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Abstract

Taking up a variational viewpoint, we present some nonlocal-to-local asymptotic results for
various kinds of integral functionals. The content of the thesis comprises the contributions
first appeared in the research papers [BP19,CP18,Pag19,CNP19] in collaboration with J.
Berendsen, A. Cesaroni, A. Chambolle, and M. Novaga.

After an initial summary of the basic technical tools, the first original result is discussed
in Chapter 2. It is motivated by thework [BBM01] by J. Bourgain, H. Brezis, and P.Mironescu,
who proved that the Lp-norm of the gradient of a Sobolev function can be recovered as a
suitable limit of iterated integrals involving the difference quotients of the function. A.
Ponce later showed that the relation also holds in the sense of Γ-convergence [Pon04].
Loosely speaking, we take into account the rate of this convergence and we establish the
Γ-converge of the rate functionals to a second order limit w.r.t. theH1

loc(Rd)-convergence.
Next, from Chapter 3 on, we move to a geometric context and we consider the nonlocal

perimeters associated with a positive kernel K , which we allow to be singular in the
origin. Qualitatively, these functionals express a weighted interaction between a given set
and its complement. More broadly, we study a total-variation-type nonlocal functional
JK( · ; Ω), whereΩ ⊂ Rd is a measurable set. We establish existence of minimisers of such
energy under prescribed boundary conditions, and we prove a criterion for minimality
based on calibrations. Due to the nonlocal nature of the problem at stake, the definition
of calibration has to be properly chosen. As an application of the criterion, we prove
that halfspaces are the unique minimisers of JK in a ball subject to their own boundary
conditions.

A second nonlocal-to-local Γ-convergence result is discussed in Chapter 4. We rescale
the kernelK so that, when the scaling parameter approaches 0, the family of rescaled
functions tends to the Dirac delta in 0. IfK has small tails at infinity, we manage to show
that the nonlocal total variations associated with the rescaled kernels Γ-converge w.r.t.
the L1

loc(Rd)-convergence to a local, anisotropic total variation.
Lastly, we consider the nonlocal curvature functional associated withK , which is the

geometric L2-first variation of the nonlocal perimeter. In the same asymptotic regime as
above, we retrieve a local, anisotropic mean curvature functional as the limit of rescaled
nonlocal curvatures. In particular, the limit is uniform for sets whose boundary is compact
and smooth. As a consequence, we establish the locally uniform convergence of the
viscosity solutions of the rescaled nonlocal geometric flows to the viscosity solution of
the anisotropic mean curvature motion. This is obtained by combining a compactness
argument and a set-theoretic approach that relies on the theory of De Giorgi’s barriers for
evolution equations.
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Introduction

We present some results that describe localisation effects for certain classes of nonlocal
functionals which are defined by means of integral kernels. The underlying intuition
is that, if we rescale the latter in such a way that they approximate the Dirac delta in
the origin as the scaling parameter tends to 0, then in the limit we retrieve some local
functionals. The precise sense in which the nonlocal-to-local convergence holds will be
specified case by case.

We devote these introductory pages to the overview of our main results, for which we
provide some motivation and background. At the same time, we outline the structure of
the thesis. Our main concern here is conveying general ideas, rather than stating results
with full precision. To give a wider perspective to the possibly interested readers, we hint
also at some of the literature which, for the sake of brevity, though being related to the
subjects we treat, is not mentioned in the main body of the work.

The first chapter includes the basics about functions of bounded variations, finite
perimeter sets, and Γ-convergence needed in the sequel. Then, in Chapter 2, we report
the results of [CNP19].

We start from the analysis carried out by J. Bourgain, H. Brezis, and P. Mironescu in
[BBM01], which has attracted much attention in the years: as an extremely brief selection
of follow-ups, we mention [MS02,Dáv02,Pon04,AK09,LS11]. The main result of [BBM01]
consists in the approximation of the Lp-norm of the gradient of a Sobolev function by
means of iterated integrals involving difference quotients. In [Pon04], A. Ponce extended
the result to the functionals

Fε(u) :=

ˆ
Ω

ˆ
Ω
ρε(y − x)f

(
|u(y)− u(x)|
|y − x|

)
dydx,

where u ∈ Lp(Ω) for some p ≥ 1, { ρε } is a suitable family of functions in L1(Rd),
and f : [0,+∞) → [0,+∞) is convex. As ε → 0+, he proved both pointwise and Γ-
convergence of {Fε } to a first order limit functionalF0. When ρε(x) := ε−dρ(ε−1x) for
some ρ ∈ L1(Rd) and u ∈W 1,p(Ω) is a Sobolev function, we find

F0(u) =

ˆ
Ω

ˆ
Rd
ρ(z)f(|∇u(x) · ẑ|)dzdx,

where, for z ∈ Rd\{0}, ẑ := z/ |z|. We address the asymptotic behaviour of the differences
F0 −Fε, which express the rate of convergence of the ε-functionals to their limit. We
prove that, if f is strongly convex, the rescaled rate functionals

Eε(u) :=
F0(u)−Fε(u)

ε2
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Γ-converge w.r.t. to theH1
loc(Rd)-convergence to the second order functional

E0(u) :=
1

24

ˆ
Rd

ˆ
Rd
ρ(z) |z|2 f ′′(|∇u(x) · ẑ|)

∣∣∇2u(x)ẑ · ẑ
∣∣2 dzdx.

The assumption of strong convexity on f rules out several interesting scenarios, notably
the one of linear growth at infinity. However, the analysis of the case at stake is already
nontrivial, and it leads to a conclusion which is analogous to the one of M. Peletier, R.
Planqué, and M. Röger in [PPR07] for convolution-type functionals.

Similarly to the works of M. Gobbino and M. Mora [Gob98,GM01], we perform a proof
based on a slicing procedure, which reduces the problem to the study of some energies
defined on functions of one variable, see Section 2.1. Then, in Section 2.3, we establish the
desired result relying on the Γ-convergence of the 1-dimensional functionals. This is not
immediate, though, and is achieved by resorting to a compactness result, whose proof, in
turn, requires some effort because of the structure of Eε.

From Chapter 3 on, we leave Sobolev spaces to move closer to geometric measure
theory, and we introduce generalised notions of perimeter, total variation, and mean
curvature.

LetΩ ⊂ Rd be measurable and consider an even functionK : Rd → [0,+∞). Heurist-
ically,K plays the role of a weight that encodes long range interactions between the points
in the space. For a measurable function u : Ω→ R we define its nonlocal total variation inΩ
as

JK(u; Ω) =
1

2

ˆ
Ω

ˆ
Ω
K(y − x) |u(y)− u(x)| dydx

+

ˆ
Ω

ˆ
Ωc

K(y − x) |u(y)− u(x)|dydx.

(0.1)

We recall that, for a setE ⊂ Rd, the perimeter in the sense of E. De Giorgi [DG55,AFP00,
Mag12] is defined as the total variation of the distributional gradient of its characteristic
function. Accordingly, we define the nonlocal perimeter in Ω ofE as

PerK(E; Ω) := JK(χE ; Ω),

χE being the characteristic function.
The first instance of nonlocal perimeter appeared in the celebrated paper [CRS10] by L.

Caffarelli, J. Roquejoffre, and O. Savin, who focused on the caseK(x) = |x|−d−s for some
s ∈ (0, 1), i.e. on fractional kernels. Over the years, their work has influenced vastly the
research, and in the sequel we suggest a brief list of developments.

Before going into the details of Chapter 3, we present some examples by E. Cinti, J. Serra,
and E. Valdinoci [CSV19] with the purpose of motivating the interest in the functionals
under consideration,

The first example concerns digital imaging. In order to be displayed on the screen of an
electronic device, images are sampled by means of 2-dimensional grids whose elementary
cells correspond to the smallest units that the device can handle. These cells are called
pixels, a short for picture element, and their whole provides the screen representation of
the given image. As a general principle, themore the pixels, themore accurate is the digital
reproduction; in other words, pixels whose side lengths are small result in high resolution
and fidelity. The following discussion shows how nonlocal perimeters are sensitive to
changes of resolution, differently from De Giorgi’s one.
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Figure 1: Representation of a unit square by pixels of side length equal to ρ. Source:
[CSV19].

Suppose that we want to create a pixel representation of a unit square whose sides
are rotated by 45◦ w.r.t. to the reference grid (see Figure 1) . An elementary calculation
gets that the standard perimeter of the reproduction, which is displayed in grey in the
figure, equals 4

√
2, no matter how we choose the side length of the pixels. Hence, we see

that the discrepancy between the perimeter of the source image and the one of its pixel
approximation is left unchanged under increase of resolution.

In this respect, nonlocal perimeters are far more accurate. For instance, let s ∈ (0, 1)
and consider the fractional perimeter

Pers(E) := Pers(E;Rd) =

ˆ
Ec

ˆ
E

dxdy

|y − x|2+s .

Denoting byQ and Q̃ respectively the given square and its pixel representation, we have
that

Pers(Q̃) =

ˆ
Q̃c

ˆ
Q̃∩Qc

dxdy

|y − x|2+s +

ˆ
Q̃c

ˆ
Q

dxdy

|y − x|2+s

=

ˆ
Q̃c

ˆ
Q̃∩Qc

dxdy

|y − x|2+s + Pers(Q)−
ˆ
Q̃∩Qc

ˆ
Q

dxdy

|y − x|2+s

≤
ˆ
Q̃c

ˆ
Q̃∩Qc

dxdy

|y − x|2+s + Pers(Q).

The set Q̃ ∩Qc is the “frame” of pixels that surroundsQ, whence

Pers(Q̃) ≤ Pers(Q) +
∑
i

Pers(Pi),

where Pi is a boundary pixel. The number of such pixels is of the order ρ−1 and, by a
change of variables, it is easy to see that Pers(Pi) = ρ2−s Pers(Q). On the whole, we find

Pers(Q̃) . (1 + ρ1−s) Pers(Q),

so that the discrepancy is bounded above by a quantity that vanishes as ρ tends to 0, that
is, it vanishes in the high resolution limit.
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It is worth mentioning that nonlocal functionals akin to (0.1) have also been studied in
connection with image denoising. In a nutshell, this amounts to recover a image of higher
quality starting from a distorted datum u0 : Ω→ R. The result of the process should be a
function that is more regular than u0 and that is, at the same time, not too different from
it. To achieve the goal, the idea is to look for solutions to the problem

min
u

{
J(u) + α

ˆ
Ω
|u− u0|2

}
,

where J acts as a filter and α is the so-called fidelity parameter, to be suitably tuned. The
differences between the models proposed in the literature lie in the choice of the filter J .
The classical one is J(u) =

´
Ω |Du| [ORF92], but, more recently, several nonlocal filters

have been introduced [GO07,AK09,LS11,BN16,BN18].
The second motivational example comes from physics. In [CH58], J. Cahn and J. Hilliard

introduced a model for phase transitions in certain binary metallic alloys, and they derived
the following expression for the free energy:

FCH
ε (u; Ω) :=

ˆ
Ω

[
ε2

2
|∇u(x)|2 +W (u(x))

]
dx.

Here, Ω is the container where the system sits, u : Ω→ [−1, 1] represents the concentra-
tion of a reference phase, ε > 0 is a (small) scale parameter, andW : R → [0,+∞) is a
double-well potential which vanishes only in−1 and 1.

When the phases are mixed, that is, u takes also values in (−1, 1), and the system is in
suitable physical conditions, experiments show the evolution is steered by theminimisation
ofJCH

ε : thus, owing to the pontentialW , the two phases separate, and the transition occurs
in a thin interface, because the gradient term penalises wide interfaces.

In the description of some systems, it is reasonable to assume that particles interact
also if they are far apart; for instance, this is observed in continuum limits of discrete
Ising’s spins. Such circumstances suggest to modify the free energy of Cahn and Hilliard as
to include nonlocal functionals. The option considered by G. Alberti and G. Bellettini in
[AB98a,AB98b] is

FAB
ε (u; Ω) :=

1

4

ˆ
Ω

ˆ
Ω
Kε(y − x) |u(y)− u(x)|2 dydx+

ˆ
Ω
W (u(x))dx,

where
Kε(x) :=

1

εd
K
(x
ε

)
(0.2)

andK is a positive, long range interaction kernel; see also the paper [BBP01] by G. Bellettini,
P. Buttà, and E. Presutti. Analogous energies of fractional type have been investigated as
well; the reader interested in this topic may consult the survey [Val13] by E. Valdinoci and
references therein.

Observe that, when the phases are separated, the functional FAB
ε equals the first

summand in (0.1): indeed, if u takes only the values −1 and 1, then |u(y)− u(x)|2 =
2 |u(y)− u(x)|. Therefore, we see that JK is related to the free energy of the system at
rest.

Let us now overview our analysis of nonlocal perimeters and total variations. Relying
on [BP19], we explore some basic properties of the nonlocal energies in Sections 3.1 and
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3.2. We allow for a wide family of kernels, which encompasses, for instance, the fractional
ones, and, as a first result, we show that the nonlocal total variation of a function u is finite
if u is of bounded variation.

Secondly, we show that there exist local minimisers of JK under prescribed boundary
conditions. This corresponds to the existence of solutions to the well-studied Plateau’s
problem, which amounts to find a hypersurface of least area among the ones spanned by a
given boundary.

A simple application of Fatou’s Lemma yields L1
loc(Rd)-lower semicontinuity of JK ,

but, in striking contrast with the local case, sequences that have equibounded nonlocal
variations are in general not precompact in L1 (see the lines preceding Remark 3.7 for a
counterexample). This hinders a straightforward transliteration of the geometric measure
theory approach to the classical Plateau’s problem. Nonetheless, it is possible to deduce
existence of minimisers via the direct method of calculus of variations. The key ingredients
in this regard are the convexity of JK and the validity of a generalised Coarea Formula:

JK(u; Ω) =

ˆ 1

0
PerK({ u > t } ; Ω)dt.

The importance of the latter was firstly pointed out by A. Visintin [Vis91,Vis90], who was
concerned with energies for multiphase systems as the one we mentioned above.

The existence of solutions to the nonlocal Plateau’s problem raises at least a couple of
questions:

• Can we give a necessary condition for optimality in terms of the first variation of the
nonlocal perimeter?

• Can we devise some sufficient condition for optimality?

As in the local case, tackling the first issue leads to the notion of curvature. The
geometric first variation of PerK was computed as soon as nonlocal perimeters were
introduced. Indeed, in [CRS10], Caffarelli, Roquejoffre, and Savin identified

HK(E, x) := −p.v.

ˆ
Rd
K(y − x)

(
χE(y)− χEc(y)

)
dy (0.3)

as the first variation of PerK ,K being a fractional kernel. The relationship holds true in
wider generality, and, due to the possible singularity ofK , it is not evident in which sense
a solutionE to Plateau’s problem satisfies the Euler-Lagrange equationHK(E, x) = 0 for
x ∈ ∂E. It is not even clear, at first sight, for which sets the integral defining the nonlocal
curvature is convergent.

In Section 3.4, we give sufficient conditions onK so thatHK(E, x) is finite for all sets
E with C1,1 boundary and for all x ∈ ∂E. This is not a novelty [CMP15,MRT19], but we
also establish an upper bound onHK that is to come in handy in Chapter 5.

As for the Euler-Lagrange equation HK(E, x) = 0, J. Mazón, J. Rossi, and J. Toledo
proved that whenK ∈ L1(Rd) and x belongs to the reduced boundary ofE, the equality
holds pointwise. More broadly, it has to be interpreted in a viscosity sense, see [CRS10]. In
a very recent paper [Cab20], X. Cabré has re-proved this fact by utilising an argument that
is completely different from the original one (see later on).

On the side of sufficient conditions for optimality, fewer literature concerning our
problem is available. Vice versa, for De Giorgi’s perimeter the well developed theory of
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calibrations is at our disposal [Mor08, HL82,Mor90, LM94, CCP12]. In Section 3.3, which
grounds on [Pag19], we propose a nonlocal notion of calibration that allows for aminimality
criterion that parallels the classical one. A similar task was indepentently accomplished by
Cabré [Cab20], who also exploited calibrations to retrieve that nonlocal minimal surface
satisfy the equationHK = 0 is the viscosity sense. Another possible application will be
discussed in Chapter 4.

We mould nonlocal calibrations on the classical ones. Yet, while the latter are vector
fields, following the approach to nonlocal Cheeger’s energies in [MRT19], our calibrations
are scalar functions on the product space Rd × Rd. Then, we prescribe that they satisfy a
bound on the norm, a vanishing divergence condition, and agreement with the normal of
the calibrated set. Of course, these requirements need to be formulated appropriately as
to fit in the nonlocal framework. In particular, inspired again by [MRT19], we resort to the
notion of nonlocal divergence introduced by G. Gilboa and S. Osher in [GO08].

While, in general, it is not effortless to construct a calibration, it is simple to exhibit
one for graphs [Cab20]. In the very special case of halfspaces, alongside with optimality, we
are also able to prove uniqueness [Pag19]. This property had been established previously
only for fractional perimeters [CRS10,ADPM11].

A common feature of the phase field models that we sketched above is that, under
suitable rescalings, the energies approach asymptotically a surface functional. In the local
setting, a classical result by L. Modica and S. Mortola [MM77] states that, when ε→ 0+,
the family

{
ε−1JCH

ε

}
Γ-converges to De Giorgi’s perimeter, up to a constant encoding

surface tension. In [AB98b] a local, anisotropic surface functional was retrieved as the
Γ-limit of

{
ε−1JAB

ε

}
, and O. Savin and E. Valdinoci drew similar conclusions for fractional

free energies in [SV12]. In a more abstract context, also the limiting behaviour of the
functional JK in (0.1) was studied: forK(x) = |x|−d−s with s ∈ (0, 1), L. Ambrosio, G. De
Philippis, and L. Martinazzi proved in [ADPM11] that, when s→ 1−, De Giorgi’s perimeter
is obtained in the sense of Γ-convergence.

In Chapter 4, which is based on [BP19,Pag19], we discuss a nonlocal-to-local conver-
gence result which is reminiscent of the previous ones. Indeed, provided that

ˆ
Rd
K(x) |x|dx < +∞,

we recover a local, anisotropic total variation J0 as the Γ-limit of the family
{
ε−1Jε

}
,

where Jε(u; Ω) := JKε(u; Ω) andKε is as in (0.2). Under the current assumption on the
kernel, it is non difficult to show that, when u is a function of bounded variation, Jε(u; Ω)
is of order ε. Consequently, to get a nontrivial limit, we put the factor ε−1 in front of the
rescaled energies.

Our convergence result is closely related to the one in [Pon04], and we rely on that
work for what concerns the pointwise limit. Nevertheless, the interactions between the
reference setΩ and its complement are not taken into consideration there, so our statement
does not follow immediately from the ones of Ponce. In any case, aside from pointwise
convergence, our proof is self-contained.

We remark that, paralleling the analysis of Chapter 2, it would be interesting to invest-
igate whether the rate functionals ε−α(J0−Jε) Γ-converge for someα > 0 to a geometric,
second order limit functional.

The first step to prove the Γ-convergence of the rescaled functionals Jε is reducing
to nonlocal perimeters. This is made possible by a result of A. Chambolle, A. Giacomini,
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and L. Lussardi [CGL10], which, in turn, grounds on the validity of Coarea Formulas in the
sense of Visintin. Then, in Section 4.3, we can easily establish the upper limit inequality,
exploiting the density of polyhedra in the family of finite perimeter sets.

The proof of the Γ-lower limit inequality, which is addressed in Section 4.5, is more
elaborated. As [AB98b,ADPM11], we adopt the blow-up technique introduced by I. Fonseca
and S. Müller [FM93], and we deduce a lower bound where a functional J̃0, a priori distinct
from J0, appears. By construction, the anisotropy of J̃0 is given only implicitly: indeed, it is
defined as the value of a certain cell problem which involves sequences of sets converging
in L1 to a given halfspace. To achieve the conclusion, in Section 4.4 we identify the
anisotropy occurring in J̃0 as the one of J0. Much in the spirit of [ADPM11], the minimality
of halfspaces proves to be crucial at this stage, and this provides an interesting application
of the calibration criterion in Chapter 3.

We recalled that nonlocal curvatures can be derived as first variations of nonlocal
perimeters. With the result of Chapter 4 on the table, it is spontaneous to wonder if an
analogue asymptotic results holds for curvatures. In the affirmative case, it is also natural
to ask whether the convergence is inherited by the associated geometric motions, that is,
by theL2-gradient flows of the perimeters. We deal with these questions in the concluding
chapter, which includes the contributions in [CP18], and we provide a positive answer to
both.

When K is a fractional kernel, N. Abatangelo and E. Valdinoci [AV14] proved that
suitable rescalings of the nonlocal curvatures pointwise converge to a multiple of the
standard mean curvature when the fractional exponent approaches 1. For radial, L1

kernels, the same conclusionwas achieved in [MRT19]. We establish a congruent theorem in
Section 5.2 for a larger class of kernels. We show that, whenE is a set withC2 boundary, in
the limit ε→ 0+, the functionals ε−1Hε(E, x) := ε−1HKε(E, x), withKε as above, tend
for all x ∈ ∂E to an anisotropic mean curvature functionalH0(∂E, x). If the boundary of
E is also compact, we are able to conclude that the convergence is uniform.

Thenext thingwedo is checking that the limit curvature agreeswith the limit perimeter
found in Chapter 4, namely we notice thatH0 is the first variation of the restriction of J0

to sets. So, in a sense, the first variation commutes with the limiting procedures.
The last result that we present in this thesis concerns the motions by curvature

∂tx(t) · n̂(t) = −1

ε
Hε(E(t), x(t)) and ∂tx(t) · n̂(t) = −H0(Σ(t), x(t)),

where t 7→ E(t) ⊂ Rd is an evolution of sets, Σ(t) := ∂E(t), x(t) ∈ Σ(t), and n̂(t) is the
outer unit normal to Σ(t) at x(t). We study them utilizing the level-set method, which is
to say that we suppose that the evolving setE(t) and its boundary Σ(t) are respectively
the 0 superlevel set and the 0 level set of some function ϕ(t, · ). Rewriting the previous
equations in terms of ϕ gets formally the following nonlocal and local parabolic partial
differential equations:

∂tϕ(t, x) +
|∇ϕ(t, x)|

ε
Hε({y : ϕ(t, y) ≥ ϕ(t, x)}, x) = 0, (0.4)

∂tϕ(t, x) + |∇ϕ(t, x)|H0({y : ϕ(t, y) = ϕ(t, x)}, x) = 0. (0.5)

Already in the local case, it is well know that a weak notion of solution is needed to cope
with the onset of singularities observed in this sort of evolutions. We employ the viscosity
theory by L. Evans and J. Spruck [ES92] and by Y. Chen, Y. Giga, and S. Goto [CGG91], who,
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in turn, relied on results for Hamilton-Jacobi equations (see for instance [CL83]). In this
context, existence and uniqueness of a global-in-time solution are ensured. On the nonlocal
side, well posedness for the Cauchy’s problem for the motion by fractional curvature was
settled by C. Imbert in [Imb09] (see also the paper [LMV19] by D. La Manna and J. Vesa
for short time existence of the classical solutions). Lately, existence and uniqueness for
the level-set formulation of a broad range of local and nonlocal curvature flows have
been established in a unified framework by A. Chambolle, M. Morini, and M. Ponsiglione
[CMP15].

Several aspects of motions by nonlocal curvatures have recently been subjects of invest-
igation, mostly in the fractional case: for instance, conservation of convexity [CNR17], form-
ation of neckpinch singularities [CSV18], fattening phenomena [CDNV19], self-shrinkers
[CN19]. Instead, going back in time, we see that nonlocal geometric evolutions emerged
from physical models that strive to explain plastic behaviour of metallic crystals. Accord-
ing to these theories, the macroscopic phenomenon of plasticity arises as a consequence
of microscopic irregularities in the crystalline lattice, known as defects. Among them, we
find dislocations, which correspond to linear misalignments in the microscopic structure.
Each dislocation produces an elastic field, which in turn exerts the so called Peach-Koehler
force on all other defects in the alloy. As a consequence, dislocation lines evolve, and each
point on them moves with normal velocity determined by the Peach-Koehler force. In
[AHLBM06], O. Alvarez, P. Hoch, Y. Le Bouar, and R. Monneau proposed a mathematical
description of dislocation dynamics in terms of a nonlocal eikonal equation, for which they
were able to prove short time existence and uniqueness. In this model, the Peach-Koelher
force is encoded by a convolution kernel c0, typically singular, whence the nonlocal nature
of the problem. Imbert highlights in [Imb09] that the mathematical expression of the
Peach-Koehler force may be understood as a nonlocal curvature of the dislocation line,
thus, dislocation dynamics turns out to be a motion by nonlocal curvature.

The explicit expression of the kernel c0 might be complicated, because it has to capture
the physical features of the system. Further, c0 might change sign and this poses serious
technical difficulties, because it opposes the validity of comparison principles. The original
model has by then been simplified by various authors, who obtained well-posedness for
the problem [ACM05,BL06, IMRM08,NF08,DLFM08].

After the excursus on the connection between nonlocal curvatures and dislocation
dynamics, we discuss now the main result of Chapter 5, which shows that the convergence
of the curvatures is sufficiently robust to entail convergence of the solutions to the cor-
responding geometric flows. Precisely, we fix u0 : Rd → R and we let uε and u be the
viscosity solutions with initial datum u0 to (0.4) and (0.5), respectively. We prove that the
family { uε } locally uniformly converges to u as ε→ 0+.

A similar result already appeared in the paper [DLFM08] by F. Da Lio, N. Forcadel, and R.
Monneau, who also proved convergence of the nonlocal curvature functionals. However,
they made assumptions on the kernel that are different from ours, because they focused on
a precise dislocation dynamics model. Accordingly, their scaling does not match ours. We
also stress that our proof and theirs are based on substantially distinct arguments. Indeed,
in [DLFM08], the authors exploit viscosity semilimits and the perturbed test function
method, whilst we propose an approach by geometric barriers. These were introduced by
De Giorgi in [DG94] as weak solutions to a wide class of evolution problems. G. Bellettini,
M. Novaga, and M. Paolini considered solution in this class for geometric parabolic PDEs
such as (0.5), and they found out that viscosity theory and barriers can be compared
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[BGP95,Bel97,BN98,BN00]. In the same spirit, in the recent paper [CDNV19], A. Cesaroni, S.
Dipierro, M. Novaga, and E. Valdinoci put in relation barriers and viscosity solutions for
nonlocal curvature motions. These comparison results are the cornerstone of the analysis
in Section 5.4.

As a concluding bibliographical note, we point out that approximation results for mean
curvaturemotions, either by local or nonlocal operators, have been intensively studied. One
of themost renowned is due to J. Bence, B.Merriman, and S. Osher. In [BMO92], they devised
a formal strategy to construct fronts evolving by mean curvature, the so called threshold
dynamics algorithm. It amounts to a time-discretization, which, at each step, takes the
characteristic functions of a suitable set as datum, and yields its evolution according to
the heat equation. The convergence of this scheme was rigorously settled in [BG95,Eva93]
and subsequently more general diffusion operators were considered [Ish95, IPS99,CN06].
In [CS10] L. Caffarelli and P. Souganidis applied a threshold dynamics scheme to motions
by fractional mean curvature. A generalisation encompassing anisotropies and driving
forces was proved in [CNR17].
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Notation

a ∧ b, a ∨ b resp., minimum and maximum between a, b ∈ R
d dimension of the ambient space Rd
id identity map in Rd
Ec complement of the setE in Rd, i.e. Rd \ E

E4F symmetric difference between the setsE and F
E = F the setsE and F coincide up to a Lebesgue negligible set
E ⊂ F the setsE is contained in the set F , up to a Lebesgue negligible set
χE characteristic function of the setE
χ̃E signed characteristic function of the setE, i.e. χ̃E = χE − χEc

x · y Euclidean inner product between x, y ∈ Rd
|x| Euclidean norm of x ∈ Rd
x̂ unit vector parallel to x ∈ Rd \ {0}, i.e. x/ |x|
x⊥ subspace of the vectors that are orthogonal to x ∈ Rd \ {0}
πx̂⊥ the matrix that represents the orthogonal projection on x̂⊥, i.e id− x̂⊗ x̂
ei i-th element of the canonical orthonormal basis of Rd

B(x, r) open ball of centre x and radius r > 0 in Rd
Sd−1 topological boundary ofB(0, 1)

dist(x,E) Euclidean distance between the point x and the setE
dist(E,F ) Euclidean distance between the setsE and F
|µ| total variation measure of the measure µ
‖µ‖ total variation norm of the measure µ
µxΩ restriction of the measure µ to the set Ω
L d d-dimensional Lebesgue measure

H d−1 (d− 1)-dimensional Hausdorff measure
ωd−1 (d− 1)-dimensional Lebesgue measure of the unit ball in Rd−1

a.e. L d-almost everywhere in Rd orL d ⊗L d-almost everywhere in Rd × Rd
u = v the functions u, v : Rd → R coincideL d-a.e.
Du distributional gradient of the function u

BV(Ω), BVloc(Ω) functions of (locally) bounded variation in Ω
M t transpose of the matrixM

tr (M) trace of the matrixM
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Chapter 1

Basic ingredients

In this preliminary chapter we collect some standard notions and results that make up the
background of the sequel. We include here just the topics that are of general relevance for
the thesis, while we shall provide reminders that pertain to specific aspects when they are
needed. Notably, the theories of viscosity solutions and of barriers for geometric evolution
equations are presented in Chapter 5. Moreover, we omit proofs, which may be found in
the suggested references.

We start with the essentials of geometric measure theory. We recall some facts about
measures on the Euclidean space, then we introduce the space of functions of bounded
variation and the class of finite perimeter sets.

One of the leitmotifs of our analysis is recovering local functionals as limits of their
rescaled nonlocal counterparts. In Chapters 2 and 4, the asymptotics relationships are
expressed in terms of Γ-convergence, whose definition we recall in Section 1.3. Typically,
the limit functionals that we obtain are not isotropic. For this reason, we sum up in Section
1.2 some properties of anisotropic surface energies.

Before getting to the heart of the matter, let us premise some notations concerning
the ambient space of our analysis.

For us, d is always a natural number greater than 1. We work in the d-dimensional
Euclidean space, that is, the vector space Rd endowed with the Euclidean inner product ·
and the associatednorm | · |. We let e1, . . . , ed be the elements of the canonical orthonormal
basis, and, when x ∈ Rd \ {0}, we set

x̂ :=
x

|x|
and x⊥ :=

{
y ∈ Rd : x · y = 0

}
.

We denote the open ball of centre x and radius r in Rd byB(x, r) and we let Sd−1 be the
topological boundary ofB(0, 1). IfE,F ⊂ Rd and x ∈ Rd, we put

dist(x,E) := inf { |y − x| : y ∈ E } ,
dist(E,F ) := inf { |y − x| : x ∈ E, y ∈ F } .

WhenE ⊂ Rd is a set, wewriteEc for its complement inRd andχE for its characteristic
function, i.e.

χE(x) :=

{
1 if x ∈ E,
0 if x ∈ Ec.
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1.1. MEASURES AND BV FUNCTIONS

If F is another subset of Rd, we letE4F be the symmetric difference betweenE and F ,
that isE4F := (E ∩ F c) ∪ (Ec ∩ F ).

1.1 Measures and BV functions

Following the monographs [AFP00] by L. Ambrosio, N. Fusco, and D. Pallara and [Mag12] by
F. Maggi, we introduce the by now classical tools to tackle geometric variational problems.

LetX be a set and letA be a σ-algebra onX . A map µ : A → [−∞,+∞] is a (real)
measure on (X,A ) if it is σ-additive andµ(∅) = 0. We say that ameasure µ is positivewhen
µ(E) ∈ [0,+∞] for allE ∈ A , and that it is finite if it is positive and µ(E) < +∞ for all
E ∈ A . Similarly, we may consider vector measures, that is, σ-additive maps µ : X → Rn
such that µ(∅) = 0 with n ∈ N larger than 1.

Whenµ is either a real- or vector-valuedmeasure on (X,A ), we define its total variation
as

|µ|(E) := sup

{
+∞∑
`=1

|µ(E`)| : E` ∈ A , E` ∩ Em = ∅ if ` 6= m, andE =
+∞⋃
`=1

E`

}
,

which is in turn a finite measure. We dub norm of the measure µ the quantity ‖µ‖ :=
|µ| (X).

In this work, we only consider measures on the Euclidean space Rd. LetB the Borel
σ-algebra, i.e. the σ-algebra generated by open sets. Measures that are defined on each
set inB are called Borel measures. The support of a positive measure is the set

suppµ :=
{⋂

C : C is closed and µ(Cc) = 0
}
.

We say that a positive Borel measure µ on Rd is a Radon measure if it is

• locally finite: µ(C) < +∞ for all compact sets C ⊂ Rd;

• regular: for all F ⊂ Rd there existsE ∈ B such that F ⊂ E and µ(F ) = µ(E).

This concept may also be extended to the vectorial case: a Borel measure µ on Rd with
values in Rn is a vector-valued Radon measure if there exist a positive measure ν on
(Rd,B) which is Radon and a L1(ν) function f : Rd → Rn such that |f | = 1 ν-a.e. and
µ = fν. A posteriori, one finds ν = |µ|.

Radonmeasures satistisfy a bunch of useful properties. Firstly, when equipped with the
total variation norm, they form a normed space which coincides with the dual of compactly
supported continuous functions:

Theorem 1.1 (Riesz)
LetCc(Rd;Rn) be the space ofRn-valued, compactly supported, continuous functions onRd. Then,
for all bounded linear functionalsΛ: Cc(Rd;Rn)→ R, there exists a uniqueRn-valued Radon
measure µ onRd such that

Λ(ϕ) =

ˆ
Rd
ϕ · dµ for all ϕ ∈ Cc(Rd;Rn).

Moreover, for such measure and for all open V ⊂ Rd, it holds

|µ| (U) = sup { Λ(ϕ) : ϕ ∈ Cc(V ;Rn), |ϕ| ≤ 1 }

2



CHAPTER 1. BASIC INGREDIENTS

In view of the previous representation result, we say that the sequence of Radon
measures { µ` } weakly-∗ converges to the Radon measure µ, and we write µ`

∗
⇀ µ, if

lim
`→+∞

ˆ
Rd
ϕ · dµ` =

ˆ
Rd
ϕ · dµ for all ϕ ∈ Cc(Rd;Rn).

We stated above that if µ is a vector valued Radon measure, then µ = f |µ| for some
L1(|µ|). Relations of this kind hold in wider generality:

Theorem 1.2 (Besicovitch’s Differentiation)
Let µ and ν be respectively a positive and anRn-valued Radon measure on some openΩ ⊂ Rd. If
for all Borel setsE ⊂ Ω µ(E) = 0 implies |ν| (E) = 0, then for µ-a.e. x ∈ suppµ the following
limit exists:

f(x) := lim
r→0+

ν(B(x, r))

µ(B(x, r))
.

Moreover, f ∈ L1(Ω, µ;Rn) and ν = fµ.

We refer to the function f above as the Radon-Nikodym derivative of ν w.r.t. to µ and we
denote it by dν/dµ.

Another useful property of Radon measures concerns the maximum numbers of leaves
in a foliation which can have positive mass for a Radon measure:

Proposition 1.3
Let µ be a Radon measure onRd and let {Eα}α∈A be a family of disjoint Borel sets. Then, there
exist at most countable α ∈ A such that µ(Eα) > 0.

Finally, wemention a simple criterion to prove that the restriction of a Borel measure is
a Radon measure. We recall that the restriction of the measure µ to the setΩ is the measure
given by µxΩ(E) := µ(E ∩ Ω).

Proposition 1.4
If µ is a Borel regular measure onRd andE is a µ-measurable set such that µxE is locally finite,
then µxE is a Radon measure.

The measures that occur most frequently in the sequel are the the d-dimensional
Lebesgue and the (d− 1)-dimensional Hausdorff measure onRd, which we denote respect-
ively byL d andH d−1. The Lebesgue measure is an example of Radon measure, while
H d−1 is Borel regular, but not locally finite; however, by Proposition 1.4, the restriction
H d−1xE is Radon wheneverH d−1(E) is finite.

We shall henceforth neglect to specify the measure w.r.t. which a set or a function is
measurable, when the measure isL d or the productL d ×L d on Rd × Rd; similarly, we
shall adopt the expression “a.e.” in place of “L d-a.e.” and of “L d ×L d-a.e.”. If u and v
are measurable functions, we shall use “u = v” as a shorthand for “u(x) = v(x) for a.e.
x ∈ Rd”; in the same spirit, ifE and F are measurable sets, “E = F ” means thatE and F
coincide up to a negligible set and “E ⊂ F ” thatL d(E ∩ F c) = 0.

We now introduce the class of functions whose distributional derivative is a Radon
measure. If u is a function, we denote byDu its distributional gradient, while we use∇u
for the pointwise one.
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1.2. FINITE PERIMETER SETS AND ANISOTROPIC SURFACE ENERGIES

Let Ω ⊂ Rd be an open set. A function u ∈ L1(Ω) is of bounded variation in Ω ifDu is a
Rd-valued Radon measure onΩ such that ‖Du‖ < +∞. In this case, we write u ∈ BV(Ω).
Since

‖Du‖ = sup

{ ˆ
Ω
udiv ζ : ζ ∈ C1

c (Ω;Rd), |ζ| ≤ 1

}
, (1.1)

BV(Ω)may be equivalently defined as the subspace of all u ∈ L1(Ω) such that the right-
hand side in (1.1) is finite. Observe that, in the light of (1.1), the map u 7→ ‖Du‖ is lower
semicontinuous w.r.t. the L1

loc(Ω) convergence.
The total variation of a BV functions bounds the L1-norm of its difference quotients.

Actually, this property provides a characterisation that we shall exploit several times in
our analysis:

Proposition 1.5 (Characterisation via difference quotients)
LetΩ ⊂ Rd be open. Then, u : Ω→ R is a function of bounded variation inΩ if and only if there
exists a constant c ≥ 0 such that for any open set V that is compactly contained inΩ and for any
z ∈ Rd with |z| < dist(V,Ωc) it holds

‖τzu− u‖L1(V ) ≤ c |z| ,

where τzu(x) := u(x+ z). In particular, it is possible to choose c = |Du| (Ω).

Finally, we remind a compactness criterion for functions of bounded variation.

Theorem 1.6
LetΩ ⊂ Rd be an open set and let { u` } be a sequence inBVloc(Ω). If for all open sets V that are
compactly contained inΩ it holds ‖u`‖L1(V ) + |Du`| (V ) ≤ c for some c ≥ 0, then there exist a
subsequence { u`m } and a function u ∈ BVloc(Ω) such that { u`m } converges to u inL1

loc(Ω).

1.2 Finite perimeter sets and anisotropic surface energies

The material in this section lays the groundwork for Chapters 3 and 4. There, we deal with
a class of functionals that we name nonlocal perimeters; here, instead, we introduce the
concept of distributional perimeter, which we may consider as the classical one.

The definition of perimeter dates back to the seminal works of R. Caccioppoli and E.
De Giorgi. In a nutshell, we identify a set with its characteristic function, we consider the
distributional gradient of the latter, and we define its total variation as perimeter of the
given set. So, ifE ⊂ Rd is measurable and Ω ⊂ Rd is an open set, we define the perimeter
ofE in Ω the quantity

Per(E; Ω) := sup

{ ˆ
E

div ζ : ζ ∈ C1
c (Ω;Rd), |ζ| ≤ 1

}
. (1.2)

We say thatE is a set of finite perimeter in Ω when Per(E; Ω) < +∞. Sometimes, we shall
use the expression Caccioppoli set as a synonym, and we shall refer to Per as De Giorgi’s
perimeter, when we want to distinguish it from the nonlocal counterparts that occur in
the next chapters.
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CHAPTER 1. BASIC INGREDIENTS

In what follows, we shall frequently identify sets with their characteristic functions.
In particular, by saying that a sequence { E` } converges in L1

loc(Ω) toE we mean that

lim
`→+∞

L d
(
(E`4E) ∩ C

)
= 0 for all compact sets C such that C ⊂ Ω,

As a consequence of its definition, the perimeter is L1
loc(Ω)-lower semicontinuous.

Using the language of the previous section, we may say that E has finite perimeter
in Ω if its characteristic function χE belongs to BVloc(Ω). Accordingly, if E has finite
perimeter in Ω, thenDχE is an Rd-valued Radon measure in Ω and

Per(E; Ω) := |DχE | (Ω).

Moreover, if we denote by n̂ the Radon-Nikodym derivative ofDχE w.r.t. |DχE |, it holdsˆ
E

div ζdx = −
ˆ

Ω
ζ · n̂d |DχE | for all ζ ∈ C1

c (Ω;Rd). (1.3)

The unit vector field

n̂(x) := lim
r→0+

DχE(B(x, r))

|DχE | (B(x, r))
, (1.4)

which is well defined |DχE |-a.e. x ∈ supp |DχE |, may be understood as the inner normal
ofE.

Further, let

∂∗E :=
{
x ∈ Rd : n̂(x) exists and |n̂(x)| = 1

}
.

Fundamental results by De Giorgi and H. Federer [DG55,Fed59] show that ∂∗E is (d− 1)-
rectifiable for all measurableE and thatDχE = n̂H d−1x∂∗E, whence

Per(E; Ω) = H d−1(∂∗E ∩ Ω),

We call the set ∂∗E reduced boundary ofE. For any x ∈ ∂∗E, it holds

E − x
r
→
{
y ∈ Rd : y · n̂(x) > 0

}
as r → 0+ in L1

loc(Rd). (1.5)

Sets of finite perimeter may be exploited to describe various physical models. We
are interested in anisotropic surface energies, but we also introduce some more general
concepts.

Let σ : Rn → [0,+∞] be a positevely 1-homogeneous measurable function and let
Ω ⊂ Rd be measurable. For anyRn-valued Radon measure onRd, we define the anisotropic
total variation of µ as

Jσ(µ; Ω) :=

ˆ
Ω
σ

(
dµ

d |µ|

)
d |µ| . (1.6)

The anisotropy is encoded by the function σ; when it is constant, the usual total variation
is recovered.

The following results sums up the continuity properties of Jσ :

Theorem 1.7 (Reshetnyak)
Let Jσ be the functional in (1.6).
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1.3. Γ-CONVERGENCE

(i) If σ : Rn → [0,+∞] is 1-homogeneous, lower semicontinuous, and convex, then for all
openΩ ⊂ Rd it holds

Jσ(µ; Ω) ≤ lim inf
k→+∞

Jσ(µk; Ω)

whenever µ and µk , for all k ∈ N, are Rn-valued Radon measures on Rd such that
µk

∗
⇀ µ.

(ii) If σ : Sn−1 → [0,+∞) is bounded and continuous, then for all openΩ ⊂ Rd it holds

Jσ(µ; Ω) = lim
k→+∞

Jσ(µk; Ω)

whenever µ and µk , for all k ∈ N, are Rn-valued Radon measures on Ω such that
µk

∗
⇀ µ, ‖µk‖ → ‖µ‖, and ‖µ‖ < +∞.

ForE ⊂ Rd, we may introduce an anisotropic perimeter functional by setting

Perσ(E; Ω) := Jσ(DχE ; Ω) =

ˆ
∂∗E∩Ω

σ(n̂(x))dH d−1(x). (1.7)

It is well-known that the total variation of a BV function equals the integral of the peri-
meter of its level set. We recall an anisotropic variant of such identity:

Proposition 1.8 (Anisotropic Coarea Formula,[CCC+10,Gra09])
Suppose that σ : Rd → [0,+∞] is a norm and that Ω is an open, bounded set with Lipschitz
boundary. Then, for all u ∈ BV(Ω),

Jσ(Du; Ω) =

ˆ +∞

−∞
Perσ({ u > t } ; Ω)dt

Minimising a surface energy under prescribed boundary conditions is a classical prob-
lem. In precise terms, given the reference set Ω and the boundary datumE0, we look for a
setE such that Perσ(E; Ω) attains

inf
{
Jσ(Du; Ω) : u : Rd → [0, 1] is measurable and u = χE0 in Ωc.

}
When σ is a norm, we can show that the infimum is achieved: indeed, in this case,
Jσ(Du; Ω) ≥ c |Du| (Ω) for some constant c > 0, and standard arguments yield the
conclusion.

1.3 Γ-convergence

We include in this section the definition of a celebrated notion of convergence proposed
by De Giorgi in the ’70s [DGF75]. For a thorough treatment of the subject, we refer to the
monographs [DM93] by G. Dal Maso and [Bra02] by A. Braides.

Definition 1.9
Let (X,d) be a metric space and, for all ε > 0, let fε : X → [−∞,+∞] be a function. We say
that the family { fε }ε>0 Γ-converges as ε→ 0+ w.r.t. the metric d to the function f0 : X →
[−∞,+∞] if for any x ∈ X and for any sequence { ε` }`∈N such that ε` → 0+ the following
hold:
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CHAPTER 1. BASIC INGREDIENTS

(i) for any sequence { xε` }`∈N ⊂ X such that xε` → x, we have

f0(x) ≤ lim inf
`→+∞

fε`(xε`); (1.8)

(ii) there exists a sequence { xε` }`∈N ⊂ X such that xε` → x and

lim sup
`→+∞

fε`(xε`) ≤ f0(x). (1.9)

If { fε } Γ-converges to f0, the we say that f0 is the Γ-limit of { fε }.

Formula (1.8) is referred to as Γ-lower limit inequality, while (1.9) is known as Γ-upper
limit inequality. A sequence such that the latter holds is called recovery sequence.

We highlight in a separate statement a couple of properties that we shall use in the
sequel.

Lemma 1.10
Let (X,d) and { fε } be as in the previous definition. Let also f0 : X → [−∞,+∞] be a function.

(i) If f0 is the Γ-limit of { fε }, then it is lower semicontinuous w.r.t. the metric d.

(ii) Let Y ⊂ X be a subset such that for any x ∈ X there exists a sequence { y` } ⊂ Y
such that y` → x and f0(y`)→ f0(x). If for all y ∈ Y there exists a recovery sequence
contained in Y , then (1.9) holds for all x ∈ X .

A subset Y that fulfils the hypotheses of Lemma 1.10(ii) is said to be dense in energy for
f0.
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Chapter 2

Rate of convergence of the
Bourgain-Brezis-Mironescu formula

Let Ω ⊂ Rd be a smooth, bounded domain. In the renown paper [BBM01], J. Bourgain, H.
Brezis, and P. Mironescu considered iterated integrals of the form

ˆ
Ω

ˆ
Ω
ρ(y − x)

|u(y)− u(x)|p

|y − x|p
dydx, (2.1)

where ρ ∈ L1(Rd) is a radial mollifier and u ∈ Lp(Ω), with p ≥ 1. They proved that, if u
belongs to the Sobolev spaceW 1,p(Ω), then the Lp-norm of the weak gradient is achieved
as the limit of the quantity above when ρ approaches the Dirac delta in 0. The archetypical
case is the study as s→ 1− of the Gagliardo seminorm, which, for s ∈ (0, 1) and u ∈ Lp(Ω),
is defined as

|u|W s,p(Ω) :=

[ˆ
Ω

ˆ
Ω

|u(y)− u(x)|p

|y − x|d+sp
dydx

] 1
p

.

In this respect, the analysis in [BBM01] yields

lim
s→1−

(1− s)
1
p |u|W s,p(Ω) = c ‖∇u‖Lp(Ω) if u ∈W 1,p(Ω),

with c := c(d, p) > 0.
In the same paper, when p = 1, the authors also managed to characterise the space of

functions of bounded variations BV(Ω) w.r.t. the asymptotic behaviour of (2.1). However,
whether the total variation of the distributional gradient is attained in the limit was an
issue that they left unsolved. Positive answers were soon provided independently by J.
Dávila in [Dáv02] and by A. Ponce in [Pon04]. Notably, the latter extended the analysis to
more general integral functionals and studied their limits also in sense of Γ-convergence.
This is the starting point of the current chapter, which is based on [CNP19] and is devoted
to the study of the rate of convergence of a class of functionals appeared in the paper by
Ponce. In Section 2.1, we recall a result of his (see also Theorem 4.2 in the next chapter), we
state the main result of this chapter, Theorem 2.1 below, and we compare it to the existing
literature. The proof is presented in the last section. It grounds on a slicing argument,
which reduces the problem to the study of suitable functionals defined on functions of one
real variable. The analysis of these auxiliary 1-dimensional functionals is developed in
Section 2.2.
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2.1. MAIN RESULT AND SLICING

2.1 Main result and slicing

LetΩ be an open set with compact Lipschitz boundary, letG : Rd → [0,+∞) be anL1(Rd)-
function, and let f : [0,+∞) → [0,+∞) be a convex function such that f(0) = 0. For
ε > 0, we consider the L1-norm preserving rescalings ofG

Gε(x) :=
1

εd
G
(x
ε

)
and, for u ∈ L1(Ω), the nonlocal functionals

Fε(u) :=

ˆ
Rd

ˆ
Rd
Gε(z)f

(
|u(x+ z)− u(x)|

|z|

)
dzdx.

By [Pon04], we know that, as ε→ 0+, the family {Fε } converges to the limit functional

F0(u) :=

ˆ
Rd

ˆ
Rd
G(z)f(|∇u(x) · ẑ|)dzdx,

where ẑ = z/ |z| for all z ∈ Rd \ {0}. Approximations by finite difference functionals
have also been studied in relation to free discontinuity problems by M. Gobbino and M.
Mora [Gob98,GM01]. We shall see that their method, the so called slicing, can be adapted
to our problem as well.

In this chapter, we study the asymptotics of the functionals that express the rate of
convergence ofFε to the limitF0, that is, we let

Eε(u) :=
F0(u)−Fε(u)

ε2

=
1

ε2

ˆ
Rd

ˆ
Rd

[
G(z)f(|∇u(x) · ẑ|)−Gε(z)f

(
|u(x+ z)− u(x)|

|z|

)]
dzdx

(2.2)

and we consider the limit of { Eε } as ε tends to 0. We prove that the limit is a second order
nonlocal functional (see (2.6)), under the following set of assumptions:

A1: G(x) = G(−x) for a.e. x ∈ Rd and
ˆ
Rd
G(x)

(
1 + |x|2

)
dx < +∞. (2.3)

A2: there exist r0 ≥ 0 and r1 > 0 such that r0 < βd r1, where

βd :=

1 when d = 2,
d− 2

d− 1
when d > 2,

(2.4)

and
ess inf {G(x) : x ∈ B(0, r1) \B(0, r0) } > 0. (2.5)

A3: f is of class C2, f(0) = f ′(0) = 0, and

there exists α > 0 such that 2f(t)− αt2 is convex.

10



CHAPTER 2. RATE OF CONVERGENCE OF THE BOURGAIN-BREZIS-MIRONESCU FORMULA

We establish the following:

Theorem 2.1 (Compactness and Γ-convergence of the rate functionals)
LetΩ be a bounded open set with Lipschitz boundary and letG and f fulfilA1,A2, andA3. Let also

X :=
{
u ∈ H1

loc(Rd) : ∇u = 0 a.e. inΩc
}

and

E0(u) :=


1

24

ˆ
Rd

ˆ
Rd
G(z) |z|2 f ′′(|∇u(x) · ẑ|)

∣∣∇2u(x)ẑ · ẑ
∣∣2 dzdx

if u ∈ X ∩H2
loc(Rd),

+∞ otherwise.

(2.6)

Then, there hold:

(i) For any family { uε } ⊂ X such that Eε(uε) ≤ M for someM > 0, there exists a
sequence{ ε` } and a functionu ∈ H2(Rd) vanishing outsideΩ such that∇uε` → ∇u
inL2(Rd) as `→ +∞.

(ii) For any family { uε } ⊂ X that converges to u ∈ X inH1
loc(Rd),

E0(u) ≤ lim inf
ε→0+

Eε(uε).

(iii.a) For any u ∈ X such that ∇u ∈ L∞(Ω) there exists a family { uε } ⊂ X that
approaches u inH1

loc(Rd) and satisfies

lim sup
ε→0+

Eε(uε) ≤ E0(u).

(iii.b) If f ′′ is bounded, for any u ∈ X there exists a family { uε } ⊂ X that converges to u
inH1

loc(Rd) with the property that

lim sup
ε→0+

Eε(uε) ≤ E0(u).

Remark 2.2
If we replace X with H1

loc(Rd), it can be seen that for u ∈ H2
loc(Rd) statements (ii), (iii.a), and

(iii.b) in Theorem 2.1 still hold true, the proof remaining essentially unchanged. Conversely, the
passage to the unbounded setting invalidates statement (i).

The problem we tackle is not a higher order Γ-limit ofFε, which corresponds instead
to studying the asymptotics of

Fε −min F0

εβ
for some β > 0.

We refer to [AB93] for more details about developments by Γ-convergence. On the other
hand, our conclusion is reminiscent of the one obtained in [PPR07] byM. Peletier, P. Planqué
andM. Röger, who dealtwith amodel for bilayermembranes. There, the authors considered
the convolution functionals

F̃ε(u) :=

ˆ
Rd
f (Gε ∗ u) dx,

11



2.1. MAIN RESULT AND SLICING

which converge, as ε→ 0+, to

F̃0(u) = c

ˆ
Rd
f(u)dx, with c := c(d,G) > 0.

They showed that the rate functionals Ẽε := ε−2(F̃0 − F̃ε) converge pointwise for
u ∈ H1(Rd) to the functional

1

2

ˆ
Rd

ˆ
Rd
K(z)|z|2f ′′(u(x))|∇u(x) · ẑ|2dzdx,

and they proved as well that the family
{
Ẽε(u)

}
is uniformly bounded if and only if

u ∈ H1(Rd). We note that our analysis yields a similar regularity criterion: indeed, if
Fε(u) tends toF0(u) sufficiently fast, i.e. if { Eε(u) } is uniformly bounded for all small
ε, then u ∈ H2(Rd), see Remark 2.19 below.

When the kernelG is radially symmetric and f is the modulus, our study is related to
a geometric problem considered in [MS19] to treat a physical model for liquid drops with
dipolar repulsion. However, the uniform convexity assumption on f , which we utilise to
prove the Γ-inferior limit inequality, excludes this scenario from our analysis, as well as
the choice f(t) = |t|p with p ≥ 1, p 6= 2. Extensions of our result aimed at including these
cases are a possible subject of investigation.

As for the assumptions on the kernel, by A2 we require that the support ofG contains
a sufficiently large annulus centred at the origin. This might be regarded as a very weak
isotropy hypothesis onG, in a sense that will become clearer in the proof of Lemma 2.18
The simplest case for which (2.5) holds is when there exists γ > 0 such thatG(x) ≥ γ for
all x ∈ B(0, r1).

Remark 2.3 (Radial case)
WhenG is radial, that is,G(z) = Ḡ(|z|) for some Ḡ : [0,+∞)→ [0,+∞), we find

F0(u) = ‖G‖L1(Rd)

ˆ
Rd

 
Sd−1

f(|∇u(x) · e|)dH d−1(e)dx,

E0(u) =
1

24

(ˆ
Rd

G(z) |z|2 dz

)ˆ
Rd

 
Sd−1

f ′′(|∇u(x) · e|)
∣∣∇2u(x)e · e

∣∣2 dH d−1(e)dx.

We prove Theorem 2.1 by a slicing procedure, which amounts to express the d-dimen-
sional energies Eε as superpositions of suitable 1-dimensional energies Eε, regarded as
functionals on each line of Rd. Then, we establish the convergence of the functionalsEε
(see Section 2.2), and we recover from it the result concerning Eε (see Section 2.3).

The slicing approach was introduced in [Gob98,GM01]. In our case, the next lemma
shows that, for u ∈ L2(R) vanishing outside a given bounded interval and ε > 0, the
1-dimensional functionals retrieved by slicing are

Eε(u) :=
1

ε2

ˆ
R

[
f(u(x))− f

( x+ε

x
u(y)dy

)]
dx,

E0(u) :=


1

24

ˆ
R
f ′′(u(x))

∣∣u′(x)
∣∣2 dx if u ∈ H1(R) ∩ Cc(R),

+∞ otherwise.

We recall that, for z ∈ Rd \ { 0 }, we set ẑ := z/ |z| and

ẑ⊥ :=
{
ξ ∈ Rd : ξ · z = 0

}
.

12



CHAPTER 2. RATE OF CONVERGENCE OF THE BOURGAIN-BREZIS-MIRONESCU FORMULA

Lemma 2.4 (Slicing)
For u ∈ X , z ∈ Rd \ { 0 }, and ξ ∈ ẑ⊥, let

wẑ,ξ : R −→ R
t 7−→ u(ξ + tẑ).

Then,w′ẑ,ξ(t) = ∇u(ξ + tẑ) · ẑ and

Eε(u) =

ˆ
Rd

ˆ
z⊥
G(z) |z|2Eε|z|(w′ẑ,ξ)dH d−1(ξ)dz, (2.7)

E0(u) =

ˆ
Rd

ˆ
z⊥
G(z) |z|2E0(w′ẑ,ξ)dH d−1(ξ)dz.

Proof. We prove only (2.7), the case of E0 being identical.
The formula is a simple application of Fubini’s Theorem. Indeed, given the direction

ẑ ∈ Sd−1, for all x ∈ Rd, we have x = ξ + tẑ for some ξ ∈ Rd such that ξ · z = 0 and
t ∈ R. Using this decomposition, we write

Fε(u) =

ˆ
Rd

ˆ
Rd
G(z)f

(
|u(x+ εz)− u(x)|

ε |z|

)
dzdx

=

ˆ
Rd

ˆ
z⊥

ˆ
R
G(z)f

(
|wẑ,ξ(t+ ε |z|)− wẑ,ξ(t)|

ε |z|

)
dtdH d−1(ξ)dz,

whence Eε(u) equals

1

ε2

ˆ
Rd

ˆ
z⊥

ˆ
R
G(z)

[
f
(
|w′ẑ,ξ(t)|

)
− f

(
|wẑ,ξ(t+ ε|z|)− wẑ,ξ(t)|

ε |z|

)]
dtdH d−1(ξ)dz.

We obtain (2.7) by multiplying and dividing the integrands by |z|2.

2.2 Γ-convergence of the auxiliary functionals

In the current section we analyse the limiting properties of the family of auxiliary func-
tionalsEε obtained by slicing the d-dimensional energy Eε. So, for u ∈ L2(R) and ε > 0,
we let

U(x) :=

ˆ x

0
u(y)dy, DεU(x) :=

U(x+ ε)− U(x)

ε
=

 x+ε

x
u(y)dy, (2.8)

and, as above, we define

Eε(u) :=
1

ε2

ˆ
R

[f(u(x))− f (DεU(x))] dx. (2.9)

We fix an open interval I := (a, b) ⊂ R and we consider the closed subspace of L2(R)

Y :=
{
u ∈ L2(R) : u = 0 a.e. in Ic

}
. (2.10)

By positivity and convexity of f , one can check thatEε(u) belongs to [0,+∞]when u ∈ Y .
We want to compute the Γ-limit of { Eε } thought as a collection of functionals on Y
endowed with the L2-topology. The candidate limit is

E0(u) :=


1

24

ˆ
R
f ′′(u(x))

∣∣u′(x)
∣∣2 dx if u ∈ Y ∩H1(R),

+∞ otherwise.
(2.11)

Our result reads as follows:

13
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Theorem 2.5 (Γ-convergence of the auxiliary functionals)
Assume that f is as in A3. Then, as ε→ 0+, the restriction to Y of the family { Eε } Γ-converges
w.r.t. theL2(R)-topology toE0, that is, for any u ∈ Y the following hold:

(i) Whenever { uε } ⊂ Y is a family that converges to u inL2(R), we have

E0(u) ≤ lim inf
ε→0+

Eε(uε).

(ii) There exists { uε } ⊂ Y converging to u inL2(R) such that

lim sup
ε→0+

Eε(uε) ≤ E0(u). (2.12)

Remark 2.6 (Lower order limits)
Taking into account Proposition 2.7 below, a posteriori

{
εβEε

}
Γ-converges to 0 for all β > 0.

However, when β = 1, 2, this can be proved straightforwardly. Indeed, if for ε > 0 we let

F0(u) :=

ˆ
R
f(u(x))dx and Fε(u) :=

ˆ
R
f(DεU(x))dx

(recall position (2.8)), then it is easy to see that limε→0+ Fε(u) = F0(u), and, when u ∈ Y ∩C2(R),
we also find

lim
ε→0+

F0(u)− Fε(u)

ε
=

1

2
[f(u(a)) + f(u(b))] = 0.

We separate the proofs of the two statements in Theorem 2.5. We focus on the lower
limit in Proposition 2.11, which is based on a estimate from below of the energy and on a
compactness criterion, established respectively in Lemma 2.8 and in Lemma 2.10. We deal
with the Γ-upper limit in the next proposition, where we compute the pointwise limit, as
ε→ 0+, ofEε(u) for u smooth.

Proposition 2.7
For all u ∈ Y ∩ C2(R),

lim
ε→0+

Eε(u) = E0(u).

More precisely, there exists a continuous, bounded, and increasing function m : [0,+∞) →
[0,+∞) such thatm(0) = 0 and

|Eε(u)− E0(u)| ≤ cm(ε), (2.13)

where c := c(b− a, ‖u‖C2(R), ‖f‖C2([−‖u‖C2(R),‖u‖C2(R)])
) > 0 is a constant.

Furthermore, for every u ∈ Y , there exists a family { uε } ⊂ Y that converges to u inL2(R)
and that satisfies (2.12).

Proof. Since u ∈ Y ∩ C2(R) and f ∈ C2(R), ε2Eε(u) andE0(u) are uniformly bounded
in ε. Consequently,

|Eε(u)− E0(u)| ≤ c∞ for ε > 1 (2.14)

for some constant c∞ > 0.
Next, we assume ε ∈ (0, 1]. If x /∈ (a− ε, b), thenDεU(x) = 0, and hence

ε2Eε(u) =

ˆ b

a
[f(u(x))− f (DεU(x))] dx−

ˆ a

a−ε
f(DεU(x))dx.

14
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By the regularity of u, for any x ∈ (a− ε, b) we have the Taylor’s expansion

DεU(x) = u(x) +
ε

2
u′(x) +

ε2

6
u′′(xε), with xε ∈ (x, x+ ε),

which we rewrite as

DεU(x) = u(x) + εvε(x), with vε(x) :=
u′(x)

2
+
ε

6
u′′(xε); (2.15)

note that vε converges uniformly to u′/2 as ε→ 0+.
Plugging (2.15) into the definition ofEε, we find

ε2Eε(u) = −
ˆ b

a

[
f
(
u(x) + εvε(x)

)
− f(u(x))

]
dx−

ˆ a

a−ε
f

(
ε2

6
u′′(xε)

)
dx

= −ε
ˆ b

a
f ′(u(x))vε(x)dx− ε2

2

ˆ b

a
f ′′(wε(x))vε(x)2dx

−
ˆ a

a−ε
f

(
ε2

6
u′′(xε)

)
dx,

where wε fulfils wε(x) ∈ (u(x), u(x) + εvε(xε)) for all x ∈ (a, b).
It is not difficult to see that∣∣∣∣ˆ a

a−ε
f

(
ε2

6
u′′(xε)

)
dx

∣∣∣∣ ≤ c1ε
5,

for a constant c1 > 0 that depends only onN := ‖u‖C2(R) and on ‖f ′′‖L∞([−N,N ]). Also,
recalling the definition of vε, we have

ˆ b

a
f ′(u(x))vε(x)dx =

ε

6

ˆ b

a
f ′(u(x))u′′(xε)dx,

and, therefore,

|Eε(u)− E0(u)| ≤ 1

6

∣∣∣∣−ˆ b

a
f ′(u(x))u′′(xε)dx−

ˆ b

a
f ′′(u(x))u′(x)2dx

∣∣∣∣
+

1

2

∣∣∣∣14
ˆ b

a
f ′′(u(x))u′(x)2dx−

ˆ b

a
f ′′(wε(x))vε(x)2dx

∣∣∣∣+ c1ε
3.

(2.16)

Sinceu ∈ Y ∩C2(R), u′′ admits a uniformmodulus of continuitymu′′ : [0,+∞)→ [0,∞).
An integration by parts yields∣∣∣∣−ˆ b

a
f ′(u(x)) u′′(xε)dx−

ˆ b

a
f ′′(u(x))u′(x)2dx

∣∣∣∣
≤
ˆ b

a

∣∣f ′(u(x))
∣∣ ∣∣u′′(x)− u′′(xε)

∣∣ dx
≤ c2mu′′(ε),

where c2 := (b− a)‖f ′‖L∞([−N,N ]).
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Analogously, lettingmf ′′ be the modulus of continuity of the restriction of f ′′ to the
interval [−N,N ], we find as well∣∣∣∣14

ˆ b

a
f ′′(u(x))u′(x)2dx−

ˆ b

a
f ′′(wε(x))vε(x)2dx

∣∣∣∣
≤
ˆ b

a

∣∣f ′′(u(x))
∣∣ ∣∣∣∣14u′(x)2 − vε(x)2

∣∣∣∣dx+

ˆ b

a

∣∣f ′′(u(x))− f ′′(wε(x))
∣∣ vε(x)2dx

≤ c3(ε+mf ′′(ε)),

with c3 depending on b− a,N , and ‖f ′′‖L∞([−N,N ]).
By combining (2.16) with the inequalities above, we obtain

|Eε(u)− E0(u)| ≤ c0

(
mu′′(ε) +mf ′′(ε) + ε+ ε3

)
for ε ∈ (0, 1], (2.17)

for a suitable constant c0 > 0. Now, (2.14) and (2.17) get (2.13).
For what concerns (2.12), we construct a subset of Y that is dense in energy, and we

invoke Lemma 1.10. The argument is standard, so we just sketch it. If u ∈ Y \ H1(R),
(2.12) holds trivially. Else, by rescaling the domain and mollifying, we can produce a
sequence of smooth functions { u` } ⊂ Y that approximate u both uniformly and in
H1(R). Thanks to the continuity of f ′′, we see that lim`→+∞E0(u`) = E0(u). Also,
limε→0+ Eε(u`) = E0(u`) for any ` ∈ N, because u` is smooth. Then, we are in position
to apply Lemma 1.10.

With Proposition 2.7 on hand, to achieve the proof of Theorem 2.5, it suffices to validate
statement (i), namely, for each u ∈ Y and for each family { uε } ⊂ Y converging to u in
L2(R) it holds

E0(u) ≤ lim inf
ε→0+

Eε(uε).

It is in the proof of this inequality that the assumption of strong convexity of f comes into
play: it enables us to provide a lower bound on the energyEε, which, in turn, yields that
sequences with equibounded energy are precompact w.r.t. the L2-topology.

Lemma 2.8 (Lower bound on the energy)
Assume that A3 is satisfied. Then, for any u ∈ Y , there holds

Eε(u) ≥ sup
ϕ∈C∞c (R2)

{ˆ
R

 x+ε

x

(
u(y)−DεU(x)

ε
ϕ(x, y)− ϕ(x, y)2

4λε(x, y)

)
dydx

}
, (2.18)

with

λε(x, y) :=

ˆ 1

0
(1− ϑ)f ′′

(
(1− ϑ)DεU(x) + ϑu(y)

)
dϑ. (2.19)

Moreover,

Eε(u) ≥ α

4

ˆ
R

ˆ ε

−ε
Hε(r)

(
u(y + r)− u(y)

ε

)2

drdy, (2.20)

where
H(r) := (1− |r|)+ and Hε(r) :=

1

ε
H
(r
ε

)
.
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Proof. Given ε > 0, let u ∈ Y be such thatEε(u) is finite. We write

Eε(u) =
1

ε2

ˆ
R
eε(x)dx, where eε(x) :=

 x+ε

x
[f(u(y))− f(DεU(x))]dy.

The identity

f(s)− f(t) = f ′(t)(s− t) + (s− t)2

ˆ 1

0
(1− ϑ)f ′′((1− ϑ)t+ ϑs))dϑ,

gets

eε(x) =

 x+ε

x
λε(x, y) (u(y)−DεU(x))2 dy, (2.21)

with λε(x, y) as in (2.19). We now make use of the identity a2 ≥ 2ab− b2 for a, b ∈ R to
recover the bound

eε(x) ≥
 x+ε

x

(
u(y)−DεU(x)

ε
ϕ(x, y)− ϕ(x, y)2

4λε(x, y)

)
dy,

for any ϕ ∈ C∞c
(
R2
)
. Hence, (2.18) is proved.

Thanks to the strong convexity of f , λε(x, y) ≥ α/2 for all (x, y) ∈ R2 and ε > 0.
Thus, from (2.21) we infer

eh(x) ≥ α

2

 x+ε

x
(u(y)−DεU(x))2 ,

and, therefore,

Eε(u) ≥ α

2

ˆ
R

 x+ε

x

(
u(y)−DεU(x)

ε

)2

dydx

≥ α

4

ˆ
R

 x+ε

x

 x+ε

x

(
u(z)− u(y)

ε

)2

dzdydx.

The last inequality is a consequence of the identity

ˆ
|ϕ(y)|2dµ(y) =

∣∣∣∣ˆ ϕ(y)dµ(y)

∣∣∣∣2 +
1

2

ˆ ˆ
|ϕ(z)− ϕ(y)|2dµ(z)dµ(y),

which holds whenever µ is a probability measure and ϕ ∈ L2(µ). By Fubini’s Theorem
and neglecting contributions near the boundary, we find:

Eε(u) ≥ α

4

ˆ
R

 y

y−ε

 x+ε

x

(
u(z)− u(y)

ε

)2

dzdxdy

=
α

4ε

ˆ
R

ˆ y+ε

y−ε

(
1− |z − y|

ε

)(
u(z)− u(y)

ε

)2

dzdy.

The change of variables r = z − y yields (2.20).
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Remark 2.9
Let u ∈ Y ∩H1(R). Then, the family { Eε(u) } is bounded above if there exists c > 0 such that
f ′′ ≤ c. To see this, we observe that (2.21) and the definition of λε yield

Eε(u) ≤ c

2ε2

ˆ
R

 x+ε

x

(u(y)−DεU(x))
2

dydx.

Being u inH1(R), for y ∈ (x, x+ ε) we have

|u(y)−DεU(x)|2 ≤ ε
ˆ x+ε

x

|u′(z)|2 dz = ε2

ˆ 1

0

|u′(x+ εz)|2 dz,

and we conclude
Eε(u) ≤ c

2

ˆ
R
|u′(x)|2 dx. (2.22)

The current remark will come in handy to prove a characterisation ofH2
loc(Rd), see Remark

2.19 below.

Lemma 2.10 (Compactness)
Assume that f fulfils A3. If { uε } ⊂ Y is a family such thatEε(uε) ≤M for someM ≥ 0, then,
there exist a sequence { ε` } and a function u ∈ Y ∩H1(R) such that { uε` } converges to u in
L2(R), as `→ +∞.

Proof. We adapt the proof of [AB98b, Theorem 3.1].
By Lemma 2.8, we infer that

α

4

ˆ
R

ˆ ε

−ε
Hε(r)

(
uε(y + r)− uε(y)

h

)2

drdy ≤M. (2.23)

Observe thatHε(r)dr is a probability measure on [−ε, ε].
Let ρ ∈ C∞c (R) be a mollifier such that its support is contained in [−1, 1], 0 ≤ ρ ≤ H ,

and |ρ′| ≤ H . For all ε > 0, we define

ρε(r) :=
1

cε
ρ
(r
ε

)
, with c :=

ˆ
R
ρ(r)dr,

and we introduce the regularised functions vε := ρε ∗ uε, Each vε : R → R is a smooth
functionwhose support is a subset of (a−ε, b+ε), and the family of derivatives { v′ε }ε∈(0,1)

is uniformly bounded in L2(R). Indeed, since
´
R ρ
′(r)dr = 0, we have

ˆ
R

∣∣v′ε(y)
∣∣2 dy =

ˆ
R

∣∣∣∣ˆ ε

−ε
ρ′ε(r)[uε(y + r)− uε(y)]dr

∣∣∣∣2 dy

≤
ˆ
R

(ˆ ε

−ε

∣∣ρ′ε(r)∣∣ |uε(y + r)− uε(y)| dr
)2

dy

≤ 1

c2

ˆ
R

(ˆ ε

−ε
Hε(r)

∣∣∣∣uε(y + r)− uε(y)

ε

∣∣∣∣ dr)2

dy

≤ 1

c2

ˆ
R

ˆ ε

−ε
Hε(r)

∣∣∣∣uε(y + r)− uε(y)

ε

∣∣∣∣2 drdy,

whence ˆ
R

∣∣v′ε(y)
∣∣2 dy ≤ 4M

c2α
. (2.24)
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For all ε ∈ (0, 1), let ṽε be the restriction of vε to the interval (a− 1, b+ 1). By virtue
of Poincaré’s inequality, (2.24) entails boundedness in H1

0 ((a − 1, b + 1)) of the family
{ ṽε }ε∈(0,1), and, by Sobolev’s Embedding Theorem, there exist a sequence { ε` } and a
function ũ ∈ H1

0 ([a− 1, b+ 1]) such that { ṽε` } uniformly converges to ũ. Since each ṽε`
is supported in (a− ε`, b+ ε`), we see that ũ ∈ H1

0 (Ī). It follows that { vε` } converges
uniformly to u ∈ Y ∩H1(R) if we set

u(x) :=

{
ũ(x) if x ∈ Ī ,
0 otherwise.

Eventually, we focus on the L2-distance between uε and vε. As above, we have
ˆ
R
|vε(y)− uε(y)|2 dy =

ˆ
R

∣∣∣∣ˆ ε

−ε
ρε(r)[uε(y + r)− uε(y)]dr

∣∣∣∣2 dy

≤
ˆ
R

ˆ ε

−ε
ρε(r) |uε(y + r)− uε(y)|2 drdy

≤ 1

c

ˆ
R

ˆ ε

−ε
Hε(r) |uε(y + r)− uε(y)|2 drdy,

and, by (2.23), we get ˆ
R
|vε(y)− uε(y)|2 dy ≤ 4M

cα
ε2.

The thesis is now proved, because there exists a subsequence { vε` } that converges uni-
formly to u ∈ Y ∩H1(R).

At this stage, we are in position to establish statement (i) in Theorem 2.5, thus conclud-
ing the proof of the latter.

Proposition 2.11
Let f satisfyA3. Then, for any u ∈ Y and for any family { uε } ⊂ Y that converges to u inL2(R),
it holds

E0(u) ≤ lim inf
ε→0+

Eε(uε). (2.25)

Proof. Let us pick u, uε ∈ Y in such a way that uε → u in L2(R). We may suppose that
the right-hand side in (2.25) is finite, otherwise the conclusion holds trivially. Then, up to
extracting a subsequence, which we do not relabel, there exists limε→0+ Eε(uε) and it is
finite. In particular, for all ε > 0,Eε(uε) ≤M for someM ≥ 0, so that, by Lemma 2.10,
u ∈ Y ∩H1(R).

We apply formula (2.18) for each uε, choosing, for (x, y) ∈ R2,

ϕ(x, y) = ψ

(
x,
y − x
ε

)
, with ψ ∈ C∞c (R2).

We get

Eε(uε) ≥
ˆ
R

 x+ε

x

uε(y)−
ffl x+ε
x uε

ε
ψ

(
x,
y − x
ε

)
dydx

− 1

4

ˆ
R

 x+ε

x

ψ
(
x, y−xε

)2
λε(x, y)

dydx,

(2.26)
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where, in agreement with (2.19),

λε(x, y) :=

ˆ 1

0
(1− ϑ)f ′′

(
(1− ϑ)

 x+ε

x
uε(z)dz + ϑuε(y)

)
dϑ ≥ α

2
.

Let us focus on the right-hand side of (2.26). We have

1

ε

ˆ
R

 x+ε

x

( x+ε

x
uε(z)dx

)
ψ

(
x,
y − x
ε

)
dydx

=
1

ε3

ˆ
R

ˆ x+ε

x

ˆ x+ε

x
uε(z)ψ

(
x,
y − x
ε

)
dydzdx

=
1

ε3

ˆ
R

ˆ z

z−ε

ˆ x+ε

x
uε(z)ψ

(
x,
y − x
ε

)
dydxdz,

and, similarly,
ˆ
R

 x+ε

x

uε(y)−
ffl x+ε
x uε

ε
ψ

(
x,
y − x
ε

)
dydx

=
1

ε

ˆ
R

 y

y−ε

 x+ε

x
uε(y)

[
ψ

(
x,
y − x
ε

)
− ψ

(
x,
z − x
ε

)]
dzdxdy.

(2.27)

By changing variables, we get
 y

y−ε

 x+ε

x
ψ

(
x,
y − x
ε

)
dzdx =

ˆ 1

0

ˆ 1

0
ψ(y − εr, r)dqdr,

 y

y−ε

 x+ε

x
ψ

(
x,
z − x
ε

)
dzdx =

 y

y−ε

ˆ 1

0
ψ(x, r)drdx

=

ˆ 1

0

ˆ 1

0
ψ(y − εq, r)dqdr,

hence

1

ε

 y

y−ε

 x+ε

x

[
ψ

(
x,
y − x
ε

)
− ψ

(
x,
z − x
ε

)]
dzdx

=

ˆ 1

0

ˆ 1

0

ψ(y − εr, r)− ψ(y − εq, r)
h

dqdr

=−
ˆ 1

0

ˆ 1

0

ˆ r

q
∂1ψ(y − εs, r)dsdqdr

=−
ˆ 1

0

ˆ 1

0
(r − q)

 r

q
∂1ψ(y − εs, r)dsdqdr.

Since ψ is smooth, we have that ∂1ψ(y− εs, r) = ∂1ψ(y, r) +O(ε) as ε→ 0+, uniformly
for s ∈ [0, 1]. Consequently,

1

ε

 y

y−ε

 x+ε

x

[
ψ

(
x,
y − x
ε

)
− ψ

(
x,
z − x
ε

)]
dzdx

= −
ˆ 1

0

(
r − 1

2

)
∂1ψ(y, r)dr +O(ε).
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Plugging this equality in (2.27) yields

ˆ
R

 x+ε

x

uε(y)−
ffl x+ε
x uε

h
ψ

(
x,
y − x
ε

)
dydx

= −
ˆ
R
uε(y)

ˆ 1

0

(
r − 1

2

)
∂1ψ(y, r)dr +O(ε).

Since uε → u in L2(R), it is possible to take the limit ε → 0+ in the previous formula,
getting

lim
ε→0+

ˆ
R

 x+ε

x

uε(y)−
ffl x+ε
x uε

h
ψ

(
x,
y − x
ε

)
dydx

= −
ˆ
R

ˆ 1

0
u(y)(r − 1

2)∂1ψ(y, r)drdy. (2.28)

Next, we focus on the second addendum in the right-hand side of (2.26). By Fubini’s
Theorem and a change of variables, we have

ˆ
R

 x+ε

x

ψ(x, y−xε )2

λε(x, y)
dydx =

ˆ
R

ˆ 1

0

ψ (y − εr, r)2

λε(y − εr, y)
drdy.

The function ψ has compact support and λε ≥ α/2 for all ε > 0, therefore we can apply
Lebesgue’s Convergence Theorem to let ε vanish in the equality above. We find

lim
ε→0+

ˆ
R

ˆ 1

0

ψ (y − εr, r)2

´ 1
0 (1− ϑ)f ′′

(
(1− ϑ)

ffl y+(1−r)ε
y−εr uε(z)dz + ϑuε(y)

)
dϑ

drdy

=

ˆ
R

ˆ 1

0

ψ(y, r)2´ 1
0 (1− ϑ)f ′′(u(y))dϑ

drdy,

thus

lim
ε→0+

ˆ
R

 x+ε

x

ψ(x, y−xε )2

λε(x, y)
dydx = 2

ˆ
R

ˆ 1

0

ψ(y, r)2

f ′′(u(y))
drdy. (2.29)

Summing up, by (2.28) and (2.29), we deduce

lim inf
ε→0+

Eε(uε) ≥ −
ˆ
R

ˆ 1

0

[
u(y)

(
r − 1

2

)
∂1ψ(y, r)drdy +

1

2

ˆ
R

ˆ 1

0

ψ(y, r)2

f ′′(u(y))

]
drdy,

for all ψ ∈ C∞c (R2).
Let η ∈ C∞c (R). By a standard approximation argument, one can prove that

ψ(x, y) := η(x)

(
y − 1

2

)
is an admissible test function in the previous estimate. This choice of ψ gets

lim inf
ε→0+

Eε(uε) ≥ −
ˆ 1

0

(
r − 1

2

)2

dr

ˆ
R
u(y)η′(y)dy

− 1

2

ˆ 1

0

(
r − 1

2

)2

dr

ˆ
R

η(y)2

f ′′(u(y))
dy

=
1

12

[ˆ
R
u′(y)η(y)dy − 1

2

ˆ
R

η(y)2

f ′′(u(y))
dy

]
,
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where we used the identity
´ 1

0 (r − 1/2)2dr = 1/12 and u′ ∈ L2(R) is the distributional
derivative of u (recall that u ∈ H1(R)). Since the test function η is arbitrary, we recover
(2.25) by taking the supremum w.r.t. η ∈ C∞c (R).

2.3 Γ-convergence of the rate functionals

We devote this section to the proof of Theorem 2.1, which relies on the Γ-convergence
result of the previous section.

We firstly remark that, when the dimension is 1, the Γ-convergence of the functionals
Eε follows easily from Theorem 2.5.

Corollary 2.12
LetΩ ⊂ R be bounded and open, and letX :=

{
u ∈ H1

loc(R) : u′ = 0 inΩc
}
. Suppose that

G : R → [0,+∞) and f : [0,+∞) → [0,+∞) satisfy A1, A2, and A3. If for ε > 0 and
u ∈ H1

loc(R) we define

Eε(u) :=
1

ε2

ˆ
R

ˆ
R
Gε(z)

[
f
(
|u′(x)|

)
− f

(∣∣∣∣u(x+ z)− u(x)

z

∣∣∣∣)]dzdx,

then the restrictions of the functionals Eε toX Γ-converge w.r.t. theH1
loc(R)-convergence to

E0(u) :=


1

24

(ˆ
R
G(z)z2dz

)ˆ
R
f ′′(u′(x))

∣∣u′′(x)
∣∣2 dx if u ∈ X ∩H2

loc(R),

+∞ otherwise.

Proof. A change of variables gets

Eε(u) =

ˆ
R
G(z)z2

[
1

(εz)2

ˆ
R
f
(
|u′(x)|

)
− f

(∣∣∣∣u(x+ εz)− u(x)

εz

∣∣∣∣) dx

]
dz.

By (2.9), the quantity between square brackets isEεz(u′), therefore the conclusion follows
by adapting the proof of Theorem 2.5 (see also Proposition 2.13 below).

We may henceforth assume that d ≥ 2. In this case, the proof of Theorem 2.1 is more
elaborated, because, to be able to apply the results of Section 2.2, we need the functions
wẑ,ξ in (2.7) to admit a second order weak derivative for a.e. z and ξ. This is no real issue as
long as the upper limit inequality is concerned, since we may reason on regular functions;
to cope with the lower limit one, instead, we shall make use of the compactness criterion
provided by Lemma 2.18.

For the moment being, we can establish a provisional result:

Proposition 2.13
Let u ∈ X . Then:

(i) If u ∈ X ∩ H2
loc(Rd), for any family { uε } ⊂ X that converges to u inH1

loc(Rd),
there holds

E0(u) ≤ lim inf
ε→0+

Eε(uε).

(ii) If u ∈ X ∩ C3(Rd), then
E0(u) = lim

ε→0+
Eε(u). (2.30)
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Proof. We prove both the assertions by using the slicing formula (2.7).

(i) For all ε > 0, z ∈ Rd \ {0}, and ξ ∈ ẑ⊥, we let wε;ẑ,ξ : R → R be defined as
wε;ẑ,ξ(t) := uε(ξ + tẑ). Then,

Eε(uε) =

ˆ
Rd

ˆ
z⊥
G(z) |z|2Eε|z|(w′ε;ẑ,ξ)dH d−1(ξ)dz,

and, by Fatou’s Lemma,

lim inf
ε→0+

Eε(uε) ≥
ˆ
Rd

ˆ
z⊥
G(z) |z|2

[
lim inf
ε→0+

Eε|z|(w
′
ε;ẑ,ξ)

]
dH d−1(ξ)dz.

(2.31)

Let wẑ,ξ be as in Lemma 2.4. We remark that, for any kernel ρ : Rd → [0,+∞)
such that ‖ρ‖L1(Rd) = 1, we have
ˆ
Rd
|∇uε −∇u|2

≥
ˆ
Rd
ρ(z)

ˆ
ẑ⊥

ˆ
R

∣∣(∇uε(ξ + tẑ)−∇u(ξ + tẑ)
)
· ẑ
∣∣2 dtdH d−1(ξ)dz

=

ˆ
Rd
ρ(z)

ˆ
ẑ⊥

ˆ
R

∣∣w′ε;ẑ,ξ(t)− w′ẑ,ξ(t)∣∣2 dtdH d−1(ξ)dz.

The left-hand side vanishes as ε→ 0+, and, therefore, there exists a subsequence
of
{
w′ε;ẑ,ξ

}
, which we do not relabel, that converges to w′ẑ,ξ in L

2(R) for a.e.

z ∈ Rd andH d−1-a.e. ξ ∈ ẑ⊥.
We remind that, by assumption, w′ẑ,ξ ∈ H1(R) for a.e. (z, ξ) and it equals 0
on the complement of some open interval Iẑ,ξ . It follows that we can appeal to
Proposition 2.11, obtaining

lim inf
ε→0+

Eε(uε) ≥
ˆ
Rd

ˆ
z⊥
G(z) |z|2E0(w′ẑ,ξ)dH d−1(ξ)dz = E0(u).

(ii) As above, for any fixed z ∈ Rd \ { 0 } and ξ ∈ ẑ⊥, we define the function
wẑ,ξ ∈ C3(R) setting w(t) := u(ξ + tẑ). Since Ω is bounded, there exists r > 0
such that, for any choice of z, w′ẑ,ξ(t) = ∇u(ξ + tẑ) · ẑ = 0 whenever ξ ∈ z⊥
satisfies |ξ| ≥ r, while w′ẑ,ξ is supported in an open interval Iẑ,ξ if |ξ| < r.

We apply the slicing formula (2.7), which yields

|Eε(u)− E0(u)| ≤
ˆ
Rd

ˆ
z⊥
G(z) |z|2

∣∣Eε|z|(w′ẑ,ξ)− E0(w′ẑ,ξ)
∣∣dH d−1(ξ)dz

According to Proposition 2.7. there are a constant c > 0 and a continuous,
bounded, and increasing functionm : [0,+∞)→ [0,+∞) such thatm(0) = 0
and that

|Eε(u)− E0(u)| ≤ c
ˆ
Rd

ˆ
z⊥
G(z) |z|2m(ε |z|)dH d−1(ξ)dz.

We highlight that herem can be chosen as to depend on∇u only, and not on ẑ
and ξ. Thus, by assumption A1, we can apply Lebesgue’s Convergence Theorem,
and (2.30) is proved.
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Remark 2.14
Proposition 2.13 entails that the Γ-limit of the family { εEε } is 0; the same limit being also found
w.r.t. theL2

loc(Rd)-topology onX . This is the analogue in arbitrary dimension of what we observed
in Remark 2.6.

We now deal with the proof of the compactness result, that is, (i) in Theorem 2.1. As
in Section 2.2, we start with a lower bound on the energy functionals. Lemma 2.15 below
shows that, when f fulfils A3, Eε(u) is greater than a double integral which takes into
account, for each z ∈ Rd \ {0}, the squared projection of the difference quotients of∇u
in the direction of z. Thanks to the slicing formula, the inequality follows with no effort
by applying Lemma 2.8 on each line of Rd.

Our approach results in the appearance of an effective kernel G̃ in front of the difference
quotients. This function stands as a multidimensional counterpart of the kernel H in
Lemma 2.8, and, actually, G̃ depends both on G and on H (see (2.32) for the precise
definition). Some properties of the effective kernel are collected in Lemma 2.16.

Lemma 2.15 (Lower bound on the energy)
LetΩ,G, and f be as above, and set

G̃(z) :=

ˆ 1

−1
H(r)G|r|(z)dr for a.e. z ∈ Rd, (2.32)

withH as in Lemma 2.8. Then, it holds

Eε(u) ≥ α

4

ˆ
Rd

ˆ
Rd
G̃(z)

[(
∇u(x+ εz)−∇u(x)

)
· ẑ

ε

]2

dxdz. (2.33)

Proof. In the following lines, we use d′ as a shorthand for dH d−1. We reduce to the 1-
dimensional case by slicing, and then we take advantage of the lower bound provided by
Lemma 2.8. Keeping the notation of Lemma 2.4, we find

Eε(u)

≥ α

4

ˆ
Rd

ˆ
z⊥

ˆ
R

ˆ ε|z|

−ε|z|
Hε|z|(r)G(z) |z|2

(
w′ẑ,ξ(t+ r)− w′ẑ,ξ(t)

ε |z|

)2

drdtd′ξdz

=
α

4

ˆ
Rd

ˆ
z⊥

ˆ
R

ˆ ε|z|

−ε|z|
Hε|z|(r)G(z)

(
w′ẑ,ξ(t+ r)− w′ẑ,ξ(t)

ε

)2

drdtd′ξdz.

To retrieve (2.33) from this bound, it suffices to change variables and use Fubini’s Theorem:

I :=

ˆ
Rd

ˆ
z⊥

ˆ
R

ˆ ε|z|

−ε|z|
Hε|z|(r)G(z)

(
w′ẑ,ξ(t+ r)− w′ẑ,ξ(t)

ε

)2

drdtd′ξdz

=

ˆ
Rd

ˆ
z⊥

ˆ
R

ˆ 1

−1
H(r)G(z)

(
w′ẑ,ξ(t+ ε |z| r)− w′ẑ,ξ(t)

ε

)2

drdtd′ξdz

=

ˆ 0

−1

ˆ
Rd

ˆ
z⊥

ˆ
R
H(r)G−r(z)

(
w′ẑ,ξ(t− ε |z|)− w′ẑ,ξ(t)

ε

)2

dtd′ξdzdr

+

ˆ 1

0

ˆ
Rd

ˆ
z⊥

ˆ
R
H(r)Gr(z)

(
w′ẑ,ξ(t+ ε |z|)− w′ẑ,ξ(t)

ε

)2

dtd′ξdzdr
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Since w′−ẑ,ξ(−s) = −w′ẑ,ξ(s) for all s ∈ R, we have

ˆ 0

−1

ˆ
Rd

ˆ
z⊥

ˆ
R
H(r)G−r(z)

(
w′ẑ,ξ

(
t+ ε |z|

)
− w′ẑ,ξ(t)

ε

)2

dtd′ξdzdr

=

ˆ 0

−1

ˆ
Rd

ˆ
z⊥

ˆ
R
H(r)G−r(z)

(
w′−ẑ,ξ

(
− (t+ ε |z|)

)
− w′−ẑ,ξ(−t)

ε

)2

dtd′ξdzdr

=

ˆ 0

−1

ˆ
Rd

ˆ
z⊥

ˆ
R
H(r)G−r(z)

(
w′ẑ,ξ

(
t+ ε |z|

)
− w′ẑ,ξ(t)

ε

)2

dtd′ξdzdr.

Thus, we conclude that

I =

ˆ
Rd

ˆ
z⊥

ˆ
R

(ˆ 1

−1
H(r)G|r|(z)dr

)(
w′ẑ,ξ

(
t+ ε |z|

)
− w′ẑ,ξ(t)

ε

)2

dtd′ξdz

=

ˆ
Rd

ˆ
Rd
G̃(z)

[(
∇u(x+ εz)−∇u(x)

)
· ẑ

ε

]2

dxdz.

By assumption A2, the kernel G is bounded away from 0 in a suitable annulus. The
next lemma shows that the effective kernel G̃ in (2.33) inherits a similar property.

Lemma 2.16
Let G̃ : Rd → [0,+∞) be as in (2.32). Then,

ˆ
Rd
G̃(z)

(
1 + |z|2

)
dz < +∞, (2.34)

and, if βd and r1 are the constants in (2.4) and (2.5), then,

ess inf
{
G̃(z) : z ∈ B(0, βdr1)

}
> 0. (2.35)

Proof. The convergence of the integral in (2.34) follows easily from (2.3). Indeed, by the
definition of G̃, there holds

ˆ
Rd
G̃(z)dz =

ˆ 1

−1

ˆ
Rd
H(r)G|r|(z)dzdr =

ˆ
Rd
G(z)dz.

Analogously, ˆ
Rd
G̃(z) |z|2 dz = c

ˆ
Rd
G(z) |z|2 dz,

for some c > 0.
For what concerns (2.35), let us set γ := ess inf {G(z) : z ∈ B(0, r1) \B(0, r0) }. In

view of (2.5), γ > 0.
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We distinguish between the case z ∈ B(0, r0) and the case z ∈ B(0, r1) \B(0, r0). In
the first situation, for a.e. z ∈ Rd,

G̃(z) ≥ 2

ˆ |z|
r0

|z|
r1

H(r)Gr(z)dr ≥ 2γ

ˆ |z|
r0

|z|
r1

1

rd
H(r)dr

=
2γ

|z|d−1

ˆ r1

r0

sd−2

(
1− |z|

s

)
ds.

When z ∈ B(0, r1) \B(0, r0), instead, similar computations get

G̃(z) ≥ 2

ˆ 1

|z|
r1

H(r)Gr(z)dr =
2γ

|z|d−1

ˆ r1

|z|
sd−2

(
1− |z|

s

)
ds for a.e. z ∈ Rd,

so that we obtain

G̃(z) ≥ 2γ

|z|d−1

ˆ r1

max(r0,|z|)
sd−2

(
1− |z|

s

)
ds for a.e. z ∈ Rd. (2.36)

When d = 2, the previous estimate becomes

G̃(z) ≥ 2γ

[
r1 −max(r0, |z|)

|z|
− log

(
r1

max(r0, |z|)

)]
for a.e. z ∈ Rd.

By the concavity of the logarithm, we see that the lower bound is strictly positive if
|z| < r1 = β2r1.

In the case d ≥ 3, instead, the right-hand side in (2.36) equals

2γ

(d− 1)(d− 2) |z|d−1

[
(d− 2)

(
rd−1

1 −Md−1
)
− (d− 1) |z|

(
rd−2

1 −Md−2
)]
,

where we putM := max(r0, |z|) for shortness. Hence,

G̃(z) ≥ 2γMd−2

(d− 1)(d− 2) |z|d−1

·
{( r1

M

)d−2
[(d− 2)r1 − (d− 1) |z|]− [(d− 2)M − (d− 1) |z|]

}
for a.e. z ∈ Rd. When |z| < (d − 2)r1/(d − 1) = βdr1, the quantity between braces is
strictly positive if

(M − |z|)d− (2M − |z|)
(r1 − |z|)d− (2r1 − |z|)

<
( r1

M

)d−2
.

Observe that both sides are strictly increasing in d, and that the left-hand one is bounded
above by (M − |z|)/(r1 − |z|). In conclusion, the last inequality holds if

M − |z|
r1 − |z|

<
r1

M
,

which, in turn, is true for all z ∈ B(0, r1).
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Remark 2.17
For our analysis, it is not relevant to identify the largest ball in which ess inf G̃ is strictly positive.
For this reason, we are not interested in the optimal βd in (2.35) for d ≥ 3.

We can finally prove compactness for families with equibouded energies.

Lemma 2.18 (Compactness)
Assume that Ω, G, and f are as above. Then, if { uε } ⊂ X satisfies Eε(uε) ≤ M for some
M ≥ 0, there exist a subsequence { ε` } and a function u ∈ H2(Rd) vanishing outsideΩ such
that∇uε` → ∇u inL2(Rd).

Proof. Let γ̃ := ess inf{ G̃(z) : z ∈ B(0, βdr1) }. Thanks to Lemma 2.16, we know that
γ̃ > 0, and therefore there exists a function ρ ∈ C∞c ([0,+∞)) such that

ρ(r) = 0 if r ∈
[
βdr1√

2
,+∞

)
and that

0 ≤ ρ(r) ≤ γ̃ and
∣∣ρ′(r)∣∣ ≤ γ̃.

For ε > 0 and y ∈ Rd, we set

ρε(y) :=
1

cεd
ρ

(
|y|
ε

)
, with c :=

ˆ
Rd
ρ(|y|)dy,

and we introduce the functions

vε(x) :=
(
ρε ∗ (uε −

∑
i∈I

aε,iχCi)
)
(x),

where { Ci }i∈I is the family of connected components of Ωc and each aε,i ∈ R satisfies
uε(x) = aε,i in Ci for all i ∈ I and ε > 0.

Each function vε is smooth and, for all δ ∈ (0, 1), its support is contained in Ωδ :={
x : dist(x,Ω) ≤ 2−1/2δβdr1

}
if ε ∈ (0, δ).

Let us fix δ small enough, so that ∂Ωδ is Lipschitz. For such δ, we now prove that the
family { vε }ε∈(0,δ) is relatively compact inH

1
0 (Ωδ). To this aim, we first remark that

ˆ
Ωδ

∣∣∇2vε
∣∣2 =

ˆ
Ωδ

|∆vε|2 , (2.37)

and next we show that the right-hand side is uniformly bounded.
We observe that

´
Rd ∇ρε(y)dy = 0 for all ε > 0, because ρ is compactly supported.

Hence,

‖∆vε‖2L2(Ωδ)
=

ˆ
Rd
|∆vε|2

=

ˆ
Rd

∣∣∣∣ˆ
Rd
∇ρε(y) ·

(
∇uε(x+ y)−∇uε(x)

)
dy

∣∣∣∣2 dx

≤
ˆ
Rd

[
1

cεd+1

ˆ
Rd

∣∣∣∣ρ′( |y|ε
)∣∣∣∣ ∣∣(∇uε(x+ y)−∇uε(x)

)
· ŷ
∣∣ dy]2

dx.
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By our choice of ρ and (2.35), we find

‖∆vε‖2L2(Ωδ)
≤
ˆ
Rd

[
1

cε

ˆ
Rd
G̃ε(y)

∣∣(∇uε(x+ y)−∇uε(x)
)
· ŷ
∣∣ dy]2

dx

≤
ˆ
Rd

[
1

cε

ˆ
Rd
G̃(z)

∣∣(∇uε(x+ εz)−∇uε(x)
)
· ẑ
∣∣ dz]2

dx

Further, since G̃ ∈ L1(Rd), Jensen’s Inequality and Fubini’s Theorem yield

‖∆vε‖2L2(Ωδ)
≤
‖G̃‖L1(Rd)

c2

ˆ
Rd

ˆ
Rd
G̃(z)

[(
∇uε(x+ εz)−∇uε(x)

)
· ẑ

ε

]2

dxdz.

The lower bound (2.33) entails

‖∆vε‖2L2(Ωδ)
≤ 4

c2α
‖G̃‖L1(Rd)Eε(uε),

so that, in view of the assumption Eε(uε) ≤M and of (2.37), we get

‖∇2vε‖2L2(Ωδ)
≤ 4M

c2α
‖G̃‖L1(Rd). (2.38)

We argue as in the proof of Lemma 2.10. We recall that, for ε ∈ (0, δ), each vε vanishes
on the complement of Ωδ , and thus, by Poincaré’s Inequality, (2.38) implies a uniform
bound on the norms ‖vε‖H2

0 (Ωδ)
. As a consequence, by Rellich-Kondrachov’s Theorem,

the family { ṽε }ε∈(0,δ) of the restrictions of the functions vε to Ωδ admits a subsequence
{ ṽε` } that converges inH1

0 (Ωδ) to a function ũ ∈ H2
0 (Ωδ). Actually, the support of ũ is

contained in Ω̄, and, if we put,

u(x) :=

{
ũ(x) if x ∈ Ω̄,

0 otherwise,

we infer that { vε` } converges inH1(Rd) to u ∈
{
v ∈ H2(Rd) : v = 0 a.e. in Ωc

}
⊂ X .

To accomplish the proof, we need to show that the L2(Rd)-distance between∇uε and
∇vε vanishes when ε→ 0+. Since ρε has unit L1(Rd)-norm and is radial, we have

ˆ
Rd
|∇vε(x)−∇uε(x)|2dx =

ˆ
Rd

∣∣∣∣ˆ
Rd
ρε(y)

(
∇uε(x+ y)−∇uε(x)

)
dy

∣∣∣∣2 dx

≤ 1

4

ˆ
Rd

∣∣∣∣ˆ
Rd
ρε(y)

(
∇uε(x+ y) +∇uε(x− y)− 2∇uε(x)

)
dy

∣∣∣∣2 dx

≤ 1

4

ˆ
Rd

ˆ
Rd
ρε(y) |∇uε(x+ y) +∇uε(x− y)− 2∇uε(x)|2 dydx.

Let id be the identity matrix. For any fixed y ∈ Rd \ {0} and for all p ∈ Rd, we can rewrite
the equality |p|2 = |p · y|2 + |(id− y ⊗ y)p|2 as

|p|2 = |p · y|2 +

ˆ
ŷ⊥
π(|η|) |p · η|2 d′η

= |p · y|2 +
1

ε2

ˆ
ŷ⊥
πε(η) |p · η|2 d′η,

(2.39)

28



CHAPTER 2. RATE OF CONVERGENCE OF THE BOURGAIN-BREZIS-MIRONESCU FORMULA

where π : [0,+∞)→ [0,+∞) is a continuous function such that

ˆ
e⊥d

π(|η|) |η|2 d′η = 1,

and πε(η) := ε−d+1π(|η| /ε). We further prescribe that

π(r) = 0 if r ∈
[
βdr1√

2
,+∞

)
and that the limit limr→0+ π(r)/r is finite.

We apply formula (2.39) to pε(x, y) := ∇uε(x+ y) +∇uε(x− y)− 2∇uε(x) and we
find that ˆ

Rd
|∇vε(x)−∇uε(x)|2 dx ≤ 1

4
(I1 + I2) , (2.40)

where

I1 :=

ˆ
Rd

ˆ
Rd
ρε(y) |y|2 |pε(x, y) · ŷ|2 dydx,

I2 :=
1

ε2

ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρε(y)πε(η) |pε(x, y) · η|2 d′ηdydx.

Wefirst consider I1. Keeping inmind that ρ is compactly supported and ρ(|y|) ≤ γ̃ ≤ G̃(y)
for a.e. y ∈ B(0, 2−1/2βdr1), we get

I1 ≤
(βdr1)2

c

[ˆ
Rd

ˆ
Rd
G̃ε(y)

∣∣(∇uε(x+ y)−∇uε(x)
)
· ŷ
∣∣2 dydx

+

ˆ
Rd

ˆ
Rd
G̃ε(y)

∣∣(∇uε(x− y)−∇uε(x)
)
· ŷ
∣∣2 dydx

]
,

and, by (2.33),

I1 ≤
8(βdr1)2M

cα
ε2. (2.41)

As for I2, we claim that there exist a constant L > 0, depending on d, βd, r1, γ̃, and c,
such that

I2 ≤
LM

α
ε2. (2.42)

To prove this, we write the integrand appearing in I2 as follows:

pε(x, y) · η =
(
∇uε(x+ y) +∇uε(x− y)− 2∇uε(x)

)
· η

=
(
∇uε(x+ y) +∇uε(x− y)− 2∇uε(x− η)

)
· η

+ 2
(
∇uε(x− η)−∇uε(x)

)
· η

=
(
∇uε(x+ y)−∇uε(x− η)

)
· (η + y)

+
(
∇uε(x− y)−∇uε(x− η)

)
· (η − y)

−
(
∇uε(x+ y)−∇uε(x− y)

)
· y + 2

(
∇uε(x− η)−∇uε(x)

)
· η.
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We plug this expression in the definition of I2. Using again the symbol d′ as a short for
dH d−1, we find

I2 ≤
4

c

ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x+ εy)−∇uε(x− εη)
)
· (η + y)

∣∣2 d′ηdydx

+
4

c

ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x− εy)−∇uε(x− εη)
)
· (η − y)

∣∣2 d′ηdydx

+
8

c
‖π‖L1(e⊥d )

ˆ
Rd

ˆ
Rd
ρ(|y|) |y|2

∣∣(∇uε(x+ εy)−∇uε(x)
)
· ŷ
∣∣2 dydx

+
16

c

ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x+ εη)−∇uε(x)
)
· η
∣∣2 d′ηdydx.

We estimate separately each of the contributions on the right-hand side.
Let us set Sd−1

+ :=
{
e ∈ Sd−1 : e · ed > 0

}
and Sd−1

− :=
{
e ∈ Sd−1 : e · ed < 0

}
.

Hereafter, we denote by L any strictly positive constant depending only on d, βd, r1, and
on the norms of ρ and π, possibly changing from line to line.

By Coarea Formula, we can rewrite the first addendum as follows:
ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x+ εy)−∇uε(x− εη)
)
· (η + y)

∣∣2 d′ηdydx

=

ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x+ ε(η + y))−∇uε(x)
)
· (η + y)

∣∣2 d′ηdxdy

=

ˆ
Sd−1

+

ˆ
Rd

ˆ
R

ˆ
e⊥
rd−1ρ(r)π(|η|)

·
∣∣(∇uε(x+ ε(η + re))−∇uε(x)

)
· (η + re)

∣∣2 d′ηdrdxd′e

=

ˆ
Sd−1

+

ˆ
Rd

ˆ
Rd
|y|2 |y · e|d−1 ρ(|y · e|)π

(
|(id− e⊗ e)y|

)
·
∣∣(∇uε(x+ εy)−∇uε(x)

)
· ŷ
∣∣2 dydxd′e.

Similarly, we have
ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x− εy)−∇uε(x− εη)
)
· (η − y)

∣∣2 d′ηdydx

=

ˆ
Sd−1
−

ˆ
Rd

ˆ
Rd
|y|2 |y · e|d−1 ρ(|y · e|)π

(
|(id− e⊗ e)y|

)
·
∣∣(∇uε(x+ εy)−∇uε(x)

)
· ŷ
∣∣2 dydxd′e,

and thusˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x+ εy)−∇uε(x− εη)
)
· (η + y)

∣∣2 d′ηdydx

+

ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x− εy)−∇uε(x− εη)
)
· (η − y)

∣∣2 d′ηdydx

=

ˆ
Sd−1

ˆ
Rd

ˆ
Rd
|y · e|d−1 |y|2 ρ(|y · e|)π

(
|(id− e⊗ e)y|

)
·
∣∣(∇uε(x+ εy)−∇uε(x)

)
· ŷ
∣∣2 dydxd′e.
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Let us recall that ρ(r) = π(r) = 0 if r /∈ [0, 2−1/2βdr1), whence, for any e ∈ Sd−1, the
product ρ(|y · e|)π

(
|(id− e⊗ e)y|

)
vanishes outside the cylinder

Ce :=
{
y ∈ Rd : |y · e| , |(id− e⊗ e)y| ∈ [0, 2−1/2βdr1)

}
⊂ B(0, βdr1).

Consequently, the last multiple integral equalsˆ
Sd−1

ˆ
Rd

ˆ
Ce

|y · e|d−1 |y|2 ρ(|y · e|)π
(
|(id− e⊗ e)y|

)
·
∣∣(∇uε(x+ εy)−∇uε(x)

)
· ŷ
∣∣2 dydxd′e,

which, in turn, is bounded above by

L

ˆ
Sd−1

ˆ
Rd

ˆ
Ce

G̃(y)
∣∣(∇uε(x+ εy)−∇uε(x)

)
· ŷ
∣∣2 dydxd′e ≤ LM

α
ε2.

We then obtain

4

c

ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x+ εy)−∇uε(x− εη)
)
· (η + y)

∣∣2 d′ηdydx

+
4

c

ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x− εy)−∇uε(x− εη)
)
· (η − y)

∣∣2 d′ηdydx

≤ LM

α
ε2. (2.43)

Next, we have
8

c
‖π‖L1(e⊥d )

ˆ
Rd

ˆ
Rd
ρ(|y|) |y|2

∣∣(∇uε(x+ εy)−∇uε(x)
)
· ŷ
∣∣2 dydx ≤ LM

α
ε2, (2.44)

16

c

ˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x+ εη)−∇uε(x)
)
· η
∣∣2 d′ηdydx ≤ LM

α
ε2. (2.45)

The bound in (2.44) may be deduced as the one in (2.41), so, to establish (2.42), we are only
left to prove (2.45). To this purpose, letψ ∈ C∞c (Rd×Rd) be a test function. By a standard
argument and Fubini’s Theorem we have thatˆ

Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)ψ(y, η)d′ηdy

= lim
δ→0+

ˆ
Rd

ˆ
Rd

|y|
2δ
χ{ t<δ }(|η · y|)ρ(|y|)π(|η|)ψ(y, η)dηdy

= lim
δ→0+

ˆ
Rd

π(|η|)
|η|

(ˆ
Rd

|η|
2δ
χ{ t<δ }(|η · y|)ρ(|y|) |y|ψ(y, η)dy

)
dη

=

ˆ
Rd

ˆ
η̂⊥

π(|η|)
|η|

ρ(|y|) |y|ψ(y, η)d′ydη.

It follows thatˆ
Rd

ˆ
Rd

ˆ
ŷ⊥
ρ(|y|)π(|η|)

∣∣(∇uε(x+ εη)−∇uε(x)
)
· η
∣∣2 d′ηdydx

=

ˆ
Rd

ˆ
Rd

ˆ
η̂⊥

π(|η|)
|η|

ρ(|y|) |y|
∣∣(∇uε(x+ εη)−∇uε(x)

)
· η
∣∣2 d′ydηdx

≤L
ˆ
Rd

ˆ
Rd
G̃(η)

∣∣(∇uε(x+ εη)−∇uε(x)
)
· η
∣∣2 dηdx
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(recall that we assume limr→0+ π(r)/r to be finite).
In conclusion, combining (2.40), (2.41), and (2.42), we infer

ˆ
Rd
|∇vε(x)−∇uε(x)|2 dx ≤ LM

α
ε2.

This concludes the proof.

Eventually, we observe that Theorem 2.1 follows from the results of the current section.

Proof of Theorem 2.1. Lemma 2.18 shows that statement (i) holds.
As for the lower limit inequality, for any u ∈ X and for any { uε } ⊂ X that converges

to u in H1
loc(Rd), we can assume that Eε(uε) ≤ M for all ε > 0 and some M ≥ 0;

otherwise, the lower limit inequality holds trivially. Then, by Lemma 2.18, u belongs to
H2

loc(Rd) and we can invoke Proposition 2.13, which yields statement (ii).
We prove the upper limit inequality in the same fashion as the 1-dimensional case (see

the proof of Proposition 2.7). Let us suppose that u ∈ X ∩H2
loc(Rd). By mollification we

can obtain a sequence { u` } ⊂ X of smooth functions that converges to u inH2
loc(Rd).

More precisely, { ∇u` } and
{
∇2u`

}
converge in L2(Rd) respectively to∇u and∇2u. If

the gradient of u is bounded in Ω or f ′′ is bounded, f ′′(|∇u`(x) · ẑ|) ≤M for a.e. x, all z
and someM > 0. It follows that we can exploit the Dominated Convergence Theorem to
get lim`→+∞ E0(u`) = E0(u). So, statements (iii.a) and (iii.b) are achieved through the
approximation by smooth functions, Proposition 2.13, and Lemma 1.10.

Remark 2.19 (A regularity criterion)
WhenΩ,K , and f are as in Theorem 2.1 and f ′′ is bounded, as a consequence of our results, we see
that a function u ∈ X belongs toH2

loc(Rd) if and only if Eε(u) ≤M for someM > 0 and for all
sufficiently small ε. Indeed, on one hand, if Eε(u) ≤M we can invoke Lemma 2.18 with the choice
uε = u. On the other, by slicing and Remark 2.9, when f ′′ ≤ c we get

Eε(u) ≤ c

2

(ˆ
Rd

K(z) |z|2 dz
)ˆ

Rd

∣∣∇2u(x)
∣∣2 dx.
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Chapter 3

Nonlocal perimeters
and nonlocal curvatures

In the first chapter, we revised the key points of the well-established theory of finite
perimeter sets in Rd. Now, we go beyond it and we focus on its nonlocal extension. The
main sources of our exposition are the papers [BP19,Pag19].

Given a reference set Ω ⊂ Rd and a measurable functionK : Rd → [0,+∞), for us
the nonlocal perimeter associated withK of a setE ⊂ Rd in Ω is

PerK(E,Ω) :=

ˆ
E∩Ω

ˆ
Ec∩Ω

K(y − x)dydx

+

ˆ
E∩Ω

ˆ
Ec∩Ωc

K(y − x)dydx+

ˆ
E∩Ωc

ˆ
Ec∩Ω

K(y − x)dydx

(recall that, when F is a set, F c := Rd \ F ). Functionals of this form were introduced in
[CRS10] by L. Caffarelli, J. Roquejoffre, and O. Savin, who focused on the fractional case, that
is,K(x) = |x|−d−s with s ∈ (0, 1). Their analysis was motivated by phase field models
where long range interactions occur. We refer to the Introduction for a brief account of the
reasons to study this sort of functionals, which, by now, have been intensively investigated.
We shall suggest the works that are more closely related to ours among the ones in the
vast available literature in the body of the chapter.

In analogy with the classical case, it is natural to consider the nonlocal counterparts of
two other functionals, namely the total variation and the mean curvature. We define them
in Section 3.2 and Section 3.4, respectively. Ahead of this, to get acquainted with nonlocal
perimeters, Section 3.1 provides an overview of their basic properties: semicontinuity,
submodularity, relation with the De Giorgi’s perimeter. In Section 3.2 we also deal with
existence of solutions to Plateau’s problem. In this, an important role is played by a
generalised Coarea Formula, whose simple proof we recall. Then, in Section 3.3, we propose
a notion of calibration that is tailored for the nonlocal Plateau’s problem, and we prove that
calibrated functions are optimal w.r.t. their own boundary condition (see the recent paper
[Cab20] by X. Cabré for similar results, too). A case in which we are able to produce an
explicit calibration is the one of halfspaces, which turn out to be also the uniqueminimisers,
see Theorem 3.14. Finally, moving from sufficient to necessary conditions for optimality,
in Section 3.4 we establish an upper bound on the nonlocal curvature of sets with C1,1

boundary.
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3.1. ELEMENTARY PROPERTIES OF NONLOCAL PERIMETERS

3.1 Elementary properties of nonlocal perimeters

In a naïve manner, we might say that a functional named perimeter should measure the
extension of the locus that separates a set from its complement. In the case of nonlocal
perimeters, this is achieved by means of a measurable functionK : Rd → [0,+∞), which
we imagine to express some interaction between the points in Rd. Then, we define the
nonlocal perimeter associated withK of a setE ⊂ Rd as

PerK(E) :=

ˆ
E

ˆ
Ec

K(y − x)dydx. (3.1)

The intuitive idea behind such a position is that the interaction between the points x ∈ E
and y ∈ Ec must “cross” the boundary ofE, so the size of the latter can by quantified by
the iterated integral at stake.

We would also like to give a notion of nonlocal perimeter restricted to a reference
set Ω, in analogy to (1.2). To this aim, we firstly introduce for any measurable E,F the
coupling

LK(E;F ) :=

ˆ
E

ˆ
F
K(y − x)dydx,

and we discuss some of its properties.
By Tonelli’s Theorem,

LK(E;F ) = LK(F ;E) =

ˆ
E×F

K(y − x)dydx,

becauseK is positive. It follows that we may assume without loss of generality thatK is
even, i.e.

K(x) = K(−x) for a.e. x ∈ Rd. (3.2)

We also observe that whenE1, E2, F are measurable

LK(E1;F ) = LK(E2;F ) ifL d(E14E2) = 0,

LK(E1 ∪ E2;F ) = LK(E1;F ) + LK(E2;F ) ifL d(E1 ∩ E2) = 0,

and
PerK(E) = LK(E;Ec).

Whether the interaction LK(E;F ) is finite, it depends on the “regularity” ofK , E,
and F . We consider various possibilities:

(i) IfK is in L1(Rd) and its support is contained in B(0, r) for some r > 0, then
the interaction is determined by the points that are at a distance smaller than r
fromE and F :

LK(E;F ) =

ˆ
{x∈E:dist(x,F )<r}

ˆ
{y∈F :dist(y,E)<r}

K(y − x)dydx.

In [MRT19], J. Mazón, J. Rossi, and J. Toledo studied nonlocal perimeters and
curvatures defined by kernels in this class.
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(ii) When K ∈ L1(Rd), LK(E;F ) is finite as soon as one between E and F has
finite measure. Indeed,

LK(E;F ) =

ˆ
Rd
K(z) |E ∩ (F − z)|dz ≤ ‖K‖L1(Rd)

(
L d(E) ∧L d(F )

)
.

(iii) As a third case, we allowK to be singular in the origin. Precisely, let us assume
that ˆ

Rd
K(x)(1 ∧ |x|)dx < +∞. (3.3)

Then, we can bound the coupling LK from above, provided some information
about the mutual position of the sets is available. Indeed, on one hand, because
of the singularity ofK , LK might blow up if the sets overlap on a region of full
measure. On the other hand, ifL d(E ∩ F ) = 0, then F ⊂ Ec up to negligible
sets, so that

LK(E;F ) ≤ LK(E;Ec) = PerK(E).

We shall prove in Lemma 3.2 that PerK(E) is bounded above by the BV-norm of
χE , up to a constant that depends onK .

Observe that, by (3.3),K ∈ L1(B(0, r)c) for all ballsB(0, r) with centre in the
origin and radius r > 0.

We gather here some examples of kernels such that (3.3) holds.

Example 3.1
Functions inL1 satisfy (3.3) trivially. Instead, a relevant example of kernels that exhibit a singularity
in 0 is given by the fractional ones ([CRS10,Lud14]). We say thatK is of fractional type if

K(x) =
a(x)

|x|d+s
,

with s ∈ (0, 1) and a : Rd → R a measurable even function such that 0 < m ≤ a(x) ≤M for any
x ∈ Rd for some positivem andM .

A third class is formed by the kernelsK such that
´
Rd K(x) |x|dx < +∞. This requirement

allows for a fractional-type behaviour near the origin, but it implies faster-than-L1 decay at infinity
at the same time. We shall deal with functions of this type in the next chapter, see Theorem 4.1.

Now, we use the couplingLK to define the nonlocal perimeter restricted to a reference
measurable set Ω, which we always assume to have strictly positive measure.

Again, we consider the interaction between the given setE and its complement. An
initial attempt might be setting PerK(E; Ω) equal to LK(E ∩ Ω;Ec ∩ Ω), but in this way
we would be neglecting contributions arising from the portions of boundary thatE and Ω
share. For this reason, we take into consideration also terms where Ωc appears, and we
define the nonlocal perimeter of a measurable setE in Ω as

PerK(E; Ω) := LK(E ∩ Ω;Ec ∩ Ω)

+ LK(E ∩ Ω;Ec ∩ Ωc) + LK(E ∩ Ωc;Ec ∩ Ω).
(3.4)

An illustration of what the different terms encode is provided by Figure 3.1.
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Figure 3.1: The three contributions that compound PerK . The thick lines represent the
portions of boundary crossed by the interaction.

(a) LK(E ∩ Ω;Ec ∩ Ω)

E

Ω

(b) LK(E ∩ Ω;Ec ∩ Ωc)

E

Ω

(c) LK(E ∩ Ωc;Ec ∩ Ω)

E

Ω

A simple but useful fact is that PerK(E; Ω)may be rewritten in terms of the charac-
teristic function ofE:

PerK(E; Ω) =
1

2

ˆ
Ω

ˆ
Ω
K(y − x) |χE(y)− χE(x)| dydx

+

ˆ
Ω

ˆ
Ωc

K(y − x) |χE(y)− χE(x)|dydx.

(3.5)

We also note that the nonlocal perimeter in (3.4) coincides with PerK( · ;Rd) and that
PerK(E; Ω) = PerK(E) whenL d(E ∩ Ωc) = 0.

We collect some basic properties of the nonlocal perimeter in the following lemma:

Lemma 3.2
Let Ω ⊂ Rd be an open set. IfK : Rd → [0,+∞) fulfils (3.2) and (3.3), then the functional
PerK( · ; Ω) defined by (3.4) satisfies the following:

(i) PerK(∅; Ω) = 0, PerK(E; Ω) = PerK(F ; Ω) ifL d(E4F ) = 0, and PerK(E +
z; Ω + z) = PerK(E; Ω) for all z ∈ Rd.

(ii) LetE be a set such thatL d(E) < +∞. IfΩ 6= Rd and there exists r > 0 such thatE
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is a finite perimeter set inΩr :=
{
x ∈ Rd : dist(x,Ω) < r

}
, then

PerK(E; Ω) ≤
(

L d(E) ∨ Per(E; Ωr)

2

) ˆ
Rd
K(x)(1 ∧ |x|)dx

+
L d(E)

2r

ˆ
B(0,1)

K(x) |x|dx;

(3.6)

in particular,E has finite nonlocalK-perimeter inΩ. Also, ifE is a finite perimeter set
inRd, then

PerK(E) ≤
(

L d(E) ∨ Per(E)

2

) ˆ
Rd
K(x)(1 ∧ |x|)dx.

(iii) PerK( · ; Ω) is lower semicontinuous w.r.t. theL1
loc(Rd)-convergence.

(iv) PerK( · ; Ω) is submodular, i.e. for allE,F ∈M it holds

PerK(E ∩ F ; Ω) + PerK(E ∪ F ; Ω) ≤ PerK(E; Ω) + PerK(F ; Ω).

Proof. Statement (i) follows easily from the definition of perimeter thanks to the properties
of Lebesgue’s integral.

To prove (ii), we take advantage of formula (3.5):

LK(E ∩ Ω;Ec ∩ Ω) =
1

2

ˆ
Ω

ˆ
Ω
K(y − x) |χE(y)− χE(x)| dydx

=
1

2

ˆ
Ω

ˆ
Rd
K(z) |χE(x+ z)− χE(x)|χΩ(x+ z)dzdx

=
1

2

ˆ
Rd

ˆ
Ω∩(Ω−z)

K(z) |χE(x+ z)− χE(x)| dxdz

=
1

2

ˆ
B(0,1)

ˆ
Ω∩(Ω−z)

K(z) |χE(x+ z)− χE(x)| dxdz

+
1

2

ˆ
B(0,1)c

ˆ
Ω∩(Ω−z)

K(z) |χE(x+ z)− χE(x)|dxdz

The last double integral may be easily bounded by the triangular inequality:

1

2

ˆ
B(0,1)c

ˆ
Ω∩(Ω−z)

K(z) |χE(x+ z)− χE(x)| dxdz ≤ L d(E ∩ Ω)

ˆ
B(0,1)c

K(z)dz.

Moreover, for any z ∈ B(0, 1) and x ∈ Ω ∩ (Ω − z), we may appeal to Proposition 1.5,
which gets

1

2

ˆ
B(0,1)

ˆ
Ω∩(Ω−z)

K(z) |χE(x+ z)− χE(x)| dxdz ≤ Per(E; Ω)

2

ˆ
B(0,1)

K(z) |z|dz.

On the whole,

LK(E ∩ Ω;Ec ∩ Ω) ≤
(

L d(E ∩ Ω) ∨ Per(E; Ω)

2

) ˆ
Rd
K(z)(1 ∧ |z|)dz; (3.7)
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this concludes the proof when Ω = Rd.
We focus now on the case when Ω is a proper subset of Rd. Without loss of generality,

we may assume thatE is a finite perimeter set in Ωr for r ∈ (0, 1]. By reasoning as above,
we obtain

LK(E ∩ Ω;Ec ∩ Ωc) + LK(E ∩ Ωc;Ec ∩ Ω)

=

ˆ
Ω

ˆ
Ωc

K(y − x) |χE(y)− χE(x)| dydx

=
1

2

ˆ
B(0,r)

ˆ
Ω∩(Ωc−z)

K(z) |χE(x+ z)− χE(x)| dxdz

+
1

2

ˆ
B(0,r)c

ˆ
Ω∩(Ωc−z)

K(z) |χE(x+ z)− χE(x)|dxdz.

Again, we are in position to apply Proposition 1.5 and the triangular inequality. We get

LK(E ∩ Ω;Ec ∩ Ωc) + LK(E ∩ Ωc;Ec ∩ Ω)

≤ Per(E; Ωr)

2

ˆ
B(0,r)

K(z) |z| dz +
L d(E)

2

ˆ
B(0,r)c

K(z)dz

≤ Per(E; Ωr)

2

ˆ
B(0,1)

K(z) |z|dz

+
L d(E)

2

(
1

r

ˆ
B(0,1)

K(z) |z|dz +

ˆ
B(0,1)c

K(z)dz

)
.

We now recover (3.6) by combing (3.7) and the last estimate.
For what concerns assertion (iii), the lower semicontinuity is a consequence of formula

(3.5) and of Fatou’s Lemma.
Eventually, we prove statement (iv). It suffices to rewrite suitably each contribution:

for instance, we have

LK((E ∪ F ) ∩ Ω;Ec ∩ F c ∩ Ω)

= LK(E ∩ Ω;Ec ∩ Ω) + LK(F ∩ Ω;F c ∩ Ω)

− LK(E ∩ Ω;Ec ∩ F ∩ Ω)− LK(F ∩ Ω;E ∩ F c ∩ Ω)

− LK(E ∩ F ∩ Ω;Ec ∩ F c ∩ Ω)

and

LK(E ∩ F ∩ Ω; (Ec ∪ F c) ∩ Ω)

= LK(E ∩ F ∩ Ω;Ec ∩ F c ∩ Ω)

+ LK(E ∩ F ∩ Ω;Ec ∩ F ∩ Ω) + LK(E ∩ F ∩ Ω;E ∩ F c ∩ Ω).

In the end, one finds

PerK(E; Ω) + PerK(F ; Ω) = PerK(E ∩ F ; Ω) + PerK(E ∪ F ; Ω)

+ 2LK(E ∩ F c ∩ Ω;Ec ∩ F ∩ Ω)

+ 2LK(E ∩ F c ∩ Ω;Ec ∩ F ∩ Ωc)

+ 2LK(E ∩ F c ∩ Ωc;Ec ∩ F ∩ Ω).
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Remark 3.3 (Generalised perimeters)
Definition (3.4) might seem very different from the one of De Giorgi’s perimeter. Nevertheless,
Lemma 3.2 shows that the classical and the nonlocal perimeter have some useful properties in
common. Actually, in [CMP15] A. Chambolle, M. Morini, and M. Ponsiglione proposed that a set
functional p is a generalised perimeter if

(i) p(∅) = 0, p(E) = p(F )wheneverL d(E4F ) = 0, and p is invariant under translations;

(ii) it is finite on the closures of open sets with compact C2 boundary;

(iii) it is L1
loc(Rd)-lower semicontinuous;

(iv) it is submodular.

In [CMP15], the functional in (3.1) appears as an instance of generalised perimeter. In that
work, the authors are concerned with geometric evolutions driven by generalised curvatures, and
PerK is listed as an example of functional whose first variation is a curvature in that sense. We
shall come back to this point later on, see Section 3.4 and Chapter 5.

3.2 Coarea Formula and Plateau’s problem

We recalled in Section 1.2 that the theory of De Giorgi’s perimeter may be formulated
in terms of functions of bounded variation. In the same spirit, we introduce a nonlocal
functional that might be regarded as a nonlocal total variation. Standing the previous
assumptions on Ω andK , for any measurable u : Rd → R we set

J1
K(u; Ω) :=

1

2

ˆ
Ω

ˆ
Ω
K(y − x) |u(y)− u(x)|dxdy,

J2
K(u; Ω) :=

ˆ
Ω

ˆ
Ωc
K(y − x) |u(y)− u(x)|dxdy, (3.8)

JK(u; Ω) := J1
K(u; Ω) + J2

K(u; Ω).

By a small abuse of notation, we shall write J iK(E; Ω) := J iK(χE ; Ω) for i = 1, 2 and
JK(E; Ω) := JK(χE ; Ω), so that (3.5) reads

PerK(E; Ω) = J1
K(E; Ω) + J2

K(E; Ω) = JK(E; Ω).

By imitating the proof of statement (ii) in Lemma 3.2, the reader may verify that the
BV-norm bounds the nonlocal total variation:

Proposition 3.4
Let Ω be an open set and let K : Rd → [0,+∞) satisfy (3.2) and (3.3). Suppose also that
u ∈ L1(Rd). Then, if Ω 6= Rd and there exists r > 0 such that u ∈ BV(Ωr), with Ωr :={
x ∈ Rd : dist(x,Ω) < r

}
,

JK(u; Ω) ≤
(
‖u‖L1(Rd) ∨

|Du| (Ωr)

2

)ˆ
Rd
K(x)(1 ∧ |x|)dx

+
‖u‖L1(Rd)

2r

ˆ
B(0,1)

K(x) |x|dx.

Moreover, if u ∈ BV(Rd), then

JK(u) ≤
(
‖u‖L1(Rd) ∨

‖Du‖
2

) ˆ
Rd
K(x)(1 ∧ |x|)dx.
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In the remainder of this Section, we investigate some of the main features of the
nonlocal total variation. We firstly state two fundamental properties of JK( · ; Ω) whose
validation is straightforward.

Proposition 3.5
The nonlocal total variation JK( · ; Ω) is convex and lower semicontinuous w.r.t. the L1

loc(Rd)-
convergence.

Another tool that will be crucial for the forthcoming analysis is a generalised version
of the Coarea Formula. Following A. Visintin [Vis91, Vis90], we say that a functional J
defined on measurable scalar functions fulfils the generalised Coarea Formula if

J(u) =

ˆ +∞

−∞
J(χ{ u>t })dt. (3.9)

Hereafter, if u : Rd → R is a function and t ∈ R, we set

{ u > t } := { x ∈ Ω : u(x) > t } .

It is not difficult to show that the nonlocal total variation JK and theK-perimeter
satisfy a coarea-type equality.

Proposition 3.6 (Nonlocal Coarea Formula)
LetK : Rd → [0,+∞) and u : Rd → R be measurable. It holds

J iK(u; Ω) =

ˆ +∞

−∞
J iK({ u > t } ; Ω)dt for i = 1, 2,

thus

JK(u; Ω) =

ˆ +∞

−∞
PerK({ u > t } ; Ω)dt.

The proof has already appeared several times in the literature (see [CSV19] or [Vis91,
CN18,MRT19,ADPM11]).

Proof. Given x, y ∈ Ω, we may suppose that u(x) ≤ u(y). We observe that the function
t 7→ χ{ u>t }(x)− χ{ u>t }(y) vanishes for t ∈ (−∞, u(x)) ∪ (u(y),+∞), therefore

ˆ
R

∣∣χ{ u>t }(y)− χ{ u>t }(x)
∣∣ dt =

ˆ u(y)

u(x)

∣∣χ{ u>t }(y)− χ{ u>t }(x)
∣∣dt

= |u(y)− u(x)| .

By Tonelli’s Theorem,

J1
K(u; Ω) :=

1

2

ˆ
Ω

ˆ
Ω
K(x− y) |u(x)− u(y)| dxdy

=
1

2

ˆ
R

ˆ
Ω

ˆ
Ω
K(x− y)

∣∣χ{ u>t }(x)− χ{ u>t }(y)
∣∣ dxdydt

=

ˆ
R
J1
K({ u > t } ; Ω)dt

The equality involving J2
K(u; Ω)may be proved in the same manner.
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The validity of the generalised Coarea Formula has interesting consequences from
a variational perspective. For instance, in [CGL10], A. Chambolle, A. Giacomini, and L.
Lussardi proved that a proper L1-lower semicontinuous functional that satisfies the gener-
alised Coarea Formula and whose restriction to characteristic functions is submodular is
necessarily convex. Thus, we might see the convexity of JK( · ; Ω) as an example of this
general principle. Another useful contribution in [CGL10] that involves the Coarea Formula
will be invoked in Section 4.2, when we deal with the asymptotics of rescaled energies.

Proposition 3.6 comes in handy also when addressing a quite natural variational prob-
lem concerning JK . Its classical analogue is the well-known Plateau’s problem, which
amounts to minimise the perimeter under prescribed boundary conditions. If Ω is a given
references set andE0 is a measurable set playing the role of the boundary datum, one usu-
ally considers the class of competitorsF := { E : E ∩ Ωc = E0 ∩ Ωc }. Remember that,
in our notation, equality holds up to negligible sets. Existence of minimisers may be easily
achieved thanks to the compactness criterion Theorem 1.6, and the L1

loc-semicontinuity
of De Giorgi’s perimeter.

The approach does not require modifications if the classical perimeter is replaced
by an anisotropic surface energy such as Perσ in (1.7), provided the anisotropy σ is a
norm. Conversely, the very same strategy is not effective in the nonlocal framework,
because sequences that have uniformly bounded nonlocal perimeter are not necessarily
precompact in L1. As an example of this phenomenon, we may consider a sequence { E` }
whose elements are subsets of some Ω with finite measure, and we observe that, for any
K ∈ L1(Ω), it holds PerK(E`; Ω) ≤ 3 ‖K‖L1(Rd) L d(Ω).

Remark 3.7
It would be natural to investigate under which general conditions onK coercivity of PerK( · ,Ω)
is ensured. In a recent paper [CS19], J. Chaker and L. Silvestre provided an answer for a functionals
of the form ˆ

Rd

ˆ
Rd

K(x, y) |u(y)− u(x)|2 dxdy.

Even though, in general, a uniform bound on the nonlocal perimeter is not informative,
the direct method of calculus of variations is still a viable option.

Theorem 3.8 (Existence of solutions to Plateau’s problem)
LetK : Rd → [0,+∞) be measurable and let Ω ⊂ Rd be an open set with finite measure. We
suppose thatE0 is a measurable set such thatPerK(E0; Ω) < +∞, and we define the family

F :=
{
v : Rd → [0, 1] : v is measurable and v = χE0 inΩc

}
. (3.10)

Then, there existsE ⊂ Rd such that χE ∈ F and

PerK(E; Ω) ≤ JK(v; Ω) for any v ∈ F .

We premise some comments about the statement before dealing with its proof.

Remark 3.9 (Truncation)
For s ∈ R, let us set T (s) := 0∨(s∧1). Observe that T ◦χE0

= χE0
and JK(T ◦u; Ω) ≤ JK(u; Ω).

Therefore,

inf { JK(v; Ω) : v ∈ F } = inf
{
JK(v; Ω) : v : Rd → R is measurable and v = χE0

in Ωc,
}
.

and we see that choice ofF as the class of competitors is not restrictive.
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Remark 3.10 (The class of competitors is nonempty)
Let us suppose thatE0 has finite perimeter in some open set Ω0 that strictly contains the closure
of Ω and thatK fulfils (3.3). Then, by Lemma 3.2–(ii), PerK(E0; Ω) < +∞.

Proof of Theorem 3.8. Let { u` } ⊂ F be a minimising sequence. SinceΩ has finite measure,
for any choice of p ∈ (1,+∞), { u` } is bounded inLp(Ω; [0, 1]). It follows that there exist
a subsequence { u`m } and some u ∈ Lp(Ω; [0, 1]) such that { u`m |Ω }weakly converges in
Lp to u. Let us extend u to the whole Rd setting u|Ωc = χE0 . By Proposition 3.5, we know
that JK is convex and lower semicontinuous w.r.t. strong convergence in Lp(Rd; [0, 1])
for any p ∈ [1,+∞), therefore it is lower semicontinuous w.r.t. the weak Lp(Ω; [0, 1])-
convergence. We deduce

lim
k→+∞

JK(u`m ; Ω) ≥ JK(u; Ω)

(recall that u`m = u = χE0 in Ωc), that is, u is a minimiser for JK( · ,Ω).
To conclude the proof, it suffices to show that we can recover a setE such thatχE ∈ F

and PerK(E; Ω) ≤ JK(u; Ω). We do this by the Coarea Formula: since

JK(u; Ω) =

ˆ 1

0
PerK({ u > t } ; Ω)dt,

for some t∗ ∈ (0, 1) it must hold JK(u; Ω) ≥ PerK({ u > t∗ } ; Ω). Then, the choice
E := χ{ u>t∗ } gets the conclusion.

3.3 A nonlocal notion of calibration

In the previous Section we proved existence of solutions to the nonlocal Plateau’s problem.
Now, relying on the paper [Pag19], we want to validate the nonlocal version of the classical
sufficiency principle for minimality based on the concept of calibration.

The notion of calibration may be expressed in very general terms (see [Mor08,HL82]
and references therein). As far as least area surfaces are concerned, we say that a (classical)
calibration for the finite perimeter set E is a divergence-free vector field ζ : Rd → Rd
such that |ζ(x)| ≤ 1 a.e. and ζ(x) = n̂(x) forH d−1-a.e. x ∈ ∂∗E, n̂ being the measure-
theoretic inner normal toE defined in (1.4).

It can be shown that if the set E admits a calibration, then its perimeter equals the
infimum in the classical, isotropic Plateau’s problem. To transpose thisminimality criterion
in the nonlocal setting, a suitable notion of calibration has to be introduced.

We remind that we assume that Rd × Rd is equipped with the product measureL d ⊗
L d.

Definition 3.11
Let u : Rd → [0, 1] and ζ : Rd × Rd → R be measurable functions. We say that ζ is a nonlocal
calibration for u if the following hold:

(i) |ζ(x, y)| ≤ 1 for a.e. (x, y) ∈ Rd × Rd;

(ii) for a.e. x ∈ Rd,

lim
r→0+

ˆ
B(x,r)c

K(y − x) (ζ(y, x)− ζ(x, y)) dy = 0; (3.11)
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Figure 3.2: If ζ is a calibration for the setE (i.e. for χE) and x, y are as in the picture, then
ζ(x, y) = −1.

E

x

y

n̂

(iii) for a.e. (x, y) ∈ Rd × Rd such that u(x) 6= u(y),

ζ(x, y)(u(y)− u(x)) = |u(y)− u(x)| . (3.12)

Some comments about the definition are in order. Suppose that ζ : Rd × Rd → R is a
calibration for u : Rd → [0, 1].

(i) Up to replacing ζ with ζ̃(x, y) := (ζ(x, y)− ζ(y, x))/2, we may always assume
that ζ(x, y) = −ζ(y, x).

(ii) In view of (3.3), the integral in (3.11) is convergent for each r > 0. We may
interpret (3.11) as a nonlocal reformulation of the classical vanishing divergence
condition. Nonlocal notions of gradient and divergence operators where intro-
duced by G. Gilboa and S. Osher in [GO08], and they have already been exploited
to study nonlocal perimeters by Mazón, Rossi, and Toledo in [MRT19], where the
authors propose a notion ofK-calibrable set in relation to a nonlocal Cheeger
energy.

(iii) Suppose that u = χE for some measurableE ⊂ Rd. By (3.12), ζ must satisfy

ζ(x, y) =

{
−1 if x ∈ E, y ∈ Ec

1 if x ∈ Ec, y ∈ E.

Heuristically, this means that the calibration gives the sign of the inner product
between the vector y − x and the inner normal to E at the “crossing point”,
provided the boundary ofE is sufficiently regular (see Figure 3.2). Indeed, if we
imagine to displace a particle from to x and y, ζ equals −1 when the particle
exitsE, and it equals 1 if the particles entersE.

Remark 3.12
In a very recent, independent work [Cab20], Cabré studied essentially the same concept of nonlocal
calibration: given an open bounded set Ω ⊂ Rd and a measurable E ⊂ Rd such that E =
{ fE > 0 } for some measurable fE : Rd → R, he introduced the set functional

CΩ(F ) :=

ˆ ˆ
(Ωc×Ωc)c

K(y − x)(χF (y)− χF (x)) sign(fE(y)− fE(x))dydx,
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where F ⊂ Rd satisfies F ∩ Ωc = E ∩ Ωc. In [Cab20, Theorem 2.4] the author gives sufficient
conditions for the set E to be a minimiser for Plateau’s problem as well as conditions to grant
uniqueness. As applications, he establishes the local minimality of graphs with 0 nonlocal curvature
and, very interestingly, re-proves a result in [CRS10] stating that minimisers have null nonlocal
curvature in a viscosity sense.

The existence of a calibration is a sufficient condition for a function u to minimise the
energy JK w.r.t compact perturbations, as the following statement shows:

Theorem 3.13
LetE0 ⊂ Rd be ameasurable set such that JK(χE0 ; Ω) < +∞, and letF be the family in (3.10).
If for some u ∈ F there exists a calibration ζ , then

JK(u; Ω) ≤ JK(v; Ω) for all v ∈ F .

Also, whenK > 0, if ũ ∈ F is another minimiser, then ζ is a calibration for ũ as well.

Proof. For any v ∈ F , let

a(v) :=
1

2

ˆ
Ω

ˆ
Ω
K(y − x)ζ(x, y)(v(y)− v(x))dydx,

b1(v) := −
ˆ

Ω

ˆ
Ωc

K(y − x)ζ(x, y)v(x)dydx,

b0 :=

ˆ
Ω

ˆ
Ωc

K(y − x)ζ(x, y)χE0(y)dydx.

Then, by the definitions of JK( · ; Ω), ζ , andF ,

JK(v; Ω) ≥ a(v) + b1(v) + b0. (3.13)

Since it is not restrictive to assume that JK(v; Ω) is finite, we can suppose that a(v),
b1(v), and b0 are finite as well.

First of all, we show that a(v) = −b1(v) for all v ∈ F . Since we may always suppose
that ζ is antisymmetric, we have

a(v) = −
ˆ

Ω

ˆ
Ω
K(y − x)ζ(x, y)v(x)dydx.

Besides, (3.11) gets

0 = −2 lim
r→0+

ˆ
B(x,r)c

K(y − x)ζ(x, y)dy

= −2 lim
r→0+

ˆ
B(x,r)c∩Ω

K(y − x)ζ(x, y)dy − 2

ˆ
Ωc

K(y − x)ζ(x, y)dy,

whence

a(v) = − lim
r→0+

ˆ
Ω

ˆ
B(x,r)c∩Ω

K(y − x)ζ(x, y)v(x)dydx = −b1(v).

We plug the previous equality in (3.13) and obtain

JK(v; Ω) ≥ b0 for all v ∈ F . (3.14)
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To infer the optimality of u, observe that u attains the lower bounds, because, being ζ a
calibration for u, equality holds in (3.13) when v = u.

Now, let K be strictly positive and assume that ũ ∈ F is another minimiser of
JK( · ; Ω), or, in other words, assume that JK(ũ; Ω) = b0. We claim that for a.e. (x, y) ∈
Rd × Rd such that ũ(x) 6= ũ(y) it holds

ζ(x, y) (ũ(y)− ũ(x)) = |ũ(y)− ũ(x)| . (3.15)

The equality holds trivially for a.e. (x, y) ∈ Ωc×Ωc, becauseu = ũ inΩc. Furthermore,
from (3.13) we have

b0 = JK(ũ; Ω) ≥ a(ũ) + b1(ũ) + b0 = b0,

thus

1

2

ˆ
Ω

ˆ
Ω
K(y − x) [|ũ(y)− ũ(x)| − ζ(x, y)(ũ(y)− ũ(x))] dydx

+

ˆ
Ω

ˆ
Ωc

K(y − x) [|ũ(y)− ũ(x)| − ζ(x, y)(ũ(y)− ũ(x))] dydx = 0.

Since the integrand is positive and K > 0, (3.15) is satisfied for a.e. (x, y) ∈ Ω × Rd.
Eventually, in the case x ∈ Ωc and y ∈ Ω, we can derive the conclusion thanks to the
antisymmetry of ζ .

We put the previous theorem in action to prove that halfspaces are the unique local
minimisers of JK( · ;B(0, 1)) w.r.t. their own boundary condition. This is in line with the
case of local perimeters like Perσ in (1.7) associated with strictly convex anisotropies σ
(see the monograph by F. Maggi [Mag12]). An analogue in the nonlocal setting is already
available for fractional perimeters [CRS10,ADPM11] and, in wider generality, when the
kernel is radial and strictly decreasing [BP19]. The use of calibrations enables us to extend
the result to all positive, even kernels.

Theorem 3.14
For all n̂ ∈ Sd−1, setHn̂ :=

{
x ∈ Rd : x · n̂ > 0

}
and

ζn̂(x, y) := sign((y − x) · n̂). (3.16)

Then, ζn̂ is a calibration for χHn̂ in the sense of Definition 3.11, and

JK(χHn̂ ;B(0, 1)) ≤ JK(v;B(0, 1))

for all measurable v : Rd → [0, 1] such that v(x) = χHn̂(x) inB(0, 1)c.
Moreover, ifK > 0, for any other minimiser u satisfying the same constraint, it holds u(x) =

χHn̂(x).

Proof. It is readily shown that ζ is a calibration for χHn̂ , so that, in the light of Theorem
3.13, χHn̂ is a minimiser of the nonlocal perimeter subject to its own boundary conditions.

To prove uniqueness, we suppose that u : Rd → [0, 1] is another minimiser. Again by
Theorem 3.13, we infer that ζn̂ is a calibration for u as well. Explicitly,

sign((y − x) · n̂)(u(y)− u(x)) = |u(y)− u(x)| a.e. (x, y) ∈ Rd × Rd,
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whence
u(x) ≤ u(y) for a.e. x, y ∈ Rd such that x · n̂ < y · n̂. (3.17)

We now focus on the superlevel sets of u: for t ∈ (0, 1), we define

Et := { u > t } ,

and we observe that if (x, y) ∈ Et × Ec
t , it must be x · n̂ ≥ y · n̂, otherwise, by (3.17) we

would have u(x) ≤ u(y). Therefore, there exists λt ∈ R such thatEt ⊂ { x : x · n̂ ≥ λt }
and Ec

t ⊂ { y : y · n̂ ≤ λt }, whenceL d(Et 4 { x : x · n̂ ≥ λt }) = 0 for all t ∈ (0, 1).
Recalling that it holds u = χH inB(0, 1)c, we infer that λt = 0 and this gets

L d(Et4Hn̂) = 0 for all t ∈ (0, 1).

Summarising, we found that u : Rd → [0, 1] is a function such that, for all t ∈ (0, 1),
the superlevel setEt coincides with the halfspaceHn̂, up to a negligible set. To conclude,
we let { t` }`∈N ⊂ (0, 1) be a sequence that converges to 0 when ` → +∞. Because it
holds

{ x : u(x) = 0 } =
⋂
`∈N

Ec
t`

and { x : u(x) = 1 } =
⋂
`∈N

E1−t` ,

we see thatL d({ x : u(x) = 0 }4Hc
n̂) = 0 andL d({ x : u(x) = 1 }4Hn̂) = 0. Thus,

u = χHn̂ in Rd

Remark 3.15
Observe that ζn̂ in (3.16) is a calibration for all u : Rd → R such that u(x) = f(x · n̂) for some
increasing f : R→ R. Hence, functions of this form are local minimisers.

We shall make use of Theorem 3.14 in the next chapter, see Section 4.4.

3.4 Nonlocal curvatures

LetE ⊂ Rd be a set with smooth boundary and letEt := Φ(t, E), whereΦ: R×Rd → Rd
is a smooth function such that Φ(0, x) = x and Φ(t, · ) is a diffeomorphism for all t ∈ R.
Then, it can be proved [CMP15] that

d PerK(Et)

dt
|t=0 =

ˆ
∂E
HK(E, x)ζ(x) · n̂(x)dH d−1(x),

where ζ(x) := ∂tΦ(0, x), n̂(x) is the outer unit normal to ∂E at x, and

HK(E, x) := − lim
r→0+

ˆ
B(x,r)c

K(y − x) (χE(y)− χEc(y)) dy. (3.18)

Thus, we see that HK is the geometric first variation of the nonlocal perimeter, and,
consistently with the classical case, we dub it nonlocal curvature.

Once again, in the fractional case this kind of nonlocal functional was introduced in
the seminal work [CRS10]. For a discussion of the properties of fractional curvatures, we
refer to the paper [AV14] by N. Abatangelo and E. Valdinoci. A wider study of general,
translation-invariant curvature functionals was carried out in [CMP15] (see Remark 3.19
and Chapter 5 for more details).
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Figure 3.3: Qλ(e) is the region comprised between an upward and a downward quadric.

Qλ(e)

λ

e

e⊥
0

WhenK ∈ L1(Rd), the nonlocal curvature can be written as a convolution:

HK(E, x) = −(K ∗ χ̃E)(x) := −
ˆ
Rd
K(y − x)χ̃E(y)dy.

Hereafter, ifE is a set,

χ̃E(x) :=

{
1 if x ∈ E,
−1 if x ∈ Ec.

In general, HK has to be defined by means of the principal value because we include
singular kernels in our analysis. Precisely, we make the following assumptions: K : Rd →
[0,+∞) is a measurable, even function such that

K ∈ L1(B(0, r)c) for all r > 0 (3.19)

and
K ∈ L1(Qλ(e)) for all e ∈ Sd−1 and λ > 0, (3.20)

where, for any e ∈ Sd−1 and λ > 0, e⊥ :=
{
y ∈ Rd : y · e = 0

}
, πe⊥ := id− e⊗ e is the

orthogonal projection on e⊥, and

Qλ(e) :=

{
y ∈ Rd : |y · e| ≤ λ

2
|πe⊥(y)|2

}
(see Figure 3.3). The two requirements grant that sets with C1,1 boundary have finite
nonlocal curvature, see Proposition 3.17 below.

We collect some basic properties of the nonlocal curvature.

Lemma 3.16
LetE ⊂ Rd be an open set such thatHK(E, x) is finite for some x ∈ ∂E.

(i) For any z ∈ Rd and any orthogonal matrixR, if T (y) := Ry + z, then

HK(E, x) = HK̃(T (E), T (x)), (3.21)

where K̃ := K ◦Rt,Rt being the transpose ofR. In particular,HK is invariant under
translation.
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(ii) If F ⊂ E and x ∈ ∂E ∩ ∂F , thenHK(E, x) ≤ HK(F, x).

(iii) If { E` } is a sequence of sets that converges toE inC2 and the points x` ∈ ∂E` satisfy
x` → x, thenHK(E`, x`) converges toHK(E, x).

(iv) IfE is convex, thenHK(E, x) ≥ 0.

Proof. The first two statements follow readily from the definition ofHK , while the third
one can be established similarly to Proposition 3.17 below. As for (iv), let T (y) := 2x− y.
Notice that, for any r > 0,

ˆ
B(0,r)c

K(y − x)χE(y)dy =

ˆ
B(0,r)c

K(y − x)χT (E)(y)dy

and that, by convexity, T (E) ⊂ Ec. Then, the right-hand side of 3.18 is positive.

Finally, we show that the nonlocal curvature is finite on sets with C1,1 boundaries
[Imb09,CMP15]. We include the proof for the sake of completeness, and also to recover
(3.22), which we shall utilise in Chapter 5. We use the following notation: for e ∈ Sd−1,
x ∈ Rd and δ > 0, we denote the cylinder of centre x and axis e as

Ce(x, δ) :=
{
y ∈ Rd : y = x+ z + te, with z ∈ e⊥ ∩B(0, δ), t ∈ (−δ, δ)

}
.

Proposition 3.17
LetE ⊂ Rd be an open set such that ∂E is aC1,1-hypersurface. Then, for all x ∈ ∂E, there exist
δ̄, λ > 0 such that

|HK(E, x)| ≤
ˆ
Qλ,δ̄(n̂)

K(y)dy +

ˆ
B(0,δ̄)c

K(y)dy, (3.22)

where n̂ is the outer unit normal inx andQλ,δ̄(n̂) :=
{
y ∈ Qλ(n̂) : |πn̂⊥(y)| < δ̄

}
. In particu-

lar,HK(E, x) is finite.

Proof. Since Σ := ∂E is regular, there exist δ̄ := δ̄(x) and a function f : n̂⊥ ∩B(0, δ̄)→
(−δ̄, δ̄) of class C1,1 such that

Σ ∩ Cn̂(x, δ̄) =
{
y = x+ z − f(z)n̂ : z ∈ n̂⊥ ∩B(0, δ̄)

}
,

E ∩ Cn̂(x, δ̄) =
{
y = x+ z − tn̂ : z ∈ n̂⊥ ∩B(0, δ̄), t ∈ (f(z), δ̄)

}
,

|f(z)| ≤ λ

2
|z|2 for some λ > 0. (3.23)

We may always suppose that r < δ̄ and split the integral in (3.18) into the sum
ˆ
C
K(y − x)χ̃E(y)χB(x,r)c(y)dy +

ˆ
Cc

K(y − x)χ̃E(y)dy,

where C := Cn̂(x, δ̄) for short. Thanks to (3.19), the second term is finite: indeed, since
B(x, δ̄) ⊂ C , we have that∣∣∣∣ˆ

Cc

K(y − x)χ̃E(y)dy

∣∣∣∣ ≤ ˆ
B(0,δ̄)c

K(y)dy. (3.24)
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So, it remains to show that the integral

Ir :=

ˆ
C
K(y − x)χ̃E(y)χB(x,r)c(y)dy

is bounded by a constant that does not depend on r. In view of (5.20), and sinceK belongs
to L1(B(0, r)c) for any r > 0, we can write

Ir =

ˆ
n̂⊥∩B(0,δ̄)

[ˆ δ̄

f(z)
K(z − tn̂)br(z, t)dt−

ˆ f(z)

−δ̄
K(z − tn̂)br(z, t)dt

]
dH d−1(z),

where, for (z, t) ∈ [n̂⊥ ∩B(0, δ̄)]× (−δ̄, δ̄),

br(z, t) :=

{
0 if |z| < r and |t| <

√
r2 − |z|2

1 otherwise.
(3.25)

Recalling thatK is even, we get

Ir =

ˆ
n̂⊥∩B(0,δ̄)

[ˆ δ̄

f(z)
K(z − tn̂)br(z, t)dt−

ˆ δ̄

−f(−z)
K(z − tn̂)br(z, t)dt

]
dH d−1(z)

=−
ˆ
n̂⊥∩B(0,δ̄)

ˆ f(z)

−f(−z)
K(z − tn̂)br(z, t)dtdH d−1(z)

By (3.23), we infer

|Ir| ≤
ˆ
n̂⊥∩B(0,δ̄)

ˆ λ
2
|z|2

−λ
2
|z|2

K(z − tn̂)br(z, t)dtdH d−1(z)

=

ˆ
Qλ,δ̄(n̂)

K(y)χB(0,r)c(y)dy.

Assumption (3.20) allows to take the limit in the last inequality, and we obtain (3.22).

Remark 3.18
The second integral in (3.22) takes into account the “tails” ofK , while the first one is related to
the mean curvature of Σ. Indeed, λ in (3.23) measures how much the hypersurface bends in a
neighbourhood of x.

Remark 3.19 (Generalised curvatures)
According to [CMP15], a functionH defined on the couples (E, x), whereE ⊂ Rd is an open set
with compact C2 boundary and x ∈ ∂E, is a generalised curvature if

(i) it is invariant under translation;

(ii) it is monotone, that is, ifE ⊂ F and x ∈ ∂E ∩ ∂F , thenH(E, x) ≥ H(F, x);

(iii) it is continuous, that is, ifE` → E in C2 and x` → x, with x` ∈ ∂E` and x ∈ ∂E, then
H(E`, x`) converges toH(E, x).

Well-posedness for the level set flows associated with motions by generalised curvature (be it local
or nonlocal) was established in the same paper. Lemma 3.16 and Proposition 3.17 ensure thatHK

lies in framework of [CMP15]. We shall gain profit of this in Chapter 5.
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Chapter 4

Γ-convergence of
rescaled nonlocal total variations

In Chapter 3 we discussed some general properties of the nonlocal functionals PerK and
JK , and we drew some comparisons between them and, respectively, De Giorgi’s perimeter
and the total variation. A further link, of asymptotic nature, is the subject of the present
chapter, whose content firstly appeared in [BP19].

Let us describe the problem we deal with. When u : Rd → [0, 1] is a measurable
function, recalling (3.2), we define

J1
ε (u; Ω) :=

1

2

ˆ
Ω

ˆ
Ω
Kε(y − x) |u(y)− u(x)| dydx,

J2
ε (u; Ω) :=

ˆ
Ω

ˆ
Ωc

Kε(y − x) |u(y)− u(x)|dydx,

Jε(u; Ω) := JKε(u; Ω) = J1
ε (u; Ω) + J2

ε (u; Ω),

where, for ε > 0, we let

Kε(x) :=
1

εd
K
(x
ε

)
.

We are interested in the limit of the family of functionals { Jε( · ; Ω) } with respect to the
L1

loc(Rd)-convergence as ε→ 0+. This is somewhat reminiscent of the Bourgain-Brezis-
Mironescu formula that we mentioned in Chapter 2. We shall be more precise on this
connection in a while, when we comment the statement of the main result of the chapter,
Theorem 4.1 below.

Note that the rescaled kernelKε has the same mass asK , i.e. formally ‖Kε‖L1(Rd) =

‖K‖L1(Rd), but, as ε approaches 0, it gets more and more concentrated around the origin.
So, qualitatively, we guess that the limiting procedure has a sort of localisation effect,
and, in particular, we expect to recover a total-variation-type functional. We shall see in
Section 4.1 that Γ-convergence is the tool to describe the phenomenon rigorously. For the
definition of this kind of convergence and its fundamental properties, we refer to Section
1.3.

Besides Γ-convergence, we also present a compactness property of families that have
equibounded energies. We establish it in Section 4.1, while in the following one we outline
our approach to the Γ-convergence result. Detailed proofs are expounded in the remaining
sections.
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4.1 Main result and proof of compactness

The current chapter is devoted to the proof of the following:

Theorem 4.1 (Compactness and Γ-convergence of the rescaled energy)
LetΩ ⊂ Rd be an open bounded set with Lipschitz boundary. Let alsoK : Rd → (0,+∞) be an
even function such that

cK :=
1

2

ˆ
Rd
K(x) |x| dx < +∞, (4.1)

and define for any measurable u : Rd → [0, 1]

J0(u; Ω) :=


1

2

ˆ
Rd
K(z)

(ˆ
Ω
|z ·Du|

)
dz if u ∈ BV(Ω),

+∞ otherwise.

Then, the following hold:

(i) For all ` ∈ N, let ε` > 0 and let u` : Ω→ [0, 1] be a measurable function. If ε` → 0+

and
1

ε`
J1
ε`

(u`; Ω) is uniformly bounded,

then { u` } is precompact inL1(Ω) and its cluster points belong toBV(Ω; [0, 1]).

(ii) As ε→ 0+, the family
{
ε−1Jε( · ; Ω)

}
Γ-converges inL1

loc(Rd) to J0( · ; Ω).

Assertion (i) provides a compactness criterion for families that are equibounded in
energy and it grants some extra regularity for the limits point of such families. The
second aspect will be useful for the proof of the lower limit inequality. The criterion has
been already established in [AB98b] by G. Alberti and G. Bellettini in a slightly different
framework. For the reader’s convenience, in this Section we shall include its proof.

Our theorem is very close to a result by Ponce:

Theorem 4.2 (Corollary 2 and Theorem 8 in [Pon04])
LetΩ an opens set with compact, Lipschitz boundary and letK andKε be as above. If u ∈ BV(Ω),
then

lim
ε→0+

1

ε

ˆ
Ω

ˆ
Ω
Kε(y − x) |u(y)− u(x)|dydx = J0(u; Ω) (4.2)

In addition, ifΩ is also bounded, the right-hand side is the Γ-limit as ε→ 0+ of the left-hand one
w.r.t. theL1(Ω)-distance.

We remark that, in [Pon04], contributions to the energy functional of the form of J2
ε

are not considered, so, to prove our result, some explanation concerning the Γ-upper limit
would be still required, even if one took the results by Ponce for granted. Besides, there,
the approach to the Γ-lower limit inequality relies on representation formulas for the
relaxations of a certain class of integral functionals. In fact, following [BP19], we propose
an independent argument, which combines the pointwise limit (4.2) and Theorem 3.14
about the minimality of halfspaces.

We notice that in (4.1) we require a condition that is stronger than (3.3). Heuristically,
the faster-than-L1 decay at infinity entails that the “local” contribution to the energy,
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i.e. J1
ε , prevails in the large scale limit; for this reason, the same limit of Theorem 4.2 is

recovered. We shall motivate the choice of the scaling factor below in this Section, see
Remark 4.5.

We conclude this section by proving the first statement of Theorem 4.1, that is, the
compactness criterion. We recall that an analogous result appeared in [AB98b]. We premise
a couple of lemmas.

Lemma 4.3
LetG ∈ L1(Rd) be a positive function. Then, for any u ∈ L∞(Rd) it holds

ˆ
Rd×Rd

(G ∗G)(z) |u(x+ z)− u(x)| dzdx ≤ 4 ‖G‖L1(Rd) JG(u;Rd).

Proof. The proof is elementary:
ˆ
Rd×Rd

(G ∗G)(z) |u(x+ z)− u(x)|dzdx

=

ˆ
Rd

ˆ
Rd

ˆ
Rd
G(y)G(z − y) |u(x+ z)− u(x)|dydzdx

≤
ˆ
Rd

ˆ
Rd

ˆ
Rd
G(y)G(z − y) |u(x+ z)− u(x+ y)|dydzdx

+

ˆ
Rd

ˆ
Rd

ˆ
Rd
G(y)G(z − y) |u(x+ y)− u(x)| dydzdx

= 2 ‖G‖L1(Rd)

ˆ
Rd×Rd

G(y) |u(x+ y)− u(x)|dydx.

The second lemma is more closely related to the nonlocal nature of the problem we
treat. It shows that the rescaled nonlocal energy is bounded, or even vanishing for ε→ 0+,
provided that the sets appearing in the functional are separated by a regular “frame”, or
that the function under consideration is sufficiently regular.

Lemma 4.4
LetE1 andE2 be measurable sets inRd and let u : Rd → [0, 1] be measurable.

(i) If either there exists a set F with finite perimeter inRd such that, up to negligible sets,
E1 ⊂ F andE2 ⊂ F c, or if u ∈ BV(Rd), then

1

ε

ˆ
E1

ˆ
E2

Kε(y − x) |u(y)− u(x)| dydx ≤ c,

where c is a constant such that either c = c(K,Per(F )) or c = c(K, ‖Du‖).

(ii) If dist(E1, E2) > 0, then

lim
ε→0+

1

ε

ˆ
E1

ˆ
E2

Kε(y − x) |u(y)− u(x)| dydx = 0
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Proof. The argument is the same as Lemma 3.2-(ii).
For what concerns (i), suppose firstly thatE1 ⊂ F andE2 ⊂ F c. We bound the double

integral overE1 andE2 by the nonlocalKε-perimeter ofF inRd, which in turn is bounded
by the classical perimeter of F :

ˆ
E1

ˆ
E2

Kε(y − x) |u(y)− u(x)| dydx

≤ 2

ˆ
F

ˆ
F c

Kε(y − x)dydx

=

ˆ
Rd

ˆ
Rd
K(z) |χF (x+ εz)− χF (x)| dzdx

≤ 2εcK Per(F ).

On the other hand, if u ∈ BV(Rd), a similar reasoning shows
ˆ
E1

ˆ
E2

Kε(y − x) |u(y)− u(x)| dydx ≤
ˆ
Rd

ˆ
Rd
Kε(y − x) |u(y)− u(x)| dydx

≤ 2εcK ‖Du‖ .

Turning to (ii), we have

1

ε

ˆ
E1

ˆ
E2

Kε(y − x) |u(y)− u(x)| dydx ≤ 2

εr

ˆ
E1

ˆ
E2

Kε(y − x) |y − x| dydx

=
2

r

ˆ
E1

ˆ
Rd
K(z) |z|χE2(x+ εz)dzdx,

where r := dist(E1, E2) > 0. Statement (ii) follows by Lebesgue’s Theorem.

Remark 4.5 (Choice of the scaling factor)
The previous Lemma shows that Jε(u; Ω) = O(ε) when u is a function of bounded variation in Rd.
Accordingly, we multiply Jε by ε−1 to recover a nontrivial limit in our Γ-convergence theorem.

Now we are ready to prove the compactness criterion.

Proof of statement (i) in Theorem 4.1. For notational convenience, we write respectively ε and
uε in place of ε` and of u`.

We are going to exhibit a sequence { vε } that is asymptotically equivalent in L1(Rd)
to { uε }, and that is precompact as well. To this aim, we extend each uε outside Ω setting
uε = 0 (in wider generality, any constant extension would fit). Let ρ ∈ C∞c (Rd) be positive
and let

vε(x) := (ρε ∗ uε)(x),

where

ρε(x) :=
1

cεd
ρ
(x
ε

)
, with c :=

ˆ
Rd
ρ(x)dx.

Notice that any vε is supported in some ballB containingΩ. By properties of convolutions,
ˆ
Rd
|vε(x)− uε| (x)dx ≤

ˆ
Rd

ˆ
Rd
|ρε(z)| |uε(x+ z)− uε(x)| dzdx (4.3)
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and
ˆ
B
|∇vε(x)|dx =

ˆ
Rd
|∇vε(x)| dx

≤
ˆ
Rd

ˆ
Rd
|∇ρε(z)| |uε(x+ z)− uε(x)| dzdx.

(4.4)

We claim that, if we choose the mollifier ρ suitably, then the asymptotic equivalence
between { uε } and { vε } and a uniform bound on the BV-norm of { vε } follow respect-
ively from (4.3) and (4.4). In turn, the claim entails the conclusion: by virtue of Theorem
1.6, up to extraction of subsequences, { vε } converges to some u ∈ BV(B) in L1(B), and
hence { uε } tends in L1(B) to the same function.

Let us now validate the claim. We define the function T (s) := 0 ∨ (s ∧ 1) and the
truncated kernel G := T ◦ K ∈ L1(Rd) ∩ L∞(Rd). We observe that the convolution
G ∗G is positive and continuous, therefore we can pick ρ ∈ C∞c (Rd) such that

0 ≤ ρ ≤ G ∗G and |∇ρ| ≤ G ∗G. (4.5)

Setting

Gε(x) :=
1

εd
G
(x
ε

)
,

we infer from (4.3) and (4.4)
ˆ
Rd
|vε(x)− uε(x)|dx ≤

ˆ
Rd

ˆ
Rd
|Gε ∗Gε(z)| |uε(x+ z)− uε(x)|dzdx

and ˆ
Rd
|∇vε(x)| dx ≤ 1

ε

ˆ
Rd

ˆ
Rd
|Gε ∗Gε(z)| |uε(x+ z)− uε(x)|dzdx.

Both the right-hand sides of the inequalities can be bounded above by Lemma 4.3. Indeed,
we have

ˆ
Rd

ˆ
Rd
|Gε ∗Gε(z)| |uε(x+ z)− uε(x)| dzdx

≤ 4 ‖G‖L1(Rd) JGε(uε;R
d)

≤ 4 ‖G‖L1(Rd) Jε(uε;R
d)

= 4 ‖G‖L1(Rd)

(
J1
ε (uε; Ω) + J2

ε (uε; Ω) + J1
ε (uε; Ωc)

)
Note that J1

ε (uε; Ωc) = 0, because we set uε = 0 outside of Ω. Moreover, by assumption,
there existsM ≥ 0 such that

J1
ε (uε; Ω) ≤ εM.

In third place, we can invoke Lemma 4.4 on J2
ε (uε; Ω), because the boundary of Ω is

Lipschitz. On the whole, we deduce
ˆ
Rd

ˆ
Rd
|Gε ∗Gε(z)| |χEε(x+ z)− χEε(x)| dzdx = O(ε),

as desired.
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Remark 4.6 (Locality defect)
In the previous proof, we utilised the identity

Jε(u;Rd) = J1
ε (u; Ω) + J2

ε (u; Ω) + J1
ε (u; Ωc).

More broadly, let F be an arbitrary measurable set. If we split a given reference domain Ω in the
disjoint regions Ω ∩ F and Ω ∩ F c, we have

J1
K(u; Ω) = J1

K(u; Ω ∩ F ) + J1
K(u; Ω ∩ F c)

+

ˆ
Ω∩F

ˆ
Ω∩F c

K(y − x) |u(y)− u(x)|dxdy.

We remark that the sum of the energies stored in each of the sets of the partition is smaller than
the energy of Ω. This can be seen as a feature of nonlocality. The difference is given by the mutual
interaction between Ω ∩ F and Ω ∩ F c, which, borrowing the terminology suggested in [AB98b],
we may dub locality defect.

4.2 Overview of the proving strategy

Before discussing in depth the proof of the Γ-convergence result in Theorem 4.1, we
summarise in this Section the strategy that we adopt.

The key point of our approach is the possibility of reasoning in terms of sets rather than
functions. Indeed, thanks to an abstract result in [CGL10] by A. Chambolle, A. Giacomini,
and L. Lussardi, the Γ-convergence of

{
ε−1Jε

}
regarded as a family of functionals on

measurable sets to the restriction of J0 is sufficient to yield the more general result of
Theorem 4.1. We include the precise statement in the next lines; we recall that we say that
the collection of measurable sets { Eε } L1

loc(Rd)-converges toE if { χEε } converges to
χE w.r.t. the L1

loc(Rd)-convergence.

Proposition 4.7 (Proposition 3.5 in [CGL10])
Let U ⊂ Rd be open and bounded. Suppose that { J` } is a sequence of convex functionals on
L1(U) such that the generalised Coarea Formula (3.9) holds for all ` ∈ N and let us set for all
measurableE ⊂ U

J̃`(E) := J`(χE)

Suppose that there exists a functional J̃ defined on measurable sets of U such that the sequence
{ J̃` } Γ-converges to J̃ w.r.t. theL1-convergence, and put

J(u) :=

ˆ +∞

−∞
J̃(χ{ u>t })dt.

Then, the sequence { J` } Γ-converges to J w.r.t. L1-convergence.

Recalling Propositions 1.8, 3.5, and 3.6, we see that theΓ-convergence result in Theorem
4.1 holds as soon as we prove the following:

Theorem 4.8 (Γ-convergence of rescaled nonlocal perimeters)
LetΩ andK be as in Theorem 4.1. ForE ⊂ Rd measurable, consider

J iε(E; Ω) := J iε(χE ; Ω) for i = 1, 2, Jε(E; Ω) := Jε(χE ; Ω),
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and
J0(E; Ω) := J0(χE ; Ω).

Then, for any given measurableE, we have that

(i) for any family { Eε } that converges toE inL1
loc(Rd) as ε→ 0+, it holds

J0(E; Ω) ≤ lim inf
ε→0+

1

ε
J1
ε (Eε; Ω). (4.6)

(ii) there exists a family { Eε } that converges toE inL1
loc(Rd) as ε→ 0+ and that satisfies

lim sup
ε→0+

1

ε
Jε(Eε; Ω) ≤ J0(E; Ω).

The two assertions in Theorem 4.8 clearly entail the Γ-convergence of
{
ε−1Jε( · ; Ω)

}
to J0( · ; Ω) w.r.t. the L1

loc(Rd)-convergence, because J2
ε ( · ; Ω) is positive.

Our result is akin to several others already appeared in the literature. In addition to
[BBM01,Dáv02,Pon04], we refer to the aforementioned [AB98b], where the asymptotics
of a nonlocal model for phase transitions is studied. The authors consider the rescaled
energy

Fε(u; Ω) :=
1

4

ˆ
Ω

ˆ
Ω
Kε(y − x)

(
u(y)− u(x)

)2
dydx+

ˆ
Ω
W (u(x))dx,

whereW : R→ [0,+∞) is a double-well potential. Under the same summability assump-
tions onK as ours, they establish the Γ-convergence of the family

{
ε−1Fε( · ; Ω)

}
to

a limit anisotropic surface energy. Interactions between Ω and its complement are not
relevant in this framework. The reader interested in this sort of energies may consult also
[BBP01].

Another result that is linked to Theorem 4.8 was proved by L. Ambrosio, G. De Philippis,
and L. Martinazzi in [ADPM11]. There, they showed that fractional perimeters Γ-converge,
as the fractional parameter approaches 1, to De Giorgi’s perimeter. The scaling is substan-
tially different from ours, but some of the techniques exploited in that work still fit in our
setting. For the asymptotics of fractional energies, we refer to the survey [Val13].

Let us now outline how we deal with the proof of Theorem 4.8. We start with a qualit-
ative picture.

The contributionsJ1
ε andJ

2
ε that compound the rescaled nonlocal perimeter functional

have different asymptotic behaviours: when ε is small, the former is concentrated near
the portions of the boundary ofE inside Ω, the latter instead captures the parts that are
close to ∂Ω. Proposition 4.11 in Section 4.3 makes the heuristics precise, showing that the
pointwise limit and the Γ-limit do not agree. However, once the pointwise limit has been
computed, it is possible to recover the Γ-upper limit by a density result, see Lemma 4.12.

As for the Γ-lower limit, it is convenient to regard J0 as an anisotropic perimeter
functional. We observe that we can write

J0(E; Ω) =


ˆ
∂∗E∩Ω

σK(n̂(x))dH d−1(x) ifE is a finite perimeter set in Ω,

+∞ otherwise,
(4.7)

57



4.3. PONTWISE LIMIT AND Γ-UPPER LIMIT

where n̂ : ∂∗E → Sd−1 is the measure-theoretic inner normal of E defined by (1.4) and
σK : Rd → [0,+∞) is the anisotropy

σK(p) :=
1

2

ˆ
Rd
K(z) |z · p|dz, for p ∈ Rd. (4.8)

This function is evidently a norm on Rd.
Remark 4.9 (The radial case [BP19])
WhenK is radial, J0 equals De Giorgi’s perimeter times a constant that depends on the dimension
of the space and onK . To see this, admit thatK(x) = K̄(|x|) for some K̄ : [0,+∞)→ [0,+∞).
Then, for any p̂ ∈ Sd−1, we find

σK(p̂) =
1

2

(ˆ +∞

0

K̄(r)rddr

)ˆ
Sd−1

|e · p̂|dH d−1(e)

= cK

 
Sd−1

|e · ed|dH d−1(e),

where ed := (0, . . . , 0, 1) is the last element of the canonical basis.
Theorem 4.8 was proved for radial and strictly decreasing kernels in [BP19]. The content of this

chapter shows that the same arguments may be conveniently adapted to a more general setting.

Following [ADPM11,AB98b], we prove the lower limit inequality via the strategy intro-
duced by I. Fonseca and S. Müller in [FM93], which amounts to turn the proof of (4.6) into
an inequality of Radon-Nikodym derivatives. To accomplish the task, the compactness
criterion that we proved in the previous section comes in handy.

Remark 4.10 (Semicontinuity of the Γ-limit)
If Theorem 4.1 holds, then we obtain as a by-product that J0 is L1

loc(Rd)-lower semicontinuos.
Indeed, Γ-limits are always lower semicontinuous [Bra02]. More straightforwardly, the semicon-
tinuity may be seen as a consequence of the following equality, which holds for all u ∈ BV(Ω)
[Gra09]:

J0(u; Ω) = sup

{
−
ˆ

Ω

udiv ζ : ζ ∈ C1
c (Ω;Rd), σ◦K(ζ) ≤ 1

}
.

Here, σ◦K is the dual norm of σK , that is

σ◦K(q) := sup
{
q · p : p ∈ Rd and σK(p) ≤ 1

}
for all q ∈ Rd.

The previous formula may be seen as a more general version of (1.1).
Note further that, being σK a norm Rd, (semi)continuity w.r.t. other notions of convergence

may be derived for the Γ-limit as a consequence of Reshetnyak’s Theorems 1.7.

4.3 Pontwise limit and Γ-upper limit

In the current section, we establish the Γ-upper limit inequality: we show that, for any
given measurableE ⊂ Rd, there exists a family { Eε } that converges toE in L1

loc(Rd) as
ε→ 0+ and that has the property that

lim sup
ε→0+

1

ε
Jε(Eε; Ω) ≤ J0(E; Ω). (4.9)

We obtain the inequality above in two steps. We firstly compute the pointwise limit
of
{
ε−1Jε

}
by taking advantage of (4.2). We find that, as ε → 0+, { Jε } approaches
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the presumed Γ-limit J0 plus a boundary contribution. Next, we prove that the latter is
negligible in the Γ-limit by reasoning on a suitable class of sets that is dense in energy for
J0 (recall Lemma 1.10(ii)).

We now study the pointwise convergence of
{
ε−1Jε

}
. An application of the Bourgain-

Brezis-Mironescu formula to the study of nonlocal perimeters already appeared in [MRT19],
where J. Mazón, J. Rossi, and J. Toledo exploited the approximation established by J. Dávila
in [Dáv02]. In [MRT19] the authors focus on compactly supported, L1 kernels. Here, we
include a slightly more general statement:

Proposition 4.11 (Pointwise limit of the rescaled nonocal perimeter)
LetΩ ⊂ Rd be an open set whose boundary is compact and Lipschitz. Let also (4.1) hold. Then, if
E is a finite perimeter set inRd,

lim
ε→0+

1

ε
Jε(E; Ω) = J0(E; Ω) +

ˆ
∂∗E∩∂Ω

σK(n̂(x))dH d−1(x). (4.10)

Proof. By virtue of Theorem 4.2,

lim
ε→0+

1

ε
J1
ε (E; Ω) = J0(E; Ω),

so, we only have to take care of J2
ε . We start from theKε-perimeter of E in the whole

space and we rewrite it as the sum of three contributions:
ˆ
E

ˆ
Ec

Kε(y − x)dxdy = J1
ε (E; Ω) + J2

ε (E; Ω) + J1
ε (E; Ωc).

Since the topological boundary ofΩ is negligible, we may appeal again to Theorem 4.2 and
take the limit ε→ 0+. Let int Ωc be the interior of Ωc. We get

lim
ε→0+

1

ε
J2
ε (E; Ω) = J0(E)− J0(E; Ω)− J0(E; int Ωc)

=

ˆ
∂∗E∩∂Ω

σK(n̂(x))dH d−1(x),

as desired.

Let us now go back to (4.9). The inequality holds trivially if the right-hand side is not
finite, therefore we may assume thatE is a Caccioppoli set in Ω. Note as well that ifE has
finite perimeter in the whole space Rd and if

H d−1(∂∗E ∩ ∂Ω) = 0, (4.11)

then, in view of Proposition 4.11, the choiceEε := E for all ε > 0 defines a recovery family.
When (4.11) hold, we say thatE is transversal to Ω.

At this stage, by Lemma 1.10(ii), the proof of the upper limit inequality is accomplished
once we show that the class of finite perimeter sets in Rd that are transversal to Ω is
dense in energy; in particular, we consider approximations by polyhedra. We say that a set
P ⊂ Rd is a d-dimensional polyhedron if it is an open set whose boundary is a Lipschitz
hypersurface contained in the union of a finite number of affine hyperplanes.
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Lemma 4.12 (Density of polyhedra)
LetE be a finite perimeter set inΩ. Then, there exists a family { Pε } of polyhedra with the following
properties:

(i) H d−1(∂Pε ∩ ∂Ω) = 0;

(ii) Pε → E inL1(Ω) andPer(Pε; Ω)→ Per(E; Ω);

(iii) J0(Pε; Ω)→ J0(E; Ω).

Proof. Assertion (ii) is a standard one, see for instance [Mag12]. Also, a family that satisfies
(ii) may be refined so that (i) hold as well, see for instance [ADPM11, Proposition 15]. Lastly,
(iii) is a consequence of Reshetnyak’s Continuity Theorem and (ii).

4.4 Characterisation of the anisotropy

This section is devoted to the proof of a characterisation of the anisotropic norm σK
that appears in the definition of the limit functional J0. A key tool in the proof is the
local minimality of halfspaces. The characterisation proves to be useful to establish the
Γ-inferior limit inequality in Theorem 4.8, see the next section.

Recall that, for all p ∈ Rd,

σK(p) :=
1

2

ˆ
Rd
K(z) |z · p|dz.

By homogeneity, without loss of generality, we can think of σK as function defined on
Sd−1. For p ∈ Rd \ {0}, let us recall the notations

p̂ :=
p

|p|
and Hp̂ :=

{
x ∈ Rd : x · p̂ > 0

}
.

Also, in this section we use the symbolBr as a shorthand forB(0, r), with r > 0, and we
setB := B1 = B(0, 1).

Our goal is validating the following:

Lemma 4.13
For any p̂ ∈ Sd−1,

σK(p̂) = inf

{
lim inf
ε→0+

1

ωd−1ε
J1
ε (Eε;B) : Eε → Hp̂ inL1(B)

}
, (4.12)

where ωd−1 is the (d− 1)-dimensional Lebesgue measure of the unit ball inRd−1.

For p̂ ∈ Sd−1, we label the quantity in the right-hand side of (4.12):

σ′K(p̂) := inf

{
lim inf
ε→0+

1

ωd−1ε
J1
ε (Eε;B) : Eε → Hp̂ in L1(B)

}
. (4.13)

We highlight that the previous equality corresponds to the definition of the surface tension
given in the phase-field model in [AB98b].
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Observe that, by virtue of Theorem 4.2, we can compute σK as a pointwise limit:

σK(p̂) = lim
ε→0+

1

ωd−1ε
J1
ε (Hp̂;B). (4.14)

It follows that σK(p̂) ≥ σ′K(p̂).
To the purpose of proving the reverse inequality, we introduce a third function σ′′K :

for p̂ ∈ Sd−1 and δ ∈ (0, 1), we let

σ′′K(p̂) := inf

{
lim inf
ε→0+

1

ωd−1ε
J1
ε (Eε;B) : Eε → Hp̂ in L1(B) andEε4Hp̂ ⊂ B1−δ

}
.

Our notation does not explicitly show the dependence of σ′′K on the parameter δ since a
posteriori the values of σ′′K are not influenced by it.

The thesis of Lemma 4.13 holds as soon as we prove that σK(p̂) ≤ σ′′K(p̂) ≤ σ′K(p̂) for
all p̂ ∈ Sd−1. We establish the former inequality by taking advantage of the minimality of
halfspaces, i.e. Theorem 3.14, while for the latter we need the following technical result,
which parallels a similar one proved in [ADPM11] for fractional perimeters:

Lemma 4.14 (Gluing)
Suppose that δ1, δ2 ∈ R satisfy δ2 > δ1 > 0, and that E1, E2 are measurable sets such that
J1
K(Ei; Ω) < +∞ for both i = 1, 2. Let us define

Ω1 := { x ∈ Ω : dist(x,Ωc) ≤ δ1 } and Ω2 := { x ∈ Ω : dist(x,Ωc) > δ2 } .

Then, there exists a measurable set F with the following properties:

(i) F ∩ Ω1 = E1 ∩ Ω1 and F ∩ Ω2 = E2 ∩ Ω2;

(ii) L d
(
(F4E2) ∩ Ω

)
≤ L d

(
(E14E2) ∩ Ω

)
;

(iii) for all η > 0

J1
ε (F ; Ω) ≤ J1

ε (E1; Ωη) + J1
ε (E2; Ω)

+
ε

δ2 − δ1

ˆ
Rd
K(z) |z| dzL d

(
(E14E2) ∩ Ω

)
+
ε

η

ˆ
Ω∩Ωc

η

ˆ
Rd
K(z) |z|χΩ∩Ωc

2
(x+ εz)dzdx.

(4.15)

whereΩη := { x ∈ Ω : dist(x,Ωc) ≤ δ2 + η }.

Proof. We consider a function w : Ω→ [0, 1], which is, loosely speaking, a convex combin-
ation of the data u := χE1 and v := χE2 . Precisely, we set w := (1 − ϕ)u + ϕv, where
ϕ ∈ C∞c (Rd) is such that

0 ≤ ϕ ≤ 1 in Ω, ϕ = 0 in Ω1, ϕ = 1 in Ω2, and |∇ϕ| ≤ 2

δ2 − δ1
.

We claim that, for all η > 0, w satisfies the following inequality:

J1
ε (w; Ω) ≤ J1

ε (E1; Ωη) + J1
ε (E2; Ω)

+
ε

δ2 − δ1

ˆ
Rd
K(z) |z| dzL d

(
(E14E2) ∩ Ω

)
+
ε

η

ˆ
Ω∩Ωc

η

ˆ
Rd
K(z) |z|χΩ∩Ωc

2
(x+ εz)dzdx.

(4.16)
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Let us assume provisionally that the claim holds. Then, by virtue of the Coarea For-
mula, there exists t∗ ∈ (0, 1) such that (4.15) holds for the superlevel F := { w > t∗ }.
Furthermore, we see that such set fulfils (i) and (ii) as well. Indeed, ϕ is supported in
Ω ∩ Ωc

1 and it equals 1 in Ω2, whence F ∩ Ω1 = E1 ∩ Ω1 and F ∩ Ω2 = E2 ∩ Ω2. As for
(ii), we remark that x ∈ E2 ∩ F c ∩ Ω and x ∈ Ec

2 ∩ F ∩ Ω respectively get the equalities
w(x) = (1 − ϕ(x))χE1(x) + ϕ(x) ≤ t∗ < 1 and w(x) = (1 − ϕ(x))χE1(x) > t∗ > 0,
which in turn entail x ∈ Ec

1 ∩ E2 ∩ Ω and x ∈ E1 ∩ Ec
2 ∩ Ω.

So, to achieve the conclusion, we only need to validate (4.16). To this aim, we explicit
the integrand appearing in J1

K(w; Ω): when x, y ∈ Ω, we have

|w(y)− w(x)| ≤ (1− ϕ(y)) |u(y)− u(x)|+ ϕ(y) |v(y)− v(x)|
+ |ϕ(y)− ϕ(x)| |v(x)− u(x)|
≤ χ{ ϕ 6=1 }(y) |u(y)− u(x)|+ χ{ ϕ6=0 }(y) |v(y)− v(x)|

+ |ϕ(y)− ϕ(x)| |v(x)− u(x)| .

Since { ϕ 6= 0 } ⊂ Ω ∩ Ωc
1 and { ϕ 6= 1 } ⊂ Ω ∩ Ωc

2, we see that

2J1
ε (w; Ω) ≤

ˆ
Ω

ˆ
Ω∩Ωc

2

Kε(y − x) |u(y)− u(x)| dydx

+

ˆ
Ω

ˆ
Ω∩Ωc

1

Kε(y − x) |v(y)− v(x)|dydx

+

ˆ
Ω

ˆ
Ω
Kε(y − x) |ϕ(y)− ϕ(x)| |v(x)− u(x)|dydx.

We bound each of three double integrals above separately. Firstly, we divide Ω in the
disjoint regions Ωη and Ω ∩ Ωc

η . We obtain

ˆ
Ω

ˆ
Ω∩Ωc

2

Kε(y − x) |u(y)− u(x)| dydx

=

ˆ
Ωη

ˆ
Ω∩Ωc

2

Kε(y − x) |u(y)− u(x)| dydx

+

ˆ
Ω∩Ωc

η

ˆ
Ω∩Ωc

2

Kε(y − x) |u(y)− u(x)|dydx.

Note that ˆ
Ωη

ˆ
Ω∩Ωc

2

Kε(y − x) |u(y)− u(x)|dydx ≤ 2J1
ε (u; Ωη)

and that
ˆ

Ω∩Ωc
η

ˆ
Ω∩Ωc

2

Kε(y − x) |u(y)− u(x)|dydx

≤ 2ε

η

ˆ
Ω∩Ωc

η

ˆ
Ω∩Ωc

2

Kε(y − x)
|y − x|
ε

dydx

=
2ε

η

ˆ
Ω∩Ωc

η

ˆ
Rd
K(z) |z|χΩ∩Ωc

2
(x+ εz)dzdx,
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therefore,

ˆ
Ω

ˆ
Ω∩Ωc

2

Kε(y − x) |u(y)− u(x)| dydx

≤ 2J1
ε (u; Ωη) +

2ε

η

ˆ
Ω∩Ωc

η

ˆ
Rd
K(z) |z|χΩ∩Ωc

2
(x+ εz)dzdx. (4.17)

Next, as for the second integral, we have

ˆ
Ω

ˆ
Ω∩Ωc

1

Kε(y − x) |v(y)− v(x)|dydx ≤ 2J1
ε (v; Ω). (4.18)

Finally, we observe that

|ϕ(y)− ϕ(x)| ≤ 2

δ2 − δ1
|y − x|

and hence

ˆ
Ω

ˆ
Ω
Kε(y − x) |ϕ(y)− ϕ(x)| |v(x)− u(x)|dydx

≤ 2ε

δ2 − δ1

ˆ
Rd
K(z) |z|dz

ˆ
Ω
|v(x)− u(x)| dx (4.19)

Combining (4.17), (4.18), and (4.19) we retrieve (4.16).

Now, we are in position to prove a chain of inequalities which yields Lemma 4.13 as a
corollary:

Lemma 4.15
For all p̂ ∈ Sd−1, σK(p̂) ≤ σ′′K(p̂) ≤ σ′K(p̂).

Proof. We begin with the inequality σK ≤ σ′′K . LetEε be measurable subsets of Rd such
thatEε ∩Bc = Hp̂ ∩Bc for all ε > 0, and suppose thatEε → Hp̂ in L1(B). By Theorem
3.14, we have that

0 ≤ Jε(Eε;B)− Jε(Hp̂;B)

= J1
ε (Eε;B)− J1

ε (Hp̂;B) + J2
ε (Eε;B)− J2

ε (Hp̂;B).

If in addition we require thatEε4Hp̂ ⊂ B1−δ , a direct computation shows

J2
ε (Eε;B)− J2

ε (Hp̂;B)

= Lε(Eε ∩Hc
p̂;H

c
p̂ ∩Bc) + Lε(E

c
ε ∩Hp̂;Hp̂ ∩Bc)

− Lε(Ec
ε ∩Hp̂;H

c
p̂ ∩Bc)− Lε(Eε ∩Hc

p̂;Hp̂ ∩Bc),

and so ∣∣J2
ε (Eε;B)− J2

ε (Hp̂;B)
∣∣ ≤ Lε(Eε4Hp̂;B

c
)
.
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SinceEε4Hp̂ ⊂ B1−δ , we notice that |y − x| ≥ δ if y ∈ Bc and x ∈ Eε4Hp̂, and thus

1

ε

∣∣J2
ε (Eε;B)− J2

ε (Hp̂;B)
∣∣ ≤ 1

δ

ˆ
Eε4Hp̂

ˆ
Bc

Kε(y − x)
|y − x|
ε

dydx

≤ 1

δ
L d(Eε4Hp̂)

ˆ
Rd
K(z) |z|dz.

We deduce that
lim
ε→0+

1

ε

∣∣J2
ε (Eε;B)− J2

ε (Hp̂;B)
∣∣ = 0,

whence

0 ≤ lim inf
ε→0+

1

ε
[Jε(Eε;B)− Jε(Hp̂;B)]

= lim inf
ε→0+

1

ε

[
J1
ε (Eε;B)− J1

ε (Hp̂;B)
]
.

Recalling (4.14) and the definition of σ′′K , we conclude that σK(p̂) ≤ σ′′K(p̂).
We now focus on the inequality σ′′K ≤ σ′K . We pick a family { Eε } that converges to

Hp̂ inL1(B), andwe assume, without loss of generality, that J1
ε (Eε;B) is finite. We exploit

Lemma 4.14 taking as data, for any ε,Eε andHp̂. We obtain a family { Fε } that converges
toHp̂ in L1(B) and that fulfils Fε4Hp̂ ⊂ B1−δ . Moreover, for any η ∈

(
0, (1 − δ)/2

)
and for δ1 = δ and δ2 = δ + η, formula (4.15) yields

1

ε
J1
ε (Fε;B) ≤ 1

ε
J1
ε (Hp̂;B ∩Bc

1−δ−2η) +
1

ε
J1
ε (Eε;B)

+
1

η

ˆ
Rd
K(z) |z|dzL d

(
(Hp̂4Eε) ∩B

)
+

1

η

ˆ
B1−δ−2η

ˆ
Rd
K(z) |z|χB∩Bc

1−δ−η
(x+ εz)dzdx.

By utilizing (4.2) we find

lim
ε→0

1

ε
J1
ε (Hp̂;B ∩Bc

1−δ−2η) = J0(Hp̂;B ∩Bc
1−δ−2η),

and thus, in the limit ε→ 0+, we infer

σ′′K(p̂) ≤ lim inf
ε→0+

1

εωd−1
J1
ε (Fε;B)

≤ 1

ωd−1
J0(Hp̂;B ∩Bc

1−δ−2η) + lim inf
ε→0+

1

εωd−1
J1
ε (Eε;B),

In view of the arbitrariness of the family { Eε }, we achieve the conclusion by letting η
and δ vanish.

4.5 Γ-lower limit

We conclude the proof of Theorem 4.8 by validating the Γ-lower limit inequality. We
remind that the method we apply was introduced in [FM93] and that it was applied in
[ADPM11,AB98b] to establish Γ-convergence results that are close to ours.

64



CHAPTER 4. Γ-CONVERGENCE OF RESCALED NONLOCAL TOTAL VARIATIONS

Our task is showing that, for all measurableE and for all families { Eε } suchEε → E
in L1

loc(Rd) as ε→ 0+, we have

J0(E; Ω) ≤ lim inf
ε→0+

1

ε
J1
ε (Eε; Ω). (4.20)

Firstly, we notice that (4.20) holds trivially when the right-hand side is not finite, thus
we may suppose that

lim inf
ε→0+

1

ε
J1
ε (Eε; Ω) < +∞.

Besides, up to extraction of a subsequence, we may assume that the the lower limit is a
limit, and hence the ratios

{
ε−1J1

ε (Eε; Ω)
}
are uniformly bounded in ε. In view of the

compactness criterion on page 52, the bound yields regularity for the limit setE, which
turns out to be a finite perimeter set in Ω.

We introduce the densities

fε(x) :=


1

2ε

ˆ
Ec
ε∩Ω

Kε(y − x)dy if x ∈ Ω ∩ Eε,

1

2ε

ˆ
Eε∩Ω

Kε(y − x)dy if x ∈ Ω ∩ Ec
ε ,

and the measures
µε := fε L dxΩ.

For any ε > 0, the total variation of µε in Ω equals ε−1J1
ε (Eε; Ω), thus { µε } is a

family of positive measures with uniformly bounded total variation in Ω. It follows from
Theorem 1.1 and Banach-Alaoglu’s Theorem that there exists a finite positive measure µ
on Ω such that (up to subsequences) µε

∗
⇀ µ as ε→ 0+, and, by the lower semicontinuity

of the total variation,

‖µ‖ ≤ lim inf
ε→0

1

ε
J1
ε (Eε; Ω).

We now see that (4.20) holds true if

‖µ‖ ≥ J0(E; Ω). (4.21)

In order to establish the previous inequality, we recall that we know thatE is a finite
perimeter set in Ω, so for a point x ∈ ∂∗E ∩ Ω we can consider the Radon-Nikodym
derivative

dµ

dν
(x) := lim

r→0

µ(B(x, r))

ωd−1rd−1
,

where ν := H d−1x∂∗E. Since the sequence µε weakly-∗ converges to µ, by Proposition
1.3, for all r > 0 but at most a countable setN , we have ν(B(x, r)) = limε→0 νε(B(x, r)).
Thus,

dµ

dν
(x) = lim

r→0,r /∈N

[
lim
ε→0

µε(B(x, r))

ωd−1rd−1

]
= lim

`→+∞

µε`(B(x, r`))

ωd−1r
d−1
`
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4.5. Γ-LOWER LIMIT

for suitable subsequences { ε` } and { r` } satisfying

lim
`→+∞

r` = lim
`→+∞

ε`
r`

= 0.

Rewriting the last equality explicitly, we have

dν

dµ
(x) = lim

`→+∞

1

2ωd−1ε`r
d−1
`

[ˆ
Eε`∩B(x,r`)∩Ω

ˆ
Ec
ε`
∩Ω
Kε`(y − x)dydx

+

ˆ
Ec
ε`
∩B(x,r`)∩Ω

ˆ
Eε`∩Ω

Kε`(y − x)dydx

]
,

and hence

dµ

dν
(x) ≥ lim sup

`→+∞

1

ωd−1ε`r
d−1
`

J1
ε`

(Eε` ;B(x, r`) ∩ Ω)

= lim sup
`→+∞

1

ωd−1ε`r
d−1
`

J1
ε`

(Eε` ;B(x, r`)),

becauseB(x, r`) ⊂ Ω when ` is large enough. A change of variables yields

dµ

dν
(x) ≥ lim sup

`→+∞

r`
ωd−1ε`

J1
ε`
r`

(
Eε` − x
r`

;B

)
,

In view of position (4.13), it is clear that

dµ

dν
(x) ≥ σ′K(n̂(x)),

which gets

‖µ‖ ≥
ˆ
∂∗E∩Ω

σ′K(n̂(x))dH d−1(x).

The characterisation of σK provided by Lemma 4.13 yields the conclusion.
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Chapter 5

Convergence of evolutions
by rescaled nonlocal curvatures

In Chapter 4 we proved that, by a suitable rescaling, we can recover a local perimeter
functional as the Γ-limit of nonlocal perimeters. We also saw in Section 3.4 that the
functional

HK(E, x) = − lim
r→0+

ˆ
B(x,r)c

K(y − x) (χE(y)− χEc(y)) dy

is the geometric first variation of the nonlocal perimeterPerK . Relying on the paper [CP18],
in the current chapter we show that we can produce a localisation effect for the nonlocal
curvature by means of the same procedure that we applied to the nonlocal perimeter: for
any ε > 0 we set

Kε(x) :=
1

εd
K
(x
ε

)
,

we define
Hε(E, x) := HKε(E, x) (5.1)

for a setE ⊂ Rd and x ∈ ∂E, and then we let ε tend to 0. As we discuss in Section 5.1, the
limit of the family

{
ε−1Hε

}
agrees with the analysis in Chapter 4, in the sense that the

limit curvature, which is local, is the first variation of the surface energy

J0(E) =

ˆ
∂∗E

σK(n̂(x))dH d−1(x)

obtained as the Γ-limit of the rescaled nonlocal perimeters.
The study of the asymptotics of rescaled nonlocal curvatures is expounded in Section

5.2. Then, we tackle a second issue: is the relationship between curvatures carried over to
the solutions of the related geometric motions? More precisely, we investigate whether
the solutions of

∂tx(t) · n̂ = −1

ε
Hε(E(t), x(t)),

converge, as ε vanishes, to the solution of

∂tx(t) · n̂ = −H0(E(t), x(t)),
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5.1. PRELIMINARIES

where t 7→ E(t) is an evolution of sets in Rd, n̂ is the outer unit normal to ∂E(t) at the
point x(t), andH0 is the first variation of J0.

To answer, we firstly explain in Section 5.3 what kind of solutions we take into consider-
ation, and we recall the well-posedness results for local and nonlocal curvature flows that
are available in the framework of level set formulations. By this method, the geometric
evolutions are cast into degenerate parabolic equations, to which viscosity theory provides
an adequate definition of solution. Then, we prove that solutions in this class to themotions
by rescaled nonlocal curvatures locally uniformly converge to the viscosity solution of the
limit curvature flow. This is the main result of the chapter, which we establish in Section
5.4 by resorting to the set-theoretic approach of geometric barriers, formerly introduced
by De Giorgi [DG94]. We use barriers to transfer the geometric information given by the
convergence result of Section 5.2 to viscosity solutions. In this respect, comparison results
between barriers and level set flows [BN98,CDNV19] are crucial.

5.1 Preliminaries

Since we want to mimic the approach of Chapter 4, as an initial step we compute the
candidate limit curvature, that is, the first variation of the functional (4.7) on page 57. We
premise the assumptions on the kernelK that we use throughout the chapter.

As before,K : Rd → [0,+∞) is a measurable function such that

K(y) = K(−y) for a.e. y (5.2)

and
K ∈W 1,1(B(0, r)c) for all r > 0. (5.3)

This allows bothK and∇K to be singular in 0 and, at the same time, implies convergence
of their integrals at infinity. Moreover, we assume that

K(y), |y| |∇K(y)| ∈ L1(Qλ(e)) for all e ∈ Sd−1 and λ > 0, (5.4)

where, for any e ∈ Sd−1 and λ > 0,

Qλ(e) :=

{
y ∈ Rd : |y · e| ≤ λ

2
|πe⊥(y)|2

}
.

(see again Figure 3.3 on page 47). These requirements are in linewith the ones in Section 3.4,
and, in particular, they ensure that sets withC1,1 boundary have finite nonlocal curvature.

To the purpose of proving a nonlocal-to-local converge result that is uniform w.r.t. the
point in which the curvatures are evaluated, we need to describe the behaviour ofK in
quantitative terms. So, we suppose that

lim
r→0+

r

ˆ
B(0,r)c

K(y)dy = 0. (5.5)

Besides, we want our analysis to encompass anisotropic kernels. Still, we have to admit
some control on the mass ofK inQλ(e), uniformly in e. We therefore assume that for all
λ > 0 there exists aλ > 0 such that for all e ∈ Sd−1

ˆ
Qλ(e)

K(y)dy ≤ aλ. (5.6)
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In addition, we require that there exist a0, b0 > 0 such that for all e ∈ Sd−1

lim sup
λ→0+

1

λ

ˆ
Qλ(e)

K(y)dy ≤ a0, (5.7)

lim sup
λ→0+

1

λ

ˆ
Qλ(e)

|∇K(y)| |y| dy ≤ b0. (5.8)

We assume as well that for all e ∈ Sd−1

lim
λ→+∞

1

λ

ˆ
Qλ(e)

K(y)dy = 0. (5.9)

Lastly, we letK be bounded above by a fractional kernel away from the origin, that is,

K(y) ≤ m

|y|d+1+s
if y ∈ B(0, 1)c (5.10)

for somem > 0 and s ∈ (0, 1). This hypothesis entails that, for all α < s,

lim
r→+∞

r1+α

ˆ
B(0,r)c

K(y)dy = 0. (5.11)

Actually, most of the results in the sequel hold even if theweaker assumption (5.11) replaces
(5.10).

Let us describe two classes of singular kernels that satisfy (5.2) – (5.10).

Example 5.1
IfK : Rd → [0,+∞) is even and there existm,µ > 0 and s, σ ∈ (0, 1) such that

K(y), |y||∇K(y)| ≤ µ

|y|d+σ
for all y ∈ B(0, 1)

and that
K(y), |y||∇K(y)| ≤ m

|y|d+1+s
for all y ∈ B(0, 1)c,

then,K fulfils all the previous requirements.
Fractional kernels with exponential decay at infinity, i.e. even functionsK : Rd → [0,+∞)

for which there existm,µ > 0 and s ∈ (0, 1) such that

K(y), |y||∇K(y)| ≤ µe−m|y|

|y|d+s
∀y ∈ Rd,

also fit in our setting.

We now derive the candidate limit curvature starting from the anisotropic surface
energy J0. In this case, we suppose thatK fits in the framework of the Γ-convergence
statement concerning perimeters, i.e. Theorem 4.1. As above, p⊥ is the hyperplane of
vectors orthogonal to p ∈ Rd \ {0} andHp̂ :=

{
x ∈ Rd : x · p̂ > 0

}
.

Lemma 5.2 (Derivatives of the anisotropy)
LetK : Rd → [0,+∞) be a function such the assumptions (5.2) – (5.7) hold, and suppose that

cK :=
1

2

ˆ
Rd
K(z) |z| dy < +∞.
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Let σK be the norm in (4.8), i.e.

σK(p) :=
1

2

ˆ
Rd
K(z) |z · p|dz, for p ∈ Rd.

Then, σK ∈ C2(Rd \ {0}) and

∇σK(p) =

ˆ
Hp̂

K(z)zdz, ∇2σK(p) =
1

|p|

ˆ
p̂⊥
K(z)z ⊗ zdH d−1(z).

The calculation of the gradient is immediate; as for the Hessian, we preliminarily recall
a result about absolute continuity on lines of Sobolev functions. We refer to themonograph
[HKST15] for the details.

Theorem 5.3
Let Ω ⊂ Rd be an open set. For any p ∈ [1,+∞), u : Ω → R belongs to the Sobolev space
W 1,p(Ω) if and only if it belongs to Lp(Ω) and the following property holds: for any e ∈ Sd−1

there existsNe ⊂ e⊥ such thatH d−1(Ne) = 0 and for all z ∈ e⊥ ∩N c
e the function I 3 t 7→

u(z + te) is absolutely continuous on any compact interval I such that z + te ∈ Ω when t ∈ I .
Further, for any e ∈ Sd−1 and a.e. y ∈ Ω, the classical directional derivative ∂eu exists and it

coincides with∇u(y) · e.

In the light of the previous characterisation, when (5.3) holds, the kernelK is absolutely
continuous on lines inB(0, r)c for all r > 0. We use this property to establish the following:

Lemma 5.4
For all e ∈ Sd−1, ˆ

e⊥
K(z) |z|2 dH d−1(z) ≤ a0, (5.12)

a0 being as in (5.7), and there holds

lim
r→+∞

rβ
ˆ
e⊥∩B(0,r)c

K(z) |z|2 dH d−1(z) = 0 for all β < s. (5.13)

Proof. By Theorem 5.3, for any e ∈ Sd−1 and any ` ∈ N, there exists aH d−1-negligible
N` ⊂

{
z ∈ e⊥ : ` |z| ≥ 1

}
such that, for all z ∈ e⊥ ∩ N c

` with ` |z| ≥ 1, the function
t 7→ K(z + te) is absolutely continuous when t belongs to closed, bounded intervals. By
the arbitrariness of ` ∈ N, we conclude that forH d−1-a.e. z ∈ e⊥, [a, b] 3 t 7→ K(z+ te)
is absolutely continuous for any a, b ∈ R.

Hence, by the Mean Value Theorem, forH d−1-almost every z ∈ e⊥ we find

lim
λ→0+

1

λ

ˆ λ
2
|z|2

−λ
2
|z|2

K(z + te)dt = K(z) |z|2 . (5.14)

By definition ofQλ(e),

1

λ

ˆ
e⊥

ˆ λ
2
|z|2

−λ
2
|z|2

K(z + te)dtdH d−1(z) =
1

λ

ˆ
Qλ(e)

K(y)dy,

and the right hand side is finite for any λ > 0, thanks to (5.4). By appealing to (5.7) and
(5.14) , we can take the limit λ→ 0+ on both sides of the equality, and this yields (5.12).

Estimate (5.13) is an easy consequence of assumption (5.10).
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Now we are ready to prove Lemma 5.2.

Proof. By Lebesgue’s Theorem, we see that σK ∈ C1(Rd \ {0}), with

∇σK(p) =
1

2

ˆ
Rd
K(z)z

z · p
|z · p|

dz =

ˆ
Hp̂

K(z)zdz.

Let now i, j ∈ { 1, . . . , d } and fix p ∈ Rd \ {0}. We have

∂2
i,jσK(p) := lim

h→0+

1

h

ˆ
H
p̂+hej

K(z)zidz −
ˆ
Hp̂

K(z)zidz

 ,
where zi := z · ei for all z ∈ Rd and all i. We rewrite the term between square brackets as

ˆ
p̂⊥

ˆ 0

hzj
|p|+hp̂j

K(z + tp̂)(zi + tp̂i)dtdH d−1(z),

and, reasoning as in the proof of the previous Lemma, we apply the Mean Value Theorem
to get

∂2
i,jσK(p) := lim

h→0+

1

|p|+ hp̂j

ˆ
p̂⊥
K(z + thp̂)(zi + thp̂i)zjdH d−1(z),

with th between 0 and hzj/(|p|+hp̂j). Thanks to (5.12), we can take the limit h→ 0+ and
we conclude the computation of the Hessian. Next, we show that the latter is continuous.

For all e ∈ Sd−1, set

MK(e) :=

ˆ
e⊥
K(z)z ⊗ zdH d−1(z).

Fix a unit vector e and consider a sequence of rotations {R` } such thatR` → id. We have

|MK(R`e)−MK(e)| =
∣∣∣∣ˆ
e⊥
K(R`z)R`z ⊗R`zdH d−1 −

ˆ
e⊥
K(z)z ⊗ zdH d−1

∣∣∣∣
≤
∣∣∣∣ˆ
e⊥
K(R`z) [R`z ⊗R`z − z ⊗ z]dH d−1

∣∣∣∣
+

∣∣∣∣ˆ
e⊥

[K(R`z)−K(z)]z ⊗ zdH d−1

∣∣∣∣ .
SinceK ∈ L1(B(0, r)c) for all r > 0, it holds

lim
`→+∞

‖K ◦R` −K‖L1(B(0,r)c) = 0,

whence K(R`z) → K(z) for H d−1-a.e. z ∈ e⊥. This, together with (5.12), gets that
the upper bound on |MK(R`e)−MK(e)| vanishes as `→ +∞. Therefore,∇2σK(p) =
|p|−1MK(p̂) is continuous on Rd \ {0}.
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Let Σ a C2 hypersurface in Rd. For x ∈ Rd, we define the following anisotropic mean
curvature functional:

H0(Σ, x) := −div
(
∇σK(n̂(x))

)
,

withσK as above and n̂(x) is the outer unit normal toΣ atx. Note that this is the geometric
first variation of the surface energy J0 in (4.7). Since Σ is smooth, we can find an open
neighbourhood ofx andϕ ∈ C2(Rd) such thatΣ∩U = { y ∈ U : ϕ(y) = 0 },∇ϕ(x) 6= 0.
Let us admit that∇ϕ(x)/ |∇ϕ(x)| is the outer normal at x. Then, we find

H0(Σ, x) = − 1

|∇ϕ(x)|
tr
(
MK(∇̂ϕ(x))∇2ϕ(x)

)
, (5.15)

where tr is the trace operator and

MK(e) :=

ˆ
e⊥
K(z)z ⊗ zdH d−1(z) for all e ∈ Sd−1 (5.16)

because, if p ∈ Rd \ {0}, by Lemma 5.2,MK(p̂) = ∇2σK(p̂).
A third, useful expression of the local curvature functional is

H0(Σ, x) = − 1

|∇ϕ(x)|

ˆ
∇ϕ(x)⊥

K(z)∇2ϕ(x)z · zdH d−1(z). (5.17)

Remark 5.5
Let Σ be a smooth hypersurface whose outer unit normal at a given point x is n̂, and consider the
map T (y) := Ry + z, whereR is an orthogonal matrix and z ∈ Rd. Then, using (5.17) it is easy to
check that it holds

H0(Σ, x) = H̃0(T (Σ), T (x)), (5.18)

where H̃0 is the anisotropic mean curvature functional associated with the kernel K̃ := K ◦Rt.
To prove our claim, we observe that ifΣ =

{
y ∈ Rd : ϕ(y) = 0

}
for some smoothϕ : Rd → R,

then T (Σ) =
{
y ∈ Rd : ψ(y) = 0

}
with ψ(y) := ϕ(Rt(y − x)). We have

∇ψ(T (y)) = R∇ϕ(y) and ∇2ψ(T (y)) = R∇2ϕ(y)Rt,

and, therefore,

H̃0(T (Σ), T (x)) =− 1

|R∇ϕ(x)|

ˆ
R(n̂⊥)

K̃(z)
(
R∇2ϕ(x)Rt

)
z · zdH d−1(z)

=− 1

|∇ϕ(x)|

ˆ
n̂⊥
K(z)∇2ϕ(x)z · zdH d−1(z).

Remark 5.6 (Connection with standard mean curvature)
WhenK is radial, that isK(x) = K̄(|x|) for some K̄ : [0,+∞) → [0,+∞), then H0 coincides
with a multiple of the standard mean curvature.

To see this, let Σ be a C2 hypersurface such that 0 ∈ Σ and Σ ∩ U = { y ∈ U : ϕ(y) = 0 }
for some neighbourhood U of 0 and some smooth function ϕ : U → R. We suppose also that
∇ϕ(0) 6= 0 and that the outer unit normal to Σ at 0 is ed. We recall the expression of the mean
curvatureH of Σ at 0:

H(Σ, 0) = − 1

ωd−1 |∇ϕ(0)|

ˆ
Sd−2

∇2ϕ(0)e · e dH d−2(e),

with ωd−1 the (d− 1)-dimensional Lebesgue measure of the unit ball in Rd−1.

72



CHAPTER 5. CONVERGENCE OF EVOLUTIONS BY RESCALED NONLOCAL CURVATURES

IfK(x) = K̄(|x|), formula (5.12) gets

cK =

ˆ +∞

0

rdK̄(r)dr < +∞,

and, consequently, we have

H0(Σ, 0) = − cK
|∇ϕ(0)|

ˆ
Sd−2

∇ϕ(0)e · edH d−2(e) = ωd−1 cKH(Σ, 0).

5.2 Convergence of the rescaled nonlocal curvatures

This section is devoted to the proof of the uniform convergence of the rescaled nonlocal
curvatures in (5.1) to the local functional H0. This is accomplished in two steps: first,
in Proposition 5.7, we establish pointwise convergence of the curvatures, with a precise
estimate of the error, and then, in Theorem 5.9, we show that it is possible to make the
error estimate uniform when the hypersurfaces at stake are compact.

Let us introduce some notation. For e ∈ Sd−1, x ∈ Rd and δ > 0, we let

Ce(x, δ) :=
{
y ∈ Rd : y = x+ z + te, with z ∈ e⊥ ∩B(0, δ), t ∈ (−δ, δ)

}
.

WhenE ⊂ Rd is a set with boundary Σ := ∂E of class C2, then for all x ∈ Σ, there exist
a open neighbourhood U of x and ϕ ∈ C2(Rd) such that

Σ ∩ U = {y ∈ U : ϕ(y) = 0}, E ∩ U = {y ∈ U : ϕ(y) > 0},

and ∇ϕ(y) 6= 0 for all y ∈ Σ ∩ U . We use the symbol n̂ := n̂(x) for the outer unit
normal to Σ at x. By the Implicit Function Theorem, there exist δ̄ := δ̄(x) > 0 and
f : n̂⊥ ∩B(0, δ̄)→ (−δ̄, δ̄) such that

Σ ∩ Cn̂(x, δ̄) =
{
y = x+ z − f(z)n̂ : z ∈ n̂⊥ ∩B(0, δ̄)

}
, (5.19)

E ∩ Cn̂(x, δ̄) =
{
y = x+ z − tn̂ : z ∈ n̂⊥ ∩B(0, δ̄), t ∈ (f(z), δ̄)

}
, (5.20)

and infy∈Cn̂(x,δ̄) |∇ϕ(y)| > 0.

Proposition 5.7 (Rate of convergence and pointwise limit)
LetE ⊂ Rd be a set whose topological boundaryΣ is of classC2. Let us fix x ∈ Σ and let δ̄ and f
be as above. Let also s ∈ (0, 1) be the exponent in (5.10). Then, for all α, β ∈ (0, s), there exist
q > 1 and ε̄ ∈ (0, 1) such that qε̄ ≤ δ̄ and that, for all ε ∈ (0, ε̄) and all δ ∈ (qε, δ̄), it holds∣∣∣∣1εHε(E, x)−H0(Σ, x)

∣∣∣∣ ≤ Err(ε, δ), (5.21)

where

Err(ε, δ) :=
1

δ

(ε
δ

)α
+ (b0 + 1)

∥∥∇2f
∥∥2

L∞(D)
δ + a0Of (δ) +

∣∣∇2f(0)
∣∣ (ε
δ

)β
, (5.22)

D := n̂⊥ ∩B(0, δ̄), and

Of (δ) := sup
z∈B(0,δ)

∣∣∇2f(z)−∇2f(0)
∣∣ . (5.23)
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Furthermore, for all γ ∈
(
0, α/(α+ 1)

)
, it is possible to choose δ = qεγ in (5.21), so that

lim
ε→0+

1

ε
Hε(E, x) = H0(Σ, x).

Proof. Wefirstly focus on the bound on the rate of convergence. We observe that to validate
(5.21) it suffices to reason on the case when x = 0 and n̂ = ed. Indeed, if x 6= 0 or n̂ 6= ed,
by formulas (3.21) and (5.18), we have

Hε(E, x) = H̃ε(T (E), 0) and H0(Σ, x) = H̃0(T (Σ), 0),

where T (y) := R(y − x),R is the matrix associated with the canonical basis of Rd that
represents a rotation such thatRn̂ = ed, and H̃ε and H̃0 are defined as in (3.18) and (5.17),
the kernelsKε andK being replaced respectively by K̃ε := Kε ◦Rt and K̃ := K ◦Rt.

We argue as in the proof of estimate (3.22): we consider f : D → (−δ̄, δ̄) of class C2

such that (5.19) and (5.20) hold. Moreover, f(0) = 0,∇f(0) = 0, and

∂if =
∂iϕ

∂dϕ
(5.24)

∂2
i,jf =

1

∂dϕ

(
∂2
i.jϕ+ ∂if ∂

2
j,dϕ+ ∂jf ∂

2
i,dϕ+ ∂if ∂jf ∂

2
d,dϕ

)
, (5.25)

where, for i, j = 1, . . . , d− 1, ∂i and ∂2
i,j denote respectively the i-th partial derivative

and the second order partial derivative w.r.t. the i-th and j-th variable.
Let us now fix ε and δ such that 0 < ε < δ < δ̄. We write ε−1Hε as

1

ε
Hε(E, 0) = I0

ε + I∞ε ,

where

I0
ε := −1

ε

ˆ
C
Kε(y)χ̃E(y)dy, I∞ε := −1

ε

ˆ
Cc
Kε(y)χ̃E(y)dy,

and C := Ced(0, δ) for short. The former of the two integrals takes into account the
interactionswith points that are close to 0, and, when ε is small, we expect it to approximate
the anisotropic mean curvature. The second terms, instead, encodes the contribution
given by a region far away from 0. Note that the integral defining I0

ε has to be understood
in the principal value sense. As suggested by this heuristic, we write∣∣∣∣1εHε(E, 0)−H0(Σ, 0)

∣∣∣∣ ≤ ∣∣I0
ε −H0(Σ, 0)

∣∣+ |I∞ε | . (5.26)

We may easily bound the second summand on the right-hand side by means of (5.11):
for all α < s there exists q∞ > 1 such that

|I∞ε | ≤
1

ε

ˆ
B(0, δ

ε)
c
K(y)dy ≤ 1

δ

(ε
δ

)α
whenever q∞ε < δ. (5.27)

To deal with the difference between I0
ε andH0(Σ, 0), we rewrite both the terms in a

more convenient way. We introduce the function fε(z) := f(εz)/ε, and we notice that

I0
ε =

1

ε

ˆ
e⊥d ∩B(0,δ)

[ˆ f(z)

−δ
Kε(z + ted)dt−

ˆ δ

f(z)
Kε(z + ted)dt

]
dH d−1(z)

=
1

ε

ˆ
e⊥d ∩B(0, δ

ε)

ˆ fε(z)

−fε(−z)
K(z + ted)dtdH d−1(z).
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Thanks to the regularity of f , for all z ∈ D we have

fε(z) =
ε

2
∇2f(εϑz)z · z for some ϑ ∈ (0, 1) ,

so that, when t ranges between−fε(−z) and fε(z), it holds

|t| ≤ ε

2

∥∥∇2f
∥∥
L∞(D)

|z|2 . (5.28)

Further, we remark that

H0(Σ, 0) =

ˆ
e⊥d

K(z)∇2f(0)z · zdH d−1(z).

Indeed,H0(Σ, 0)may be cast as in (5.17), and by (5.24), (5.25) we have

− 1

|∂dϕ(0)|
∇2ϕ(0)z · z = ∇2f(0)z · z when z ∈ e⊥d .

We introduce the quantity

I1
ε :=

1

ε

ˆ
e⊥d ∩B(0, δ

ε)
K(z) [fε(z) + fε(−z)] dH d−1(z)

to help us quantify the difference between I0
ε andH0(Σ, 0). By the triangular inequality,∣∣I0

ε −H0(Σ, 0)
∣∣ ≤ ∣∣I0

ε − I1
ε

∣∣+
∣∣I1
ε −H0(Σ, 0)

∣∣ , (5.29)

and we estimate the summands in the right-hand side separately.
We observe that

∣∣I0
ε − I1

ε

∣∣ ≤ 1

ε

ˆ
e⊥d ∩B(0, δ

ε)

∣∣∣∣∣
ˆ fε(z)

−fε(−z)
[K(z + ted)−K(z)] dt

∣∣∣∣∣dH d−1(z). (5.30)

SinceK ∈W 1,1(B(0, r)c) for all r > 0, by Theorem 5.3, forH d−1-a.e. z ∈ e⊥d it holds

K(z + ted)−K(z) =

ˆ t

0
∂dK(z + sed)ds,

and this, combined with (5.28), implies that

|K(z + ted)−K(z)| ≤
ˆ ε

2‖∇2f‖
L∞(D)

|z|2

− ε
2
‖∇2f‖L∞(D)|z|

2
|∇K(z + sed)| ds.

By plugging this inequality in (5.30), we infer

|I0
ε−I1

ε |

≤
∥∥∇2f

∥∥
L∞(D)

ˆ
e⊥d ∩B(0, δ

ε)
|z|2

ˆ ε
2‖∇2f‖

L∞(D)
|z|2

− ε
2
‖∇2f‖L∞(D)|z|

2
|∇K(z + sed)|dsdH d−1(z)

≤ δ

ε

∥∥∇2f
∥∥
L∞(D)

ˆ
Q(ε)
|y| |∇K(y)|dy,
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whereQ(ε) := Qε‖∇2f‖L∞(D)
(ed). In view of (5.8), there exists η ∈ (0, δ̄) such that

∣∣I0
ε − I1

ε

∣∣ ≤ (b0 + 1)
∥∥∇2f

∥∥2

L∞(D)
δ whenever ε < η. (5.31)

Then, we have

∣∣I1
ε −H0(Σ, 0)

∣∣ ≤ Of (δ)

ˆ
e⊥d ∩B(0, δ

ε)
K(z) |z|2 dH d−1(z)

+
∣∣∇2f(0)

∣∣ ˆ
e⊥d ∩B(0, δ

ε)
c
K(z) |z|2 dH d−1(z),

with Of defined in (5.23). As a consequence of (5.13), for all β < s, there exists q1 > 0
such that, if q1ε < δ, then

ˆ
e⊥d ∩B(0, δ

ε)
c
K(z) |z|2 dH d−1(z) ≤

(ε
δ

)β
;

Hence, bearing in mind (5.12), we infer

∣∣I1
ε −H0(Σ, 0)

∣∣ ≤ a0Of (δ) +
∣∣∇2f(0)

∣∣ (ε
δ

)β
whenever q1ε < δ. (5.32)

Summing up, we can now accomplish the proof of (5.21) by choosing the parameters q
and ε̄ in such a way that the estimates above are fulfilled at once. Inequalities (5.26) and
(5.29) get ∣∣∣∣1εHε(E, 0)−H0(Σ, 0)

∣∣∣∣ ≤ ∣∣I0
ε − I1

ε

∣∣+
∣∣I1
ε −H0(Σ, 0)

∣∣+ |I∞ε | ,

therefore, if we set q := max{q∞, q1} > 1 with q∞ and q1 as above, both (5.27) and (5.32)
hold for all ε, δ > 0 such that qε < δ < δ̄. Besides, if we pick ε̄ := min

{
η, δ̄/q

}
, (5.31) is

satisfied too whenever ε < ε̄.
Once rate estimate (5.21) is on hand, the pointwise convergence follows straightfor-

wardly. Indeed, for γ ∈
(
0, α/(α + 1)

)
, qεγ > qε and Err(ε, qεγ) vanishes as ε tends to

0.

Remark 5.8
Assumptions (5.5) and (5.9) are not exploited in the proof of Lemma 5.7. We shall utilize them to
establish Proposition 5.20.

When Σ is a smooth, compact hypersurface, uniform convergence of the rescaled
nonlocal curvatures stems from a refinement of the previous error estimate.

Theorem 5.9
LetK satisfy all the assumptions in Section 5.1 and letE ⊂ Rd be a set whose topological boundary
Σ is compact and of classC2. Then,

lim
ε→0+

1

ε
Hε(E, x) = H0(Σ, x) uniformly in x ∈ Σ.
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Proof. By definition of C2 hypersurface, for any x ∈ Σ there exist an open set Ux ⊂ Rd
and a C2 function ϕx : Ux → R such that

Σ ∩ Ux = { y ∈ Ux : ϕx(y) = 0 } .

For all x ∈ Σ, we also choose another open set Vx, in such a way that it is compactly
contained in Ux and that infy∈Vx |∇ϕ(y)| > 0. Observe that, by compactness, Σ admits a
finite cover { V1, . . . , VL } extracted from the collection { Vx }x∈Σ.

If x ∈ Σ belongs to V` for some `, we choose δ̄x so small that the closure of the cylinder
Cn̂x(x, δ̄x) is contained in V`, where n̂x is the outer unit normal to Σ at x. We now apply
Proposition 5.7 at the point x selecting δ̄ = δ̄x. We get, for all α, β ∈ (0, s), the existence
of q > 1 and ε̄ ∈ (0, 1) such that qε̄ ≤ δ̄x and that for all γ ∈

(
0, α/(α + 1)

)
and all

ε ∈ (0, ε̄) it holds∣∣∣∣1εHε(E, x)−H0(Σ, x)

∣∣∣∣ ≤ Err(ε, qεγ)

≤ c
(
εα−γ(1+α) +

∥∥∇2fx
∥∥
L∞(n̂⊥x ∩B(0,δ̄x))

εγ +Ofx(qεγ) +
∣∣∇2fx(0)

∣∣ ε(1−γ)β
)
,

where c := c(α, β, a0, b0) > 0 and fx is the implicit function such that (5.19) holds in
Cn̂x(x, δ̄x).

Recall that x ∈ V` and let us denote by ϕ` a C2 function ϕ such that Σ ∩ V` =
{ y ∈ V` : ϕ(y) = 0 }. By formulas (5.24) and (5.25), one may show that

∣∣∇2fx(0)
∣∣ and∥∥∇2fx

∥∥
L∞(n̂⊥x ∩B(0,δ̄x))

are bounded above by quantities that depend only on the infimum
of |∇ϕ| on V`, which is strictly positive, and on the values of∇ϕ` and∇2ϕ` in V`. In turn,
the latter are bounded in V`, becauseϕ` isC2. Similarly,Ofx(δ) is smaller than someO`(δ)
that is defined in terms of ϕ` and of its derivatives, and that vanishes as δ → 0+.

In conclusion, since there is a finite number of ϕ`, it suffices to maximise w.r.t. the
parameter ` to obtain a bound on

∣∣ε−1Hε(E, x)−H0(Σ, x)
∣∣ that is uniform in x ∈ Σ and

that vanishes when ε→ 0+.

5.3 Level set formulations of motions by curvature

We now revise the approach to mean curvature motions via level set formulations. We
include the existence and uniqueness results for the related viscosity solutions and recall
their connections with the notion of geometric barriers.

We consider the geometric evolutions driven by the curvatures ε−1Hε andH0 defined
respectively in (5.1) and (5.17): if t 7→ E(t) is an evolution of sets, we formally prescribe
that

∂tx(t) · n̂ = −1

ε
Hε(E(t), x(t)), ∂tx(t) · n̂ = −H0(E(t), x(t)), (5.33)

where n̂ is the outer unit normal to ∂E(t) at the point x(t). We accompany these equations
with an initial datumE0, which we assume to be a bounded set.

To cast the geometric laws (5.33) in the level set form, we interpret the initial datumE0

as the 0 superlevel set of a certain function u0 : Rd → R, that is,E0 = { x : u0(x) ≥ 0 }
and ∂E0 = { x : u0(x) = 0 }. Hereafter, we assume that

u0 : Rd → R is Lipschitz continuous and constant outside a compact set C ⊂ Rd.
(5.34)
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Then, we consider the Cauchy’s problems:{
∂tu(t, x) + |∇u(t,x)|

ε Hε({ y : u(t, y) ≥ u(t, x) } , x) = 0 (t, x) ∈ [0,+∞)× Rd

u(0, x) = u0(x) x ∈ Rd
.(5.35){

∂tu(t, x)− tr
(
MK

(
∇̂u(t, x)

)
∇2u(t, x)

)
= 0 (t, x) ∈ [0,∞)× Rd

u(0, x) = u0(x) x ∈ Rd
.(5.36)

Observe that

|∇u(x)|H0({ y : u(y) = u(x) } , x) = −tr
(
MK

(
∇̂u(x)

)
∇2u(x)

)
.

Parabolic equations defined by operators of this form are well studied. We shall consider
solutions in the following viscosity sense (see [DLFM08] and references therein):

Definition 5.10 (Solution to the limit problem)
A function u : [0,∞)× Rd → R is a viscosity subsolution(resp. supersolution) to Cauchy’s
problem (5.36) if it is locally bounded, upper semicontinuous (resp. lower semicontinuous function),
and satisfies the following:

(i) u(0, x) ≤ u0(x) for all x ∈ Rd, (resp. u(0, x) ≥ u0(x));

(ii) for all (t, x) ∈ (0,+∞) × Rd and for all ϕ ∈ C2([0,+∞) × Rd) such that u − ϕ
has a maximum at (t, x) (resp. a minimum at (t, x)) it holds

∂tϕ(t, x) ≤ 0 (resp. ∂tϕ(t, x) ≥ 0) when∇ϕ(t, x) = 0 and∇2ϕ(t, x) = 0

or

∂tϕ(t, x)− tr
(
MK

(
∇̂ϕ(t, x)

)
∇2ϕ(t, x)

)
≤ 0 (resp. ≥ 0) otherwise.

A continuous function u : [0,+∞) × Rd → R is a viscosity solution to (5.36) if it is both a
viscosity sub- and supersolution.

As for existence, note that the function

F0 : Rd \ {0} × Sym(d) −→ R
(p,X) 7−→ −tr (MK (p̂)X)

that defines the problem (5.36) satisfies the following:

(i) it is continuous;

(ii) it is geometric, that is for all λ > 0, σ ∈ R, p ∈ Rd \ { 0 } andX ∈ Sym(d) it
holds F0(λp, λX + σp⊗ p) = λF0(p,X).

(iii) it is degenerate elliptic, that is F0(p,X) ≥ F0(p, Y ) for all p ∈ Rd \ {0} and
X,Y ∈ Sym(d) such thatX ≤ Y .

Since the classic by Y. Chen, Y. Giga, and S. Goto [CGG91], it is well known that that these
three conditions grant existence and uniqueness of a viscosity solution:
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Theorem 5.11
Assume that (5.34)holds. Then, Cauchy’s problem (5.36) admits a unique bounded Lipschitz viscosity
solution in [0,+∞)× Rd, which is constant inRd \ C , for some compact setC ⊂ Rd.

In second place, we recall the notion of viscosity solution for the nonlocal problems.
which goes back to the work [Sle03], see also [Imb09,DLFM08,CMP15].

Definition 5.12 (Solution to the rescaled problems)
A locally bounded, upper semicontinuous function (resp. lower semicontinuous) uε : [0,+∞)×
Rd → R is a viscosity subsolution (resp. supersolution) to the problem (5.35) if

(i) uε(0, x) ≤ u0(x) for all x ∈ Rd (resp. uε(0, x) ≥ u0(x));

(ii) for all (t, x) ∈ (0,+∞)× Rd and for all ϕ ∈ C2([0,+∞)× Rd) such that uε − ϕ
has a maximum at (t, x) (resp. has a minimum at (t, x)), it holds

∂tϕ(t, x) ≤ 0 (resp. ∂tϕ(t, x) ≥ 0) when∇ϕ(t, x) = 0,

or

∂tϕ(t, x) +
|ϕ(t, x)|

ε
Hε({ y : ϕ(t, y) ≥ ϕ(t, x) } , x) ≤ 0(

resp. ∂tϕ(t, x) +
|ϕ(t, x)|

ε
Hε({ y : ϕ(t, y) > ϕ(t, x) } , x) ≥ 0

)
otherwise.

A continuous function uε : [0,+∞)×Rd → R is a viscosity solution to (5.35) if it is both a
viscosity sub- and supersolution.

Using this concept of solution, comparison results and well posedness of (5.35) are
available, as proved in a very general setting by A. Chambolle, M.Morini, andM. Ponsiglione
in [CMP15] (see also the paper by C. Imbert [Imb09]).

Theorem 5.13 (Comparison principle and existence of solutions to the nonlocal problem)
If the kernelK is as in Section 5.1 and (5.34) holds, then, for all ε > 0, if vε, wε : [0,+∞) ×
Rd → R are respectively a sub- and a supersolution to (5.35), then vε(t, x) ≤ wε(t, x) for all
(t, x) ∈ [0,+∞)× Rd.

Moreover, (5.35) admits a unique bounded, Lipschitz viscosity solution in [0,+∞)×Rd, which
is constant inRd \ C , for some compact setC ⊂ Rd.

Summing up, we know that, for every initial datum u0 fulfilling (5.34), there exists a
unique viscosity solution uε to (5.36) and a unique viscosity solution u to (5.36). We define
the related level set flows as follows: for every λ ∈ R, we put

E>ε,λ(t) =
{
x ∈ Rd : uε(t, x) > λ

}
, E≥ε,λ(t) =

{
x ∈ Rd : uε(t, x) ≥ λ

}
, (5.37)

E>λ (t) =
{
x ∈ Rd : u(t, x) > λ

}
, E≥λ (t) =

{
x ∈ Rd : u(t, x) ≥ λ

}
. (5.38)

It is well known that, as long as they are smooth, these families are solutions to the
geometric flows (5.33) with initial data respectively { u0 > λ } and { u0 ≥ λ }.

Geometric evolutions can be formulated as PDEs involving the distance function from
the moving front, see for instance the survey [Amb00] by L. Ambrosio. In the following
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definitions, we use it to express a regularity property both in time and space for sets (see
(ii) below) evolving according to a generic geometric law.

Definition 5.14
Let 0 ≤ t0 < t1 < +∞. We say that the evolution of sets [t0, t1] 3 t 7→ D(t) is a geometric
subsolution (resp. supersolution) to the flow associated with the curvature functionalH if

(i) D(t) is closed and ∂D(t) is compact for all t ∈ [t0, t1];

(ii) there exists an open setU ⊂ Rd such that the distance function (t, x) 7→ dD(t)(x) is of
classC∞ in [t0, t1]× U and ∂D(t) ⊂ U for all t ∈ [t0, t1];

(iii) for all t ∈ (t0, t1) and x(t) ∈ ∂D(t), it holds

∂tx(t) · n̂ ≤ −H(D(t), x(t)) (resp. ∂tx(t) · n̂ ≥ −H(D(t), x(t)), (5.39)

where n̂ is the outer unit normal toD(t) at x.

When strict inequalities hold,D(t) is called strict geometric subsolution (resp. supersolu-
tion).

Remark 5.15
For any p ∈ Rd \ { 0 } andX ∈ Sym(d), by (5.12) we have

|tr(MK(p̂)X)| = 1

2

∣∣∣∣ˆ
p̂⊥
K(z)Xz · zdH d−1(z)

∣∣∣∣ ≤ a0

2
|X| ,

This ensures that geometric sub- and supersolution for the flow driven byH0 exist.

Next, we remind the notion of geometric barriers w.r.t. these smooth evolutions:

Definition 5.16
Let T > 0 andF− andF+ be, respectively, the families of strict geometric sub- and supersolution
to the flow associated with some curvature functionalH , as in Definition 5.14.

(i) We say that the evolution of sets [0, T ] 3 t 7→ E(t) is an outer barrier w.r.t. F−
(resp. F+) if whenever [t0, t1] ⊂ [0, T ] and [t0, t1] 3 t 7→ D(t) is a smooth strict
subsolution (resp. F (t) is a smooth strict supersolution) such thatD(t0) ⊂ E(t0), then
we getD(t1) ⊂ E(t1) (resp. such that F (t0) ⊂ E(t0), then we get F (t1) ⊂ E(t1)).

(ii) Analogously, [0, T ] 3 t 7→ E(t) is an inner barrier w.r.t. the familyF− (resp. F+)
if whenever [t0, t1] ⊂ [0, T ] and [t0, t1] 3 t 7→ D(t) is a smooth strict subsolution
(resp. supersolution) such thatE(t0) ⊂ int(D(t0)), thenE(t1) ⊂ int(D(t1)) (resp.
E(t0) ⊂ int(F (t0)), thenE(t1) ⊂ int(F (t1))).

We are interested in barriers is motivated by the next results, which show that they
are comparable with level sets flows. The case of the local curvatures was studied in
[BN98, Theorem 3.2] by G. Bellettini and M. Novaga. For further reading about barriers for
more general local motions, we refer also to [BN00]. In the nonlocal setting, recently an
analogous comparison principle has been established in [CDNV19, Proposition A.10] by A.
Cesaroni, S. Dipierro, M. Novaga, and E. Valdinoci.
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Theorem 5.17
Letu be the unique solution to (5.36)with initial datumu0 as in (5.34). LetE>λ ,E

≥
λ the sets defined

in (5.38).

(i) Themap [0, T ] 3 t 7→ E>λ (t) is the minimal outer barrier for the family of strict geomet-
ric subsolutions associated withH0, that isE>λ (t) is an outer barrier andE>λ (t) ⊂ E(t)
for any other outer barrierE(t).

(ii) The map [0, T ] 3 t 7→ E≥λ (t) is the maximal inner barrier for the family of geometric
strict supersolutions associated withH0, that isE≥λ (t) is an inner barrier andE(t) ⊂
E≥λ (t) for any other inner barrierE(t).

Proposition 5.18
Let uε : [0,+∞)× Rd → R be the viscosity solution to (5.35) with initial datum u0 as in (5.34).
LetE>ε,λ,E

≥
ε,λ be as in (5.37). Then, the evolutions t 7→ E>ε,λ(t) and t 7→ E≥ε,λ(t) are, respectively,

an outer barrier w.r.t geometric strict subsolutions to (5.35) and an inner barrier w.r.t geometric
strict supersolutions to (5.35).

5.4 Convergence of the solutions to the nonlocal flows

Now that we clarified what class of solutions for geometric motions we address to, we can
formulate our main result:

Theorem 5.19
LetK satisfy all the assumptions in Section 5.1. Let u0 : Rd → R be a Lipschitz continuous function
that is constant outside a compact set. Let uε, u : [0,+∞)× Rd → R be respectively the unique
continuous viscosity solution to (5.35) and (5.36) with initial datum u0. Then

lim
ε→0+

uε(t, x) = u(t, x) locally uniformly in [0,+∞)× Rd.

An analogous result was proved by F. Da Lio, N. Forcadel, and R. Monneau [DLFM08,
Theorem 1.4]. Though the authors were concerned with a problem which resembles much
ours, their assumptions on the interaction kernel were dictated by a model of dislocation
dynamics and are different from the ones we consider. Indeed, they assumed K to be
bounded in a neighbourhood of 0, hence nonsingular, and to decay as |x|−d−1 at infinity.
Perforce, their scaling of the curvature,

1

ε log ε
HKε ,

does not coincide with ours. However, the proofs are partly similar. Indeed, as [DLFM08],
we firstly prove a compactness result for the family of solutions to Cauchy’s problems
(5.35), but, in contrast with the work of Da Lio, Forcadel, and Monneau, we show that the
cluster point must be unique and coincide with the viscosity solution to (5.36) by means of
De Giorgi’s barriers.

Let us first prove the compactness result, which is not completely novel. We include
the proof because it has not been stated explicitly yet for our setting.
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Proposition 5.20
Assume that u0 : Rd → R is as in (5.34) and let uε be the unique continuous viscosity solution to
(5.35). Then,

|uε(t, x)− uε(t, y)| ≤ ‖∇u0‖L∞(Rd) |x− y| for all t ∈ [0, T ] and x, y ∈ Rd, (5.40)

and there exists a constant c > 0 independent of ε such that

|uε(t, x)− uε(s, x)| ≤ ‖∇u0‖L∞(Rd)

√
c |t− s| for all t, s ∈ [0, T ] and x ∈ Rd. (5.41)

Proof. By standard arguments [DLFM08,CDNV19], one can see that the Lipschitz continuity
of the datum and the comparison principle yield the equi-Lipschitz estimate (5.40).

As for the equi-Hölder continuity, we adapt the strategy of Section 5 in [DLFM08]. Some
care is needed because of the possible singularity of our interaction kernel.

For η > 0 and x ∈ Rd fixed, we consider

ϕ(t, y) = Lt+A

√
|y − x|2 + η2 + u0(x), (5.42)

where we set A := ‖∇u0‖L∞(Rd). We claim that, for L > 0 sufficiently large, ϕ is a
supersolution to (5.35) for any ε ∈ (0, 1).

We firstly note that ϕ(0, y) ≥ u0(y) thanks to the Lipschitz continuity of u0. Also, we
observe that, for any y ∈ Rd,{

z ∈ Rd : ϕ(t, z) ≥ ϕ(t, y)
}

= B(x, |y − x|)c,

whence, to show that ϕ is a supersolution, it suffices to find L so large that

L

A
≥ |y − x|

ε
√
|y − x|2 + η2

Hε(B(x, |y − x|), y) for all y ∈ Rd and ε ∈ (0, 1).

Recalling that the nonlocal curvature is invariant under translations, if we set e := ŷ − x
and r := |y − x|, we have that the last inequality holds if and only if

L

A
≥ r

ε
√
r2 + η2

Hε(B(−re, r), 0) for all r > 0, e ∈ Sd−1, and ε ∈ (0, 1). (5.43)

Hence, we want to prove that there exists L0 := L0(η) > 0 such that

sup
r>0, e∈Sd−1

sup
ε∈(0,1)

r

ε
√
r2 + η2

Hε(B(−re, r), 0) ≤ L0. (5.44)

This clearly gets (5.43) for L = AL0.
To recover (5.44), we use inequality (3.22). Retracing its proof, we see that, when

E = B(−re, r) and x = 0, we can choose λ = λ0/r for some λ0 > 0 and δ̄ = r/2, so that
we get

0 ≤ Hε(B(−re, r), 0) ≤
ˆ
Qλ0ε

r

(e)
K(y)dy +

ˆ
B(0, r

2ε)
c
K(y)dy.
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It follows that

r

ε
√
r2 + η2

Hε(B(−re, r), 0) ≤ r

εη

ˆ
Qλ0ε

r

(e)
K(y)dy +

ˆ
B(0, r

2ε)
c
K(y)dy

 .
We exploit the hypotheses onK : by (5.5), (5.9), (5.7), and (5.11), there exist λ,Λ > 0 with
the following properties:

(i) λ < Λ;

(ii) if r < λε, then

r

ε

ˆ
Qλ0ε

r

(e)
K(y)dy ≤ 1

2
and

r

ε

ˆ
B(0, r

2ε)
c
K(y)dy ≤ 1

2

and, consequently,

r

ε
√
r2 + η2

Hε(B(−re, r), 0) ≤ 1

η
; (5.45)

(iii) if r > Λε, then

r

ε

ˆ
Qλ0ε

r

(e)
K(y)dy ≤ a0 +

1

2
and

r

ε

ˆ
B(0, r

2ε)
c
K(y)dy ≤ 1

2

and, accordingly,

r

ε
√
r2 + η2

Hε(B(−re, r), 0) ≤ a0 + 1

η
. (5.46)

Now, only the case λε ≤ r ≤ Λε is left to discuss. In this intermediate regime, recalling
(5.6), we easily obtain

r

ε
√
r2 + η2

Hε(B(−re, r), 0) ≤ Λ

η

(
c+

ˆ
B(0,λ

2 )
c
K(y)dy

)
, (5.47)

with c > 0 depending only on λ.
By the whole of (5.45), (5.46), and (5.47), we infer that there exists a constant c :=

c(a0, λ,Λ) > 0 such that

sup
r>0, e∈Sd−1

sup
ε∈(0,1)

r

ε
√
r2 + η2

Hε(B(−re, r), 0) ≤ c

η

and, thus, (5.43) holds if we pick L = cA/η.
Summing up, we proved that, for any fixed x ∈ Rd, the function

ϕ(t, y) = A

(
c

η
t+

√
|y − x|2 + η2

)
+ u0(x)
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is a supersolution to (5.35) for any ε > 0. A similar reasoning shows that there exists
c = c(a0, λ,Λ) such that the function

ψ(t, y) := −A
(
c

η
t+

√
|y − x|2 + η2

)
+ u0(x),

is a subsolution to (5.35) for all x ∈ Rd and ε > 0.
We apply the comparison principle in Theorem 5.13 to uε, ϕ, and ψ. This yields that,

for all (t, x) ∈ [0, T ]× Rd and all η > 0,

|uε(t, x)− u0(x)| ≤ ‖∇u0‖L∞(Rd)

(
c

η
t+ η

)
.

Being η arbitrary, we may set η =
√
ct and obtain

|uε(t, x)− u0(x)| ≤ 2 ‖∇u0‖L∞(Rd)

√
ct.

In turn, this entails (5.41), because the problem (5.35) is invariant w.r.t. translations in time,
it admits a unique solution, and ‖∇uε(t, · )‖L∞(Rd) ≤ ‖∇u0‖L∞(Rd) for all t ∈ [0, T ].

Now, we deal with the proof of Theorem 5.19. Thanks to the previous proposition, we
know that the family { uε } of the solutions to (5.35) is precompact in C([0, T ]× Rd). It
follows that, for some sequence { ε` } and some v ∈ C([0, T ] × Rd), uε` converges to
v locally uniformly as ` → +∞ The desired conclusion is achieved as soon as we prove
v = u, u being the solution to (5.36). In view of the following lemma, we see that the
equality may be inferred by certain inclusions of the level sets of u and v:

Lemma 5.21
Let f, g : Rd → R be two continuous functions such that for all λ ∈ R there hold{

x ∈ Rd : f(x) > λ
}
⊆
{
x ∈ Rd : g(x) ≥ λ

}
,{

x ∈ Rd : g(x) > λ
}
⊆
{
x ∈ Rd : f(x) ≥ λ

}
.

Then, f(x) = g(x) for all x ∈ Rd.

Proof. Let x̄ ∈ Rd and assume that g(x̄) = λ. Then, for all µ > 0, we have

x̄ ∈ { x : g(x) > λ− µ } ⊆ { x : f(x) ≥ λ− µ } ,

which yields f(x̄) ≥ λ. If f(x̄) > λ, then

x̄ ∈ { x : f(x) > λ+ µ0 } ⊆ { x : g(x) ≥ λ+ µ0 > λ }

some µ0 > 0, which contradicts the equality g(x̄) = λ. Thus, it necessarily holds f(x̄) =
λ.

So, to show that any cluster point v of the family { uε } coincides with u, we compare
its superlevel sets with the ones of u. To this purpose, we introduce the set-theoretic upper
limits of the level set flows t 7→ E>ε,λ(t), t 7→ E≥ε,λ(t) associated with uε (recall (5.37)). We
define

Ẽ>λ (t) :=
⋂
ε<1

⋃
η<ε

E>η,λ(t) and Ẽ≥λ (t) :=
⋂
ε<1

⋃
η<ε

E≥η,λ(t). (5.48)
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Remark 5.22
It is readily shown that, for any ε̄ < 1,

Ẽ>λ (t) =
⋂
ε<ε̄

⋃
η<ε

E>η,λ(t) and Ẽ≥λ (t) =
⋂
ε<ε̄

⋃
η<ε

E≥η,λ(t).

The proof of the main result of this chapter follows. In our argument, the uniform
convergence of curvatures established in Theorem 5.9 plays a major role.

Proof of Theorem 5.19. Let v ∈ C([0, T ]× Rd) be the limit point w.r.t. the locally uniform
convergence of some subsequence of { uε }, which we do not relabel. Such v exists as a
consequence of Proposition 5.20.

We now show that for every λ ∈ R,{
x ∈ Rd : v(t, x) > λ

}
⊆ Ẽ>λ (t) ⊆ Ẽ≥λ (t) ⊆

{
x ∈ Rd : v(t, x) ≥ λ

}
, (5.49)

with Ẽ>λ and Ẽ
≥
λ as in (5.48). Without loss of generality, wemay discuss just the case λ = 0.

We only utilise the pointwise convergence of uε to v: if x̄ ∈ Rd is such that v(t, x̄) = µ for
some µ > 0, then there exists ε̄ > 0 such that

uε(t, x̄) ≥ µ

2
> 0 for all ε < ε̄,

and, hence, x̄ ∈ Ẽ>0 (t). Thus, we deduce
{
x ∈ Rd : v(t, x) > 0

}
⊆ Ẽ>0 (t).

On the other hand, if x̄ ∈ Ẽ≥0 (t), then for all ε < 1 there exists ηε < ε such that
uηε(t, x̄) ≥ 0. Taking the limit ε→ 0+, we get

v(t, x̄) = lim
ε→0+

uηε(t, x̄) ≥ 0.

Secondly, we prove that, for all λ ∈ R,{
x ∈ Rd : u(t, x) > λ

}
⊆ Ẽ>λ (t) ⊆ Ẽ≥λ (t) ⊆

{
x ∈ Rd : u(t, x) ≥ λ

}
, (5.50)

where u is the viscosity solution to (5.36).
We begin by showing that Ẽ>λ and Ẽ

≥
λ are an outer and an inner barrier, respectively,

for the family of strict geometric subsolutions and supersolutions, respectively, associated
with the flow driven byH0. If this assertion hold, then Theorem 5.17 immediately gets
(5.50), because it states that

{
x ∈ Rd : u(t, x) > λ

}
is the minimal outer barrier for the

family of strict geometric subsolutions, and
{
x ∈ Rd : u(t, x) ≥ λ

}
is the maximal inner

barrier for the family of strict geometric supersolutions.
We consider only the case of Ẽ>0 (t), since the proofs for λ 6= 0 and for Ẽ≥0 are the

same.
For some 0 ≤ t0 < t1 ≤ T , let t 7→ D(t) be an evolution of sets which is a strict geo-

metric subsolution to the anisotropic mean curvature motion when t ∈ [t0, t1]. Explicitly,
we assume that there exists γ > 0 such that

∂tx(t) · n̂D(t, x(t)) ≤ −H0(∂D(t), x(t))− γ for all t ∈ (t0, t1] and x(t) ∈ ∂D(t),
(5.51)

where n̂D is the outer unit normal toD(t). We suppose as well that

D(t0) ⊂ Ẽ>0 (t0). (5.52)
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Our goal is verifying that it holdsD(t1) ⊂ Ẽ>0 (t1).
Bearing in mind definition (5.48), we get from (5.52) that for all ε < 1 there exists

ηε ≤ ε such that
D(t0) ⊆ E−ηε,0(t0). (5.53)

Since the second fundamental forms of ∂D(t) are uniformly bounded for t ∈ [t0, t1], we
may appeal to Theorem 5.9, which yields

lim
ε→0+

1

ε
Hε(D(t), x) = H0(D(t), x) uniformly in t ∈ [t0, t1] and x ∈ ∂D(t).

Accordingly, there exists ε̄ := ε̄(γ) such that, for all ε < ε̄,

∂tx(t) · n̂D(t, x(t)) ≤ −1

ε
Hε(D(t), x(t))− γ

2
for all t ∈ (t0, t1] and x(t) ∈ ∂D(t),

or, in other words, t 7→ D(t) is a strict geometric subsolution to all the rescaled problems
of parameter ε ∈ (0, ε̄). By (5.53) and Proposition 5.18, we infer that for all ε < ε̄ there
exists ηε ≤ ε such that

D(t) ⊂ E−ηε,0(t) for all t ∈ [t0, t1].

In view of Remark 5.22, it holds as well that

D(t) ⊆ Ẽ>0 (t) for all t ∈ [t0, t1],

and we get thatD(t1) ⊆ Ẽ>0 (t1), as desired.
We can finally draw the conclusion. Indeed, by (5.49) and (5.50), for every λ ∈ R and

t ∈ [0, T ], we have{
x ∈ Rd : v(t, x) > λ

}
⊆
{
x ∈ Rd : u(t, x) ≥ λ

}
,{

x ∈ Rd : u(t, x) > λ
}
⊆
{
x ∈ Rd : v(t, x) ≥ λ

}
,

and, from this, Lemma 5.21 yields u = v.
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