EQUILIBRIUM CONFIGURATIONS FOR EPITAXTIALLY STRAINED FILMS
AND MATERIAL VOIDS IN THREE-DIMENSIONAL LINEAR ELASTICITY

VITO CRISMALE AND MANUEL FRIEDRICH

ABsTrACT. We extend the results about existence of minimizers, relaxation, and approxima-
tion proven by Chambolle et al. in 2002 and 2007 for an energy related to epitaxially strained
crystalline films, and by Braides, Chambolle, and Solci in 2007 for a class of energies defined
on pairs of function-set. We study these models in the framework of three-dimensional linear
elasticity, where a major obstacle to overcome is the lack of any a priori assumption on the
integrability properties of displacements. As a key tool for the proofs, we introduce a new
notion of convergence for (d—1)-rectifiable sets that are jumps of GSBDP functions, called
oLym-convergence.

1. INTRODUCTION

The last years have witnessed a remarkable progress in the mathematical and physical litera-
ture towards the understanding of stress driven rearrangement instabilities (SDRI), i.e., morpho-
logical instabilities of interfaces between elastic phases generated by the competition between
elastic and surface energies of (isotropic or anisotropic) perimeter type. Such phenomena are
for instance observed in the formation of material voids inside elastically stressed solids. An-
other example is hetero-epitaxial growth of elastic thin films, when thin layers of highly strained
hetero-systems, such as InGaAs/GaAs or SiGe/Si, are deposited onto a substrate: in case of a
mismatch between the lattice parameters of the two crystalline solids, the free surface of the
film is flat until a critical value of the thickness is reached, after which the free surface becomes
corrugated (see e.g. |4} 42] 45] [46], 52, [54] for some physical and numerical literature).

From a mathematical point of view, the common feature of functionals describing SDRI is the
presence of both stored elastic bulk and surface energies. In the static setting, problems arise
concerning existence, regularity, and stability of equilibrium configurations obtained by energy
minimization. The analysis of these issues is by now mostly developed in dimension two only.

Starting with the seminal work by BONNETIER AND CHAMBOLLE [9] who proved existence of
equilibrium configurations, several results have been obtained in [B] [7, BT, 33] 411 [44] for hetero-
epitaxially strained elastic thin films in 2d. We also refer to [27), 28] 49] for related energies and
to [48] for a unified model for SDRI. In the three dimensional setting, results are limited to the
geometrically nonlinear setting or to linear elasticity under antiplane-shear assumption [8], [I§].
In a similar fashion, regarding the study of material voids in elastic solids, there are works about
existence and regularity in dimension two [12] B0] and a relaxation result in higher dimensions
[11] for nonlinearly elastic energies or in linear elasticity under antiplane-shear assumption.

The goal of the present paper is to extend the results about relaxation, existence, and
approximation obtained for energies related to material voids [1I] and to epitaxial growth
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[9, 18], respectively, to the case of linear elasticity in arbitrary space dimensions. As already
observed in [I8], the main obstacle for deriving such generalizations lies in the fact that a
deep understanding of the function space of generalized special functions of bounded deforma-
tion (GSBD) is necessary. Indeed, our strategy is based extensively on using the theory on
GSBD functions which, initiated by DAL Maso [25], was developed over the last years, see
e.g. [14], 15, I7, 19 20, 211, 22] 23] 35| B6] B8], [47]. In fact, as a byproduct of our analysis, we
introduce two new notions related to this function space, namely (1) a version of the space with
functions attaining also the value infinity and (2) a novel notion for convergence of rectifiable
sets, which we call 0%, -convergence. Let us stress that in this work we consider exclusively a
static setting. For evolutionary models, we mention the recent works [32} 39 [40, [5T].

We now introduce the models under consideration in a slightly simplified way, restricting
ourselves to three space dimensions. To describe material voids in elastically stressed solids, we
consider the following functional defined on pairs of function-set (see [52])

F(u,E) = / Ce(u) : e(u) dx +/ o(ve)dH?, (1.1)
Q\E QnOE

where E C {2 represents the (sufficiently smooth) shape of voids within an elastic body with
reference configuration 2 C R®, and u is an elastic displacement field. The first part of the
functional represents the elastic energy depending on the linear strain e(u) := %((Vu)T + Vu),
where C denotes the fourth-order positive semi-definite tensor of elasticity coeflicients. (In fact,
we can incorporate more general elastic energies, see below.) The surface energy depends on
a (possibly anisotropic) density ¢ evaluated at the outer normal vg to E. This setting is usually
complemented with a volume constraint on the voids E and nontrivial prescribed Dirichlet
boundary conditions for u on a part of 2. We point out that the boundary conditions are the
reason why the solid is elastically stressed.

A variational model for epitaxially strained films can be regarded as a special case of (1.1])
and corresponds to the situation where the material domain is the subgraph of an unknown
nonnegative function h. More precisely, we assume that the material occupies the region

Qf ={rcewxR:0<x3<h(z,22)}

for a given bounded function h : w — [0,00), w C R?, whose graph represents the free profile of
the film. We consider the energy

G(u,h) = /Q+ Ce(u) : e(u) der/ V14 [Vh(zy,z0)2 d(z, z2) . (1.2)

Here, u satisfies prescribed boundary data on wx {0} which corresponds to the interface between
film and substrate. This Dirichlet boundary condition models the case of a film growing on an
infinitely rigid substrate and is the reason for the film to be strained. We observe that
corresponds to when ¢ is the Euclidean norm, 2 = wx(0, M) for some M > 0 large
enough, and E = 2\ 0.

Variants of the above models and have been studied by BRAIDES, CHAMBOLLE,
AND Sorct [II] and by CHAMBOLLE AND SOLCI [I8], respectively, where the linearly elastic
energy density Ce(u) : e(u) is replaced by an elastic energy satisfying a 2-growth (or p-growth,
p > 1) condition in the full gradient Vu with quasiconvex integrands. These works are devoted
to giving a sound mathematical formulation for determining equilibrium configurations. By
means of variational methods and geometric measure theory, they study the relaxation of the
functionals in terms of generalized functions of bounded variation (GSBV') which allows to
incorporate the possible roughness of the geometry of voids or films. Existence of minimizers
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for the relaxed functionals and the approximation of (the counterpart of) G through a phase-
field I'-convergence result are addressed. In fact, the two articles have been written almost
simultaneously with many similarities in both the setting and the proof strategy.

Therefore, we prefer to present the extension of both works to the GSBD setting (i.e., to
three-dimensional linear elasticity) in a single work to allow for a comprehensive study of different
applications. We now briefly discuss our main results.

(a) Relaxation of F: We first note that, for fixed E, F(-, F) is weakly lower semicontinuous
in H! and, for fixed u, F(u,-) can be regarded as a lower semicontinuous functional on sets of
finite perimeter. The energy defined on pairs (u, E), however, is not lower semicontinuous since,
in a limiting process, the voids E may collapse into a discontinuity of the displacement u. The
relaxation has to take this phenomenon into account, in particular collapsed surfaces need to be
counted twice in the relaxed energy. Provided that the surface density ¢ is a norm in R?, we
show that the relaxation takes the form (see Proposition

o(vg) dH? + / 2¢(1y,) dH?, (1.3)
Jun(Q2\E)!

F(u,E) = Ce(u) : e(u) dx —|—/

O\E QNO*E
where E is a set of finite perimeter with essential boundary 9*E, (£2\ E)! denotes the set
of points of density 1 of 2\ E, and v € GSBD?*(£2). Here, e(u) denotes the approximate
symmetrized gradient of class L?(2;R3*3) and J, is the jump set with corresponding measure-
theoretical normal v,,. (We refer to Section [3| for the definition and the main properties of this
function space. Later, we will also consider more general elastic energies and work with the
space GSBDP(2), 1 < p < o0, i.e., e(u) € LP(2;R3%3).)

(b) Minimizer for F: In Theorem we show that such a relaxation result can also be
proved by imposing additionally a volume constraint on E (which reflects mass conservation)
and by prescribing boundary data for u. For this version of the relaxed functional, we prove the
existence of minimizers, see Theorem 2.3

(c) Relaxation of G: For the model (1.2)) describing epitaxially strained crystalline films,
we show in Theorem that the lower semicontinous envelope takes the form

G(u,h) = Ce(u) : e(u) dz +H*(I}) + 2H* (YD), (1.4)
o0

where h € BV (w;[0,00)) and I}, denotes the (generalized) graph of h. Here, u is again a

GSBD?-function and the set X C R? is a “vertical” rectifiable set describing the discontinuity

set of u inside the subgraph _Q,j' Similar to the last term in ([1.3), this contribution has to be

counted twice. We remark that in [3I] the set X is called “vertical cuts”. Also here a volume

constraint may be imposed.

(d) Minimizer for G: In Theorem we show compactness for sequences with bounded
G energy. In particular, this implies existence of minimizers for G (under a volume constraint).

(e) Approximation for G: In Theorem we finally prove a phase-field I'-convergence
approximation of G. We remark that we can generalize the assumptions on the regularity of
the Dirichlet datum. Whereas in [18, Theorem 5.1] the class H' N L> was considered, we show
that it indeed suffices to assume H!-regularity.

We now provide some information on the proof strategy highlighting in particular the addi-
tional difficulties compared to [IT} [I8]. Here, we will also explain why two new technical tools
related to the space GSBD have to be introduced.

(a) The proof of the lower inequality for the relaxation F is closely related to the analog
in [II]: we use an approach by slicing, exploit the lower inequality in one dimension, and a
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localization method. To prove the upper inequality, it is enough to combine the corresponding
upper bound from [IT] with a density result for GSBDP (p > 1) functions [I5], slightly adapted
for our purposes, see Lemma [5.6]

(b) We point out that, in [II], the existence of minimizers has not been addressed due to
the lack of a compactness result. In this sense, our study also delivers a conceptionally new
result without corresponding counterpart in [I1]. The main difficulty lies in the fact that, for
configurations with finite energy , small pieces of the body could be disconnected from
the bulk part, either by the voids F or by the jump set J,. Thus, since there are no a priori
bounds on the displacements, the function u could attain arbitrarily large values on certain
components, and this might rule out measure convergence for minimizing sequences. We remark
that truncation methods, used to remedy this issue in scalar problems, are not applicable in the
vectorial setting. This problem was solved only recently by general compactness results, both in
the GSBV? and the GSBD? setting. The result [37] in GSBV? delivers a selection principle
for minimizing sequences showing that one can always find at least one minimizing sequence
converging in measure. With this, existence of minimizers for the energies in [I1] is immediate.

Our situation in linear elasticity, however, is more delicate since a comparable strong result
is not available in GSBD. In [I7, Theorem 1.1], a compactness and lower semicontinuity result
in GSBDP? is derived relying on the idea that minimizing sequences may “converge to infinity”
on a set of finite perimeter. In the present work, we refine this result by introducing a topology
which induces this kind of nonstandard convergence. To this end, we need to define the new
space GSBD?Y consisting of GSBDP functions which may also attain the value infinity. With
these new techniques at hand, we can prove a general compactness result in GSBD?_ (see
Theorem which particularly implies the existence of minimizers for .

(c) Although the functional G in is a special case of F, the relaxation result is not an
immediate consequence, due to the additional constraint that the domain is the subgraph of a
function. Indeed, in the lower inequality, a further crucial step is needed in the description of
the (variational) limit of 3(2,, when h,, — h in L!(w). In particular, the vertical set X has to
be identified, see (|1.4]).

This issue is connected to the problem of detecting all possible limits of jump sets J,, of
converging sequences (u,), of GSBDP functions. In the GSBV?P setting, the notion of oP-
convergence of sets is used, which has originally been developed by DAL MASO, FRANCFORT,
AND TOADER [26] to study quasistatic crack evolution in nonlinear elasticity. (We refer also to
the variant [43] which is independent of p.) In this work, we introduce an analogous notion in
the GSBDP setting which we call ol -convergence. The definition is a bit more complicated
compared to the GSBV setting since it has to be formulated in the frame of GSBDZ_ functions
possibly attaining the value infinity. We believe that this notion may be of independent interest
and is potentially helpful to study also other problems such as quasistatic crack evolution in
linear elasticity [38]. We refer to Section [4| for the definition and properties of ol -convergence,
as well as for a comparison to the corresponding notion in the GSBV? setting.

Showing the upper bound for the relaxation result is considerably more difficult than the
analogous bound for F. In fact, one has to guarantee that recovery sequences are made up by
sets that are still subgraphs. We stress that this cannot be obtained by some general existence
results, but is achieved through a very careful construction (pp. , that follows only partially
the analogous one in [I8]. We believe that the construction in [I8] could indeed be improved
by adopting an approach similar to ours, in order to take also some pathological situations into
account.



EQUILIBRIUM CONFIGURATIONS OF EPITAXIALLY STRAINED FILMS AND MATERIAL VOIDS 5

(d) To show the existence of minimizers of G, the delicate step is to prove that minimizing
sequences have subsequences which converge (at least) in measure. In the GSBV? setting,
this is simply obtained by applying a Poincaré inequality on vertical slices through the film.
The same strategy cannot be pursued in GSBD? since by slicing in a certain direction not all
components can be controlled. As a remedy, we proceed in two steps. We first use the novel
compactness result in GSBDZ_ to identify a limit which might attain the value infinity on a set
of finite perimeter G,. Then, a posteriori, we show that actually Go, = 0 by means of a slicing
argument in various directions, see Subsection [6.1] for details.

(e) For the phase-field approximation, we combine a variant of the construction in the upper
inequality for G with the general strategy of the corresponding approximation result in [I8].
The latter is slightly modified in order to proceed without L*°-bound on the displacements.

The paper is organized as follows. In Section [2] we introduce the setting of our two models
on material voids in elastic solids and epitaxially strained films. Here, we also present our
main relaxation, existence, and approximation results. Section [3] collects definition and main
properties of the function space GSBDP. In this section, we also define the space GSBDY, and
show basic properties. In Section 4| we introduce the novel notion of 0%, -convergence and prove
a compactness result for sequences of rectifiable sets with bounded Hausdorff measure. Section
[]is devoted to the analysis of functionals defined on pairs of function-set. Finally, in Section [f]
we investigate the model for epitaxially strained films and prove the relaxation, existence, and

approximation results.

2. SETTING OF THE PROBLEM AND STATEMENT OF THE MAIN RESULTS

In this section, we give the precise definitions of the two energy functionals and present the
main relaxation, existence, and approximation results. In the following, f: R4 — [0, 00)
denotes a convex function satisfying the growth condition (| - | is the Frobenius norm on R4*%)

arl¢T + (P —e2 < f(Q) S e2(¢T + (P 1) for all ¢ € R (2.1)

for some 1 < p < +o0. For an open subset 2 C R? we will denote by L°(2;R?) the space of

L%measurable functions v: 2 — R? endowed with the topology of the convergence in measure.
We let 91(§2) be the family of all £?-measurable subsets of 2.

2.1. Energies on pairs function-set: material voids in elastically stressed solids. Let
2 C R? be a Lipschitz domain. We introduce an energy functional defined on pairs function-set.
Given a norm ¢ on R? and f: R4*4 — [0,00), we let F': LO(2;RY) x M(2) — RU {+o0} be
defined by

Fle(w)) d + / o(vp) dH
NNOFE
if O Lipschitz, u| 5 € WHP(2\ EsR?), ulp = 0,

400 otherwise,

O\E

F(u,E) = (2.2)

where e(u) := 1 ((Vu)” + Vu) denotes the symmetrized gradient, and v the outer normal to E.
We point out that the energy is determined by E and the values of u on 2\ E. The condition
u|g = 0 is for definiteness only. We denote by F: LO(£2;R9) x 9(§2) — R U {+oco} the lower
semicontinuous envelope of the functional F' with respect to the convergence in measure for the
functions and the L'(f2)-convergence of characteristic functions of sets, i.e.,

F(u, E) = inf { lirginf F(un, En): up — uin LO(Q;Rd) and xg, — xg in Ll(ﬂ)} . (23)
n (oo}
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In the following, for any s € [0,1] and any E € 9M({2), E® denotes the set of points with
density s for E. By 0*E we indicate its essential boundary, see [3| Definition 3.60]. For the
definition of the space GSBDP({2), p > 1, we refer to Section [3[ below. In particular, by
e(u) = 3((Vu)T + Vu) we denote the approximate symmetrized gradient, and by J,, the jump
set of u with measure-theoretical normal v,. We characterize F as follows.

Proposition 2.1 (Characterization of the lower semicontinuous envelope F). Suppose that f
is conver and satisfies ([2.1)), and that o is a norm on R%. Then there holds

/ f(e(u)) dx+/ o(vg) d’H,d’lJr/ 2¢(1,) dHI?
2\E 2NO*E JuN(2\E)!

ifu=1uxgo € GSBDP(2) and H¥ 1 (0*E) < 400,

400 otherwise.

F(u, E)

Moreover, if LYE) > 0, then for any (u, E) € L(£2; R?)x9N(§2) there exists a recovery sequence
(tns Bp)n C LO(2; R xM(2) such that LYE,) = LYE) for all n € N.

The last property shows that it is possible to incorporate a volume constraint on E in the
relaxation result. We now move on to consider a Dirichlet minimization problem associated to
F. We will impose Dirichlet boundary data ug € W?(R?%; R?) on a subset Opf2 C 92. For
technical reasons, we suppose that 92 = 0p 2 U dn 2 U N with dpf2 and Oy 2 relatively open,
OpR2NIN2 =0, HIH(N) =0, 9pR2 # 0, 9(0p2) = 0(OnS2), and that there exist a small
0 >0 and zg € R? such that for every § € (0,0) there holds

Os.2,(0p2) C 12, (2.4)

where Os z,(2) = 20 + (1 — 6)(z — o). (These assumptions are related to Lemma below.)
In the following, we denote by tr(u) the trace of u on 02 which is well defined for functions in
GSBDP((2), see Section 3| In particular, it is well defined for functions u considered in
satisfying u| o\ 5 € WLP(02\ E;R?) and u|g = 0. By v we denote the outer unit normal to 92

We now introduce a version of F taking boundary data into account. Given ug € WP (Rd; Rd),
we set

Fou(u, B) = {F(u,E) + Jop onow @vE) AHETT i tr(u) = tr(ug) on 9p R\ E,

) (2.5)
+o00 otherwise.

Similar to (2.3), we define the lower semicontinuous envelope Fp;, by
Fpi(u, E) = {liminf Fpiy(tn, En): up — uin LO(Q;Rd) and xg, — XE In LI(Q)}. (2.6)
n—oo
We have the following characterization.

Theorem 2.2 (Characterization of the lower semicontinuous envelope Fp;,). Suppose that f is
conver and satisfies (2.1), that o is a norm on R?, and that (2.4) is satisfied. Then there holds
Fpie(u, E) = F(u,E) + /ga(I/E) dHI + / 20(vo)dHY . (2.7)
Op N2NO*E {tr(u)#tr(uo) }N(0p 2\0* E)
Moreover, if LYE) > 0, then for any (u, E) € L°(£2; RT)xOMN(£2) there exists a recovery sequence
(tn, Ep)n C LO(2; RO xM(2) such that LY(E,) = LYE) for all n € N.

The proof of Proposition 2.1 and Theorem 2.2 will be given in Subsection [5.2] We close this
subsection with an existence result for F'p;., under a volume constraint for the voids.
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Theorem 2.3 (Existence of minimizers for Fp;,). Suppose that f is convex and satisfies (2.1]),
and that ¢ is a norm on R%. Let m > 0. Then the minimization problem
inf {Fpi(u, E): (u, E) € L°(2;RY)xM(2), LYE) =m}

admits solutions.

For the proof, we refer to Subsection It relies on the lower semicontinuity of Fp;, and a
compactness result in the general space GSBDZE, (cf. (3.10)), see Theorem [5.7

2.2. Energies on domains with a subgraph constraint: epitaxially strained films. We
now consider the problem of displacement fields in a material domain which is the subgraph of an
unknown nonnegative function h. Assuming that h is defined on a Lipschitz domain w C R4,
displacement fields u will be defined on the subgraph

OF ={zewxR:0< x4 <h(z)},

where here and in the following we use the notation z = (', z4) for z € R%. To model Dirichlet
boundary data at the flat surface w x {0}, we will suppose that functions are extended to the
set 2y, :={r €wxR: —1< x4 <h(z)} and satisfy u = up on wx(—1,0) for a given function
ug € WHP(wx(—1,0); R%), p > 1. In the application to epitaxially strained films, 1 represents
the substrate and h represents the profile of the free surface of the film.

For convenience, we introduce the reference domain 2 := wx(—1,M + 1) for M > 0. We
define the energy functional G: L°(£2; R%) x L'(w; [0, M]) — R U {+o00} by

G(u, h) :/Q+ Fle(u(z)) dx+/ VIFIVR@P da’ (2.8)

if h € OY(w;[0,M]), uln, € WHP(§2,;R?), w = 0 in 2\ 24, and u = ug in wx(—1,0), and
G(u,h) = 400 otherwise. Here, f: R¥4 — [0,00) denotes a convex function satisfying (2.)),
and as before we set e(u) := £ ((Vu)” + Vu). Notice that, in contrast to [9], we suppose that
the functions h are equibounded by a value M: this is for technical reasons only and is indeed
justified from a mechanical point of view since other effects come into play for very high crystal
profiles.

We study the relaxation of G' with respect to the L°(£2; R?)x L!(w; [0, M]) topology, i.e., its
lower semicontinuous envelope G: L°(§2; R?) x L' (w; [0, M]) — R U {+oc}, defined as

G(u, h) = inf { liminf,, o G(tn, hy): un — u in LO(2;RY), hy, — hin L'(w)}.

We characterize G as follows, further assuming that the Lipschitz set w C R%! is uniformly
star-shaped with respect to the origin, i.e.,

tr Cw forall te(0,1), z € dw. (2.9)

Theorem 2.4 (Characterization of the lower semicontinuous envelope G). Suppose that f is
convex satisfying (2.1) and that (2.9) holds. Then we have
/ fle(u)) do + HHO* 2, N 02) + 21T, N 02})
25

Glu, h) if u=uxgn, € GSBDP(1), u=ug in wx(—1,0), h € BV (w; [0, M]),

400 otherwise,

J={(2xzqa+t): x € Jy, t >0} (2.10)
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The assumption on w is more general than the one considered in [18], where w is assumed
to be a torus. We point out, however, that both assumptions are only of technical nature and
could be dropped at the expense of more elaborated estimates, see also [I8]. The proof of this
result will be given in Subsection [6.1

We note that the functional G could be considered with an additional volume constraint on
the film, i.e., Lﬁd(Q,J[) = fw h(z")dz" is fixed. An easy adaptation of the proof shows that the

relaxed functional G is not changed under this constraint, see Remark for details.

In Subsection [6.2] we further prove the following general compactness result, from which we
deduce the existence of equilibrium configurations for epitaxially strained films.

Theorem 2.5 (Compactness for G). Suppose that f is convex and satisfies (2.1). For any
(Un, b)) with sup, G(un, hy) < +00, there exist a subsequence (not relabeled) and functions
u € GSBDP(2), h € BV (w; [0, M]) with u = uxg, and u=ug on w X (—1,0) such that

(Un, hn) = (u,h) i LO(2;RY)x LY (w).

In particular, general properties of relaxation (see e.g. [24, Theorem 3.8]) imply that, given
0 < m < MH?!(w), the minimization problem

inf {G(u, h): (u, B) € LO(2;RY) x L'(w), L) = m} (2.11)

admits solutions. Moreover, fixed m and the volume constraint Ld(QZ) =m for G and G, any
cluster point for minimizing sequences of G is a minimum point for G.
Our final issue is a phase-field approximation of G. The idea is to represent any subgraph

2, by a (regular) function v which will be an approximation of the characteristic function xp,
at a scale of order e. Let W: [0,1] — [0, 00) be continuous, with W (1) = W(0) =0, W > 0 in

(0,1), and let (n.)e with . > 0 and 7.e!™ — 0 as ¢ — 0. Let ¢y := (fol V2W(s)ds)"t In
the reference domain 2 = wx(—1, M + 1), we introduce the functionals

Gutue)i= [ (62 n0)stet + e (T

€ 2
+ 5|V )) de, (2.12)

u€ WHP(2;RY) ) u=up in wx(—1,0),
ve HY(2;[0,1]), v=1inwx(=1,0),v=0in wx(M,M +1) 9qv <0 L%a.e. in 2,
and G.(u,v) := 400 otherwise. The following phase-field approximation is the analog of [18]
Theorem 5.1] in the frame of linear elasticity. We remark that here, differently from [18], we
assume only ug € WHP(w x (—1,0);R?), and not necessarily uy € L (w x (—1,0); R?). For the
proof we refer to Subsection [6.3]

Theorem 2.6. Let ug € WP (w x (—1,0);RY). For any decreasing sequence (£,,), of positive
numbers converging to zero, the following hold:

(i) For any (un,vn)n with sup,, Ge, (un,v,) < 400, there exist u € LO(2;R?) and h €
BV (w; [0, M]) such that, up to a subsequence, u, — u a.e. in 2, v, — Xq, in L'($2),
and

G(u,h) < liglJirnf G, (un,vy). (2.13)
(ii) For any (u,h) with G(u,h) < 400, there exists (un,vy)n such that u, — u a.e. in 2,
VU = Xa, i LY(2), and
limsup G, (un,v,) = G(u, h) .

n—00



EQUILIBRIUM CONFIGURATIONS OF EPITAXIALLY STRAINED FILMS AND MATERIAL VOIDS 9

3. PRELIMINARIES

In this section, we recall the definition and main properties of the function space GSBDP.
Moreover, we introduce the space GSBD?Y of functions which may attain the value infinity.

3.1. Notation. For every z € R? and p > 0, let By(z) C R? be the open ball with center x
and radius o. For z, y € RY, we use the notation z -y for the scalar product and |z| for the
Euclidean norm. By M%*? and ngxn‘f we denote the set of matrices and symmetric matrices,
respectively. We write xg for the indicator function of any E C R™, which is 1 on E and 0
otherwise. If F is a set of finite perimeter, we denote its essential boundary by 9*F, and by E*
the set of points with density s for E, see [3, Definition 3.60]. We indicate the minimum and
maximum value between a,b € R by a A b and a V b, respectively. The symmetric difference of

two sets A, B C R? is indicated by AAB.

We denote by £? and H* the n-dimensional Lebesgue measure and the k-dimensional Haus-
dorff measure, respectively. For any locally compact subset B C R?, (i.e. any point in B has a
neighborhood contained in a compact subset of B), the space of bounded R™-valued Radon mea-
sures on B [respectively, the space of R™-valued Radon measures on B] is denoted by M, (B; R™)
[resp., by M(B;R™)|. If m = 1, we write My(B) for My(B;R), M(B) for M(B;R), and
M (B) for the subspace of positive measures of M, (B). For every u € M,(B;R™), its total
variation is denoted by |u|(B). Given 2 C R open, we use the notation L°(£2; R?) for the space
of £-measurable functions v: 2 — R%,

Definition 3.1. Let £ C R%, v € LY(E;R™), and = € R? such that

LYE N By(z))

- >0.

lim sup
o—0t 0

A vector a € R? is the approzimate limit of v as y tends to z if for every € > 0 there holds

LYENBy(z) N {|lv—a| >e})
d

:0’

lim

0—0T 1%
and then we write

aplimv(y) =a.
y—x
Definition 3.2. Let U C RY be open and v € L°(U;R™). The approzimate jump set J, is the
set of points x € U for which there exist a, b € R™, with a # b, and v € S%~! such that
aplim  wv(y)=a and aplim  v(y)=b.
(y—x)-v>0,y—zx (y—z)v<0,y—x

The triplet (a,b,v) is uniquely determined up to a permutation of (a,b) and a change of sign of
v, and is denoted by (vT(z),v™(z),vy(z)). The jump of v is the function defined by [v](z) :=
v (x) — v~ (x) for every z € J,.

We note that J, is a Borel set with £¢(.J,) = 0, and that [v] is a Borel function.

3.2. BV and BD functions. Let U C R? be open. We say that a function v € L*(U) is a
function of bounded variation on U, and we write v € BV (U), if D;v € My(U) for i =1,...,d,
where Dv = (Dyv,...,Dgv) is its distributional derivative. A vector-valued function v: U — R™
is in BV(U;R™) if v; € BV (U) for every j = 1,...,m. The space BVioc(U) is the space of
v e L (U) such that D;v € M(U) for i =1,...,d.
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A function v € LY(U;R?) belongs to the space of functions of bounded deformation if the
distribution Ev := 1 ((Dv)T + Dv) belongs to M,,(U; M&x4). It is well known (see [2, 55]) that

Sym

for v € BD(U), J, is countably (H%~1,d — 1) rectifiable, and that
Ev = E% + Ev + Elv,

where E%v is absolutely continuous with respect to £¢, E¢v is singular with respect to £¢ and
such that |Ev|(B) = 0 if H?~!(B) < oo, while E/v is concentrated on .J,. The density of E%v
with respect to £¢ is denoted by e(v).

The space SBD(U) is the subspace of all functions v € BD(U) such that E°v = 0. For
p € (1,00), we define

SBDP(U) := {v € SBD(U): e(v) € LP(2;ML3), H™(J,) < oo} .

sym
Analogous properties hold for BV, such as the countable rectifiability of the jump set and the
decomposition of Dv. The spaces SBV (U;R™) and SBVP?(U;R™) are defined similarly, with
Vv, the density of D%, in place of e(v). For a complete treatment of BV, SBV functions and
BD, SBD functions, we refer to [3] and to [2 [6 [55], respectively.

3.3. GBD functions. We now recall the definition and the main properties of the space GBD
of generalized functions of bounded deformation, introduced in [25], referring to that paper
for a general treatment and more details. Since the definition of GBD is given by slicing
(differently from the definition of GBV, cf. [I], 29]), we first need to introduce some notation.
Fixed ¢ € S471 := {¢ e R%: [¢]| = 1}, we let

II¢ = {y e R%: y- € =0}, Bg ={tcR:y+t& € B} foranyycR?and BCR?, (3.1)
and for every function v: B — R% and t € Bg let
v,j(t) = v(y + t&), ﬁg(t) = vfl(t) €. (3.2)

Definition 3.3 ([25]). Let £2 C R? be a bounded open set, and let v € L°(£2;R%). Then
v € GBD(£2) if there exists A\, € M; (£2) such that one of the following equivalent conditions
holds true for every ¢ € S

(a) for every T € C*(R) with —1 <7 < 1 and 0 < 7/ < 1, the partial derivative D¢ (7(v -

§)) =D(7(v-£&)) - € belongs to My(£2), and for every Borel set B C {2
[De(r(v-))|(B) < Au(B);
(b) ﬁg € BVIOC(Qg) for Hi -a.e. y € I1¢, and for every Borel set B C 2
/ (D3| (B \ J) +HO(BS N %) ) dMO~ (y) < Ao(B),
¢ v v

where Jég = {t € Ja§ : |[a§]|(t) > 1}.

The function v belongs to GSBD(12) if v € GBD(£2) and 0§ € SBVio.(£25) for every £ € %!
and for H? l-ae. y € I1¢.

GBD(£2) and GSBD({2) are vector spaces, as stated in [25, Remark 4.6], and one has the
inclusions BD(£2) € GBD(S2), SBD({2) C GSBD({2), which are in general strict (see [25]
Remark 4.5 and Example 12.3]). Every v € GBD({2) has an approximate symmetric gradient
e(v) € LY (2; M%) such that for every ¢ € S¥=! and H? !-a.e. y € II¢ there holds

Sym
e(v)(y+t&E- &= (65)/(0 for Ll-ae. t € (25. (3.3)
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We recall also that by the area formula (cf. e.g. [63, (12.4)]; see |2 Theorem 4.10] and [25]
Theorem 8.1]) it follows that for any ¢ € S¢~1

(Jf)g = Jys for Hi ae. y € 1T, where JS:={x € J,: [v](z) & #0}, (3.4a)

HO ) a1 (0) = [ - €lamst, (3.40)
J§

I7¢
Moreover, there holds

HEYI,N\JTS) =0 for Hi lae. £ € ST7L, (3.5)
Finally, if {2 has Lipschitz boundary, for each v € GBD({2) the traces on 92 are well defined
in the sense that for H% !-a.e. x € 912 there exists tr(v)(z) € R? such that

aplim o(y) = tr(v)(x).
y—x, yeN

For 1 < p < o0, the space GSBDP({?) is defined by
GSBDP(0) := {u € GSBD(): e(u) € LP(2;M¥*d) HI71(],) < oo} .

sym

We recall below two general density and compactness results in GSBDP?, from [I5] and [17].

Theorem 3.4 (Density in GSBDP). Let 2 C R? be an open, bounded set with finite perimeter
and let 082 be a (d—1)-rectifiable, p > 1, ¥(t) =t A1, and w € GSBDP({2). Then there exist
up € SBVP(2;RY) N L>®(2;RY) such that each J,, is closed in 2 and included in a finite union
of closed connected pieces of C* hypersurfaces, u, € Wh(2\ J,, ;RY), and:

/Q Y(jup, —ul)dx =0, (3.6a)
le(un) — e(u)||lr(2) — 0, (3.6b)
HITY( T, AT,) — 0. (3.6¢)

We refer to [I5, Theorem 1.1]. In contrast to [I5], we use here the function ¢(t) := ¢t A 1 for
simplicity. It is indeed easy to check that [15] (1.1e)] implies (3.6al).

Theorem 3.5 (GSBDP compactness). Let 2 C R be an open, bounded set, and let (un)n C
GSBDP((2) be a sequence satisfying

suppen ([le(un)lzr(o) +H™ (Ju,)) < +oc.

Then, there exists a subsequence, still denoted by (uy, )y, such that the set A := {x € Q2 |u,(z)| =
oo} has finite perimeter, and there exists u € GSBDP({2) such that

(i) up, —u in LY\ A;R?),
(i) e(up,) — e(u) weakly in LP(02\ A; ngxn‘f),
(iii) lim inf HIN(T,,) > HE N (T, U (0" AN Q). (3.7)
Moreover, for each I' C 2 with HY1(I") < +o0, there holds
lirgiand’l(Jun \I)>H"H(J,U (@ AN2)\T). (3.8)

Proof. We refer to [I7]. The additional statement (3.8)) is proved, e.g., in [38, Theorem 2.5|. O

Later, as a byproduct of our analysis, we will generalize the lower semicontinuity property
(3.7 (iii) to anisotropic surface energies, see Corollary
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3.4. GSBD?, functions. Inspired by the previous compactness result, we now introduce a
space of GSBDP functions which may also attain a limit value co. Define R? := R?U{cc}. The
sum on R? is given by a + 0o = oo for any a € R%. There is a natural bijection between R? and
S% = {¢ € R¥*1 : |¢] = 1} given by the stereographic projection of S to RY: for & # eq11, we
define

1
o(§) = m(&, ),
and let ¢(eqy1) = 0o. By 1 : R? — S? we denote the inverse. Note that
dga(@,y) = [¢(x) = ¢(y)| for z,y € R? (3.9)

induces a bounded metric on R%. We define
GSBDL(2) = {ue L2 RY): AT i= {u = oo} satisfies HI™! (9" AF) < +ox,
s = ux o axe + txae € GSBDP(R) for all t € Rd}. (3.10)
Symbolically, we will also write

U= UX\Ag T+ OOXAz-

Moreover, for any u € GSBDE_(12), we set e(u) = 0 in AS°, and
Ju = Jux g ace U (0"AG N 12). (3.11)
In particular, we have

e(u) = e(iy) L%ae. on 2 and J,=Jz, H* '-ae for almost all t € R, (3.12)
where @, is the function from (3.10). Hereby, we also get a natural definition of a normal v, to
the jump set J,,, and the slicing properties described in (3.3))—(3.5]) still hold. Finally, we point
out that all definitions are consistent with the usual ones if w € GSBDP({2), i.e., if A2 = 0.
Since GSBDP({2) is a vector space, we observe that the sum of two functions in GSBDE_(2)
lies again in this space.

A metric on GSBD?_({2) is given by

d(u,v)::/ dga(u(z),v(z)) dz, (3.13)
I7;
where dga is the distance in (3.9). We now state compactness properties in GSBDZ_(12).

Lemma 3.6 (Compactness in GSBD?,). For L > 0 and I' C 2 with H?~Y(I') < +o0, we
introduce the sets

Xp(2)={veGSBDE(2): H*"*(J,) < L, |e()|rr(y <1},
Xr(2)={veGSBDL (2): H" 1 (J,\I) =0, |e()|rr(n) <1}. (3.14)
Then the sets X1,(£2), Xr(£2) C GSBD? (12) are compact with respect to the metric d.

~— ~—

Proof. For X[ ({2), the statement follows from Theorem and the definitions (3.10)—(3.11)):
in fact, given a sequence (u"),, C Xr(f2), we consider a sequence (i ), C GSBDP(2) as in
(3.10)), for suitable (,),, C R? with |t,| — co. This implies

d(u™,ay ) — 0 as n — oo. (3.15)
Then, by Theorem there exists v € GSBDP(2) and A = {z € 2: |a} (x)| — oo} such

that @ — v in L°(2\ A;R?). We define u = vx o\ 4 + ooxa € GSBD? (2). By (3.7)(ii), (iii)
and (3.11)) we get that u € X7(2). We observe that d(ay ,u) — 0 and then by (3.15) also
d(u™,u) — 0.
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The proof for the set Xp(f2) is similar, where we additionally use (3.8) to ensure that
HIY (T, N\T) =0. O

In the next sections, we will use the following notation. We say that a sequence (uy), C
GSBDE_(§2) converges weakly to u € GSBDY (£2) if

SUP,,en (||6(un)HLp(g) + ”Hd_l(Jun)) < +oo and d(up,u) — 0 for n — co. (3.16)

4. THE 0P, _-CONVERGENCE OF SETS

sym

This section is devoted to the introduction of a convergence of sets in the framework of
GSBDP functions analogous to oP-convergence defined in [26] for the space GSBVP. This
type of convergence of sets will be useful to study the lower limits in the relaxation results in
Subsection [6.1] and the compactness properties in Subsection We believe that this notion
may be of independent interest and is potentially helpful to study also other problems such as
quasistatic crack evolution.

We start by recalling briefly the definition of oP-convergence in [26]: a sequence of sets (I, ),
oP-converges to I' if (i) for any sequence (u,), converging to w in GSBV? with J,, C I},
it holds J, C I' and (ii) there exists a GSBV? function whose jump is I', which is approx-
imated by GSBV? functions with jump included in I',. For sequences of sets (I},), with
sup,, H1"1(I},) < +oo, a compactness result with respect to oP-convergence is obtained by
means of Ambrosio’s compactness theorem [I], see [26], Theorem 4.7] and [I8, Theorem 3.3]. We
refer to [26, Section 4.1] for a general motivation to consider such a kind of convergence.

We now introduce the notion of of  -convergence. In the following, we use the notation

ACB if H¥1(A\ B) = 0 and A=B if ACB and BCA. As before, by (G)! we denote the set
of points with density 1 for G C R%. Recall also the definition and properties of GSBDZ, in

Subsection in particular (3.16).

Definition 4.1 (0%, -convergence). Let U C R% be open, let U’ D U be open with L4(U'\U) >
0, and let p € (1,00). We say that a sequence (I,), C U NU’ with sup,cy HH(I,) < 400
oP -converges to a pair (I, G ) satisfying I' C U N U’ together with

sym
HIHD) < 400, Goo CU, *GooNU'CT, and TI'N(Goo)' =10 (4.1)

if there holds:

(i) for any sequence (vy,), C GSBD? (U') with J,,, CI}, and v, = 0 in U’ \ U, if a subsequence
(vn, )k converges weakly in GSBD?_(U’) to v € GSBDE_(U"), then J, \ I'C(Gxo)*.

(ii) there exists a function v € GSBDE_(U’) and a sequence (v, ), C GSBDE_(U’) converging
weakly in GSBDE_(U’) to v such that J, CIy, v, = 0 on U'\U for all n € N, J,=I', and
{v=00} = Geo.

Our definition deviates from oP-convergence in the sense that, besides a limiting (d—1)-
rectifiable set I', there exists also a set of finite perimeter G,. Roughly speaking, in view of
0*Goo C I'UOU, this set represents the parts which are completely disconnected by I" from the
rest of the domain. The behavior of functions cannot be controlled there, i.e., a sequence (vy,)n
as in (i) may converge to infinity on this set or exhibit further cracks. In [26], it was possible
to work with truncations to avoid such a phenomenon. In GSBD, however, this truncation
technique is not available and we therefore need a more general definition involving the space
GSBD?, and a set of finite perimeter Goo.
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Moreover, due to the presence of the set G, in contrast to the definition of oP-convergence, it
is essential to control the functions in a set U’ \ U: the assumptions £4(U’\U) > 0 and G, C U
are crucial since otherwise, if U’ = U, conditions (i) and (ii) would always be trivially satisfied
with G = U and I = (). We also point out that, given a sequence (I7,),, the of,-limit is
not unique: consider I, = 0B for some small ball B C U for all n € N. Then possible limits
(I',Gw) are (0B, B) and (9B, 0). (To see this, use that Xsp(U’), defined in (3.14), is closed.)

The main goal of this section is to prove the following compactness result for of, ,,-convergence.

Theorem 4.2 (Compactness of ag’ym—convergence). Let U C R? be open, let U’ D U be open with

LUU'\U) >0, and let p € (1,00). Then, every sequence (I%,), C U with sup,, H*"1(I},) < +oc

has a 0¥, -convergent subsequence with limit (I, G ) satisfying HA=H) < liminf,, oo HEH(I).
For the proof, we need the following two auxiliary results.

Lemma 4.3. Let (v;); C GSBDP(2) such that ||e(v;)|| ey < 1 for all i and I’ == ;2 Jo,
satisfies H1(I') < +oo. Then there exist constants ¢; > 0, i € N, such that Y oo, ¢; <1 and
vi= Y2 ¢iv; € GSBDP(12) satisfies Jy=Jio; Ju,-

Lemma 4.4. Let V. C RY and suppose that two sequences (up)n, (vn)n € LO(V;R?) satisfy
[tn|, |vn| = o0 on V. Then for L'-a.e. § C (0,1) there holds

(1= 0)uy(z) + Ov,(z)| > 0 for a.e. z € V.
We postpone the proof of the lemmas and proceed with the proof of Theorem [£.2]

Proof of Theorem[[.2. For I' C U with H4~}(I") < +o00 we define
X(I) ={veGSBDE(U"): J,CI, |le(®)|lrw <1, v=00nU'\U}.

The set X(I") is compact with respect to the metric d introduced in (3.13). This follows from
Lemma and the fact that {v € LO(U’;R%): v =0 on U’ \ U} is closed with respect to d.

Since we treat any v € GSBDE_(U’) as a constant function in the exceptional set AS° (namely
we have no jump and e(v) = 0 therein, see (3.12)), we get that the convex combination of two
v,v" € X(I') is still in X (I"). (Recall that the sum on R? is given by a+ oo = oo for any a € R%.)

Step 1: Identification of a compact subset. Consider (I},), C U with sup,,cy H4 1 (1},) < +oo0.
Fix 6 > 0 small and define

L:= lirgiand_l(Fn) +4. (4.2)

Thus, up to a subsequence (not relabeled), there holds that each X(I7,) is compact and is
contained in X, (U’) defined in (3.14). Hence, a subsequence (not relabeled) converges in the
Hausdorff sense (with the Hausdorff distance induced by d) to a compact set K C X (U’).

We first observe that the function identical to zero lies in K. We now show that K is convex.
Choose u,v € K and 6 € (0,1). We need to check that w := (1 — 6)u 4 6v € K. Observe that
A% = A U AF, where A, A, and A% are the exceptional sets given in ([3.10). There exist
sequences (Up ), and (vp), with u,,v, € X(I3,) such that d(u,,u) — 0 and d(v,,v) — 0. In
particular, note that |u,| — oo on A% and |v,| — 0o on AZ°. By Lemma and a diagonal
argument we can choose (6,,), C (0,1) with 6,, — 6 such that w,, := (1 — 0,)u, + 0,v, satisfies
|wp| — 0o on ASPNAX. As clearly |w,| — oo on ASPAAY and (1—60,,)upn+0,v, — (1—0)u+6v
in measure on U’ \ (A° U AS®), we get d(wpn,w) — 0. Since X(I},) is convex, there holds
wp, € X(I,). Then d(wy,w) — 0 implies w € K, as desired.
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Step 2: Definition of I' and Go. Fix v,v' € K and again denote by A, AS? the sets where the
functions attain the value co. Since {z € J, \ 9*A%: [v](x) = t} has negligible H9~'-measure
up to a countable set of points ¢, we find some 6 € (0,1) such that w := 6v + (1 — 0)v' satisfies

wCJy U Jy, U dy )\ JuwC(AF UAY). :
JwCJy U J Jo Udyp)\ JuwC(AL U A 4.3

Here, we particularly point out that {w = 0o} = A% U A% and that 9* (AL UAS)NU'CJ, by
(3.11). Note that w € K since K is convex. Since w € K C X (U’), (4.3) implies

HEL(J,UT)\(APUA)Y) < HIY(J,) <L, HETHO (AFUAS)NU') < HIY(J,) < L.

Since K is compact with respect to the metric d, we can choose a sequence (y;); C GSBD?_(U’)
with y; = 0 on U’ \ U which is d-dense in K. By the above convexity argument, we find

a1 ¥ k 1 d=1( e (| * /
H (Uizl LA (U 4) ) <1, H (a (U,_, 40 U) <L (44
for all k£ € N, where
We define
Go = C_: A;. (4.5)
By passing to the limit & — oo in (@A), we get HO1(8*Goo NU') < L and H (UL, Jy, \
(Goo)') < L for all k € N. Passing again to the limit k — oo, and setting

r=J" 7\ (G (4.6)

we get H4~1(I") < L. Notice that I'N (G ) = 0 by definition. Moreover, the fact that y; = 0
on U’ \ U for all i € N implies both that G, C U and that I' ¢ UNU’. By and the
arbitrariness of § we get He~!(I') < liminf, o H? 1(I3},). Since 0*A; N U'CJy, foralli e N
by (3.11), we also get I' D 0*Go NU’. Thus, is satisfied.

We now claim that for each v € K there holds
T\ T'C(Goo)t. (4.7)

Indeed, for any fixed v € K, there is a sequence (yi)r = (yi, )r With d(yg,v) — 0, by the density
of (y;);- Consider the functions ¥y, := yi(1 — x¢.,) that d-converge to ¥ := v(l — x¢._): since
J5, CI for any k (we employ and that 0*Go NU'CI), the fact that X (I') is closed gives
that J;CI". This implies (£.7).

Step 3: Proof of properties (i) and (ii). We first show (i). Given a sequence (v, ), C GSBD?_(U’)
with J, CI, and v, = 0 on U’ \ U, and a subsequence (v, ); that converges weakly in
GSBD?_(U') to v, we clearly get v € K by Hausdorff convergence of X(I3,) — K. (More
precisely, consider vy, and Av for A > 0 such that |le(Avy, )|l zs@+) < 1 for all k.) By (4.7)), this
implies J, \ I'C(Gs)!. This shows (i).

We now address (ii). Recalling the choice of the sequence (y;); C K, for each ¢ € N, we choose
Ji = YiXUuN\Go + tiXxa. € GSBDP(U') for some t; € R? such that Jy,=J,, \ (Gso)'. (Almost
every t; works. Note that the function indeed lies in GSBDP(U), see and (L5).) In view
of (4.6)), we also observe that |J; Jz, = I".

By Lemma (recall (y;); C K C X1(92)) we get a function v = Y .2, ¢;y; € GSBDP(U’)
such that Jy;=I", where > ° ¢; < 1. We also define v = oxyn\q., + oxg.. € GSBDE (U').
Note that {v = 0o} = G and J,=I" since I' N (Goo)t = 0 and 8*Goo N U’ C I'. Then by
the convexity of K, we find z; := Zle ciy; € K. (Here we also use that the function identical
to zero lies in K.) As Goo = ;2 A;, we obtain d(z;,v) — 0 for k — co. Thus, also v € K
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since K is compact. As X(I3,) converges to K in Hausdorfl convergence, we find a sequence
(vn)n € GSBDE_(U') with J, CIy, v, =0 on U\ U, and d(v,,v) — 0. This shows (ii). O

The next corollary will be instrumental in the following.

Corollary 4.5. Let U C R? be open, let U’ D U be open with LYU'\U) > 0, and let p € (1,00).
Suppose that the sequence (I},), C U with sup,, H4~H(I},) < +oo is ol m-convergent with limit

(I'Gso). Let (vy)n € GSBDP_ (U') with J,, CIy and vy, = 0 in U'\U which converges weakly in
GSBD? (U') tov e GSBDE_(U'). Then I, of,  -converges also to the limit (I', Go U{v = 00}).

sym

Proof. This follows immediately from the proof of Theorem [I.2} up to rescaling we may assume
that [le(vy,)||Lrw) < 1. Note that the function v lies in K due to the Hausdorff convergence
X(I,) — K. We now include v into the countable, dense subset (y;); C K introduced in Step 2
of the above proof. Then, we observe that the definition Go, = [J;2; 4; in can be replaced
by Use; Ai U {v = oo} O

Next, we prove Lemma[4.3] To this end, we will need the following measure-theoretical result.
(See [34], Lemma 4.1, 4.2] and note that the statement in fact holds in arbitrary space dimensions
for measurable functions.)

Lemma 4.6. Let 2 C R? with £L¥(2) < oo, and N € N. Then for every sequence (uy), C
LO(02; RN with

ce (ﬂnEN U, i = ] > 1}) =0 (4.8)

there exist a subsequence (not relabeled) and an increasing concave function v : [0, 00) — [0, 00)
with limy—, o0 ¥(t) = 400 such that

sup [ Y(Jun|) doz < +oo.
n>1J0

Proof of Lemma[4.3 Let (v;); C GSBDP(£2) be given satisfying the assumptions of the lemma.
First, choose 0 < d; < 27% such that

Ed({|vi| > %}) <o, ’Hd_l({x e Jy.: |[oi](2)] > dl}) <o, (4.9)

Our goal is to select constants ¢; € (0,d;) such that the function v := Y7, ¢;v; lies in
GSBD?({2) and satisfies J, =1 := |J;=, J,;,- We proceed in two steps: we first show that
for each choice ¢; € (0,d;) the function v = Y 7, ¢;v; lies indeed in GSBDP(£2) (Step 1).
Afterwards, we prove that for a specific choice there holds J,=1I".

Step 1. Given ¢; € (0,d;), we define u, = Zle c;v;. Fix m > n. We observe that

. ' 1
{fum —un| > 1} = {| Z:n+1 Civi‘ = 1} < U::n-i-l {|Civi| 2 2_1} < Ui;nﬂ {m‘ 2 2id¢}'

By passing to the limit m — oo and by using (4.9) we get

Ld(UmZn{lum —uy| > 1}) < ZZHH Ld({w > 2%}) < Z;’;ﬂ —

This shows that the sequence (uy); satisfies , and therefore there exist a subsequence (not
relabeled) and an increasing continuous function ¥ : [0,00) — [0, 00) with lim;_, ¥ (t) = +o00
such that supy>; [, ¥(|ux]) dz < 4o0o. Recalling also that |le(vi)|[r(oy < 1 for all 7 and
HI=(I') < 400, we are now in the position to apply the G'SBDP-compactness result [25]
Theorem 11.3] (alternatively, one could apply Theorem and observe that the limit v satisfies
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L{v = oo}) = 0), to get that the function v = Y ;7 ¢;v; lies in GSBDP(2). For later
purposes, we note that by (3.8)) (which holds also in addition to |25, Theorem 11.3]) we obtain
JuC Ui:1 Jy, = T. (4.10)

This concludes Step 1 of the proof.

Step 2. We define the constants ¢; € (0,d;) iteratively by following the arguments in [26]
Lemma 4.5]. Suppose that (Ci)§;1a and a decreasing sequence (g;)¥_; C (0,1) have been chosen
such that the functions u; = Y7_, ¢;v;, 1 < j < k, satisfy

@) Ju=J_ o
(it) H M ({z € Ju;: |luy)(2)] < e5) <27, (4.11)
and, for 2 < j < k, there holds
cj <ej1d;2777L (4.12)

(Note that in the first step we can simply set ¢; = 1/4 and 0 < ¢; < 1 such that (4.11))(ii)
holds.)

We pass to the step k + 1 as follows. Note that there is a set Ny C R of negligible measure
such that for all t € R\ Ny there holds Jy, 41, =Ju;, U Ju,,,. We choose cp41 € R\ Ny such
that additionally cx1 < exdpy127%72. Then (1) and hold. We can then choose
ek+1 < €k such that also (ii) is satisfied.

We proceed in this way for all £ € N. Let us now introduce the sets
Joes UmZk{x € Ju i |uml(@)| <em}, Fi= Umzk{x € ot |oml(@)] > 1/dp}. (4.13)
Note by (4.9) and (4.11))(ii) that

HIYELUF) < 2Zm2k 27 = 92k (4.14)
We now show that for all £ € N there holds
JukéJv UE, UE. (415)
To see this, we first observe that for H¢ t-a.e. x € I' = |J;2, J,, there holds
L)(@) = [usl(@) + >, . cilvil(). (4.16)

Moreover, we get that ¢; < e,d;27°"! for all i > k + 1 by (4.12) and the fact that (g;); is
decreasing. Fix x € J,, \ (E; U Fy). Then by (4.13)) and (4.16]) we get

oo oo C; oo i
R > @) =307 albd@l e =307 Tra(l-300 2 ) a2,

where we have used that |[ux](z)| > e and [v;](x) < 1/d;, for ¢ > k + 1. Thus, [v](z) # 0 and
therefore z € J,. Consequently, we have shown that H% '-a.e. z € Ju, \ (B U Fy) lies in J,.
This shows (4.15]).

We now conclude the proof as follows: by (4.11))(i) and (4.15)) we get that

l - ~
U;lJvi =J, CJ,UE UFC J,UE,UF,

for all I > k, where we used that the sets (F%)i and (Fy )y are decreasing. Taking the union with
respect to [, we get that I'CJ,UE,UF}, for all k € N. By (4.14)) this implies H4~1(I'\ J,) < 227,

Since k € N was arbitrary, we get I'CJ,. This along with (4.10) shows J,=I" and concludes the
proof. O
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We close this section with the proof of Lemma [1.4]

Proof of Lemmal[{4 Let B = {& € V: limsup,_, . |un,(z) — va(x)| < +oo}. For 6 € (0,1),
define w? = (1 — 0)u,, + Ov, and observe that |w!| — oo on B for all ¢ since |u,| — oo on V.
Let Dy = {x € V \ B: limsup,_, [0’ (z)| < +oo}. As |u, —v,| — 0o on V \ B and thus
|wi — w2 | = |(6; — 02) (v, — u,)| — 0o on V' \ B for all 6; # 6, we obtain Dy, N Dy, = (). This
implies that £¢(Dgy) > 0 for an at most countable number of different §. We note that for all 8
with £¢(Dg) = 0 there holds |w?| — oo a.e. on V. This yields the claim. O

5. FUNCTIONALS DEFINED ON PAIRS OF FUNCTION-SET

This section is devoted to the proofs of the results announced in Subsection [2.1] Before
proving the relaxation and existence results, we address the lower bound separately since this
will be instrumental also for Section

5.1. The lower bound. In this subsection we prove a lower bound for functionals defined on
pairs of function-set which will be needed for the proof of Theorem 2.2} Theorem [2:4] We will
make use of the definition of GSBDE_(2) in Subsection In particular, we refer to the
definition of e(u) and of the jump set J, with its normal v, see 7, as well as to the
notion of weak convergence in GSBDE_(2), see (3.16). We recall also that for any s € [0, 1] and
any E € 9MM($2), E* denotes the set of points with density s for E, see [3| Definition 3.60].

Theorem 5.1 (Lower bound). Let 2 C R? be open and bounded, let 1 < p < oo. Consider
a sequence of Lipschitz sets (Ey), C §2 with sup,cy HY Y(OE,) < 400 and a sequence of
functions (uy)n C GSBDP(£2) such that uy|g\ 7, € WP\ E,;RY) and u, = 0 in E,. Let
u € GSBDY_(2) and E € M(12) such that u, converges weakly in GSBDE_(£2) to u and

XE, — Xg in L'(02). (5.1)
Then, for any norm ¢ on R? there holds
e(Un) X\ (Bauas) — e(U)Xo\(Buas)  weakly in LP(£2;ME<D) (5.2a)
/ 20(vy) dHI! + / o(vg) dH! <liminf o(vg,)dHIL, (5.2b)
JuNEO QNo*E n=+o0 JonoE,

where A% = {u = oo}.
In the proof, we need the following two auxiliary results, see [I1, Proposition 4, Lemma 5].

Proposition 5.2. Let £2 be an open subset of R and p be a finite, positive set function defined
on M(2). Let A € M (£2), and (gi)ien be a family of positive Borel functions on 2. Assume
that w(U) > [, gs AX for every U and i, and that n(UUV) > u(U)+p(V) whenever U, V CC 2
and UNV =0 (superadditivity). Then p(U) > [, (sup;ey gi) dX for every U € M(12).

Lemma 5.3. Let I' C E° be a (d—1)-rectifiable subset, & € SP=1 such that & is not orthogonal
to the normal vp to I at any point of I'. Then, for H? '-a.e. y € II¢, the set E§ (see (3.1))

has density 0 in t for everyt € FyE.

Proof of Theorem[5.1} Since u,, converges weakly in GSBDE_(£2) to u, (3.16]) implies
SUp, ey (He(un)H’z,,(Q) +HT N (Jy,) + HITHOE,)) =1 M < +cc. (5.3)
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Consequently, Theorem [3.5] and the fact that d(u,,u) — 0, see (3.13) and (3.16]), imply that
A ={u=o0} ={z € 2: |uy(x)| = oo} and

Up — U L%a.e. in 2\ A%, (5.4a)
e(un) — e(u) weakly in LP(2\ A°; ngxrfll) . (5.4b)

By 7 , un = 0 on E,, and the definition of A2, we have
ENA® =0 and wu=0 L%ae. inE. (5.5)

Then (5.4b)) gives (5.2al).
We now show ([5.2b)) which is the core of the proof. Let ¢* be the dual norm of ¢ and observe
that (see, e.g. [10, Section 4.1.2])
= max v-& = max v &l ,
gesi=t @*(§)  gesit *(§)
where the second equality holds since p(v) = p(—v).

p(v) (5.6)

As a preparatory step, we consider a set B C (2 with Lipschitz boundary and a function
v with v|5\5 € WP\ B;R%) and v = 0 in B (observe that v € GSBDP(£2)). Recall the

notation in (3.1)—(3.2). Let € € (0,1) and U € M(£2). For each £ € S¥~! and y € II¢, we define
1

F&%Bg.az/ 56V 0(9BE N TS .

S(vs, By Us) =€ 88 |(v3)'|P dt +H" (0 yﬁUy)Lp*(f)

By Fubini-Tonelli Theorem, with the slicing properties (3.3)), (3.4), (3.5), for a.e. £ € S¢~! there
holds

(5.7)

/ FE(@5, B US) dHe 1 (y) = ¢ /
¢ U\B

Since |e(v)| > |e(v)€ - €|, the previous estimate along with (5.6)) implies

| FE@ B U O ) < el + [ elvm) di
¢ UnodB

By applying this estimate for the sequence of pairs (u,, F,), we get by (5.3)

| FE@5 B U ) < Me+ [l ) aH < Ml ey + )

UNOE,

(5.8)
for all U € M(£2). Since d(un,u) — 0, we have that d((d,)5,a5) = fQ§ dga((@n)5,15) dz — 0

for ¢ € S! and H? '-a.e. y € II¢. In particular, this implies
(ﬂn)g — ﬂfl Ll-a.e. in (2 Azo)f! , (5.9a)

7 \é 1 : 00\&
[(Un)y| = +o0  L-ae. in (A7); . (5.9b)

By using (5.8) and Fatou’s lemma we obtain

lim inf FE((@n)5, (Bn)S: US) < +o0 (5.10)

for H? l-a.e. y € I1¢ and any U € M(£2). Then, we may find a subsequence (t,)m = (Un,, )m,
depending on ¢, &, and y, such that

i ST )6 .78 = liminf FE((T.)¢ §.17¢
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for any U € M({2). At this stage, up to passing to a further subsequence, we have
HO(0(Epn)5) = N§ €N,
independently of m, so that the points in d(E,,)§ converge, as m — oo, to M§ < N§ points

Bty s

which are either in OEf or in a finite set S5 := {t1,... 7tM§} \ OES C (E5)° U (ES)!, where (-)°
and (-)! denote the sets with one-dimensional density 0 or 1, respectively. Notice that Eg is thus
the union of M5/2 - #55 intervals (up to a finite set of points) on which there holds ﬂg =0,
see and (5.94). In view of and (5.10), ((@m)5)" are equibounded (with respect to m)
in L (tj,tj4+1), for any interval

(tj tis1) C 25\ (ESUSS).

Then, as in the proof of [I7, Theorem 1.1], we have two alternative possibilities on (¢;,t,11):
either (%, )5 converge locally uniformly in (t;,;41) to @S, or [(Upm)§| = +o00 L1-a.e. in (t;,t;41).

Recalling that Jag = O(AP)5 U ((J55\ (AX)5), see (3.4a) and (3.11)), we find

Ty = Jge N(E})° C S50 (E;)°. (5.12)
We notice that any point in S5 is the limit of two distinct sequences of points (p,)m, (P2,)m
with pl., p2, € 8(Em)§. Thus, in view of (5.7)) and (5.11)), for any U € M(£2) we derive

2
€ s [P dt + HO(US N OES
/U;\Wf)g'( o) Uy 008y 7 7 ©

< Hminf FE((Um)5, (Bm); US) = liminf FE((4,)5, (E,)S:US) . (5.13)

Yy
m— o0 n—oo

+HOUS N Jey)

We apply Lemma to the rectifiable set J, N E° N {¢ - v, # 0} and get that for H? !-a.e.
y € II¢

y+tEe JLNE N{E -1, #0} = te(E°.

This along with (5.12)—(5.13)), the slicing properties (3.3)—(3.5) (which also hold for GSBDZ_({2)
functions), and Fatou’s lemma yields that for all £ € S=1\ Ny, for some Ny with H41(Ny) = 0,

there holds
: 2 (A _
5/ |e(u)£-§|pdx+/ |”€ ¢l de—1+/ V€] g
U\(EUA®) U J

nore ¥*() WNEONU ©*(€)

i
Y n—0o0

< / Hminf FE((@,)5, (En)5; US) dHO! < liminf/ FE((Un)5, (E)S; US) dHO
Jie3 n—oo IIé
Introducing the set function g : 9M(2) — [0, +00)

w(U) :=lim inf/ o(vg,)dHI™L for U € M(12), (5.14)
UNOE,

n—-+oo

and letting ¢ — 0 we find by (5.8)) for all £ € S¥=1\ Ny that

lvg - d—1 2wy - €] d—1
———d dH U). 5.15
/Uma*E ©* (&) " * /JuﬁEOr‘lU ‘P*(f) < ull) ( )
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The set function y is clearly superadditive. Let A = H4 1L (Ju N EO) +HI"1 L 0*FE and define

2|vy - & 0
W Sil on J, N E°,
) &)
' lve - &l .
on 0K,
©* (&)

where (§;); € S\ Ny is a dense sequence in S*~'. By (5.15) we have pu(U) > [, g; dX for all
i € N and all U € 9MM(£2). Then, Proposition yields 1(2) > [, sup; gi dA. In view of (5.6)
and (5.14)), this implies (5.2b]) and concludes the proof. O

5.2. Relaxation for functionals defined on pairs of function-set. In this subsection we
give the proof of Proposition [2.I] and Theorem [2:2] For the upper bound, we recall the following
result proved in [I1], Proposition 9, Remark 14].

Proposition 5.4. Let u € L'(2;R?) and E € M(2) such that HI"1(0*E) < +oo and uxpo €
GSBVP(£2;RY). Then, there evists a sequence (uy)n, C WHP(2;RY) and (E,), C IM(2) with
E,, of class C™ such that u, — u in L*(2;R?), xg, — x& in L'($2), and

Vunxo\g, — Vuxo\p  in LP(2; M),

limsup/ o(vg,)dH? S/ 20(v ) dHE! —l—/ o(vg)dHL.
n—oo JOE,N2 JuNEO 8*ENN

Moreover, if L2(E) > 0, one can guarantee in addition the condition L(E,) = L(E) forn € N.

Proof of Proposition[2.1. We first prove the lower inequality, and then the upper inequality. The
lower inequality relies on Theorem and the upper inequality on a density argument along
with Proposition
The lower inequality. Suppose that u, — u in L°(;R%) and xg, — xg in L'(£2). Without
restriction, we can assume that sup,, F(u,, F,) < +00. In view of and minga—1 ¢ > 0, this
implies H4~*(0E,) < +o0o. Moreover, by the functions v, := u,x o\ g, lie in GSBDP(12)
with .J,, C OE, N {2 and satisfy sup,, |[e(v,)||zr(2) < +o00. This along with the fact that u, — u
in measure shows that v,, converges weakly in GSBDE_({2) to uxgo, see , where we point
out that A = {u = oo} = 0. In particular, uxgo € GSBDE_({2) and, since A = (), even
uxgpo € GSBDP((2), cf. As also holds, we can apply Theorem The lower
inequality now follows from (5.2)) and the fact that f is convex.

The upper inequality. We first observe the following: given u € L°(£2;R%) and E € (1)
with H"1(0*E) < oo and uxpo € GSBDP(§2), we find an approximating sequence (vy,), C
LY (£2; RY) with v, xgo € GSBVP(£2;R?) such that

(i) vp — uxgo in LO(£2;RY),
(1) e(vn)xonm — e(Wxows in LP(2:MEL),
(i) H((Jp, ATu) N E°) — 0.
This can be seen by approximating first uygo by a sequence (u,), by means of Theorem

and by setting v, := U, xgo for every n. It is then immediate to verify that the conditions in
for (), imply the three conditions above.

By this approximation, , and a diagonal argument, it thus suffices to construct a recovery
sequence for u € L*(£2; RY) with uxpo € GSBVP(£2;R%). To this end, we apply Proposition
to obtain (uy, E,,), and we consider the sequence u, x\ 5, . We further observe that, if £L4(E) >
0, this recovery sequences (u,,, E, ), can be constructed ensuring L4(E,,) = LY(E) forn € N. O
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As a consequence, we obtain the following lower semicontinuity result in GSBDZY,.

Corollary 5.5 (Lower semicontinuity in GSBDZ2.). Let us suppose that a sequence (un)n C
GSBD?_(§2) converges weakly in GSBDY_(§2) to uw € GSBDE_(£2), see (3.16). Then for each
norm ¢ on R® there holds

/ d(vy) dH™! < liminf b(vn,) dHIL.
Ju n— oo Jun

Proof. Let € >0 and f(¢) = ¢|[¢T + ¢|? for ¢ € M?*9, The upper inequality in Proposition
(for u, and E = () shows that for each w,, € GSBDE_({2), we can find a Lipschitz set E,
with £4(E,) < L and v, € LO°(2;R?) with Unlo\B, € Wie(2\ E.;RY), vy|g, = 0, and
d(vn, up) < 2 (see (3.13)) such that

/ ele(vy)|P der/ p(ve,)dHIT! < / ele(uy)|? dz +/ 20(vy, ) dHIL + 1
O\E, QNOE, [0 Jun n
(5.16)

(Strictly speaking, if w, ¢ GSBDP({2), Proposition is not applied for u,, but for some
representative given in (3.10)).) Observe that d(v,,u) — 0 as n — oo, and thus v, converges
weakly to u in GSBDE_(2). By applying Theorem on (v, E,) and using E = () we get

/ 20(1y,) dHI < liminf/ b(vg, ) dHT.
Ju NNOE,

n—oQ

This, along with (5.16)), sup,,cy [|€(un)||Lr(2) < +00, and the arbitrariness of € yields the result.
0

We now address the relaxation of Fp;,, see , i.e., a version of F' with boundary data.

We take advantage of the following approximation result which is obtained by following the
lines of [15, Theorem 5.5], where an analogous approximation is proved for Griffith functionals
with Dirichlet boundary conditions. The new feature with respect to [I5l Theorem 5.5] is
that, besides the construction of approximating functions with the correct boundary data, also
approximating sets are constructed. For convenience of the reader, we give a sketch of the proof
in Appendix [A] highlighting the adaptations needed with respect to [15, Theorem 5.5]. In the
following, we denote by F;)ir the functional on the right hand side of .

Lemma 5.6. Suppose that Op{2 C 012 satisfies . Consider (v, H) € L°(£2;R?) x IM(£2)
such that F;Dir(v,H) < 4o0. Then there exist (v, Hy) € (LP(£2;R?) N SBVP(2;RY)) x M(£2)
such that J,, s closed in 2 and included in a finite union of closed connected pieces of C*
hypersurfaces, v, € WhP(£2\ JUH;Rd), Vv = ug n a neighborhood V, C (2 of Opf2, H,, is a set
of finite perimeter, and

(i) v, — v in LO(2;RY),
(i) xm, = xm in L}(£2),
(i) limsup,,_, oo Fg(vn, Hy) < Fpy (v, H).

Proof of Theorem[2.2, First, we denote by {2 a bounded open set with 2 C ' and 2’ NS =

Opf2. By F' and F' we denote the analogs of the functionals F' and F, respectively, defined on
LY RY)xIM(L'). Given u € LO(2;RY), we define the extension v’ € L°(£’;R?) by setting
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u' = ug on 2"\ §2 for fixed boundary values ug € WP (R%; R?). Then, we observe

B = Fou(wB)+ [ fletu)de. T E) = Foalw,B)+ [ fle(u)do.
QN\Q 2Q\2
(5.17)
Therefore, the lower inequality follows from Proposition applied for F’ ,F/ instead of F, F.

We now address the upper inequality. In view of Lemma [5.6] and by a diagonal argument, it
is enough to prove the result in the case where, besides the assumptions in the statement, also
u € LP(2;RY) N SBVP(2;RY) and u = ug in a neighborhood U C §2 of dp (2.

By (un, En)n we denote a recovery sequence for (u, E) given by Proposition In general,
the functions (uy), do not satisfy the boundary conditions required in . Let 6 > 0 and
let V' CC U be a smaller neighborhood of 0p{2. In view of 7, by a standard diagonal
argument in the theory of I'-convergence, it suffices to find a sequence (v,),, C L'(£2;R?) with
Un| 0\ E, € Wir(2\ E,;R?), v, =0 on E,, and v, = uy on V' \ E,, such that

limsup,, . |[vn —uxpollz1(2) <6, limsup,, . le(vn) — e(un)x o\ &, lr(2) < 0. (5.18)
To this end, choose ¢ € C*°(2) with ¢y = 1in 2\ U and v =0 on V. For M > 0, we define
the truncation u™ by uM = (=M V u;) A M, where u; denotes the i-th component, i = 1,...,d.

In a similar fashion, we define u}/. By Proposition we then get xg, — xg in L}(£2) and
uM = o™ in LP(0;RY), Vullxonm, = VuMxpo in  LP(2; M%),

We define v,, := (puM + (1 — Y)uo)Xxo\E, - Clearly, v, = ug on V'\ E,. By Vv, = yVu +
(1 —)Vug + V) @ (uM —ug) on 2\ E,,, u = ug on U, and Propositionwe find

lm sup,, o0 [[on = vl Li2) < flu = u™ L1 @),
limsup,, o [le(vn) = e(un)xa\g, lLr(2) < Ve — Vu || ooy + |V ]|sollu — u™ | Lo (o) -

For M sufficiently large, we obtain (5.18]) since u = ux go. This concludes the proof. O

5.3. Compactness and existence results for the relaxed functional. We start with the
following general compactness result.

Theorem 5.7 (Compactness). For every (un, Ey)n with sup,, F(u,, E,) < 400, there exist a
subsequence (not relabeled), u € GSBDE_ (), and E € IMM($2) with H¥~1(9*E) < +oco such that
u, converges weakly in GSBDE_(§2) to u and xg, — x& in L*(£2).

Proof. Let (un, En)n with sup,, F(un, E,) < +00. As by the assumptions on ¢ there holds
sup,eny H¥H(OE,) < +oo, a compactness result for sets of finite perimeter (see |3, Remark
4.20]) implies that there exists £ C 2 with H9~1(0*E) < +oc such that yg, — xg in L*(£2),
up to a subsequence (not relabeled).

Since the functions u, = u,xo\p, satisfy J,, C O0E,, we get sup, H41(J,,) < +oo.
Moreover, by the growth assumptions on f (see (2.1)) we get that |le(u,)||rr() is uniformly
bounded. Thus, by Theorem [3.5] u,, converges (up to a subsequence) weakly in GSBD?_(12) to
some u € GSBDP_(2). This concludes the proof. O

Based on the above compactness properties, we now prove the following result on existence
and convergence of minimizers. Clearly, Theorem [2.3]is then an immediate consequence. We
call any affine function a: R? — R? with skew-symmetric gradient an infinitesimal rigid motion.
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Proposition 5.8 (Existence of minimizers). Let m > 0. Let (un, Ey)pn be a minimizing sequence

for
inf { Fpi(u, E): (u, E) € L°(2;RY)xM(2), LYE) =m}. (5.19)

Then, there exist a set of finite perimeter E and uw € GSBD? (£2) such that, up to a (not
relabeled) subsequence, u, converges weakly in GSBDY (§2) to u, for every infinitesimal rigid
motion a: R — R? the function vy := uxo\a= + axas (recall A3? = {u = oo}) is such that
(va, F) is a minimizing pair of

inf {Fpi(u, E): (u, E) € L°(2;RY)xM(2), LYE) =m}, (5.20)

and there holds
lim  Fpi(Un, Ep) = Fpir(va, E) .

n—-+oo

Proof. In principle, the result follows from general properties of relaxations, see e.g. [24, Theo-
rem 3.8]. The topology of the compactness result in Theorem however, is slightly different
from the one in . Therefore, we briefly give some details, in particular on the cluster points
of minimizing sequences for problem .

As in the proof of Theoremaubove7 see , we work with the functionals F”, F extended
to §2', where (2 satisfies 2’ N 3§2 = Ops2. Functions u € L°(£2;RY) are extended to u' €
LO(£2;R?) by setting u' = ug on '\ 2. Let (uy, E,), be a minimizing sequence for (5.19).
Then (ul,, Ey,)y is a minimizing sequence for the extended functional F’. We apply Theor
to (u,, E,)n and obtain the existence of a limiting pair (u/, E) such that v’ = ug in 2\ £,
E C 2, and L4(E) = m such that, up to a (not relabeled) subsequence, u/, converges weakly in

GSBD? (') to v’ and xg, — xg in L'(2"). By Theoremwe obtain

/ fle(u))dz < lim inf/ fle(ul))dz, (5.21a)
2\ (BUAZ) ON\E,

n—-+o0o
/ o(vg) dHI! + / 20 (v ) AH! < liminf o(vg,)dHI™L.  (5.21D)
Q2'NO*E J s NE°NS’ n—+% Jop,

For any infinitesimal rigid motion a: RY — R we define v, := uX 2\ A +axax on 2. By (2.2),
Proposition (5.17), (5.21), and v’ = u], = ug on 2"\ 2 we get

Fpir(vq, E) S/ f(e(u’))dx+/

N\(EUA) 'No*E

< lim inf (/ fle(u)))dz + / o(vg,) dHY) = liminf Fpi (un, Ep) .
O\E,

n——4oo OF, n——+4oo

o(vp)dHI + / 20 (v ) dHIE
JNEON

This implies Fpi;:(ve, E) < inf Fp;,. (The infimum is understood with volume constraint, i.e.,
in the sense of (5.19).) By general properties of relaxation (see e.g. [24, Theorem 3.8]) and
the upper bound in Theorem (for recovery sequences satisfying the volume constraint) we
conclude that (v,, F) is a minimizer of and that lim,, o0 Fpir(Un, En) = Fpir(ve, E). O

6. FUNCTIONALS ON DOMAINS WITH A SUBGRAPH CONSTRAINT

In this section we prove the the results announced in Subsection [2.2]



EQUILIBRIUM CONFIGURATIONS OF EPITAXIALLY STRAINED FILMS AND MATERIAL VOIDS 25

6.1. Relaxation of the energy G. This subsection is devoted to the proof of Theorem[2.4] The
lower inequality is obtained by exploiting the tool of of  -convergence introduced in Section
The corresponding analysis will prove to be useful also for the compactness theorem in the
next subsection. The proof of the upper inequality is quite delicate, and a careful procedure is
needed to guarantee that the approximating displacements are still defined on a domain which
is the subgraph of a function. We only follow partially the strategy in [I8 Proposition 4.1], and
employ also other arguments in order to improve the GSBV proof which might fail in some
pathological cases.

Consider a Lipschitz set w C R?~! which is uniformly star-shaped with respect to the origin,
see (2.9). We recall the notation 2 =w x (=1, M + 1) and

Qp={xeR: —1<zga<h()}, 2 =02,n{zs>0} (6.1)
for h: w — [0, M] measurable, where we write = (2/,24) for # € R% Moreover, we let
Q+:Qﬂ{$d>0}.

The lower inequality. Consider (uy,,hy), with sup,, G(un, h,) < +00. Then, we have that
h, € CY(w;[0, M]), Unlo,, € Whe(g, ;RY), un|9\9hn =0, and u, = uy on w x (—1,0).
Suppose that (wy, hy)n converges in L°(£2;RY)x L (w) to (u, h). We let

Ly :=02, N2={ze€NR: h,(z") =24} (62)

be the graph of the function h,,. Note that sup,, H™ 1( n) < +oo. We take U = w x (—5, M)
and U’ = 2 = w x (=1, M + 1), and apply Theorem 4.2} to deduce that (I',), o0&, converges
(up to a subsequence) to a pair (I',G). A fundamental step in the proof will be to show that

Goo =10 (6.3)

We postpone the proof of this property to Steps 3—4 below. We first characterize the limiting
set I' (Step 1) and prove the lower inequality (Step 2). We point out that in Steps 1-2 we follow
partially the lines of [I8, Subsection 3.2] whereas in Steps 34 we deal with additional technical
difficulties arising in the GSBD setting. In the whole proof, for simplicity we omit to write C
and = to indicate that the inclusions hold up to H% !-negligible sets.

Step 1: Characterization of the limiting set I'. Let us prove that the set
Yi=In; (6.4)

is vertical, that is

(¥ +teq) N2 C X foranyt>0. (6.5)
This follows as in [I8, Subsection 3.2]: in fact, consider (v,), and v as in Definition [L1](ii).
In particular, v, = 0 on U’ \ U, J,, CI},, and, in view of (6.3)), v is R%-valued with I = J,.
The functions vy, (z) := vn(2', 24 — t)x@,, (¥) (with t > 0, extended by zero in wx(—1,—1+1))
converge to v'(z) := v(2', 24 — t)x@,(z) in measure on U’. Since J,» C I}, Definition (1)
implies J,» \ I'C(Goo)t. As Goo = 0 by (6.3)), we get J,»CI, so that

(X +teg) N2 = (D +teg) N2 =(J, +teg)) N2 =Jpy N2 CTINQE =X

where we have used I = J,. This shows (6.5)). In particular, vy - eg = 0 H? !-a.e. in ¥. Next,
we show that

n—oo

HEHO* 2, N 02) + 2HTY( <hm1nf/ V14 |Vh,(2/)]2da’ . (6.6)

To see this, we again consider functions (v ), and v satisfying Definition ii). In particular,
we have J,, C I}, and J, = I'. Since I}, is the graph of a C! function, we either get vn|9hn =0
or, by Korn’s inequality, we have v,|q, € W'P(£2,,;R?). Since v, = 0 on U’ \ U, we obtain
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Vnla,, € Whe((2y, ;RY). We apply Theorem [5.1| for E, = 2\ 25,,, E = 2\ {2, and the
sequence of functions w, := UnXQ\E, = UnX2p, -

Observe that xz, — Yz in L'(§2). Moreover, w,, converges weakly in GSBD?_(2) to w :=
v, since v, converges weakly in GSBDP?_(§2) to v and sup,, H1(0E,) < +oo. By (5.2b)) for
¢ =1 on S?! there holds

HIHO* 2, N Q2) + 2H (T N 2} < lim inf HH (002, N Q)

where we used that E° = 2} and 8*EN Q2 = 0*2,N 2. Since J, =" and J,N N2} = J,N02} =
X, we indeed get , where for the right hand side we use that 02, is the graph of the
function h,, € C*(w;[0, M]). For later purposes in Step 4, we also note that by Corollary for
B(v) = |€ - v|, with £ € S~! fixed, we get

/ lvp - €] dHI :/ vy - €] dHET? ghminf/ vy, - &]dHTE < liminf/ lvr, - €| dHTT .
r o n—oo on n—roo r,
(6.7)

(Strictly speaking, as ¢ is only a seminorm, we apply Corollary for ¢ + ¢ for any £ > 0.)

Step 2: The lower inequality. We now show the lower bound. Recall that (uy, hy), converges
in LO(2;RY) x L (w) to (u, h) and that (G (un, hy))n is bounded. Then, and minga—1 ¢ >0
along with Theorem and the fact that £({zx € 2: |u,(v)| — co}) = 0 imply that the limit
u = uyg, lies in GSBDP(£2). There also holds u = ug on w x (—1,0) by (3.7)(i) and the fact
that u,, = up on w x (—1,0) for all n € N. In particular, we observe that u,, = UnX 2, CONVerges
weakly in GSBD?_(£2) to u, cf. (3.16)). The fact that h € BV (w; [0, M]) follows from a standard
compactness argument. This shows G (u, h) < +oo.

To obtain the lower bound for the energy, we again apply Theorem for E, = 2\ §2,, and
E = 2\ (2,. Consider the sequence of functions v, := Yu,xo\g, = Yun, where ¢ € C>(12)
with ¢ = 1 in a neighborhood of 2 = 2N{z4 > 0} and 1) = 0 on wx (—1,—1). We observe that
vy, =00n U'\U =wx ((—1,—3]U[M, M +1)) and that v,, converges to v := ¢u € GSBDP(12)
weakly in GSBDE_(2). Now we apply Theorem [5.1} First, notice that , =1 on 027,
and the fact that A% = () imply e(un)xor — e(u)xo+ weakly in LP(£2; MZxd). This along
with the convexity of f yields "

f(e(u))dz < liminf fle(uy))de. (6.8)
Q;r n— o0 Q;n

Moreover, applying Definition [4.1[i) on the sequence (v, ),, which satisfies v, = 0 on U"\ U and
Jy,, C Iy, we observe J, = J, C I', where we have also used (6.3). Recalling the definition of
J={(",xq+1t): x € Jy, t >0}, see , and using |D we find J;, N2} C . Thus,
by , we obtain

HITL O 2, N 02) +2HT (T N2} < nnnlioréf/ V1+|Vh,(z/)2da’. (6.9)

Collecting (6.8)) and we conclude the lower inequality. To conclude the proof, it remains
to confirm (6.3))

Step 3: Slicing arguments for rectifiable sets. To show we need some auxiliary estimates.
Recall the notation introduced in and consider A C £2 with H4~1(A) < +oo satisfying the
property HO(ASt) < 1 for all y € I1° N (w x {0}). Let wq C w C R*"! be the measurable set
with

7—[0(/1;‘1) =1 ifand only if y € IT® N (wa x {0}).
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In the arguments in Step 4 below, A will represent the graph of a function defined on w. By the
area formula (cf. e.g. [53], (12.4) in Section 12]) there holds

/\VA-ed|de—1:/ HO(AL) AR (y) = HY H(wa). (6.10)
A wx {0}

For general v = (1;)%_,,& = (&)L, € S~! there holds
d—1
V& —voea = (€ —ea) v| < a1 =€)l + v - € — vabal < va(l =€)+ &l
Thus, for § > 0 small, taking ¢ € S¥~1 with |¢4| > 1 — §, we get
lv-eq —Cs <|v-& <|v-eq|+Cs, for some C5 - 0as§d — 0. (6.11)

In view of ([6.10]), this implies for all £ € S4~1 with |¢4] > 1 — § that
\/ lva - €| dHIT — Hd_l(w/;)‘ < / [lva &l = |va - eal|[dHT < CsHTH(A). (6.12)
A A

In a similar fashion, for ¥ C 2 with H4~1(¥) < +oo satisfying the property
H° (@gt) > 2 for all y € wy x {0} for some measurable subset wy C w, (6.13)

one can show that
/ v - | AHT" > 21 (wp) — CsHH (W) (6.14)
v

for all £ € S¥1 with |4 > 1 — 4, where Cj is the constant in (6.11)).

Step 4: Proof of Goo = 0. Recall the definition of the graphs I3, in and its ok, -limit I’
on the sets U = w x (=%, M) and U’ = £2. As before, consider 1y € C>(£2) with 1) =1 in a
neighborhood of 2% and ¢ = 0 on w x (-1, —%) By employing (i) in Definition for the
sequence v, = ¥x @, eq and its limit v = 1hxq, eq, we get that (0*§2, N §2)\ I'C(G)". Since

U'N0*Go C I' by definition of of,  -convergence, we observe

I'> ("GN R) U (0°2, N 2N (Gx)?) . (6.15)

We estimate the H% '-measure of the two terms on the right separately. For the following, we
fix § > 0, £ € S with [£4] > 1 — 6, and define ¥ = §*G o, N 2.

The first term. Since Go is contained in U = wx (—3, M) and 2 = w x (—1, M +1), we observe

U = 0*Goo N(wx R). Choose wy C w such that wy x {0} is the orthogonal projection of ¥ onto
R9=1 x {0}. Note that ¥ and wy satisfy (6.13) since G is a set of finite perimeter. Thus, by
(6.14) and the area formula we get

/ HO((0*Goo N 2)5) AR (y) :/ lvg - € dHE > 2H N (wy) — CsHE (0" G o). (6.16)
II¢ w
The second term. By (6.12) applied for A; = 0*§2, N 2 and wyp, = w, we get
/ H°<(6*Qh N 9)2) dH4! :/ lva, - €] dHIT > HE N W) — CsHE Y (0" 62,) . (6.17)
II¢ Ay

In a similar fashion, letting Ay = (0*2, N 2) \ (Gs)? and denoting by w,, C w its orthogonal
projection onto R4~1 x {0}, we get

/ HO(((a*Qh N)\ (Gw)o)j) dH* :/ va, - AR < HIT (wa,) + CsHITH0"82) .
" - (6.18)

As A, is contained in (Goo)! U0*Gop, we get wy, C wy, see Figure 1. Therefore, by combining
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)
M —_
8*Q,, Ag
G
Ju
} H H }
w Wy Wi, x’

FIGURE 1. A picture of the situation in the argument by contradiction. We
show that in fact G = 0.

and we find
/m 70 ((a*nh nen (Gw)O)fj) AHIE > HE N w) — HE Ywa, ) — 205HI1(9*2p)
> HE N w) — HE Ywy) — 2C5HH(0°92) . (6.19)

Now ([6.15)), (6.16)), (6.19), and the fact that 9* G, N (Goo)® = 0 yield

W) ) >
ITé
> HI N w) + HE N (we) — 205HE Y0 2)) — CsHATH(0* G . (6.20)
By the area formula, (6.7), and (6.12) we also have
HO(IS) A (y) = / lvp - EJdHE < nrginf/ lvr, - €| dH!
r n— oo I,

< HTH W) + Cssupeny HH(T) -

(HO((0"Goe N 2)5) + O (0" 20 1 201 (G)")S ) ) a1 (1)

I7é

I7é

This along with shows that H% !(wy) < ns for some 75 > 0 with s — 0 as § — 0.
(Recall that Cs — 0, see (6.11).) As 6 > 0 is arbitrary, we obtain H?~!(wy) = 0. By recalling
that wyg x {0} is the orthogonal projection of 3*G o, N (w x R) = ¥ onto R4~! x {0}, we conclude
that Goo = 0.

This completes the proof of the lower inequality in Theorem [2:4] O

The upper inequality. To obtain the upper inequality, it clearly suffices to prove the following
result.

Proposition 6.1. Suppose that f > 0 is convex and satisfies (2.1)). Consider (u,h) with u =
uxn, € GSBDP(£2), u = uy in wx(—1,0), and h € BV (w;[0,M]). Then, there ezxists a
sequence (Un, hy)n with hy, € C(w) N BV (w; [0, M]), unlg, € W'P(2,,;RY), u, = 0 in
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2N\ Dy, , and u, = ug in wx(—1,0) such that u, — u in L°(§2;R?), h,, — h in L}(w), and

lim sup (e(up)) dz < ., fle(w)) de, (6.21a)

n—roo Qh'n

limsup,, , . H¥ (002, N02) < HTHO* 2N Q) +2HH T, N2} (6.21b)

In particular, it is not restrictive to assume that f > 0. In fact, otherwise we consider
f = f+ ¢y > 0 changing the value of the elastic energy by the term c2L£4(82;,) which is
continuous with respect to L!(w) convergence for h. Moreover, the integrals {2, and §2;, can
be replaced by Q;[n and 027 respectively, since all functions coincide with ug on w x (—1,0).

Remark 6.2. The proof of the proposition will show that we can construct the sequence (uy,)r,
also in such a way that u,, € L°(£2;R?) holds for all n € N. This, however, comes at the expense
of the fact that the boundary data is only satisfied approximately, i.e., tn|ux (~1,0) = Uo|wx (=1,0)
in WP (w x (—1,0); R?). This slightly different version will be instrumental in Subsection

As a preparation, we first state some auxiliary results. We recall two lemmas from [I8]. The
first is stated in [18, Lemma 4.3].

Lemma 6.3. Let h € BV (w; [0, +00)), with 0* (2, essentially closed, i.e., HI™1(0* 2, \ 0* (2y,)
0. Then, for anye > 0, there exists g € C*(w; [0, +00)) such that g < h a.e. inw, |[g—h/L1(w)
e, and

<

’/\/1—1—Vg|2dx’—?-ld_1(8*!2hﬂ!)) <e.

Lemma 6.4. Let h € BV (w; [0, M]) and let ¥ C R? with H41(X) < +oo be vertical in the
sense that x = (2/,24) € X implies (2, x4+1t) € X as long as (2',x4+1t) € £2}. Then, for each
e > 0 there exists g € C™(w; [0, M]) such that

lg —hllLiw) <&, (6.22a)
HT(0" 2, U D) N 2y) <, (6.22b)

‘ / V14 [VgPRda' — (HH 0" 2, N Q) + 27#—1(2))‘ <e. (6.22¢)

Proof. We refer to the first step in the proof of [I8, Proposition 4.1], in particular [I8, Equation
(12)-(13)]. We point out that the case of possibly unbounded graphs has been treated there, i.e.,
h € BV (w;[0,+00)). The proof shows that the upper bound on A is preserved and we indeed
obtain g € C*°(w; [0, M]) if h € BV (w; [0, M]). O

We now present an approximation technique based on [I5]. To this end, we introduce some
notation which will also be needed for the proof of Proposition Let k € N, k > 1. For any
z € (2k~1)Z?, consider the hypercubes

=2 (kL EHT, QY =24 (=KL 5k, (6.23)

Given an open set U C R?, we also define the union of cubes well contained in U by

(U)k = int(UZ: CMU@). (6.24)

(Here, int(-) denotes the interior. This definition is unrelated to the notation E° for the set
of points with density s € [0,1].) In the following, v: [0,00) — [0,00) denotes the function
Y(t) =t AL
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Lemma 6.5. Let U C R be open, bounded, p > 1, and k € N, § € (0,1) with k=%, 6 small
enough. Let F C GSBDP(U) be such that ¢(|v]) + |e(v) P is equiintegrable for v € F. Suppose
that for v € F there exists a set of finite perimeter V.C U such that for each ¢*, z € (2k=1)Z9,
intersecting (U)* \ 'V, there holds that

HTHQEN T,) <ok (6.25)
Then there exists a function wy, € WH((U)* \ V;R?) such that
[l do < Ry (6.260)
(U)\V
/ le(wg)|P de < / le(v)|P do + Ry . (6.26b)
(U)R\V U

where (R) s a sequence independent of v € F with Ry, — 0 as k — oo.

The lemma is essentially a consequence of the rough estimate proved in [I5, Theorem 3.1].
For the convenience of the reader, we include a short proof in Appendix [A]

Recall that 2 = wx (=1, M +1) for given M > 0. Consider a pair (u, h) as in Proposition
We work with uxp, € GSBDP(f2) in the following, without specifying each time that v = 0
in the complement of (2. Recall J! defined in 7 and, as before, set X' := J, N Q}L. This
implies J,, C (0*2, N 2)U X. Since X is vertical, we can approximate (0*§2, N §2) U X by the
graph of a smooth function g € C*(w; [0, M]) in the sense of Lemma [6.4]

Our goal is to construct a regular approximation of u in (most of) {24 by means of Lemma
The main step is to identify suitable exceptional sets (Vj)r such that for the cubes outside of
(Vik)r we can verify . In this context, we emphasize that it is crucial that each Vj is
“vertical”, see Step 1 of the proof of Proposition below for details, i.e., it is constructed in
such a way that the boundary of (£2;)* \ Vi (recall (6.24)) can be written as the graph of a
BV function. This will eventually allow us to approximate the boundary of (£2,)* \ Vj from
below by a smooth graph by means of Lemma [6.3] Before we start with the actual proof of
Proposition we introduce the notion of good and bad nodes for the construction of (Vi)g,
and collect some important properties.

Define the set of nodes
N = {ze€ 2k HZ%: ¢k C 2,}. (6.27)

Let us introduce the families of good nodes and bad nodes at level k. Let p1,p2 > 0 to be
specified below. By G, we denote the set of good nodes z € N}, namely those satisfying

HT (gF N (02 U X)) < prkt ¢ (6.28)
or having the property that there exists a set of finite perimeter F*¥ C ¢*, such that
Ny c(FH,  HTHOFF) <pok' HTN N D0 (FE°) < poktTd. (6.29)
We define the set of bad nodes by By = N \ Gr. Moreover, let
Gr ={z € Gy: does not hold} . (6.30)

For an illustration of the cubes in Gy we refer to Figure 2.
We partition the set of good nodes Gy, into
Gr={z€Gr: LUEND) <LYE N2}, GR=Gc\ G} (6.31)
We introduce the terminology “q’;, is above ¢*” meaning that qf, and ¢* have the same vertical
projection onto R¥~1x{0} and 2/, > z,.
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(F"):
1
8*Q 2,
0%y, 2 8*sz 2
Z€G,\ G z€g:

FIGURE 2. A simplified representation of nodes in Gi, for d = 2 and with
Y = 0. The set Gi \ G; corresponds to the cubes containing only a small
portion of 0*(2, U X, see first picture. For the cubes G, the portion of 9*2,
is contained in a set F* with small boundary, see second picture. Intuitively,
this along with the fact that does not hold means that 9*(2;, is highly
oscillatory in such cubes.

We remark that bad nodes have been defined differently in [I8], namely as the cubes having
an edge which intersects 0*(2;, N X. This definition is considerably easier than our definition.
It may, however, fail in some pathological situations since, in this case, the union of cubes with
bad nodes as centers does not necessarily form a “vertical set”.

Lemma 6.6 (Properties of good and bad nodes). Given 2, and X, define £24 as in Lemma
for e > 0 sufficiently small. We can choose 0 < p1 < ps satisfying p1, p2 < %5*‘19 such that the
following properties hold for the good and bad nodes defined in (6.27)—(6.31)):

(1) if ¢~ is above ¢ and z € B, UG}, then 2’ € B, UGE.

(i) if 2,2 € G with HE (g N 9gh) > 0, then 2,2/ € G} or 2,2/ € G.
(iii) #Bp + #Gr < 2p; 'k e

. d k
(iv) Zzegi LY Nk <e.

We suggest to omit the proof of the lemma on first reading and to proceed directly with the
proof of Proposition

Proof. By ¢, > 1 we denote the maximum of the constants appearing in the isoperimetric
inequality and the relative isoperimetric inequality on a cube in dimension d. We will show
the statement for € and 0 < py < 1 sufficiently small satisfying py < %5_‘19, and for p; =

((3d + 1)cx) L po.
Preparations. First, we observe that for ps sufficiently small we have that G} C G}. Indeed,
since for z € G} property (6.29) holds, the isoperimetric inequality implies
LUE N DY) < LUFE) < e (RO FE) YT < e py/ U Dg, (6.32)

Then, for p, sufficiently small we get £¢(gF N 20) < $£%(¢%), and thus z € G}, see (6.31]).
As a further preparation, we show that for each z € G} there exists a set of finite perimeter
HEY with 29 N g% C HE C ¢¥ such that

Ed(Hf) < cﬂpg/(d_l)k*d, ”del(&*Hf) < pokt=d, ’Hd’l(@ﬁﬂﬂ (Hf)o) < pokl—?.
(6.33)
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Indeed, if (6.29) holds, this follows directly from (6.29) and (6.32)) for HY := FF.
Now suppose that z € G} satisfies (6.28). In this case, we define HY := 29 N ¢*. To control
the volume, we use the relative isoperimetric inequality on ¢ to find by (6.28)

LUHE) = LY N gE) ALY N ) < en (M0 20 0 g8) YTV < epp UV (6.34)

i.e., the first part of holds since p; = ((3d + 1)cx) " 1p2. To obtain the second estimate
in , the essential step is to control H4 1 (dq* N 29). For simplicity, we only estimate
HE(Bagh N 29) where Oqq% denotes the two faces of dg¥ whose normal vector is parallel
to eq. The other faces can be treated in a similar fashion. Write z = (2/,24) and define
w, = 2 + (=k~1 k™14l By w, C w. we denote the largest measurable set such that the
cylindrical set (w. x R)N¢¥ is contained in 2. Then by the area formula (cf. e.g. [53, (12.4) in
Section 12]) and by recalling notation we get

HEH(0agb N 029) < 2HH(w,) + 2/ HO((0°2)5") dH " (y)
(w=\w.) % {0}

< 2H N (w,) + 2/ lva, - eq| dH!

o* thq§

< 2HY Y (w,) 4+ 2HT N (9 2, N ¢Y). (6.35)

As (w, xR)NgE € 290gF and £4(0290¢%) < crp? k=4 by (6.34), we deduce 26114 (w,) <
cﬂpf/(dfl)k_d. This along with (6.28]) and (6.35) yields

HE Y (Bagh N 2 < c,rpil/(d_l)kl_d + 201 k' < 3eppr kY.

By repeating this argument for the other faces and by recalling H4=1(0* 2, N ¢*) < p1k* =4, we
conclude that HY = 029 N ¢* satisfies

HIZV O HY) = HEN 0 2 N gh) + HITN0gE N 2D) < pik' 4+ d - Berpr k' < pokt T

where the last step follows from p; = ((3d + 1)c;) " *p2. This concludes the the second part of
(6.33). The third part follows from (6.28]) and p; < pa. We are now in a position to prove the
statement.

Proof of (i). We need to show that for z’ € G} there holds z € G} for all z € A}, such that
q’;, is above ¢¥. Fix such cubes ¢* and q’;,.

Consider the set HY with 20 N g% c HE C ¢% introduced in (6.33), and define FF :=
HE, — 2/ + 2. Since (2, is a generalized graph, we get (FF)! D 029 N ¢*. Moreover, since
X =J, NN} is vertical in 2y, see (2.10), and (HE)? C 02} Ng¢*, we have

SANFN =2n2in(FH c(En2inHE)) +2 -2 =(XZnHE)) +2 -2

By we thus get H~ 1 (gk N XN (FF)?) < HI gk, n 2N (HE)?) < pak?=¢. Then the third
property in (6.29) is satisfied for z. Again by we note that also the first two properties
of hold, and thus z € Gi. Using once more that (2 is a generalized graph, we get
L2, Ngk) > L2, Ngk). Then 2’ € G implies z € G}, see (6.31)). This shows (i).

Proof of (ii). Suppose by contradiction that there exist z € G} and 2/ € G} satisfying
HI71(9gk N dgk,) > 0. Define the set F := H¥ U (020 Nq%) with HY from (6.33), and observe
that F is contained in the cuboid ¢* = int(g¥ U ¢¥). Since HF D 029 N ¢¥, we find

HI Y norF) <HEYW O HE) + HE N 0" 20 b)) .
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As GZNG; =0, cf. (6.32), for 2’ € GF estimate holds true. This along with yields
HTHgF N0 F) < pok =0 4 pr k4 < 2p0k 1
Then, the relative isoperimetric inequality on ¢* yields
LUk N ) ALY G F) < Co (1M gk n 0" F) Y < C(2pn) IR (6.36)
for some universal C, > 0. On the other hand, there holds £%(¢FNF) > LI (2)Nqk) > £ (2k~1)¢

and L4 (g8 \ F) > Lg%\ HF) > (2k=1)4 — cﬂpg/(dfl)k_d by (6.33)). However, for py sufficiently
small, this contradicts (6.36]). This concludes the proof of (ii).

Proof of (iii). Note that H? !-a.e. point in R? is contained in at most two different closed
cubes ¢¥, ¢%,. Therefore, since the cubes with centers in G; and By, do not satisfy (6.28), we get

#B + #G; < pr KT YT 1T (g N (072, U D)) < 207 BTN (072, U D) N 12,),
ZGBQUQZ

where the last step follows from (6.27). This along with (6.22b)) shows (iii).
Proof of (iv). Recall that each z € G satisfies (6.28)), cf. (6.30) and before (6.32). The
relative isoperimetric inequality, (6.27)), and (6.31)) yield

d
> L) =) LN AL NGE) Send ] L (MO 200 gh) T
k k k

d/(d—1) B
< Cﬂ(zzeg% Hd—l(a*_(zh N q];)) <ecq (Hd—l(axgh n Qg))d/(d 1) .

By (6.22b) we conclude for ¢ small enough that Zzegg LY, N gE) < cre® @1 < ¢, O

Proof of Proposition[6.1. Consider a pair (u, h) and set X := J/,N2} with J} as in . Given
e > 0, we approximate (9*2,N2)UX by the graph of a smooth function g € C°°(w; [0, M]) in the
sense of Lemma Define the good and bad nodes as in 7 for 0 < p1,p2 < %5_‘19
such that the properties in Lemma hold. We will first define approximating regular graphs
(Step 1) and regular functions (Step 2) for fixed € > 0. Finally, we let ¢ — 0 and obtain the
result by a diagonal argument (Step 3). In the whole proof, C' > 0 will denote a constant
depending only on d, p, p1, and ps.

Step 1: Definition of reqular graphs. Recall (6.24). For each k € N, we define the set
. k k
Vi = Uzegiugk QF N (29)". (6.37)

We observe that
k k
Vi, N (£24)" C LeB Q5 . (6.38)

In fact, consider z € Bj, UG? such that Q¥ NV}, # () and one face of dQ¥ intersects OV, N (£2,)*.
In view of (6.37), there exists an adjacent cube ¢% satisfying H*~'(0¢¥ N q¢k) > 0 and 2’ € G}
since otherwise 0Q¥ N OV, N (£2,)F = 0. As 2’ € G}, Lemma (ii) implies z ¢ G7 and therefore
z € Bg. This shows . A similar argument yields

Vi = (UzEBk Qtu Uzeg;;’ qf) N (£29)" (6.39)

up to a negligible set. Indeed, since V} is a union of cubes of sidelength 2k~ centered in nodes
in ANy, it suffices to prove that for a fixed z € N} N Vj there holds (a) z € G2 or that (b) there
exists 2’ € By, such that z € QF,. Arguing by contradiction, if z € NNV} and neither (a) nor (b)
hold, we deduce that z € G} and Q¥ N By, = (). Then all 2’ € N}, N Q¥ lie in G;. More precisely,
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by z € G} and Lemma [6.6{ii) we get that all 2’ € N}, N Q¥ lie in GL. Then Q% N (G U By) = 0,
so that q’j NV = 0 by (6.37). This contradicts z € V4.

Let us now estimate the surface and volume of Vj. By (| and Lemma iii) we get
HIL OV N ) < Z Hd LOQF) < Ck'™ 4By, < Ce, (6.40)
where C' depends on p;. In a similar fashion, by and Lemma -(iii iv) we obtain
LYV, N 2) < Ck™ #Bk+z EquﬂQh)<CIf le+e<Ce. (6.41)

Note that Vj is vertical in the sense that (a’ ,:Cd) € Vi implies (2,24 +t) € V} for t > 0 as long
as (2/,z4 +t) € (£2)F. This follows from Lemma i) and (6.37)).

Our goal is to choose a regular graph lying below (2, and Vj,. To this end, we need to slightly
lift and dilate the involved sets. Recall definition , and define wy, C w C R4 such that
(w x R)¥ = wy, x R. Since w is uniformly star-shaped with respect to the origin, see , there
exists a universal constant 7,, > 0 such that

wp D (1 -7k Hw forT>1,. (6.42)

Define 7, := 1 + v/dmax,, |Vg|. For k sufficiently large, it is elementary to check that

24 N (wy x (0,00)) C ((29)" + 675k eq) . (6.43)

We now “lift” the set (£2,)* \ V4 upwards: define the functions
95 (2) = sup {zq < g(2'): (2', 24 — 674/k) € (2)* \ Vi } for 2’ € wy . (6.44)
We observe that g, € BV (wy;[0,M]). Define (2)* as in and, similar to (6.1)), we let
Qg ={r € wpy x (=1,M +1): —1 < x4 < gi(z')}. Since Vj is vertical, we note that

8(291; N (£2)% is made of two parts: one part is contained in the smooth graph of g and the rest
in the boundary of Vj, + 67,k 'e4. In particular, by (6.43) we get

002g N (2)F C (002, N 2)U (0025 N (2)" N 02,) C (02,0 2) U ((0Vi N (29)") + 675k~ eq) .
Then, by (6.22c) and (6.40), we deduce

HH 002y 0 (2)F) <HTH O 20N 2) +2HTH (D) + Ce. (6.45)

Since by (6.43) and (6.44) there holds (£2, \ £24) N (2)F C Vi + 6715k Leq, (622d), (6-41), and

the fact that Vj, is vertical imply
Ld((Qg \ Qg;) n (Q)k) < £d(Qg N (Ve + GTgk_led)) < Ed(Qg N Vi)
< LU O V) + L4802, \ ) < CE. (6.46)

As g). is only defined on wy, we further need a dilation: letting 7, := 7, V (67, + 6) and recalling

(6.42)) we define g;' € BV (w; [0, M]) by

gl =gh(1 -1k Ha') for 2 cw. (6.47)
(The particular choice of 7, will become clear in (6.54]) below.) By (6.46]) we get
LYy A Q) < Ce+ Cauk™,  |[HTH 002y N 2) = HET 1002y N (2)F)] < Cuuok™
(6.48)

where the constant C, ., depends also on g and w. We also notice that H?~1 (8* 24\0" Qgg) =0.
Then by Lemma |6.3| we find a function hy, € C*°(w; [0, M]) with hy < g}/ on w such that

||g;€/ — hk”Ll(w) S £, i?—ld_l(aﬂhk M Q) — Hd_l(a*ﬁgg N Q)| S E. (649)
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By (6.224)), (6.45)), (6.48]), and (6.49) we finally get
LYW A DQy,) < CetCy k™, (6.50a)
HITLO002, N02) <SHITHO* 2N 2) + 2HTHE) + Ce 4+ C,y kL. (6.50b)
Step 2: Definition of reqular functions. Recall 7, and observe that Lemma (iii)

implies

d k d/ k —d * -1 k .__ k\1
LYF* < Zzeg;‘g (¢F) < Ck™4#G: < Cek™, where F¥:= Uzeg; (FF*.

We define the functions vy, € GSBDP({2) by

v = u(l = xpr) X0, - (6.51)
Since u =0 in 2\ 2, and vy, = 0 in 2\ 2,4, we get by (6.22a]) and (6.51)
limsup £ ({vy, # u}) < limsup L4(F* U (2, \ £2,)) < e. (6.52)
k—o0 k— 00
We also obtain
HEHQEN ) < Ok (6.53)

for each ¢ intersecting (£2,)* \ Vi. To see this, note that the definitions of AV} in (6.27) and of
Vi in (6-37) imply that for each ¢¥ with ¢% N ((£2,)% \ Vi) # 0, each 2’ € N}, with ¢% N Q% £ 0
satisfies 2’ € Gg. In view of p; < py < %5_‘19 (see Lemma 7 the property then follows from
(6:28), (6:29), J. N 2, C 9*2, U X, and the fact that Q% consists of 57 different cubes ¢*,.

Notice that |vg| < |u| and |e(vg)| < |e(u)| pointwise a.e., i.e., the functions ¥ (|vk|) + |e(vg)|P
are equiintegrable, where 9 (t) = t A 1. In view of (6.53)), we can apply Lemma on U = 02,
for the function v, € GSBDP(£2,) and the sets Vj, to get functions wy € W1 ((£2,)% \ Vi; RY)
such that (6.26a]) and (6.26b)) hold for a sequence Ry — 0.

Recall the definitions of g;, and g} in (6.44) and (6.47)), as well as the definition of the smooth
mapping hy, satisfying hy < gj/. This yields

= (2 2q) € 2y, = ((L—7/k)a, xq—675/k) € (24)"\ Vi.

Recall 7, = 7, V (67, + 6) and observe that —(1 — 7, /k) — 675/k > —1 + 6/k. Also note that
(2,)* D (2)* N (w x (=14 6/k,0)), cf. (6.24). This along with the verticality of V} shows that

r= (2 2q4) € 2, = ((1 —7/k) 2 (1 — 7 /k) wg — GTg/k) c (Qg)k \ Vi (6.54)
We define the function y,: 2 — R¢ by
5 wip (1 =7 /k) ', (1 = 7/k) zqg — 674 /k) if —1<zq<hg(z'),
k(@) = {0 otherwise.

In view of 16.54 , the mapping is well defined and satisfies wkmhk € Wteo(2y,,;RY). By (6.22a))
(6.264), (6.50a)), (6.52), and ¢ < 1 we get

timsup (i = )2y < limsup (o1 = vl oy + £ (e # ) < Ce. - (6.55)

k—o0

In a similar fashion, employing (6.26b) in place of (6.26a) and the fact that |le(d)||rr(2) <
1+ C’Mk’l)He(wk)HLp((Qg)k\Vk) for some C)s depending on M and 7., we obtain

limsup/ le(g)|P dz < limsup/ le(wy)|? dz
2 (£29)"\ Vi

k—o0 k—o0

k—o0

< limsup/ le(vg)|P dz < / le(u)|P dz, (6.56)
n 2n

g
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where the last step follows from (6.51)).

Step 3: Conclusion. Performing the construction above for ¢ = 1/n, n € N, and choosing for
each n € N an index k = k(n) € N sufficiently large, we obtain a sequence (wy, h,) such that

by (6.50af) and (6.55]) we get

W, — u=uxg, in L°(2;R?) and h, — hin L'(w). (6.57)
By (6.50b)) and the definition X = J/ N Qi we obtain (6.21b)). By GSBDP compactness (see

Theorem |3.5|) applied on 1, = W, xg,, € GSBDP(§2) along with 1, — u in L°($2;R?) we get

/ le(w)|P dz < lim inf le(n,)|? da.
2

n— oo th
This along with (6.56) and the strict convexity of the norm || - || 1» () gives
e(n) — e(u) in LP(£2;MEXd) . (6.58)

sym
In view of , this shows the statement apart from the fact that the configurations w, do
possibly not satisfy the boundary data. (I.e., we have now proved the version described in
Remark since W, € L>®(£2;R?).) It remains to adjust the boundary values.

To this end, choose a continuous extension operator from WP (wx (—1,0); R%) to WP (£2; R?)
and denote by (wy), the extensions of (W, — uo)|wx(=1,0) to §2. Clearly, w, — 0 strongly in
WhP(2;RY) since (W, —uo)|wx(—1,0) = 0 in WP (w x (—1,0); R?). We now define the sequence
(Un)n by un = (Wn — wn)Xa,, - By we immediately deduce u,, — u in L°(§2;R?).
Moreover, un|q, € WHP(£2, ;RY), uy = 0in 2\ 24, , un = ug a.c. in w x (—1,0) and
still holds with u,, in place of w,. Due to , this shows and concludes the proof. [

Remark 6.7 (Volume constraint). Given a volume constraint £4(£2;7) = m with 0 < m <
MH1(w), one can construct the sequence (u,,, hy,) in Propositionsuch that also h,, satisfies
the volume constraint, cf. [I8, Remark 4.2]. Indeed, if ||h]lcc < M, we consider h}(z') =
o thi (') and u (2, 24) = un (@', rpxq), where vy :=m=' [ 'h, dz. Then [ h}, dz =m. Note
that we can assume ||hn]|co < ||h]|oo (apply Proposition with [Ih]lco in place of M). Since

rn, — 1, we then find h,: w — [0, M] for n sufficiently large, and still holds.

If ||h|| ) = M instead, we need to perform a preliminary approximation: given § > 0,
define h%M = h A (M —6) and hs(2') = r5 *h*M(2'), where rs = m~' [ h*M da. Since 2 is a
subgraph and m < MH?~1(w), it is easy to check that rs > (M — §)/M and therefore ||hs|oo <
M. Moreover, by construction we have fw hs dr = m. We define us(2’,x4) = u(x’,r(;xd)xghé.
We now apply the above approximation on fixed (us, hs), then consider a sequence 6 — 0, and
use a diagonal argument.

Remark 6.8 (Surface tension). We remark that, similar to [9, I8, B1], we could also derive a
relaxation result for more general models where the surface tension og for the substrate can be
different from the the surface tension o¢ of the crystal. This corresponds to surface energies of
the form

os HT ({h = 0}) + ocH“H (092, N (wx(0,+0))) .

In the relaxed setting, the surface energy is then given by
(05 A oc)HIL({h = 0}) + oc (Hd‘l (07824 N (wx (0, +00))) + 2HE (T, N Q}L)) .

We do not prove this fact here for simplicity, but refer to [I8, Subsection 2.4, Remark 4.4] for
details how the proof needs to be adapted to deal with such a situation.
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6.2. Compactness and existence of minimizers. In this short subsection we give the proof
of the compactness result stated in Theorem [2.5] As discussed in Subsection [2:2] this immedi-
ately implies the existence of minimizers for problem (2.11).

Proof of Theorem[2.5. Consider (un,hy), with sup,, G(un,hy,) < +o0o. First, by and a
standard compactness argument we find h € BV (w; [0, M]) such that h,, — h in L' (w), up to a
subsequence (not relabeled). Moreover, by (2.1)), (2.8), and the fact that J,,, C 942, N2 we can
apply Theorem to obtain some u € GSBD?Y_({2) such that u,, — u weakly in GSBD?_ . We
also observe that u = uxp, and u = up on w x (—1,0) by (i), Up = UnX 0, , and u, = ug
on w x (—1,0) for all n € N. It remains to show that u € GSBDP(2), i.e., {u = 0o} = 0.

To this end, we take U = wx (—3, M) and U’ = 2 = wx (=1, M +1), and apply Theorem
on the sequence I3, = 082, N {2 to find that I}, oF , -converges (up to a subsequence) to a pair
(I',G). Consider v, = tu,, where ¢ € C°°(£2) with ¢ = 1 in a neighborhood of w x (0, M +1)
and 1) = 0 on w x (—1,—3). Clearly, v, converges weakly in GSBDE_(£2) to v := tu. As J,, C
I, and v, =0 on U’ \ U for all n € N, it is not restrictive to assume that {v = co} C G, see
Corollary [4.5] As by definition of v, we have {u = co} = {v = oo}, we deduce {u = 0o} C Gw.
It now suffices to recall Goo = 0, see (6.3)), to conclude {u = oo} = 0. O

6.3. Phase field approximation of G. This final subsection is devoted to the phase-field
approximation of the functional G. Recall the functionals introduced in (2.12)).

Proof of Theorem[2.6 Fix a decreasing sequence (g,,), of positive numbers converging to zero.
We first prove the liminf and then the limsup inequality.
Proof of (i). Let (un,vy)n with sup,, G, (tn,v,) < +00. Then, v, is nonincreasing in x4, and
therefore
Un(2) :=0V (vp(x) —dpzg) N1 forz e 2 =wx(-1,M +1)

is strictly decreasing on {0 < v,, < 1}, where (4,,),, is a decreasing sequence of positive numbers
converging to zero. For a suitable choice of ()., depending on (e,), and W, we obtain
||’Un — ’17TLHL1(.Q) — 0 and

Ge, (Up,vn) = G, (up, ) + O(1/n). (6.59)
By using the implicit function theorem and the coarea formula for v,,, we can see, exactly as in
the proof of [I8, Theorem 5.1], that for a.e. s € (0,1) and n € N the superlevel set {v,, > s} is
the subgraph of a function h$ € H'(w;[0, M]). (Every h$ takes values in [0, M] since ¥, = 0
in wx(M, M +1).) By the coarea formula for v,, 0*{v, > s} N 2 = 0*(2,: N (2, and Young’s
inequality we obtain

1
/ \/QW(S)Hd_l(a*Qh;ﬁQ)dsg/ \/2W('ﬁn)|V'ﬁn|dx§/ (%|wn|2+€iwwn)) dz .
0 2 9] n

Then, by Fatou’s lemma we get
/1 \/ZW(S)(liminf/ V14 |Vhs (:r’)|2dx’)ds < liminf/ <€—n|V5 1+ iW('ﬁ )) dz < +o0
0 n—oo J, n T n—oo o 2 " En "
(6.60)

and thus liminf, . [ /1 +|Vh (2')]? dz’ is finite for a.e. s € (0,1). By a diagonal argument,
we can find a subsequence (still denoted by (e5,),) and (si)r C (0,1) with limg_,o sx = 0 such
that for every k € N there holds

lim / V14| VhE(2)|2de’ = lirginf/ V14 |Vhk(a')|?2dz’ < +oo. (6.61)
n—oo w n oo w
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Up to a further (not relabeled) subsequence, we may thus assume that h* converges in L!(w)
to some function h®* for every k. Since sup,, Ge, (un,Vy) < 400 and thus W(v,) — 0 a.e. in £2,
we obtain v,, — 0 for a.e.  with x4 > h® (2') and v,, — 1 for a.e.  with x4 < h**(2'). (Recall
W(t) =0« t € {0,1}.) This shows that the functions h®* are independent of k, and will be
denoted simply by h € BV (w; [0, M]).

Let us denote by u¥ € GSBDP({2) the function given by

{un(x) if xg < h3:(a'),

6.62
0 else. ( )

Then (uF), satisfies the hypothesis of Theorem for every k € N. Indeed, J,» C 0%(2,sx and
HI1(9* 42,2, ) is uniformly bounded in n by (6.61) k

. Moreover, (e(u;
in LP(2;M&xd) by (2.1) and the fact that

))r is uniformly bounded

Ger (tinsTn) > (e, + 53) /Q fle(t)) da

Therefore, Theorem implies that, up to a subsequence, u¥ converges weakly in GSBD?_(§2)
to a function u*. Furthermore, we infer, arguing exactly as in the proof of Theorem above,
that actually u* € GSBDP(£2), i.e., the exceptional set {uf = oo} is empty. By (3.7)(i) this
yields u® — u* in L°(£2; R%). By a diagonal argument we get (up to a further subsequence) that

uk — u” pointwise a.e. as n — oo for all k € N.

Recalling now the definition of u% in and the fact that lim, ;o [|hyF — hl/z1) = 0
for all k € N, we deduce that the functions u* are independent of k. This function will simply
be denoted by u € GSBDP(S2) in the following. Note that u = uyg, and that u = wuy on
w x (—1,0) since u, = up on w x (—1,0) for all n € N,

For the proof of (2.13), we can now follow exactly the lines of the lower bound in [I8]
Theorem 5.1]. We sketch the main arguments for convenience of the reader. We first observe
that

/Q’ﬁnf(e(un)) dx:/n(2/0m(m)sds) Fle(un) (@) dzzfol 23(/{5n>s}f(e(un))dx) ds.

This along with and Fatou’s lemma yields

1
/ lim inf (25/ fle(uy)) de+cew \/ZW(S)/ V1+|Vhs 2 dx’) ds < liminf G, (un, V) -
0 {On>s} w n—oo

n—oo
(6.63)
Thus, the integrand

I; = 25/ fle(uy))dx + cW\/QW(s)/ V1+|Vhs|2da’
{on>s} w

is finite for a.e. s € (0,1). We then take s such that hf € H!(w) for all n, and consider a
subsequence (7, )sm, such that lim,, o I, = liminf, ;. I,,. Exactly as in , we let uy
be the function given by u,,, if x4 < h;, (2’) and by zero otherwise. Repeating the compactness
argument below (6.62)), we get uf, — wa.e.in 2 and hj — hin L'(w) as m — co. We observe
that this can be done for a.e. s € (0, 1), for a subsequence depending on s.

Nm

By f{@, oy fleun,,)) da = Jo f(e(us, ))dz and the (lower inequality in the) relaxation
result Theorem (up to different constants in front of the elastic energy and surface energy)
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we obtain

2s [ fle(w))dz+ew/2W(s) (HTH 0" 2, N 2) +2H (T, N2})) < lim I7 = hrgmf[
“QIJ: Ny — 00 n—o00

for a.e. s € (0,1). We obtain (2.13)) by integrating the above inequality and by using and

(6.63)). Indeed, the integral on the left-hand side gives exactly G (u, h) as ey = fo \2W ds

Proof of (ii). Let (u,h) with G(u,h) < +o0o. By the construction in the upper mequahty for
Theorem see Proposition and Remark we find h,, € C(w;[0, M]) with h, — h in
L' (w) and u, € L= (2;R?) with uy|o, € W'P(2,,;R?) and u,, — v a.e. in 2 such that

G(u,h) = lim H(uyn,hy) for H(up, hy,) = / fle(uy))dz +HEH002,, N2)  (6.64)
n—00 Q’Tn
as well as

(U — w0)|wx(—1,0) = 0 in WHP(wx(—1,0);RY). (6.65)
For each (uy,h,), we can use the construction in [I8] to find sequences (u¥); C W1P(£2;R%)
and (v), C H'(£2;]0,1]) with uf = u, on w x (=1,0), uf — u, in L*(£2;RY), and v — x0,
in L1(£2) such that (cf. (6.64))

lim sup /Q (((v,’i)2 + e, ) fe(ul)) + cW<VVE(:£) + %Wv,’j 2)) dz < H(up,hyn).  (6.66)

k—o0

In particular, we refer to [I8, Equation (28)] and mention that the functions (vF), can be
constructed such that v¥ = 1 on w x (—1,0) and v¥ = 0 in w x (M, M + 1). We also point out
that for this construction the assumption 7.'=? — 0 as € — 0 is needed.

By -7 F, and a standard dlagonal extraction argument we find sequences (4*);, C

Jnk and ( )n.k such that @% — u a.e. in 2, v¥ — yp, in L'(£2), and
k
1imsup/ (((vk)2 + 02, ) fe(@F)) + ew (M + E;Vvk|2)> dr < G(u,h). (6.67)
k—o0 2

By using and the fact that u® = wu, for all k,n € N, we can modify (4*), as de-
scribed at the end of the proof of Proposition [6.1] (see below (6.58))): we find a sequence (u*)y,
which satisfies u¥ = uy on w x (—1,0), converges to u a.e. in £2, and still holds, i.e.,
lim supy,_, o, Ge, (u¥,v*) < G(u, h). This concludes the proof. O

A. AUXILIARY RESULTS

In this appendix, we prove two technical approximation results employed in Sections [5| and
[6] based on tools from [17].

Proof of Lemma[5.6. Let (v, H) be given as in the statement of the lemma. Clearly, it suffices
to prove the following statement: for every n > 0, there exists (v, H") € LP(§2;R?)xIN(2)
with the regularity and the properties required in the statement of the lemma (in particular,
v = wug in a neighborhood V" C 2 of dp2), such that, for a universal constant C, one has

d(v",v) < On (cf. (3.13)) for d), LA HAH") < Cn, and
F;:)ir(vn7Hn) < F;:)ir(v7H) + CT] .

We start by recalling the main steps of the construction in [I5, Theorem 5.5] and we refer to [15]
for details (see also [I6], Section 4, first part]). Based on this, we then explain how to construct
(v", H") simultaneously, highlighting particularly the steps needed for constructing H".
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Let € > 0, to be chosen small with respect to . By using the assumptions on 92 given
before (2.4), a preliminary step is to find cubes (Qj)}]:1 with pairwise disjoint closures and
hypersurfaces (I j)le with the following properties: each (); is centered at z; € Oy {2 with
sidelength g, dist(Q;,0pf2) > d. > 0 with lim._,od. = 0, and

d—1 A (A A Jo=
HTH N2\ Q)+ LY Q) <&, for Q= UJ_:1 Q; - (A.1)
Moreover, each I} is a C'-hypersurface with z; € I'; C @j,
W (On02AT3) N Q;) < =(20))" < =M (v 2N Q).

and I is a C'-graph with respect to vgg(z;) with Lipschitz constant less than £/2. (We can
say that dnf2 N Q; is “almost” the intersection of (); with the hyperplane passing through x;
with normal vy (z;).) We can also guarantee that

HITL(O*HUJ,)N2NQ) <e, HIL(9"H U J,) N 0Q;) =0 (A.2)

forall j =1,...,J. To each @)}, we associate the following rectangles:
d—1
R = {xj + Zi:l Yibji +Yavi: yi € (—05,05): Ya € (—3e0; — ¢, —EQj)},

d-1
R} = {Ij + Zi:l Yibji+yavi: yi € (—0j,05), Ya € (—€0j,€0; +t)}7
and ﬁj := R; U R}, where v; = —vpp(x;) denotes the generalized outer normal, (bj.)4=}! is an
orthonormal basis of (v;)*, and ¢ > 0 is small with respect to n. We remark that I'; C R} and
that R; is a small strip adjacent to R;-, which is included in 2N Q;. (We use here the notation
;j in place of j, x adopted in [I5, Theorem 5.5].)

After this preliminary part, the approximating function u” was constructed in [I5, Theo-
rem 5.5] starting from a given function u through the following three steps:

(i) definition of an extension @ € GSBDP({2 + B;(0)) which is obtained by a reflection
argument a la Nitsche [50] inside R;, equal to u in .Q\Uj R;, and equal to ug elsewhere.
This can be done such that, for ¢t and € small, there holds (see below [15] (5.13)])

/|e(uo)|p dz + / le(w)[? do + / le(w)[P da + Hdil(Ja N ﬁ) <n, (A.3)
(£2+B.(0)\2 & R

where R := U;-le R; and R:= U}I:1 ﬁj N (24 B(0)).

(ii) application of Theorem [3.4]on the function @° := w0 (Og, 4, ) ™ + o — ug 0 (Os.4,) " (for
some § sufficiently small) to get approximating functions u® with the required regularity
which are equal to ug+*,, in a neighborhood of 0p 2 in {2, where 1), is a suitable mollifier.
Here, assumption is crucial.

(iii) correcting the boundary values by defining u” as u” := u® 4 ug — ug * ¥, for § and 1/n
small enough.

After having recalled the main steps of the construction in [I5, Theorem 5.5], let us now
construct v and H" at the same time, following the lines of the steps (i), (ii), and (iii) above.
The main novelty is the analog of step (i) for the approximating sets, while the approximating
functions are constructed in a very similar way. For this reason, we do not recall more details
from [I5, Theorem 5.5].

Step (i). Step (i) for v" is the same done before for u", starting from v in place of u. Hereby,
we get a function v € GSBDP ({2 4 B.(0)).
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For the construction of H, we introduce a set H C 2+ B,(0) as follows: in R}, we define a
set H J’ by a simple reflection of the set H N R; with respect to the common hyperface between

Rj and R);. Then, we let H:=HU szl(HJ’ N (£2+ B:(0))). Since H has finite perimeter, also
H has finite perimeter. By (A.2) we get H1(8*H N R) < /3 for ¢ small, where as before
R:= U‘j]:1 R; N (24 B,(0)). We choose d, €, and ¢ so small that

Jyd-1 (oévro(ujzl OR,\ aRj) N Q) < g . (A4)

We let H" := Oy 4, (EI) Then, we get LY H"AH) < 1 for ¢, t, and § small enough. By (A1),
(A.4), and HY1(0*H N R) < n/3 we also have (again take suitable ¢, §)

/ (i) dAHI < / p(vp) AHI . (A5)
O*H" O* HN(N2Udp 2)

Moreover, in view of and dist(Q;,0pf2) > d. > 0 for all j, H" does not intersect a
suitable neighborhood of 9p 2. Define 7% := v o (Os,20) "t +up —ug o (Os,4,) " and observe that
the function 56X(Hn)0 coincides with ug in a suitable neighborhood of 0pf2. By , by the
properties recalled for u, see 7 and the fact that v = vy go, it is elementary to check that

Fru (@ X(#myo, H) < Fpy(vxgo, H) + Cnp = Fpy (v, H) + Cp. (A.6)

Notice that here it is important to take the same § both for ° and H", that is to “dilate” the
function and the set at the same time.

Step 2. We apply Theorem to 55)(( Hn)o, to get approximating functions v0 with the
required regularity. For n sufficiently large, we obtain d(ﬂgx( Hn)o, 55)(( amyo) < nand

| Foe (@ x (o, H™) — Fre (00X (pmy0, HM)| < .

Step 3. Similar to item (ii) above, we obtain v = wug * %, in a neighborhood of dp 2.
Therefore, it is enough to define v" as v" := ¥° + ug — ug * ¥, Then by (A.6) and Step 2 we

obtain d(v",v) < Cn and Fp;, (v7, H") < Fp. (v, H) + Cn for n sufficiently large. O

We now proceed with the proof of Lemma which relies strongly on [I5] Theorem 3.1].
Another main ingredient is the following Korn-Poincaré inequality in GSBDP?, see [13], Proposi-
tion 3.

Proposition A.1. Let Q = (—r,7)%, Q" = (—r/2,7/2)¢, u € GSBD?(Q), p € [1,00). Then
there exist a Borel set w C Q' and an affine function a: R® — R? with e(a) = 0 such that
LU w) < erHYY(J,) and

.-
/Q/\ (Ju—alP)! dz < er®P= D1 (/Q |e(u)|pd:n> : (A7)

If additionally p > 1, then there exists ¢ > 0 (depending on p and d) such that, for a given
mollifier ¢, € C2°(B, /1), or(x) = r~%p1(x/r), the function w = uxgw, + axe obeys

/” le(w * p,) —e(u) * o [P dx < ¢ <W>q/Q le(u)[P dz (A.8)

where Q" = (—r/4,7/4)%. The constant in (A.7) depends only on p and d, the one in (A.8) also
on 1.
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Proof of Lemma[6.5. We recall the definition of the hypercubes
= (kL EHY = (2267, QY =2 (5T BT

where in addition to the notation in , we have also defined the hypercubes ¢*. In contrast
to [15, Theorem 3.1], the cubes Q’; have sidelength 10k~' instead of 8k~'. This, however, does
not affect the estimates. We point out that at some points in [I5, Theorem 3.1] cubes of the
form z + (—8k~1,8k~1)? are used. By a slight alternation of the argument, however, it suffices
to take cubes Q¥. In particular it is enough to show the inequality [15 (3.19)] for a cube Q; (of
sidelength 10k~1) in place of @j (of sidelength 16k~!), which may be done by employing rigidity
properties of affine functions. Let us fix a smooth radial function ¢ with compact support on
the unit ball B;(0) C R%, and define ¢y () := k%p(kx). We choose 6 < (16¢)~!, where c is the
constant in Proposition (cf. also [I5, Lemma 2.12]). Recall and set
Li={zec 2kHZ%: ¢ n )\ V #0}.

We apply Proposition for r = 4k~!, for any z € N by taking v as the reference function
and z + (—4k~1, 4k~ )% as Q therein. (In the following, we may then use the bigger cube Q¥ in
the estimates from above.) Then, there exist w, C ¢~ and a,: R? — R? affine with e(a,) = 0
such that by , , and Holder’s inequality there holds

LY w,) < 4ck™ 1T, NQY) < 4chk™, (A.9a)
o= asll o giren < 4k~ e)llror - (A.9b)
Moreover, by (6.25) and (A.8) there holds

le(D, * pr) —e(v) *x g P de < ¢ (Hd_l(Jv N le) kd—l)‘l/
Qk

for 0, := vXgr\w, + @2Xw. and a suitable ¢ > 0 depending on p and d. Let us set

W= e
zEng

We order (arbitrarily) the nodes z € N/, and denote the set by (z;);ecs. We define

le(v)[P da: < 0 /Qk le(v)|P dz

qk

: k k
gomdt I Usey @) N8 (A.10)
a, inwz; \ Ujcjwe s
and
wy =W * @ i (U)F\V. (A.11)

We have that wy, is smooth since (U)¥ \ V + supppr C UzeN,; G c U (recall (6.24)) and
V] gr\wr € LP(gh \ wk;R?) for any 2 € N}, by (A-9H).

~ We define the sets GY = {z e N|: H¥1(J,NQF) < kY/274} and GE := N7\ GE. By G and
G%, respectively, we denote their “neighbors”, see [I5] (3.11)] for the exact definition. We let

65’2 = Uzeé’“ Q-
There holds (cf. [I5] (3.8), (3.9), (3.12)])
lim (Ed(wk) + Ed(ﬁg,z)) =0. (A.12)

k—o0

At this point, we notice that the set Ej in [I5, (3.8)] reduces to w” since in our situation all
nodes are “good” (see (6.25) and [15] (3.2)]) and therefore 2/ therein is empty.
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The proof of (3.1a), (3.1d), (3.1b) in [I5l Theorem 3.1] may be followed exactly, with the
modifications described just above and the suitable slight change of notation. More precisely,
by [15, equation below (3.22)] we obtain

[wk, = vl| ey \wner) < CEHle() | Lowy » (A.13)
for a constant C' > 0 depending only on d and p, and [15], equation before (3.26)] gives

[ optu—ae<e([ oot [ (ioD)derr [ e ar).

(A.14)

where () = t A 1. Combining (A.13)-(A.14)), using (A.12)), and recalling that ¢ is sublinear,
we obtain (6.26a)). Note that the sequence Ry — 0 can be chosen independently of v € F since

P(Jv]) + |e(v)|P is equiintegrable for v € F.

Moreover, recalling (A.10)-(A.11)), we sum [I5] (3.34)] for z = z; € G% and [I5, (3.35)] for
z = z; € G} to obtain

/ le(wp)|P dz < / le(v)|? dar + OW'/?/ (o) da + c/ (o) da
(U)k\V U U 2k,
for some ¢’ > 0. This along with (A.12) and the equiintegrability of |e(v)|P shows (6.26b)). O
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