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Abstract. In [11] it is proved that length-minimizing curves in Carnot groups have

infinitesimal excess at any point, for a suitable sequence of scales. In this paper we

prove some results dealing with the small excess regime. We prove a height-estimate

for horizontal curves and an approximation of geodesics with Lipschitz graphs along

the direction where excess is small. The setting is that of free Carnot groups.

1. Introduction

The most important open problem in sub-Riemannian geometry is the regularity

of length minimizing curves, see [9, 13, 10]. The difficulty of the problem is due to the

existence of singular extremal that can be length minimizing [7]. For these extremals

the classical tools of geometric control theory do not provide any further regularity

beyond the Lipschitz continuity. Recently, there was some progress on the problem

based on techniques inspired by geometric measure theory, see [6, 8, 4, 11] and also

[5, 2, 12].

In particular, in [11] it is proved that, in the setting of Carnot groups, for any point

in the support of a length-minimizing curve there exists an infinitesimal sequence of

scales such that the excess of the curve is infinitesimal. In fact, this implies that there

is a line in the tangent cone of the curve at that point.

In this paper, we study length minimizing curves in the small excess regime. We

first prove a height estimate and then an approximation of the curve by means of

Lipschitz graphs. These results were announced in [10]. In the theory of minimal

surfaces, the Lipschitz approximation of a minimal current is the first step in the

regularity theory and paves the way to the so-called harmonic approximation and to

the improved excess-decay lemma.

Given integers m,s ≥ 2, we denote by Fm,s the real Lie algebra generated by m

elements that is nilpotent with step s. This Lie algebra can be realized as a Lie

algebra of left-invariant vector fields in Rn, where n ≥ 3 is the dimension of Fm,s as a

vector space. We denote the m vector fields generating the Lie algebra by

X1, . . . ,Xm ∈ C∞(Rn;Rn).

Key words and phrases. Carnot-Carathédory geodesics, height estimate, Lipschitz approximation.
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The Campbell-Hausdorff-Beker formula gives Fm,s the structure of a Lie group that

we denote by Gm,s. The group operation is denoted by a dot ⋅. The underlying

manifold of Gm,s is again Rn.

We call V1 = span{X1, . . . ,Xm} the generating layer and we fix on V1 the scalar

product ⟨⋅, ⋅⟩ that makes X1, . . . ,Xm orthonormal. We denote by ∣ ⋅ ∣ = ⟨⋅, ⋅⟩1/2 the

corresponding norm. The Lie algebra Fm,s has the grading

Fm,s = V1 ⊕ . . .⊕ Vs,

where Vi+1 = [V1, Vi] and Vs+1 = {0}. To the stratum Vi we assign the weight i and for

each λ > 0 the map defined by δλ(X) = λiX if and only if X ∈ Vi, linearly extends to

an automorphism of Fm,s. We identify Gm,s with Rn using exponential coordinates.

We complete X1, . . . ,Xm to a basis X1, . . . ,Xn of Fm,s ordered by the grading and we

assume that

x = (x1, . . . , xn) = exp(
n

∑
i=1

xiXi).

We shall work with vector fields X1, . . . ,Xn given by the Hall basis construction, see

Section 2.

To the jth coordinate we assign the weight wj = i if and only if the element ej =

(0, . . . ,1, . . .0), with 1 at the jth position, satisfies ej ∈ exp(Vi). Then for any λ > 0

the dilations

δλ(x) = (λw1x1, . . . , λ
wjxj, . . . , λ

wnxn)

are automorphisms of Gm,s.

A Lipschitz continuous curve γ ∶ [0,1] → Gm,s is admissible if γ̇ ∈ V1(γ) a.e., that

is if γ̇ = ∑
m
j=1 hjXj(γ) for uniquely determined functions hj ∈ L∞(0,1), j = 1, . . . ,m.

The length of γ is

L(γ) = ∫
1

0
∣γ̇(t)∣dt = ∫

1

0
∣h(t)∣dt.

There is always a reparameterization of γ by arc-length, i.e., such that ∣h(t)∣ =

(h1(t)2 + . . . + hm(t)2)1/2 = 1 for a.e. t ∈ [0, L(γ)].

The Carnot-Carathéodory distance d between two points x, y ∈ Gm,r is the infimum

(minimum) of L(γ) among all admissible curves γ such that γ(0) = x and γ(1) = y.

This distance is left-invariant and homogeneous with respect to dilations:

i) d(z ⋅ x, z ⋅ y) = d(x, y) for all x, y, z ∈ Gm,s;

ii) d(δλ(x), δλ(y)) = λd(x, y) for all x, y ∈ Gm,s and λ > 0.

An admissible curve γ ∶ [0,1] → Gm,s is a geodesic (i.e., a length minimizing curve) if

d(γ(0), γ(1)) = L(γ). One of the major open problems in sub-Riemannian geometry

is the regularity of length minimizing curves, even in the setting of Lie groups of

Carnot type.

Our first result is the so-called height estimate. It states that an admissible curve is

contained in a thin tube around a fixed direction, provided that the excess of the curve
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in this direction is small. Without loss of generality, we assume that this direction is

the one given by the first vector field X1.

Definition 1.1. The parametric excess of an admissible curve γ ∶ [0,1] → Gm,s in

direction X1, at η ∈ [0,1] and at a scale r > 0 such that η + r ≤ 1 is

E(γ; η; r;X1) ∶=
1

r

η+r

∫
η

∣γ̇ −X1(γ)∣
2dt.

Theorem 1.2 (Height estimate). Let γ ∶ [0,1] → Gm,s be an admissible curve pa-

rameterized by arc-length with γ(0) = 0 and let 0 < r ≤ 1. Then for all i = 2, . . . , n

there exist positive integers αi, βi ∈ N such that:

i) αi + βi + 1 = wi, the weight of the ith coordinate;

ii)
⎛

⎝

∣γi(t)∣

∣t∣
αi

⎞

⎠

1
βi+1

≤ t
√
E(γ; 0; r;X1) for all 0 < t ≤ r.

Above, γi is the ith coordinate of γ in exponential coordinates.

Theorem 1.2 is proved in Section 3. Our second result is the approximation of

length-minimizing curves by Lipschitz graphs along a fixed direction where the excess

is small. This result is better formulated in terms of a geometric notion of excess.

Let γ ∶ [−1,1] → Gm,s be an admissible injective curve and let Γ = γ([−1,1]) be its

support. The curve γ can be assumed to be parameterized by arc-length and so the

tangent γ̇(t) ∈ V1(γ(t)) exists for a.e. t ∈ [−1,1] and satisfies ∣γ̇(t)∣ = 1. We denote

by H 1 the 1-dimensional Hausdorff measure in Gm,s = Rn defined using the Carnot-

Carathéodory metric d. Then for H 1-a.e. x ∈ Γ we can define the unit tangent vector

τΓ(x) = γ̇(t) where t ∈ [−1,1] is such that γ(t) = x.

Definition 1.3. Let Γ be the support of an admissible curve γ, oriented by the unit

tangent τΓ. The geometric excess of Γ in direction X1, at x ∈ Γ and at scale r > 0 is

E(Γ;x; r;X1) =∫
Γ∩Br(x)

∣τΓ −X1∣
2dH 1,

where Br(x) is a ball in the Carnot-Carathéodory metric.

We denote by π ∶ Gm,s = Rn → R, π(x) = π(x1, . . . , xn) = x1, the projection onto the

first coordinate. We denote by Br = Br(0) Carnot-Carathéodory balls centered at 0.

Theorem 1.4 (Lipschitz approximation). Let γ ∶ [−1,1] → Gm,s be a geodesic pa-

rameterized by arc-length, with γ(0) = 0 and support Γ. For any ε > 0 there exist a

closed set I ⊂ π(Γ ∩B1/4) ⊂ R and a curve γ̄ ∶ I → Gm,s with support Γ̄ such that:

i) Γ̄ ⊂ Γ;

ii) γ̄1(t) = t for t ∈ I, i.e., γ̄ is a graph along X1;

iii) ∣(γ̄(s)−1 ⋅ γ̄(t))
i
∣
1/wi

≤ ε∣t − s∣ for s, t ∈ I and i = 2, . . . , n;
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iv) H 1 (B1/4 ∩ Γ̄ ∖ Γ) ≤ C(ε,αi, βi)E(Γ; 0; 1;X1);

v) L 1 (π (Γ ∩B1/4) ∖ I) ≤ C(ε,αi, βi)E(Γ; 0; 1;X1).

Above, L 1 is the Lebesgue measure on R and C(ε,αi, βi) is a constant depending

on ε and on the integers αi, βi, i = 2, . . . , n, given by Theorem 1.2. We comment on

iii). In Gm,s we can define the pseudo-norm

∥x∥ = max{∣xi∣
1/wi ∶ i = 1, . . . , n} .

Then there is a constant C1 > 0 such that for all x, y ∈ Gm,s

1

C1

d(x, y) ≤ ∥y−1 ⋅ x∥ ≤ C1d(x, y). (1.1)

Condition iii) asserts that the graph γ̄ is Lipschitz for the Carnot-Carathéodory met-

ric, with Lipschitz constant proportional to ε.

Theorem 1.4 is proved in Section 4. The assumption that γ be a geodesic can be

weakened. A sufficient condition for the validity of the Lipschitz approximation is the

assumption that Γ is 1-Ahlfors regular, i.e., the assumption that there exist constants

0 < c1 < c2 such that for 0 ≤ r ≤ 1

c1r ≤ H 1(Γ ∩Br(x)) ≤ c2r,

for any point x ∈ Γ. The lenght minimality implies these density estimates.

2. Hall Basis of free vector fields

In this section we review Grayson and Grossmann’s method to construct a basis of

vector fields in Rn that span a free Lie algebra. We will use the explicit formulas for

these vector fields in order to get the integers αi and βi in Theorem 1.2. We refer to

[3] for more details.

Let E1, . . . ,Em be the m generators of the free Lie algebra Fm,s. We assign to them

the weight 1. We complete these elements to a basis of Fm,s in a recursive way. If

we have already defined basis elements of weights 1, . . . , r − 1, they are ordered so

that E < F if weight(E) <weight(F ). Also, if weight(E) = q and weight(F ) = t and

r = q + t, then [E,F ] is a basis element of weight r if:

(1) E and F are basis elements and E > F ;

(2) if E = [G,H], then F ≥H.

The resulting basis is called a Hall basis.

We number the basis elements for the Lie algebra by ordering them as explained

above, i.e., Em+1 = [E2,E1],Em+2 = [E3,E1],Em+3 = [E3,E2],Em+4 = [E4,E1], etc.

Consider a basis element Ei and write it as a bracket of lower order basis elements,
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Ei = [Ej1 ,Ek1], where j1 > k1. Repeat this process of writing the left-most element as

a bracket of lower basis elements, until we obtain

Ei = [[⋯[[Ejp ,Ekp]Ekp−1],⋯,Ek2],Ek1], (2.2)

where kp < jp ≤ m, and kl+1 ≤ kl for 1 ≤ l ≤ p − 1. This expansion involves p brackets,

and we write `(i) = p and define `(1) = . . . = `(m) = 0. We associate to this expansion

a multi-index I(i) = (a1, . . . , an), with aq defined by aq = #{t ∶ kt = q}. For the first

m basis elements, the associated multi-index is (0, . . . ,0). We say that Ei is a direct

descendant of each Ejt , and we indicate this by writing jt ≺ i. Moreover, to any index

i we can associate another index Λi ∈ {1, . . . ,m}, being the index of the (unique)

generator that has i as a direct descendant, that is Λi ≺ i; if i ∈ {1, . . . ,m} already,

then set Λi = i. If Ei = [Ej,Ek], then Λi = Λj, `(i) = `(j) + 1 and each entry in I(i) is

at least as large as the corresponding entry in I(j).

For every pair i and j with j ≺ i, we define the monomial pi,j in Rn by

pi,j(x) =
(−1)`(i)−`(j)

(I(i) − I(j))!
xI(i)−I(j). (2.3)

Lemma 2.1. Consider the Hall basisE1, . . . ,En and suppose that for i ∈ {m + 1, . . . , n},

the corresponding basis element Ei is of the form Ei = [Ej,Eq] for some 1 ≤ q < j < i.

Then

pi,Λi(x) = −
pj,Λi(x)xq
I(i)q

(2.4)

and in particular ∣pi,Λi(x)∣ ≤∣pj,Λi(x)xq∣ .

Proof. Indeed if we consider Ei = [Ej,Eq] and we remember its decomposition as in

(2.2), we have that

Ei = [[⋅ ⋅ ⋅[[Ejp ,Ekp]Ekp−1], ⋅ ⋅ ⋅,Ek2],Ek1],

therefore Eq = Ek1 and Ej = [[⋅ ⋅ ⋅[[Ejp ,Ekp]Ekp−1], ⋅ ⋅ ⋅,Ek2]. Moreover Λi = Λj, `(i) =

`(j)+1 and all entries of I(i) are equal to those of I(j) except for the q-th one, where

we have that I(i)q = I(j)q + 1. Notice that in particular I(i)q ≥ 1. The thesis now

follows immediately from (2.3). �

The next theorem gives the connection between the abstract Lie algebra Fm,s and

the vector space Rn, and it will be the starting point of our computations.

Theorem 2.2 (Grayson-Grossman). Fix s ≥ 1 and m ≥ 2 and let n be the dimension

of Fm,s. The vector fields in Rn

X1 =
∂

∂x1

, X2 =
∂

∂x2

+∑
j≻2

pj,2(x)
∂

∂xj
, . . . Xm =

∂

∂xm
+ ∑
j≻m

pj,m(x)
∂

∂xj
(2.5)

generate a Lie algebra isomorphic to Fm,s.
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3. Proof of Theorem 1.2

As explained above, we identifyGm,s with Rn and we fix the vector fieldsX1, . . . ,Xm

as in (2.5). Let γ ∶ [0,1] → (Rn, d) be an admissible curve parameterized by arc-length,

where d is the Carnot-Carathéodory distance associated to X1, . . . ,Xm. Thus for a.e.

τ ∈ [0,1] we have

γ̇(τ) =
m

∑
i=1

hi(τ)Xi(γ(τ)),

where h1, . . . , hm ∈ L∞(0,1) satisfy

h2
1(τ) + . . . + h

2
m(τ) = 1 for a.e τ ∈ [0,1]. (3.6)

First of all notice that

∣γ̇(τ) −X1∣
2 = ∣γ̇(τ)∣2 − 2⟨γ̇(τ),X1⟩ + ∣X1∣

2 = 2(1 − h1(τ)).

From (3.6) we deduce that

a) ∣hi∣ ≤ 1 for all i = 1, . . . ,m;

b) for all i ≠ 1, h2
i ≤ 1 − h2

1 = (1 − h1)(1 + h1) ≤ 2(1 − h1);

c) for t ∈ [0,1] and for all i ≠ 1, by Hölder’s inequality we have

∫

t

0
∣hi(τ)∣dτ ≤ t

√
1

t ∫
t

0
hi(τ)2dτ ≤ t

√
1

t ∫
t

0
2(1 − h1(τ))dτ = t

√
E(γ; 0; t;X1).

For semplicity, we shall use the notation E(t) = E (γ; 0; t;X1). We will prove the

existence of integers αi and βi such that the claims i) and ii) in Theorem 1.2 and such

that

∣pi,Λi(γ(τ))∣ ≤ t
αi+βiE(t)βi/2 for all 0 ≤ τ ≤ t (3.7)

hold for every i ∈ {2, . . . , n}. The proof is by induction on the weight of i.

The initial step is with i = 2, . . . ,m. In this case we have wi = 1 and we choose

αi = βi = 0. Then i) holds and also

∣γi(t)∣ ≤ ∫
t

0
∣hi(τ)∣dτ ≤ t

√
E(t),

which is ii). Condition (3.7) also holds because for i ∈ {1, . . . ,m} we have pi,Λi = pi,i =

1.

We now prove the inductive step. Let i be of weight wi ≥ 2. Following the Hall

basis construction, Xi will be of the form Xi = [Xj,Xq] for some 1 ≤ q < j < i with

weights wj and wq such that wj +wq = wi. Λi is the (unique) index in {2, . . . ,m} that

has i as a direct descendant. Notice that Λi can’t be 1 due to the construction of the

Hall basis, and moreover Λi = Λj.

By lemma 2.1 we have ∣pi,Λi(x)∣ ≤ ∣pj,Λi(x)xq ∣. Therefore, by the inductive assump-

tion ii) of Theorem 1.2 on γq and by the inductive assumption (3.7) on pj,Λi , there
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exist positive integers αq, βq, αj, βj, with αj + βj + 1 = wj and αq + βq + 1 = wq, such

that
∣pi,Λi(γ(τ))∣ ≤∣pj,Λi(γ(τ))∣∣γq(τ)∣

≤

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

tαj (t
√
E(t))

βj
tαq (t

√
E(t))

βq+1
if q > 1

tαj (t
√
E(t))

βj
t if q = 1

≤ tαi (t
√
E(t))

βi
,

where in the first case we set αi ∶= αj +αq and βi ∶= βj + βq + 1, and in the second one

αi ∶= αj + 1 and βi ∶= βj. Notice that in both cases αi + βi + 1 = wj + wq = wi, as we

wanted. This concluds the proof of the induction step for (3.7).

At this point we have that γ̇i = hΛipi,Λi and so

γi(t) = ∫
t

0
hΛi(τ)pi,Λi(γ(τ))dτ.

Hence using estimate (3.7) (that we already proved to be true at this step) we obtain

∣γi(t)∣ ≤ t
αi (t

√
E(t))

βi

∫

t

0
∣hΛi(τ)∣dτ

≤ tαi (t
√
E(t))

βi
t
√
E(t)

= tαi (t
√
E(t))

βi+1
,

(3.8)

that becomes

⎛

⎝

∣γi(t)∣

tαi

⎞

⎠

1
βi+1

≤ t
√
E(t).

Thus we proved the point ii) of Theorem 1.2 for the index i with general weight, and

this concludes the proof. �

Now we compare the parametric and the geometric definitions of excess. We start

by recalling the construction of the 1-Hausdorff measure in the metric space (Rn, d).

We refer to [1] for more details. For any subset U ⊆ Rn we call

diam(U) = sup{d(x, y) ∶ x, y ∈ U}

the diameter of U , where d is the Carnot-Carathéodory metric. By definition, we set

diam(∅) = 0. Let S be a subset of Rn and δ > 0 a real number, and define

H 1
δ (S) = inf {

∞

∑
i=1

diam(Ui) ∶ S ⊆
∞

⋃
i=1

Ui, diam(Ui) < δ} .

It can be proved that each H 1
δ is an outer measure. Since the map δ ↦ H 1

δ (S) is

decreasing, the limit

H 1(S) ∶= lim
δ↓0

H 1
δ (S) = sup

δ>0
H 1

δ (S)
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exists (although it may be infinite). H 1 is a Borel measure in Rn.

Now denote the support of γ by Γ = γ([0,1]) ⊂ Rn = Gm,s, and its unit tangent

vector by τΓ = γ̇ ∈ span{X1, . . . ,Xm}. As above, γ is parameterized by arc-length.

Using the definition of H 1 it is not difficult to see that

H 1(Γ) ≤ Var(γ) ∶= sup{
k−1

∑
i=0

d(γ(ti+1), γ(ti)) ∶ 0 ≤ t0 < t1 < . . . < tk ≤ 1}. (3.9)

If γ is injective, than we have the equality H 1(Γ) = Var(γ). This can be proved

in the following way. It is easy to show that for any a, b ∈ [0,1] we have

H 1 (γ([a, b])) ≥ d (γ(a), γ(b)) .

Now take 0 ≤ t0 < ⋅ ⋅ ⋅ < tk ≤ 1. We have

k−1

∑
i=0

d (γ(ti+1, γ(ti)) ≤
k−1

∑
i=0

H 1 (γ([ti, ti+1])) ≤ H 1 (Γ) ,

where the last inequality relies on the injectivity of γ and on the additivity of the

Hausdorff measure. This shows that H 1(Γ) ≥ Var(γ).

On the other hand we have the following result, see [8, page 26]:

Theorem 3.1. Let γ ∶ [0,1] → (Rn, d) be a Lipschitz curve with controls h ∈

L∞ (0,1)
m

, i.e., γ̇ = ∑
m
j=1 hjXj(γ). Then we have

Var(γ) = ∫
1

0
∣h(t)∣dt. (3.10)

From the previous discussion we deduce that if γ ∶ [0,1] → Gm,s is an injective

admissible curve then for any compact set K ⊂ Γ we have

H 1(K) = ∫
γ−1(K)

∣h(τ)∣dτ.

Theorem 1.2 can now be rephrased in the following way.

Corollary 3.2. Let γ ∶ [0,1] → Gm,s be a geodesic parameterized by arc-length, with

γ(0) = 0 and support Γ. Let 0 < r ≤ 1. Then for all i = 2, . . . , n there exist positive

integers αi, βi with α1 + βi + 1 = wi and such that:

⎛

⎝

∣γi(t)∣

∣t∣
αi

⎞

⎠

1
βi+1

≤ t
√
E(Γ; 0; r;X1) for all 0 < t ≤ r. (3.11)

Proof. Observe that if Γ is a length minimizer and d(0, γ(1)) ≥ r, then H 1(Γ ∩

Br(x)) = r. Using this observation one can see that the two definitions of excess

coincide, and then conclude. �
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Remark 3.3. The proof of the last corollary shows that for the validity of the result

it is enough that Γ satisfies certain density estimates, without necessarily being a

length minimizer; if there exist two constants 0 < c1 ≤ c2 such that

c1r ≤ H 1(Γ ∩Br(x)) ≤ c2r,

then (3.11) holds with an appropriate constant in the right hand-side of the inequality.

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4. We start with some elementary properties

of the projection π ∶ Gm,s = Rn → R defined by π(x) = x1, where x = (x1, . . . , xn)

are the exponential coordinates associated with the vector fields given by the Hall

basis. It is well-known that π ∶ (Gm,s, ⋅) → (R,+) is a group homomorphism, i.e.,

π(x ⋅ y) = (x ⋅ y)1 = x1 + y1 = π(x) + π(y). Moreover, we have

∣π(x) − π(y)∣ =∣x1 − y1∣ ≤ d(x, y),

i.e. π is 1-Lipschitz from (Rn, d) to R.
Let B1/4 = {x ∈ Rn ∶ d(x,0) < 1/4} and for η > 0 consider the set

Γ̄ = {x ∈ Γ ∩B1/4 ∶ E(Γ;x; r;X1) ≤ η for all 0 ≤ r ≤ 1/2} ⊂ Γ.

Take points x ∈ Γ ∩ B1/4 and y ∈ Γ̄, with x ≠ y, and define λ = d(x, y) > 0. By the

triangle inequality we have λ ≤ 1/2. The set

Γλ = δ 1
λ
(y−1 ⋅ Γ)

is the support of a length-minimizing curve, because left-translations and dilations

take geodesics to geodesics. Moreover, we have 0 ∈ Γλ.

The point z = δ1/λ(y−1 ⋅ x) is in Γλ and by the invariance properties of the Carnot-

Carathéodory distance we have d(z,0) = 1
λd(x, y) = 1. By the height-estimate (3.11),

we have that for any i ≥ 2

∣zi∣
1

βi+1 = (
∣zi∣

d(z,0)αi
)

1
βi+1

≤
√
E(Γλ; 0; 1;X1) =

√
E(Γ; y;λ;X1) ≤

√
η.

We used the elementary invariance properties of excess E(Γλ; 0; 1;X1) = E(Γ; y;λ;X1).

By (1.1), this in turn gives

∣(y−1 ⋅ x)i∣ = ∣(δλ(z))i∣ = λ
wi ∣zi∣ ≤ η

βi/2+1/2d(x, y)wi ≤ Cwi
1 ηβi/2+1/2 ∥y−1 ⋅ x∥

wi
. (4.12)

Now we take ε > 0 such that εwi < 1/2 for all i and we choose η = η(ε,αi, βi) > 0

such that for all i = 2, . . . , n we have

Cwi
1 ηβi/2+1/2 ≤ min{εwi ,

1

2
} = εwi . (4.13)
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In this way, the maximum norm is given by

∥y−1 ⋅ x∥ = max
j=1,...,n

∣(y−1 ⋅ x)j ∣
1/wj

=∣(y−1 ⋅ x)1∣
1/w1

=∣x1 − y1∣ ,

and (4.12) becomes

∣(y−1 ⋅ x)i∣
1/wi

≤ ε∣x1 − y1∣ , i = 2, . . . , n. (4.14)

The projection π ∶ Γ̄ → R is injective because π(x) = π(y) means x1 = y1 and thus,

by (4.14), we have ∣(y−1 ⋅ x)i∣ = 0 for all i ≥ 2. This implies y−1 ⋅ x = 0 and so x = y.

Let I = π (Γ̄) and denote by π−1 ∶ I → Γ̄ the inverse of the projection. We define the

curve γ̄ ∶ I → Rn letting

γ̄(t) = π−1(t), t ∈ I.

The support of γ̄ is Γ̄ ⊂ Γ. This is claim i) in Theorem 1.4.

Then we have γ̄1(t) = π (π−1(t)) = t for all t ∈ I. This is claim ii). Claim iii) follows

from (4.14).

Next, we prove claim iv). For any point x ∈ B1/4 ∩ Γ ∖ Γ̄ there exists a radius

0 < rx ≤ 1/2 such that

1

2rx
∫

Γ∩Brx(x)
∣τΓ −X1∣

2
dH 1 = E(Γ;x; rx;X1) > η.

Moreover, since

B1/4 ∩ Γ ∖ Γ̄ ⊂ ⋃
x∈B1/4∩Γ∖Γ̄

Brx/5(x) ∩ Γ,

using the 5-covering lemma, there exists a sequence of points xk ∈ B1/4 ∩ Γ ∖ Γ̄ such

that, letting rk = rxk , we have

B1/4 ∩ Γ ∖ Γ̄ ⊂ ⋃
k∈N

Brk(xk) ∩ Γ,

where the balls Brk/5(xk) are pair-wise disjoint. Thus we obtain

H 1 (B1/4 ∩ Γ ∖ Γ̄) ≤ ∑
k∈N

H 1 (Brk(xk) ∩ Γ) = ∑
k∈N

2rk

≤ ∑
k∈N

1

η ∫Γ∩Brk(xk)
∣τΓ −X1∣

2
dH 1

≤
1

η ∫Γ∩B1

∣τΓ −X1∣
2
dH 1 =

2

η
E(Γ; 0; 1;X1).

Finally, claim v) follows from iv) and from the fact that the projection π is 1-Lipschitz.

The set I may be assumed to be closed, because all the claims are stable passing to

the closure. �
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