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1. Introduction

Since the seminal papers by Barrenblatt [6, 7] and Dugdale [14], cohesive zone models have
been widely used in fracture mechanics. Compared with the models of brittle cracks, based on
the original Griffith’s criterion [15], they provide a more accurate description of the process of
crack opening. Moreover, they permit to avoid the singularity of the stress near the crack tip.

In this paper we provide a possible justification of a macroscopic cohesive zone model in
terms of microscopic brittle cracks. More precisely, at a microscopic level we consider an an-
tiplane problem for linearized elasticity with purely brittle cracks, assuming that the material
under examination is reinforced by an orthogonal periodic grid of unbreakable elastic fibers (see
Figure 1).
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Figure 1. Schematic of the composite material.
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Two scales play a crucial role in the problem: the period ε of the grid and the thickness η
of the fibers. We study the asymptotic behavior of this material as ε → 0 and η → 0, when
η = 2ε2. When η → 0 with a different rate of convergence, it has been proved in [5] that the
limit is purely elastic with no cracks when η ≫ ε2, while the limit is elastic with purely brittle
cracks if η ≪ ε2.

According to Griffith’s theory, in our problem, with η = 2ε2, the energy to be considered is
given by

Fε(u) =





∫

Ω
|∇u|2 dx+ H1(Su) if Su ⊆ Ωε,

+∞ otherwise.

Here Ω ⊂ R
2 is the reference configuration, u denotes the displacement, Su is the jump set of

u and represents the crack, H1 is the one-dimensional Hausdorff measure, and Ωε is the brittle
part of the material, defined as the disconnected part of Ω not contained in the fibers.

The effective behavior of the macroscopic material is obtained through a homogenization
procedure. The effective energy Fhom is the Γ-limit of Fε as ε → 0 along a suitable sequence.
We prove that Fhom is given by the functional

Fhom(u) =

∫

Ω
|∇u|2 dx+

∫

Su

g([u], νu)dH1, (1.1)

where [u] is the amplitude of the jump of u and represents the crack opening, νu is the normal
to the jump set and describes the orientation of the crack, while g is a surface energy density
satisfying the estimates

max{α|t|, 1} ≤ g(t, ν) ≤ β(1 + |t|) for every pair (t, ν) ∈ R × S1, (1.2)

for suitable α, β > 0. Hence, the effective energy Fhom actually describes a cohesive zone model.
The plan of the paper is as follows. In Section 2, after recalling the basic notions on the

space SBV of special functions of bounded variation, we make precise the variational setting of
the problem and state the main result (Theorem 2.2).

In Section 3 we prove a compactness result (Theorem 3.4) for the sequence (Fε) with respect
to Γ-convergence. The main step in the proof (see Propositions 3.3 and 3.5) is an estimate from
above of the Γ-limit, which also leads to the second inequality in (1.2).

Finally, in Section 4 we represent the Γ-limit as an integral functional of the form (1.1).

2. Setting of the problem and statement of the main result

Let U be a bounded open subset of R
2 and let 1 ≤ p ≤ +∞, we use standard notation for the

Sobolev and Lebesgue spaces W 1,p(U) and Lp(U).
The scalar product of x, y ∈ R

2 is denoted by x ·y. For ρ > 0, Bρ(x) is the open ball centered
in x with radius ρ, while for ν ∈ S1 := {x ∈ R

2 : |x| = 1}, Qν
ρ(x) denotes the open square of

center x, side length ρ and one face orthogonal to ν.
The Lebesgue measure and the one-dimensional Hausdorff measure in R

2 are denoted by L2

and H1, respectively.

For the general theory of special functions of bounded variation we refer to [4]; here we just
recall some notation and definitions.
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The space of special functions of bounded variation on U is denoted by SBV (U). For every
u ∈ SBV (U), ∇u denotes the approximate gradient of u, Su the approximate discontinuity set
of u, and νu the generalized normal to Su, which is defined up to the sign. If u+ and u− are the
traces of u on the sides of Su determined by νu and −νu, respectively, the difference u+ − u− is
called the jump of u, and is denoted by [u]. Note that, with our convention, if we reverese the
orientation of νu, we change the sign of [u]. It turns out that [u] ∈ L1(Su;H1).

We consider the vector subspace of SBV (U)

SBV 2(U) := {u ∈ SBV (U) : ∇u ∈ L2(U ; R2) and H1(Su) < +∞}.
We consider also the larger space of the generalized special functions of bounded variation on
U , GSBV (U), which is made of all measurable functions u : U → R whose truncations un :=
(u ∧ n) ∨ (−n) belong to SBV (U ′) for every n ∈ N and for every open set U ′ ⊂⊂ U ; i.e., with
U ′ compact and contained in U . Notice that

|∇un(x)| ≤ |∇u(x)| a.e. in U,

∇un(x) → ∇u(x) a.e. in U as n→ +∞,

Sun ⊆ Su, (un)± = (u±)n,

H1(Sun) → H1(Su) as n→ +∞.

Moreover, if u ∈ GSBV (U) in general it is no longer true that u+ and u− are finite H1-a.e. on
Su; however, it is still possible to define the jump [u] on H1-almost all Su because the points
where the traces are both +∞ or −∞ do not belong to Su. We remark that [u] is now an
extended real-valued function, and it may happen that [u] /∈ L1(Su;H1).

In analogy with the case of SBV functions, we say that u ∈ GSBV 2(U) if u ∈ GSBV (U),
∇u ∈ L2(U,R2) and H1(Su) < +∞.

It can be proved that

GSBV 2(U) ∩ L∞(U) = SBV 2(U) ∩ L∞(U).

Let Ω be a bounded open subset of R
2 with Lipschitz boundary. Let Aε := [−1

2 + ε, 1
2 − ε]2;

for i ∈ Z
2 we set Ωi

ε := iε+ εAε (see Figure 2). Moreover we define

Ωε := Ω ∩
⋃

i∈Z2

Ωi
ε.

Let Fε : L1(Ω) −→ [0,+∞] be the functionals defined as

Fε(u) :=





∫

Ω
|∇u|2 dx+ H1(Su) if u ∈ SBV 2(Ω), Su ⊆ Ωε,

+∞ otherwise.
(2.1)

We also consider the Mumford-Shah functional MS : L1(Ω) −→ [0,+∞]

MS(u) :=





∫

Ω
|∇u|2 dx+ H1(Su) if u ∈ SBV 2(Ω),

+∞ otherwise.
(2.2)

In what follows the Γ-convergence of (Fε) is understood with respect to the strong L1(Ω)-
topology (see [13]).
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Figure 2. A portion of the fiber reinforced brittle material.

Remark 2.1. We notice that for every ε > 0 we have the trivial bound MS ≤ Fε. Then, if
u, uε ∈ L1(Ω) and uε → u in L1(Ω), with supε Fε(uε) < +∞, Ambrosio’s compactness theorem
(see [1, 2]) yields u ∈ GSBV 2(Ω) ∩ L1(Ω). Hence, the domain of the Γ-limit (if it exists) is a
subset of GSBV 2(Ω) ∩ L1(Ω).

The main result of this paper is the following.

Theorem 2.2 (Γ-convergence). Let (Fε) be the family of functionals defined in (2.1). Then,
for every sequence of positive numbers converging to 0 there exists a subsequence (εk) such that
(Fεk

) Γ-converges to a functional Fhom : L1(Ω) −→ [0,+∞] of the form

Fhom(u) =





∫

Ω
|∇u|2 dx+

∫

Su

g([u], νu)dH1 if u ∈ SBV 2(Ω),

+∞ otherwise,
(2.3)

for some Borel function g : R × S1 −→ [0,+∞) satisfying the following properties:

(i) for any fixed ν ∈ S1, g(·, ν) is nondecreasing on (0,+∞) and satisfies the symmetry condition
g(−t,−ν) = g(t, ν);

(ii) there exist α, β > 0, with α ≤ β, such that

max{α|t|, 1} ≤ g(t, ν) ≤ β(1 + |t|), (2.4)

for every pair (t, ν) ∈ R × S1.

Remark 2.3. By the properties of Γ-convergence we know that Fhom is lower semicontinuous
in L1(Ω). As a consequence, we deduce in particular that the functional

u 7→
∫

Su

g([u], νu) dH1 (2.5)

is lower semicontinuous on finite partitions; i.e., on the subspace of SBV 2(Ω)∩L∞(Ω) made of
those BV -functions which take only a finite number of values. Then, it is well-known (see [3])
that two necessary conditions on g for the lower semicontinuity of (2.5) are the following:
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1. (subadditivity in the first variable) for any ν ∈ S1

g(t1 + t2, ν) ≤ g(t1, ν) + g(t2, ν),

for every t1, t2 ∈ R;
2. (convexity in the second variable) for any t ∈ R, the 1-homogeneous extension of g(t, ·) : S1 −→

[0,+∞) to R
2 is convex. This condition can be equivalently expressed in terms of g as

g(t, ν) ≤ λ1g(t, ν1) + λ2g(t, ν2),

for every ν, ν1, ν2 ∈ S1, λ1, λ2 ≥ 0 such that λ1ν1 + λ2ν2 = ν.

Remark 2.4. We may also consider the functionals F̃ε : L1(Ω) −→ [0,+∞] defined as

F̃ε(u) =





∫

Ω
|∇u|2 dx+ H1(Su) if u ∈ GSBV 2(Ω) ∩ L1(Ω), Su ⊆ Ωε,

+∞ otherwise.

(see e.g. [5]). Notice that Theorem 2.2 ensures the same Γ-convergence result for F̃ε. Indeed,
Theorem 2.2 immediately yields

Fhom(u) = Γ- lim sup
k→+∞

Fεk
(u) ≥ Γ- lim sup

k→+∞

F̃εk
(u),

hence the upper bound.
To achieve the lower bound we need to prove that for every u, uk ∈ GSBV 2(Ω)∩L1(Ω) with

Suk
⊆ Ωεk

and uk → u in L1(Ω) we have Fhom(u) ≤ lim inf F̃εk
(uk).

To this end, for any fixed n ∈ N we let un
k be the truncation of uk at level n. Then, (un

k) ⊂
SBV 2(Ω), Sun

k
⊆ Ωεk

and un
k → un in L1(Ω), as k → +∞. Moreover, since F̃εk

(un
k ) ≤ F̃εk

(uk),
by Theorem 2.2 we get

Fhom(un) ≤ lim inf
k→+∞

Fεk
(un

k) = lim inf
k→+∞

F̃εk
(un

k) ≤ lim inf
k→+∞

F̃εk
(uk).

Finally, since un → u in L1(Ω), letting n go to infinity and invoking the lower semicontinuity of
the Γ-limit Fhom, we obtain

Fhom(u) ≤ lim inf
n→+∞

Fhom(un) ≤ Γ- lim inf
k→+∞

F̃εk
(u),

thus, the lower bound.

3. A compactness result on SBV 2(Ω)

We prove Theorem 2.2 in a nonconstructive way, following the so-called localization method of
Γ-convergence, for which we refer the reader to [13, Chapters 14-20].

Loosely speaking, this method consists of two main steps. In the first one, based on compact-
ness arguments, we prove the existence of Γ-converging (sub)sequences. While in the second
one we recover enough information on the structure of the Γ-limit as to obtain a representation
in an integral form.

We localize the family (Fε) by introducing an explicit dependence on the set of integration.
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Let A(Ω) be the family of all open subset of Ω. For every pair (u,U) ∈ L1(Ω) × A(Ω) we
define

Fε(u,U) :=





∫

U

|∇u|2 dx+ H1(Su ∩ U) if u ∈ SBV 2(U), Su ∩ U ⊆ Ωε,

+∞ otherwise.
(3.1)

For any U ∈ A(Ω) and any u ∈ SBV 2(U) ∩ L1(Ω), we may extend the localized functionals
considered above to a measure F∗

ε (u, ·) defined on the σ-algebra B(U) of Borel subset of U , by
setting

F∗
ε (u,B) :=

∫

B

|∇u|2 dx+ H1(Su ∩B), for every B ∈ B(U).

Given a positive sequence (εk) converging to 0, we define F ′,F ′′ : L1(Ω) ×A(Ω) → [0,+∞] as

F ′(·, U) = Γ- lim inf
k→+∞

Fεk
(·, U), F ′′(·, U) = Γ- lim sup

k→+∞

Fεk
(·, U),

for every U ∈ A(Ω).
We notice that F ′,F ′′ are lower semicontinuous [13, Propositions 6.8] and that they inherit

some of the properties of the functionals Fε. Indeed, they are increasing [13, Propositions 6.7],
local [13, Propositions 16.15] and it is immediate to show that they decrease by truncation.
Notice that in general they are not inner regular. Hence we also consider their inner regular
envelope; i.e., the functionals F ′

−,F ′′
− : L1(Ω) ×A(Ω) −→ [0,+∞] defined as

F ′
−(u,U) := sup

{
F ′(u, V ) : V ⊂⊂ U, V ∈ A(Ω)

}
. (3.2)

and

F ′′
−(u,U) := sup

{
F ′′(u, V ) : V ⊂⊂ U, V ∈ A(Ω)

}
. (3.3)

Then, F ′
− and F ′′

− are both increasing, lower semicontinuous [13, Remark 15.10], and local [13,
Remark 15.25].

By the compactness of Γ-convergence, in Theorem 3.4 we easily show that for every sequence
of positive numbers converging to 0 there exists a subsequence (εk) such that the corresponding
functionals F ′ and F ′′ satisfy F ′

− = F ′′
−. Moreover, by monotonicity we always have

F ′′
− = F ′

− ≤ F ′ ≤ F ′′. (3.4)

Then, if we show that F ′′ is inner regular, which is equivalent to the inequality F ′′ ≤ F ′′
−, from

(3.4) we deduce the existence of the Γ-limit of (Fεk
).

A preliminary step towards the proof of the inner regularity of F ′′, and of other crucial
properties of the Γ-limit considered as a set function, is proving that the so-called fundamental
estimate holds uniformly for the sequence of functionals (Fε).

The next proposition provides an extension of the fundamental estimate to the SBV -setting.

Proposition 3.1 (Fundamental estimate in SBV 2). For every η > 0 and for every U ′, U ′′, V ∈
A(Ω), with U ′ ⊂⊂ U ′′, there exists a constant M(η) > 0 satisfying the following property: for
every ε > 0, for every u ∈ L1(Ω) with u ∈ SBV 2(U ′′) and Su ∩ U ′′ ⊆ Ωε, and for every
v ∈ L1(Ω) with v ∈ SBV 2(V ) and Sv ∩ V ⊆ Ωε, there exists a function ϕ ∈ C∞

0 (Ω) with ϕ = 1
in a neighborhood of U ′, sptϕ ⊂ U ′′ and 0 ≤ ϕ ≤ 1 such that

Fε(ϕu+ (1 − ϕ)v, U ′ ∪ V ) ≤ (1 + η)
(
Fε(u,U

′′) + Fε(u, V )
)

+M(η)‖u − v‖2
L2(S),
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with S := (U ′′ \ U ′) ∩ V .

Proof. This result can be obtained, as a particular case, from [10, Proposition 3.1]. For the
reader’s convenience we prefer to give here a simplified proof.

Let η > 0, U ′, U ′′, V ∈ A(Ω) be fixed as in the statement and let ϕ be a function in C∞
0 (Ω)

with 0 ≤ ϕ ≤ 1, sptϕ ⊂ U ′′ and ϕ = 1 in a neighborhood of U ′.
Let u and v be two functions as in the statement and let w := ϕu+ (1 − ϕ)v. Notice that w

belongs to SBV 2(U ′ ∪ V ) and satisfies the constraint Sw ∩ (U ′ ∪ V ) ⊆ Ωε.
We have

Fε(w,U
′ ∪ V ) = Fε(u,U

′) + F∗
ε (v, V \ U ′′) + F∗

ε (w, (U ′′ \ U ′) ∩ V ). (3.5)

We now estimate the last term in the right hand side of (3.5). Let S := (U ′′ \ U ′) ∩ V ; for any
fixed η ∈ (0, 1) we have

F∗
ε (w,S) ≤

∫

S

∣∣∣(1 − η)
ϕ∇u+ (1 − ϕ)∇v

1 − η
+ η

∇ϕ(u− v)

η

∣∣∣
2
dx+ H1(Su ∩ S) + H1(Sv ∩ S)

≤ 1

1 − η

( ∫

S

|∇u|2 dx+

∫

S

|∇v|2 dx
)

+
1

η

∫

S

|∇ϕ|2|u− v|2 dx+ H1(Su ∩ S) + H1(Sv ∩ S)

≤ 1

1 − η

(
F∗

ε (u, S) + F∗
ε (v, S)

)
+

1

η

∫

S

|∇ϕ|2|u− v|2 dx. (3.6)

Finally, setting M := ||∇ϕ||L∞(Ω) and combining (3.5) and (3.6), we find

Fε(w,U
′ ∪ V ) ≤ 1

1 − η

(
Fε(u,U

′′) + Fε(v, V )
)

+
M

η
‖u− v‖2

L2(S),

and thus the thesis. �

Now we show that the restriction of F ′′ to SBV 2(Ω) ∩ L∞(Ω) and to all open Lipschitz
subsets of Ω satisfies a bound from above (see (3.8)).

Before stating this result, it is convenient to introduce some notation.
Let us fix an open rectangle R containing Ω and let W(R) be the space of all functions

w ∈ SBV 2(R) ∩ L∞(R) enjoying the following properties:

• Sw ⊆ L, with L finite union of pairwise disjoint closed segments contained in R;
• w ∈W 2,∞(R \ L).

Moreover, we denote by AL(Ω) the class of all open subsets of Ω with Lipschitz boundary.

To obtain the desired estimate we need the following approximation lemma.

Lemma 3.2. Let U ∈ AL(Ω) and let u ∈ SBV 2(U) ∩ L∞(U). Then u has an extension
v ∈ SBV 2(R) ∩ L∞(R) with compact support in R, such that

H1(Sv ∩ ∂U) = 0, (3.7)

and ‖v‖L∞(R) = ‖u‖L∞(U). Moreover, there exist a sequence (wj) ⊂ W(R) converging to v in

L1(R), and a sequence (Lj) of finite unions of pairwise disjoint closed segments contained in R
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and such that Swj
⊆ Lj , with the following properties:

‖wj‖L∞(R) ≤ ‖v‖L∞(R) = ‖u‖L∞(U),

∇wj → ∇v strongly in L2(R; R2), hence ∇wj → ∇u strongly in L2(U ; R2),

lim sup
j→+∞

∫

Lj∩U

ψ([wj ], νwj
) dH1 ≤

∫

Sv∩U

ψ([v], νv) dH1 =

∫

Su∩U

ψ([u], νu) dH1

for every upper semicontinuous function ψ : R × S1 → [0,+∞) such that ψ(t, ν) = ψ(−t,−ν)
for every t ∈ R and ν ∈ S1.

Proof. To prove the first assertion we can use locally a reflection argument in a curvilinear
coordinate system for which the boundary is flat. The global extension can be obtained, as
usual, through a partion of unity. Then, by (3.7), the existence of the approximating sequence
(wj) is a consequence of the density result [12, Theorem 3.1] (see also [12, Remark 3.5]). �

We are in a position to prove the following proposition.

Proposition 3.3. There exists β > 0 such that

F ′′(u,U) ≤
∫

U

|∇u|2 dx+ β

∫

Su∩U

(1 + [u]2)dH1, (3.8)

for every u ∈ SBV 2(Ω) ∩ L∞(Ω) and for every U ∈ AL(Ω).

Proof. We fix U ∈ AL(Ω); in view of Lemma 3.2 and of the locality of F ′′ it is enough to prove

F ′′(u,U) ≤
∫

U

|∇u|2 dx+ β

∫

L∩U

(1 + [u]2)dH1, (3.9)

for u ∈ W(R).
We want to construct a sequence (uk) converging to u in L1(Ω) such that uk ∈ SBV 2(U),

Suk
∩ U ⊆ Ωεk

, and

lim sup
k→+∞

Fεk
(uk, U) ≤

∫

U

|∇u|2 dx+ β

∫

L∩U

(1 + [u]2)dH1. (3.10)

Since U has Lipschitz boundary, we can slightly modify u near each connected component of Su

to find a L that intersects ∂U in a finite number of points. This can be done, for instance, by
slightly shifting these connected components taking into account the area formula for ∂U .

Now we explicitly construct uk when L is a single closed segment; then, the general case
follows easily.

We divide the proof into two steps.

Step 1. We prove (3.10) for a target function u such that L is parallel to the x1-axis; more
precisely,

L = {x ∈ R
2 : a ≤ x1 ≤ b, x2 = c} ⊆ R,

for some a, b, c ∈ R with a < b.
To fulfill the constraints on the jump sets for the recovery sequence uk, the idea is to regularize

the target function u on the portion of the unbreakable fibers intersecting L.
Let R′ be an open rectangle such that Ω ∩ L ⊆ R′ ⊂⊂ R and consider a horizontal strip

of fragile squares Ωi
εk

centered on a line “close” to x2 = c. To fix the ideas, we consider those
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Ωi
εk

corresponding to indices i = (i1, i2) ∈ Z
2, with i1 ∈ Ik := {⌊ a

εk
⌋εk, . . . , ⌊ b

εk
⌋εk + εk} and

i2 = ⌊ c
εk
⌋εk (being ⌊r⌋ be the integer part of any r ∈ R). Then, we translate u to prevent the

possibility that L entirely falls in an unbreakable horizontal fiber (see Figure 3). More precisely,
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L

x2 =
⌊ c

εk

⌋
εk

Figure 3. A set L falling in an unbreakable fiber.

for k large enough and for x ∈ R′ we set

vk(x) := u
(
x+

(
c−

⌊ c
εk

⌋
εk

)
e2

)
,

so that Svk
is contained in the horizontal line x2 =

⌊
c
εk

⌋
εk.

We also define the numbers

a+
k :=

⌊ c
εk

⌋
εk +

εk
2

− ε2k and a−k :=
⌊ c
εk

⌋
εk − εk

2
+ ε2k,

corresponding to the upper and lower sides of the squares Ωi
εk

, respectively (see Figure 4).
Since the index i2 will be fixed throughout this proof, to not overburden notation, with a

little abuse, we denote by i an index varying in Z. For every i ∈ Z we consider the unbreakable
rectangles

Ri
k := Si

k × (a−k , a
+
k ), where Si

k :=
(εk

2
− ε2k,

εk
2

+ ε2k

)
+ iεk.
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⌊ c
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Figure 4. An unbreakable rectangle Ri
k between two consecutive brittle squares.
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For every i ∈ Ik we define uk in each rectangle Ri
k in the following way: for fixed x1 ∈ Si

k,

uk(x1, ·) is the affine function connecting the two values vk(x1, a
+
k ) and vk(x1, a

−
k ) in [a−k , a

+
k ];

i.e.,

uk(x1, x2) :=
vk(x1, a

+
k ) − vk(x1, a

−
k )

a+
k − a−k

(x2 − a−k ) + vk(x1, a
−
k ),

while we set uk := vk elsewhere in R′.
By construction, (uk) ⊂ SBV 2(R′), Suk

∩ Ω ⊆ Ωεk
, and uk is bounded in L∞(R′). Then,

since uk differs from vk only on a set whose Lebesgue measure tends to 0 as k → +∞, we have
uk → u in L1(Ω). Since in each square Ωi

εk
the jump set of uk is contained in the horizontal

line x2 = ⌊ c
εk
⌋εk and in the vertical sides of the square, its lengh is bounded from above by

3(εk − ε2k). Therefore, we have

lim sup
k→+∞

F(uk, U) ≤ lim sup
k→+∞

∫

U

|∇vk|2 dx

+ lim sup
k→+∞

∑

i∈Jk

∫

Ri
k

|∇uk|2 dx+ lim sup
k→+∞

3Nk (εk − ε2k), (3.11)

where

Jk := {i ∈ Ik : Ri
k ∩ U 6= ∅} ∪ {i ∈ Ik : Ωi

εk
∩ U 6= ∅}

and Nk is the number of elements of Jk. Notice that since L intersects ∂U in a finite number of
points, we have

εkNk ≤ H1(L ∩ U) + o(1) as k → +∞. (3.12)

The definition of vk immediately yields

lim
k→+∞

∫

U

|∇vk|2 dx =

∫

U

|∇u|2 dx. (3.13)

Moreover, when we come to estimate the other terms in (3.11), we easily find

∫

Ri
k

|∇uk|2 dx ≤ 2

∫

Ri
k

∣∣∣
∂x1

vk(x1, a
+
k ) − ∂x1

vk(x1, a
−
k )

a+
k − a−k

∣∣∣
2
(x2 − a−k )2 dx

+2

∫

Ri
k

|∂x1
vk(x1, a

−
k )|2 dx+

∫

Ri
k

∣∣∣
vk(x1, a

+
k ) − vk(x1, a

−
k )

a+
k − a−k

∣∣∣
2
dx;

hence
∑

i∈Jk

∫

Ri
k

|∇uk|2 dx ≤ 16

3
Nkε

3
k‖∇u‖2

L∞(R) + 4Nkε
3
k‖∇u‖2

L∞(R)

+
∑

i∈Jk

εk

∫

Si
k

∣∣∣
vk(x1, a

+
k ) − vk(x1, a

−
k )

a+
k − a−k

∣∣∣
2
dx1.

Now let v±k be the traces of vk on both sides of the line x2 = ⌊ c
εk
⌋εk, and for every i ∈ Jk let

xi
k := (iεk + εk

2 , ⌊ c
εk
⌋εk) be the center of the rectangle Ri

k. Since vk is Lipschtz continuous on
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each side of the line x2 = ⌊ c
εk
⌋εk with constant ‖∇u‖L∞(R), we obtain

|vk(x1, a
+
k ) − vk(x1, a

−
k )|2

≤ 2|[vk]|(xi
k)|2 + 2|vk(x1, a

+
k ) − v+

k (xi
k) − (vk(x1, a

−
k ) − v−k (xi

k))|2
≤ 2|[vk](xi

k)|2 + 8ε2k‖∇u‖2
L∞(R),

for every i ∈ Jk and every x1 ∈ Si
k. This implies

lim sup
k→+∞

∑

i∈Jk

εk

∫

Si
k

∣∣∣
vk(x1, a

+
k ) − vk(x1, a

−
k )

a+
k − a−k

∣∣∣
2
dx1

≤ 2 lim sup
k→+∞

∑

i∈Jk

εk|[vk](x̄
i
k)|2 + 16 lim sup

k→+∞

Nkε
3
k‖∇u‖2

L∞(R) = 2

∫

L∩U

[u]2 dH1,
(3.14)

where the last equality is a consequence of (3.12) and of the Lipschitz regularity of [u]. Hence,
gathering (3.11), (3.12), (3.13), and (3.14), by definition of Γ-limsup we have

F ′′(u,U) ≤
∫

U

|∇u|2 dx+ 3

∫

L∩U

(1 + [u]2)dH1.

Clearly, an analogous construction holds true if L is parallel to the x2-axis.

Step 2. Let L be neither horizontal nor vertical.
We construct a sequence (uj) ⊂ W(R) such that Suj

⊆ Lj , with Lj finite union of pairwise
disjoint horizontal and vertical closed segments, and satisfying the following properties:

uj → u strongly in L1(R),

∇uj → ∇u strongly in L2(R; R2),

lim sup
j→+∞

∫

Lj

(1 + [uj ]
2) dH1 ≤

√
2

∫

L

(1 + [u]2) dH1.
(3.15)

Then, we deduce (3.9) by Step 1 and by the lower semicontinuity of F ′′.
To construct this sequence, we consider the intersections R⊖ and R⊕ of R with the open

half-planes determined by the line containing L. As u ∈ W(R), there exist two functions
u⊖, u⊕ ∈W 2,∞(R) such that

u =

{
u⊖ in R⊖

u⊕ in R⊕.

For every integer j ≥ 1, let Pj be a polygonal line consisting only of horizontal and vertical
segments within a distance proportional to 1/j from L, as in Figure 5. We assume that Pj and
L have the same end points. By completing Pj with the half-lines prolonging L, R is divided
into two sets R⊖

j , R⊕
j , such that

L2(R⊕ △R⊕
j ) −→ 0 as j → +∞.

Then, we define
vj := u⊖χ

R⊖

j
+ u⊕χ

R⊕

j
.

Clearly vj ∈ SBV 2(R)∩L∞(R), vj ∈W 2,∞(R \Pj). Moreover, vj satisfies (3.15) with Lj = Pj .
Finally, using a capacitary argument as in [11, Corollary 3.11], we may modify (vj) near the

vertices of Pj , obtaining a new sequence (uj) still satisfying (3.15), with uj ∈ SBV 2(R)∩L∞(R)
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H
1(L)
j

R⊖
j

R⊕
j

u⊖

u⊕

L
Pj

Figure 5. Construction of the polygonal line Pj .

and uj ∈W 2,∞(R\P̃j), where P̃j is obtained from Pj by removing small balls around its vertices
and is therefore the union of a finite number of pairwise disjoint horizontal and vertical closed
segments. �

A first consequence of the fundamental estimate Proposition 3.1 and of the upper bound
stated in Proposition 3.3 is given by the following compactness result.

Theorem 3.4 (Compactness by Γ-convergence). Let Fε be as in (3.1). Then, for every se-
quence of positive numbers converging to 0 there exist a subsequence (εk) and a functional
F : SBV 2(Ω) ×A(Ω) −→ [0,+∞] such that for every U ∈ A(Ω)

F(·, U) = F ′
−(·, U) = F ′′

−(·, U),

with F ′
−,F ′′

− as in (3.2) and (3.3), respectively.
Moreover, F satisfies the following properties:

• for every U ∈ A(Ω), the functional F(·, U) is local and lower semicontinuous with respect
to the strong L1(Ω)-topology;

• for every u ∈ SBV 2(Ω), the set function F(u, ·) is the restriction to A(Ω) of a Borel
measure on Ω.

• for every U ∈ AL(Ω)

F(·, U) = F ′(·, U) = F ′′(·, U) on SBV 2(Ω).

Proof. Let R be the class of all finite unions of open rectangles contained in Ω, whose vertices
have rational coordinates. By the compactness of Γ-convergence [13, Theorem 8.5], a diago-
nal argument yields the existence of a subsequence (εk) such that Fεk

(·, R) Γ-converges to a
functional F0(·, R), for all R ∈ R; i.e.,

F0(u,R) = F ′(u,R) = F ′′(u,R) for every u ∈ L1(Ω), R ∈ R. (3.16)

For u ∈ SBV 2(Ω) and for all U ∈ A(Ω), set

F(u,U) := sup{F0(u,R) : R ⊂⊂ U, R ∈ R}.



HOMOGENIZATION OF FIBER REINFORCED BRITTLE MATERIALS 13

For every U,U ′ ∈ A(Ω) with U ′ ⊂⊂ U , there exists R ∈ R such that U ′ ⊂⊂ R ⊂⊂ U ; hence by
(3.16) we get

F(u,U) = sup{F ′(u,U ′) : U ′ ⊂⊂ U, U ′ ∈ A(Ω)}
= sup{F ′′(u,U ′) : U ′ ⊂⊂ U, U ′ ∈ A(Ω)}, (3.17)

for all U ∈ A(Ω); that is F is the inner regular envelope of both F ′ and F ′′. Hence the set
function F(u, ·) is inner regular (see [13, Remark 15.10]) and superadditive (see [13, Proposition
16.12]).

Let us prove now that F(u, ·) is also subadditive for every u ∈ SBV 2(Ω). The main difference
from the general treatment developed in [13, Chapter 18] is that in our case the rest in the
fundamental estimate vanishes only for recovery sequences converging in L2(Ω) (see Proposition
3.1), while we are studying the Γ-convergence with respect to the L1(Ω)-topology.

We start by observing that on SBV 2(Ω) ∩ L∞(Ω), (3.17) is equivalent to the two following
conditions:

i) for every u ∈ SBV 2(Ω) ∩ L∞(Ω), for every U ∈ A(Ω) and for every sequence (uk) ⊂
SBV 2(U) ∩ L1(Ω) with Suk

∩ U ⊆ Ωεk
, such that uk → u in L1(Ω) it is

F(u,U) ≤ lim inf
k→+∞

Fεk
(uk, U);

ii) for every u ∈ SBV 2(Ω) ∩ L∞(Ω) and for every U,U ′ ∈ A(Ω) with U ′ ⊂⊂ U , there exists
a sequence (uk) ⊂ SBV 2(U ′) ∩ L1(Ω) with Suk

∩ U ′ ⊆ Ωεk
, uk → u in L1(Ω) such that

F(u,U) ≥ lim sup
k→+∞

Fεk
(uk, U

′)

(see also [13, Proposition 16.4 and Remark 16.5]).
Now let U, V ∈ A(Ω) and let u ∈ SBV 2(Ω) ∩ L∞(Ω). Fix any U ′ ⊂⊂ U , V ′ ⊂⊂ V ,

U ′, V ′ ∈ A(Ω). Choose an open set U ′′ such that U ′ ⊂⊂ U ′′ ⊂⊂ U and two sequences (uk) ⊂
SBV 2(U ′′)∩L1(Ω), Suk

∩U ′′ ⊆ Ωεk
, uk → u in L1(Ω) and (vk) ⊂ SBV 2(V ′)∩L1(Ω), Svk

∩V ′ ⊆
Ωεk

, vk → u in L1(Ω) such that

lim sup
k→+∞

Fεk
(uk, U

′′) ≤ F(u,U), lim sup
k→+∞

Fεk
(vk, V

′) ≤ F(u, V ).

Since the functionals Fεk
decrease by truncation, we can additionally assume that ‖uk‖L∞(Ω) ≤

‖u‖L∞(Ω), ‖vk‖L∞(Ω) ≤ ‖u‖L∞(Ω); hence uk → u in L2(Ω) and vk → u in L2(Ω).
Let us fix η > 0. Then, the fundamental estimate Proposition 3.1 gives a constant M(η) > 0

and a sequence (ϕk) of cut-off functions between U ′ and U ′′ such that

Fεk
(ϕkuk + (1 − ϕk)vk, U

′ ∪ V ′)

≤ (1 + η)
(
Fε(uk, U

′′) + Fεk
(vk, V

′)
)

+M(η)‖uk − vk‖2
L2(Ω).

Hence, taking the limit as k → +∞, and noticing that ϕkuk + (1 − ϕk)vk → u in L1(Ω), we get

F(u,U ′ ∪ V ′) ≤ (1 + η)
(
F(u,U) + F(u, V )

)
.

Now let η → 0, and then U ′ ր U , V ′ ր V ; it turns out that

F(u,U ∪ V ) ≤ F(u,U) + F(u, V ),

so we have proved the subadditivity of F at least for SBV 2(Ω) ∩ L∞(Ω) functions.
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Now let u ∈ SBV 2(Ω) and, for every n ∈ N, set un := (u ∧ n) ∨ (−n). Since un ∈ L∞(Ω),
and moreover since the values of F decrease by truncation, we have

F(un, U ∪ V ) ≤ F(un, U) + F(un, V ) ≤ F(u,U) + F(u, V ).

On the other hand, as un → u in L1(Ω), the lower semicontinuity of F yields

F(u,U ∪ V ) ≤ lim inf
n→+∞

F(un, U ∪ V ) ≤ F(u,U) + F(u, V ),

and hence the subadditivity of F . Therefore, by the measure-property criterion of De Giorgi
and Letta, F(u, ·) is the restriction to A(Ω) of a Borel measure on Ω (see [13, Theorem 14.23]).

Appealing to Propositions 3.1 and 3.3, now we prove that F ′′ is inner regular on the class of all
open subsets of Ω with Lipschitz boundary. Indeed, let G : SBV 2(Ω)∩L∞(Ω)×A(Ω) −→ [0,+∞)
be the functional defined as

G(u,U) :=

∫

U

|∇u|2 dx+

∫

Su∩U

(1 + [u]2)dH1,

and fix W ∈ AL(Ω). Since G is a measure, for every η > 0 there exists a compact set K ⊂ W
such that W \K ∈ AL(Ω) and G(u,W \K) < η.

Choose U,U ′ ∈ A(Ω) satisfying

K ⊂ U ′ ⊂⊂ U ⊂⊂W

and set V := W \K.
Recalling that F ′′ is increasing, Proposition 3.1 easily yields

F ′′(u,W ) ≤ F ′′(u,U ′ ∪ V ) ≤ F ′′(u,U) + F ′′(u, V ) = F ′′(u,U) + F ′′(u,W \K).

Moreover, by the definition of F ′′
− and Proposition 3.3 we have

F ′′(u,W ) ≤ F ′′
−(u,W ) + C G(u,W \K) ≤ F ′′

−(u,W ) + Cη,

for some C > 0. Hence by the arbitrariness of η we get

F ′′(u,W ) ≤ F ′′
−(u,W ) for every W ∈ AL(Ω), u ∈ SBV 2(Ω) ∩ L∞(Ω).

Invoking the L1(Ω) lower semicontinuity of F ′′, the above inequality can be recovered on the
whole SBV 2(Ω) with the usual truncation argument. Therefore, as the opposite inequality is
trivial, we may deduce that F ′′(u, ·) is inner regular on the class of all open subsets of Ω with
Lipschitz boundary, hence by (3.17)

F(u,U) = F ′(u,U) = F ′′(u,U),

for all U ∈ AL(Ω) and for every u ∈ SBV 2(Ω). Thus, the complete proof is achieved. �

In the next proposition we relax estimate (3.8) and we show that the restriction of F ′′ to
SBV 2(Ω) ×AL(Ω) satisfies a bound from above similar to (4.1).

Proposition 3.5 (Upper bound). There exists β > 0 such that

F ′′(u,U) ≤
∫

U

|∇u|2 dx+ β

∫

Su∩U

(1 + |[u]|)dH1, (3.18)

for every U ∈ AL(Ω) and for every u ∈ SBV 2(Ω).
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Proof. We fix U ∈ AL(Ω); since F ′′(·, U) is lower semicontinuous in L1(Ω), by a truncation
argument it is enough to prove (3.18) when u ∈ SBV 2(Ω) ∩ L∞(Ω).

Moreover, in view of Lemma 3.2 and of the locality of F ′′, we may restrict ourselves to
showing that

F ′′(u,U) ≤
∫

U

|∇u|2 dx+ β

∫

L∩U

(1 + |[u]|)dH1,

for u ∈ W(R).
To simplify the exposition, we additionally assume that L is a single segment; the general

case follows easily. Then, using the same notation employed in Proposition 3.3, Step 2 we have

u =

{
u⊖ in R⊖

u⊕ in R⊕.

Let n ≥ 1, we define a sequence (uj) as

uj :=





u⊖ in R⊖

u⊖ +
i

n
(u⊕ − u⊖) in T i

j , i = 1, . . . , n

u⊕ in R⊕ \ ⋃n
i=1 T

i
j ,

where T i
j (i = 1, . . . , n) are the “thin” open rectangles in Figure 6.

R⊖

R⊕

u⊖

u⊕

L

n/j

1/j

T i
j

Figure 6. Construction of the function uj .

Clearly, uj ∈ SBV 2(R) ∩ L∞(R), Suj
⊆ Lj, where Lj is given by the union of L with the

sides of the rectangles T i
j , for i = 1, . . . , n, and uj ∈ W 2,∞(R \ Lj). Moreover, by definition of

uj and by virtue of its regularity, it is easy to check that the following conditions are satisfied:

uj → u strongly in L1(R),

∇uj → ∇u strongly in L2(R; R2),

lim
j→+∞

∫

Lj

(1 + [uj]
2) dH1 =

∫

L

n
(
1 +

[u]2

n2

)
dH1.

(3.19)
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On the other hand, Proposition 3.3 and Theorem 3.4 ensure that

F(uj , V ) ≤
∫

V

|∇uj |2 dx+ β

∫

Suj
∩V

(1 + [uj ]
2)dH1

≤
∫

V

|∇uj |2 dx+ β

∫

Lj∩V

(1 + [uj ]
2)dH1,

for every V ∈ A(Ω). Therefore, the L1(Ω) lower semicontinuity of F and (3.19) directly yield

F(u, V ) ≤
∫

V

|∇u|2 dx+ β

∫

L∩V

n
(
1 +

[u]2

n2

)
dH1, (3.20)

for every V ∈ A(Ω) and for every n ≥ 1.
In view of Theorem 3.4 we know that we may extend F(u, ·) to a measure on B(Ω) as follows

F∗(u,B) := inf{F(u, V ) : B ⊆ V, V ∈ A(Ω)}, for every B ∈ B(Ω).

Then, setting

fn(x) := n
(
1 +

[u]2(x)

n2

)
for x ∈ L, n ≥ 1

by (3.20) we deduce

F∗(u,B) ≤
∫

B

|∇u|2 dx+ β

∫

L∩B

fn dH1, (3.21)

for every B ∈ B(Ω) and for every n ≥ 1.
Let N ≥ 1 be an integer; there exists a Borel partition {Sn}n=1,...,N , of L such that

fn(x) = min
1≤i≤N

fi(x), for every x ∈ Sn, n = 1, . . . , N.

Hence, for every B ∈ B(Ω) we have

F∗(u,B) = F∗
(
u, (B \ L) ∪

N⋃

i=1

(Si ∩B)
)

= F∗(u,B \ L) +

N∑

i=1

F∗(u, Si ∩B)

≤
∫

B

|∇u|2 dx+

N∑

i=1

β

∫

Si∩B

fi dH1,

the last inequality being a consequence of (3.21). Then, by the definition of Si and fi we get

F∗(u,B) ≤
∫

B

|∇u|2 dx+ β

∫

L∩B

min
1≤n≤N

fn dH1

=

∫

B

|∇u|2 dx+ β

∫

L∩B

min
1≤n≤N

n
(
1 +

[u]2

n2

)
dH1,

(3.22)

for every B ∈ B(Ω) and for every N ≥ 1.
Now let N ≥ ‖u‖L∞(R)+1; for any t ∈ R such that |t| ≤ ‖u‖L∞(R), using as a test n = ⌊|t|⌋+1

we find

min
1≤n≤N

n
(
1 +

t2

n2

)
≤ 1 + 2|t|,
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this combined with (3.22) yields

F∗(u,B) ≤
∫

B

|∇u|2 dx+ β

∫

L∩B

(1 + 2|[u]|)dH1.

Finally, choosing B = U ∈ AL(Ω) and appealing to Theorem 3.4 we obtain the thesis. �

Remark 3.6. Proposition 3.5, combined with the trivial bound MS ≤ F ′ and the inner regu-
larity of MS(u, ·), easily yields

MS(u,U) ≤ F(u,U) ≤
∫

U

|∇u|2 dx+ β

∫

Su∩U

(1 + |[u]|) dH1

for every u ∈ SBV 2(Ω), U ∈ A(Ω). Hence, from this estimate and from Theorem 3.4 we may
deduce that for u ∈ SBV 2(Ω), F(u, ·) is the restriction to A(Ω) of a Radon measure on Ω.

4. Integral representation on SBV 2(Ω)

On account of Theorem 3.4, we now complete the proof of Theorem 2.2, that is we identify the
functional F . Therefore, we assume that a sequence (εk) of positive numbers converging to 0 is
given, such that for every U ∈ A(Ω)

F(·, U) = F ′
−(·, U) = F ′′

−(·, U) on SBV 2(Ω).

For the reader’s convenience we recall here the statement of the representation theorem we are
going to employ.

The following theorem is a particular case of the representation result [8, Theorem 1] by
Bouchitté, Fonseca, Leoni, and Mascarenhas (see also the earlier work by Braides and Chiadò
Piat [9]).

Theorem 4.1. Let E : SBV 2(Ω) × A(Ω) −→ [0,+∞] be a functional satisfying the following
conditions:

(i) (locality) E(u,U) = E(v, U) whenever u = v L2-a.e. on U ∈ A(Ω);
(ii) (measure property) for every u ∈ SBV 2(Ω) the set function E(u, ·) is the restriction to

A(Ω) of a Radon measure;
(iii) (lower semicontinuity) for all U ∈ A(Ω) the functional E(·, U) is lower semicontinuous

on SBV 2(Ω) with respect to the strong L1(Ω)-topology;
(iv) (growth condition) there exists C > 0 such that for every (u,U) ∈ SBV 2(Ω) ×A(Ω)

1

C

( ∫

U

|∇u|2 dx+

∫

Su∩U

(1 + |[u]|)dH1
)
≤ E(u,U)

≤ C
(∫

U

(1 + |∇u|2) dx+

∫

Su∩U

(1 + |[u]|)dH1
)
. (4.1)

Then, there exist Borel functions f0 : Ω×R×R
2 −→ [0,+∞) and g0 : Ω×R×R×S1 −→ [0,+∞)

such that

E(u,U) =

∫

U

f0(x, u,∇u) dx+

∫

Su∩U

g0(x, u
+, u−, νu)dH1

for every pair (u,U) ∈ SBV 2(Ω)×A(Ω). Moreover, the following derivation formulas hold true

f0(y, s, ξ) = lim sup
ρ→0+

m(s+ ξ(· − y);Qν
ρ(y))

ρ2
(4.2)
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g0(y, a, b, ν) = lim sup
ρ→0+

m(uν,y
a,b ;Q

ν
ρ(y))

ρ
, (4.3)

for every y ∈ Ω, s, a, b ∈ R, ξ ∈ R
2, ν ∈ S1, where for every u ∈ SBV 2(Ω) and U ∈ A(Ω)

m(u;U) := inf{E(v, U) : v ∈ SBV 2(U), v = u in a neighborhood of ∂U}, (4.4)

and

uν,y
a,b(x) :=

{
a if (x− y) · ν > 0

b if (x− y) · ν ≤ 0.

As uν,y
a,b = u−ν,y

b,a L2-a.e. in Qν
ρ(y) = Q−ν

ρ (y), we have g0(y, a, b, ν) = g0(y, b, a,−ν) for every

y ∈ Ω, a, b ∈ R, ν ∈ S1.

Let U ∈ A(Ω) and y ∈ R
2; we define the set τyU := U + y and for u ∈ L1(U) we define the

function τyu ∈ L1(τyU) as τyu(x) := u(x− y).
Now we are ready to state the following lemma.

Lemma 4.2 (Translational invariance of the Γ-limit). Let (εk) be a sequence of positive numbers
converging to 0 such that for every U ∈ AL(Ω)

F(·, U) = F ′(·, U) = F ′′(·, U) on SBV 2(Ω).

Then, for every u ∈ SBV 2(Ω)

(1) (translation invariance in u) F(u+ s, U) = F(u,U), for all s ∈ R, U ∈ AL(Ω);
(2) (translation invariance in x) F(v, τyU) = F(u,U), for every y ∈ R

2, for every U ∈ AL(Ω)
such that τyU ⊂⊂ Ω, and for every v ∈ SBV 2(Ω) such that v = τyu a.e. on τyU .

Proof. We start proving (1). For fixed U ∈ AL(Ω) and u ∈ SBV 2(Ω), let (uk) ⊂ L1(Ω)
with uk ∈ SBV 2(U), Suk

∩ U ⊆ Ωεk
be a sequence converging to u in L1(Ω), and such that

limk→+∞Fεk
(uk, U) = F(u,U). Since for s ∈ R, (uk + s) converges to u+ s in L1(Ω), we get

F(u+ s, U) ≤ lim inf
k→+∞

Fεk
(uk + s, U) = lim

k→+∞
Fεk

(uk, U) = F(u,U).

On the other hand, F(u,U) = F((u+ s) + (−s), U) ≤ F((u + s), U).

Now we prove (2). For every fixed y ∈ R
2 and U ∈ AL(Ω) such that τyU ⊂⊂ Ω, let

yk :=
⌊

y
εk

⌋
εk (here the integer part is meant component-wise) then τyk

U ⊂⊂ Ω, for k large

enough.
Let uk be as in the proof of (1) and let vk ∈ L1(Ω) be such that vk := τyk

uk in τyk
U . Then,

vk ∈ SBV 2(τyk
U) ∩ L1(Ω) and Svk

∩ τyk
U ⊆ Ωεk

.
Taking into account the definition of Fεk

, a change of variable directly yields

Fεk
(uk, U) = Fεk

(vk, τyk
U).

Let V ⊂⊂ U ; for k sufficiently large we may assume that τyV ⊆ τyk
U , hence in view of the

nondeceasing character of Fε we have

Fεk
(uk, U) ≥ Fεk

(vk, τyV ). (4.5)

Setting

ṽk :=

{
vk in τyV,

τyu elsewhere in Ω,
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since ṽk → τyu in L1(Ω), taking the liminf of both sides of (4.5), in view of the locality of Fεk
,

we get

F(u,U) = lim
k→+∞

Fεk
(uk, U) ≥ lim inf

k→+∞
Fεk

(vk, τyV ) ≥ F(τyu, τyV ).

Then, by the arbitrariness of V ⊂⊂ U and the inner regularity of F we finally obtain

F(u,U) ≥ F(τyu, τyU).

We conclude the proof of (ii) by noticing that F(τyu, τyU) ≥ F(τ−y(τyu), τ−y(τyU)) = F(u,U).
�

Now we are in a position to prove the main result Theorem 2.2.

Proof of Theorem 2.2. To get the proof, we first apply the integral representation result
Theorem 4.1, on SBV 2(Ω), and then we recover the Γ-convergence result on the whole L1(Ω)
by using a truncation argument.

We start noticing that in view of Theorem 3.4 and Remark 3.6, F satisfies hypotheses (i)-(iii)
of Theorem 4.1, as well as the upper bound in hypothesys (iv).

To completely fit the assumptions of Theorem 4.1, we now use a perturbation argument which
permits to recover the growth condition from below required in (iv).

In this respect, we fix σ > 0 and we consider the functionals

Fσ(u,U) := F(u,U) + σ

∫

Su∩U

(1 + |[u]|)dH1.

Then, Fσ satisfies hypotheses (i)-(iv), for every σ > 0. Indeed, (i) and (ii) are trivial, while (iii)
and (iv) follow from Remark 3.6 using Ambrosio’s lower semicontinuity Theorem [2, Theorem
3.7]. Hence, Theorem 4.1 ensures the existence of two Borel functions fσ

0 : Ω×R×R
2 −→ [0,+∞)

and gσ
0 : Ω × R × R × S1 −→ [0,+∞) such that

Fσ(u,U) =

∫

U

fσ
0 (x, u,∇u) dx +

∫

Su∩U

gσ
0 (x, u+, u−, νu)dH1

for every u ∈ SBV 2(Ω), U ∈ A(Ω).
By virtue of Lemma 4.2, and in view of (4.2)-(4.3), we may conclude that both fσ

0 and gσ
0

are independent of x, that fσ
0 does not depend on u, and that gσ

0 depends on (u+, u−) only
through their difference [u]; i.e., fσ

0 (y, s, ξ) = fσ(ξ) and gσ
0 (y, a, b, ν) = gσ(a − b, ν) for some

Borel functions fσ : R
2 −→ [0,+∞), gσ : R × S1 −→ [0,+∞). Moreover, setting uξ(x) := ξ · x,

the growth conditions on F immediately yield

|ξ|2L2(Ω) ≤ fσ(ξ)L2(Ω) = Fσ(uξ,Ω) ≤ |ξ|2L2(Ω), ∀ ξ ∈ R
2

hence fσ(ξ) = |ξ|2. On the other hand, by construction, the family (gσ)σ>0 is decreasing as σ
decreases, therefore setting g := limσ→0+ gσ, by the pointwise convergence of (Fσ)σ>0 to F and
the Monotone Convergence Theorem, we get

F(u,U) =

∫

U

|∇u|2 dx+

∫

Su∩U

g([u], νu)dH1 (4.6)

for every u ∈ SBV 2(Ω), U ∈ A(Ω).
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To get the bounds (2.4) on g, we let y ∈ Ω, ν ∈ S1, choose ρ > 0 such that Qν
ρ(y) ⊂ Ω, and

set

uν,y
t (x) :=

{
t if (x− y) · ν > 0

0 if (x− y) · ν ≤ 0,

hence

g(t, ν)ρ = F(uν,y
t , Qν

ρ(y)) = Γ- lim
k→+∞

Fεk
(uν,y

t , Qν
ρ(y)).

Then, the upper bound on g directly follows from Proposition 3.5, while the lower bound is
a consequence of [5, Theorem 3.1] (see also [5, Remark 3.3]) combined with the trivial bound
MS ≤ F .

We now prove that for every fixed ν ∈ S1, g(·, ν) is nondecreasing on (0,+∞).
Let 0 < t1 < t2, y ∈ Ω and ρ > 0 be such that Qν

ρ(y) ⊂ Ω; we have

g(t1, ν)ρ = F(uν,y
t1
, Qν

ρ(y)) and g(t2, ν)ρ = F(uν,y
t2
, Qν

ρ(y)) = F
( t2
t1
uν,y

t1
, Qν

ρ(y)
)
.

Let (vk) ⊂ SBV 2(Qν
ρ(y)) ∩ L1(Ω) be a sequence such that Svk

∩ Qν
ρ(y) ⊆ Ωεk

, vk → uν,y
t2

in

L1(Ω), and Fεk
(vk, Q

ν
ρ(y)) → F(uν,y

t2
, Qν

ρ(y)). Then, if we set uk := t1
t2
vk we get

F(uν,y
t1
, Qν

ρ(y)) ≤ lim inf
k→+∞

Fεk
(uk, Q

ν
ρ(y)) = lim inf

k→+∞
Fεk

(t1
t2
vk, Q

ν
ρ(y)

)

≤ lim sup
k→+∞

Fεk
(vk, Q

ν
ρ(y)) = F(uν,y

t2
, Qν

ρ(y)).

Hence, in view of Theorem 3.4, so far we have proved that for every U ∈ AL(Ω), and for every
u ∈ SBV 2(Ω)

Γ- lim
k→+∞

Fεk
(u,U) = F(u,U) =

∫

U

|∇u|2 dx+

∫

Su∩U

g([u], νu) dH1;

thus, in particular choosing U = Ω

Γ- lim
k→+∞

Fεk
(u) = F(u,Ω) =

∫

Ω
|∇u|2 dx+

∫

Su

g([u], νu) dH1, (4.7)

on SBV 2(Ω).
To complete the proof it remains to show that for every u ∈ L1(Ω)

F ′(u,Ω) < +∞ =⇒ u ∈ SBV 2(Ω). (4.8)

Let u ∈ L1(Ω) with F ′(u,Ω) < +∞. By Remark 2.1 we know that u belongs also to GSBV 2(Ω).
Then, if un := (u ∧ n) ∨ (−n) we have un ∈ SBV 2(Ω), for every n ∈ N.

Appealing to (4.7) and recalling that F ′ decreases by truncation give

F(un,Ω) = F ′(un,Ω) ≤ F ′(u,Ω) < +∞.

Hence, in view of the lower bound on g we may further deduce that
∫

Ω
|∇un|2 dx+

1

2

∫

Sun

(1 + α|[un]|) dH1 ≤ C < +∞, (4.9)

for every n ∈ N and for some C > 0.
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This ensures that (un) is bounded in BV (Ω). As un → u in L1(Ω), we deduce that u ∈ BV (Ω)
and un ⇀ u weakly* in BV (Ω). Finally, the closure theorem of SBV [4, Theorem 4.7] entails
u ∈ SBV 2(Ω). This proves (4.8). �
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[9] A. Braides and V. Chiadò Piat, Integral representation results for functionals defined on SBV (Ω; Rm). J.

Math. Pures Appl. 75 (1996), 595-626.
[10] A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems. Arch. Rational

Mech. Anal. 135 (1996), 297-356.
[11] G. Cortesani, Strong approximation of GSBV functions by piecewise smooth functions. Ann. Univ. Ferrara

Sez. VII (N.S.) 43 (1998), 27-49.
[12] G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies. Nonlinear Anal.

38 (1999), 585-604.
[13] G. Dal Maso, An Introduction to Γ-convergence, Birkhäuser, Boston, 1993.
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