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A Relaxation Result in the Vectorial Setting and Power Law Approximation
for Supremal Functionals.

Francesca Prinari · Elvira Zappale

Abstract We provide relaxation for not lower semicontinuous supremal functionals defined on vectorial
Lipschitz functions, where the Borel level convex density depends only on the gradient. The connection
with indicator functionals is also enlightened, thus extending previous lower semicontinuity results in
that framework. Finally we discuss the power law approximation of supremal functionals, with non-
negative, coercive densities having explicit dependence also on the spatial variable, and satisfying minimal
measurability assumptions.
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1 Introduction

Recently, a great attention has been devoted to supremal functionals, and to their connections with
partial differential equatons such as∞-harmonic,∞-biharmonic equations or Hamilton-Jacobi ones, also
in light of the many applications to optimal transport, continuum mechanics, see for instance [1],[2], [3],
[4], [5], [6], [7], [8],[9] among a wider literature. Many of the above questions can be formulated in terms of
suitable minimization problems involving supremal functionals, and the direct methods have been proven
to be a powerful tool to provide solutions. A crucial property to ensure the existence of minimizers is the
lower semicontinuity of such functionals. This in turn reflects in necessary and sufficient conditions on
their densities. Such analysis started in the scalar case in [10] and [11], and later extended in [12],[13],
[14] and so far a complete characterization is given: a supremal functional F is weakly* sequentially lower
semicontinuous if and only if its density f is lower semicontinuous and level convex.

When the problem is truly vectorial, lower semicontinuity and level convexity of the supremand f
are just sufficient conditions but no longer necessary. The notion, which has been proven to be necessary
and sufficient for weak* sequential lower semicontinuity of F in the space of Lipschitz functions, is
strong Morrey quasiconvexity, introduced by [12]. This notion is quite difficult to be verified in practice
and stronger notions (but weaker than level convexity) have been introduced in order to ensure lower
semicontinuity to supremal functionals or to approximate them through integral functionals (see [15],
[12], [16]).
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Clearly, if such conditions fail to be satisfied by the supremand f , one has to look for the best
weak* lower semicontinuous functional Γw∗(F ), which approximates F in the sense of admitting the
same minimal values (see Theorem 3.1). The results available in literature are very satisfactory and quite
exhaustive in the scalar case when F satisfies a coercivity assumption: in this case, Γw∗(F ) admits a
sequential characterization. In [10] and [14] a complete representation formula for the relaxed functional
Γw∗(F ) is given when f = f(x, ξ) is a globally continuous function; in [17] the authors discuss the finslerian
case and represent the relaxed functional as a difference quotient; in [14] it is shown that Γw∗(F ) is level
convex when f is a Carathéodory function, even in the second variable. In [18] the last assumption is
dropped and the level convexity of the relaxed functional is proved for a class of discontinuos supremand,
not even coercive. Despite of all these scalar results, very little is known in the vectorial setting, up to
some sufficient conditions and in particular cases (see [19], [15], [12], [16]).

The first aim of this paper consists in providing a relaxation result for a class of supremal functionals
in the vectorial case. Indeed in Theorem 2.1 we compute the lower semicontinuous envelope of F with
respect to the weak* topology when the supremand f = f(ξ) is level convex, only Borel measurable, and
whose sublevel sets have not empty interior. We remark that, in general, level convex functions are not
lower semicontinuous (see [20]). Our first main result (which is new also in the scalar case) states that the
lower semicontinuous envelope of F is a supremal functional whose density f ls is the lower semicontinuous
envelope of f .

In order to prove Theorem 2.1, a key tool is the description of the level sets of the envelopes of the
densities f , that is accomplished in Section 3. Indeed, after providing in Proposition 3.3 a characterization
of the level convex envelope of functions defined in generical vector spaces, we specialize the result,
giving a complete representation formula of the sublevel sets of level convex and lower semicontinuous
envelope of f , in terms of closures and convexifications of the sublevel sets of f (see Proposition 3.9).
For computational counterpart in the continuous and bounded case we refer to [21] while in the nonlocal
setting formulas analogous to (18) can be found in [22].
We also underline that, despite of the results currently available in the literature, in the set of hypothesis
of Theorem 2.1 we drop any coercivity assumptions on f thanks to arguments as in [18, Theorem 3.4].
On the other hand, the proof of representation formula (3) is given under homogeneity assumptions on
the density f since it relies on a particular case of [23, Theorem 2.1] (see Theorem 4.1 below). Indeed a
central role plays the connection with homogeneous indicator functionals of convex sets with nonempty
interior, as already emphasized in similar context by [12], later exploited in [24], [5] and very recently in
[22], [25] in the nonlocal framework. In turn, Theorem 2.1 allows us to generalize some relaxation results
for indicator functionals or, equivalently, improves the understanding of the asymptotics for vectorial
differential inclusions (cf. Corollary 4.2 below). The interest in this type of functionals is motivated
by the many applications: we refer to [26] and the references therein for the scalar case, to [27], [28]
for multidimensional control problems, to [29] for homogenization, to [30], [31], [32] for the analysis of
thin structures, and to [33], and the bibliography contained therein for the applications in continuum
mechanics.

Motivated by the connection with PDEs and norm approximation, in Theorem 2.2 we prove an Lp-
approximation result which applies to a more general class of densities depending also on the spatial
variables. In this way, we generalize [34, Theorem 3.2], since, under the same growth conditions, we just
require measurability for f . Note that our power law approximation result is new in literature since
the other Lp-approximation results suppose that f is lower semicontinuous with respect to the gradient
variable. Indeed Theorem 3.2 in [34] requires that the density is a Carathéodory function satisfying a
growth condition with respect to the second variable (uniformly with respect to spatial variable) of the
type (5); anagously Theorem 3.1 in [16] applies when the density is lower semicontinuous w.r.t the second
variable.

The paper is organized as follows: in Section 2 we establish notation and state the main results, Section
3 is devoted to preliminaries that will be exploited in the sequel and contains some results of broader
scope on explicit representation of envelopes of functions and their effective domains, thus generalizing
the results in [20, Section 2], (cf. [26] for their counterparts in the convex setting). Theorem 2.1 is proven
in Section 4, together with an integral representation result for the relaxation of unbounded integral
functionals (see Corollary 4.2). Finally in Section 5 we provide the proof of Theorem 2.2, and discuss
particular cases and special representations in Remark 5.2.
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2 Notation and Statement of Main Results

The following notation is adopted in the paper.

- (X, τ) denotes a topological (possibly vector) space whose generic elements will be denoted by x;
- for every Y ⊂ X, by cl τ (Y ) we mean the closure of Y in X with respect to the topology τ . When X

is an Euclidean space and τ is the natural topology, we adopt just the symbol Ȳ ;
- for every set S ⊂ X we denote by convS its convex hull, namely the smallest convex set containing S.

It is easily seen that cl τ (convS) = conv(cl τ (S));
- for every function W : X → [−∞,+∞], domW denotes its effective domain, i.e.

domW := {x ∈ X : W (x) < +∞},

and for every λ ∈ R, Lλ(W ),
Lλ(W ) := {x ∈ X : W (x) ≤ λ}

is the sublevel set of W corresponding to λ;
- for every N ∈ N, BN and LN denote the Borel measure in RN , and the Lebesgue one, respectively;
- w* denotes the weak* topology on W 1,∞(Ω,Rd), unless differently stated.
- w∗seq denotes the weak* sequential topology on W 1,∞(Ω,Rd).

We are now in position to state our main result concerning the supremal representation of the relax-
ation of an L∞ functional.

Theorem 2.1 Let Ω be a bounded open set of RN with Lipschitz boundary and let f : Rd×N → [−∞,+∞]
be a Borel function such that

(H) for every λ > infRd×N f the sublevel set, defined as

Lλ(f) := {ξ ∈ Rd×N : f(ξ) ≤ λ}, (1)

is convex and has nonempty interior.

Let F : W 1,∞(Ω,Rd)→ [−∞,+∞] be the supremal functional defined by

F (u) := ess sup
x∈Ω

f(∇u(x)). (2)

Then it holds

Γw∗(F )(u) = Γw∗seq (F )(u) = ess sup
x∈Ω

f ls(∇u(x)) for every u ∈W 1,∞(Ω,Rd), (3)

where f ls denotes the lower semicontinuous envelope of f .

Note that assumption (H) is satisfied by a wide class of discontinuous functions. For instance, it
is satisfied by Borel level convex functions f having an absolute minimum point ξ̄ such that f(ξ) =
limξ→ξ f(ξ) (see Remark 4.1). Moreover in Corollary 4.1 we show that if f satisfies (H) then f ls is the
greatest strong Morrey quasiconvex function less than or equal to f . To this end we recall that a Borel
measurable function f : Rd×N → R is said to be strong Morrey quasiconvex if for any ε > 0, for any
ξ ∈ Rd×N , and for any K > 0, there exists a δ = δ(ε,K, ξ) > 0 such that if ϕ ∈ W 1,∞(Q;Rd) satisfies
‖∇ϕ‖L∞(Q) ≤ K, and maxx∈∂Q |ϕ(x)| ≤ δ, then

f(ξ) ≤ ess sup
x∈Q

f(ξ +∇ϕ(x)) + ε, (4)

where Q denotes the cube ]0, 1[N .
Note that the class of Borel level convex functions is strictly contained in the class of Borel functions

f (called weak Morrey quasiconvex) satisfying

f(ξ) ≤ ess sup
x∈Q

f(ξ +∇ϕ(x)), ∀ϕ ∈W 1,∞
0 (Q;Rd).
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Differently from strong Morrey quasiconvex functions which are lower semicontinuous (see [12, Proposi-
tion 2.5]), weak Morrey quasiconvex functions do not necessarily satisfy this property. On the other hand,
the representation result by means of f ls does not hold if we weaken the level convexity assumption on f ,
by requiring that f is only weak Morrey quasiconvex. Indeed, [34, Example 2.7] exhibits a weak Morrey
quasiconvex function f = f ls that cannot represent the relaxed functional since it is not strong Morrey
quasiconvex.

Our second main result deals with the following Lp-approximation.

Theorem 2.2 Let Ω ⊆ RN be a bounded open set with Lipschitz boundary. Let f : Ω×Rd×N → [0,+∞[
be a LN ⊗ Bd×N -measurable function satisfying the following growth condition: there exist β ≥ α > 0
such that

1

α
|ξ| − α ≤ f(x, ξ) ≤ β(1 + |ξ|) for a. e. x ∈ Ω and for every ξ ∈ Rd×N . (5)

For every p ≥ 1 let Fp : C(Ω̄,Rd)→ [0,+∞[ be the functional given by

Fp(u) :=


(∫

Ω

fp(x,∇u(x))dx

)1/p

, if u ∈W 1,p(Ω,Rd),

+∞, otherwise.

(6)

Then there exists a LN⊗Bd×N -measurable function f∞ : Ω×Rd×N → [0,+∞[, satisfying the same growth
condition in (5), and such that (Fp)p≥1 Γ (L∞)-converges, as p → ∞, to the functional F̄ : C(Ω̄,Rd) →
[−∞,+∞] defined as

F̄ (u) :=

{
ess sup
x∈Ω

f∞(x,∇u(x)), if u ∈W 1,∞(Ω,Rd),

+∞, otherwise.
(7)

Moreover for a.e. x ∈ Ω f∞(x, ·) is a strong Morrey quasiconvex function satisfying

f∞(x, ·) ≥ Q∞f(x, ·) := sup
n≥1

(Qfn)1/n(x, ·), (8)

where Qfn(x, ·) := Q(fn)(x, ·) stands for the quasiconvex envelope of fn(x, ·) (cf. (22)).

We prove that for any diverging subsequence (pn)n the Γ (L∞)-limn→∞ Fpn coincides with the supre-
mal functional F̄ whose supremand f∞, defined in (61), admits the asymptotic formula (62).

In particular, under the assumptions of Theorem 2.1, the latter result guarantees that the relaxed
functional W 1,∞(Ω;Rd) 3 u→ Γw∗(F )(u) = ess supx∈Ω f

lslc(∇u(x)) can be obtained as the Γ -limit with
respect to the uniform convergence of the sequence of the integral functionals (Fp(u))p≥1 defined by (6).
In Remark 5.2 we will discuss several special cases of assumptions on f . More precisely, we prove that
if the supremand f(x, ·) is upper semicontinuous for a.e. x ∈ Ω, then f∞(x, ·) = Q∞f(x, ·). The same
conclusion holds when f ≡ f(ξ). In addition, if f(x, ·) is upper semicontinuous and level convex for a.e.
x ∈ Ω, then (7) can be specialized, since

f∞(x, ·) = Q∞f(x, ·) = f ls(x, ·) for a.e. x ∈ Ω.

The same conclusion holds when f ≡ f(ξ) is level convex.
Moreover if N = 1 or d = 1, if f(x, ·) is upper semicontinuous or f ≡ f(ξ) then we get that

f∞(x, ·) = Q∞f(x, ·) = f lslc(x, ·) for a.e. x ∈ Ω.

3 Preliminary Results

The aim of this section is twofold, from one hand we recall existing results which will be useful in
the body of paper, and from the other, we provide some characterizations of level convex functions
defined in general topological vector space (X, τ). In particular some of these results are new to our
knowledge and of indipendent interest In Subsection 3.2, we recall the definition and the main properties
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of Γ -convergence. These topics, together with classical relaxation results for integral functionals in the
Sobolev setting (see Subsection 3.3) enable us to deal with the Lp- approximation of Section 5. Finally
in Subsection 3.4 we specialize the properties of the level convex and lower semicontinuous envelope f lslc

when f : Rd×N → [−∞,+∞].

3.1 Relaxation and Level Convex Envelopes

In this subsection we provide several relations among envelopes of functions in (X, τ) that will be used
in the sequel, thus generalizing some of the results contained in [20, Section 2].

Definition 3.1 A function F : (X, τ)→ [−∞,+∞] is level convex if

F (tx1 + (1− t)x2) ≤ max{F (x1), F (x2)} ∀t ∈ [0, 1], ∀x1, x2 ∈ X,

that is, for every λ ∈ R the sublevel set Lλ(F ) (see (1)) is convex.

Definition 3.2 Let F : (X, τ)→ [−∞,+∞] be a function.

1. The lower semicontinuous envelope (or relaxed function) of F is defined as

Γτ (F ) := sup{G : (X, τ)→ [−∞,+∞]: G τ -lsc and G ≤ F on X}.

2. The level convex envelope of F is defined as

F lc := sup{G : (X, τ)→ [−∞,+∞]: G level convex and G ≤ F on X}.

Note that Γτ (F ) (resp. F lc) is the greatest τ -lower semicontinuous (shortly τ -l.s.c) (resp. level convex)
function which is less than or equal to F . By [35, Proposition 3.5(a)] we have that

{ξ ∈ X : Γτ (F )(x) ≤ λ} =
⋂
ε>0

cl τ (Lλ+ε(F )). (9)

Moreover, by definition, it easily follows that

inf
X
F = inf

X
Γτ (F ) = inf

X
F lc = inf

X
Γτ (F lc). (10)

Finally, if F : (X, τ)→ [−∞,+∞]), we consider the envelope

F lslc := sup{G : (X, τ)→ [−∞,+∞]: G level convex and τ -l.s.c. and G ≤ F on X},

that is the greatest lower semicontinuous and level convex function less than or equal to F . We recall
that there exists a wide literature devoted to the study of a conjugation for level convex functions (see
for example [36], [37] and [38] among the others).

Proposition 3.1 Let F : X → [−∞,+∞]. Then

Γτ (F lc) = F lslc ≤ (Γτ (F ))lc. (11)

In particular if F is level convex then Γτ (F ) is level convex and

Γτ (F ) = F lslc. (12)

Proof Since F lslc is τ -l.s.c. and level convex, we have that

F lslc ≤ min{Γτ (F lc), (Γτ (F ))lc} ≤ F. (13)

In order to conclude the proof of (11), observe that for every λ ≥ inf F and for every ε > 0 the set
{x ∈ X : F lc(x) ≤ λ+ ε} is convex. Then its τ -closure is still convex. Thanks to (9), we can deduce that
{x ∈ X : Γτ (F lc)(x) ≤ λ} is convex for every λ ≥ inf F = inf Γτ (F lc). Thus, Γτ (F lc) is level convex and
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lower semicontinuous; consequently, exploiting (13), we get (11). In the particular case when F is level
convex, (11) implies (12). ut

Observe that inequality (11) can be strict (cf. Remark 3.5 below).

The following corollary of Proposition 3.1 holds:

Corollary 3.1 Let X be a separable Banach space, and X ′ its dual. Let F : X ′ → [−∞,+∞] be level
convex and let

Γw∗(F ) = sup{G : X ′ → [−∞,+∞] : G weak* lower semicontinuous, G ≤ F},

where w∗ denotes the weak* topology in X ′. Then Γw∗(F ) is level convex and

Γw∗(F ) = Γw∗seq (F ). (14)

Proof It is sufficient to observe that Γw∗(F ) = F lslc (where the symbol ls refers to the topology w∗ in
X ′) and to apply [18, Proposition 2.16], which, in turn, relies on Banach-Dieudonné’ s Theorem on the
sequential characterization of weak* closure of convex. ut

Proposition 3.2 For every F : (X, τ)→ [−∞,+∞] and for every continuous strictly increasing function
Φ : [−∞,+∞]→ [a, b], it results

Γτ (Φ(F )) = Φ(Γτ (F )), (15)

(Φ(F ))lc = Φ(F lc) (16)

and
(Φ(F ))lslc = Φ(F lslc).

Proof (15) follows by [35, Proposition 6.16]. In order to show (16), note that Φ(F lc) ≤ Φ(F ) implies

Φ(F lc) ≤ (Φ(F ))lc. (17)

since the composition of an increasing function and a level convex one is still level convex. Moreover

Φ−1((Φ(F ))lc) ≤ Φ−1(Φ(F )) = F.

Hence,
Φ−1((Φ(F ))lc) ≤ F lc.

Thus,
(Φ(F ))lc ≤ Φ(F lc),

which, together with (17), gives (16). Finally, Proposition 3.1, (16) and (15) entail

(Φ(F ))lslc = Γτ ((Φ(F ))lc) = Γτ (Φ(F lc)) = Φ(Γτ (F lc)) = Φ(F lslc). ut

Remark 3.1 By (15) it follows that

Γτ (F ) = Φ−1(Γτ (Φ(F )).

In particular, if Ω ⊂ Rd×N is a bounded open set, g : Rd×N → [−∞,+∞] is a Borel function and
G : W 1,∞(Ω;Rd)→ [−∞,+∞] is the supremal functional defined as

G(u) := ess sup
Ω

g(∇u),

in order to detect Γτ (G), it suffices to detect Γτ (arctanG). Since it holds that

(arctanG)(u) = ess sup
Ω

arctan g(∇u),

without loss of generality, we can assume that g is bounded.
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We conclude this subsection by proving a general representation result for the functional F lc.

Proposition 3.3 Let F : (X, τ)→ [−∞,+∞]. Then

F lc(x) = inf{λ ∈ R : x ∈ convLλ(F )}. (18)

Proof Let
ι : x ∈ X → inf{λ ∈ R : x ∈ convLλ(F )}.

Clearly
ι(x) ≤ F (x) for every x ∈ X. (19)

Moreover i is level convex. Indeed, fixed x1, x2 ∈ X, for every ε > 0 there exists λ1 and λ2 such that

λ1 < ι(x1) + ε, and λ2 < ι(x2) + ε,

and
x1 ∈ convLλ1

(F ), and x2 ∈ convLλ2
(F ).

Thus
tx1 + (1− t)x2 ∈ convLmax{λ1,λ2}(F ), t ∈ [0, 1],

and so
ι(tx1 + (1− t)x2) ≤ max{λ1, λ2} < max{ι(x1), ι(x2)}+ 2ε.

The arbritrariness of ε guarantees the level convexity of ι, which together with (19), guarantees

ι(x) ≤ F lc(x) for every x ∈ X. (20)

In order to prove the opposite inequality we have that for every level convex G ≤ F ,

Lλ(G) ⊇ Lλ(F ) for every λ,

which gives
convLλ(F ) ⊆ convLλ(G) = Lλ(G) for every λ ∈ R.

Since for every x ∈ X it results

G(x) = inf{λ ∈ R : x ∈ Lλ(G)} ≤ inf{λ ∈ R : x ∈ convLλ(F )} = ι(x),

by choosing G = F lc we get ι ≥ F lc. The latter inequality and (20) conclude the proof. ut

3.2 Γ -Convergence

Now we recall the notion of Γ -convergence for family of functionals defined in the topological space
(X, τ), (for more details on the theory we refer to [35]). To this end, we denote by U(x) the set of all
open neighbourhoods of x in X .

Definition 3.3 Let Fn : X → R be a sequence of functions. The Γ (τ)-lower limit and the Γ (τ)-upper
limit of the sequence (Fn) are the functions from X into [−∞,+∞] defined by

Γ (τ)- lim inf
n→∞

Fn(x) := sup
U∈U(x)

lim inf
n→∞

inf
y∈U

Fn(y),

Γ (τ)- lim sup
n→∞

Fn(x) := sup
U∈U(x)

lim sup
n→∞

inf
y∈U

Fn(y)

If there exists a function F : X → [−∞,+∞] such that F = Γ (τ)- lim inf
n→∞

Fn = Γ (τ)- lim sup
n→∞

Fn, then we

write
F = Γ (τ)- lim

n→∞
Fn

and we say that the sequence (Fn) Γ (τ)-converges to F or that F is the Γ (τ)-limit of (Fn)n.



8 Francesca Prinari and Elvira Zappale

Definition 3.4 Given a family of functionals Gp : X → [−∞,+∞], we say that (Gp)p Γ (τ)-converges
to the functional G, as p→∞, if for every (pn)→ +∞ the sequence (Gpn) Γ (τ)-converges to G.

The introduction of this variational convergence by De Giorgi and Franzoni (see [35] and the bibliography
therein) is motivated by the next theorem. Indeed, under the assumption of equicoercivity for the sequence
(Fn), it holds the important property of convergence of the minimum values.

Theorem 3.1 Suppose that the sequence (Fn) is equi-coercive in X, i.e. for every t ∈ R there exists a
closed compact subset Kt of X such that {Fn ≤ t} ⊂ Kt for every n ∈ N. If (Fn) Γ (τ)-converges to a
function F in X, then

min
x∈X

F (x) = lim
n→∞

inf
x∈X

Fn(x). (21)

Moreover if xn is such that Fn(xn) ≤ infX Fn + εn, where εn → 0 and xnk
→ x for some subsequence

(xnk
)k of (xn) then F (x) = minX F .

For a proof, see [35, Theorem 7.8 and Corollary 7.17].

In the following proposition we summarize some properties of the Γ -convergence useful in the sequel
(see [35, Proposition 6.8, Proposition 6.11, Proposition 5.7, Remark 5.5, Proposition 6.26]).

Proposition 3.4 Let Fn : X → [−∞,+∞] be a sequence of functions. Then

1. Let F̂ := Γ (τ)- lim
n→∞

Fn, then F̂ is τ -lower semicontinuous on X;

2. if (Fn) is a not increasing sequence which pointwise converges to F then Γ (τ)- lim
n→∞

Fn = Γτ (F ). In

particular if Fn = F for every n ∈ N then Γ (τ)- lim
n→∞

F = Γτ (F );

3. if Γτ (Fn) is the τ -l.s.c. envelope of Fn, then the sequence (Fn) Γ (τ)-converges to F if and only if the
sequence of the relaxed functions (Γτ (Fn)) Γ (τ)-converges to F , and

Γ (τ)- lim
n→∞

Fn = Γ (τ)- lim
n→∞

Γτ (Fn);

4. if (Fn) is an increasing sequence of τ -lower semicontinuous functions which pointwise converges to F
then Γ (τ)- lim

n→∞
Fn = F ;

5. for every c ∈ R, Γτ (max{F, c}) = max{Γτ (F ), c}.

Next we recall the sequential characterization of Γ (τ)-liminf, Γ (τ)-limsup and Γ (τ)-limit when the
topological space (X, τ) satisfies the first axiom of countability (for a proof see [35, Proposition 8.1]).

Proposition 3.5 Let Fn : X → [−∞,+∞] be a sequence of functions. Then the function

F (x) = Γ (τ)- lim
n→∞

Fn(x)

is characterized by the following inequalities:

- (Γ -liminf inequality) for every x ∈ X and for every sequence (xn) converging to x in X it is

F (x) ≤ lim inf
n→∞

Fn(xn);

- (Γ -limsup inequality) for every x ∈ X there exists a sequence (xn) (called a recovering sequence)
converging to x in X such that

F (x) = lim
n→∞

Fn(xn).

Finally we note that the level convexity is stable under both pointwise and Γ -convergence (for a proof
see [18, Proposition 2.9]).

Proposition 3.6 Let (X, τ) be a topological vector space and let Fn : X → [−∞,+∞] be a sequence of
level convex functions. Then

1. the function F#(x) = lim sup
n→∞

Fn(x) is level convex;

2. the function Γ (τ)-lim sup
n→∞

Fn is level convex.
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3.3 Lower Semicontinuity and Relaxation Results in the Integral Setting

In the sequel we collect some definitions and results that will be crucial for the proof of Theorem 2.2. We
refer the reader to [39] and [40] for a detailed treatment of this subject.

Definition 3.5 Let g : Rd×N → R be a Borel function and let Q :=]0, 1[N . Then g is said quasiconvex
(in the sense of Morrey) if

g(ξ) ≤
∫
Q

g(ξ +∇u(y)) dy

for every u ∈W 1,∞
0 (Q;Rd) and ξ ∈ Rd×N .

By [40, Theorem 5.3(4)] it follows that any quasiconvex function is continuous. The quasiconvexity is a
sufficient (and necessary) condition for the lower semicontinuity of an integral functional on W 1,p(Ω;Rd)
with respect to the weak topology of W 1,p(Ω;Rd). More precisely, let 1 ≤ p < +∞ and let g : Rd×N → R
be a quasiconvex function, such that

0 ≤ g(ξ) ≤ β(1 + |ξ|p) for every ξ ∈ Rd×N .

Let G : W 1,p(Ω;Rd) be the integral functional defined by

G(u) :=

∫
Ω

g(∇u(y))dy.

Then G is sequentially weakly lower semicontinuous on W 1,p(Ω;Rd) (see [40, Theorem 8.4]).
If the Borel function g : Rd×N → R fails to be quasiconvex, one can introduce its quasiconvex envelope,

namely
Qg := sup{h : Rd×N → R :h quasiconvex and h ≤ g}. (22)

Remark 3.2 It is worth to observe that, being Qg quasiconvex, then Qg is a continuous function (see
[41, Lemma 5.42] and [40, Theorem 5.3]).

The following representation formula holds:

Theorem 3.2 [40, Theorem 6.9] Let g : Rd×N → R be a Borel and locally bounded function. Assume
that there exists a quasiconvex function h : Rd×N → R such that g ≥ h. Then for every ξ ∈ Rd×N

Qg(ξ) = inf
{∫

Q

g(ξ +∇u(y)) dy : u ∈W 1,∞
0 (Q;Rd)

}
.

The following result which holds under very general assumptions, i.e. when g = g(x, ξ) is only LN ⊗
Bd×N -measurable function, will be crucial in the proof of Theorem 2.2.

Theorem 3.3 [39, Theorem 4.4.1] Let Ω ⊆ RN be a bounded open set, let 1 ≤ p < +∞ and let g :
Ω × Rd×N → [0,+∞[ be a LN ⊗ Bd×N -measurable function, satisfying

0 ≤ g(x, ξ) ≤ β(1 + |ξ|p) for a. e. x ∈ Ω and for every ξ ∈ Rd×N . (23)

Then there exists a Caratheodory function g̃ : Ω × Rd×N → [0,+∞[, quasiconvex in the second variable,
satisfying the same growth condition (23) such that

Γwseq
(G)(u) =

∫
Ω

g̃(x,∇u(x))dx for every u ∈W 1,p(Ω;Rd),

where Γwseq (G) denotes the sequential lower semicontinuous envelope of G with respect to the weak topol-
ogy in W 1,p(Ω,Rd).
Moroever

Qg(x, ξ) ≤ g̃(x, ξ) for a.e. x ∈ Ω, and for every ξ ∈ Rd×N .

Remark 3.3 In general the above inequality can be strict on a set Ω′ × Rd×N of positive measure (cf.
[39, Example 4.4.6]).
On the other hand, [39, Remark 4.4.5] guarantees that
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1. if g = g(ξ) then Qg = g̃;
2. if g(x, ·) is upper semicontinuous for a.e. x ∈ Ω then Qg(x, ξ) = g̃(x, ξ) for a.e. x ∈ Ω, and for every
ξ ∈ Rd×N .

3.4 Envelopes of Real Functions

In this subsection we detail the results of Subsection 3.1 in the special case when X = Rd×N and τ is the
natural topology.

Definition 3.6 Let f : Rd×N → [−∞,+∞] be a function. Set

Flc(f) := {g : Rd×N → [−∞,+∞] : g ≤ f, g level convex},

Fls(f) := {g : Rd×N → [−∞,+∞] : g ≤ f, g τ -lower semicontinuous},

and

Flslc(f) := {g : Rd×N → [−∞,+∞] : g ≤ f, g τ -lower semicontinuous and level convex}.

Consequently define f lc, f ls, f lslc : Rd×N → cl(R), as

f lc(ξ) := sup{g(ξ) : g ∈ Flc(f)},

f ls(ξ) := sup{g(ξ) : g ∈ Fls(f)},

and
f lslc(ξ) := sup{g(ξ) : g ∈ Flslc(f)}.

An explicit formula to compute f lc in given by Proposition 3.3, applied to F = f and to X = Rd×N .

Remark 3.4 If f : Rd×N → [−∞,+∞], by (11) we have that

f lslc = (f lc)ls ≤ (f ls)lc. (24)

Then if f is level convex, we get that
f lslc = f ls. (25)

In particular, thanks to [12, Theorems 3.4 and 2.7], we get that f ls is a strong Morrey quasiconvex
function less than or equal to f .

Remark 3.5 In general (f lc)ls � (f ls)lc, since the level convex envelope of a lower semicontinuous
function might not be lower semicontinuous. To this end, it suffices to consider the function

χR2\C =

{
0, if x ∈ C,
1, otherwise,

where C := {(x1, 0) : x1 ∈ R} ∪ {(0, 1)}. Indeed χR2\C is lower semicontinuous but not level convex. On

the other hand, (χR2\C)lc = χR2\D, where D = {(x1, x2) : x1 ∈ R, 0 ≤ x2 < 1} ∪ {(0, 1)}, which is not

closed. Clearly (χR2\C)lslc = χR2\cl(D) < χR2\D.

Now we are in position to show a result characterizing the effective domain of f lc, based on Carathéodory’s
Theorem (see [26, Theorem 1.2.1]).

Proposition 3.7 For every f : Rd×N → [−∞,+∞], it results

dom(f lc) = conv(domf)

Proof The result is achieved by proving a double inequality. If ξ ∈ dom(f lc), then there exists λ ∈ R
such that ξ ∈ convLλ(f), thus there exist ξ1, . . . , ξd×N+1 ∈ Lλ(f) and ti ∈ [0, 1], i = 1, . . . d × N + 1

such that
∑d×N+1
i=1 ti = 1 and ξ =

∑d×N+1
i=1 tiξi. Clearly ξ1, . . . ξd×N+1 ∈ domf , Hence, ξ ∈ conv(domf).

Thus, it remains to prove the opposite inequality: if ξ ∈ conv(domf), again thanks to Carathéodory’s
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Theorem there exist almost d × N + 1 points ξ1, ξ2, · · · , ξd×N+1 ∈ domf and t1, · · · , td×N+1 ∈ [0, 1]

such that
∑d×N+1
i=1 ti = 1 and ξ =

∑n+1
i=1 tiξi. Hence, there exists λ ∈ R such that f(ξi) ≤ λ for every

i ∈ {1, · · · , n + 1}. Consequently Proposition 3.3 entails that f lc(ξ) ≤ λ, i.e. ξ ∈ dom(f lc) and this
concludes the proof. ut

Proposition 3.8 Let f : Rd×N → [−∞,+∞], then, for every λ ∈ R

1. convLλ(f) ⊆ Lλ(f lc);
2. if f is coercive (i.e. lim|ξ|→∞ f(ξ) = +∞), then

Lλ(f lc) ⊆ cl(Lλ(f lc)) ⊆ convLλ(f ls). (26)

In particular

Lλ(f lc) ⊆ conv(
⋂
ε>0

cl(Lλ+ε(f))); (27)

3. if f is lower semicontinuous and coercive then convLλ(f) = Lλ(f lc).

Proof 1. It follows by the convexity of Lλ(f lc) and by the fact that Lλ(f) ⊆ Lλ(f lc).
2. Assume that f lc(ξ) ≤ λ. By Proposition 3.3 there exists a sequence (λn) converging to f lc(ξ) such

that ξ ∈ co(Lλn(f)). In particular, thanks to the Carathéodory’s Theorem, for every n ∈ N there exist

ξ1
n, ξ

2
n, · · · , ξd×N+1

n ∈ Lλn
(f) and tin ∈ [0, 1], i ∈ {1, · · · , d × N + 1} such that ξ =

∑d×N+1
i=1 tinξ

i
n and∑d×N+1

i=1 tin = 1. Since Lλn
(f) is bounded by coercivity, without loss of generality, we can assume,

up to the extraction of not relabelled subsequences, that for every i ∈ {1, · · · , d×N + 1} there exist

limn→∞ ξin = ξi and limn→∞ tin = t̄i. In follows that ξ =
∑d×N+1
i=1 t̄iξi and

∑d×N+1
i=1 t̄i = 1. By

definition of f ls it follows that

f ls(ξi) ≤ lim inf
n→∞

f(ξin) ≤ lim
n→∞

λn = f lc(ξ) ≤ λ.

Therefore ξ ∈ convLλ(f ls) and (26) follows. By (26) and (9), we obtain (27).
3. It follows by 1. and 2. ut

Remark 3.6 Let f : Rd×N → R be defined by

f(ξ) =

{
|ξ| if ξ 6= 0,
1 if ξ = 0.

Then L0(f) = ∅, so convL0(f) = ∅, while f ls(ξ) = f lc(ξ) = |ξ|, and so L0(f lc) = {0}. Thus, we cannot
expect equality in 1. Moreover this example proves also that in general Lλ(f lc) 6⊆ cl(convLλ(f)) and
Lλ(f ls) 6= cl(Lλ(f)).

The following result specializes (9) when X = Rd×N , thus providing a useful description of the sublevel
sets of f lslc.

Proposition 3.9 Let f : Rd×N → [−∞,+∞]. Then for every λ ∈ R it holds

Lλ(f lslc) =
⋂
ε>0

cl(conv(Lλ+ε(f))).

Proof First of all, we notice that, thanks to (24) and (9), we have that

Lλ(f lslc) = Lλ((f lc)ls) =
⋂
δ>0

cl(Lλ+δ(f
lc)), (28)

in particular, Proposition 3.8(1) implies⋂
ε>0

cl(conv(Lλ+ε(f))) ⊆ Lλ(f lslc).

The proof of the opposite inclusion will be developed in several steps.
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Step 1. First we consider the case when f is coercive. Under this extra assumption, by applying (26), we have
that for every λ ∈ R and for every δ > 0

cl(Lλ+δ(f
lc)) ⊆ conv

(⋂
ε>0

cl(Lλ+δ+ε(f))

)
. (29)

By putting together (28) and (29), it follows

Lλ(f lslc) ⊆
⋂
δ>0

conv(
⋂
ε>0

cl(Lλ+δ+ε(f))) ⊆
⋂
δ>0

⋂
ε>0

conv(cl(Lλ+δ+ε(f)))

=
⋂
r>0

conv(cl(Lλ+r(f))) =
⋂
r>0

cl(conv(Lλ+r(f)))

and this identity concludes the proof in the coercive case.
Step 2. In the second step we consider the general case when f : Rd×N → [0,+∞]. We define fn(ξ) :=

max{f(ξ), 1
n |ξ|}. Since f ≤ fn then f lc ≤ (fn)lc := f lcn that implies

f lc ≤ (f lc)n ≤ f lcn ≤ fn

for every n ∈ N. In particular
f lc ≤ inf

n
f lcn ≤ inf fn = f.

By Proposition 3.6(1), since (f lcn ) is monotone, the function g(ξ) := infn f
lc
n (ξ) is level convex. Then

f lc = inf
n
f lcn .

Since fn is coercive, by applying (26), we have that for every n ∈ N, for every λ ≥ 0 and ε > 0

Lλ+ε(f
lc
n ) ⊆ convLλ+ε(f

ls
n ) ⊆ convLλ+ε(f

ls).

Now, for fixed λ ≥ 0 and ε > 0, if ξ ∈ Lλ(f lc) then for n = n(ξ) big enough we get that ξ ∈ Lλ+ε(f
lc
n ).

Thus,
Lλ(f lc) ⊆ convLλ+ε(f

ls)

that implies

cl(Lλ(f lc)) ⊆
⋂
ε>0

convLλ+ε(f
ls). (30)

Thanks to (28), (30) and Proposition 3.8 (1), we have that

Lλ(f lslc) =
⋂
δ>0

cl(Lλ+δ(f
lc)) ⊆

⋂
δ>0

⋂
ε>0

convLλ+δ+ε(f
ls)

=
⋂
ε>0

convLλ+ε(f
ls) =

⋂
ε>0

conv
( ⋂
δ>0

cl(Lλ+ε+δ(f))
)
⊆
⋂
ε>0

⋂
δ>0

conv (cl(Lλ+ε+δ) (f))

=
⋂
r>0

conv (cl(Lλ+r(f))) =
⋂
r>0

cl(convLλ+r(f))

and this identity concludes the proof.
Step 3. Now we consider the case when f : Rd×N → R̄ is such that inf f > −∞. Then, it is sufficient to apply

the previous step to the non negative function g := f − inf f and use the fact that glc = f lc − inf f
and glslc = f lslc − inf f .

Step 4. Finally, when f : Rd×N → R̄ is such that inf f = −∞ we can consider the approximation ϕn :=
max{f,−n} ≥ f . Then for every n ∈ N and λ ≥ −n, thanks to the previous step, it holds⋂

ε>0

cl(conv(Lλ+ε(ϕn))) = Lλ(ϕlslcn ). (31)
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Denote by ϕlcn the function (ϕn)lc. Then f lc ≤ ϕlcn ≤ ϕn for every n ∈ N. In particular

f lc ≤ inf
n
ϕlcn ≤ inf ϕn = f.

Applying again Proposition 3.6(1), in light of the monotonicity of (ϕlcn ), it turns out that g := infn ϕ
lc
n

is level convex. Then
f lc = inf

n
ϕlcn

and, by Proposition 3.4 (2)-(3) we have that

f lslc = Γ - lim
n→∞

ϕlcn = Γ - lim
n→∞

ϕlslcn .

Then for fixed λ ∈ R, and ξ ∈ Lλ(f lslc) there exists a sequence (ξn) converging to ξ such that for
every ε > 0 one can find n0 = n0(ε) such that

ϕlslcn (ξn) ≤ f lslc(ξ) + ε ≤ λ+ ε ∀n ≥ n0

that is
(ξn)n≥n0 ⊆

⋃
n≥n0

Lλ+ε(ϕ
lslc
n )

that implies

ξ ∈ cl(
⋃
n≥n0

Lλ+ε(ϕ
lslc
n )).

By applying (31), we get that, for every ε > 0 there exists n0 = n0(ε) ∈ N such that

ξ ∈ cl

 ⋃
n≥n0

⋂
δ>0

cl(conv(Lλ+ε+δ(ϕn)))

 .

Since f ≤ ϕn for every n ∈ N it follows that for every ε > 0

ξ ∈ cl

 ⋃
n≥n0

⋂
δ>0

cl(conv(Lλ+ε+δ(f)))

 =
⋂
δ>0

cl (conv(Lλ+ε+δ(f))) ,

that implies

Lλ(f lslc) ⊆
⋂
ε>0

⋂
δ>0

cl(conv(Lλ+ε+δ(f))) =
⋂
ε>0

cl(conv(Lλ+ε(f))). ut

4 Relaxation Results

This section is mainly devoted to the proof of Theorem 2.1. First of all, we give an equivalent formulation
of assumption (H).

Remark 4.1 Assumption (H) is equivalent to require the following property:

(H ′): f is level convex and there exist two sequences (ξn) ⊆ Rd×N and (λn)↘ infRd×N f such that

f(ξn) ≤ λn and lim sup
ξ→0

f(ξn + ξ) ≤ λn ∀n ∈ N. (32)

Indeed, assume that (H) holds. In order to show that f is level convex, it remains to check that
when infRd×N f = minRd×N f =: λ̄ ∈ R the sublevel set Lλ̄(f) is convex. This holds since the sublevel set
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corrisponding to the minimum value λ̄ satisfies

Lλ̄(f) =
⋂
λ>λ̄

Lλ(f)

and Lλ(f) is convex for every λ > λ̄ by hypothesis. In order to prove (32) it suffices to take (λn) such
that (λn)→ infRd×N f and choose ξn in the interior of Eλn

.

Viceversa, assume that (H ′) holds, thus Lλ(f) is convex for any λ ∈ R such that λ ≥ infRd×N f .
In order to show that Lλ(f) has nonempty interior for any λ > infRd×N f , let us choose n big enough
such that λn < λ. Let 0 < ε < λ− λn.Thanks to (32) the set Lλn+ε(f) has nonempty interior and since
Lλn+ε(f) ⊆ Lλ(f), the same holds for Lλ(f).

The proof of Theorem 2.1 relies on the following result, which is a consequence of [23, Theorem 2.1]
and exploits arguments as in [18, Theorem 3.4].

Theorem 4.1 Let IC : Rd×N → [0,+∞] be the indicator function of a nonempty open bounded convex
set C, such that 0 ∈ C, i.e.

IC(ξ) :=

{
0, if ξ ∈ C,
+∞, if ξ 6∈ C. (33)

Let I, cl(I) : W 1,∞(Ω;Rd)→ [0,+∞] be the functionals defined by

I(u) :=

∫
Ω

IC(∇u)dx, (34)

and

I(u) :=

∫
Ω

Icl(C)(∇u)dx. (35)

Then
ΓL1(I)(u) = I(u) for every u ∈W 1,∞(Ω;Rd).

Remark 4.2 Note that when Ω is a bounded open subset with Lipschitz boundary

C bounded =⇒ Γw∗(I) = Γw∗seq (I) = ΓL∞(I) = ΓL1(I).

Since I(u) is finite if and only if ∇u(x) ∈ C for a.e. x ∈ Ω, the first equality is a consequence of Banach-
Alaoglu-Bourbaki’s Theorem. The second one follows by Rellich-Kondrachov Theorem. For what concerns
the last one, it is trivially observed that ΓL∞(I) ≥ ΓL1(I). In order to show the converse inequality, we
note that if (un) ⊆ W 1,∞(Ω;Rd) converges to u in L1 and lim infn→∞ Ī(un) = lim I(un) < +∞ then
(∇un(x))n ∈ C for a.e. x ∈ Ω. Since (up to a subsequence) the sequence (un)n pointwise converge to u,
by Morrey’s inequality and by Rellich-Kondrachov’s Theorem, we get that the sequence (un)n uniformly
converges to u.

Now, inspired by the arguments in [18, Theorem 3.4], we prove our result dealing with the relaxation
of the functional F in (2).

Proof of Theorem 2.1 Taking into account (25), by [11, Remark 4.4] the functional F : W 1,∞(Ω,Rd)→ R
defined by

F (u) := ess sup
x∈Ω

f ls(∇u(x))

is w∗- lower semicontinuous. Therefore we have that

ess sup
x∈Ω

f ls(∇u(x)) ≤ Γw∗(F )(u) = Γw∗seq (F )(u) (36)

for every u ∈W 1,∞(Ω;Rd), where in the latter equality we have exploited Corollary 3.1.

The proof of the inequality Γw∗(F ) ≤ F will be developed in several steps.
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Step 1. First we assume that f satisfies the further hypotheses that

f(ξ) ≥ α|ξ| (37)

for α > 0 and that there exists ξ̄ such that f(ξ̄) = minRd×N f . Up to a translation argument there is
no loss of generality in assuming ξ = 0 and minRd×N f = 0.
Let u ∈W 1,∞(Ω;Rd) and set

λ := ess sup
x∈Ω

f ls(∇u(x)). (38)

We determine a sequence (uεn) ⊂W 1,∞(Ω;Rd) such that

uεn
∗
⇀ u in W 1,∞(Ω;Rd)

and
lim
n→∞

ess sup
x∈Ω

f(∇uεn(x)) ≤ λ.

With this aim for fixed ε > 0 let

Cε := {ξ ∈ Rd×N : f(ξ) ≤ λ+ ε},

denote by ICε
the indicator function of Cε, i.e.,

ICε
(ξ) :=

{
0, if ξ ∈ Cε,
+∞, otherwise.

Clearly 0 ∈ Cε. Since λ + ε > inf f we get that Cε is convex, and has nonempty interior. Moreover
the coercivity of f guarantees that Cε is bounded. Set

C∞ := {ξ ∈ RN×d : f ls(ξ) ≤ λ}.

By (38), ∇u(x) ∈ C∞ for a.e. x ∈ Ω and, by Proposition 3.9, it holds

C∞ =
⋂
ε>0

cl(Cε).

Then ∇u(x) ∈ cl(Cε) for a.e. x ∈ Ω and for every ε > 0.

For fixed ε > 0 denote by Gε and G̃ε the unbounded integral functionals defined in W 1,∞(Ω;Rd) with
values in [0,+∞], as

Gε(u) :=

∫
Ω

ICε(∇u(x))dx,

and

G̃ε(u) :=

∫
Ω

Iint(Cε)(∇u(x))dx.

Let ΓL1(Gε) and ΓL1(G̃ε) be their lower semicontinuous envelopes with respect to the L1-topology.
Since int(Cε) 6= ∅, by [26, Proposition 1.1.5] we have that cl(int(Cε)) = cl(Cε). Therefore, by Theorem
4.1 and Remark 4.2, we get

Γw∗(G̃ε)(u) =

∫
Ω

Icl(Cε)(∇u(x))dx, (39)

for every u ∈W 1,∞(Ω;Rd).
On the other hand, since ∫

Ω

Icl(Cε)(∇u(x))dx ≤ Gε(u) ≤ G̃ε(u),

we have Γw∗(G̃ε) = Γw∗(Gε).
We notice that the latter equality and the representation formula (39) imply that for every u ∈
W 1,∞(Ω;Rd)

Γw∗(Gε)(u) = 0⇐⇒ ∇u(x) ∈ cl(Cε) for a.e. x ∈ Ω.
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In particular, if u ∈ W 1,∞(Ω;Rd) is such that ∇u(x) ∈ cl(Cε) for a.e. x ∈ Ω then there exists a
sequence (vεk) converging weakly* to u in W 1,∞(Ω;Rd) such that

0 =

∫
Ω

Icl(Cε)(∇u(x))dx = lim
k

∫
Ω

ICε(∇vεk(x))dx.

Thus, by the regularity of Ω, the previous identity implies that there exists k (depending on ε) such
that for every k ≥ k ∇v

ε
k(x) ∈ Cε for a.e. x ∈ Ω,

‖u− vεk‖L∞ ≤ ε,

which equivalently means that for every k ≥ k f(∇vεk(x)) ≤ λ+ ε for a.e. x ∈ Ω,

‖u− vεk‖L∞ ≤ ε.
. (40)

Now for every n ∈ N let εn > 0 be such that εn → 0. Since ∇ū(x) ∈ cl(Cεn) for a.e. x ∈ Ω and for
every n ∈ N, by applying (40) with εn, we can find two sequences (kn) strictly increasing and such
that kn ≥ n, and (vεnkn) ⊆W 1,∞(Ω;Rd) satisfying

f(∇vεnkn(x)) ≤ λ+ εn for a.e. x ∈ Ω,

‖u− vεnkn‖L∞ ≤ εn.
. (41)

Thus, we can conclude that for every n ∈ N and εn > 0 there exists vεnkn such that ‖u− vεnkn‖L∞ ≤ εn
and

ess sup
x∈Ω

f(∇vεnkn) ≤ λ+ εn.

Thanks to the coercivity assumption (37), it results that (vεnkn) weakly∗ converges to ū in W 1,∞(Ω;Rd).
As consequence, it results that

Γw∗(F )(u) ≤ lim
εn→0

ess sup
x∈Ω

f(∇vεnkn) ≤ λ.

Thus, it suffices to define uεn := vεnkn , to conclude the proof.
Step 2. Next we remove the coercivity assumption on f , just assuming that f admits minimum and f(0) =

minRd×N f = 0.
For every n ∈ N and every ξ ∈ Rd×N , define fn the level convex function given by

fn(ξ) := max{f(ξ),
1

n
|ξ|}.

Clearly fn satisfies all the assumptions in Step 1. Thus, defining f lsn := (fn)ls, and denoting by Fn
the functional defined as W 1,∞(Ω,Rd) 3 u→ Fn(u) := ess supx∈Ω fn(∇u(x)), we deduce that

Γw∗(Fn)(u) = ess sup
x∈Ω

f lsn (∇u), (42)

for every u ∈W 1,∞(Ω,Rd)
Moreover Fn decreasingly converges to F since Fn(u) = max{F (u), 1

n‖∇u‖L∞} (see [18, Remark 3.7]).
Thus, by virtue of Proposition 3.4 (2)-(3) we can conclude that

Γw∗(F )(u) = Γ (w∗)- lim
n→+∞

Fn(u) = Γ (w∗) - lim
n→+∞

Γw∗(Fn)(u), (43)

for every u ∈W 1,∞(Ω,Rd). Since fn(ξ) ≤ f(ξ) + 1
n |ξ| for every ξ ∈ Rd×N , then

f lsn (ξ)− 1

n
|ξ| ≤ f(ξ)
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for every ξ ∈ Rd×N . The continuity of 1
n | · | entails

f lsn (ξ)− 1

n
|ξ| ≤ f ls(ξ). (44)

that yields to

ess sup
x∈Ω

f lsn (∇u(x)) ≤ ess sup
x∈Ω

(f ls(∇u(x)) +
1

n
|∇u(x)|)

≤ ess sup
x∈∈Ω

f ls(∇u(x)) +
1

n
‖∇u‖L∞ ,

for every u ∈W 1,∞(Ω,Rd). Thanks to (42), we obtain that

Γw∗(Fn)(u) ≤ ess sup
x∈∈Ω

f ls(∇u(x)) +
1

n
‖∇u‖L∞ .

By the latter inequality, by (43) and by (36) we get that

Γw∗(F )(u) = Γ (w∗)- lim
n→+∞

Γw∗(Fn)(u)

≤ lim
n

(ess sup
x∈Ω

f ls(∇u(x)) +
1

n
‖∇u‖L∞)

= ess sup
x∈Ω

f ls(∇u(x) = F (u).

Step 3. Now we remove the assumption that f admits a minimum. We assume that f admits a real infimum.
The existence of the real infimum of f guarantees that F also admits a real infimum and they coincide.
By (10) it results that

inf
W 1,∞(Ω,Rd)

F (u) = inf
W 1,∞(Ω,Rd)

Γw∗(F )(u) = inf
Rd×N

f.

Thanks to Remark 4.1 there exist two sequences (ξn) ⊆ Rd×N and (λn)n ↘ infRd×N f such that

f(ξn) ≤ λn and lim sup
ξ→0

f(ξn + ξ) ≤ λn ∀n ∈ N.

Then (un) ⊆W 1,∞(Ω;Rd) given by un(x) := ξn · x is an infimizing sequence since

lim
n→+∞

F (un) = lim
n→+∞

f(ξn) = inf
Rd×N

f = inf
W 1,∞(Ω,Rd)

F. (45)

Consider, for every n ∈ N and for every u ∈W 1,∞(Ω;Rd) the functional

Gn(u) := max{F (u+ un), λn} − λn = max{F (u+ un)− λn, 0} = ess sup
x∈Ω

gn(∇u(x)),

where gn is the function defined as

Rd×N 3 ξ → gn(ξ) := max{f(ξ + ξn), λn} − λn = max{f(ξ + ξn)− λn, 0} ≥ 0.

Then gn(0) = 0 = minRd×N gn. Then Gn verifies all the assumptions in Step 2, gn being in particular
level convex. Thus, applying the previous step and Proposition 3.4(5) we obtain that

ess sup
x∈Ω

glsn (∇u(x)) = Γw∗(Gn)(u) = max{Γw∗(F )(u+ un), λn} − λn (46)

On the other hand, by (15), it results,

glsn = max{f(·+ ξn)ls, λn} − λn.
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In particular, for every ξ ∈ Rd×N ,

glsn (ξ) = max{(f(·+ ξn)ls)(ξ), λn} − λn = max{f ls(ξ + ξn), λn} − λn.

From the latter equality, and the first identity in (46), we deduce that

Γw∗(Gn)(u) = max{ess sup
x∈Ω

f ls(∇u+∇un), λn} − λn.

By the last equality in (46) and a translation argument,

max{Γw∗(F )(u), λn} = Γw∗(Gn)(u− un) + λn = max{ess sup
x∈Ω

f ls(∇u(x)), λn}.

Taking the limit as n→ +∞ and exploiting (10) and (45), we have

Γw∗(F )(u) = lim
n→+∞

max{Γw∗(F )(u), λn} = lim
n→+∞

max{ess sup
x∈Ω

f ls(∇u(x)), λn} = ess sup
x∈Ω

f ls(∇u(x)).

Step 4. Now we treat the last case, where infRd f = −∞. Defining, for every m ∈ R+ the function fm :=
sup{f,−m} we have that fm admits a real infimum and falls into the case described in Step 3. Thus,
if for every u ∈ W 1,∞(Ω;Rd) we define Fm(u) := ess supx∈Ω fm(∇u(x)), then it results that (once
again, exploiting the level convexity of f , and applying [18, Proposition 2.6])

max{Γw∗(F )(u),−m} = Γw∗(Fm)(u) := ess sup
x∈Ω

f lsm(∇u(x)) = max{ess sup
x∈Ω

f ls(∇u),−m}.

The proof is concluded by sending m→ +∞. ut

Remark 4.3 In the same spirit of Remark 4.2, the assumptions on Ω guarantee that if f = f(ξ) is
coercive, then the relaxed functional Γw∗(F ) coincides on W 1,∞(Ω;Rd) with the lower semicontinuous
envelopes of F with respect to the L∞ and L1 convergences, i.e. Γw∗(F ) = Γw∗seq (F ) = ΓL∞(F ) = ΓL1(F )
by the classical embedding theorems. On the other hand, Theorem 2.1, shows that even without coercivity
assumptions on f , it holds

Γw∗(F ) = Γw∗seq (F ). (47)

This fact is not surprising since the level convexity of F entails the validity of Corollary 3.1.

Thanks to Theorem 2.1, we can deduce that f ls is the strong Morrey quasiconvex ”envelope” of f ,
i.e. the greatest strong Morrey quasiconvex minorant of f , provided that f satisfies (H).

Corollary 4.1 Let f : Rd×N → [−∞,+∞] be a level convex Borel function satisfying (H). Then f ls is
the greatest strong Morrey quasiconvex function less than or equal to f .

Proof Thanks to Remark 3.4, it is sufficient to show that h ≤ f ls for every strong Morrey quasiconvex
function such that h ≤ f . Let h : Rd×N → [−∞,+∞] be a strong Morrey quasiconvex function such
that h ≤ f . Then, if Q =]0, 1[N , the associated supremal functional W 1,∞(Q;Rd) 3 u → Sh(u) :=
ess supx∈Q h(∇u) satisfies Sh ≤ F on W 1,∞(Q;Rd) and, by [12, Theorem 2.6], is a w∗seq-lower semicon-
tinuous functional. Then (47) and Theorem 2.1 imply that

Sh(u) ≤ Γw∗(F )(u) for every u ∈W 1,∞(Q;Rd)

and evaluating this latter expression on affine functions u(x) := ξ · x, with ξ ∈ Rd×N , we get h ≤ f ls. ut
Theorem 2.1 allows us to extend the relaxation results for indicator functionals provided by Theorem

4.1 to the case where the convex set is unbounded, and not necessarily open, and with no requirement
that 0 ∈ intC.

Corollary 4.2 Let Ω be a bounded open set of RN with Lipschitz boundary. Let C ⊆ Rd×N be a convex
Borel set with nonempty interior. Let I, I : W 1,∞(Ω;Rd) → [0,+∞] be the functionals defined by (34)
and (35). Then

I(u) = Γw∗(I)(u) = Γw∗seq (I)(u) ∀u ∈W 1,∞(Ω,Rd). (48)



A Relaxation Result in the Vectorial Setting and Power Law Approximation for Supremal Functionals 19

Proof We start observing that, due to convexity of C, Corollary 3.1 guarantees the second equality in
(48). First we note that, thanks to Ioffe’s Theorem (see, for example, Theorem 2.3.1. in [39]) for every
u ∈W 1,∞(Ω;Rd)

I(u) ≤ Γw∗(I)(u).

In order to conclude the proof, it is sufficient to show that for every u ∈W 1,∞(Ω;Rd)

Γw∗(I)(u) ≤ I(u).

Without loss of generality, assume that u ∈ W 1,∞(Ω,Rd) is such that
∫
Ω
Icl(C)(∇u(x))dx = 0, i.e.

∇u(x) ∈ cl(C) for a.e. x ∈ Ω. Thus, arguing as above, we have that Γw∗(G)(u) = ess supx∈Ω Icl(C)(∇u(x)) =
0. In particular, by Definition 3.3 and Proposition 3.4(2.), for every weak* neighborhood U of u it results
that

inf
v∈U

ess sup
x∈Ω

IC(∇v(x)) = 0,

which in turns guarantees that there exists v̄ ∈ U such that

IC(∇v̄(x)) = 0 for a.e. x ∈ Ω.

Consequently for every U ,

inf
v∈U

∫
Ω

IC(∇v(x))dx = 0,

i.e.
Γw∗I(u) = 0 = I(u). ut

5 The Lp-Approximation

In this section we prove Theorem 2.2, in details, we study Γ -convergence, as p→ +∞, of the functionals
Fp : C(Ω̄,Rd)→ [0,+∞] given by

Fp(u) :=


(∫

Ω

fp(x,∇u(x))dx

)1/p

, if u ∈W 1,p(Ω,Rd),

+∞, otherwise

(49)

where f : Ω×Rd×N is LN ⊗Bd×N function satisfying the growth condition (5). We show that, as p→∞,
(Fp)p≥1 Γ -converges with respect to the uniform convergence to the functional F̄ : C(Ω̄,Rd)→ [0,+∞]
given by (7).

With this aim, we first prove the following result, containing an Lp- approximation for f lslc, that will
be useful in the proof of some particular cases of Theorem 2.2. It generalizes [15, Proposition 2.9] where
f is assumed to be level convex and lower semicontinuous.

Proposition 5.1 Let f : Rd×N → R be a Borel function satisfying

f(ξ) ≥ α|ξ| (50)

for a fixed α > 0 and for every ξ ∈ Rd×N . For every p ≥ 1, let (fp)∗∗ be the lower semicontinuous and
convex envelope of fp. Then

lim
p→∞

((fp)∗∗)1/p(ξ) = f lslc(ξ). (51)

Moreover if f is level convex, then

lim
p→∞

((fp)∗∗)1/p(ξ) = lim
p→∞

(Qfp)1/p(ξ) = f ls(ξ) (52)

where Qfp := Q(fp) is the quasiconvex envelope of fp in (22).

Proof Clearly the family ((fp)∗∗)1/p)p is not decreasing and for every ξ ∈ Rd×N and p ∈ [1,+∞[ we have
that

((fp)∗∗)1/p(ξ) ≤ f(ξ).
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Since ((fp)∗∗)1/p is lower semicontinuous and level convex, it results that

((fp)∗∗)1/p(ξ) ≤ f lslc(ξ) (53)

for every ξ ∈ Rd×N , and p ∈ [1,+∞[. Thus, the first inequality in (51) follows as p→ +∞. Moreover, by
[15, Proposition 2.9] applied to f lslc, we have that

f lslc(ξ) = lim
p→∞

(((f lslc)p)∗∗)1/p(ξ) ≤ lim
p→∞

((fp)∗∗)1/p(ξ) (54)

for every ξ ∈ Rd×N . Now we assume that f is level convex. By (51) and (25) we get that

f ls(ξ) = lim
p→∞

((fp)∗∗)1/p(ξ)

We note that for every fixed p ≥ 1 the function (fp)∗∗ is quasiconvex (see Definition 3.5). Then (fp)∗∗ ≤
Qfp ≤ fp that yields to ((fp)∗∗)1/p ≤ (Qfp)1/p ≤ f. By the continuity of Qfp (see Remark 3.2), it
follows that for every p ≥ 1

((fp)∗∗)1/p ≤ (Qfp)1/p ≤ f ls. (55)

By applying Hölder’s inequality, it is easy to show that the family (
(
Qfp

)1/p
)p is not decreasing. So, by

(55), it results
f ls(ξ) = lim

p→∞
((fp)∗∗)1/p(ξ) ≤ lim

p→∞
(Qfp)1/p(ξ) ≤ f ls(ξ),

for every ξ ∈ Rd×N , which proves formula (52).
ut

Remark 5.1 Let f : Rd×N → R be a Borel function. For every ξ ∈ Rd×N we denote

Q∞f(ξ) := lim
p→∞

(Qfp
)1/p

(ξ) = sup
p≥1

(
Qfp

)1/p
(ξ). (56)

Observe that (56) coincides with (8) since f does not depend on x.
Note that, if N = 1 or d = 1, then Qfp = (fp)∗∗ for every p ≥ 1. Therefore, if f satisfies (50), by
Proposition 5.1, we get that Q∞f = f lslc.

In [15] it has been introduced the class of functions f : Rd×N → [0,+∞[ satisfying f = lim
p→∞

(Q(fp))1/p.

They have been referred as curl-∞ quasiconvex. If f is continuous, in [34] it has been remarked that
any curl-∞ quasiconvex function is strong Morrey quasiconvex (see (4)), while it is currently an open
question whether the converse is true for coercive functions. The proposition below establishes, without
further assumptions, that the supremum of strong Morrey quasiconvex functions is itself strong Morrey
quasiconvex. In particular, if f : Rd×N → [0,+∞[ is a Borel function then, by the very definition (56), it
results that Q∞f is strong Morrey quasiconvex.

Proposition 5.2 Let I be a family of indices and let (fη)η∈I , be a family of strong Morrey quasiconvex

functions (fη : Rd×N → R for any η ∈ I). Then the function f̂ := supη fη is strong Morrey quasiconvex.

In particular, if f : Rd×N → [0,+∞[ is a Borel function then the sequence ((Qfp
)1/p

) converges to the
strong Morrey quasiconvex function Q∞f .

Proof Let Ω ⊂ RNbe a bounded open set with Lipschitz boundary as above. For every η ∈ I the functional

W 1,∞(Ω,Rd) 3 u→ Fη(u) := ess sup
Ω

fη(∇u)

is sequentially weakly* lower semicontinuous on W 1,∞(Ω,Rd), see [12, Theorem 2.6]. This implies that
the functional W 1,∞(Ω,Rd) 3 u→ F̂ (u) := supη Fη(u) is also sequentially weakly* lower semicontinuous.
Since

F̂ (u) = sup
η

ess sup
Ω

fη(∇u) = ess sup
Ω

sup
η
fη(∇u) = ess sup

Ω
f̂(∇u),

then, thanks to the necessary condition for sequentially weak* lower semicontinuity of supremal function-
als in [12, Theorem 2.7], we can conclude that f̂ is strong Morrey quasiconvex.
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In particular, in order to show that Q∞f is strong Morrey quasiconvex, it is sufficient to recall that,
by [12, Proposition 2.4], for any p ≥ 1 the function Qfp is strong Morrey quasiconvex. ut

Proof of Theorem 2.2 It will be achieved in several steps, some of them follow along the lines of [18, Proof
of Theorem 3.4]. First we prove that for every p > N , the relaxed functional ΓL∞(Fp) admits an integral
representation. In the step 2. we introduce the function f∞ appearing in (7) and obtain the comparison
in (8).Then step 3. is devoted to show that the sequence ΓL∞(Fn) Γ (L∞)-converges, as n → ∞, to the
functional F̄ while in step. 4 we prove that for every (pn)→ +∞ the sequence ΓL∞(Fpn) Γ (τ)-converges
to F̄ as n→∞, which concludes the proof, in light of Definition 3.4.

Step 1. For every p ≥ 1 let ΓL∞(Fp) : C(Ω̄,Rd) → [−∞,+∞] be the lower semicontinuous envelope of the
functional Fp in (6) with respect to the uniform convergence. Let Gp : W 1,p(Ω,Rd)→ [−∞,+∞] be
the functional given by

Gp(u) :=

(∫
Ω

fp(x,∇u(x))dx

)1/p

.

Then, taking into account (5), by Theorem 3.3, there exists a Carathéodory function f̃p, quasiconvex
in the second variable, such that

max

{
(

1

α
|ξ| − α)p, 0

}
≤ Qfp(x, ξ) ≤ f̃p(x, ξ) ≤ βp(1 + |ξ|)p, (57)

for a.e. x ∈ Ω and every ξ ∈ Rd×N , and

Γwseq
(Gp)(u) :=

(∫
Ω

f̃p(x,∇u(x))dx

)1/p

for every u ∈W 1,p(Ω,Rd). Now we show that for every p > N , ΓL∞(Fp) coincides with the functional
φp : C(Ω̄,Rd)→ [−∞,+∞] given by

φp(u) :=


(∫

Ω

f̃p(x,∇u(x))dx

)1/p

, if u ∈W 1,p(Ω,Rd),

+∞ otherwise.

In order to show that φp ≤ ΓL∞(Fp) we notice that for every p > 1 the functional φp is lower
semicontinuous on C(Ω,Rd) with respect to the uniform convergence. In fact, let (un) ⊆ C(Ω̄,Rd)
be such that un → u uniformly and lim inf

n→∞
φp(un) < +∞. Without relabelling, take a subsequence

such that lim
n→∞

φp(un) = lim inf
n→∞

φp(un). Thanks to the coercivity assumption (5), we have that the

sequence (un) is bounded in W 1,p(Ω,Rd). Therefore, up to a not relabelled subsequence, (un) weakly
converges to u in W 1,p(Ω,Rd). Then

φp(u) = Γwseq
(Gp)(u) ≤ lim inf

n→∞
Γwseq

(Gp)(un) = lim inf
n→∞

φp(un).

Since φp ≤ Fp on C(Ω̄,Rd) and φp is lower semicontinuous with respect to the uniform convergence,
we obtain that

φp(u) ≤ ΓL∞(Fp)(u) ∀ u ∈ C(Ω̄,Rd). (58)

On the other hand, for every p > N the functional ΓL∞(Fp) is sequentially lower semicontinuous on
W 1,p(Ω,Rd) with respect to the weak convergence of W 1,p(Ω,Rd). In fact, if (un) ⊆ W 1,p(Ω,Rd) is
such that un ⇀ u weakly in W 1,p(Ω,Rd) then, thanks to Rellich-Kondrachov Theorem, we have that
un ∈ C(Ω̄,Rd) and un → u uniformly. In particular it follows that ΓL∞(Fp)(u) ≤ lim inf

n→∞
ΓL∞(Fp)(un).

Since
ΓL∞(Fp) ≤ Fp = Gp on W 1,p(Ω,Rd),
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we get that for every p > N

ΓL∞(Fp)(u) ≤ Γwseq (Gp)(u) = φp(u) ∀ u ∈W 1,p(Ω,Rd). (59)

Inequalities (58) and (59) imply that for every p > N

ΓL∞(Fp)(u) = φp(u) =

(∫
Ω

f̃p(x,∇u(x))dx

)1/p

∀ u ∈W 1,p(Ω,Rd).

If we show that ΓL∞(Fp)(u) < +∞ if and only if u ∈ W 1,p(Ω,Rd) then we can conclude that
ΓL∞(Fp) = φp on C(Ω̄,Rd) for every p > N . In fact if u ∈ C(Ω̄,Rd) is such that ΓL∞(Fp)(u) < +∞
then there exists a sequence (un) ⊆ C(Ω̄,Rd) such that un → u uniformly and lim

n→∞
Fp(un) =

ΓL∞(Fp)(u) < +∞. Thanks to the coercivity assumption (5), we have that the sequence (un) is
bounded in W 1,p(Ω,Rd) and, up to a subsequence, weakly converges to u in W 1,p(Ω,Rd) when p > 1.
In particular u ∈W 1,p(Ω,Rd). The viceversa is trivial.

Step 2. If p < q then, by applying Hölder’s inequality, we have that Fp ≤ (LN (Ω))1/p−1/qFq. In particular

ΓL∞(Fp) ≤ (LN (Ω))1/p−1/qΓL∞(Fq).

Since for every p ≥ 1, f̃p is a Carathédory function, we deduce that

(f̃p)1/p(x, ξ) ≤ (f̃q)1/q(x, ξ) (60)

for a.e. x ∈ Ω and ξ ∈ Rd×N . Then, set

f∞(x, ξ) := sup
n≥1

(f̃n)1/n(x, ξ), (61)

it results that f∞ is LN ⊗Bd×N -measurable function, being the countable supremum of Carathéodory
functions, and for a.e. x ∈ Ω and ξ ∈ Rd×N

f∞(x, ξ) = lim
n→∞

(
f̃n
)1/n

(x, ξ). (62)

Hence, taking into account (57), f∞ satisfies the growth condition

max

{
1

α
|ξ| − α, 0

}
≤ f∞(x, ξ) ≤ β(1 + |ξ|). (63)

Moreover, thanks to Proposition 5.2, for a.e. fixed x ∈ Ω the function f∞(x, ·) is strong Morrey
quasiconvex. Finally, by (57), it results that

Qfn(x, ξ) ≤ f̃n(x, ξ),

for every n ∈ N, for a.e. x ∈ Ω and ξ ∈ Rd×N . This implies that Q∞f(x, ξ) ≤ f∞(x, ξ) for a.e. x ∈ Ω
and ξ ∈ Rd×N .
Moreover, it is easy to show that if (pn)n is a divergent sequence, that is pn → +∞, the LN ⊗Bd×N -
measurable function h∞ : Ω × Rd×N → [0,∞] defined by

h∞(x, ξ) := sup
n≥1

(f̃pn)1/pn(x, ξ),

satisfies

ess sup
Ω

h∞(x,Du(x)) = ess sup
Ω

f∞(x,Du(x)) ∀u ∈W 1,∞(Ω,Rd). (64)
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Indeed, for every fixed u ∈W 1,∞(Ω,Rd) and for every fixed ε > 0 there exists n̄ ∈ N such that

ess sup
Ω

h∞(x,Du(x)) = sup
n≥1

ess sup
Ω

(f̃pn)
1/pn

(x,Du(x)) ≤ ess sup
Ω

(f̃pn̄)1/pn̄(x,Du(x)) + ε. (65)

Then, by (60) there exists a measurable set Ω′ ⊆ Ω such that LN (Ω \Ω′) = 0 and

(f̃pn̄)1/pn̄(x, ξ) ≤ (f̃n)1/n(x, ξ),

for every n ≥ pn̄, for every x ∈ Ω′ and ξ ∈ Rd×N . In particular, (65) and (61) imply

ess sup
Ω

h∞(x,Du(x)) ≤ ess sup
Ω

(f̃n(x,Du(x)))
1
n + ε ≤ ess sup

Ω
f∞(x,Du(x)) + ε.

By sending ε to 0 we get that

ess sup
Ω

h∞(x,Du(x)) ≤ ess sup
Ω

f∞(x,Du(x)).

The proof of the converse inequality is analoguous.
Step 3. We consider the sequence (pn)n = (n)n and we show that

Γ (L∞)- lim
n→∞

Fn = F̄ . (66)

Note that, since the family (LN (Ω)−1/nFn)n≥1 is increasing, by Proposition 3.4(3)-(4), it follows that

Γ (L∞)- lim
n→∞

Fn = Γ (L∞)- lim
n→∞

ΓL∞(Fn) = lim
n→∞

ΓL∞(Fn).

Now we show that

lim
n→∞

ΓL∞(Fn) ≥ F̄ (u) ∀u ∈ C(Ω̄,Rd). (67)

Without loss of generality we consider the case when u ∈ C(Ω̄,Rd) is such that supn≥1 ΓL∞(Fn)(u) <
+∞. Thanks to the coercivity assumption (5), we have that supn≥1 ||u||W 1,pn (Ω;Rd) =: M < +∞. It

follows that u ∈W 1,∞(Ω;Rd) and, by (63), it holds

F̄ (u) = ess sup
x∈Ω

f∞(x,∇u(x)) ≤ β(1 +M) < +∞.

Therefore, for every fixed ε > 0, there exists a measurable set Bε ⊂ Ω such that LN (Bε) > 0 and

ess sup
x∈Ω

f∞(x,∇u(x)) ≤ f∞(x,∇u(x)) + ε

for every x ∈ Bε. This implies

ess sup
x∈Ω

f∞(x,∇u(x))LN (Bε) ≤
∫
Bε

f∞(x,∇u(x))dx+ εLN (Bε).

By Beppo Levi’s Theorem, and Hölder’s inequality we obtain

ess sup
x∈Ω

f∞(x,∇u(x))LN (Bε) ≤ lim
n→∞

∫
Bε

(f̃n)1/n(x,∇u(x)dx+ εLN (Bε)

≤ lim
n→∞

(∫
Bε

(f̃n)(x,∇u(x))dx
)1/n(

LN (Bε)
)1−1/n

+ εLN (Bε).

It follows that

ess sup
x∈Ω

f∞(x,∇u(x)) ≤ lim
n→∞

ΓL∞(Fn)(u)
(
LN (Bε))

−1/n + ε ≤ lim
n→∞

ΓL∞(Fn)(u) + ε . (68)

By passing to the limit when ε→ 0, we get (67).
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In order to show the converse inequality

lim
n→∞

ΓL∞(Fn)(u) ≤ F̄ (u) ∀u ∈ C(Ω̄,Rd),

without loss of generality, we consider the case when u ∈W 1,∞(Ω;Rd). Then

ΓL∞(Fn)(u) =
(∫

Ω

f̃n(x,∇u(x))dx
)1/n

≤
(
LN (Ω))1/n ess sup

x∈Ω
f∞(x,∇u(x)).

In particular, it follows

lim
n→∞

ΓL∞(Fn)(u) ≤ lim
n→∞

(
LN (Ω))1/nF̄ (u) = F̄ (u),

for every u ∈W 1,∞(Ω,Rd). The last inequality, together with (67), implies (66).
Step 4. Now we show that if (pn)n diverges, i.e. pn → +∞, then

Γ (L∞)- lim
n→∞

Fpn(u) = F̄ (u) ∀u ∈ C(Ω̄,Rd).

First of all, we show the Γ -liminf inequality, that is

Γ (L∞)- lim
n→∞

Fpn(u) ≥ F̄ (u) ∀u ∈ C(Ω̄,Rd).

Let u, (upn)n ⊆ C(Ω̄,Rd) be such that upn → u uniformly in Ω. Fix q ∈ N. Then, there exists n̄ ∈ N
such that pn ≥ q for every n ≥ n̄. Hence,

ΓL∞(Fq)(upn) ≤
(
LN (Ω)

)1/q−1/pn
ΓL∞(Fpn)(upn)

for every n ≥ n̄ and, by passing to the liminf when n→∞, we get that for every q ≥ 1

ΓL∞(Fq)(u) ≤
(
LN (Ω)

)1/q
lim inf
n→∞

ΓL∞(Fpn)(upn).

By passing to the limit when q →∞, taking into account (66), we get

F̄ (u) ≤ lim inf
n→∞

ΓL∞(Fpn)(upn) ≤ lim inf
n→∞

Fpn(upn). (69)

Taking into account (64), we have that

ΓL∞(Fpn)(u) ≤
(
LN (Ω)

)1/n(∫
Ω

f̃pn(x,∇u(x))dx
)1/pn

≤
(
LN (Ω)

)1/pn
ess sup
x∈Ω

f∞(x,∇u(x)),

and we get that
lim sup
n→∞

ΓL∞(Fpn)(u) ≤ ess sup
x∈Ω

f∞(x,∇u(x)).

The last inequality, (69) and Proposition 3.4, (3) imply the Γ -convergence:

Γ (L∞)- lim
n→∞

Fpn(u) = F̄ (u) ∀u ∈ C(Ω̄,Rd). ut

Remark 5.2 We note the following facts.

1. If f(x, ·) is continuous for a.e. x ∈ Ω, Theorem 2.2 gives the same representation result for the Γ -limit
shown in [34].

2. If the supremand f(x, ·) is upper semicontinuous for a.e. x ∈ Ω, then f∞(x, ·) = Q∞f(x, ·) by Remark
3.3 and (61). The same conclusion holds when f ≡ f(ξ).
In addiction, if f(x, ·) is upper semicontinuous and level convex for a.e. x ∈ Ω, then, in view of (52)
evaluated along the the sequence (pn) = (n), (7) can be specialized, since

f∞(x, ·) = Q∞f(x, ·) = f ls(x, ·) for a.e. x ∈ Ω.

The same conclusion holds when f ≡ f(ξ) is level convex.
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3. If N = 1 or d = 1, then Q∞f(x, ·) = f lslc(x, ·) for a.e. x ∈ Ω, (see Remark 5.1). Consequently, by the
above arguments, if f(x, ·) is upper semicontinuous or f ≡ f(ξ) then we get that

f∞(x, ·) = Q∞f(x, ·) = f lslc(x, ·) for a.e. x ∈ Ω.

4. In the case when f∞(x, ·) = f lslc(x, ·), the proof of the Γ -liminf inequality can be simplified. Indeed
f lslc satisfies the assumptions of [16, Theorem 3.1] and f lslc ≤ f , then for every u ∈W 1,∞(Ω;Rd)

ess sup
x∈Ω

f lslc(x,∇u(x))≤ Γ (L∞) - lim
p→∞

(∫
Ω

(f lslc(x,∇u(x)))pdx

)1/p

≤ Γ (L∞)- lim
p→∞

(∫
Ω

(fp(x,∇u(x)))dx

)1/p

.

It is also worth to note that the above inequality holds without imposing any growth from above on
f .

5. We observe that if f ≡ f(ξ), under the weaker assumption that f is a Borel function locally bounded
and satisfying (up to a constant) (50), we can show that the family of functionals Fp : C(Ω̄,Rd) →
[0,+∞] given by

Fp(u) :=


(∫

Ω

fp(∇u(x))dx

)1/p

, if u ∈W 1,∞(Ω,Rd),

+∞, otherwise

Γ (L∞)-converges to the functional F : C(Ω̄,Rd)→ [0,+∞] given by

F(u) :=

{
ess sup

Ω
Q∞f(∇u(x)), if u ∈W 1,∞(Ω,Rd),

+∞, otherwise.

Indeed, in this case, it is sufficient to apply the relaxation result for integral functionals on Sobolev
space with respect to the uniform convergence (see [40, Theorem 9.1]) to get that

ΓL∞(Fp)(u) =


(∫

Ω

Qfp(∇u(x))dx

)1/p

, if u ∈W 1,∞(Ω,Rd),

+∞, otherwise.

Then the proof develops along the lines of the one of Theorem 2.2 and takes into account the identity
f∞ = Q∞f .

6. For the sake of completeness, with the same notations of Theorem 2.2, if N or d = 1, one can assume
Ω to be also convex and f to be only Borel measurable to obtain a representation formula for ΓL1(Gp),
see [42, Theorem 3.10]. In particular, one obtains, that

ΓL1(Gp)(u) =

(∫
Ω

(fp)∗∗(∇u(x))dx

)1/p

∀ u ∈W 1,p(Ω,Rd).

Then, assuming also that f satisfies (50), (7) is obtained in the same way as before, relying on the
equality ΓL∞(Fp) = φp = ΓL1(Gp) in W 1,p(Ω,Rd).

6 Conclusions

Two main results have been obtained: the first deals with supremal representation in the vectorial case of
the relaxed envelope of a level convex supremal functional in the homogeneous setting, (see Theorem 2.1
); the second one concerns the variational approximation of a supremal functional through a sequence of
power-law integral functionals, in the inhomogeneous setting, under a further growth condition (Theorem
2.2). The proof of relaxation formula stated in Theorem 2.1 is given under homogeneity assumption on
the density f since it relies on a particular case of [23, Theorem 2.1] (see Theorem 4.1 below). Indeed a



26 Francesca Prinari and Elvira Zappale

central role plays the connection with homogeneous indicator functionals of convex sets with nonempty
interior, as already emphasized in similar context by [12], later exploited in [5], and very recently in [22],
[31] in the nonlocal framework. It is worth to underline that, despite of the results currently available in
the literature, in the set of hypotheses of Theorem 2.1 we drop any coercivity assumptions on f , thanks to
arguments as in [18, Theorem 3.4]. In turn, Theorem 2.1 allows us to generalize some relaxation results for
indicator functionals whose density have unbounded convex effective domain or, equivalently, improves
the understanding of the asymptotics for vectorial differential inclusions (cf. Corollary 4.2).
Finally we note that the Γ -convergence result stated in Theorem 2.2 is new in literature since we require
only the necessary measurability hypothesis on f and a linear growth condition. Indeed Theorem 3.1 in
[16] applies when f is lower semicontinuous and level convex w.r.t the gradient variable and satisfies a
linear growth condition from below; the next results remove the level convexity assumption on f (see
Theorem 3.9 in [41] in the scalar case and Theorem 3.2 in [34] in the vectorial case) but require that f
is a Carathéodory function (satisfying a suitable growth condition with respect to the gradient variable
of the type (5).
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