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Abstract - We show some necessary conditions for minimizers of a functional depending on free discon-
tinuities, free gradient discontinuities and second derivatives, which is related to image segmentation.
A candidate for minimality of main part of the functional is explicitly exhibited.

Conditions necessaires d’extremalité pour la fonctionnelle de Blake & Zisserman

Résumé - On donne des conditions necessaires de minimalité pour une fonctionnelle dépendante des
discontinuités libres et derivées secondes, reliée a la segmentation des images. On montre un candidat
explicit veŕifiant toutes les conditions d’extremalité.

Version Françáise abrégée
Nous envisageons la fonctionnelle de Blake & Zisserman (1) pour la segmentation des images ([2],[3]).
Dans [4],[5],[6] nous avons montrez des conditions suffisantes pour l’existence des minima et leur regularité.
Ici nous présentons des résultats nouveaux: conditions necessaires d’extremalité obtenues par plusieurs
techniques des variations, en explicitant les conditions d’Euler et des conditions intégrales et géometriques
pour la segmentation optimale.
Si la terne (K0,K1, u) est mińimisante et n = 2, 3 alors K0∪K1 peut être interpretée comme segmentation
optimale d’une image mono-chromatique d’intensité donnée g.
L’existence des minima a eté prouvez par regularization des solutions faibles en dimension 2, pourvu que
g ∈ L2q

loc(Ω) (Theorems 4,5).
L’equation d’Euler aux sense des distributions hors de la segmentation optimale K0 ∪K1 est

∆2u = −q
2
µ|u− g|q−2(u− g) dans Ω \K0 ∪K1 ,

couplée avec des conditions homogènes sur les opérateurs aux bord pour la décomposition du bilaplacién.
Les variations premières de l’énergie d’une minimum locale par rapporte à des déformations (a support
compact) de la segmentation optimale donnent l’equation d’Euler globale (9) et des liens entre la courbure
de la segmentation et les differences des traces du héssien.
Avec cette analyse nous déduison beaucoup de condition necessaire d’éxtremalité. Enfin nous montrons
une terne, avec une segmentation non triviale, qui verifies toutes le conditions pour être un minimum local
de la partie principale de l’énergie dans R2 , et en plus satisfait un principe variationnél d’equi-partition
entre l’énergie de volume et l’énergie de surface.
Nous conjecturons que cette terne est une minimum locale, unique à moins des mouvements rigides et/ou
addition des fonctions affines.
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We focus the Blake & Zisserman functional in image segmentation ([2],[3]). In previous papers we proved
the existence of minimizers and showed some regularity properties ([4],[5],[6]). Here we show necessary
conditions for minimality by performing various kind of first variations: Euler equations and several
integral and geometric conditions on optimal segmentation set. The strong formulation of Blake &
Zisserman functional F and its main part E are ([5]):

(1) F (K0,K1, u) :=
∫

Ω\(K0∪K1)

(
|D2u|2 + µ|u− g|q

)
dy + αH n−1(K0 ∩ Ω) + βH n−1((K1 \K0) ∩ Ω) ,

(2) E(K0,K1, u) :=
∫

Ω\(K0∪K1)
|D2u|2 dy + αH n−1(K0 ∩ Ω) + βH n−1((K1 \K0) ∩ Ω).

where Ω ⊂ Rn is an open set, n ≥ 2, H n−1 denotes the (n − 1)-dimensional Hausdorff measure, and
α, β, µ, q ∈ R, with

(3) q > 1 , µ > 0 , 0 < β ≤ α ≤ 2β , g ∈ Lq(Ω) ,

are given; while K0, K1 ⊂ Rn are Borel sets (a priori unknown) with K0 ∪K1 closed, u ∈ C2(Ω \ (K0 ∪
K1)) and u is approximately continuous on Ω \K0.
If (K0,K1, u) is a minimizing triplet for F and n = 2, 3 , then K0 ∪K1 can be interpreted as an optimal
segmentation of the monochromatic image of brightness intensity g.
Existence of minimizers for functional (1) was proved by regularization of solution for a weak formulation,
when n = 2, provided the additional assumption g ∈ L2q

loc(Ω) is satisfied (Theorems 4,5). In general, when
n ≥ 2 and g 6∈ Lnqloc(Ω), then the infimum may be not achieved ([6]).
1. Notation and definitions -
For any Borel function v : Ω→ R and x ∈ Ω, z ∈ R := R∪ {−∞,+∞}, we set z = ap limy→x v(y) (that
is to say z is the approximate limit of v at x) if

g(z) = lim
ρ→0

∫
Bρ(0)

g(v(x + y))dy ∀g ∈ C0(R) .

For ν ∈ Sn−1, we denote by v+ = tr+(x, v, ν) (and v− = tr+(x, v,−ν)) if

g(v+) = lim
ρ→0

∫
Bρ(0)∩{y·ν>0}

g(v(x + y))dy ∀ g ∈ C0(R) .

The set Sv = {x ∈ Ω : 6 ∃ap limy→x v(y)} is the singular set of v. By Dv,∇v we denote, respectively, the
distributional gradient and the approximate gradient of v (see [5]). | · | denotes the euclidean norm and
∇iv = (ei · ∇)v, where {ei} is the canonical basis of Rn. When the right hand side is meaningful, we set
∇2
ijv = ∇i(∇jv). We recall also the definitions of some classes of functions having derivatives which are

special measures in the sense of De Giorgi, and we refer to [7], [3,4,5,6], [1] for their properties:

SBV (Ω) :=
{
v ∈ BV (Ω) : ‖Dv‖M(Ω) =

∫
Ω
|∇v| dy +

∫
Sv

|v+ − v−| dH n−1
}
,

GSBV (Ω) :=
{
v : Ω→ R Borel function;−k ∨ v ∧ k ∈ SBVloc(Ω) ∀k ∈ N

}
,

GSBV 2(Ω) :=
{
v ∈ GSBV (Ω), ∇v ∈

(
GSBV (Ω)

)n}
.
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The classes GSBV (Ω), GSBV 2(Ω) are neither vector spaces nor subsets of distributions in Ω, nevertheless
smooth variations of a function in GSBV 2(Ω) belong to the same class. If v ∈ GSBV (Ω), then Sv is
countably H n−1-rectifiable and ∇v exists a.e. in Ω. We set S∇v =

⋃n
i=1 S∇iv , and Kv = Sv ∪ S∇v.

Definition 1. (Weak formulation of Blake & Zisserman functional [4])
For Ω ⊂ Rn open set, under the assumption (3), we define F : X(Ω)→ [0,+∞] by

(4) F(v) :=
∫

Ω
(|∇2v|2 + µ|v − g|q) dy + αH n−1(Sv) + βH n−1(S∇v \ Sv) .

where X(Ω) := GSBV 2(Ω) ∩ Lq(Ω). We consider also localization FA on any Borel set A ⊆ Ω.
We remark that the subset of GSBV 2(Ω) where F is finite is a vector space.
Definition 2. (Local minimizer)
We say that u is a local minimizer of the functional F in Ω if

u ∈ GSBV 2(A), FA(u) < +∞, FA(u) ≤ FA(u+ ϕ)

for every open subset A ⊂⊂ Ω and for every ϕ ∈ GSBV 2(Ω) with compact support in A.
We introduce also the weak form of functional (2)

(5) E(v) :=
∫

Ω
|∇2v|2 dy + αHn−1(Sv) + βHn−1(S∇v \ Sv) ,

We say that u is a local minimizer of the functional E in Ω if, by denoting EA the localization,

u ∈ GSBV 2(A), EA(u) < +∞, EA(u) ≤ EA(u+ ϕ)

for every open subset A ⊂⊂ Ω and for every ϕ ∈ GSBV 2(Ω) with compact support in A.
Remark 3. If u is a local minimizer of E in Ω then also the function u(x) + a ·x+ b is a local minimizer
in Ω for every a ∈ Rn, b ∈ R, moreover, if Bρ(0) ⊂ Ω, then the re-scaling

uρ(x) = ρ−3/2u(ρ(x− x0))

defines a local minimizer in B1(x0) such that EBρ(0)(u) = ρn−1 EB1(0)(uρ) .
About the minimization of (1) and (4) the two following statements are known.
Theorem 4. (Existence of weak solutions) (see [4])
Let Ω ⊂ Rn be an open set and assume (3). Then there is v0 ∈ X(Ω) such that F(v0) ≤ F(v) ∀v ∈ X(Ω) .
We recall that assumption β ≤ α ≤ 2β is necessary for lower semi-continuity of F .
Theorem 5. (Existence of strong solutions) (see [5])
Let n = 2, Ω ⊂ R2 be an open set. Assume (3) and g ∈ L2q

loc(Ω). Then there is at least one triplet among
K0,K1 ⊂ R2 Borel sets with K0 ∪K1 closed and u ∈ C2(Ω \ (K0 ∪K1)) approximately continuous on
Ω \K0 minimizing the functional (1) with finite energy. Moreover the sets K0 ∩Ω and K1 ∩Ω are (H1, 1)
rectifiable.
2. New results -
Theorem 6. (Euler equation and regularity outside the optimal segmentation Ku)
Assume (3) and u ∈ GSBV 2(Ω) is a local minimizer of F in Ω ⊂ Rn , n ≥ 2, g ∈ Ls(Ω), 1 < q ≤ s, then
(i) ∆2u = − q2µ|u− g|

q−2(u− g) in Ω \Ku ;

(ii) u ∈W 4,s/(s−1)
loc (Ω \Ku) .

(iii) u ∈ C1,1/2(Ω \Ku) .

3



Moreover if s ≥ nq, then, by setting γ = 1− n(q−1)
s ,

(iv) u ∈ W
4,s/(q−1)
loc (Ω \Ku) ⊂ C3,γ

loc (Ω \Ku) .
If A is a C2 uniformly regular open subset of Ω , N is the outward unit normal to ∂A and {tk = tk(x) ; k =
1, . . . , n− 1, x ∈ ∂A } denotes a system of local tangential coordinates, then for every ϕ ∈ W 2,2(A) and
u ∈W 2,2(A) with ∆2u ∈ L2(A) the following Green formula holds true:∫

A

(D2u) : (D2ϕ) dy =
∫
A

(∆2u)ϕdy +
∫
∂A

(
S(u)− ∂

∂N
∆u
)
ϕdH n−1 +

∫
∂A

T (u)
∂ϕ

∂N
dH n−1

where the natural boundary operators T (u) and S(u) are defined by

(6) T (u) :=
n∑

i,j=1

∇2
iju NiNj , S(u) := −

n∑
i,j=1

n−1∑
k=1

∂

∂tk

(
∇2
iju Nj

∂tk
∂xi

)
.

By evaluating the first variation of the energy functional (4) around a local minimizer u (Def. 2) under
compactly supported deformations of u, which are smooth outside Ku , we get Theorems 7 and 8.

Theorem 7. (Necessary conditions on Su for natural boundary operators) Assume (3), n ≥ 2, q > 1
and u is a local minimizer of F , B ⊂⊂ Ω an open ball such that Su ∩ B is the graph of a C3 function
and (S∇u \ Su)∩B = ∅. Denote by B+, B− the two connected components of B \ Su and by N the unit
normal vector to Su pointing toward B+. Assume that u ∈ C3(B+) ∩ C3(B−). Then

(7)
(
T (u)

)±
= 0 ,

(
S(u)− ∂

∂N
∆u
)±

= 0 on Su ∩B .

Theorem 8. (Necessary conditions on S∇u for jumps of natural boundary operators) Assume (3),
n ≥ 2, q > 1 and u is a local minimizer of F , B ⊂⊂ Ω an open ball such that S∇u ∩ B is the graph of a
C3 function and Su ∩ B = ∅. Denote by B+, B− the two connected components of B \ S∇u and by N
the unit normal vector to S∇u pointing toward B+. Assume that u ∈ C3(B+) ∩ C3(B−). Then

(8)
(
T (u)

)±
= 0 ,

[[
S(u)− ∂

∂N
∆u

]]
= 0 on S∇u ∩B ,

where for a function w we set
[[
w
]]

= w+ − w−.
By evaluating the first variation of the energy functional (4) around a local minimizer u, under compactly
supported smooth deformation of Su and S∇u , we find the global Euler equation.
Theorem 9. (Global Euler Equation) Let u ∈ GSBV 2(Ω) be a local minimizer of F in Ω, g ∈ C1(Ω),
then for every η ∈ C2

0 (Ω,Rn) the following equation holds:

(9)

∫
Ω

(
|∇2u|2 div η − 2

(
∇2uDη + (Dη)t∇2u+∇uD2η

)
: ∇2u

)
dy

+ µ

∫
Ω

(
|u− g|q div η − q|u− g|q−2(u− g)Dg · η

)
dy

+ α

∫
Su

divSu η dH n−1 + β

∫
S∇u\Su

divS∇u\Su η dH
n−1 = 0 ,

where
(
∇2uDη+ (Dη)t∇2u+∇uD2η

)
ik

=
∑
j ∇2

ijuDkηj +Diηj∇2
jku+∇juD2

ikηj , and divM denotes
the tangential divergence on M .
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We perform a qualitative analysis of the singular set by assuming enough regularity to deal with normal
derivatives of u and of the traces of |∇2u| on both sides of Ku, and to perform integration by parts in
Theorem 9: by using compactly supported vector fields that are normal to Su or S∇u as test functions
we can prove the two following statements.
Theorem 10. (Curvature of Su and squared hessian jump) Let u be a local minimizer of F in Ω,
g ∈ C1(Ω) and B ⊂⊂ U ⊂ Ω two open balls, such that Su ∩ U is the graph of a C3 function and B+
(resp. B− ) the open connected epigraph (resp. hypograph) of such function in B. Assume S∇u ∩U = ∅,
(S̄u \ Su) ∩ U = ∅, and u ∈ C3(B+) ∩ C3(B−). Then[[

|∇2u|2 + µ|u− g|q
]]

= (n− 1)αH(Su) on Su ∩B ,

where H is the scalar mean curvature evaluated by orienting the surface through the normal pointing
toward B+.
Theorem 11. (Curvature of S∇u and squared hessian jump) Let u be a local minimizer of F in Ω,
g ∈ C1(Ω) and let B ⊂⊂ U ⊂ Ω two open balls such that S∇u ∩U be the graph of a C3 function and B+
(resp. B− ) be the open connected epigraph (resp. hypograph) of such function in B. Assume Su∩U = ∅
and u ∈ C3(B+) ∩ C3(B−). Then[[

|∇2u|2 + µ|u− g|q
]]

= (n− 1)β H(S∇u) on S∇u ∩B .

We perform a qualitative analysis of the “boundary” of the singular set, by assuming that it is a manifold
as smooth as required by the computation of boundary operators. The strategy is a new choice of the
test functions in the global Euler equation (9): a vector field η tangential to Su. Here, for simplicity, we
state the theorem only in the case n = 2.
Theorem 12. (Crack-tip) Let n = 2, u be a local minimizer of F in Ω, and B ⊂⊂ U ⊂ Ω open balls,
such that Su ∩ U is an oriented C3 arc, oriented by a normal vector field ν ∈ C2(U), and S∇u ∩ U = ∅.
Assume (Su \ Su) ∩ U = {x0} ⊂ B , and u ∈ W 2,2(B \ Su). Let n be the unit vector tangent to Su at
x0 and pointing toward Su.
Then, for every η ∈ C∞0 (B,R2) s.t. η = ζτ , ζ ∈ C∞0 (B), τ ∈ C∞(B,S1), s.t. η · ν ≡ 0 on Su and
τ · n = 1 at x0,

lim
ε→0

∫
∂Bε(x0)

{(
|∇2u|2 + µ|u− g|q

)
η ·nε − 2T ε(u)

∂η

∂nε
·∇u − 2

(
Sε(u)− ∂

∂nε
∆u
)
η ·∇u

}
dH1 = α ζ(x0)

where the natural boundary operators T ε and Sε are defined as in (6), but using nε instead of N , (nε
points inside Bε(x0)).

So far we have found many necessary conditions for minimality for the functional F . Now we examine
the main part E of the functional F in Rn , which is a natural procedure in the study of regularity
properties of F . We emphasize that Theorems 6-12 hold true for local minimizers of E provided all the
terms including u− g are dropped.
Eventually we show a candidate local minimizer W of E in R2, which has a non trivial singular set. It
is constructed by suitable combination of real parts of analytic branch of multi-valued functions with
branching point at the origin and cut along the negative real axis, and by exploiting Almansi represen-
tation of bi-harmonic functions. Some of the long and boring computations were performed by using the
symbolic calculation routines of Mathematica 4.1 c©. This function W exhibits the only homogeneity in
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% compatible with: being bi-harmonic, scaling invariance of the energy, all the necessary conditions, local
finiteness of energy and the proper decay rate of energy around the origin (tip of the crack). Notice that
W is left unchanged by natural dilations of homogeneity −3/2 (see Remark 3). We stress the fact that
minimizers are not defined up to a free constant multiplier, due to the analysis around the crack-tip.
Actually a variational principle of equi-partition of bulk and surface energy is fulfilled by W , say, ∀% > 0,∫

B%(0)
|∇2W |2 dx dy = αH1 (SW ∩B%(0)) .

Such candidate, expressed by polar coordinates in R2, is:

W =
√

α

193π
%

3
2

(√
21
(

sin
θ

2
− 5

3
sin
(3

2
θ
))

+
(

cos
θ

2
− 7

3
cos
(3

2
θ
)))

θ ∈ (−π, π).

The following properties show that W fulfills the necessary conditions of Theorems 6-12:

SW = negative real axis, S∇W = ∅, ∆2W = 0 on R2 \ SW , Wyy = 0 = Wyyy + 2Wxxy on SW .

Conjecture 13. We conjecture that W is a local minimizer of E in R2 , and there are no other nontrivial
local minimizers besides W , up to sign change, rigid motions in R2 and addition of affine functions.

Complete proofs will be published elsewhere.
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