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Abstract
We prove a quantitative version of Obata’s Theorem involving the shape of functions with

null mean value when compared with the cosine of distance functions from single points. The
deficit between the diameters of the manifold and of the corresponding sphere is bounded
likewise. These results are obtained in the general framework of (possibly non-smooth) metric
measure spaces with curvature-dimension conditions through a quantitative analysis of the
transport-rays decompositions obtained by the localization method.
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1 Introduction
One of the core topics in geometric analysis is the deep connection between the geometry of a
domain (in a possibly curved space) and spectral properties of the Laplacian defined on it.
The present paper focuses on the first eigenvalue λ1 of the Laplacian (with Neumann boundary
conditions, in case the domain has non-empty boundary). Since the Poincaré(-Wirtinger) inequality
plays an important role in analysis and since a lower bound of the first eigenvalue gives an upper
bound of the constant in the Poincaré(-Wirtinger) inequality, it is extremely useful to have a good
lower estimate of λ1.
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For domains in the Euclidean space, classical estimates of the first eigenvalue of the Laplacian
(under Dirichlet or Neumann boundary conditions) date back to Lord Rayleigh [Ray1894], Faber
[Fa23], Krahn [Kr25], Polya-Szego [PS51], Payne-Weinberger [PW60], among others. For curved
spaces, two major results are due to Lichnerowicz [L58] and Obata [Ob62]:

Theorem 1.1. Let (M, g) be an N -dimensional Riemannian manifold with Ricg ≥ (N − 1)g.
Then λ1 ≥ N (Lichnerowicz spectral gap [L58]).
Moreover, λ1 = N if and only if (M, g) is isometric to the unit sphere SN (Obata’s Theorem
[Ob62]).

Remark 1.2. On SN , the first eigenvalue λ1 = N has multiplicity N + 1. The corresponding
eigenspace is spanned by the restriction to SN of affine functions of RN+1 (i.e. an L2-orthogonal
basis is composed by the standard coordinate functions {x1, x2, . . . , xN+1} of RN+1). Equivalently,
a function u : SN → R is a first eigenfunction normalized as ‖u‖L2(SN ) = 1 if and only if there
exists P ∈ SN such that u =

√
N + 1 cos dP , where we denoted by dP the Riemannian distance

from the point P .
Our main result is a quantitative spectral gap involving the shape of the eigenfunctions (or,

more generally, of functions with almost optimal Rayleigh quotient), when compared with the
eigenfunctions of the model space SN (as in Remark 1.2). In detail, we show that if Ricg ≥ (N −1)g
and u : M → R is a first eigenfunction with ‖u‖L2(M) = 1, then there exists P ∈M such that

‖u−
√
N + 1 cos dP ‖L2(M) ≤ C(N)(λ1 −N)O(1/N). (1.1)

More generally, the same conclusion holds for every Lipschitz function u : M → R with null mean
value and ‖u‖L2(M) = 1, provided λ1 on the right-hand-side is replaced by the Dirichlet energy´
M
|∇u|2dvolg.

We will prove (1.1) with tools of optimal transport tailored to study (possibly non-smooth)
metric measure spaces satisfying Ricci curvature lower bounds and dimensional upper bounds in
synthetic sense, the so-called CD(K,N) spaces introduced by Sturm [St06I, St06II] and Lott-Villani
[LV09]. For the sake of this introduction, a metric measure space (m.m.s. for short) is a triple
(X, d,m) where (X, d) is a compact metric space and m is a Borel probability measure, playing the
role of reference volume measure. A CD(K,N) space should be roughly thought of as a possibly
non-smooth metric measure space having Ricci curvature bounded below by K ∈ R and dimension
bounded above by N ∈ (1,∞) in synthetic sense. The basic idea of Lott-Sturm-Villani synthetic
approach is to analyse weighted convexity properties of suitable entropy functionals along geodesics
in the space of probability measures endowed with the quadratic transportation (also known as
Kantorovich-Wasserstein) distance. An important technical assumption throughout the paper
is the essentially non-branching (“e.n.b.” for short) property [RS14], which roughly corresponds
to requiring that the L2-optimal transport between two absolutely continuous (with respect to
the reference volume measure m) probability measures is performed along geodesics which do not
branch (for the precise definitions see subsection 2.1 and subsection 2.2). Notable examples of
spaces satisfying e.n.b. CD(K,N) include (geodesically convex domains in) smooth Riemannian
manifolds with Ricci bounded below by K and dimension bounded above by N , their measured-
Gromov-Hausdorff limits (i.e. the so-called “Ricci limits”) and more generally RCD(K,N) spaces
(i.e. CD(K,N) spaces with linear Laplacian, see Remark 2.4 for more details), finite dimensional
Alexandrov spaces with curvature bounded below, Finsler manifolds endowed with a strongly convex
norm. A standard example of a space failing to satisfy the essentially non-branching property
is R2 endowed with the L∞ norm. Later in the introduction, when discussing the main steps
of the proof, we will mention how the essentially non-branching assumption is used in our arguments.

We will establish our results directly on the more general class of e.n.b. CD(N − 1, N) metric
measure spaces. For a m.m.s. (X, d,m) we define the non-negative real number λ1,2

(X,d,m) as follows

λ1,2
(X,d,m) := inf

{´
X
|∇u|2 m´
X
|u|2 m

: u ∈ Lip(X) ∩ L2(X,m), u 6= 0,
ˆ
X

um = 0
}
, (1.2)
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where |∇u| is the slope (also called local Lipshitz constant) of the Lipschitz function u given by

|∇u|(x) = lim sup
y→x

|u(x)− u(y)|
d(x, y) if x is not isolated, 0 otherwise.

It is well known that, in case (X, d,m) is the m.m.s. corresponding to a smooth compact Riemannian
manifold (possibly with boundary), then λ1,2

(X,d,m) coincides with the first eigenvalue of the problem
−∆u = λu with Neumann boundary conditions.

Considering the extension of (1.1) to e.n.b. CD(N − 1, N) spaces is natural: indeed a sequence
(Mj , gj) of Riemannian N -manifolds with Ricgj ≥ (N − 1)gj where the right hand side of (1.1)
converges to zero as j → ∞ may develop singularities and admits a limit (up to subsequences)
in the measured-Gromov-Hausdorff sense to a possibly non-smooth e.n.b. CD(N − 1, N) space
(actually the limit is, more strongly, RCD(N − 1, N)).

In the enlarged class of e.n.b. CD(N−1, N) spaces (actually already for RCD(N−1, N) spaces),
Obata’s rigidity Theorem must be modified:

• First of all, N ∈ (1,∞) is a (possibly non integer) real number;

• Even in the case of integer N , the round sphere SN is not anymore the only case of equality
in the Lichnerowicz spectral gap as the spherical suspensions achieve equality as well [K15a].

A key geometric property of the spherical suspensions is that they have diameter π, thus saturating
Bonnet-Myers diameter upper bound. The first part of our main result is a quantitative control
of how close to π the diameter must be, in terms of the spectral gap deficit. The second part of
the statement is an L2-quantitative control of the shape of functions with almost optimal Rayleigh
quotient. We can now state our main theorem.

Theorem 1.3 (Quantitative Obata’s Theorem for e.n.b. CD(N − 1, N)-spaces). For every real
number N > 1 there exists a real constant C(N) > 0 with the following properties: if (X, d,m)
is an essentially non branching metric measure space satisfying the CD(N − 1, N) condition and
m(X) = 1 with supp(m) = X, then

π − diam(X) ≤ C(N)
(
λ1,2

(X,d,m) −N
)1/N

. (1.3)

Moreover, for any Lipschitz function u : X → R with
´
X
um = 0 and

´
X
u2 m = 1, there exists a

distinguished point P ∈ X such that∥∥∥u−√N + 1 cos dP
∥∥∥
L2(X,m)

≤ C(N)
(ˆ

X

|∇u|2 m−N
)η

η = 1
6N + 4

. (1.4)

Remark 1.4. Although Theorem 1.3 is formulated for e.n.b. CD(N − 1, N) spaces, a statement
for e.n.b. CD(K,N) spaces with K > 0 is easily obtained by scaling. Indeed, (X, d,m) satisfies
CD(K,N) if and only if, for any α, β ∈ (0,∞), the scaled metric measure space (X,αd, βm) satisfies
CD(α−2K,N); see [St06II, Proposition 1.4].

Let us compare Theorem 1.3 with related results in the literature. Under the standing assumption
that (M, g) is a smooth Riemannian N -manifold without boundary and with Ricg ≥ (N − 1)g:

1. It follows from Cheng’s Comparison Theorem [Ch75] that if λ1,2
(M,g) is close to N then the

diameter of M must be close to π. Conversely, Croke [Cr82] proved that if the diameter is
close to π then λ1,2

(M,g) must be close to N . Bérard-Besson-Gallot [BBG85] sharpened the
diameter estimate of Cheng by proving an estimate very similar to (1.3).

2. Bertrand [B07] established the following stability result for eigenfunctions (see also the prior
work of Petersen [P99]): for every ε > 0 there exists δ > 0 such that if λ1 ≤ N + δ and u is
an eigenfunction relative to λ1 normalized so that

´
M
u2dvolg = volg(M), then there exists a

point P ∈M such that ‖u−
√
N + 1 cos dP ‖L∞(X,m) ≤ ε.
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Theorem 1.3 sharpens and extends the above results in various ways:

• The estimate (1.3) extends [BBG85] to e.n.b. CD(N − 1, N) spaces. These spaces are non-
smooth a priori and may have (convex) boundary. Actually, as the reader will realize, the
claim (1.3) will be set in section 4 along the way of proving the much harder (1.4), to which
the entire section 5 is devoted.

• The estimate (1.4) extends Bertrand’s [B07] stability to the more general class of e.n.b.
CD(N − 1, N) spaces and to arbitrary functions (a priori not eigenfunctions) with Rayleigh
quotient close to N . The fact that u is an eigenfunction was key in [B07] in order to apply
maximum principle and gradient estimates in the spirit of Li-Yau [LY80]. Let us stress that
our methods are completely different and work for an arbitrary Lipschitz function satisfying
a small energy condition but no PDE a-priori.

Inequality (1.4) naturally fits in the framework of quantitative functional/geometric inequalities.
A basic result in this context is the quantitative euclidean isoperimetric inequality proved by
Fusco-Maggi-Pratelli [FuMP08] (see also [FiMP10, CL12] for different proofs), stating that for every
Borel set E ⊂ Rn of positive and finite volume there exists x̄ ∈ Rn such that

|E∆BrE (x̄)|
|E|

≤ C(N)
( P(E)

P(BrE (x̄)) − 1
)1/2

(1.5)

where rE is such that |BrE (x̄)| = |E|. Quantitative results involving the spectrum of the Laplacian
have been proved for domains in Rn, among others, by Hansen-Nadirashvili [HN9187] in dimension
2, Melas [M92] for convex bodies, Fusco-Maggi-Pratelli [FuMP09], Brasco-De Philippis-Velichkov
[BDPV15] regarding quantitative forms of the Faber-Krahn inequality and by Brasco-Pratelli
[BP12] regarding quantitative versions of the Krahn-Szego and Szego-Weinberger inequalities. More
recently, a quantitative version of the Lévy-Gromov isoperimetric inequality has been proved for
essentially non branching CD(N − 1, N) metric measure spaces in [CMM18], and a quantitative
isoperimetric inequality in the setting of smooth Riemannian manifolds has been considered in
[CES19].

Taking variations in the broad context of metric measure spaces makes the prediction on the
sharp exponent η in (1.4) a hard task. Even formulating a conjecture is a challenging question and
it could actually be that η = O(1/N) as N →∞ is already sharp. In the direction of this guess, we
notice that the exponent 1/N in (1.3) is indeed optimal in the class of metric measure spaces, as a
direct computation on the model 1-dimensional space ([0, D], | · |, sinN−1(·)L1) shows.

Before discussing the main steps in the proof of Theorem 1.3, it is worth recalling remarkable
examples of spaces fitting in the assumptions of the result. Let us stress that our main theorem
seems new in all of them. The class of essentially non branching CD(N − 1, N) spaces includes
many notable families of spaces, among them:

• Geodesically convex domains in (resp. weighted) Riemannian N -manifolds satisfying Ricg ≥
(N − 1)g (resp. N -Bakry-Émery Ricci curvature bounded below by N − 1).

• Measured Gromov Hausdorff limits of Riemannian N -manifolds satisfying Ricg ≥ (N − 1)g
(so called “Ricci limits”) and more generally the class of RCD(N − 1, N) spaces. Indeed Ricci
limits are examples of RCD(N − 1, N) spaces (see for instance [GMS15]) and RCD(N − 1, N)
spaces are essentially non-branching CD(N − 1, N) (see [RS14]).

• Alexandrov spaces with curvature ≥ 1. Petrunin [P11] proved that the synthetic curvature
lower bound in the sense of comparison triangles is compatible with the optimal transport
lower bound on the Ricci curvature of Lott-Sturm-Villani (see also [ZZ10]). Moreover geodesics
in Alexandrov spaces with curvature bounded below do not branch. It follows that Alexandrov
spaces with curvature bounded from below by 1 and Hausdorff dimension at most N are
non-branching CD(N − 1, N) spaces.

• Finsler manifolds with strongly convex norm, and satisfying Ricci curvature lower bounds.
More precisely we consider a C∞-manifold M , endowed with a function F : TM → [0,∞]
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such that F |TM\{0} is C∞ and for each x ∈ M it holds that Fx := TxM → [0,∞] is a
strongly-convex norm, i.e.

gxij(v) := ∂2(F 2
x )

∂vi∂vj
(v) is a positive definite matrix at every v ∈ TxM \ {0}.

Under these conditions, it is known that one can write the geodesic equations and geodesics
do not branch: in other words these spaces are non-branching. We also assume (M,F ) to
be geodesically complete and endowed with a C∞ probability measure m in such a way that
the associated m.m.s. (X,F,m) satisfies the CD(N − 1, N) condition. This class of spaces
has been investigated by Ohta [O09] who established the equivalence between the Curvature
Dimension condition and a Finsler-version of Bakry-Emery N -Ricci tensor bounded from
below.

An overview of the proof
The starting point of the proof of Theorem 1.3 is the metric measured version of the classical
localization technique. First introduced by Payne-Weinberger [PW60] for establishing a sharp
Poincaré-Wirtinger inequality for convex domains in Rn, the localization technique has been
developed into a general dimension reduction tool for geometric inequalities in symmetric spaces
by Gromov-Milman [GM87], Lovász-Simonovits [LS93] and Kannan-Lovász-Simonovits [KLS95].
More recently, Klartag [Kl17] used optimal transportation tools in order to extend the range of
applicability of the techique to general Riemannian manifolds. The extension to the metric setting
was finally obtained in [CM17a], see subsection 2.4.

Given a function u ∈ L1(X,m) with
´
X
um = 0, the localization theorem (Theorem 2.10) gives

a decomposition of X into a family of one-dimensional sets {Xq}q∈Q formed by the transport rays
of a Kantorovich potential associated to the optimal transport from the positive part of u (i.e.
µ0 := max{u, 0}m) to the negative part of u (i.e. µ1 := max{−u, 0}m); each Xq is in particular
isometric to a real interval. A first key property of such a decomposition is that each ray Xq carries
a natural measure mq (given by the the Disintegration Theorem) in such a way that

(Xq, d,mq) is a CD(N − 1, N) space and
ˆ
Xq

umq = 0, (1.6)

so that both the geometry of the space and the null mean value constraint are localized into a family
of one-dimensional spaces. An important ingredient used in the proof of such a decomposition is
the essentially non-branching property which, coupled with CD(N − 1, N) (actually the weaker
measure contraction would suffice here), guarantees that the rays form a partition of X (up to an
m-negligible set).

In order to exploit (1.6), as a first step, in section 3 we prove the one dimensional counterparts
of Theorem 1.3. More precisely, given a 1-dimensional CD(N − 1, N) space (I = [0, D], | · |,m) we
show that (Proposition 3.3)

π −D ≤ C(N)(λ1,2
(I,|·|,m) −N)1/N , (1.7)

and that, if u ∈ Lip(I) satisfies
´
um = 0 and

´
u2 m = 1, then (Theorem 3.11)

min
{∥∥∥u−√N + 1 cos(·)

∥∥∥
L2(m)

,
∥∥∥u+

√
N + 1 cos(·)

∥∥∥
L2(m)

}
≤ C

(ˆ
|u′|2 m−N

)min{ 1
2 ,

1
N }

.

(1.8)
Combining (1.6) and (1.7) it is not hard to prove (see Theorem 4.3) the first claim (1.3) of
Theorem 1.3. Actually, calling Q` (for “Q long”) the set of indeces for which |Xq| ' π, we aim to
show that q(Q`) ' 1 (i.e. “most rays are long”). As we will discuss in a few lines, this is far from
being trivial (in particular, it needs new ideas when compared with [CMM18]).

A second crucial property of the decomposition {Xq}q∈Q, inherited by the variational nature
of the construction, is the so-called cyclical monotonicity. This was key in [CMM18] for showing
that, for q ∈ Q`, the transport ray Xq has its starting point close to a fixed “south pole” PS , and
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ends-up nearby a fixed “north pole” PN (in particular, the distance between PS and PN is close to
π) (Proposition 5.1).

Then we observe that (1.8) forces, for q ∈ Q`, the fiber uq := uxXq (that is the restriction of u
to the corresponding one dimensional element of the partition) to be L2 close to a multiple of the
cosine of the arclength parametrization along the ray Xq, i.e.

uq(·) ' cq
√
N + 1 cos(·) along Xq, where cq = ‖uq‖L2(mq), for q ∈ Q` (see (5.13)). (1.9)

The difficulties in order to conclude the proof are mainly two, and are strictly linked:

1. Show that Q` 3 q 7→ cq is almost constant;

2. Show that q(Q`) ' 1.

Let us stress that at this stage the only given information is that
´
Q`
c2q q ' 1. The intuition why 1.

and 2. should hold is that an oscillation of cq would correspond to an oscillation of u “orthogonal to
the transport rays”, which would be expensive in terms of Dirichlet energy of u. The proofs of the
two claims are the most technical part of the work and correspond respectively to Proposition 5.2
and Proposition 5.3.
Let us mention that the two difficulties 1. and 2. were not present in the proof of the quantitative
Lévy-Gromov inequality in [CMM18], where it was sufficient to work with characteristic functions
(which have a fixed scale, i.e. they are either 0 or 1).
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A.M. at the Mathematics Institute of the University of Warwick; he wishes to thank both institutes
for the excellent working conditions and the stimulating atmosphere.
A.M. is supported by the EPSRC First Grant EP/R004730/1 “Optimal transport and geometric
analysis” and by the ERC Starting Grant 802689 “CURVATURE”.
The authors are grateful to the anonymous reviewers, for their suggestions that helped to improve
a previous version of the paper.

2 Background material
The goal of this section is to fix the notation and to recall the basic notions/constructions used
throughout the paper: in subsection 2.1 we review geodesics in the Wasserstein distance, in
subsection 2.2 curvature-dimension conditions, in subsection 2.3 some basics of CD(K,N) densities
on segments of the Real line, and in subsection 2.4 the decomposition of the space into transport
rays (localization).

2.1 Geodesics in the L2-Kantorovich-Wasserstein distance
Let (X, d) be a compact metric space and m a Borel probability measure over X. The triple
(X, d,m) is called metric measure space, m.m.s. for short.
The space of all Borel probability measures over X will be denoted by P(X). We define the
L2-Kantorovich-Wasserstein distance W2 between two measures µ0, µ1 ∈ P(X) as

W2(µ0, µ1)2 = inf
π

ˆ
X×X

d2(x, y)π(dxdy), (2.1)

where the infimum is taken over all π ∈ P(X × X) with µ0 and µ1 as the first and the second
marginal, i.e. (P1)]π = µ0, (P2)]π = µ1. Of course Pi, i = 1, 2 denotes the projection on the first
(resp. second) factor and (Pi)] is the corresponding push-forward map on measures. As (X, d) is
complete, also (P(X),W2) is complete.

The space of geodesics of (X, d) is denoted by

Geo(X) :=
{
γ ∈ C([0, 1], X) : d(γs, γt) = |s− t|d(γ0, γ1), for every s, t ∈ [0, 1]

}
.

6



A metric space (X, d) is said to be a geodesic space if and only if for each x, y ∈ X there exists
γ ∈ Geo(X) such that γ0 = x, γ1 = y. A basic fact of W2 geometry, is that if (X, d) is geodesic
then (P(X),W2) is geodesic as well. For any t ∈ [0, 1], let et denote the evaluation map:

et : Geo(X)→ X, et(γ) := γt.

Any geodesic (µt)t∈[0,1] in (P(X),W2) can be lifted to a measure ν ∈ P(Geo(X)), called dynamical
optimal plan, such that (et)] ν = µt for all t ∈ [0, 1]. Given µ0, µ1 ∈ P(X), we denote by
OptGeo(µ0, µ1) the space of all ν ∈ P(Geo(X)) for which (e0, e1)] ν realizes the minimum in
(2.1). Here as usual ] indicates the push-forward operation. If (X, d) is geodesic, then the set
OptGeo(µ0, µ1) is non-empty for any µ0, µ1 ∈ P(X).

A set F ⊂ Geo(X) is a set of non-branching geodesics if and only if for any γ1, γ2 ∈ F , it holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ1
t = γ2

t =⇒ γ1
s = γ2

s , ∀s ∈ [0, 1].

A measure µ on a measurable space (Ω,F) is said to be concentrated on F ⊂ Ω if ∃E ⊂ F with
E ∈ F so that µ(Ω \ E) = 0. With this terminology, we next recall the definition of essentially
non-branching space from [RS14].

Definition 2.1. A metric measure space (X, d,m) is essentially non-branching if and only if for any
µ0, µ1 ∈ P(X), with µ0, µ1 absolutely continuous with respect to m, any element of OptGeo(µ0, µ1)
is concentrated on a set of non-branching geodesics.

2.2 Curvature-dimension conditions for metric measure spaces
The L2-transport structure described in subsection 2.1 allows to formulate a generalized notion
of Ricci curvature lower bound coupled with a dimension upper bound in the context of possibly
non-smooth metric measure spaces. This corresponds to the CD(K,N) condition introduced in the
seminal works of Sturm [St06I, St06II] and Lott–Villani [LV09], which here is reviewed only for a
compact m.m.s. (X, d,m) with m ∈ P(X) and in case K > 0, 1 < N <∞ (the basic setting of the
present paper).

For N ∈ (1,∞), the N -Rényi relative-entropy functional EN : P(X)→ [0, 1] is defined as

EN (µ) :=
ˆ
ρ1− 1

N dm ,

where µ = ρm + µsing is the Lebesgue decomposition of µ with µsing ⊥ m.
Given K ∈ (0,∞), N ∈ (1,∞), and t ∈ [0, 1], define σ(t)

K,N : [0,∞)→ [0,∞] as follows
σ

(t)
K,N (0) := t

σ
(t)
K,N (θ) :=

sin
(
tθ
√

K
N

)
sin
(
θ
√

K
N

) if 0 < θ < π√
K/N

σ
(t)
K,N (θ) := +∞ otherwise .

(2.2)

Set also
τ

(t)
K,N (θ) := t

1
N σ

(t)
K,N−1(θ)1− 1

N . (2.3)

Definition 2.2 (CD(K,N)). A m.m.s. (X, d,m) is said to satisfy CD(K,N) if for all µ0, µ1 ∈ P(X)
absolutely continuous with respect to m there exists ν ∈ OptGeo(µ0, µ1) so that for all t ∈ [0, 1] it
holds µt := (et)#ν � m and

EN ′(µt) ≥
ˆ
X×X

(
τ

(1−t)
K,N ′ (d(x0, x1))ρ−1/N ′

0 (x0) + τ
(t)
K,N ′(d(x0, x1))ρ−1/N ′

1 (x1)
)
π(dx0, dx1), (2.4)

for all N ′ ≥ N , where π = (e0, e1)](ν) and µi = ρim, i = 0, 1.

If (X, d,m) verifies the CD(K,N) condition then the same is valid for (supp(m), d,m); hence we
directly assume X = supp(m).

For the general definition of CD(K,N) see [LV09, St06I, St06II].
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Remark 2.3 (Case of a smooth Riemannian manifold). It is worth recalling that if (M, g) is a
Riemannian manifold of dimension n and h ∈ C2(M) with h > 0 then, denoting with dg and volg
the Riemannian distance and volume measure, the m.m.s. (M, dg, h volg) verifies CD(K,N) with
N ≥ n if and only if (see [St06II, Theorem 1.7])

Ricg,h,N ≥ Kg, Ricg,h,N := Ricg − (N − n)
∇2
gh

1
N−n

h
1

N−n
,

in other words if and only if the weighted Riemannian manifold (M, g, h volg) has N -Bakry-Émery
Ricci tensor bounded below byK. Note that ifN = n the Bakry-Émery Ricci tensor Ricg,h,N = Ricg
makes sense only if h is constant. �

Remark 2.4 (CD∗(K,N), RCD∗(K,N) and RCD(K,N)). The lack of the local-to-global property
of the CD(K,N) condition (for K/N 6= 0) led in 2010 Bacher and Sturm to introduce in [BS10] the
reduced curvature-dimension condition, denoted by CD∗(K,N). The CD∗(K,N) condition asks for
the same inequality (2.4) of CD(K,N) to hold but the coefficients τ (s)

K,N (d(γ0, γ1)) are replaced by
the slightly smaller σ(s)

K,N (d(γ0, γ1)). Let us explicitly notice that, in general, CD∗(K,N) is weaker
than CD(K,N). A subsequent breakthrough in the theory was obtained with the introduction
of the Riemannian curvature dimension condition RCD(K,N): in the infinite dimensional case
N = ∞ this condition was introduced in [AGS11] (for finite measures m, and in [AGMR12] for
σ-finite ones). The finite dimensional refinements RCD(K,N)/RCD∗(K,N) with N < ∞ were
subsequently studied in [G15, EKS15, AMS15]. We refer to these articles as well as to the survey
papers [A18, V17] for a general account on the synthetic formulation of Ricci curvature lower
bounds, in particular of the latter Riemannian-type. Here we only briefly recall that it is a stable
[GMS15] strengthening of the (resp. reduced) curvature-dimension condition: a m.m.s. verifies
RCD(K,N) (resp. RCD∗(K,N)) if and only if it satisfies CD(K,N) (resp. CD∗(K,N)) and the
Sobolev space W 1,2(X,m) is a Hilbert space (with the Hilbert structure induced by the Cheeger
energy).

To conclude we recall also that recently, the first named author together with E. Milman [CMi16]
proved the equivalence of CD(K,N) and CD∗(K,N), together with the local-to-global property for
CD(K,N), in the framework of essentially non-branching m.m.s. having m(X) <∞. As we will
always assume the aforementioned properties to be satisfied by our ambient m.m.s. (X, d,m), we
will use both formulations with no distinction. It is worth also mentioning that a m.m.s. verifying
RCD∗(K,N) is essentially non-branching (see [RS14, Corollary 1.2]) implying also the equivalence
of RCD∗(K,N) and RCD(K,N) (see [CMi16] for details). �

We shall always assume that the m.m.s. (X, d,m) is essentially non-branching and satisfies
CD(K,N) for some K > 0, N ∈ (1,∞) with supp(m) = X. It follows that (X, d) is a geodesic and
compact metric space. More precisely: note we assumed from the beginning (X, d) to be compact
for sake of simplicity, however such an assumption could have been replaced by completeness and
separability throughout subsection 2.1 and subsection 2.2; however compactness would have been
now a consequence of CD(K,N) for some K > 0, N ∈ (1,∞).

A useful property of essentially non-branching CD(K,N) spaces is the validity of a weak local
Poincaré inequality.

Proposition 2.5 (Weak local Poincaré inequality). Let (X, d,m) be an essentially non-branching
CD(K,N) space for some K ≥ 0, N > 1. For every u ∈ Lip(X) it holds

 
Br(x)

∣∣∣u−  
Br(x)

u
∣∣∣m ≤ 2N+2r

 
B2r(x)

|∇u|m. (2.5)

More generally, for every p ≥ 1 there exists Cp,N such that
 
Br(x)

∣∣∣u−  
Br(x)

u
∣∣∣pm ≤ Cp,N rp  

B10r(x)
|∇u|pm. (2.6)
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Proof. It is well known that, in essentially non-branching CD(K,N) spaces, the W2 geodesic
connecting two absolutely continuous probability measures is unique (indeed, it holds more generally
for essentially non-branching MCP(K,N) spaces, [CM17c, Theorem 1.1]). Thus, (X, d,m) as in
the assumptions enters the framework of [R12, Corollary 1] and (2.5) follows.

Recalling that by Bishop-Gromov Inequality [St06II, Theorem 2.3] it holds m(Bρ(x0))
m(B1(x0)) ≥ CNρ

N

for every ρ ∈ [0, 1], x0 ∈ X, the second claim (2.6) is a consequence of (2.5) and [HK00, Theorem
5.1].

2.3 CD(K, N) densities on segments of the real line
We will use several times the following terminology: recalling the coefficients σ from (2.2), a
non-negative function h defined on an interval I ⊂ R is called a CD(K,N) density on I, for K ∈ R
and N ∈ (1,∞), if for all x0, x1 ∈ I and t ∈ [0, 1]:

h(tx1 + (1− t)x0)
1

N−1 ≥ σ(t)
K,N−1(|x1 − x0|)h(x1)

1
N−1 + σ

(1−t)
K,N−1(|x1 − x0|)h(x0)

1
N−1 . (2.7)

The link with the definition of CD(K,N) for m.m.s. can be summarized as follows (see for
instance [CMi16, Theorem A.2]): if h is a CD(K,N) density on an interval I ⊂ R then the
m.m.s. (I, | · |, h(t)dt) verifies CD(K,N); conversely, if the m.m.s. (R, | · |, µ) verifies CD(K,N)
and I = supp(µ) is not a point, then µ � L1 and there exists a representative of the density
h = dµ/dL1 which is a CD(K,N) density on I.

A CD(K,N) density h defined on an interval I ⊂ R satisfies the following properties:

• h is lower semi-continuous on I and locally Lipschitz continuous in its interior (this is easily
reduced to the corresponding statement for concave functions on I).

• h is strictly positive in the interior of I whenever it does not vanish identically (this follows
directly from the definition (2.7)).

• h is locally semi-concave in the interior of I, i.e. for all x0 in the interior of I, there exists
Cx0 ∈ R so that x 7→ h(x)− Cx0(x− x0)2 is concave in a neighbourhood of x0. In particular,
h is twice differentiable in I with at most countably many exceptions.

As proven in [CMi16, Lemma A.5], if h is a CD(K,N) density on an interval I then at any point
x in the interior where it is twice differentiable (thus up to at most countably many exceptions) it
holds

(log h)′′(x) + 1
N − 1 ((log h)′(x))2 = (N − 1)(h

1
N−1 )′′(x)
h

1
N−1 (x)

≤ −K. (2.8)

Also the converse implication holds, see [CMi16, Lemma A.6] for the proof and the precise statement.
We next recall some estimates on CD(N − 1, N) densities, which will turn up to be useful in

the paper. Let hN be the model density for the CD(N − 1, N) condition given by

hN (t) := 1
ωN

sinN−1(t) for t ∈ [0, π], (2.9)

where ωN :=
´ π

0 sinN−1(t) dt. Let ε := π −D and λD :=
´D

0 hN (t) dt, for any D ∈ [0, π].
For a proof of the next proposition see for instance [CMM18, Proposition A.3].

Proposition 2.6. Let h : [0, D] → [0,+∞) be a CD(N − 1, N) density which integrates to 1 on
[0, D]. Then, for any t ∈ (0, D), it holds(

ωN
ωNλD + ε

)
min {hN (t), hN (t+ ε)} ≤ h(t) ≤

(
ωN

ωN − ε

)
max {hN (t), hN (t+ ε)} . (2.10)

Corollary 2.7. Under the assumptions of Proposition 2.6, there exist a constant C = C(N) > 0
and ε0 > 0 with the following property: if ε ∈ [0, ε0] then for any t ∈ (0, D) it holds

|h(t)− hN (t)| ≤ Cε. (2.11)

Moreover, for r ∈ (0, 1/10) and ε ∈ (0, r/10) the following improved estimate holds:

|h(t)− hN (t)| ≤ CrN−2ε, for all t ∈ ([0, r] ∪ [π − r,D]). (2.12)
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Proof. The validity of (2.11) follows from (2.10) taking into account the Lipschitz continuity of hN
and the asymptotic expansions of

ωN
ωNλD + ε

and ωN
ωN − ε

,

as ε→ 0. The improved estimate (2.12) on ([0, r] ∪ [π − r,D]) follows analogously from (2.10) and
the mean value theorem.

Armed with Corollary 2.7 we can prove that, if D ∈ (0, π) is close to π, then the integrals
of the functions sin and cos (and of any bounded function, more in general) with respect to a
CD(N − 1, N) density h defined on [0, D] do not differ much from the value of the corresponding
integrals computed with respect to the model density hN .

Corollary 2.8. Let f : [0, π] → [−1, 1] be Borel measurable. Denote m(dt) := h(t)L1(dt) and
mN (dt) := hN (t)L1(dt). Under the assumptions of Proposition 2.6, there exist a constant C =
C(N) > 0 and ε0 > 0 with the following property: if ε ∈ [0, ε0] then∣∣∣∣∣

ˆ D

0
f(t)m(dt)−

ˆ π

0
f(t)mN (dt)

∣∣∣∣∣ ≤ Cε. (2.13)

Moreover, for and any r ∈ (0, 1/10) and ε ∈ (0, r/10) the following improved estimate holds∣∣∣∣ˆ r

0
f(t)m(dt)−

ˆ r

0
f(t)mN (dt)

∣∣∣∣+

∣∣∣∣∣
ˆ D

π−r
f(t)m(dt)−

ˆ π

π−r
f(t)mN (dt)

∣∣∣∣∣ ≤ CεrN−1. (2.14)

Proof. The conclusion follows from Corollary 2.7 just by integrating on [0, D] and taking into
account that |

´ π
D
f mN | ≤ CεN

2.4 Localization and L1-optimal transportation
The localization technique has its roots in a work of Payne-Weinberger [PW60] and has been
developed by Gromov-Milman [GM87], Lovász-Simonovits [LS93] and Kannan-Lovász-Simonovits
[KLS95] in the setting of Euclidean spaces, spheres and Hilbert spaces. The basic idea is to reduce
an n-dimensional problem, via tools of convex geometry, to lower dimensional problems which are
easier to handle. In the aforementioned papers, the symmetries of the spaces were heavily used to
obtain such a dimensional reduction, typically via iterative bisections. In the recent paper [Kl17],
Klartag found a bridge between L1-optimal transportation problems and the localization techinque
yielding the localization theorem in the framework of smooth Riemannian manifolds. Inspired
by this approach, the first and the second author in [CM17a] proved a localization theorem for
essentially non-branching metric measure spaces verifying the CD(K,N) condition. Before stating
the result it is worth recalling some basics about the disintegration of a measure associated to
a partition (for a comprehensive treatment see the monograph by Fremlin [Fr02]; for a discus-
sion closer to the spirit of this paper see [BC09]; for a one-page summary see [CMM18, Appendix B]).

Given a measure space (X,X ,m), suppose a partition of X is given into disjoint sets {Xq}q∈Q
so that X = ∪q∈QXq. Here Q is the set of indices and Q : X → Q is the quotient map, i.e.

q = Q(x) ⇐⇒ x ∈ Xq.

We endow Q with the push forward σ-algebra Q of X :

C ∈ Q ⇐⇒ Q−1(C) ∈X ,

i.e. the biggest σ-algebra on Q such that Q is measurable. Moreover, the push forward measure
q := Q]m defines a natural measure q on (Q,Q). The triple (Q,Q, q) is called the quotient measure
space.
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Definition 2.9 (Consistent and Strongly Consistent Disintegration). A disintegration of m consis-
tent with the partition is a map

Q 3 q 7−→ mq ∈ P(X,X )

such that the following requirements hold:

1. for all B ∈X , the map q 7→ mq(B) is q-measurable;

2. for all B ∈X and C ∈ Q, the following consistency condition holds:

m
(
B ∩Q−1(C)

)
=
ˆ
C

mq(B) q(dq).

A disintegration of m is called strongly consistent if in addition:

3. for q-a.e. q ∈ Q, mq is concentrated on Xq = Q−1(q).

In the next theorem, for q-a.e. q ∈ Q, the equivalence class Xq is a geodesic in X. With a
slight abuse of notation Xq denotes also the the arc-length parametrization on a real interval of
the corresponding geodesic, i.e. it is a map from a real interval with image Xq. We will use the
following terminology: q 7→ mq is a CD(K,N) disintegration if for q-a.e. q ∈ Q, mq = hqH1xXq ,
where H1 denotes the one-dimensional Hausdorff measure and hq ◦Xq is a CD(K,N) density, in
the sense of (2.7).

Theorem 2.10 ([CM17a]). Let (X, d,m) be an essentially non-branching metric measure space
verifying the CD(K,N) condition for some K ∈ R and N ∈ [1,∞). Let f : X → R be m-integrable
such that

´
X
f m = 0 and assume the existence of x0 ∈ X such that

´
X
|f(x)| d(x, x0)m(dx) <∞.

Then the space X admits a partition {Xq}q∈Q and a corresponding (strongly consistent) disin-
tegration of m, {mq}q∈Q such that:

• For any m-measurable set B ⊂ T it holds

m(B) =
ˆ
Q

mq(B) q(dq),

where q is a probability measure over Q defined on the quotient σ-algebra Q.

• For q-almost every q ∈ Q, the set Xq is a geodesic (possibly of zero length) and mq is supported
on it. Moreover q 7→ mq is a CD(K,N) disintegration.

• For q-almost every q ∈ Q, it holds
´
Xq
f mq = 0.

In Theorem 2.10 we can also distinguish the set of Xα having positive length, whose union
forms the so-called transport set denoted by T , from the ones having zero length, i.e. points, whose
union we usually denote with Z, so to have a decomposition of X into T and Z. The last point of
Theorem 2.10 implies then that m-a.e. f ≡ 0 on Z.

Following the approach of [Kl17], Theorem 2.10 has been proven in [CM17a] studying the
following optimal transportation problem. Let µ0 := f+m and µ1 := f−m, where f± denote the
positive and the negative part of f respectively, and study the L1-optimal transport problem
associated with it

inf
{ˆ

X×X
d(x, y)π(dxdy) : π ∈ P(X ×X), (P1)]π = µ0, (P2)]π = µ1

}
. (2.15)

Then the relevant object to study is given by the dual formulation of the previous minimization
problem. By the summability properties of f (see the hypotheses of Theorem 2.10), there exists a
1-Lipschitz function φ : X → R such that π is a minimizer in (2.15) if and only if π(Γ) = 1, where

Γ := {(x, y) ∈ X ×X : φ(x)− φ(y) = d(x, y)}
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is the naturally associated d-cyclically monotone set, i.e. for any (x1, y1), . . . , (xn, yn) ∈ Γ it holds
n∑
i=1

d(xi, yi) ≤
n∑
i=1

d(xi, yi+1), yn+1 = y1,

for any n ∈ N. The set Γ induces a partial order relation whose maximal chains produce a partition
(up to an m-negligible subset) of the set T ⊂ X appearing in the statement of Theorem 2.10, made
of one dimensional subsets. For a summary of the constructions see [CMM18, Section 2.5], for more
details see [CM17a, CMi16].

3 One dimensional estimates
The goal of this section is to give a self-contained presentation of the 1-dimensional estimates we
will use throughout the paper.

3.1 Berard-Besson-Gallot explicit lower bound on the model Isoperimet-
ric profile

For N > 1, let

ωN :=
ˆ π

0
(sin t)N−1 dt and mN := 1

ωN
(sin t)N−1L1(dt)x[0, π]. (3.1)

From now on fix D ∈ (0, π). For b ∈ [0, π−D] and v ∈ [0, 1], let R(b, v) ∈ [b, π] be uniquely defined
by the equation ˆ R(b,v)

b

(sin t)N−1 dt = v

ˆ b+D

b

(sin t)N−1 dt. (3.2)

Set
IN,D(v) := inf {g(b, v) : b ∈ [0, π −D]} , (3.3)

where

g(b, v) := [sin (R(b, v))]N−1

´ b+D
b

(sin t)N−1 dt
. (3.4)

To keep notation short, we also set IN := IN,π. Notice that IN is the isoperimetric profile of SN ,
for integer N . We refer to section 4 for a brief discussion about the isoperimetric profile; note
also that IN,D is the model isoperimetric profile in the Lévy-Gromov isoperimetric comparison
Theorem for spaces with Ricci ≥ N − 1, dimension ≤ N and diameter ≤ D, see [Gr07, Appendix
C], [BBG85, Mi15, CM17a].

The proof of the next lemma is inspired by, but somewhat different from, [BBG85, Appendix 1]
and the statement generalises to arbitrary real N > 1 the result stated in the reference for integer
N ≥ 2.

Lemma 3.1 (Berard-Besson-Gallot explicit isoperimetric lower bound). Fix N > 1 and D ∈ [0, π].
and let IN,D : [0, 1]→ [0,∞) be defined in (3.3). Then

IN,D(v)
IN (v) ≥

( ´ π
2

0 (cos t)N−1 dt´ D
2

0 (cos t)N−1 dt

) 1
N

=: CN,D ≥ 1, ∀v ∈ (0, 1) (3.5)

Proof. Let v′ ∈ (0, 1) and f : [0, π −D]× (0, 1)→ [0,+∞) be defined by

v′ := 1
ωN

ˆ R(b,v)

0
(sin t)N−1 dt and f(b, v) := g(b, v)

IN (v) . (3.6)

In particular
IN (v′) = 1

ωN
[sinR(b, v)]N−1 (3.7)
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and therefore

f(b, v) = ωN

(ˆ b+D

b

(sin t)N−1 dt
)−1

IN (v′)
IN (v) . (3.8)

Thanks to the explicit expression of the isoperimetric profile IN it is possible to compute(
I

N
N−1
N

)′′
I
N−2
N−1
N = −N. (3.9)

In particular it follows from (3.9) that I
N
N−1
N is concave on (0, 1).

We now distinguish two cases: v′ ≤ v and v′ > v.
Case 1: v′ ≤ v.

First observe that

ωNv
′ =

ˆ R(b,v)

0
(sin t)N−1 dt ≥

ˆ R(b,v)

b

(sin t)N−1 dt = v

ˆ b+D

b

(sin t)N−1 dt. (3.10)

The concavity observed above together with (3.10) give that

IN (v′)
IN (v) ≥

(
v′

v

)1− 1
N

≥

(
ω−1
N

ˆ b+D

b

(sin t)N−1 dt
)1− 1

N

.

Hence, taking into account (3.8), we obtain

f(b, v) ≥ ω
1
N

N

(ˆ b+D

b

(sin t)N−1 dt
)− 1

N

. (3.11)

Case 2: v′ > v.
A change of variables in the definition of R easily yields

R(π − b−D, 1− v) = π −R(b, v)

and therefore
f(b, v) = f(π − b−D, 1− v). (3.12)

Moreover ˆ R(π−b−D,1−v)

0
(sin t)N−1 dt =

ˆ π

R(b,v)
(sin t)N−1 dt = (1− v′)ωN ,

hence

f(π − b−D, 1− v) = ωN

(ˆ b+D

b

(sin t)N−1

)−1
IN (1− v′)
IN (1− v) . (3.13)

Next we observe that, as in the previous case, the concavity of I
N
N−1
N yields

IN (1− v′)
IN (1− v) ≥

(
1− v′

1− v

)1− 1
N

. (3.14)

Moreover, it holds

ωN (1− v′) =
ˆ π

R(b,v)
(sin t)N−1 dt ≥

ˆ b+D

R(b,v)
(sin t)N−1 dt = (1− v)

ˆ b+D

b

(sin t)N−1 dt. (3.15)

Combining (3.13), (3.14) and (3.15) and taking into account (3.12), we get

f(b, v) ≥ ω
1
N

N

(ˆ b+D

b

(sin t)N−1 dt
)− 1

N

. (3.16)
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It is now sufficient to observe that the function x 7→
´ x+D
x

(sin t)N−1 dt attains its maximum at
x = π

2 −
D
2 in order to obtain from (3.11), (3.16), (3.6) and (3.3) that

IN,D(v)
IN (v) ≥

 ωN´ π
2 +D

2
π
2−

D
2

(sin t)N−1 dt


1
N

= CN,D, ∀v ∈ (0, 1).

Above, the last identity follows from the expression for CN,D introduced in (3.5) thanks to the
identity cos(π/2− x) = sin(x) and a change of variables.

Let us study the behaviour of CN,D in the asymptotic D → π.

Lemma 3.2. It holds that

lim
D→π

(π −D)N

C2
N,D − 1 = 2N−1N2

ˆ π
2

0
(cos t)N−1 dt. (3.17)

Hence there exist C̄ = C̄(N) > 0 and D̄ = D̄(N) < π such that

C2
N,D − 1 ≥ C̄(π −D)N , ∀D ∈ [D̄, π]. (3.18)

Proof. Recalling the expression of CN,D from (3.5), we have

C2
N,D − 1 =

( ´ π
2

0 (cos t)N−1 dt´ D
2

0 (cos t)N−1 dt

) 2
N

− 1 =

1 +

´ π
2
D
2

(cos t)N−1 dt
´ D

2
0 (cos t)N−1 dt


2
N

− 1.

Now, as D → π, we have the expansion
ˆ π

2

D
2

(cos t)N−1 dt =
ˆ π

2−
D
2

0
(sin t)N−1 dt ∼

ˆ π
2−

D
2

0
sN−1 ds ∼ 1

N

(
π

2 −
D

2

)N
.

Taking into account the asymptotic (1 + x)β − 1 ∼ βx, we obtain (3.17).
The second conclusion in the statement easily follows from the first one.

3.2 Spectral gap and diameter
Building on top of the lower bound of the isoperimetric profile obtained in Lemma 3.1, we next
obtain a quantitative spectral gap inequality for Neumann boundary conditions in terms diameters.

The analogous result in the case of smooth Riemannian manifolds was established in [Cr82,
Theorem B] building upon a quantitative improvement of the Lévy-Gromov inequality and on
[BM82] (see also [BBG85, Corollary 17]). The usual strategy to show the improved Neumann
spectral gap inequality is based on the observation that a Neumann first eigenfunction of the
Laplacian f is a Dirichlet first eigenfunction of the Laplacian on the domains { f > 0 } and { f < 0 }
(cf. [Ma00, Lemma 3.2]). The improved Dirichlet spectral gap inequality is then obtained by
rearrangement starting from the isoperimetric inequality.

Proposition 3.3 (1-Dimensional Quantitative Obata’s Theorem on the diameter). Let (I, deucl,m)
be a one dimensional CD(N − 1, N) m.m.s. with diam(I) ≤ D. Then

λ1,2
(I,deucl,m)

N
≥ C2

N,D =
( ´ π

2
0 (cos t)N−1 dt´ D

2
0 (cos t)N−1 dt

) 2
N

, (3.19)

where CN,D was defined in (3.5).
In particular, there exists a constant CN > 0 (more precisely one can choose CN = C̄N where C̄
was defined in Lemma 3.2) such that

CN (π − diam(I))N ≤ λ1,2
(I,deucl,m) −N. (3.20)
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Proof. From [BQ00] (see also [CM17b, Section 4.1] for the regularization procedure) we know that
λ1,2

(I,deucl,m) ≥ λ
1,2
N,D where λ1,2

N,D is the first solution λ > 0 of the eigenvalue problem

ẅ + (N − 1) tan(t)ẇ + λw = 0, (3.21)

on [−D/2, D/2] with Neumann boundary conditions. The eigenfunction associated to the first
eigenvalue in (3.21) is unique, up to a multiplicative constant. Therefore, denoting it by wN,D :
[−D/2, D/2] → (−∞,+∞), it holds wN,D(−x) = −wN,D(x) for any x ∈ [−D/2, D/2] as a
consequence of the symmetry of (3.21). In particular wN,D(0) = 0. Let

mN,D := ΛN,D (cos t)N−1 L1 [−D/2, D/2],

with ΛN,D such that mN,D is a probability measure. Note that ([−D/2, D/2], deucl,mN,D) is a
CD(N − 1, N) m.m.s. with diameter equal to D and mN,D([−D/2, 0]) = mN,D([0, D/2]) = 1/2.
Hence

λ1,2
N,D =

´D/2
−D/2

∣∣w′N,D∣∣2 mN,D´D/2
−D/2 |wN,D|

2
mN,D

=
´D/2

0
∣∣w′N,D∣∣2 mN,D´D/2

0 |wN,D|2 mN,D
≥ λ1,2,D

N,D (1/2),

where λ1,2,D
N,D (1/2) is the least first eigenvalue of the Laplacian with Dirichlet boundary conditions

on one extremum for intervals of volume 1/2 in ([−D/2, D/2], deucl,mN,D).
Moreover a co-area argument (see for instance [BBG85, Corollary 17] or [MSe18, Proposition 3.13])
using Lemma 3.1 gives

λ1,2,D
N,D (1/2) ≥ C2

N,D λ
1,2,D
N,π (1/2).

Recalling that λ1,2,D
N,π (1/2) = λ1,2

N,π = N (see for instance [BQ00]), we conclude that

λ1,2
(I,deucl,m) ≥ λ

1,2
N,D ≥ λ

1,2,D
N,D (1/2) ≥ N C2

N,D. (3.22)

The second part of the statement follows by choosing D = diam(I) and applying Lemma 3.2.

A converse of the inequality proved in Proposition 3.3 can be obtained as follows.

Lemma 3.4. For any N > 1 there exists C = C(N) > 0 such that if ([0, D], deucl,m) is a one
dimensional CD(N − 1, N) m.m.s. with D ≥ π − ε then∣∣∣λ1,2

([0,D],deucl,m) −N
∣∣∣ ≤ Cε.

Proof. By Lichnerowicz spectral gap we already know that λ1,2
([0,D],deucl,m) ≥ N . It is therefore

enough to prove the existence of u ∈ Lip([0, D]) such that

‖u‖L2([0,D],m) = 1,
ˆ

[0,D]
um = 0,

ˆ
[0,D]
|u′|2m ≤ N + CN ε. (3.23)

Setting u∗N (t) :=
√
N + 1 cos(t) and using Corollary 2.8 we get∣∣∣∣∣

ˆ
[0,D]

u∗N m

∣∣∣∣∣ ≤ CN ε,
∣∣∣∣∣1−

ˆ
[0,D]
|u∗N |2 m

∣∣∣∣∣ ≤ CN ε,
ˆ

[0,D]
|(u∗N )′|2 m ≤ N + CN ε. (3.24)

Let v = u∗N −
´

[0,D] u
∗
N m and cv := ‖v‖L2([0,D],m). Using the estimates (3.24), it is straightforward

to check that u = 1
cv
v satisfies (3.23).

3.3 Spectral gap and shape of eigenfunctions
Next we establish some basic estimates on eigenfunctions which will be useful later.

Given a one dimensional CD(K,N) space (I, deucl,m), we know that we can write m(dt) =
hL1(dt) for some CD(K,N) density h. We start by recalling the definition and basic properties of
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the Laplace operator ∆. A function u ∈W 1,2(I,m) is said to be in the domain of ∆, and we write
u ∈ Dom (∆) if for every φ ∈ C∞c (I) it holds∣∣∣∣ˆ

I

u′φ′m

∣∣∣∣ ≤ Cu‖φ‖L2(I,m),

for some Cu ≥ 0 depending on u. In this case, by Riesz Theorem, there exists a function
∆u ∈ L2(I,m) such that

−
ˆ
I

u′φ′m =
ˆ
I

∆uφm.

It is readily seen that the operator Dom (∆) 3 u 7→ ∆u ∈ L2(I,m) is linear.
Moreover, using the properties of CD(K,N) densities recalled at the beginning of the section, it

holds that every u ∈ Dom (∆) is twice differentiable L1-a.e. on I and

∆u = u′′ + (log h)′u′, L1-a.e. on I, ∀u ∈ Dom (∆). (3.25)

Proposition 3.5. Let (I, deucl,m) be a one dimensional CD(N − 1, N) m.m.s.. Then there exists
a constant C = C(N) > 0 such that, if u is an eigenfunction of the Laplacian on (I, deucl,m)
associated to an eigenvalue λ ∈ [N, 2N ] and with ‖u‖2 = 1, then u ∈W 2,2

loc
(
I, deucl,L1) and

‖u′′ + u‖L2(m) ≤ C (λ−N)
1
2 . (3.26)

Proof. Step 1. We claim that it holds
ˆ
I

(
u′′ − 1

N
∆u
)2

m ≤
ˆ
I

(
N − 1
N

(∆u)2 − (N − 1)(u′)2
)
m. (3.27)

Since by assumption u ∈W 1,2(I, deucl,m) is an eigenfunction we have −∆u ∈W 1,2(I, deucl,m) as
well. Thus we can define the Γ2 operator as

Γ2(u;φ) :=
ˆ
I

(
1
2(u′)2∆φ− (∆u)′ u′φ

)
m, (3.28)

for all φ ∈ L∞(I,m) with ∆φ ∈ L∞(I,m). Using that h satisfies (2.8), a manipulation via integration
by parts gives that for all φ ≥ 0 as above it holds:

Γ2(u;φ) ≥
ˆ
I

[
(u′′)2 + (N − 1)(u′)2 + 1

N − 1(∆u− u′′)2
]
φm. (3.29)

By direct computations, one can check that

(u′′)2+(N − 1)(u′)2 + 1
N − 1(∆u− u′′)2

= (N − 1)(u′)2 +
(
u′′ − 1

N
∆u
)2

+ 1
N

(∆u)2 + 1
N − 1

(
u′′ − 1

N
∆u
)2

, m-a.e.. (3.30)

Plugging (3.30) into (3.29) gives

Γ2(u;φ) ≥
ˆ
I

[
(N − 1)(u′)2 +

(
u′′ − 1

N
∆u
)2

+ 1
N

(∆u)2

]
φm.

Choosing φ ≡ 1 yields (3.27).

Step 2.
Inserting the eigenvalue relation λu = −∆u into (3.27), we obtain

ˆ
I

(
u′′ + λ

N
u

)2
m ≤

ˆ
I

(
N − 1
N

(λu)2 − (N − 1)(u′)2
)
m = N − 1

N
λ(λ−N)

ˆ
I

u2m. (3.31)
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Eventually,
ˆ
I

(u′′ + u)2
m ≤ 2

ˆ
I

∣∣∣∣u′′ + λ

N
u

∣∣∣∣2 m + 2
ˆ
I

∣∣∣∣λ−NN u

∣∣∣∣2 m
≤ 2

(
N − 1
N

λ(λ−N) + (λ−N)2

N2

)ˆ
I

u2m

≤ C(N)(λ−N)
ˆ
I

u2m,

where, in the last estimate, we used the assumption λ ≤ 2N .

The aim of the remaining part of this section is to prove Theorem 3.11 stating roughly that, on
any one dimensional CD(N − 1, N) m.m.s. (I, deucl,m), a function u : I → R whose 2-Rayleigh
quotient is close to N (the optimal one on the model (N − 1, N)-space) and with L2-norm equal to
one, is W 1,2-close to the (normalized) cosine of the distance from one of the extrema of the interval,
in quantitative terms.

The conclusion of Theorem 3.11 will be achieved through some intermediate steps. First we
estimate theW 1,2-closeness of a first eigenfunction u∗ for (I, deucl,m) with the cosine of the distance
from one of the extremes of the segment, see Proposition 3.6. Then, we bound the W 1,2-closeness
of the function u from u∗ (or −u∗), see Proposition 3.10.

Let us observe that
‖cos(·)‖L2(mN ) = 1√

N + 1
, (3.32)

and, by symmetry, ˆ
[0,π]

cos(t)mN (dt) = 0. (3.33)

Proposition 3.6. For every N > 1 there exist constants C = C(N) > 0 and ε0 = ε0(N) > 0
such that for every one dimensional CD(N − 1, N) m.m.s. ([0, D], deucl,m) and every Neumann
eigenfunction u∗, with ‖u∗‖L2(m) = 1, of eigenvalue λ ∈ [N, 2N ] it holds

min
{∥∥∥u∗ −√N + 1 cos(·)

∥∥∥
L2(m)

,
∥∥∥u∗ +

√
N + 1 cos(·)

∥∥∥
L2(m)

}
≤ Cδmin{1/2,1/N}, (3.34)

where δ :=
´
|∇u∗|2m−N < ε0. Furthermore the conclusion can be improved to W 1,2-closeness:

min
{∥∥∥∥(u∗ −√N + 1 cos(·)

)′∥∥∥∥
L2(m)

,

∥∥∥∥(u∗ +
√
N + 1 cos(·)

)′∥∥∥∥
L2(m)

}
≤ Cδmin{1/2,1/N}. (3.35)

Proof. Let h : [0, D] → [0,+∞) be the density of m with respect to L1 and let x0 ∈ (0, D) be a
maximum point of h. In [CMM18, Lemma A.4] it is proved that such a maximum point is unique
and that h is strictly increasing on [0, x0] and strictly decreasing on [x0, D].

Step 1.
In this first step we prove that, given z ∈ L2([0, D],m), any solution of v′′+ v = z can be written as

v(t) =
ˆ t

x0

sin(t− s)z(s) ds+ α sin(t) + β cos(t) (3.36)

for some α, β ∈ R. To this aim, it suffices to prove that

v0(t) :=
ˆ t

x0

sin(t− s)z(s) ds (3.37)

solves v′′ + v = z. First we observe that v0 is well defined, since the assumption z ∈ L2((0, D),m)
guarantees that z ∈ L1

loc((0, D),L1) (due to the fact that h is locally bounded from below by a
strictly positive constant in the interior of [0, D]). The fact that it satisfies v′′0 + v0 = z follows from
an elementary computation.
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Step 2.
Next, we prove that the function v0 defined in (3.37) satisfies

‖v0‖L2(m) ≤ π ‖z‖L2(m) . (3.38)

Indeed, taking into account that |sin| ≤ 1, applying the Cauchy-Schwarz inequality, Fubini’s
Theorem and recalling that h is increasing on [0, x0] and decreasing on [x0, D], we can compute

‖v0‖2L2(m) =
ˆ D

0

(ˆ t

x0

sin(t− s)z(s) ds
)2

h(t) dt

≤π
ˆ D

0
h(t)

∣∣∣∣ˆ t

x0

z2(s) ds
∣∣∣∣dt

=π
(ˆ x0

0
z2(s)

ˆ s

0
h(t) dtds+

ˆ D

x0

z2(s)
ˆ D

s

h(t) dtds
)

≤π2

(ˆ x0

0
z2(s)h(s) ds+

ˆ D

x0

z2(s)h(s) ds
)

= π2 ‖z‖2L2(m) .

Let us remark that from (3.38) it follows applying Cauchy-Schwartz inequality that ‖v0‖L1(m) ≤
π ‖z‖L2(m).

Step 3.
Recall from Proposition 3.3 the bound π −D ≤ Cδ1/N . Furthermore we know from (3.26) that, if
u∗ is as in the assumptions of the statement, then (u∗)′′ + u∗ = z on [0, D] for some function z
such that ‖z‖L2(m) ≤ Cδ1/2. Hence, as proved in Step 1., u∗ can be written as

u∗(t) =
ˆ t

x0

sin(t− s)z(s) ds+ α sin(t) + β cos(t), (3.39)

for some α, β ∈ R. We want to show that there exists C = C(N) > 0 such that |α|+ |β| ≤ C(N).
Set u0(t) :=

´ t
x0

sin(t− s)z(s) ds and recall that, from Step 2., it holds ‖u0‖L2(m) ≤ Cδ1/2. Since
by assumption u∗ has null mean value, integrating (3.39) over [0, D] with respect to m gives

0 = α

ˆ
[0,D]

sin(t)m(dt) + β

ˆ
[0,D]

cos(t)m(dt) +
ˆ

[0,D]
u0(t)m(dt). (3.40)

From the last remark in Step 2. and Corollary 2.8, it follows that(ˆ
[0,π]

sinN (t) dt+O(δ1/N )
)
α+O(δ1/N )β +O(δ1/2) = 0,

giving that
α = O(δ1/N )β +O(δ1/2). (3.41)

In order to estimate β, we compute the L2(m)-norm squared both at the left and at the right
hand-side of (3.39) to obtain

1 = ‖u0‖2L2(m) + α2 ‖sin(·)‖2L2(m) + β2 ‖cos(·)‖2L2(m)

+ 2α
ˆ
u0(t) sin(t)m(dt) + 2β

ˆ
u0(t) cos(t)m(dt) + 2αβ

ˆ
sin(t) cos(t)m(dt). (3.42)

Plugging (3.41) into (3.42), gives

(1 +O(δ)) +O(δ1/N+1/2) β +
(ˆ

[0,π]
cos2(t) sinN−1(t) dt+O(δ1/N )

)
β2 = 0, (3.43)

yielding |β| ≤ C(N) and thus, by (3.41), also |α| ≤ C(N).
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Step 4.
Conclusion. In order to get (3.34), we have to bound |α| and min

{∣∣√N + 1− β
∣∣ , ∣∣√N + 1 + β

∣∣}
in terms of δ.
From (3.40), Step 3., the last remark in Step 2. and Corollary 2.8 it follows that

|α| ≤ C(δ1/2 + δ1/N ) ≤ Cδmin{1/N,1/2}, (3.44)

up to increase the value of the constant C in the second inequality. Plugging (3.44) into (3.42) gives

1 = O(δ) +O(δmin{1,2/N}) +O(δ1/2) +O(δmin{1/2,1/N}) + β2/(N + 1)

and therefore ∣∣∣∣1− β2

N + 1

∣∣∣∣ = O(δmin{1/2,1/N}). (3.45)

From (3.45) we easily obtain that

min
{∣∣∣√N + 1− β

∣∣∣ , ∣∣∣√N + 1 + β
∣∣∣} ≤ Cδmin{1/4,1/(2N)}. (3.46)

In case ∣∣∣√N + 1− β
∣∣∣ = min

{∣∣∣√N + 1− β
∣∣∣ , ∣∣∣√N + 1 + β

∣∣∣} ≤ Cδmin{1/4,1/(2N)}

(respectively
∣∣√N + 1 + β

∣∣ = min
{∣∣√N + 1− β

∣∣ , ∣∣√N + 1 + β
∣∣} ≤ Cδmin{1/4,1/(2N)}), it follows

that ∣∣∣√N + 1 + β
∣∣∣ ≥ 2

√
N + 1− Cδmin{1/4,1/(2N)} ≥

√
N + 1, for δ ≤ δ0(N). (3.47)

(resp.
∣∣√N + 1− β

∣∣ ≥ √N + 1). Plugging (3.47) back into (3.45) gives
∣∣√N + 1− β

∣∣ ≤ Cδmin{1/2,1/N}

(resp.
∣∣√N + 1 + β

∣∣ ≤ Cδmin{1/2,1/N}). In conclusion, (3.45) and (3.46) can be bootstrapped to
give

min
{∣∣∣√N + 1− β

∣∣∣ , ∣∣∣√N + 1 + β
∣∣∣} ≤ Cδmin{1/2,1/N}. (3.48)

Combining all these ingredients we can eventually estimate the L2(m)-distance between the first
Neumann eigenfunction and the normalized cosine. Indeed, assuming without loss of generality
that

∣∣√N + 1− β
∣∣ ≤ ∣∣√N + 1 + β

∣∣ and taking into account (3.44), (3.48), we obtain∥∥∥u∗ −√N + 1 cos(·)
∥∥∥
L2(m)

=
∥∥∥u0 + α sin(·) + β cos(·)−

√
N + 1 cos(·)

∥∥∥
L2(m)

≤ |α| ‖sin(·)‖L2(m) + ‖u0‖L2(m) +
∣∣∣β −√N + 1

∣∣∣ ‖cos(·)‖L2(m)

≤Cδmin{1/2,1/N}.

Finally, we improve the L2(m)-closeness to W 1,2(m)-closeness. To this aim, differentiate (3.39) to
obtain

(u∗)′(t) =
ˆ t

x0

cos(t− s)z(s) ds+ α cos(t)− β sin(t). (3.49)

With computations analogous to the ones used to obtain the bound ‖v0‖2 ≤ π ‖z‖2 in Step 2., one
can prove that, letting w0(t) :=

´ t
x0

cos(t− s) ds, it holds ‖w0‖2 ≤ π ‖z‖2. The sought estimate for

min
{∥∥∥∥(u∗ −√N + 1 cos(·)

)′∥∥∥∥
L2(m)

,

∥∥∥∥(u∗ +
√
N + 1 cos(·)

)′∥∥∥∥
L2(m)

}

follows taking into account (3.44) and (3.46).

We isolate the following corollary which will be useful later in the paper.
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Corollary 3.7. Under the assumptions of Proposition 3.6, setting r = δγ/N for some γ ∈ (0, 1), it
holds

min
{∥∥∥u∗ −√N + 1 cos(·)

∥∥∥
W 1,2([0,r],m)

,
∥∥∥u∗ +

√
N + 1 cos(·)

∥∥∥
W 1,2([0,r],m)

}
≤ C(N)

(
δ1/2 + rN/2δmin{1/2,1/N}

)
. (3.50)

Moreover, for η ∈ (0, r/10),

min
{∥∥∥u∗ −√N + 1 cos(·)

∥∥∥
W 1,2([r−η,r+η],m)

,
∥∥∥u∗ +

√
N + 1 cos(·)

∥∥∥
W 1,2([r−η,r+η],m)

}
≤ C(N)

(
δ1/2 + (rN−1η)1/2δmin{1/2,1/N}

)
. (3.51)

Proof. It is enough to improve the final estimates in Step 4. of the proof of Proposition 3.6 by
using (2.14):∥∥∥u∗ −√N + 1 cos(·)

∥∥∥
L2([0,r],m)

=
∥∥∥u0 + α sin(·) + β cos(·)−

√
N + 1 cos(·)

∥∥∥
L2([0,r]m)

≤‖u0‖L2([0,r],m) + |α| ‖sin(·)‖L2([0,r],m) +
∣∣∣β −√N + 1

∣∣∣ ‖cos(·)‖L2([0,r]m)

≤C
(
δ1/2 + δmin{1/2,1/N}(‖cos(·)‖L2([0,r]mN ) + Cδ1/NrN−1})

)
≤C

(
δ1/2 + rN/2δmin{1/2,1/N}

)
.

The improved estimate for the first derivative and for the domain [r − η, r + η] is analogous.

Lemma 3.8. For any N > 1 there exist D̄ = D̄(N) < π and α = α(N) > 0 such that the following
holds. Let ([0, D], deucl,m) be a one dimensional CD(N − 1, N) m.m.s. with D ≥ D̄ and u∗ any
first Neumann eigenfunction, with ‖u∗‖L2(m) = 1.

Then for any v ∈ L2([0, D],m) with ‖v‖L2(m) = 1 such that
∣∣´ vu∗m∣∣ ≤ 1/2 we have

N + α ≤
ˆ

[0,D]
|v′|2 m.

Proof. We argue by contradiction.
Suppose there is a sequence of CD(N − 1, N) measures mn = hnL1 with supphn = [0, Dn]

and Dn ↑ π satisfying the following: for every n there exists vn ∈ W 1,2([0, Dn], deucl,mn) with
‖vn‖L2(mn) = 1 such that

ˆ
[0,Dn]

|v′n|
2
mn → N as n→∞, and

∣∣∣∣ˆ vnu
∗
nmn

∣∣∣∣ ≤ 1
2 , (3.52)

where u∗n is a first Neumann eigenfunction on ([0, Dn], deucl, hnL1), i.e.ˆ
[0,Dn]

|u∗n|
2
mn = 1,

ˆ
[0,Dn]

|(u∗n)′|2 mn = λn → N, (3.53)

where in the last identity we used (3.25) and the convergence of λn to N follows from Lemma 3.4.
From Corollary 2.7, the fact that supphn = [0, Dn] with Dn ↑ π implies that (hn) (extended to

the constant h(Dn) on [Dn, π]) are converging uniformly to the model 1-dimensional CD(N − 1, N)-
density hN = 1

c′
N

sinN−1 on [0, π]. In particular, for every η ∈ (0, π/2) the densities hn restricted to
[η, 1− η] are bounded above and below by strictly positive constants.

The bounds (3.53) then imply that u∗n (resp. vn) are uniformly 1/2-Hölder continuous on
[η, π − η] for every η ∈ (0, π/2).

Thus, by Arzelá-Ascoli Theorem combined with a standard diagonal argument, there exists
u∗ : [0, π] → R (resp. v : [0, π] → R) and a (non-relabeled for simplicity) subsequence such that
u∗n → u∗ (resp. vn → v) uniformly on [η, π − η] for every η ∈ (0, π/2). It is also easy to check thatˆ

[0,π]
u∗nhn φL1 →

ˆ
[0,π]

u∗hN φL1,

ˆ
[0,π]

vnhn φL1 →
ˆ

[0,π]
vhN φL1 ∀φ ∈ C([0, π]).
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Combining the last weak convergence statement with the bounds (3.52), (3.53) and with [GMS15,
Theorem 6.3] gives that

‖u∗‖L2([0,π],mN ) = ‖v‖L2([0,π],mN ) = 1,

∣∣∣∣∣
ˆ

[0,π]
u∗vmN

∣∣∣∣∣ ≤ 1
2 ,ˆ

[0,π]
|(u∗)′|2 mN ≤ N,

ˆ
[0,π]
|v′|2 mN ≤ N.

Therefore, both u∗ and v are first Neumann eigenfunctions on the model space ([0, π], deucl,mN ).
However the first eigenfunction is unique up to a sign, thus it must hold

∣∣∣´[0,π] u
∗vmN

∣∣∣ = 1.
Contradiction.

Corollary 3.9. For every N > 1 there exists β = β(N) > 0 with the following property. Let
(I, deucl,m) be a one dimensional CD(N − 1, N) m.m.s. with m(I) = 1 and satisfying

λ1,2
(I,deucl,m) −N < β.

Then, for any u ∈ W 1,2(I, deucl,m) with ‖u‖L2(m) = 1 and
∣∣´
I
uu∗m

∣∣ ≤ 1/2, where u∗ is a first
Neumann eigenfunction with ‖u∗‖L2(m) = 1, it holds

λ1,2
(I,deucl,m) + β <

ˆ
|u′|2 m.

Proof. First choose β > 0 sufficiently small so that, by Proposition 3.3, the diameter of (I, deucl,m)
is bigger than D̄. Then conclude by Lemma 3.8 (and decrease the constant β > 0 if necessary).

Proposition 3.10. For every N > 1 there exists β = β(N) > 0 with the following property.
Let (I, deucl,m) be a one dimensional CD(N − 1, N) m.m.s. with m(I) = 1. Assume there exists
v ∈W 1,2(I, deucl,m) with ‖v‖L2(m) = 1 satisfying

ˆ
I

|v′|2 m−N < β. (3.54)

Then it holds

min
{
‖v − u∗‖2W 1,2(m) , ‖v + u∗‖2W 1,2(m)

}
≤ C

(ˆ
|v′|2 m−

ˆ
|(u∗)′|2 m

)
, (3.55)

where u∗ is a first Neumann eigenfunction with ‖u∗‖L2(m) = 1.

Proof. We begin by rewriting
ˆ
|v′|2 m−

ˆ
|(u∗)′|2 m =

ˆ
|(v − u∗)′|2 m + 2

ˆ
(v − u∗)′ (u∗)′m

=
ˆ
|(v − u∗)′|2 m− 2λ1,2

(I,deucl,m)

(
1−

ˆ
v u∗m

)
=
ˆ
|(v − u∗)′|2 m− λ1,2

(I,deucl,m)

ˆ
(v − u∗)2 m. (3.56)

Now (3.54) implies that
∣∣´ vu∗m∣∣ > 1/2 by Corollary 3.9. Hence, assuming without loss of generality

that
´
u∗vm > 1/2, we get

∣∣´ u∗(u∗ − v)m
∣∣ < 1/2. Therefore, Corollary 3.9 yields

ˆ
|(v − u∗)′|2 m ≥ (λ1,2

(I,deucl,m) + β) ‖v − u∗‖22 .

The combination of the last estimate with (3.56) gives

‖v − u∗‖22 ≤ C
(ˆ
|v′|2 m−

ˆ
|(u∗)′|2 m

)
, (3.57)
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with C := 1/β. We now improve (3.57) to W 1,2-closeness, namely (3.55). In order to do so, it
suffices to observe that the estimates we obtained above yield

ˆ
|(v − u∗)′|2 m ≤λ1,2

(I,deucl,m) ‖v − u
∗‖22 +

ˆ
|v′|2 m−

ˆ
|(u∗)′|2 m

≤C(1 + λ1,2
(I,deucl,m))

(ˆ
|v′|2 m−

ˆ
|(u∗)′|2 m

)
.

Theorem 3.11 (1-dimensional Quantitative Obata’s Theorem on the function). For every N > 1
there exist constants C = C(N) > 0 and δ0 = δ0(N) > 0 with the following property. Let
([0, D], deucl,m) be a one dimensional CD(N − 1, N) m.m.s. and let u ∈ Lip(I) satisfy

´
um = 0

and
´
u2 m = 1. If

δ :=
ˆ
|u′|2 m−N ≤ δ0,

then

min
{∥∥∥u−√N + 1 cos(·)

∥∥∥
W 1,2(m)

,
∥∥∥u+

√
N + 1 cos(·)

∥∥∥
W 1,2(m)

}
≤ Cδmin{1/2,1/N}. (3.58)

Moreover, setting r = δγ/N for some γ ∈ (0, 1), for any η ∈ (0, r/10) it holds

min
{∥∥∥u−√N + 1 cos(·)

∥∥∥
W 1,2([0,r],m)

,
∥∥∥u+

√
N + 1 cos(·)

∥∥∥
W 1,2([0,r],m)

}
≤ C

(
δ1/2 + rN/2δmin{1/2,1/N}

)
. (3.59)

min
{∥∥∥u∗ −√N + 1 cos(·)

∥∥∥
W 1,2([r−η,r+η],m)

,
∥∥∥u∗ +

√
N + 1 cos(·)

∥∥∥
W 1,2([r−η,r+η],m)

}
≤ C(N)

(
δ1/2 + (rN−1η)1/2δmin{1/2,1/N}

)
. (3.60)

Proof. First apply Proposition 3.10 to bound the W 1,2(m)-distance between u and a first eigen-
function of the Neumann Laplacian on ([0, D], deucl,m), then apply Proposition 3.6 (respectively
Corollary 3.7) to bound theW 1,2(m)-distance (respectively theW 1,2([0, r],m) orW 1,2([r−η, r+η],m)
distance) between the first eigenfunction and the normalized cosine. The sought estimate follows
by the triangle inequality.

4 Quantitative Obata’s Theorem on the diameter
Building on top of the one-dimensional results obtained in Section 3, we will derive several
quantitative estimates for a general essentially non-branching m.m.s. (X, d,m) verifying CD(K,N).

Given a m.m.s. (X, d,m), the perimeter P(E) of a Borel subset E ⊂ X is defined as

P(E) := inf
{

lim inf
n→∞

ˆ
X

|∇un|m : un ∈ Lip(X), un → χE in L1
loc(X)

}
, (4.1)

where χE is the characteristic function of E. Accordingly E ⊂ X has finite perimeter in (X, d,m)
if and only if P(E) <∞.
The isoperimetric profile I(X,d,m) : [0, 1]→ [0,∞) is given by

I(X,d,m)(v) := inf{P(E) : E ⊂ X, m(E) = v}. (4.2)

Given a smooth Riemannian manifold (M, g) with finite Riemannian volume volg(M) <∞, let us
denote mg := 1

volg(M) volg the normalized Riemannian volume measure.
We next recall the improved Levy-Gromov inequality obtained by Berard-Besson-Gallot [BBG85,
Remark 3.1] for smooth Riemannian N -manifolds with Ricci ≥ N − 1 and with upper bound on
the diameter (see also [Mi15]).
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Theorem 4.1. Let (M, d,mg) be the metric measure space associated to a Riemannian manifold
(M, g) with dimension N ∈ N, N ≥ 2, Ricci bounded from below by N − 1 and diameter D (recall
that, by the Bonnet-Myers Theorem, D ≤ π). Then, for any v ∈ (0, 1), it holds

I(X,d,m)(v)
IN (v) ≥

( ´ π
2

0 (cos t)N−1 dt´ D
2

0 (cos t)N−1 dt

) 1
N

=: CN,D ≥ 1, (4.3)

where IN , defined in (3.3), for N ≥ 2, N ∈ N is the isoperimetric profile of the normalized round
sphere of constant sectional curvature one (SN , dSN ,mgSN ).

We extend Theorem 4.1 to the class of essentially non branching CD(N − 1, N) metric measure
spaces, N > 1 any Real parameter. In view of [CM17a, CM18] the result follows from the
1-dimensional improved Levy-Gromov Inequality proved in Lemma 3.1.

Theorem 4.2 (Berard-Besson-Gallot improved Levy-Gromov for CD(N − 1, N) e.n.b. spaces).
Let (X, d,m) be an essentially non branching CD(N − 1, N) m.m.s. with diam(X) ≤ D, for some
N > 1, D ∈ (0, π]. Then, for any v ∈ (0, 1), it holds

I(X,d,m)(v)
IN (v) ≥

( ´ π
2

0 (cos t)N−1 dt´ D
2

0 (cos t)N−1 dt

) 1
N

=: CN,D ≥ 1, (4.4)

where IN was defined in (3.3).

Proof. One of the main results in [CM17a, CM18] is that for (X, d,m) as in the assumptions of the
theorem it holds

I(X,d,m)(v) ≥ IN,D(v), (4.5)

where IN,D stands for the model isoperimetric profile defined in (3.3).
The claimed (4.4) follows by combining (4.5) with Lemma 3.1.

It is also possible to obtain a quantitative spectral gap inequality for Neumann boundary
conditions. The analogous result in the case of smooth Riemannian manifolds was established in
[Cr82, Theorem B] building upon a quantitative improvement of the Levy-Gromov inequality and
on [BM82] (see also [BBG85, Corollary 17]).

Theorem 4.3 (Improved spectral gap and quantitative Obata’s Theorem for CD(N − 1, N) e.n.b.
spaces). Let (X, d,m) be an essentially non branching CD(N − 1, N) m.m.s. with diam(X) ≤ D,
for some N > 1, D ∈ (0, π]. Then

λ1,2
(X,d,m) ≥ NC

2
N,D, (4.6)

where CN,D is given in (4.4). Moreover, there exists C = CN > 0 (more precisely one can choose
CN = C̄N where C̄ was defined in Lemma 3.2) such that

CN (π − diam(X))N ≤ λ1,2
(X,d,m) −N.

Proof. Thanks to [CM17b, Theorem 4.4] (see also Proposition 3.3) we know that λ1,2
(X,d,m) ≥ λ

1,2
N,D,

where λ1,2
N,D was defined in (3.21).

Let us briefly outline the argument since it will be relevant for addressing the quantitative
inequality for the first eigenfunction later in the note. By the very definition of λ1,2

(X,d,m) it suffices
to prove that, for any u ∈ Lip(X) with

´
um = 0 and

´
u2 m = 1, it holds

δ(u) :=
ˆ
X

|∇u|2 m−N ≥ CN (π − diam(X))N .

To this aim, we perform the 1D-localization associated to the function u which by assumption has
null mean value (this is analogous to the proof of [CM17b, Theorem 4.4]; see Section 2.4 for some
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basics about 1D-localization). We obtain

ˆ
X

|∇u|2 m−N
ˆ
X

u2 m ≥
ˆ
Q

(ˆ
Xq

∣∣u′q∣∣2 mq −N ˆ
Xq

u2
q mq

)
q(dq)

≥
ˆ
Q

(
λ1,2
N,diam(Xq)

ˆ
Xq

u2
q mq −N

ˆ
Xq

u2
q mq

)
q(dq)

≥
ˆ
Q

(λ1,2
N,diam(X) −N)

ˆ
Xq

u2
q mq q(dq) = λ1,2

N,diam(X) −N.

Taking into account Proposition 3.3, we conclude that

δ(u) ≥ λ1,2
diam(X),N −N ≥ CN (π − diam(X))N

and (4.6) can be obtained in an analogous way.

Remark 4.4. In [JZ16] the authors obtained a quantitative version of the estimate for the gap of
the diameters in terms of the deficit in the spectral gap for RCD spaces (see Remark 1.3 therein).
Their estimate reads as follows: if (X, d,m) is an RCD(N − 1, N) space of diameter D ≤ π, then

λ1,2
(X,d,m) ≥

N

1− cosN (D/2) .

Theorem 4.3 extends such quantitative control to essentially non-branching CD(N − 1, N) spaces
whose Sobolev space W 1,2 is a priori non-Hilbert (but just Banach, as for instance on Finsler
manifolds).

4.1 Volume control
The aim of this brief subsection is to prove that for a CD(N − 1, N) m.m.s. with diameter close to
π we have a quantitative volume control for balls centred at extrema of long rays. The proof is
inspired by [O07, Lemma 5.1] where the case of maximal diameter π is treated (see also [CMM18,
Proposition 5.1]).

Proposition 4.5. Let (X, d,m) be a m.m.s. satisfying CD(N − 1, N) (actually MCP(N − 1, N)
is enough). Let PN , PS ∈ X be such that d(PN , PS) = π − δ, for some δ ≥ 0. Then, for any
0 < r < π − δ, it holds

mN ([0, r]) ≤ m(Br(PN )) ≤ mN ([0, r]) + mN ([r, r + δ]), (4.7)

where we recall that mN = 1
ωN

(sin t)N−1 dt is the model measure on the interval [0, π].

Proof. First of all, since d(PN , PS) = π − δ, it holds Br(PN ) ∩Bπ−r−δ(PS) = ∅.
Thanks to the Bishop-Gromov inequality implied by the CD(N−1, N) condition (actually MCP(N−
1, N) is enough), and using that m(X) = 1, we have

m(Br(PN )) ≥ mN ([0, r]), m(Bπ−r−δ(PS)) ≥ mN ([0, π − r − δ]) = mN ([r + δ, π]), (4.8)

where the last equality follows from the symmetries of the density sinN−1(·). Hence we can compute

m(Br(PN )) ≤ 1−m(Bπ−r−δ(PS)) ≤ 1−mN ([0, π − r − δ])
= mN ([0, r]) + mN ([r, r + δ]).

The claimed conclusion (4.7) follows.
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5 Quantitative Obata’s Theorem on almost optimal func-
tions

Consider u ∈ Lip(X) such that
ˆ
X

um = 0,
ˆ
X

u2m = 1;

denote its spectral gap deficit with

δ(u) :=
ˆ
X

|∇u|2m−N. (5.1)

Since we are interested in quantitative estimates when the spectral gap deficit is small, it is enough
to consider the case δ(u) ≤ 1. Recall that N is the first eigenvalue for the Neumann Laplacian for
the 1-dimensional metric measure space ([0, π], | · |,mN ) where mN := sinN−1(t)dt/ωN and ωN is
the normalizing constant. In particular

N = (N + 1)
ˆ

(0,π)
sin2(t)mN (dt),

since, as we already observed,
´

(0,π) cos2(t)mN (dt) = 1/(N + 1).
Consider the localization associated to the zero-mean function u (see subsection 2.4 for the

background and for the relevant bibliography):

mxT =
ˆ
Q

mq q(dq),

where T is the transport set associated to the L1-optimal transport problem between u+m and
u−m, the positive and the negative part of u, respectively. It follows that

ˆ
Q

ˆ
Xq

|u|2mq q(dq) =
ˆ
T
|u|2m =

ˆ
X

|u|2m = 1,
ˆ
X\T
|∇u|2m = 0. (5.2)

Setting uq := u|Xq and |cq| :=
(´

Xq
|uq|2mq

)1/2
(for the sign of cq, see before (5.13)), observe that

(5.2) gives ˆ
Q

c2q q(dq) = 1. (5.3)

Moreover, the integral constraint
´
X
um = 0 localizes to almost every ray:

ˆ
Xq

uq mq = 0. (5.4)

Since almost each ray (Xq, d|Xq ,mq) is a 1-dimensional CD(N − 1, N) space, the Lichnerowicz
spectral gap gives ˆ

Xq

|u′q|2 mq ≥ Nc2q, (5.5)

where |u′q|(x) denotes the local Lipschitz constant of uq : (Xq, d|Xq )→ R at x ∈ Xq. It is clear that,
for each x ∈ Xq ⊂ X, |u′q|(x) is bounded by the local Lipschitz constant |∇u|(x) of u : (X, d)→ R:

|u′q|(x) ≤ |∇u|(x), ∀x ∈ Xq, q-a.e. q ∈ Q. (5.6)

With a slight abuse of notation, in order to keep the formulas short, in the following we will often
identify q and qx{q∈Q: cq>0}. Localizing the spectral gap deficit using (5.6) gives
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δ(u) =
ˆ
X

|∇u|2m−N ≥
ˆ
Q

(ˆ
Xq

|u′q|2

c2q
mq

)
c2q q(dq)−N

=
ˆ
Q

[ˆ
Xq

(
|u′q|2

c2q
−N

)
mq

]
c2q q(dq) (5.7)

=
ˆ
Q

δ(uq)c2q q(dq), (5.8)

where we set

δ(uq) :=
ˆ
Xq

(
|u′q|2

c2q
−N

)
mq,

the one-dimensional spectral gap deficit of uq. From now on, in order to keep notation short, we
will write δ for δ(u). Let β ∈ (0, 1) be a real parameter to be optimised later in the proof and
denote the set of “long rays” by

Q` := {q ∈ Q : δ(uq) ≤ δβ and cq > 0}.

It follows from (5.8), Chebyshev’s inequality and (5.3) that
ˆ
Q\Q`

c2q q(dq) ≤ δ1−β ,

ˆ
Q`

c2q q(dq) ≥ 1− δ1−β . (5.9)

Hence we can use Proposition 3.3 to deduce that for all q ∈ Q`,

(π − |Xq|)N ≤ CNδβ , (5.10)

where |Xq| denotes the length of the ray Xq. Being the preimage of a measurable function, Q` is a
measurable subset of Q. Adopting the notation R(E) := ∪q∈EXq, so that R(E) is the span of the
rays corresponding to equivalence classes in E, we claim that

ˆ
X\R(Q`)

|∇u|2 m ≤ (N + 1)δ1−β . (5.11)

Indeed (5.6), (5.5) and (5.9) yield
ˆ
R(Q`)

|∇u|2 m ≥
ˆ
Q`

ˆ
Xq

∣∣u′q∣∣2 mq q(dq) ≥ N
ˆ
Q`

c2q q(dq) ≥ N(1− δ1−β).

The claim (5.11) follows by combining the last estimate with
ˆ
X\R(Q`)

|∇u|2 m +
ˆ
R(Q`)

|∇u|2 m =
ˆ
X

|∇u|2 m ≤ N + δ.

For each q ∈ Q, we denote with a(Xq) (resp. b(Xq)) the initial (resp. final) point of the ray Xq.
Throughout this last section we will often make the identification between the ray Xq and the

interval (0, |Xq|).

Proposition 5.1. There exists a distinguished q̄ ∈ Q` having initial point PN and final point PS
such that

d(PN , a(Xq)) ≤ C(N)δβ/N , d(PS , b(Xq)) ≤ C(N)δβ/N , ∀q ∈ Q`. (5.12)

Proof. Fix any q̄ ∈ Q` and set PN := a(Xq̄), PS := b(Xq̄). By d-cyclical monotonicity of the
transport set T , for any other q ∈ Q` it holds

2π − d(a(Xq), b(Xq))− d(PN , PS) ≥ 2π − d(a(Xq), PS)− d(b(Xq), PN ),

26



which we rewrite as

π − |Xq|+ π − |Xq̄| ≥ π − d(a(Xq), PS) + π − d(b(Xq), PN ).

Combining the last estimate with (5.10) gives

2CNδβ/N ≥ π − d(a(Xq), PS) + π − d(b(Xq), PN ).

Finally by [CMM18, Proposition 5.1] we deduce the existence of a constant, depending only on the
dimension N , such that

d(a(Xq), PN ) ≤ C(N)δβ/N , d(b(Xq), PS) ≤ C(N)δβ/N ,

and the claim follows.

From now on, for every q ∈ Q` choose the sign of cq so that∥∥∥∥uqcq − √N + 1 cos(·)
∥∥∥
L2(Xq,mq)

= min
{∥∥∥∥ uq|cq| +

√
N + 1 cos(·)

∥∥∥∥
L2(Xq,mq)

,

∥∥∥∥ uq|cq| − √N + 1 cos(·)
∥∥∥∥
L2(Xq,mq)

}
.

From Theorem 3.11 we obtain that for all q ∈ Q` it holds:∥∥∥∥uqcq −√N + 1 cos(·)
∥∥∥∥
L2(Xq,mq)

≤ C(N)δβmin{1/2,1/N}. (5.13)

The goal of the next section is to globalise estimate (5.13) to the whole space X.
The sought bound will be obtained through two intermediate steps: firstly, in Proposition 5.2,

we control the variance of the map q 7→ cq w.r.t. the measure q on the set of long rays Q`. Then,
in Proposition 5.3, we estimate (1− q(Q`)) in terms of a power of the deficit.

Below we briefly present the strategy of the proof. In order to fix the ideas, we discuss the
heuristics in the rigid case of zero deficit. Actually in the case of zero deficit there is a more
streamlined argument (the assumption that u is Lipschitz, combined with the forth bullet below,
gives immediately that q 7→ cq is constant), however the point here is to present a strategy which
generalises to the non-rigid case of non-zero deficit.

In the case where δ(u) = 0, the results of the previous sections give the following conclusions:
• Almost all the transport rays have length π. Moreover: they start from a common point PN ,
with u(PN ) > 0, and end in a common point PS , with u(PS) < 0;

• m(Br(PN )) = mN ([0, r]), for any r ∈ [0, π];

• For q-a.e. q ∈ Q, it holds that mq = mN is the model measure for the CD(N −1, N) condition;

• For q-a.e. q ∈ Q, it holds that uq(·) = cq cos(d(PN , ·)).
Our aim is to prove that q(Q) = 1 and that cq = 1 for q-a.e. q ∈ Q. The basic idea is to apply the
Poincaré inequality to balls centred at PN and having radii converging to 0.

Observe that we can compute 
Br(PN )

um = 1
mN ([0, r])

ˆ
Q

ˆ r

0
cq cos(t)mN (dt) =

(ˆ
Q

cq q

) r

0
cos(t)mN (dt). (5.14)

Moreover, recalling that u = 0 m-a.e. outside of the transport set, we have
 
Br(PN )

∣∣∣∣∣u−
 
Br(PN )

um

∣∣∣∣∣
2

m

(5.14)= (1− q(Q))
( 

Br(PN )
um

)2

+
ˆ
Q

 r

0

∣∣∣∣cq cos(t)−
ˆ
Q

cq q(dq)
 r

0
cos(t)mN (dt)

∣∣∣∣2 mN (dt) q(dq)

∼ (1− q(Q))
(ˆ

Q

cq q(dq)
)2

+
ˆ
Q

∣∣∣∣cq − ˆ
Q

cq q(dq)
∣∣∣∣2 q(dq) as r → 0, (5.15)
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where in the last step we relied on the asymptotic cos(t) = 1 + o(t) as t→ 0. Eventually we can
compute

 
B2r(PN )

|∇u|2 m =
ˆ
Q

c2q q(dq)
 2r

0
sin2(t)mN (dt) =

 2r

0
sin2(t)mN (dt) ∼ r2 as r → 0,

where in the last step we relied on the asymptotic sin(t) = t+ o(t) as t→ 0.
An application of the Poincaré inequality, in the asymptotic regime r ↓ 0, yields that

ˆ
Q

∣∣∣∣cq − ˆ
Q

cq q(dq)
∣∣∣∣2 q(dq) = 0, (5.16)

which implies both the conclusions q(Q) = 1 and q 7→ cq constant q-a.e.. Due to the constraint´
Q
c2qq(dq) = 1 and the fact that u(PN ) > 0, we also get that cq = 1 q-a.e., as we claimed.

A second heuristic motivation of the fact that the oscillation of the map q 7→ cq is controlled by
(a power of) the deficit is that “the gradient of u is almost aligned along the rays” in a quantitative
L2-sense, suggesting that u “should not oscillate much in the direction orthogonal to the rays”.
Note that in the current framework of CD(K,N) spaces there is no scalar product and the set Q
is far from regular, this is the reason why we cannot directly implement this heuristic strategy.
However let us make precise the fact that “the gradient of u is almost aligned along the rays” in a
quantitative L2-sense, since this will be used in the arguments below.

0
(5.6)
≤

ˆ
Q

(ˆ
Xq

|∇u|2 − |u′q|2mq

)
q(dq) =

ˆ
X

|∇u|2m−
ˆ
Q

(ˆ
Xq

|u′q|2mq

)
q(dq), use (5.1),(5.5),

≤ N + δ −N
ˆ
Q

c2qq(dq) (5.3)= δ. (5.17)

The proofs of Proposition 5.2 and Proposition 5.3 below are based on the idea we just presented,
although being quite technical since one has to handle all the various error terms occurring in the
non rigid case δ(u) > 0.

5.1 Control on the variance
Proposition 5.2. The following estimate holds:

ˆ
Q`

∣∣∣∣cq −  
Q`

cq q(dq)
∣∣∣∣2 q(dq) ≤ C(N)

(
δ4γ/N + δ1−β−γ+(2γ/N) + δ(β−γ) min{2/N,1}

)
, (5.18)

for any 0 < β < 1 and for any 0 < γ < min{β, 1− β}.

Proof. In order to bound the variance of q 7→ cq on Q` we wish to prove that it can be controlled
by an integral depending on the variation of the function u on a small ball Br(PN ). Next we will
appeal on the fact that in the rigid case the L2-norm squared of the gradient of u on Br(PN ) is
comparable with rN+2 and, at least heuristically, this has to be the case also when dealing with
almost rigidity. Some intermediate steps are devoted to reduce ourselves to the case where the
function u coincides with cq cos(·) when restricted to any long ray Xq.
In order to slightly shorten the notation, we will write C in place of C(N) to denote a dimensional
constant.

Step 1.
We will set r = δγ/N for a suitable γ ∈ (0, β). First of all, notice that the triangle inequality and
(5.12) yield

[0, r − Cδβ/N ] ⊂ Xq ∩Br(PN ) ⊂ [0, r + Cδβ/N ], (5.19)

for any q ∈ Q`, where we have identified [0, r ± Cδβ/N ] with the set

{z ∈ Xq : d(z, a(Xq)) ≤ r ± Cδβ/N}.

28



The minimality of the mean combined with the inclusion (5.19) and with the weak local 2-2 Poincaré
inequality (2.6) gives

ˆ
Q`×[0,r−Cδβ/N ]

∣∣∣u−  
Q`×[0,r−Cδβ/N ]

um
∣∣∣2m ≤ ˆ

Br(PN )

∣∣∣u−  
Br(PN )

u
∣∣∣2m

≤Cr2
ˆ
B10r(PN )

|∇u|2m. (5.20)

Step 2.
Next we will obtain a more explicit expression of

ffl
Q×[0,r−Cδβ/N ] um.

Recall that we will often tacitly identify the ray Xq with the interval (0, |Xq|).
Using Theorem 3.11, Corollary 2.7 and that δq ≤ δβ for q ∈ Q`, we estimate

∣∣∣ˆ
Q`

ˆ
[0,r]

umq q(dq)−
√
N + 1

ˆ
Q`

ˆ
[0,r]

cq cos(·)mq q(dq)
∣∣∣

≤
ˆ
Q`

|cq|
ˆ

[0,r]

∣∣∣∣ ucq −√N + 1 cos(·)
∣∣∣∣mq q(dq)

≤
ˆ
Q`

|cq|
√

mq([0, r])
∥∥∥∥ ucq −√N + 1 cos(·)

∥∥∥∥
L2([0,r],mq)

q(dq)

≤ C rN/2
(
rN/2δβmin{1/2,1/N} + δβ/2

)ˆ
Q`

|cq| q(dq). (5.21)

Also, using Corollary 2.8, it holds∣∣∣ ˆ
Q`

ˆ
[0,r]

cq cos(·)mq q(dq)−
ˆ
Q`

ˆ
[0,r]

cq cos(·)mN q(dq)
∣∣∣

≤ Cδβ/NrN−1
ˆ
Q`

|cq| q(dq) (5.22)

With an analogous estimate involving Corollary 2.8, we also obtain

|m(Q` × [0, r])− q(Q`)mN ([0, r])| ≤ Cq(Q`)rN−1δβ/N . (5.23)

The combination of (5.21), (5.22) and (5.23), setting r̄ := r − Cδβ/N , yields∣∣∣∣∣
 
Q`×[0,r̄]

um−

√
N + 1

´
Q`×[0,r̄] cq cos(·)mN q(dq)

q(Q`)(mN ([0, r̄])− CrN−1δβ/N )

∣∣∣∣∣
≤
C(

´
Q`
|cq| q(dq))(rNδβmin{1/2,1/N} + rN/2δβ/2 + rN−1δβ/N )

q(Q`)(mN ([0, r̄])− CrN−1δβ/N )
. (5.24)

Step 3.
In this step we estimate the order in δ of the right hand side of (5.24) and choose r as

r = δγ/N , with γ ∈ (0, β). (5.25)

Approximating the cosine with its first order Taylor expansion near to the origin in (5.24), we have
 
Q`×[0,r̄]

um =
´
Q`
cq q(dq) + (

´
Q`
|cq| q(dq))O(δ(β−γ) min{1/2,1/N})

1√
N+1q(Q`)

.

Since by Cauchy-Schwartz inequality and (5.3) it holds
(ffl

Q`
cqq(dq)

)2
≤
ffl
Q`
c2qq(dq) ≤ 1/q(Q`),

the last estimate can be rewritten as∣∣∣∣∣
 
Q`×[0,r̄]

um−
√
N + 1

 
Q`

cq q(dq)

∣∣∣∣∣
2

≤ C

q(Q`)
δ(β−γ) min{1,2/N}. (5.26)
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Step 4.
The aim of this step is to eventually gain (5.18). We first need the following intermediate inequality,
where we assume that r � δβ/N is a free parameter, that we will set later:
ˆ
Q`

ˆ
[0,r]

∣∣∣u−√N + 1cq
∣∣∣2mq q(dq)

≤ 2
ˆ
Q`

ˆ
[0,r]

∣∣∣u−√N + 1cq cos(·)
∣∣∣2mq q(dq)

+ 2
ˆ
Q`

ˆ
[0,r]

(√
N + 1|cq|| cos(·)− 1|

)2
mq q(dq)

≤ Cδβmin{1,2/N}rN
ˆ
Q`

c2q q(dq) + Cδβ + Cr4
ˆ
Q`

c2q mq([0, r]) q(dq), from (3.59)

≤ Cδβmin{1,2/N}rN + Cδβ + Cr4
ˆ
Q`

c2q (mN ([0, r]) + CrN−1δβ/N ) q(dq), from (5.10)+(2.12)

≤ Cδβmin{1,2/N}rN + Cr4mN ([0, r])
ˆ
Q`

c2q q(dq) + Cδβ ≤ CrN (δβmin{1,2/N} + r4) + Cδβ .

(5.27)

In particular, the previous inequality holds true plugging r̄ := r−Cδβ/N in place of r, and r = δγ/N

is as in the previous Step 3. We deduce

mN ([0, r̄]) (N + 1)
ˆ
Q`

∣∣∣∣cq −  
Q`

cq q(dq)
∣∣∣∣2 q(dq)

≤ (N + 1)
ˆ
Q`

∣∣∣∣cq −  
Q`

cq q(dq)
∣∣∣∣2 (mq([0, r̄]) + CrN−1δβ/N ) q(dq)

≤ Cδβ/NrN−1 + (N + 1)
ˆ
Q`

∣∣∣∣cq −  
Q`

cq q(dq)
∣∣∣∣2 mq([0, r̄]) q(dq)

≤ Cδβ/NrN−1 + 2
ˆ
Q`

ˆ
[0,r̄]

∣∣∣u−√N + 1cq
∣∣∣2 mq q(dq)

+ 2
ˆ
Q`

ˆ
[0,r̄]

∣∣∣∣u−  
Q`

√
N + 1cq q(dq)

∣∣∣∣2 mq q(dq)

≤ Cδβ/NrN−1 + 2
ˆ
Q`

ˆ
[0,r̄]

∣∣∣u−√N + 1cq
∣∣∣2 mq q(dq) + 4

ˆ
Q`×[0,r̄]

∣∣∣∣∣u−
 
Q`×[0,r̄]

um

∣∣∣∣∣
2

m

+ 4
ˆ
Q`

ˆ
[0,r̄]

∣∣∣∣∣
 
Q`×[0,r̄]

um−
√
N + 1

 
Q`

cq q(dq)

∣∣∣∣∣
2

mq q(dq).

Now use (5.20), (5.26), (5.25), (5.27) to continue the chain of inequalities

≤ Cδγ
(
δ(β−γ) min{1,2/N} + δ4γ/N

)
+ Cr2

ˆ
B10r(PN )

|∇u|2m. (5.28)

Next we wish to bound the term
´
B10r(PN ) |∇u|

2
m. To this aim we observe that

ˆ
B10r(PN )

|∇u|2 m ≤
ˆ
X\R(Q`)

|∇u|2 m +
ˆ
Q`

ˆ 10r+Cδβ/N

0

∣∣u′q∣∣2 mqq(dq) + δ, from (5.17)

≤C(δ1−β + δβ + rNδβmin{2/N,1} + δβ/NrN−1r2)

+ C

ˆ 10r+Cδβ/N

0
sin(·)2mN , from (5.11), (3.59), (2.12)

≤C
(
δ1−β + δβ + rN

(
δβmin{2/N,1} + r2

))
. (5.29)
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Combine now (5.28) with (5.29) and recall that r = δγ/N , for 0 < γ < min{β, 1− β} to get

δγ
ˆ
Q`

∣∣∣∣cq −  
Q`

cq q(dq)
∣∣∣∣2 q(dq) ≤ Cδγ

(
δ4γ/N + δ1−β−γ+(2γ/N) + δ(β−γ) min{1,2/N}

)
which gives the desired estimate (5.18).

5.2 Control of the measure of long rays
Following Proposition 5.2, we set

c̄ :=
 
Q`

cq q(dq). (5.30)

Next we proceed proving that q(Q`) is quantitatively close to 1 up to an error of the order of a
suitable power of the deficit.

Proposition 5.3. The following estimate holds:

(1− q(Q`))2 ≤ C(N)
(
δ4γ/N + δ(β−γ)/N + δ1−β−γ

)
, (5.31)

for any 0 < β < 1 and for any 0 < γ < min{β, 1− β}.

Proof. In order to slightly shorten the notation, we will write C in place of C(N) to denote constants
depending only on N . Moreover, we will continue to tacitly identify the ray Xq with the interval
(0, |Xq|). We achieve (5.31) through three intermediate steps.

Step 1.
Aim of this first step is to prove that, for r = δγ/N , γ ∈ (0,min{β, 1− β}), letting r̄ := r − Cδβ/N ,
it holds

(N + 1)
ˆ
Q`

ˆ
[0,r̄]

∣∣∣∣∣cq cos(·)− c̄ q(Q`)
 

[0,r̄]
cos(·)mN

∣∣∣∣∣
2

mN q(dq)

≤
ˆ
Br(PN )

∣∣∣∣∣u−
 
Br(PN )

um

∣∣∣∣∣
2

m + C
(
δγ+(β−γ)/N + δ1−β

)
. (5.32)

Arguing as in the first steps of the proof of Proposition 5.2, we estimate

ˆ
Q`

ˆ r̄

0

∣∣∣∣∣√N + 1cq cos(·)−
 
Br(PN )

um

∣∣∣∣∣
2

mN q(dq)

≤
ˆ
Q`

ˆ r̄

0

∣∣∣∣∣√N + 1cq cos(·)−
 
Br(PN )

um

∣∣∣∣∣
2

mq q(dq) + Cδβ/NrN−1 from (2.12), (5.10)

≤ 2
ˆ
Q`

ˆ r̄

0

∣∣∣√N + 1cq cos(·)− u
∣∣∣2mq q(dq) + Cδβ/NrN−1 + 2

ˆ
Q`

ˆ r̄

0

∣∣∣u−  
Br(PN )

um
∣∣∣2mq q(dq)

≤ 2
ˆ
Q`

c2q

∥∥∥ u
cq
−
√
N + 1 cos(·)

∥∥∥2

L2([0,r̄],mq)
q(dq) + Cδβ/NrN−1

+ 2
ˆ
Q`

ˆ r̄

0

∣∣∣u−  
Br(PN )

um
∣∣∣2mq q(dq)m

≤ 2
ˆ
Br(PN )∩R(Q`)

∣∣∣u−  
Br(PN )

um
∣∣∣2m + Cδβ/NrN−1 from (3.59), (5.19). (5.33)

In order to achieve (5.32), having in mind to argue by triangle inequality, we are left to bound

mN ([0, r̄])q(Q`)

∣∣∣∣∣
 
Br(PN )

um−
√
N + 1c̄q(Q`)

 
[0,r̄]

cos(·)mN

∣∣∣∣∣
2

. (5.34)
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We start by observing that∣∣∣∣∣
ˆ
Br(PN )

um −
√
N + 1c̄q(Q`)

ˆ r

0
cos(·)mN

∣∣∣∣
≤

∣∣∣∣∣
ˆ
Br(PN )∩R(Q`)

um−
√
N + 1c̄q(Q`)

ˆ r

0
cos(·)mN

∣∣∣∣∣+

∣∣∣∣∣
ˆ
Br(PN )\R(Q`)

um

∣∣∣∣∣ .
(5.35)

We first treat the second term of the right hand-side.
From (5.9) we know that

´
X\R(Q`) u

2m ≤ δ1−β ; an application of Hölder’s inequality and (2.12)
yields ˆ

Br(PN )\R(Q`)
|u|m ≤ δ(1−β)/2

√
m(Br(PN ) \R(Q`)) ≤ Cδ(1−β)/2rN/2. (5.36)

We estimate the first term in the right hand side of (5.35) by reducing to (5.21) in the second step
of the proof of Proposition 5.2:∣∣∣ˆ

Br(PN )∩R(Q`)
um−

√
N + 1c̄q(Q`)

ˆ r

0
cos(·)mN

∣∣∣ ≤ ∣∣∣ˆ
Br(PN )∩R(Q`)

um−
ˆ
Q`

ˆ
[0,r]

umq q(dq)
∣∣∣

+
∣∣∣ ˆ
Q`

ˆ
[0,r]

umq q(dq)−
√
N + 1

ˆ
Q`

ˆ
[0,r]

cq cos(·)mq q(dq)
∣∣∣

+
∣∣∣ ˆ
Q`

ˆ
[0,r]

√
N + 1cq cos(·)mq q(dq)−

√
N + 1c̄q(Q`)

ˆ r

0
cos(·)mN

∣∣∣ .
Using (2.12), (3.59), (5.10), (5.19), (5.21), we continue as follows:

≤
ˆ
Q`

ˆ r+Cδβ/N

r−Cδβ/N
|u|mq q(dq) + CrN/2

(
δβmin{1/2,1/N}rN/2 + δβ/2 + r(N/2)−1δβ/N

)ˆ
Q`

|cq| q(dq).

(5.37)
Arguing by triangle inequality bounding first the distance from the normalized cosine (with (3.60))
and then replacing the measures mq with the model measure mN (with (2.12)), we estimate the
first summand in the right hand side of (5.37) as

ˆ
Q`

ˆ r+Cδβ/N

r−Cδβ/N
|u|mq q(dq) ≤ C(rN−1δβ/N + r(N−1)/2δβ(1/2+1/(2N)))

ˆ
Q`

|cq| q(dq) . (5.38)

Combining (5.37), (5.38), and choosing r = δγ/N with γ ∈ (0,min{β, 1− β}) yields∣∣∣∣∣
ˆ
Br(PN )∩R(Q`)

um− c̄
√
N + 1q(Q`)

ˆ r̄

0
cos(·)mN

∣∣∣∣∣ ≤ C (rN−1δβ/N + rNδβmin{1/2,1/N} + rN/2δβ/2
)
.

(5.39)
The combination of (5.35) (5.36) and (5.39) gives∣∣∣∣∣

ˆ
Br(PN )

um− c̄
√
N + 1q(Q`)

ˆ r̄

0
cos(·)mN

∣∣∣∣∣
≤ C

(
rN−1δβ/N + rNδβmin{1/2,1/N} + rN/2δβ/2 + δ(1−β)/2rN/2

)
. (5.40)

To bound (5.34), approximating the measure of the ball Br(PN ) and then the function u with the
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respective model behaviours, we now estimate

mN ([0, r̄])q(Q`)

∣∣∣∣∣
 
Br(PN )

um− c̄
√
N + 1q(Q`)

 r̄

0
cos(·)mN

∣∣∣∣∣
2

≤ 2mN ([0, r̄])q(Q`)

∣∣∣∣∣
 
Br(PN )

um− 1
mN ([0, r̄])

ˆ
Br(PN )

um

∣∣∣∣∣
2

+ 2mN ([0, r̄])q(Q`)

∣∣∣∣∣ 1
mN ([0, r̄])

ˆ
Br(PN )

um− c̄q(Q`)
√
N + 1

 r̄

0
cos(·)mN

∣∣∣∣∣
2

≤ 2mN ([0, r̄])q(Q`)
(ˆ

Br(PN )
um

)2(
1

m(Br(PN )) −
1

mN ([0, r̄])

)2

+ 2 1
mN ([0, r̄])q(Q`)

∣∣∣∣∣
ˆ
Br(PN )

um− c̄q(Q`)
√
N + 1

ˆ r̄

0
cos(·)mN

∣∣∣∣∣
2

. (5.41)

Estimate the first term by Cauchy-Schwartz and the second term by (5.40):

≤ 2q(Q`)
[

(m(Br(PN ))−mN ([0, r̄]))2

m(Br(PN ))mN ([0, r̄])

]ˆ
Br(PN )

u2m

+ Cq(Q`)
[
δγ+2(β−γ)/N + δγ+βmin{1,2/N} + δβ + δ1−β

]
.

Now use Proposition 4.5 and choose r = δγ/N , γ ∈ (0,min{β, 1− β}):

≤ 2
(ˆ

Br(PN )
u2m

)(
mN ([r̄, r + Cδβ/N ])

mN ([0, r̄])

)2

+ C
(
δγ+2(β−γ)/N + δγ+βmin{1,2/N} + δβ + δ1−β

)
≤ C

(
δγ+2(β−γ)/N + δγ+βmin{1,2/N} + δβ + δ1−β

)
, (5.42)

where the second inequality is obtained by observing thatˆ
Br(PN )

u2m =
ˆ
Br(PN )\Q`

u2m +
ˆ
Br(PN )∩Q`

u2m

≤ δ1−β + 2
ˆ
Q`

ˆ
[0,r+Cδβ/N ]

(
u− cq

√
N + 1 cos(·)

)2
mqq(dq)

+ 2
ˆ
Q`

ˆ
[0,r+Cδβ/N ]

c2q(N + 1) cos2(·) mqq(dq)

≤ C(δ1−β + δβ + δγ+βmin{1,2/N} + δγ).

The claimed estimate (5.32) is eventually obtained via triangle inequality from (5.33) and (5.42)
Step 2.

In this second step of the proof, building upon Proposition 5.2, we shall obtain the bound
ˆ
Q`

ˆ
[0,r̄]

(N + 1)
∣∣∣∣c̄ cos(·)− c̄ q(Q`)

 r̄

0
cos(·)mN

∣∣∣∣2 mN q(dq)

≤ 2
ˆ
Br(PN )

∣∣∣∣∣u−
 
Br(PN )

um

∣∣∣∣∣
2

m + Cδγ
(
δ4γ/N + δ(β−γ)/N

)
+ Cδ1−β . (5.43)

Thanks to the triangle inequality, the error we commit replacing cq cos(·) with c̄ cos(·) can be
controlled by ˆ

Q`

ˆ
[0,r̄]
|cq − c̄|2 cos2(t)mN (dt) q(dq) ≤ mN ([0, r̄])

ˆ
Q`

|cq − c̄|2 q(dq)

≤ Cδγ
(
δ4γ/N + δ(β−γ) min{1,2/N}

)
+ Cδ1−β+2γ/N , (5.44)
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where the last inequality is a consequence of (5.18) and the fact that r̄ ≤ r = δγ/N , γ ∈ (0,min{β, 1−
β}). The claimed (5.43) follows from (5.44) and (5.32) via triangle inequality.

Step 3.
Using the Taylor expansion cos(t) = 1 +O(t2) in the left hand side of (5.43), we obtain

ˆ
Q`

ˆ r̄

0
(N + 1)

∣∣∣c̄− c̄q(Q`)
∣∣∣2mN q(dq)

≤ 2
ˆ
Br(PN )

∣∣∣u−  
Br(PN )

um
∣∣∣2m + Cδγ

(
δ4γ/N + δ(β−γ)/N

)
+ Cδ1−β ,

giving

mN ([0, r̄])(N + 1)c̄2(1− q(Q`))2q(Q`)

≤ 2
ˆ
Br(PN )

∣∣∣u−  
Br(PN )

um
∣∣∣2m + Cδγ

(
δ4γ/N + δ(β−γ)/N

)
+ Cδ1−β .

Using the 2-2 Poincaré inequality (2.6) (combined with Bishop-Gromov volume comparison), we
obtain

mN ([0, r̄]) (N + 1) c̄2(1− q(Q`))2q(Q`)

≤ Cr2
ˆ
B10r(PN )

|∇u|2m + Cδγ
(
δ4γ/N + δ(β−γ)/N

)
+ Cδ1−β

≤ Cδγ
(
δ4γ/N + δ(β−γ)/N

)
+ Cδ1−β , (5.45)

where in the last estimate we used (5.29) (recall that r = δγ/N ).
Using again that

´
Q`
|cq − c̄|2 q(dq) ≤ Cδα(N) from (5.18) for some α(N) > 0, observing that

ˆ
Q`

(c2q − c̄2)q(dq) =
ˆ
Q`

|cq − c̄|2 q(dq), (5.46)

and recalling (5.9), we get:

c̄2q(Q`) =
ˆ
Q`

c2qq(dq) +
ˆ
Q`

(c̄2 − c2q)q(dq) ≥ 1− δ1−β −
ˆ
Q`

|cq − c̄|2 q(dq)

≥ 1− δ1−β − Cδα(N) >
1

C(N) > 0. (5.47)

Plugging (5.47) into (5.45) yields:

(1− q(Q`))2 ≤ C
(
δ4γ/N + δ(β−γ)/N + δ1−β−γ

)
. (5.48)

Remark 5.4. Observe that a direct consequence of Proposition 5.3 above is an estimate of the
measure of the region of the space which is not covered by transport rays, that is {u = 0}.
Indeed (5.31) implies in particular that

m(X \ T ) ≤ 1− q(Q`) ≤ C(N)
(
δ2γ/N + δ(β−γ)/2N + δ(1−β−γ)/2

)
. (5.49)

5.3 Proof of the main theorem
We are now ready to prove the main result putting together the estimates we proved so far. First
reducing to the set spanned by long rays using Proposition 5.3; then, building upon Proposition 5.2
and on Theorem 3.11, we prove that on the set of long rays the function is close to a fixed multiple of
the cosine of the distance from the endpoint. Eventually we change the distance from the endpoint
of the ray into the distance from a pole thanks to (5.12).
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Theorem 5.5. For any N ∈ (1,∞) there exist C(N) > 0 and δ0 = δ0(N) > 0 with the following
properties. Let (X, d,m) be an essentially non branching CD(N − 1, N) m.m.s.. Then, for any
u ∈ Lip(X) with

´
X
um = 0,

´
X
u2m = 1 and

δ :=
ˆ
X

|∇u|2 m−N ≤ δ0, (5.50)

there exists a distinguished point P ∈ X such that∥∥∥u−√N + 1 cos(d(P, ·))
∥∥∥
L2(m)

≤ C(N)δ1/(6N+4). (5.51)

Proof. Step 1.
Let us begin observing that Proposition 5.2 combined with (5.30) and (5.46) gives∣∣∣∣ˆ

Q`

c2q q(dq)− c̄2q(Q`)
∣∣∣∣ ≤ C(N)

(
δ4γ/N + δ1−β−γ+(2γ/N) + δ(β−γ) min{2/N,1}

)
. (5.52)

Since from (5.9) we know that

1− δ1−β ≤
ˆ
Q`

c2q q(dq) ≤ 1 ,

and in Proposition 5.3 we proved that

q(Q`) ≥ 1− C(N)
(
δ2γ/N + δ(β−γ)/2N + δ(1−β−γ)/2

)
, (5.53)

from (5.52) we infer that∣∣1− c̄2∣∣ ≤ C(N)
(
δ2γ/N + δ(1−β−γ)/2 + δ(β−γ)/2N

)
. (5.54)

Notice that (5.54) implies (see for instance the proof of (3.48))

min{|1− c̄|, |1 + c̄|} ≤ C(N)
(
δ2γ/N + δ(1−β−γ)/2 + δ(β−γ)/2N

)
. (5.55)

Without loss of generality (up to switching the sign of u) we can assume that

|1− c̄| = min{|1− c̄|, |1 + c̄|}.

The combination of Proposition 5.2 and (5.55) gives
ˆ
Q`

|cq − 1|2 q(dq) ≤ 2
ˆ
Q`

|cq − c̄|2q(dq) + 2|c̄− 1|2q(Q`)

≤ C(N)
(
δ4γ/N + δ1−β−γ + δ(β−γ)/N

)
. (5.56)

Step 2.
Next we let P be equal to PN given in Proposition 5.1. We get:∥∥u−√N + 1 cos(d(P, ·))

∥∥2
L2(m)

=
ˆ
Q

ˆ
Xq

∣∣∣u−√N + 1 cos(d(P, ·))
∣∣∣2 mq q(dq) +

ˆ
X\T

(N + 1) cos(d(P, ·))2m

≤
ˆ
Q`

ˆ
Xq

∣∣∣u−√N + 1 cos(d(P, ·))
∣∣∣2 mq q(dq)

+ 2
ˆ
X\R(Q`)

u2m + 2(N + 1)q(Q \Q`) + (N + 1)m(X \ T ).
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Use (5.9), (5.53) and Remark 5.4, recalling that we are tacitly identifying the ray Xq with the
interval (0, |Xq|):

≤
ˆ
Q`

ˆ
Xq

∣∣∣u−√N + 1 cos(d(P, ·))
∣∣∣2 mq q(dq) + C(N)

(
δ2γ/N + δ(β−γ)/2N + δ(1−β−γ)/2

)
≤ 2

ˆ
Q`

ˆ
Xq

∣∣∣u−√N + 1 cos(·)
∣∣∣2 mq q(dq)

+ 2
ˆ
Q`

ˆ
Xq

|cos(·)− cos(d(P, ·))|2 mq q(dq) + C(N)
(
δ2γ/N + δ(β−γ)/2N + δ(1−β−γ)/2

)
.

Use triangle inequality to estimate the first term and (5.12) for the second:

≤ 4
ˆ
Q`

ˆ
Xq

∣∣∣u−√N + 1cq cos(·)
∣∣∣2 mq q(dq) + C(N)

ˆ
Q`

|cq − 1|2 q(dq)

+ C(N)
(
δ2γ/N + δ(β−γ)/2N + δ(1−β−γ)/2

)
.

Use (5.13) and (5.56):

≤ C(N)δβmin{1,2/N}
ˆ
Q`

c2q q(dq) + C(N)
(
δ2γ/N + δ(β−γ)/2N + δ(1−β−γ)/2

)
≤ C(N)

(
δ2γ/N + δ(β−γ)/2N + δ(1−β−γ)/2

)
. (5.57)

The optimal choice of parameters in (5.57) is β = 5N
6N+4 and γ = N

6N+4 giving the claim (5.51).
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