2τχpkp,

which would give the first part of the claim.
In order to estimate

∫
ρδ≥k

ρδ we just use∫
ρδ| log ρδ| ≤ E(ρδ) + |Ω|e−1 ≤ A+ |Ω|e−1 +BF(ρδ)

≤ A+ |Ω|e−1 +Bmin
ρ

{
F(ρ) + δH(ρ) +

W 2
2 (ρ, η)

2τ

}
.

By Γ-convergence, for δ sufficiently small we have

min
ρ

{
F(ρ) + δH(ρ) +

W 2
2 (ρ, η)

2τ

}
≤ min

ρ

{
F(ρ) +

W 2
2 (ρ, η)

2τ

}
+ 1

≤ F(η) + 1 ≤ e0 + 1.

Then we can choose k looking at∫
ρδ≥k

ρδ ≤
1

log k

∫
ρδ≥k

ρδ| log ρδ| ≤
A+ |Ω|e−1 +B(e0 + 1)

log k
.

It is then enough to choose k large enough depending on e0 and p, and in particular we choose

k = k(e0, p) with
A+ |Ω|e−1 +B(e0 + 1)

log k(e0, p)
=

(p− 1)c21
3(p+ 1)2χ

.

The value of K(e0, p) is defined accordingly, and then we find, for K ≥ K(e0, p):∫
Ω

Fp,K(ρδ) dx ≤
∫

Ω

Fp,K(η) dx+ τD1.

Now we let δ → 0: up to a subsequence we have ρδ ⇀ ρ and the limit ρ satisfies the same
inequality; moreover we have also that ρ ∈ ProxτE+F(η) thanks to the Γ-convergence of the
functionals. For the global in time estimate we can iterate the previous result thanks to the
fact that F(ρn) is decreasing in n, in order to get∫

Ω

Fp,K(ρn) dx ≤
∫

Ω

Fp,K(ρ0) dx+ nτD1.

Then we can use the inequalities

−kp−1ρ+ ρp ≤ (ρp − kp−1ρ)+ ≤ Fp,K(ρ) ≤ ρp,

(remember K = kp−(d−1)/d) to conclude∫
Ω

|ρn|p dx ≤
∫

Ω

Fp,K(ρn) dx+ k(e0, p)
p−1 ≤

∫
Ω

|ρ0|p dx+ nτD1 + k(e0, p)
p−1

≤
∫

Ω

|ρ0|p dx+ (1 + χnτ)2pk(e0, p)
p,

where in the last inequality we use the dependence of D1 in terms of k and we suppose k ≥ 1.
For the L∞ estimate we cannot simply pass to the limit the Lp inequality we just found

since k(e0, p)→∞ as p→∞. However we can iterate the procedure, finding better estimates
for k(e0, p) using the fact that we have some explicit bounds on ‖ρm‖p: let us fix n and let us
consider T = nτ . We will consider iteratively pi = 2i + 1. Choosing always k(e0, p) ≥ ‖ρ0‖∞
we find that

D(pi) = sup
m≤n
‖ρm‖pi ≤ ((2 + χT )2pi)

1/pik(e0, pi); (4.5)

For the iterative step, we have∫
ρ≥k

ρδ ≤
1

kpi−1

∫
ρ≥k

ρpiδ dx ≤ D(pi)
pi

kpi−1
;
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in particular it is sufficient to choose

k(e0, pi+1) =

(
D(pi)

pi

α(pi)

) 1
pi−1

;

now we can use α(pi) ≥ C/pi ≥ C2−i (where C also depends on χ) and (4.5) to obtain

k(e0, pi+1) ≤
(
C21+2i(2 + χT )

) 1
2i k(e0, pi)

1+ 1
2i .

From here we can derive a uniform bound for k(e0, pi): indeed, defining ci+1 =
∏i
j=2(1 + 1

2j
)

and writing ki := k(e0, pi), we have

k
1

ci+1

i+1 ≤
(
C21+2i(2 + χT )

) 1
2ici+1 k

1
ci
i

≤ k2

i+1∏
j=2

(
C21+2j(2 + χT )

) 1
2j

≤ Dk2

√
2 + χT .

In particular , using (4.5) together with the last estimate and the fact that ci ≤ 2, we can say
that we have

‖ρn‖∞ ≤ lim
i→∞

D(pi) ≤ lim
i→∞

k(e0, pi) ≤ D(2 + χT ) max{k(e0, 5), ‖ρ0‖∞}2.

�

The above estimate is the discrete counterpart of a well-known result studied in continuous
time, which can be found for instance in [36], and proven in [27] and [22] (more precisely: [27]
showed that equi-integrability of ρ is enough to propagate in time the estimates on the Lp

norms, and [22] found the sharp condition to bound the entropy of the solution, and hence
provide equi-integrability).

We note that in the above Lp estimate we obtain a linear growth in time of the Lp norm
raised to the power p, i.e. on

∫
ρpdx, so that the norm itself has much slower growth. In this

concern the estimate on the L∞ norm is most likely not sharp, as it is the norm itself which
grows linearly.

Concerning the L∞ estimates, we remind that other L∞ bounds have been found on a
(perturbed) JKO scheme in [19], but those bounds always explose in finite time (at time
T = 1/||ρ0||∞). On the other hand, they have the advantage that they are true for any form
of diffusion, and that they require no condition on χ, nor on the dimension.

Remark 4.4 With similar but more tedious calculation it is possibile also to get hypercon-
tractivity estimates (improvement in time of the summability exponent) in the JKO setting:
this could potentially weaken the integrability requirement on ρ0 in Theorem 5.12, but then we
would need a different analysis for the first steps, where the integrability assumption ρ ∈ Lr
is still not satisfied. For this reason we don’t want to pursue this direction here, but it would
be for sure interesting.

In a similar but different spirit we also mention that it is possible to obtain Lq estimates
in time and space starting from Lp assumptions on ρ0, as it is done in Lemma 2.11 of [31], but
we do not investigate this question here since we decided to concentrate on bounds which are
not integrated in time but derive from a decreasing behavior from a step of the JKO scheme
to the next one.

5 Sobolev estimates

In this section we pass to the core of the paper, i.e. the higher order estimates. The goal
will be to obtain results comparable to those of Proposition 3.8, but for norms involving the
gradient of ρ.
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Lemma 5.1 Let us consider a functional G : P(Ω) → R ∪ {∞} and a probability η ∈ P(Ω).
Take ρ ∈ ProxτE+G(η) and set u[ρ] := δG/δρ. Suppose that Ω is convex and let H : Rd → R be
a radial convex function. Set

Zρ :=
∇ρ
ρ

+∇u[ρ], Zη :=
∇η
η

+∇u[η]

and call ϕ and ψ the Kantorovich potentials for the transport from ρ to η, with T = id−∇ϕ
the optimal transport map from ρ to η. Then we have∫

H(Zη)dη ≥
∫
H(Zρ)dρ+

∫
∇H

(
∇ϕ
τ

)
· (∇u[ρ]−∇u[η] ◦ T ) dρ.

Proof. We start from the fact that H is radial and hence even, and that it is convex:∫
H(Zη)dη =

∫
H(−Zη)dη ≥

∫
H

(
−∇ψ
τ

)
dη +

∫
∇H

(
−∇ψ
τ

)
·
(
−Zη +

∇ψ
τ

)
dη.

We look at the different parts of the right-hand sice. First we use we use η = T#ρ and
−∇ψ ◦ T = ∇ϕ, together with the optimality condition Zρ + ∇ϕ

τ
= 0 and again the fact that

H is even, in order to get∫
H

(
−∇ψ
τ

)
dη =

∫
H

(
∇ϕ
τ

)
dρ =

∫
H(Zρ)dρ.

Using again η = T#ρ and −∇ψ ◦ T = ∇ϕ, we obtain∫
∇H

(
−∇ψ
τ

)
· ∇ψ
τ
dη = −

∫
∇H

(
∇ϕ
τ

)
· ∇ϕ
τ
dρ =

∫
∇H

(
∇ϕ
τ

)
· Zρdρ

=

∫
∇H

(
∇ϕ
τ

)
· ∇ρ dx+

∫
∇H

(
∇ϕ
τ

)
· ∇u[ρ]dρ.

We now pass to the part involving Zη, and write∫
∇H

(
−∇ψ
τ

)
· (−Zη) dη =

∫
∇H

(
∇ψ
τ

)
· (Zη) dη

=

∫
∇H

(
∇ψ
τ

)
· ∇η dx+

∫
∇H

(
∇ψ
τ

)
· ∇u[η] dη

=

∫
∇H

(
∇ψ
τ

)
· ∇η dx−

∫
∇H

(
∇ϕ
τ

)
· ∇u[η] ◦ T dρ.

Summing up all the terms, and using the five-gradient inequalities (which requires H to be
radial in order to handle the boundary terms)∫

∇H
(
∇ψ
τ

)
· ∇η dx+

∫
∇H

(
∇ϕ
τ

)
· ∇ρ dx ≥ 0,

we obtain the desired result. �

The quantities of the form
∫
H(Zρ)dρ will be crucial for the Sobolev regularity of the

solutions of the JKO scheme. We will then often note J(p)(ρ) :=
∫
H(Zρ)dρ when H(z) = |z|p,

without explicit reference to the term u[ρ], which will be clear from the context.

5.1 Fokker-Planck and aggregation

We will see some consequences of Lemma 5.1, starting from the easiest case, i.e. the purely
linear Fokker-Planck case: u[ρ] = V and G(ρ) :=

∫
V dρ.

Proposition 5.2 Let us consider G(ρ) :=
∫
V dρ and ρ ∈ ProxτE+G(η). Suppose that Ω is

convex and that V is semi-convex, i.e. D2V ≥ λI. Then, if λ = 0 and H : Rd → R is an
arbitrary radial convex function we have∫

H(Zρ)dρ ≤
∫
H(Zη)dη.
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If λ > 0 and H(0) = 0, we also have

(1 + λτ)

∫
H(Zρ)dρ ≤

∫
H(Zη)dη.

For λ < 0, if H satisfies ∇H(z) · z ≤ C(H(z) + 1) then

(1− |λ|Cτ)

∫
H(Zρ)dρ ≤

∫
H(Zη)dη + Cτ.

Proof. All these results are just a consequence of Lemma 5.1. They can be obtained if one
estimates the term

∫
∇H

(∇ϕ
τ

)
· (∇u[ρ]−∇u[η] ◦ T ) dρ. First, note that since H is radial,

the vectors ∇H (∇ϕ/τ) and ∇ϕ are parallel and oriented in the same direction. We also use
u[ρ] = u[η] = V and the assumptions on V . Indeed we have

(∇V (x)−∇V (T (x))) · ∇ϕ(x) = (∇V (x)−∇V (x−∇ϕ(x))) · ∇ϕ(x) ≥ λ|∇ϕ(x)|2,

thanks to the λ-convexity of V . In the case λ = 0 this is enough to obtain the claim.
For λ > 0, we write∫
∇H

(
∇ϕ
τ

)
·(∇V −∇V ◦ T ) dρ =

∫ ∣∣∇H (∇ϕ
τ

)∣∣∣∣∇ϕ
τ

∣∣ (∇V −∇V ◦T )·∇ϕdρ ≥ λτ
∫
H

(
∇ϕ
τ

)
dρ,

where we used the inequality |∇H(z)| ≥ H(z)/|z| which is valid for radial convex functions
with H(0) = 0 and the same estimate due to the λ-convexity of V as above. This allows to
prove the second part of the claim.

In the case λ < 0, the estimate is similar, but since we estimate the scalar product
(∇V (x) − ∇V (T (x))) · ∇ϕ(x) from below with λ|∇ϕ(x)|2, which is negative, we need to
estimate |∇H(z)| from above, and for this we use our assumption on H (which is essentially
an assumption of polynomial growth for H; note that, H being radial, we have ∇H(z) · z =
|∇H(z)||z|). �

Remark 5.3 As we underlined in the introduction, the above result is a time-discrete transla-
tion of a suitable intergal version of a well-known estimate in the Bakry-Emery theory (again,
we refer for instance to [2]). Indeed, the time-continuous equation satisifed by ρ when taking
the gradient flow of E + G is ∂tρ − ∆ρ − ∇ · (ρ∇V ) = 0. If one defines u = ρeV then u
satisfies the drift-diffusion PDE ∂tu = ∆u−∇V · ∇u. If we call Pt the semigroup associated
with this PDE, the celebrated Bakry-Emery estimates provide |∇(Ptf)| ≤ e−λtPt(|∇f |) when
D2V ≥ λI. Taking H convex and radially increasing, and using this inequality, for instance
for λ = 0, together with the convexity of the function (s, y) 7→ H(y/s)s, one can prove∫

H

(
∇(Ptf)

Ptf

)
Pt de

−V ≤
∫
H

(
Pt(|∇f |)
Ptf

)
Ptf de

−V ≤
∫
H

(
|∇f |
f

)
f de−V ,

which can be seen to be equivalent to the result of Proposition 5.8 since

∇(Ptf)

Ptf
=
∇u
u

=
(∇ρ+ ρ∇V )eV

ρeV
= Zρ.

As a consequence, we obtain the following information on the JKO scheme

Proposition 5.4 If V is λ-convex and Lipschitz, the JKO scheme for the Fokker-Plack equa-
tion preserves the following bounds

• if λ ≥ 0, if log ρ0 is Lipschitz continuous, then log ρτn is also Lipschitz continuous, with
bounded Lipschitz constant, and Lip(log ρτn + V ) decreases in time (in n);

• if ρ
1/p
0 ∈W 1,p(Ω), then (ρτn)1/p is bounded in W 1,p(Ω) independently of τ and k;

• if ρ0 ∈ BV (Ω), then ρτn is bounded in BV (Ω) independently of τ and n;

• if ρ0 ∈W 1,1(Ω), then all the densities ρτn belong to a weakly-compact subset of W 1,1(Ω).

Moreover, if λ > 0 then the gradients of the functions (ρτne
V )1/p converge exponentially fast

to 0 in Lp(e−V ), uniformly with respect to τ , and hence the functions (ρτne
V )1/p converge in

W 1,p(e−V ) to a constant.
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Proof. In the case λ ≥ 0, for the first part of the statement, take a measure η and ρ ∈
ProxτE+G(η). Let us suppose Lip(log η+V ) ≤ L and use as a function H the convex indicator

function of B(0, L). From
∫
H(Zη)dη = 0 we deduce that we also have

∫
H(Zρ)dρ = 0. This

means |∇(log ρ+ V )| ≤ L a.e. on {ρ > 0}. Yet, we know from the optimality conditions that
ρ is a continuous density which is bounded away from 0 since log ρ = C − V −ϕ/τ , hence we
get Lip(log ρ + V ) ≤ L. This can be iterated along the JKO scheme thus obtaining the first
part ot the statement.

For the second part of the statement, we use H(z) = |z|p and

||ρ1/p||p
W1,p = c(p)

∫ (
ρ1/p−1|∇ρ|

)p
+

∫
ρ ≤ c(p)

∫
H(Zρ)dρ+ C,

where we used the boundedness of ∇V . Since
∫
H(Zρτn)dρτn decreases with n (if λ ≥ 0) or at

least its growth is exponentially controlled (if λ < 0), then (ρτn)1/p is bounded in W 1/p.
The third part of the statement is proven in a similar way, using p = 1. Indeed, given

η ∈ BV (Ω) and ρ ∈ ProxτE+G(η), we can approximate η with smoother densities ηj with
||∇ηj + ηj∇V || → ||∇η+ η∇V || (the norm being taken in the space of vector measures). For
each j we have a measure ρj ∈ ProxτE+G(ηj), which is Lipschitz continuous and satisfies

||∇ρj + ρj∇V || =
∫ ∣∣∣∣∇ρjρj +∇V

∣∣∣∣ dρj ≤ ||∇ηj + ηj∇V ||,

and, passing to the limit in j, we get

||∇ρ+ ρ∇V || ≤ ||∇η + η∇V ||.

This proves that ||∇ρτn + ρτn∇V || is decreasing, and hence ||∇ρτn|| stays bounded.
In what concerns the W 1,1 estimate, we use a convex and superlinear function H such

that
∫
H(Zρ0)dρ0 < ∞ (which exists since ∇ρ0 ∈ L1 implies ∇ρ0/ρ0 + ∇V ∈ L1(ρ0) and

we know that L1 functions are also integrable when composed with a suitable superlinear
function, which can be taken convex). The results of Proposition 5.8 allow then to keep the
same integrability of the gradient along the iterations of the JKO scheme: this is easy if λ ≥ 0,
while for λ < 0 we just need to note that H can be taken superlinear but with polynomial
growth (actually, its growth can be taken as close to linear as we want), and hence we can
apply the last claim in Proposition 5.8. This guarantees equi-integrability for ∇ρτn and hence
the claim.

We are now left to consider the behavior for n → ∞ in the case λ > 0. In this case we
have exponential decay of the quantity J(p)(ρ

τ
n) :=

∫
H(Zρτn)dρτn for H(z) = |z|p. We can

then observe that we have∫ ∣∣∣∣∇ρρ +∇V
∣∣∣∣p dρ =

∫ ∣∣∣∇ log(ρeV )
∣∣∣p e−V d(ρeV ) = c

∫ ∣∣∣∇((ρeV )1/p
)∣∣∣p d(e−V ).

This last result provides a sort of rate of convergence to the steady state of the Fokker-Planck
equation ρ = e−V . For the W 1,p convergence we only have to use an appropriate local Sobolev
inequality and exploit uniform integrability. �

Remark 5.5 In seeking quantitative convergence for the JKO in W 1,p, one has to exploit
also the geodesic convexity of FU : ρ 7→

∫
U
(

ρ
e−V

)
e−V dx whenever λ > 0 and U satisfies

appropriate generalization of the McCann condition; however this goes beyond the scope of
this work.

It is however easier to treat the time continuous case because, whenever U is convex, FU
is actually decreasing along the evolution (see [26] for a similar computation)

Remark 5.6 The bound on the Lipschit constant could have been obtained as a limit on the
Lp norms for p→∞. Indeed, for λ ≥ 0 we can also easily obtain∫

|Zρ|pdρ ≤
∫
|Zη|pdη
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which, raising to power 1/p and sending p→∞ also gives a bound on the L∞ norm of Zρ, and
hence on the Lipschitz constant of log ρ+V . On the other hand, the approach with H(z) = |z|p
is interesting for λ < 0, as it provides∫

|Zρ|pdρ ≤ (1− |λ|pτ)−1

∫
|Zη|pdη.

This estimate provides exponential bounds on
∫
|Zρt |pdρt, i.e.

∫
|Zρt |pdρt ≤ e|λ|pt

∫
|Zρ0 |pdρ0.

By taking the power 1/p and the limit as p→∞, one gets ||Zρt ||∞ ≤ e|λ|t||Zρ0 ||∞. Yet, this
last computation can only be performed in continous time. More precisely, we first need to
send τ → 0 and then p → ∞. Indeed, if we first send p → ∞ while τ > 0 is fixed, we would
get 1− |λ|p < 0 which prevents any interesting estimate to be obtained.

In the next remark we use the following notation: when a vector z and an exponent α > 0
are given, by zα we mean |z|α−1z (if z 6= 0, and 0 if z = 0), i.e. a vecotr whose norm is |v|α
and the direction is the same as that of v.

Remark 5.7 The estimate with H(z) = |z|p when V is λ-convex with λ < 0 can also be
concluded in a different way when p < 2. Indeed, we can we can use∫

Ω

(∇V −∇V ◦ T ) ·
(
x− T (x)

τ

)p−1

dρ ≥ λ

τp−1

∫
Ω

|x− T (x)|p dη ≥ λW2(η, ρ)p

τp−1
,

where in the last passage we use p < 2. In particular if ρn is the sequence generated by the
JKO scheme we have, by induction,

J(p)(ρn+1) ≤ J(p)(ρn) + p|λ|
n∑
i=k

τ

(
W2(ρi, ρi+1)

τ

)p
.

Now we can use the Holder inequality and, together with W 2
2 (ρn, ρn+1) ≤ 2τ(F(ρn)−F(ρn+1)),

we obtain

J(p)(ρn+1) ≤ J(p)(ρn) + p|λ|
(
(n− k)τ

)1−p/2( n∑
i=k

τ

(
W2(ρi, ρi+1)

τ

)2
)p/2

≤ J(p)(ρn) + p|λ|(t− s)1−p/2 (2F(ρn+1)− 2F(ρn))p/2

Hence, we deduce that J(p)(ρt) is locally bounded in time, and grows sublinearly as t→∞.

We also want to consider the case where V depends on ρ via a smooth convolution kernel.
This is typical in aggregation equations. We consider the following case

G(ρ) :=

∫
V dρ+

1

2

∫ ∫
W (x− y)dρ(x)dρ(y)

for an interaction potential W : Rd → R which is supposed to be even (W (z) = W (−z))
and C1,1. This last assumption is very demanding and non-optimal, but allows for a simple
presentation of the estimates. The Keller-Segel case that we will see later is in some sense
obtained from a singular interaction potential (W (z) = log |z| in dimension d = 2, when in
the whole space),and will be treated in details, but in a different way. We will set

J(p)(ρ) :=

∫ ∣∣∣∣∇ρρ +∇V +∇W ∗ ρ
∣∣∣∣p dρ,

i.e. J(p)(ρ) =
∫
H(Zρ)dρ, where u[ρ] = V +W ∗ ρ. For simplicity, in the notation J(p), we are

omitting the dependence on V and W .

Proposition 5.8 Let us consider G as in (5.1), and ρ ∈ ProxτE+G(η). Suppose that Ω is
convex, that V is semi-convex, i.e. D2V ≥ λI, and that W is C1,1, with Lip(∇W ) = µ.
Then, we have

(1 + p(λ− 2µ)τ)J(p)(ρ) ≤ J(p)(η).
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Proof. The starting point is, of course, the result of Lemma 5.1 applied to H(z) = |z|p. This
gives

J(p)(η) ≤ J(p)(ρ)

+p

∫ (
x− T (x)

τ

)p−1

· (∇V (x)−∇V (T (x)) + (∇W ∗ρ)(x)−(∇W ∗η)(T (x))) dρ(x),

where by vp−1, when v is a vector (here v = (x− T (x))/τ), we mean |v|p−2v.
Using the same argument as in Remark 5.7 we can obtain∫ (

x− T (x)

τ

)p−1

· (∇V (x)−∇V (T (x))) dρ(x) ≥ τλ
∫ ∣∣∣∣x− T (x)

τ

∣∣∣∣p dρ(x) = τλJ(p)(ρ),

as well as∫ (
x− T (x)

τ

)p−1

· ((∇W ∗ η)(x)− (∇W ∗ η)(T (x))) dρ(x) ≥ −τµJ(p)(ρ),

since the function W ∗ η is (−µ)-convex.
We are left to estimate the remaining term∫ (

x− T (x)

τ

)p−1

· ((∇W ∗ η)(x)− (∇W ∗ ρ)(x)) dρ(x).

This term will be bounded in absolute value, and we first note that we have

|(∇W ∗ ρ)(x)− (∇W ∗ η)(x)| =
∣∣∣∣∫ ∇W (x− y)d(ρ− η)(y)

∣∣∣∣ ≤ µW1(ρ, η),

since y 7→ ∇W (x− y) is µ-Lipschitz for every x. We also use

W1(ρ, η) ≤
∫
|x− T (x)|dρ = τ

∫
|x− T (x)|

τ
dρ ≤ τ

(∫ ∣∣∣∣x− T (x)

τ

∣∣∣∣p dρ)1/p

= τJ(p)(ρ)1/p.

Then we have

∣∣∣∣∣
∫ (

x− T (x)

τ

)p−1

· ((∇W ∗ (η − ρ))(x)) dρ(x)

∣∣∣∣∣ ≤ µτJ(p)(ρ)1/p

∫ ∣∣∣∣x− T (x)

τ

∣∣∣∣p−1

dρ(x)

≤ µτJ(p)(ρ)1/pJ(p)(ρ)(p−1)/p = µτJ(p)(ρ).

Putting all the results together provides the claim. �

Let us note that in the above result, in order to obtain an estimate which could be iterated,
we needed to replace ∇W ∗ η with ∇W ∗ρ, and hence we used the Lipschitz behavior of ∇W :
for this estimate, lower bounds on D2W (as we required on V ) were not enough. We also note
that the same kind of exponential asymptotic behavior providing convergence to the steady
state as in the last point of Proposition 5.4 could be obtained, provided λ > 2µ, but these
computations will not be detailed.

5.2 Keller-Segel case

We come back to the case G(ρ) = −χ
2

∫
h[ρ] dρ, where −∆h[ρ] = ρ in Ω with Dirichlet

boundary conditions. In this case we have that the first variation of G is u[ρ] = −χh[ρ]. The
main goal of this section will be to have an estimate of

J(p)(ρ) =

∫
Ω

∣∣∣∣∇ρρ − χ∇h[ρ]

∣∣∣∣p dρ. (5.1)

As we will see, in order to deal some of the error terms, we will need to estimate J(p) with
W2(ρ, η), and use p < 2. Moreover, we will also need an apriori bound on the Lr norm of ρ
and η, for an exponent r depending on p. All these restrictions mainly due to the fact that
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−h[ρ] does not necessarily satisfies the semiconvexity assumptions that we usually used to
handle remainder terms.

Thanks to Lemma 5.1 we have

J(p)(ρ) ≤ J(p)(η) + pχ

∫
Ω

(∇h[ρ]−∇h[η] ◦ T ) ·
(
x− T (x)

τ

)p−1

dρ

= J(p)(η) + pχ

∫
Ω

(∇h[ρ]−∇h[η]) ·
(
x− T (x)

τ

)p−1

dρ

− pχ
∫

Ω

(∇h[η] ◦ T −∇h[η]) ·
(
x− T (x)

τ

)p−1

dρ (5.2)

In order to treat the two remainder terms, we state a general comparison result between
Sobolev dual norms and Wasserstein distances (Exercise 35 in [37]).

Proposition 5.9 Let ρ, η ∈P2(Ω) be two absolutely continuous measures. Then, supposing
that ‖ρ‖r, ‖η‖r ≤ C with 1

q
+ 1

r
+ 1

p
= 1 + 1

r
q, for every ϕ ∈ C1(Ω) we have∫

ϕd(ρ− η) ≤ ‖∇ϕ‖p · C1/q′ ·Wq(η, ρ).

In particular we have ‖ρ− η‖(W1,p)∗(Ω) ≤
√

max{‖ρ‖r, ‖η‖r}W2(η, ρ) for r = p/(p− 2).

The following lemma is very classical, and can be found, for instance, in [23], Theorem 10.15
(where the case p ≥ 2 is treated, for p < 2 one can argue then by duality)

Lemma 5.10 Let Ω be a bounded convex domain, and f ∈ (W 1,p
0 )∗(Ω) be given. Denoting by

h[f ] the unique solution in W 1,p′

0 (Ω) (with p′ = p/(p−1) the dual exponent to p) of −∆h = f ,
there exists a constant C > 0, depending only on the dimension, on p and possibly on Ω, such
that

‖∇h[f ]‖p′ ≤ C‖f‖(W1,p)∗(Ω).

Lemma 5.11 Given p ∈ (1, 2), set r = 4−p
2−p . Let us assume ρ, η ∈ P(Ω) ∩ Lr(Ω) with Ω

convex and let us denote by T the optimal map between ρ and η. Then there exists a constant
C, only depending on Ω, p, and d, such that∫

Ω

(∇h[η]−∇h[η] ◦ T ) ·
(
x− T (x)

τ

)p−1

dρ ≤ Cτ max{‖ρ‖rr, ‖η‖rr}+
W 2

2 (η, ρ)

τ∫
Ω

(∇h[ρ]−∇h[η]) ·
(
x− T (x)

τ

)p−1

dρ ≤ Cτ max{‖ρ‖rr, ‖η‖rr}+
W 2

2 (η, ρ)

τ

Proof. We begin with the first inequality: if we set Tt(x) = x+t(T (x)−x) then we know that
(Tt)]ρ := ρt ∈P(Ω) is the Wasserstein geodesic from ρ to η, and the displacement convexity
properties of the Lr norms imply that we have ‖ρt‖r ≤ max{‖η‖r, ‖ρ‖r} =: M . We have

∫
Ω

(∇h[η]−∇h[η] ◦ T ) ·
(
x− T (x)

τ

)p−1

dρ

=

∫
Ω

∫ 1

0

(x− T (x)) · (D2h[η](Tt(x))) ·
(
x− T (x)

τ

)p−1

dt dρ

≤
∫

[0,1]×Ω

τ1−p/2|D2h[η](Tt(x))| · |x− T (x)|p

τp/2
dt dρ

≤ τ
1
q

(∫ 1

0

∫
Ω

|D2h[η](Tt(x))|q dρ dt
) 1
q

·
(∫

Ω

|x− T (x)|2

τ
dρ

) p
2

= τ
1
q

(∫ 1

0

∫
Ω

|D2h[η](x)|qρt(x) dx dt

) 1
q

·
(
W2(η, ρ)2

τ

) p
2

,

19



where q denotes here the dual exponent of 2/p, i.e. q = 2
2−p = r− 1. Using Hölder inequality

with exponents q+1
q

and q+1 and then the classical estimate ‖D2h[ρ]‖r ≤ C‖∆h[ρ]‖r = C‖ρ‖r
we obtain ∫

|D2h[ρ]|qηt ≤ ‖D2h[ρ]‖qq+1‖ηt‖ ≤ CM
q+1.

Using this estimate and eventually Young inequality with exponents q and 2/p we obtain

(∫ 1

0

∫
Ω

τ |D2h[ρ](x)|qηt(x) dx dt

) 1
q

·
(
W2(η, ρ)2

τ

) p
2

≤
(
τ

1
qCM

q+1
q

)
·
(
W2(η, ρ)2

τ

) p
2

≤ τCMr +
W2(η, ρ)2

τ

Now we can pass to the second inequality. We perform directly a Holder inequality with
exponents 2

3−p and 2
p−1

, and then a Holder inequality with exponents 4−p
2

and 4−p
2−p :

∫
Ω

(∇h[ρ]−∇h[η]) ·
(
x− T (x)

τ

)p−1

dρ ≤ 1

τp−1

(∫
Ω

|∇h[ρ− η]|
2

3−p dρ

) 3−p
2

·
(∫

Ω

|T (x)− x|2 dη
) p−1

2

≤ 1

τp−1
‖∇h[η − ρ]‖ 4−p

3−p
‖η‖

3−p
2

r W2(ρ, η)p−1

We then use Proposition 5.9 and Lemma 5.10 in order to write

‖∇h[η − ρ]‖ 4−p
3−p
≤ C‖η − ρ‖(W1,4−p(Ω))∗ ≤ C

√
MW2(η, ρ).

Using this and then a Young inequality, we obtain

1

τp−1
‖∇h[η − ρ]‖ 4−p

3−p
‖η‖

3−p
2

r W2(ρ, η)p−1 ≤ C

τp−1
M

4−p
2 W2(ρ, η)p ≤ τCMr +

W2(ρ, η)2

τ
.

�

We can then collect all the previous results to obtain the following estimate.

Theorem 5.12 Let (ρτn)n be a sequence obtained from the JKO scheme for the Keller-Segel
functional F := E + G, and let J(p) be defined as in (5.1), for p < 2. Then we have

J(p)(ρ
τ
n+1) + F(ρτn+1) ≤ J(p)(ρ

τ
n) + F(ρτn) + Cτ max{‖ρτn‖rr, ‖ρτn+1‖rr}. (5.3)

Hence, if J(p)(ρ0) <∞, if F is bounded from below and if ‖ρτn‖rr stays bounded along iterations,

then (ρτn)1/p is bounded in W 1,p. In particular, for every α > 0, in the two-dimensional Keller-
Segel model with χ < 8π, when (ρ0)1/p ∈ L∞ ∩W 1,p there exists a solution ρt which satisfie
a bound of the form J(p)(ρt) ≤ C + Ct1+α, (the constant C depending on α, on p and on the

initial datum). If we do not suppose (ρ0)1/p ∈ W 1,p, then the same bound will be true for
t ≥ t0 > 0, with a constant depending on t0.

Proof. The iterated estimate (5.3) is just a consequence of (5.2) and of Lemma 5.11, together
with

W 2
2 (ρτn, ρ

τ
n+1)

τ
≤ F(ρτn)− F(ρτn+1).

If F is bounded from below and the Lr norm from above, we then obtain a bound on J(p)(ρ
τ
n)

and then we use

||(ρ)1/p||W1,p ≤ C + CJ(p)(ρ) + C

∫
|∇h[ρ]|pdρ.

Using ρ ∈ Lr, we just need to bound ∇h[ρ] in Lpr
′

in order to obtain the desired Sobolev
bound. From elliptic regularity, we have h[ρ] ∈ W 2,r and hence ∇h[ρ] ∈ Lr

∗
, with r∗ =

dr/(d − r), if r < d (the case r ≥ d is easy, since in this case ∇h[ρ] belongs to all Lebesgue
spaces). We just need to check r∗ ≥ pr′, which is true using r ≥ 3 and p < 2.

In order to apply this estimate to the two-dimensional Keller-Segel model with χ < 8π, we
first note that in this case F is bounded from below (this would also be true for χ = 8π). We
just need to bound the Lr norm of the solution, and for this we use the estimates of Theorem
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4.3. We obtain ||ρt||q ≤ C(1 + t)1/q for arbitrary q > 1, since ρ0 ∈ L∞. Taking q = r/α one
gets ||ρt||rr ≤ C(1 + t)α and the conclusion follows iterating (5.3).

If we do not suppose J(p)(ρ0) <∞, then we can use the dissipation of the energy F itself.

Indeed, this dissipation provides F(ρ0) =
∫ t0

0
J(2)(ρt)dt + F(ρt0), which means that we can

assume J(2)(ρt1) ≤ F(ρ0)/t0 for some t1 ∈ (0, t0). This provides finiteness of J(p)(ρt1) for
every p < 2. We then start a JKO scheme from ρt1 . �
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[2] D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion
Operators, Springer, 2014

[3] A. Blanchet, V. Calvez and J.-A. Carrillo, Convergence of the mass-transport
steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM Journal on
Numerical Analysis 46, 691-721, 2008.

[4] A. Blanchet, E.A. Carlen and J.-A. Carrillo, Functional inequalities, thick tails
and asymptotics for the critical mass Patlak-Keller-Segel model, Journal of Functional
Analysis 262, 2142-2230, 2012.

[5] A. Blanchet, J.-A. Carrillo, D. Kinderlehrer, M. Kowalczyk, P. Laurençot
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[38] F. Santambrogio, {Euclidean, Metric, and Wasserstein} Gradient Flows: an overview,
Bulletin of Mathematical Sciences 7, 87-154, 2017.

[39] C. Villani, Optimal Transport. Old and New, Grundlehren der Mathematischen Wis-
senschaften 338, Springer-Verlag, Berlin, 2009.

22


