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Abstract. We show that in the complex hyperbolic space there are no compact

stable hypersurfaces satisfying a certain quadratic bound on mean curvature and

characteristic curvature. The proof follows from a stability inequality that is ob-

tained embedding the complex hyperbolic space into the space Hermitian matrices

endowed with a Minkowski product.

1. Introduction

We study stability of compact constant mean curvature (CMC) hypersurfaces in

the complex hyperbolic space CHn. By “stable” we mean a CMC hypersurface for

which the second variation of the area is non-negative under deformations preserving

the enclosed volume.

Barbosa, do Carmo, and Eschenburg proved that geodesics spheres in CHn are

stable, see [2, Theorem 1.4]. It is conjectured that isoperimetric sets in the complex

hyperbolic space are geodesics spheres. An incorrect attempt to classify compact

embedded CMC hypersurfaces in CH2 (without using stability) was done in [7],[8]

trying to use Alexandrov’s moving plane method. If the CMC hypersurface is assumed

to be Hopf, then it must be a geodesic sphere, see [13]. Without the Hopf assumption,

however, there seems to be no result on the classification of CMC and of stable CMC

hypersurfaces.

In this paper we prove some negative results about stable CMC hypersurfaces in

CHn continuing the research line initiated in [3] in the case of the complex projective

space. For a hypersurface Σ ⊂ CHn, we denote by κ = h(JN, JN) its characteristic

curvature, where J is the complex structure of CHn, N is the unit normal, and

h is the second fundamental form of Σ. The trace of h (the non-normalized mean

curvature) is denoted by H = tr(h).

Our main result is the following non-existence theorem for compact stable CMC

hypersurfaces in CHn.
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Theorem 1.1. Let n ≥ 2. There exists no compact oriented stable CMC hypersur-

face Σ ⊂ CHn satisfying

p(κ;n,H) := (2n+ 1)κ2 − 2Hκ+ 4(n2 − 1)−H2 ≥ 0. (1.1)

In particular, no such a hypersurface exists if H2 ≤ 2(n− 1)(2n+ 1).

We shall show that stability forces inequality (1.1) to be an equality and forces Σ

to be a sphere. On the other hand, spheres satisfy the strict inequality p(κ;n,H) < 0,

the equality case corresponding to the limit case of a sphere with infinite radius.

The proof of Theorem 1.1 is based on the following stability inequality. Let

Y1, . . . , Y2n−2 be any local orthonormal frame for the complex tangent space CTΣ =

TΣ ∩ J(TΣ). We define the complex tangent vector-field

hN =
2n−2∑
j=1

h(JN, Yj)Yj ∈ CTΣ. (1.2)

The characteristic curvature κ is principal (i.e., Σ is a Hopf hypersurface) precisely

when hN = 0 identically on Σ.

Theorem 1.2. If Σ ⊂ CHn, n ≥ 2, is a compact oriented stable CMC hypersurface

then ∫
Σ

{
H2 − (n− 1)

(
2n+ |h|2

)
− (H + κ)2 + |hN |2

2(n+ 1)

}
dµ ≥ 0, (1.3)

where µ is the Riemannian hypersurface measure.

Our first step towards the proof of Theorem 1.2 is the isometric embedding of CHn

into the space of Hermitian matrices Hn+1, endowed with a suitable inner product

of the Minkowski-type. The isometric embedding into the Euclidean space was used

in the case of the complex projective space in [3] and it is an effective procedure

to study the topology of minimal surfaces, see [1] and the references therein. The

embedding for CHn was introduced for the first time by Garay and Romero in [9].

Our presentation is different from [9] in some respects and in Section 2 we provide

some details on this embedding.

In Section 4 we compute the tangential Laplacian of the position matrix A ∈ Σ, of

the unit normal N to Σ, and of the curvature of the embedding CHn ⊂ Hn+1 in the

direction N . This is the technical and computational part of the paper.

The matrix-valued function u = ∆ΣA is the key tool in our proof of the stability

inequality (1.3), see Section 5. We introduce the quadratic form QΣ : Hn+1 → R,

QΣ(V ) = −
∫

Σ

〈u, VM〉H〈L u, VM〉Hdµ,
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where 〈·, ·〉H is the standard inner product on Hn+1, u = ∆ΣA is the Laplacian of the

position matrix,

L = ∆Σ + |h|2 + Ric(N)= ∆Σ + |h|2 − 2(n+ 1) (1.4)

is the Jacobi operator of Σ, M = diag{−1, 1, . . . , 1} is the Minkowski matrix, and

VM = MV is the product of M with V ∈ Hn+1.

If Σ is stable, then the trace of QΣ is non-negative, and this fact is expressed by

the inequality (1.3). Finally, in Section 6 we show how to deduce Theorem 1.1 from

Theorem 1.2.

2. Algebraic preliminaries

This section has a preliminary character and can be skipped by the reader familiar

with the complex hyperbolic space and with its embedding into the space of Hermitian

matrices.

Let Cn+1 be endowed with the Minkowski inner product 〈z, w〉M := −z0w̄0 +

z1w̄1 + . . . + znw̄n. On Cn+1 \ {0} we define the equivalence relation z ∼ w if there

exists α ∈ C such that z = αw. The complex projective space CP n is the set of all

equivalence classes [z], z 6= 0, and the complex hyperbolic space is CHn =
{

[z] ∈
CP n : 〈z, z〉M < 0

}
.

The real hyperboloid S =
{
z ∈ Cn+1 : 〈z, z〉M = −1

}
is known as anti-de Sitter

space, and the complex hyperbolic space can be equivalently defined as CHn = S/ ∼.

The complex tangent space CTzS =
{
w ∈ Cn+1 : 〈z, w〉M = 0

}
passes to the quotient

and we can define the tangent space T[z]CH
n = CTzS. The inner product

〈w, ζ〉R := Re〈w, ζ〉M , w, ζ,∈ T[z]CH
n, (2.1)

is positive and CHn, equipped with this product, is the Riemannian complex hyper-

bolic space.

We identify CHn with a subset of Hn+1 =
{
A ∈ gl(n+ 1,C) : A = At

}
, the space

of (n+ 1)-dimensional Hermitian matrices. We fix on Hn+1 the inner product

〈A,B〉 := −1

2
tr(AMBM), A,B ∈ Hn+1. (2.2)

Here and throughout the paper, we will use the notation AM := MA where MA is a

matrix-matrix product and M := diag{−1, 1, . . . , 1} is the Minkowski matrix.

The transposed operator with respect to the Minkowski product of a C-linear

operator A ∈ End(Cn+1) is the C-linear operator A∗ ∈ End(Cn+1) defined by

〈A(z), w〉M = 〈z, A∗(w)〉M for z, w ∈ Cn+1. To A ∈ End(Cn+1) we associate the

matrix (Ajk)j,k=0,...,n ∈ gl(n + 1,C) given by Ajk = 〈A(ek), ej〉M , where e0, e1, . . . , en
is the canonical basis of Cn+1. Thus, we have A = A∗ if and only if Ajk = Ākj. The
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linear action z 7→ A(z) is given by the matrix-vector product

A(z) = AMz
t, (2.3)

where zt ∈ Cn+1 is a column vector.

Now we define the mapping F : S → Hn+1, F (z) = A, where A is the matrix

associated with the Minkowski-orthogonal projection from Cn+1 onto the complex

line [z], namely

A(w) = −〈w, z〉Mz, w ∈ Cn+1. (2.4)

We remark that for z0 = e0 = (1, 0, . . . , 0) ∈ Cn+1 we have F (z0) = A0 = diag{−1, 0, . . . , 0}.
The mapping F passes to the quotient and so we have a map F : CHn → Hn+1.

Now we determine the image of this map.

Let U(1, n) be the group of the endomorphisms Q ∈ End(Cn+1) preserving the

Minkowski product, i.e., 〈Q(z), Q(w)〉M = 〈z, w〉M for all z, w ∈ Cn+1. Each Q ∈
U(1, n) satisfies Q ◦ Q∗ = Q∗ ◦ Q = Id, where Id is the identity operator. Thus, as

matrices, we have the identities

QMQ
∗
M = Q∗MQM = I. (2.5)

The group U(1, n) acts transitively on S, i.e., for any z ∈ S there exists Q ∈ U(1, n)

such that z = Q(z0). Therefore, the projection onto [z] is the C-linear operator A =

Q◦A0◦Q∗. Again by (2.3), the corresponding matrix equation is AM = QM(A0)MQ
∗
M ,

which is equivalent to A = QA0Q
∗.

From the above discussion, we deduce that the image of F in Hn+1 is

F (CHn) =
{
A ∈ Hn+1 : A = QA0Q

∗ for some Q ∈ U(1, n)
}
.

With a slight abuse of notation, from now on we identify CHn with F (CHn) ⊂ Hn+1.

Lemma 2.1. The mapping F : CHn → F (CHn) ⊂ Hn+1 is an isometry, when

CHn and F (CHn) are endowed with the metrics (2.1) and (2.2), respectively.

The proof is a direct check.

Each matrix A ∈ CHn is characterized by the following three properties:

(1) AMAM = AM ;

(2) tr(AM) = 1;

(3) if z ∈ Cn+1 \ {0} solves the equation AMz = z, then 〈z, z〉M < 0.

Indeed, the operator A satisfies the equation A◦A = A because it is a projection and

this is equivalent to (1). By (2.5), we get

tr(AM) = tr(QM(A0)MQ
∗
M) = tr(MA0) = 1.

Property (3) ensures that A projects onto a negative line.
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Let ∇ be the standard Levi-Civita connection of Hn+1. For any X ∈ Hn+1 we have

the identity

∇XA = X. (2.6)

Differentiating the projection equation AMAM = AM in the direction X, we obtain

XM = AMXM + XMAM . This is the equation for the tangent space of the complex

hyperbolic space. The normal space T⊥ACH
n of CHn at A ∈ CHn is the orthogonal

complement of TACH
n in Hn+1 with respect to the inner product (2.2).

Lemma 2.2. The tangent and normal spaces at A ∈ CHn are given by

TACH
n =

{
X ∈ Hn+1 : XM = AMXM +XMAM

}
, (2.7)

T⊥ACH
n =

{
Z ∈ Hn+1 : AMZM = ZMAM

}
. (2.8)

The proof of this lemma is elementary and is left to the reader. Some more details

on analogous formulas for the complex projective case can be found in [12].

Let A,A0 ∈ CHn be related by A = QA0Q
∗ for some Q ∈ U(1, n). We define the

mapping TQ : Hn+1 → Hn+1 by setting

(TQX)M := QMXMQ
∗
M .

This map preserves the scalar product (2.2) and, in particular, it maps isometrically

the tangent space TA0CH
n onto TACH

n.

Using these isometries, all the isometric invariant quantities will be computed only

at the point A0 = F (z0). For i, j ∈ {0, 1, . . . , n}, let Eij be the (n + 1) × (n + 1)

matrix with entry 1 at the position (i, j) and with 0 elsewhere. Then, the matrices

X1, . . . , Xn, X̂1, . . . , X̂n, where

Xj = Ej0 + E0j and X̂j = iEj0 − iE0j, j = 1, . . . , n, (2.9)

form an orthonormal basis for the tangent space of CHn at the point A0.

Using F , we can transfer the complex structure of Cn+1 to CHn. Indeed, at the

point A = F (z) ∈ CHn, with z ∈ S ⊂ Cn+1, we can define the linear mapping

JA : TACH
n → TACH

n by setting JAdF (z)[w] := dF (z)[iw], for any w ∈ CTzS.

The basis in (2.9) satisfies X̂j = JXj at A0.

We observe that the complex structure J commutes with the isometries TQ, i.e.,

for any A,B ∈ CHn such that A = TQB for Q ∈ U(1, n), and for any X ∈ TBCHn,

we have

JA(TQ(X)) = TQ(JB(X)). (2.10)

In terms of matrix-multiplications, the complex structure is described in the following

lemma.

Lemma 2.3. For any A ∈ CHn, the complex structure JA is given by

JA(X) = i(M − 2A)XM , X ∈ TACHn. (2.11)
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Formula (2.11) can be checked first at the point A0 and then at any point using

the isometries TQ and identity (2.10).

We conclude this introductory section with a list of algebraic identities that can

be proved using the projection equation AMAM = AM and the equation XM =

AMXM + XMAM for the tangent space. For any A ∈ CHn and X, Y ∈ TACHn we

have:

AMXMYM = XMYMAM , (2.12)

AMXMAM = 0, (2.13)

XM(I − 2AM) = −(I − 2AM)XM , (2.14)

(I − 2AM)2 = I, (2.15)

(I − 2AM)XMYM = XMYM(I − 2AM). (2.16)

3. Geometry of the immersion F

We define the tangential and normal connections of CHn using the orthogonal

decomposition Hn+1 = TACH
n ⊕ T⊥ACHn. Denoting by π>A : Hn+1 → TACH

n and

π⊥A : Hn+1 → T⊥ACH
n the orthogonal projections, and by ∇ the standard Levi-Civita

connection of Hn+1 with respect to the metric (2.2), we set, for any X, Y ∈ Γ(TCHn),

∇>XY (A) := π>A(∇XY ) and ∇⊥XY (A) := π⊥A(∇XY ),

whenever A ∈ CHn.

In order to compute some algebraic formulas for these connections, we first define

the bilinear map π : Hn+1 ×Hn+1 → Hn+1,

π(X, Y ) := XMY + YMX, X, Y ∈ Hn+1.

Formula (2.12) implies that π maps TACH
n × TACHn into T⊥ACH

n.

Lemma 3.1. For any A ∈ CHn and X ∈ Hn+1, we have:

π>A(X) = π(A,X)− 2AXMAM , (3.17)

π⊥A(X) = X − π(A,X) + 2AXMAM . (3.18)

Proof. For A ∈ CHn, we have Hn+1 ∼= TAH
n+1 = TACH

n ⊕ T⊥ACH
n, and hence

X = π>A(X) + π⊥A(X) for any X ∈ Hn+1. Thus, identity (3.18) follows from (3.17).

We prove the first identity. If X ∈ TACHn, then π>A(X) = X and using (2.12) we

obtain

π>A(X)M = XM = AMXM +XMAM = M(π(A,X)− 2AXMAM),
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as wished. We show that the right-hand side of (3.17) satisfies the equation for the

tangent space at A whenever X ∈ Hn+1. In fact, we have

(π(A,X)− 2AXMAM)MAM + AM(π(A,X)− 2AXMAM)M =

= XMAM − 2AMXMAM + AMXM = (π(A,X)− 2AXMAM)M .

This finishes the proof.

�

By Lemma 3.1, we obtain the following formulas for the tangent and normal con-

nections:

∇>XY (A) = π(A,∇XY )− 2A(∇XY )MAM , (3.19)

∇⊥XY (A) = ∇XY (A)− π(A,∇XY ) + 2A(∇XY )MAM . (3.20)

The second fundamental form of the immersion F of CHn intoHn+1 is the mapping

σ : Γ(TCHn)× Γ(TCHn) −→ Γ(T⊥CHn) defined for each A ∈ CHn by

σA(X, Y ) := ∇⊥XY (A).

The (non-normalized) mean curvature vector of F is the mapping H : CHn →
Γ(T⊥CHn) defined as the trace of σ, i.e.,

H (A) :=
2n∑
i=1

σA(Xi, Xi), (3.21)

where X1, . . . , X2n is any orthonormal basis of TACH
n. For notational simplicity, we

drop the dependence on A ∈ CHn in σ and H .

Proposition 3.2. Let A ∈ CHn. Then, for every X, Y ∈ TACHn we have

σ(X, Y ) = π(X, Y )(I − 2AM). (3.22)

Moreover, the mean curvature vector H of the immersion F at A ∈ CHn is given

by

H = 4 ((n+ 1)A−M) , A ∈ CHn. (3.23)

Proof. We show that formula (3.22) defines a mapping such that:

σ(X, Y )MAM = AMσ(X, Y )M , (3.24)

∇XY = ∇>XY + σ(X, Y ). (3.25)
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We first check identity (3.25). Using identities (2.12) and (2.13) we have

(∇>XY )M + σ(X, Y )M = AM(∇XY )M + (∇XY )MAM − 2AM(∇XY )MAM

+(XMYM + YMXM)(I − 2AM)

= AM(∇XY )M + (∇XY )MAM +XMYM + YMXM

−2(AM(∇XY )MAM +XMYMAM + YMXMAM)

= AM(∇XY )M + (∇XY )MAM +XMYM + YMXM

= (∇Xπ(A, Y ))M

= (∇XY )M .

where we used Lemma 3.1.

We prove identity (3.24). By (2.12) and (2.16) we have

σ(X, Y )MAM = (XMYM + YMXM)(I − 2AM)AM

= (XMYM + YMXM)(−AM)

= −AM(XMYM + YMXM)

= AM(I − 2AM)(XMYM + YMXM)

= AM(XMYM + YMXM)(I − 2AM)

= AMσ(X, Y )M .

We check formula (3.23) at the point A0. Let X1, . . . , Xn, X̂1, . . . , X̂n be the or-

thonormal basis of TA0CH
n introduced in (2.9). The mean curvature vector of the

immersion reads

H =
n∑
j=1

σ(Xj, Xj) +
n∑
j=1

σ(X̂j, X̂j).

Using (3.22) we get

σ(Xj, Xj) = 2XjMXj(I − 2MA0) = 2XjMXjM, j = 1, . . . , n,

and a direct calculation shows that

σ(Xj, Xj) = 2(A0 − Ejj), j = 1, . . . , n. (3.26)

Above and in the sequel, we denote by Eij the (n+ 1)× (n+ 1)-matrix with 1 at the

position (i, j) with i, j = 0, 1, . . . , n and 0 otherwise. A similar computation shows

that

σ(X̂j, X̂j) = σ(Xj, Xj), j = 1, . . . , n. (3.27)

From (3.26) and (3.27) we deduce that

H = 4
n∑
j=1

(A0 − Ejj) = 4
(
(n+ 1)A0 −M

)
.
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This concludes the proof of (3.23) when A = A0. The general case follows using the

isometries TQ.

�

Let Z ∈ Γ(T⊥CHn) be a normal vector field and A ∈ CHn. The Weingarten

endomorphism associated with the immersion F is the mapping ΛZ : TACH
n −→

TACH
n defined by

ΛZ(X) := −∇>XZ(A).

Proposition 3.3. Let Z ∈ Γ(T⊥CHn) and A ∈ CHn. For any X ∈ TACH
n, we

have

ΛZ(X) = (XZM − ZXM)(I − 2AM). (3.28)

Proof. Let X ∈ TACHn, Z ∈ T⊥ACHn and, with a slight abuse of notation, denote

in the same way any extension of Z to an element of Γ(T⊥CHn). We know that

Z ∈ T⊥ACHn if and only if Z ∈ Hn+1 and ZMAM = AMZM . Thus, we get

XMZM − ZMXM + AM(∇XZ)M − (∇XZ)MAM = 0. (3.29)

Now, using formulas (3.19) and (3.29) we conclude that

(∇>XZ)M = 2AM(∇XZ)MAM − (∇XZ)MAM − AM(∇XZ)M

= (∇XZ)MAM − 2(∇XZ)MAM − AM(∇XZ)M + 2AM(∇XZ)MAM

= ((∇XZ)MAM − AM(∇XZ)M) (I − 2AM)

= (XMZM − ZMXM)(I − 2AM),

as wished.

�

For future reference, we establish some identities linking the mappings Λ and σ.

Let X1, . . . , X2n be an orthonormal frame for TCHn. We use the alternative notation

N = X2n. Later, N = X2n will be the normal vector to Σ. We set

πij := π(Xi, Xj) and πi,N := π(Xi, N),

σij := σ(Xi, Xj) and σi,N := σ(Xi, N),

and we finally let σN := σ(N,N) and πN := π(N,N).

The second fundamental form σ(X, Y ) is defined when X and Y are tangent sec-

tions of CHn. However, the right-hand side of (3.22) is defined for any X, Y ∈ Hn+1.

In the next lemma and in the next section, we will use (3.22) as the general definition

of σ.



10 E. BATTAGLIA, F. MONTEFALCONE, AND R. MONTI

Lemma 3.4. Let X1, . . . , X2n−1, N be an orthonormal frame for TCHn. Then for

any i, j = 1, . . . , 2n− 1 we have

Λσj,N (Xi) = π(πj,N , Xi) = 2πj,NMXi − σ(σij, N)− σ(Xj, σi,N). (3.30)

Proof. We first prove the identity on the left hand-side of (3.30). By (3.22), (3.28),

(2.14), and (2.15) we get

Λσj,N (Xi) = (XiMσj,N − σj,NMXi) (I − 2AM)

=
(
XiMπj,N(I − 2AM)− πj,N(I − 2AM)MXi

)
(I − 2AM)

= XiMπj,N + πj,NMXi = π(πj,N , Xi).

(3.31)

Next, we check the identity on the right hand-side. Using (2.14) and (2.15) yields

2πj,NMXi − [π(σij, N) + π (Xj, σi,N)] (I − 2AM) =

= − (πij(I − 2AM)MN +NMπij(I − 2AM) +XjMπi,N(I − 2AM)+

+πi,N(I − 2AM)MXj) (I − 2AM) + 2πj,NMXi

= πijMN −NMπij −XjMπi,N + πi,NMXj + 2πj,NMXi

= XiMXjMN +NMXjMXi +XjMNMXi +XiMNMXj

= XiMπj,N + πj,NMXi

= π(Xi, πj,N).

�

Lemma 3.5. Let X1, . . . , X2n−1, N be an orthonormal frame for TCHn. Then we

have
2n−1∑
i=1

Λσi,N (Xi) = −2(n− 1)N. (3.32)

Proof. It is enough to verify (3.32) when A = A0 ∈ CHn. We can use the orthonormal

basis in (2.9) with X̂n = N . Applying formula (3.28) and the identities (2.14) and

(2.15), we find that

Λσi,N (Xi) = δinX̂i −N, i = 1, . . . , n,

Λσĵ,N
(X̂j) = −δjnX̂j −N = −N, j = 1, . . . , n− 1,

where δ`k denotes the Kronecker delta, i.e., δ`k = 1 if ` = k and δ`k = 1 otherwise.

Summing up, we obtain (3.32).

�
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4. Tangential Laplacian of A, N and σN

Let Σ ⊂ CHn be a hypersurface. Throughout the paper, by “hypersurface” we

mean an oriented smooth real hypersurface embedded in CHn. We denote by N

the unit normal vector field giving the orientation of Σ. For any A ∈ CHn the

second fundamental form of Σ is the mapping h : TAΣ× TAΣ→ R, defined choosing

the following sign convention h(X, Y ) :=
〈
∇>XN, Y

〉
. The (non-normalized) mean

curvature of Σ is defined as H := tr(h). Finally, we denote by ∇Σ the Levi-Civita

connection of Σ (it is the one induced by ∇>), and by ∆Σ the Laplace-Beltrami

operator of Σ.

In this section we compute the tangential Laplacian ∆ΣA of the position matrix,

the tangential Laplacian of the unit normal N and of σN . The computations are done

at A0 ∈ Σ using a system of normal coordinates. Let X1, . . . , X2n−1 be a geodesic

frame centered at A0. Then we have

∇Σ
Xi
Xj(A0) = 0, i, j = 1, . . . , 2n− 1. (4.33)

From now on, the Einstein summation will be sometimes used to sum over repeated

indices.

Lemma 4.1. Let Σ ⊂ CHn be a hypersurface. Then, the position matrix A ∈ CHn

satisfies the equation

∆ΣA = H − σN − tr(h)N, A ∈ Σ, (4.34)

where σ is the second fundamental form of F .

Proof. Without loss of generality, we assume that A0 ∈ Σ and we check formula (4.34)

using normal coordinates at A0. Using the identity (2.6), we obtain

∆ΣA|A=A0 = ∇Xj
∇Xj

A|A=A0 = ∇Xj
Xj(A0) = ∇>Xj

Xj(A0) + σA0(Xj, Xj).

In the last equality, we used the very definition of σ; see the beginning of Section 3.

Again when A = A0, by (4.33) we get

∇>Xj
Xj = 〈∇>Xj

Xj, N〉N = −〈Xj,∇>Xj
N〉N = −tr(h)N.

Since X1, . . . , X2n−1, N is an orthonormal frame of CHn, from the definition (3.21)

of H we get σ(Xj, Xj) = H − σN , and this concludes the proof. �

Our next goal is to compute the Laplacian of the unit normal N along Σ. The

proof of the following lemma is identical to the one of Lemma 4.3 in [3].

Lemma 4.2. Let Σ ⊂ CHn be a hypersurface with constant mean curvature. At the

center of a system of normal coordinates, the entries of the second fundamental form
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hij = h(Xi, Xj) satisfy the equations

2n−1∑
i=1

Xihij = 0, j = 1, . . . , 2n− 1. (4.35)

For any A ∈ Σ ⊂ CHn, the second fundamental form h of Σ can be identified

with a linear operator on TAΣ. Moreover, the restriction of σ to TAΣ can be viewed

as a linear operator from TAΣ to End(TAΣ, T⊥ACH
n). In this way, the composition

σh = σ ◦ h becomes a linear operator from TAΣ to End(TAΣ, T⊥ACH
n). Namely, for

any X, Y ∈ TAΣ we have σh(X)[Y ] := σ
(
h(X), Y

)
. We denote its trace by

tr(σh) := σh(Xi)[Xi] = σ (hijXj, Xi) = hijσij ∈ T⊥ACHn,

where σij = σ(Xi, Xj) and hij = h(Xi, Xj), for any orthonormal tangent frame

X1, . . . , X2n−1 of Σ.

Theorem 4.3. Let Σ ⊂ CHn be a hypersurface with constant mean curvature H =

tr(h). Then, the unit normal satisfies the equation

∆ΣN = 2tr(σh)−
(
|h|2 − 2(n− 1)

)
N −HσN . (4.36)

The proof is based on the following:

Lemma 4.4. Let Σ ⊂ CHn be a hypersurface. At the center of a system of normal

coordinates, we have

2n−1∑
i=1

∇Xi
σi,N = tr(σh) + 2(n− 1)N −HσN . (4.37)

Proof. Using (3.22), (3.28), and the definition of σ (see (3.25)) we obtain

∇Xi
σi,N = ∇Xi

πi,N(I − 2AM) + πi,N∇Xi
(I − 2AM)

= σ(∇Xi
Xi, N) + σ(Xi,∇Xi

N)− 2πi,NMXi

= −hiiσN + σ(σii, N) + hijσij + σ(Xi, σi,N)− 2πi,NMXi.

= −hiiσN + hijσij + S,

where we set S := σ(σii, N) + σ(Xi, σi,N) − 2πi,NMXi. Using formula (3.30) with

i = j, we get S = −Λσi,N (Xi). Hence, we proved that

∇Xi
σi,N = −hiiσN + hijσij − Λσi,N (Xi), (4.38)

and formula (4.37) follows from (3.32). �

Proof of Theorem 4.3. Using |N |2 = 1 and ∇⊥Xi
N = σi,N , we obtain

∆ΣN = ∇Xi
∇Xi

N = ∇Xi

(
∇⊥Xi

N +∇>Xi
N
)

= ∇Xi

(
σi,N + hijXj

)
. (4.39)
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From (4.35) and (4.33), we deduce that

∇Xi
(hijXj) = hij∇Xi

Xj = hij (σij − hijN) = −|h|2N + hijσij.

By (4.37) we have

∇Xi
σi,N = −HσN + hijσij + 2(n− 1)N,

and finally ∆ΣN = − (|h|2 − 2(n− 1))N + 2hijσij −HσN , which proves the lemma.

�

Our final task is to compute the tangential Laplacian of σN . We fix an orthonormal

frame X1, . . . , X2n−1 for TΣ such that Xn+j = JXj for any j = 1, . . . , n − 1 and we

also assume that Xn = −JN , where N is the unit normal to Σ and J is the complex

structure of CHn. The complex vector field hN ∈ Γ(CTΣ) is defined in (1.2).

Lemma 4.5. Let Σ ⊂ CHn be a hypersurface. Then we have

2n−1∑
i,j=1

hijΛσj,N (Xi) = (κ−H)N − JhN , (4.40)

where κ is the characteristic curvature of Σ.

Proof. The proof is a computation based on the formula Λσj,N (Xi) = π(Xi, πj,N), see

(3.31). In particular, the following identities hold:

Λσj,N (Xi) = δinX̂j − δijN,

Λσj,N (X̂`) = δ`jXn,

Λσ̂̀,N (Xi) = −δinXl − δi`Xn,

Λσ̂̀,N (Xk) = −δ`kN,

whenever i, j = 1, . . . , n and `, k = 1, . . . , n−1. Using these identities, formula (4.40)

easily follows.

�

The following lemma contains a technical calculation that will be used later.

Lemma 4.6. Let Σ ⊂ CHn be a hypersurface. For any tangent orthonormal frame

X1, . . . , X2n−1, we set

S1 := σ(σi,N , σi,N)− 4π(σi,N , N)MXi,

S2 := −πNM∆ΣA.

Then, we have

S1 + S2 = −2tr(h)N + tr(σ)− 2(n− 1)σN . (4.41)



14 E. BATTAGLIA, F. MONTEFALCONE, AND R. MONTI

The proof will be given at the end of this section. In Section 4, we introduced the

linear operator σh. In the same way, we now define the linear operator

σh2(X)[Y ] := σ ◦ h ◦ h(X)[Y ] = σ
(
h2(X), Y

)
, X, Y ∈ TAΣ.

Its trace is

tr(σh2) = σh2(Xj)[Xj] = hijhikσjk ∈ T⊥ACHn.

We are ready to prove the last result of this section.

Theorem 4.7. Let Σ ⊂ CHn be a hypersurface. Then, the following holds

∆ΣσN = −4κN − 2|h|2σN + 2tr(σh2 + σ) + 4JhN . (4.42)

Proof. We prove formula (4.42) using a system of normal coordinates centered at

A0 ∈ Σ. By (4.36) and (3.22) we have

∆ΣσN = ∇Xi
∇Xi

σN = ∇Xi
(2π(∇Xi

N,N)(I − 2AM)− 2πNMXi)

= 2
{
σ(∇Xi

∇Xi
N,N) + σ(∇Xi

N,∇Xi
N)− 4π(∇Xi

N,N)MXi − πNM∇Xi
Xi

}
= 2
{
σ(∆ΣN,N) + 2σ

(
hijXj + σi,N , hikXk + σi,N

)
−4π

(
hijXj + σi,N , N

)
MXi − πNM (−hiiN + σii)

}
= −2

(
|h|2 − 2(n− 1)

)
σN + 4hij {(σ(σij, N) + σ(Xj, σi,N)) −2πj,NMXi}

+ 2hijhikσjk + 2(σ(σi,N , σi,N) −4π(σi,N , N)MXi)− 2πNM∆ΣA,

where we used the identity σ(σN , N) = 0. By (3.30) and (4.41), we have

∆ΣσN = −2
(
|h|2 − 2(n− 1)

)
σN + 2hijhikσjk − 4hijΛσj,N (Xi)

− 4(n− 1)σN + 2tr(σ)− 4tr(h)N

= −4tr(h)N + 2tr(σ)− 2|h|2σN + 2hijhikσjk − 4hijΛσj,N (Xi).

By formula (4.40), this ends the proof.

�

Proof of Lemma 4.6. We check the formula at A0 ∈ Σ. By (2.15), (2.16), and (2.14),

we obtain

S1 = 2πXi,N(I − 2AM)MπXi,N(I − 2AM)2 − 4π(σXi,N , N)MXi

= 2{πi,NMπi,N(I − 2AM)− 2 (πi,N(I − 2AM)MN+ NMπi,N(I − 2AM))MXi}

= 2{[πi,NMπi,N − 2 (πi,NMN −NMπi,N)MXi] (I − 2AM)}.

A simple computation gives

πXi,NMπXi,N(I − 2MA0) = −δin(Ein + Eni) + Enn + Eii,

πĵ,NMπĵ,N(I − 2MA0) = Enn + Ejj.
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Moreover, we have(
− πi,NMNMXi +NMπXi,NMXi

)
(I − 2MA0) = δinEni − Eii − (1− δin)A0,(

− πĵ,NMNMX̂j +NMπĵ,NMX̂j

)
(I − 2MA0) = −Ejj − A0.

Therefore, at A0 we have

S1 = 2
n∑
i=1

[−δin(Ein + Eni) + Enn + Eii + 2 (δinEni − Eii − (1− δin)A0)]+

+ 2
n−1∑
j=1

[Enn + Ejj − 2 (Ejj + A0)]

= 4nEnn − 4M + (12− 8n)A0.

Moreover, using (3.23) and σN = 2(−Enn + A0), we get 4M = −tr(σ) + 4(n + 1)A0

and 2Enn = −σN + 2A0. Thus, we have

S1 = −2nσN + tr(σ)− 8(n− 1)A0. (4.43)

In order to compute S2 at A0, we note that πNMN = −2N , and πNMtr(σ) =

−8nA0 + 8Enn, and πNMσN = −4A0 + 4Enn. Thus, we get

S2 = −πNM (−tr(h)N + tr(σ)− σN)

= − (2tr(h)N − 8nA0 + 8Enn + 4A0 − 4Enn)

= −2tr(h)N + 8(n− 1)A0 + 2σN .

(4.44)

The proof follows by adding the formulas for S1 and S2 in (4.43) and (4.44) . �

5. Second variation of the area and geometric stability inequality

In this section, we prove Theorem 1.2. Let Ω ⊂ CHn be a relatively compact

domain with smooth boundary Σ = ∂Ω and let u ∈ C∞(Σ) be a function with

zero mean, i.e.,
∫

Σ
u dµ = 0. Let Ψ : CHn×] − ε, ε[→ CHn be a differentiable

map such that Ψt := Ψ(·, t) is an embedding for each t ∈] − ε, ε[, Ψ0 = IdΣ and

∂Ψ(x, 0)/∂t = u(x)N(x) for x ∈ Σ.

If Σ is a critical point of the area, then it has constant mean curvature. The second

variation of the area subject to deformations preserving the enclosed volume takes

the following form

A′′(u) :=
d2

dt2
µ(Σt)

∣∣∣∣
t=0

= −
∫

Σ

uL u dµ,

where L the Jacobi operator (1.4), see e.g. [5, pp. 169-171]. The Ricci curvature

Ric(N) appearing in the Jacobi operator can be computed using the following formula

for the Riemann curvature tensor

R(X, Y )Z = −{〈Z, Y 〉X − 〈Z,X〉Y + 〈Z, JY 〉 JX − 〈Z, JX〉 JY + 2 〈X, JY 〉 JZ}
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whenever X, Y, Z ∈ TACHn, see [10, p. 285]. Notice that the holomorphic curvature

of the complex hyperbolic space CHn for our choice of metric (2.1) is c = −4. It

turns out that the Ricci curvature is

Ric(N) = −2(n+ 1). (5.45)

Now we consider the matrix valued function u = ∆ΣA and for any V ∈ Hn+1 we

let uV = 〈u, VM〉H , where

〈A,B〉H :=
1

2
tr(AB), A,B ∈ Hn+1,

is the standard inner product on Hn+1. We define the quadratic form QΣ : Hn+1 → R

QΣ(V ) := A′′(uV ) = −
∫

Σ

〈u, VM〉H〈L u, VM〉Hdµ, V ∈ Hn+1.

If V is any orthonormal basis of Hn+1 for the standard inner product, then we have

tr(QΣ) = −
∑
V ∈V

∫
Σ

〈u, VM〉H〈L u, VM〉Hdµ.

Let us compute the sum:∑
V ∈V

〈u, VM〉H〈L u, VM〉H =
〈
u,
∑
V ∈V

〈L u, VM〉HVM
〉
H

=
1

2

〈
u,M

∑
V ∈V

tr(L uMV )V
〉
H

=
〈
u,M

∑
V ∈V

〈L uM, V 〉HV
〉
H

= 〈u,ML uM〉H

=
1

2
tr(uML uM) =

1

2
tr(MuML u) = −〈u,L u〉M .

Eventually, also using (5.45), the trace of QΣ is given by

tr(QΣ) =

∫
Σ

〈u,L u〉Mdµ =

∫
Σ

{
〈u,∆Σu〉M +

(
|h|2 − 2(n+ 1)

)
〈u, u〉M

}
dµ. (5.46)

The proof of Theorem 1.2 follows from formula (5.47) below and from the fact that

we have tr(QΣ) ≥ 0 when Σ is stable. The functions uV are admissible because they

have zero mean on Σ, since Σ has no boundary.

Lemma 5.1. Let Σ ⊂ CHn be a compact CMC hypersurface. The trace of the

quadratic form QΣ is given by

tr(QΣ) = 4

∫
Σ

{
2(n+ 1)H2 − 2(n2 − 1)

(
2n+ |h|2

)
− (H + κ)2 − |hN |2

}
dµ, (5.47)

where H = tr(h), κ is the characteristic curvature of Σ, and hN is defined in (1.2).

Proof. We compute the quantities appearing in (5.46). Using formula (4.34), we get

〈u, u〉M = 〈−tr(h)N + tr(σ)− σN ,−tr(h)N + tr(σ)− σN〉M
= H2 + 〈H ,H 〉M − 2〈H , σN〉M + 〈σN , σN〉M ,
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where we used the orthogonality relations 〈N, σN〉M = 〈N,H 〉M = 0.

We compute 〈H ,H 〉M , 〈H , σN〉M , and 〈σN , σN〉M at A = A0 ∈ Σ using the

orthonormal frame (2.9) with N = X̂n. By (3.27) and (3.26) we obtain

H = 2
n∑
i=1

σii = 2
n∑
i=1

(2A0 − 2Eii) = 4nA0 − 4(M − A0) = 4(n+ 1)A0 − 4M

and thus

〈H ,H 〉M = 16
[
(n+ 1)2〈A0, A0〉M − 2(n+ 1)〈A0,M〉M + 〈M,M〉M

]
= 16

[
(n+ 1)2

(
−1

2

)
− 2(n+ 1)

(
−1

2

)
− 1

2
(n+ 1)

]
= −8n(n+ 1).

(5.48)

Moreover, we have

〈σN , σN〉M = −1

2
tr(MσNMσN) = −4, (5.49)

and

〈H , σN〉M = 〈4(n+ 1)A0 − 4M, 2A0 − 2Enn〉M
= 8 [(n+ 1)〈A0, A0〉M − (n+ 1)〈A0, Enn〉M − 〈A0,M〉M + 〈M,Enn〉M ]

= 8

[
(n+ 1)

(
−1

2

)
−
(
−1

2

)
+

(
−1

2

)]
= −4(n+ 1).

(5.50)

Therefore, by (5.48), (5.49) and (5.50) we get

〈u, u〉M = H2 − 8n(n+ 1) + 8(n+ 1)− 4 = H2 − 4(2n2 − 1). (5.51)

Secondly, we compute the term 〈u,∆Σu〉M . We have

〈u,∆Σu〉M = −H〈u,∆ΣN〉M + 〈u,∆ΣH 〉M − 〈u,∆ΣσN〉M .

Thus, by (4.36) we get

〈u,∆ΣN〉M = H(|h|2 − 2(n− 1)) + 2〈H , tr(σh)〉M − (2 +H)〈H , σN〉M
+H〈σN , σN〉M .

At the point A = A0 we obtain

〈H , tr(σh)〉M = 〈4(n+ 1)A0 − 4M,hijσij〉M = 4hij〈(n+ 1)A0 −M,σij〉M
= 4hij [(n+ 1)〈A0, σij〉M − 〈M,σij〉M ]

= 4(n+ 1)

(
−

n∑
i,j=1

hijδij −
n−1∑
i,j=1

hîĵδij

)
= −4(n+ 1)H,

(5.52)
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where we used the following identities:

〈A0, σij〉M = 〈A0, σîĵ)〉M = −δij,

〈A0, σiĵ〉M = 〈A0, σîj〉M = 0,

and 〈M,σij〉M = 0, for every i, j = 1, ..., 2n− 1. Then, we have

〈σN , tr(σh)〉M = hij〈σN , σij〉M

= −2
n∑

i,j=1

hij(δij + δinδjn)− 2
n−1∑
i,j=1

hîĵ(δij + δinδjn)

= −4hnn − 2
2n−1∑
i=1,i 6=n

hii = −2κ− 2H,

(5.53)

where κ = hnn. Here, we also used the following identities

〈σN , σij〉M = 〈σN , σîĵ〉M = −2δij − 2δinδjn,

〈σN , σiĵ〉M = 〈σN , σîj〉M = 0,

holding for i, j = 1, . . . , n and for î = i+ n, ĵ = j + n ranging from n+ 1 to 2n− 1.

for every i, j = 1, . . . , 2n− 1. Hence, we obtain

〈u,∆ΣN〉M = H(|h|2 − (6n+ 2)) + 4κ. (5.54)

Thirdly, using formula (4.42) we have

〈u,∆ΣσN〉M = 4κH − 2(|h|2 + 1)〈H , σN〉M + 2〈H , tr(σh2)〉M
+ 2〈H ,H 〉M + 2|h|2〈σN , σN〉M − 2〈σN , tr(σh2)〉M ,

where we used 〈u, JhN〉M = 0. Moreover, we have

〈H , tr(σh2)〉M = 〈4(n+ 1)A0 − 4M,hijhikσjk〉M
= 4hijhik [(n+ 1)〈A0, σjk〉M − 〈M,σjk〉M ]

= 4(n+ 1)hijhik〈A0, σjk〉M

= 4(n+ 1)
2n−1∑
i=1

(
−

n∑
j,k=1

hijhikδjk −
n−1∑
j,k=1

hiĵhik̂δjk

)
= −4(n+ 1)|h|2.

(5.55)
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In addition, we compute〈
σN , tr(σh

2)
〉
M

=
2n−1∑
i,j,k=1

hijhik〈σN , σjk〉M

=
2n−1∑
i=1

(
−2

n∑
j,k=1

hijhik(δjk + δjnδkn)− 2
n−1∑
j,k=1

hiĵhik̂(δjk + δjnδkn)

)

= −2
2n−1∑
i=1

h2
in − 2|h|2 = −2

(
|h|2 + |hN |2 + κ2

)
.

(5.56)

Therefore, we get

〈u,∆ΣσN〉M = 4κH + 8|h|2(n+ 1) + 8|h|2(n+ 1)− 16n(n+ 1)− 4|h|2

+ 4(|h|2 + |hN |2 + κ2) + 8(n+ 1)

= 4κH − 4|h|2 − 8(n+ 1)(2n− 1) + 4|hN |2 + 4κ2.

(5.57)

In order to finish the proof of (5.47), we just have to sum up formulas (5.51), (5.54),

and (5.57).

�

Remark 5.2. The geometric trace formula (5.47) is similar to the one discovered in [3,

Theorem 6.2] in the case of CP n. The complex projective space can be isometrically

embedded in the space Hn+1, endowed with its standard inner product. The quadratic

form QΣ can be defined in a similar way and in CP n its trace reads

tr(QΣ) = 4

∫
Σ

{
2(n+ 1)H2 + 2(n2 − 1)

(
2n− |h|2

)
− (H + κ)2 − |hN |2

}
dµ.

The unique difference with (5.47) is the sign of the additive constant 4n(n2 − 1)

appearing in the integrand.

6. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We follow an idea contained in the proof of

Theorem 1.1 in [3]. Let p(κ;H,n) be the polynomial in (1.1). Its discriminant is

8(n+1)
[
H2−2(n−1)(2n+1)

]
and so H2 ≤ 2(n−1)(2n+1) implies that p(κ;H,n) ≥ 0.

So the last claim in Theorem 1.1 follows from the first one.

We prove that there is no stable CMC hypersurface satisfying p(κ;H,n) ≥ 0. We

argue by contradiction. Let Σ be a stable CMC hypersurface such that p(κ;H,n) ≥ 0.

We shall show that this implies that p(κ;H,n) = 0 and that Σ is a sphere. This will

be a contradiction for the following reason.

Let Σr ⊂ CHn be a geodesic sphere with radius r > 0. The sphere is a Hopf

hypersurface and so hN = 0 identically, and the characteristic curvature κ is constant.
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Namely, we have κ = 2 coth 2r. The restriction of the second fundamental form of Σr

to the complex tangent plane is umbilical, i.e., the principal curvatures in the complex

tangent directions are equal and constant. In fact, they are given by λ = coth r. As

a reference for these facts, see [11].

Setting t := tanh r ∈ (0, 1), we have λ = 1
t

and κ = 1
t

+ t. So, we get

|h|2 =
2n− 1

t2
+ t2 + 2,

H2 =
(2n− 1)2

t2
+ t2 + 2(2n− 1),

(H + κ)2 = 4
(n2

t2
+ t2 + 2n

)
.

(6.58)

Inserting these values into formula (5.47), we obtain

tr(QΣr) = 8n(n− 1)
1− t2

t2
(
t2 + 2n+ 1

)
µ(Σr).

Thus, we have tr(QΣr) > 0 for any r > 0.

We now prove our initial claim. Let ĥ be the restriction of the second fundamental

form h of Σ to the complex tangent space CTΣ and let Ĥ = tr(ĥ). Then, the following

identities hold at any point of Σ

H = Ĥ + κ and |h|2 = |ĥ|2 + 2|hN |2 + κ2

and we have the inequalities

|h|2 ≥ |ĥ|2 + κ2 and |ĥ|2 ≥ Ĥ2

2(n− 1)
=

(H − κ)2

2(n− 1)
. (6.59)

Starting from (5.47), by these inequalities and by |hN | ≥ 0 we obtain

tr(QΣ) ≤ 4

∫
Σ

{
2(n+ 1)H2 − 4n(n2 − 1)− 2(n2 − 1)

[
(H − κ)2

2(n− 1)
+ κ2

]
− (H + κ)2

}
dµ

= −4n

∫
Σ

p(κ;H,n)dµ,

(6.60)

where p(κ;H,n) is the polynomial in (1.1).

If Σ is stable then we have tr(QΣ) ≥ 0. Thus our assumption p(κ;H,n) ≥ 0 implies

that p(κ;H,n) = 0 and that we have equalities in (6.59), i.e.,

|h|2 = |ĥ|2 + κ2 and |ĥ|2 =
Ĥ2

2(n− 1)
. (6.61)

In addition, we have hN = 0, which implies that JN is an eigenvector of h, i.e., Σ is a

Hopf hypersurface. By Maeda’s theorem, it follows that the characteristic curvature

κ is constant (in each connected component). This also simply follows from the fact

that κ is a root of p(κ;H,n) = 0.
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The equality in the right hand side of (6.61) implies that the principal curvatures

along the complex tangent directions are equal and constant. Thus Σ is a hypersurface

with precisely two different principal curvatures. By the Berndt’s classification [4] of

Hopf hypersurfaces with constant principal curvatures in CHn (n ≥ 2), it turns out

that Σ is an open subset of a hypersurface in the so-called Montiel’s list (see [6], [11]).

Finally, the compactness implies that Σ is a geodesic sphere. The same conclusion can

be obtained using [13, Theorem E]. However, we showed that for geodesics spheres

p(κ;H,n) < 0. This contradiction proves Theorem 1.1.
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