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Abstract. We address the questions (P1), (P2) asked in [Ki-Mü-Šv 03] concerning the structure
of the Rank-1 convex hull of a submanifold K1 ⊂ M3×2 that is related to weak solutions of
the two by two system of Lagrangian equations of elasticity studied by DiPerna [DP 85] with
one entropy augmented. This system serves as a model problem for higher order systems for
which there are only finitely many entropies. The Rank-1 convex hull is of interest in the study
of solutions via convex integration: the Rank-1 convex hull needs to be sufficiently non-trivial
for convex integration to be possible. Such non-triviality is typically shown by embedding a
T4 (Tartar square) into the set; see for example [Mü-Šv 03], [Mü-Ri-Šv 05]. We show that in the
strictly hyperbolic, genuinely nonlinear case considered by DiPerna [DP 85], no T4 configuration
can be embedded into K1.

1. Introduction

There has recently been a lot of progress on a number of outstanding problems in PDE by
reformulating the PDE as a differential inclusion. In [Mü-Šv 96] counter examples to partial
regularity of weak solutions to elliptic systems that arise as the critical point of a strongly
quasiconvex functional were provided 1. This was later extended to polyconvex functionals in
[Sz 04] and parabolic systems in [Mü-Ri-Šv 05]. Prior to this Scheffer [Sc 74] provided counter
examples to related regularity problems. In [De-Sz 09], DeLellis and Szekelyhidi reproved
(and considerably strengthened) the well known result of Scheffer [Sc 93] on weak solutions
to the Euler equation with compact support in space and time, with a much shorter and sim-
pler proof via reformulation as a differential inclusion. Previously Shnirelman [Sh 97] pro-
vided a somewhat simpler proof by a different method. The advance provided by [De-Sz 09]
opened an approach to Onsager’s conjecture which was subsequently studied intensively by
a number of authors [De-Sz 12], [De-Sz 13], [Bu-De-Is-Sz 15], [Is 17], [Is 13] with a final solu-
tion being provided by [Is 18], [Bu-De-Sz-Vi 19]. Further work brings these methods to the
study of the Navier-Stokes equations [Bu-Vi 19]. An excellent recent survey is provided by
[De-Sz 19]. The general term used to describe the method of constructing solutions of PDE
via differential inclusions is convex integration. Indeed the antecedent to many of these results
are the celebrated results of Nash [Na 54], Kuiper [Ku 55] and Gromov [Gr 86].

The purpose of this paper is to contribute to the study of regularity and uniqueness of
entropy solutions of systems of conservation laws via differential inclusions and convex inte-
gration. By this we mean solutions that satisfy (in a distributional sense) entropy inequalities
of the form (η(u))t + (q(u))x ≤ 0 for all entropy/entropy-flux pairs (η, q); see Definition
(36), (37) in Section 11.4, [Ev 10]. The first step in such a program is to consider a PDE
and adjoined entropy inequalities reformulated as a differential inclusion into a submani-
fold K ⊂ Mm×n (the set of m × n matrices) and to determine if K admits a four matrix

1Contrast this with the well known result of Evans [Ev 86] that minimizers do have partial regularity.
1
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configuration known as T4 configuration, or Tartar square 2. We will describe this configu-
ration and its n-matrix variants in more detail in Section 1.2. We study a simple two by
two system that arises from the Lagrangian formulation of elasticity and is augmented by
one entropy/entropy flux pair. This system can be reformulated as a differential inclusion
into a submanifold K1 ⊂ M3×2. The study of this system and its associated submanifold
K1 was initiated by Kirchheim, Müller, Šverák in [Ki-Mü-Šv 03], Section 7. They provided
a hierarchy of properties (P1), (P2), (P3), (P4) and asked for the hypotheses on the system
under which (P1)–(P4) hold. In [Lo-Pe 19] we investigated the system and answered the
question on (P4). Non-technically speaking, the properties (P1)–(P4) concern a hierarchy of
hulls of K1. Non-triviality of the hull associated with (P1), (P2) (the Rank-1 convex hull of
K1) would open the prospect of an infinity of solutions to the differential inclusion into K1.
The hull associated with (P3), (P4) (the polyconvex hull of K1) contains the Rank-1 convex hull
of K1 and the result of [Lo-Pe 19] (see Section 1.2) - specifically that the polyconvex hull is
non-trivial when the system is hyperbolic - opened the possibility that the structure of K1 is
sufficiently rich to allow for an infinity of solutions to the differential inclusion into K1. The
Rank-1 convex hull would be non-trivial if a T4 configuration could be found in K1. Unfor-
tunately we show in this paper that no T4 exists in K1 when the system is hyperbolic and
genuinely nonlinear in the sense of DiPerna [DP 85] (see Theorem 2). This does not rule out
the possibility of embedding n-matrix version of T4 (denoted by Tn) in K1 (as for example
was shown in [Sz 04] for T5) and non-triviality of the Rank-1 convex hull of K1. However,
in establishing non-triviality of the Rank-1 convex hull of a set, an important first step is to
understand the possibility of embedding T4 configurations inside the set; see [Ki-Mü-Šv 03],
Section 3.5, where non-existence of T4 configurations in an important setting is proved, and
Section 6 for close connections between non-triviality of the Rank-1 convex hull and existence
of T4 configurations in certain sets without Rank-1 connections. For this reason we complete
this study of T4 configurations for the set K1.

1.1. Conservation laws. A scalar conversation law in space dimension one for an unknown
function u(x, t) is an equation of the form

ut + ( f (u))x = 0. (1)

It is not hard to see there are infinitely many weak solutions. To select the physically cor-
rect solution, the notion of entropy/entropy flux pair was introduced. This is a pair of func-
tions (η, q) where η is convex and q′ = η′ f ′. If u is a smooth solution to (1) we have that
(η(u))t +(q(u))x = 0. If we regularize the equation (1) by forming uε

t +( f (uε))x = εuε
xx, then

assuming {uε}ε>0 is bounded in L∞ (IR× (0, ∞)), the method of compensated compactness

(see [Ev 90], Chapter 5, Section D) allows us to conclude that uε L1
→ u for some weak solu-

tion u of (1). Further it turns out that div(η(u), q(u)) := (η(u))t + (q(u))x forms a negative
measure for every entropy/entropy flux pair (η, q). We call solutions of (1) that satisfy this
property entropy solutions. For scalar conservation laws at least in space dimensional one this
is the correct notion, namely, entropy solutions enjoy uniqueness, regularity and can even be
described in closed form for sufficiently regular f ; see [Ev 10], Theorem 3 in Section 11.4 and
[Ol 57], Section 3.4.2.

The theory for systems of conservation laws in one space dimension is much more limited.
The two main methods to produce existence of solutions are Bressan’s semigroup method
for (small) BV initial data [Bi-Br 05], [Br-Cr-Pi 00] and the compensated compactness method

2Indeed as noted in [Mü-Šv 03], T4 configurations played an important role in [Sc 74] and seem to have been
discovered independently by a number of authors.
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pioneered by Tartar, Murat and DiPerna [Ta 79], [Ta 83], [Mu 78], [DP 83], [DP 85] and de-
veloped by many others. The compensated compactness method proceeds by finding appro-
priate entropies for the system under consideration and under reasonable assumptions on a
regularizing sequence, proving compactness and hence existence of L∞ solutions that satisfy
an entropy production inequality of an analogous form to the scalar equation. Indeed if we
expect the “physically correct” solution to a system of conservation laws to be the limit of
solutions uε to the system with an additional viscosity term εuε

xx, assuming compactness can
be established as ε→ 0, then the limiting function u will be an entropy solution; see Theorem
2 in Section 11.4, [Ev 10]. For this reason and the fact that it is the correct notion for scalar
conservation laws, we are interested to study the question of uniqueness and regularity of
entropy solutions of systems of conservation laws in one space dimension.

Given the success of the method of convex integration in addressing related questions
for elliptic systems, the Euler equation and the Navier-Stokes equation, a natural goal (al-
ready implicit in [Ki-Mü-Šv 03]) is to extend the scope of such approach to construct counter
examples to uniqueness and regularity for systems of conservation laws 3.

The system chosen for study in [Ki-Mü-Šv 03] is the two by two system of Lagrangian
equations of elasticity given by {

vt − ux = 0,
ut − a(v)x = 0

(2)

for the unknowns u, v and some appropriate function a. This system was studied earlier by
DiPerna [DP 83], [DP 85] under the assumption that a′ > 0, i.e., the system is hyperbolic
and additional assumptions on the sign of a′′. In [DP 83], DiPerna proved existence of solu-
tions to the system (2) using the method of compensated compactness with the help of all
entropy/entropy flux pairs. Possibly motivated by the question of compactness for higher
dimensional systems, in [DP 85], he proved a local existence result when the system is gen-
uinely nonlinear, i.e., a′′ 6= 0 with just two physical entropy/entropy flux pairs. Following
[DP 85] we introduce the natural entropy/entropy flux pair (η1, q1) defined by

η1(u, v) :=
1
2

u2 + F(v), q1(u, v) := −ua(v),

where F is an antiderivative of the function a. Another dual entropy/entropy flux pair (η2, q2)
was also introduced in [DP 85]. We omit the technical formulas for the dual pair since it is
not relevant in this paper. The results in [DP 85] demonstrate that the system (2) augmented
by the two entropy/entropy flux pairs (ηi, qi) is rigid enough for the method of compensated
compactness to work. A natural question is to further understand this system coupled with
just one entropy/entropy flux pair, and in particular, to understand the uniqueness of solu-
tions. For higher order systems, there are only finitely many entropy/entropy flux pairs, and
thus it is of great importance to understand the structure of systems augmented by only a
few entropy/entropy flux pairs. For this reason, the system (2) coupled with (η1, q1) serves
as a model problem and was singled out in [Ki-Mü-Šv 03].

As in [Ki-Mü-Šv 03], we consider weak solutions (u, v) of the following system
vt − ux = 0,
ut − a(v)x = 0,
(η1(u, v))t + (q1(u, v))x ≤ 0.

(3)

3This goal and this approach has been introduced to us by V. Šverák [Šv 16].
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This system can be formulated as a differential inclusion into the set K1
4 given by

K1 :=


 u v

a(v) u
ua(v) 1

2 u2 + F(v)

 : u, v ∈ IR

 . (4)

(See [Ki-Mü-Šv 03], Section 7 for the details.) For the convenience of later discussions, we
define P : IR2 → M3×2 by

P(u, v) :=

 u v
a(v) u

ua(v) 1
2 u2 + F(v)

 . (5)

If there is a way to construct convex integration solutions to the differential inclusion into the
set K1, a consequence would be non-uniqueness of solutions to (3). The construction of the
former would require the Rank-1 convex hull of K1 to be sufficiently large. For this reason,
the questions raised in [Ki-Mü-Šv 03] concern the various hulls of the set K1 and we will
discuss this in more detail in the next subsection.

1.2. Convex integration, Tartar squares, Rank-1 convex and Polyconvex hulls. A basic
building block for non-trivial solutions to a differential inclusion is the existence of Rank-
1 connections within a set K. We say A, B ∈ K are Rank-1 connected if Rank(A − B) = 1.
Restricting to K ⊂ M2×2 for simplicity 5, we see that A, B are Rank-1 connected if and only if
there exists some v ∈ S1 such that Av = Bv. By cutting a square with sides parallel to v and
v⊥ into strips parallel to v, we can construct a Lipschitz mapping u with Du taking the val-
ues A and B alternately in adjacent strips. This mapping u satisfies the differential inclusion
Du ∈ {A, B} and is not affine, and is referred to as a laminate; see [Mü 99], Section 2.1. Given
that this is the most natural way to build a differential inclusion, a natural conjecture might
be that if a set K contains no Rank-1 connections then no non-trivial differential inclusion
into it can be built. This is false and the first hint as to why comes from the Tartar square or
T4 configuration. Identifying diagonal matrices with points in the plane via Π :

( a 0
0 b
)
7→ ( a

b )
we see that diagonal matrices D1, D2 are Rank-1 connected if and only if Π(D1) and Π(D2)
lie on the same vertical or horizontal line. With this in mind it is not hard to see that the set
K := {A1, A2, A3, A4} given by

A1 = −A3 = diag(−1,−3) and A2 = −A4 = diag(−3, 1) (6)

does not have Rank-1 connections. Nevertheless we can construct a sequence {uk} with
the property that dist(Duk,K) → 0 in measure and Duk does not converge in measure; see
Lemma 2.6 in [Mü 99].

It turns out that the heart of this is the fact that the set K defined above forms a T4
configuration and the Rank-1 convex hull of K is non-trivial. More generally, we give

Definition 1. An ordered set of N ≥ 4 matrices {Ti}N
i=1 ⊂ Mm×n without Rank-1 connections is

said to form a TN configuration if there exist matrices Pi, Ci ∈ Mm×n and numbers κi > 1 such that

T1 = P + κ1C1,
T2 = P + C1 + κ2C2,

. . .
TN = P + C1 + C2 + . . . CN−1 + κNCN ,

(7)

4Note that a differential inclusion into set K1 gives a solution to (3) with the inequality replaced by an equality.
5For the general case in Mm×n the construction is the same, simply slightly harder to visualize.
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where Rank(Ci) = 1 for all i and
N

∑
i=1

Ci = 0. (8)

We say that a TN configuration is non-degenerate if it cannot be contained in an affine space of
dimension one.

We say a function f : Mm×n → IR is Rank-1 convex if f (λA + (1− λ)B)≤λ f (A) + (1−
λ) f (B) whenever Rank(A− B) = 1. The Rank-1 convex hull of a compact set K is defined as
(see [Ki-Mü-Šv 03], Section 2)

Krc :=

{
F ∈ Mm×n : f (F) ≤ sup

K
f for all Rank-1 convex f : Mm×n → IR

}
. (9)

For a general set E we set
Erc =

⋃
K⊂E compact

Krc.

Now a celebrated result of Müller and Šverák (see Theorem 1.1 in [Mü-Šv 99]) states that
if Ω is a Lipschitz domain and K ⊂ Mm×n is open and bounded, then there exists a solu-
tion to the differential inclusion Du ∈ K a.e. with u = v on ∂Ω, where v is a piecewise
affine map with Dv ∈ Krc\K 6. Hence a non-trivial solution to the differential inclusion
into K exists. However for applications to PDE, it is not generally the case that the set K
is open. The proofs of [Mü-Šv 03], [Mü-Ri-Šv 05] work by showing that many T4 config-
urations can be embedded into K, specifically T4 configurations that can be perturbed so
that the embedded T4 moves in a “transversal” way. Although a necessary condition for the
existence of (periodic) non-trivial solutions to a differential inclusion into a set K is the non-
triviality of Krc, the latter is not sufficient (for example it is known [Ch-Ki 02] that there is no
non-trivial differential inclusion into {A1, A2, A3, A4}, where Ai are defined in (6), however
{A1, A2, A3, A4}rc 6= {A1, A2, A3, A4}). Despite this, in many or even most circumstances
non-triviality of Krc is enough; see for example the recent interesting work on T5 configura-
tions [Fö-Sz 18].

Thus with a view to constructing non-trivial differential inclusions into K1 defined in (4),
in [Ki-Mü-Šv 03] the authors asked about the condition on the function a such that Krc

1 is
trivial or non-trivial at least locally and this is basically the content of (P1). With respect to
non-triviality this is the hardest of a hierarchy of questions (P1)–(P4). To explain this further
we need to introduce some more concepts. Let P(K) denote the set of probability measures
on Mm×n that are supported on K, and given ν ∈ P(K), let 〈ν, f 〉 :=

∫
f (X)dν(X) and ν̄ be

the barycenter of ν. Following [Ki-Mü-Šv 03], Section 4.2 we define

Mrc(K) := {µ ∈ P(K) : 〈µ, f 〉 ≥ f (µ̄) for all Rank-1 convex functions f } . (10)

One of the most useful characterizations ofKrc for compactK is thatKrc = {µ̄ : µ ∈ Mrc(K)},
see [Ki-Mü-Šv 03], Section 4.2. A particular very useful subclass of Rank-1 convex functions
is the set of Polyconvex functions, which can be expressed as convex functions of minors.
The analog to Krc and Mrc(K) (recall (9), (10)) are the polyconvex hull Kpc and the set of
probability measures Mpc(K) that are defined in exactly the same way but with respect to
polyconvex functions. Since polyconvex functions form a strict subclass of Rank-1 convex
functions, we have the inclusions

Krc ⊂ Kpc andMrc(K) ⊂Mpc(K). (11)

6Here we are stating a more restrictive version of their theorem to avoid some technicalities.
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In [Lo-Pe 19] we named the measures inMpc(K) Null Lagrangian measures and studied neces-
sary and sufficient conditions on subspaces in Mm×n to support non-trivial Null Lagrangian
measures and also question (P4) of [Ki-Mü-Šv 03]. With respect to the latter, we showed that
given (u0, v0) ∈ IR2, if a′(v0) > 0 (the system is hyperbolic) then in any neighborhood U of
P(u0, v0) (recalling (5)), Mpc(U ∩ K1) is non-trivial. On the other hand, if a′(v0) < 0 (the
system is elliptic) then Mpc(U ∩ K1) is trivial (the latter case is to be expected). This result
opens up the hope that for a′(v0) > 0, the set (U ∩K1)

rc could also be non-trivial and a
non-trivial differential inclusion into K1 could be obtained. This would be an important first
result in the study of non-uniqueness of entropy solutions to systems of hyperbolic conser-
vation laws via convex integration. The credit for this question and this formulation belongs
to the authors of [Ki-Mü-Šv 03].

Note that the vast majority of theorems that establish existence of solutions via compen-
sated compactness essentially comes down to showing Mpc(K) consists of Dirac measures
(assuming appropriate bounds on the approximating sequence) where K ⊂ Mm×n is the sub-
manifold defined by the systems and the augmented entropies (just as K1 is defined by (3)).
The only example of compensated compactness that we are aware of that does not proceed
by establishing triviality of Null Lagrangian measures is Šverák’s proof of compactness for
the three well problem based on triviality of the Quasiconvex hull Kqc (see [Mü 99], Section
4.4; this is sandwiched between Krc and Kpc); see page 298 in [Šv 92] and Theorem 2.5 in
[Mü 99] 7. As such for systems for which existence has been established via compensated
compactness, (11) implies that the Rank-1 convex hull of the set K is trivial and there is no
hope to prove non-uniqueness via differential inclusions and convex integration.

So given a system of conservation laws augmented by finitely many entropies, from the
perspective of differential inclusions there are essentially two “levels” at which entropy so-
lutions could be shown to be not a viable notion of solution 8. The first and lower level
is to show that the set K (of the associated differential inclusion) supports non-trivial Null
Lagrangian measures (i.e. Mpc(K) contains measures that are not Diracs). This means that a
proof of triviality of the Quasiconvex hull Kqc is required to construct solutions via compen-
sated compactness methods. Quasiconvex functions are not well understood. Despite some
powerful recent advances in M2×2 [Fa-Sz 08], from the perspective of conservation laws this
would seem to be a very hard (though not impossible) task. If this first level is reached, a
second deeper level is to show that Krc is sufficiently non-trivial that non-trivial solutions
to the differential inclusion Dw ∈ K can be constructed via convex integration. This second
level shows that entropy solutions are not the correct notion since in this case solutions are
wildly non-unique and have no regularity beyond Lipschitzness. Further if Krc could merely
be shown to be non-trivial, this alone wipes out the possibility of establishing the existence
of solutions via compensated compactness since Krc ⊂ Kqc; see equation (4.8) and Theorem
4.7 in [Mü 99]. The first level is represented by questions (P3), (P4) of [Ki-Mü-Šv 03] and
questions (P1), (P2) are directed towards the second level.

In this paper we make the first progress in answering the questions in (P1), (P2) of
[Ki-Mü-Šv 03] regarding the structure of Krc

1 by investigating the possibility of embedding
T4 configurations in K1. If this could be done, an immediate consequence would be the non-
triviality of Krc

1 . Unfortunately our main result shows that no T4 can be embedded into K1

7It is likely that the sharp results of [Fa-Sz 08] could also be used to generate explicit examples in M2×2.
8The two by two system (2) has infinitely many entropies, and it is known from [DP 85] that the method of

compensated compactness works even for the system adjoined by two appropriate entropies. It seems to the authors
of this paper that for two by two systems augmented by infinitely many entropies there is little hope to counter
examples of uniqueness and regularity by differential inclusions and convex integration.
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under the assumptions of hyperbolicity and genuine non-linearity (in the sense of DiPerna
[DP 85]) of the system (2). Specifically, we prove

Theorem 2. Suppose a ∈ C2(IR) is strictly increasing and strictly convex, and let the set K1 be
defined in (4). Then K1 does not contain non-degenerate T4 configurations.

Remark 1. With only very minor modifications, our proof of Theorem 2 also rules out T4
configurations in the set K1 if the function a is strictly increasing and strictly concave.

Theorem 2 easily implies a local version:

Corollary 3. Suppose a ∈ C2(IR) with a′(v0) > 0 and a′′(v0) > 0 for some v0 ∈ IR, then for any
u0 there exists some neighborhood U ⊂ M3×2 of P(u0, v0) (defined by (5)) such that K1 ∩U does not
contain non-degenerate T4 configurations.

Note that the strict sign condition on a′′ is a sufficient condition to rule out Rank-1 connec-
tions in the set K1; see Proposition 4 below and for a local result for a more general system
see Theorem 4.1 in [DP 85]. Thus it is also an important condition from the differential inclu-
sion point of view. Note that if a′′ changes sign, then generically the set K1 contains Rank-1
connections. Specifically, in Section 7 we show

Proposition 4. Let I ⊂ IR be an open interval and let a ∈ C2(I) satisfy a′ > 0 on I. Let P(u, v) be
defined by (5) and define

KI
1 := {P(u, v) : v ∈ I, u ∈ IR} . (12)

If the function a has an isolated inflection point in I, then KI
1 contains Rank-1 connections. Conversely

if a is either strictly convex or strictly concave on I, then KI
1 has no Rank-1 connections.

Remark 2. At the end of [DP 85], Section 5, DiPerna conjectures that “the wave cone associated
with a system of conservation laws that is not genuinely nonlinear cannot be separated from
the constitutive manifold through the introduction of any finite number of entropy forms”.
For the system (2) adjoined by two entropy forms, he remarks in Section 4, Remark 1 and
the end of Section 5 that, if a has one inflection point, then this fact can be easily verified
using the calculations of Section 10. Proposition 4 and its proof can be thought of as a
detailed “exposition/clarification” of these remarks for the system (3). Note further that
if KI

1 contains a Rank-1 connection, then the laminate construction sketched at the start of
Section 1.2 gives counter example to uniqueness of the system (3).

Remark 3. As a consequence of Proposition 4, if a is a strictly increasing real analytic function,
then the set K1 associated to the function a contains Rank-1 connections if and only if a has
an inflection point. It is not clear to the authors whether such equivalence holds true for less
regular functions a.

The conclusion in Theorem 2 is a negative result in that the more exciting direction would
be to establish the existence of T4 inside K1 under the assumptions that the system (2) is
hyperbolic and genuinely nonlinear. However there are a number of examples of convex
integration results into sets that do not admit embedded T4 but do have TN configurations
[Sz 04], [Ch-Ki 02], [Ki 03]. We believe our methods will aid in the search for a TN configu-
ration in K1 under the assumptions of Theorem 2.

Acknowledgments. The first author would like to thank V. Šverák for many very helpful
discussions during a visit to Minnesota in summer of 2018. The idea to study entropy so-
lutions of systems of conservation laws via differential inclusions and convex integration is
from him. Also a number of key ideas used in this paper (in particular Lemmas 10 and 16)
are from Šverák [Šv 18]. The first author also gratefully acknowledges the support of the
Simons foundation, collaboration grant #426900.
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2. Sketch of proof

Let K := {T0, T1, T2, T3} ⊂ K1 (this labeling is more convenient for the proofs) where
Ti = P(ui, vi) and the mapping P is given in (5). Denoting Vk = Tk − T0 for k = 1, 2, 3, our
first observation is

Krc ⊂ T0 + Span {V1, V2, V3} .
This is straightforward because convex functions are Rank-1 convex. Thus Krc ⊂ Conv(K) ⊂
T0 + Span {V1, V2, V3}. One general principle is, if V := Span {V1, V2, V3} does not contain
enough Rank-1 directions, then K does not contain non-degenerate T4. This is the content of
Lemma 10. We need to consider two cases: dim (V) = 2 and dim (V) = 3. The arguments to
deal with the two cases are somewhat different and we will discuss each in turn.

2.1. Case 1: dim (V) = 2. An important observation is that if a linear isomorphism preserves
Rank-1 matrices, then it preserves T4. This is the content of Lemma 7. This fact allows us to
transform the original set K into a simpler set U0

K given by

U0
K :=


 hi ri

a(ri) hi

hia(ri)
h2

i
2 + F(ri)

 : i = 0, 1, 2, 3

 ,

where hi := ui − u0, ri := vi − v0 and the functions a and F are translations of the functions a
and F satisfying the normalization a(0) = F(0) = 0. By relatively straightforward arguments
we can show that, denoting ~h = (h1, h2, h3),~r = (r1, r2, r3) and ~z = (a(r1), a(r2), a(r3)), if
~h ×~r = 0 or ~h ×~z = 0 then U0

K cannot contain a non-degenerate T4. So we can assume
this is not the case. By the assumption dim(V) = 2, we have dim

(
Span{U0

K}
)
= 2. Thus

there exist γ1, γ2, λ1, λ2 and µ1, µ2 such that ri = γ1hi + γ2a(ri), hia(ri) = λ1hi + λ2a(ri) and
h2

i
2 + F(ri) = µ1hi + µ2a(ri). Therefore

Span{U0
K} =

O(s, t) :=

 s γ1s + γ2t
t s

λ1s + λ2t µ1s + µ2t

 : s, t ∈ IR

 .

The Rank-1 directions required to build the T4 are contained in this subspace and must
satisfy M12 = M13 = M23 = 0, where Mij(P) denotes the 2× 2 minor of matrix P ∈ M3×2

which is comprised of the i-th and j-th rows. So

M12 (O(s, t)) = s2 − γ1st− γ2t2.

If the discriminant γ2
1 + 4γ2 ≤ 0 then clearly there are not enough Rank-1 directions in

Span{U0
K} to build non-degenerate T4. So we must have γ2

1 + 4γ2 > 0 and hence s2− γ1st +
γ2t2 = (s− kt) (s− lt) for some k 6= l. Thus the two possible Rank-1 directions are O(kt, t)
and O(lt, t). In order for these two candidates to be Rank-1 directions, they must further
satisfy M13 = M23 = 0. Using the special structures of the three minors, one can show that
O(kt, t) and O(lt, t) cannot be both Rank-1 directions, and thus Span{U0

K} does not contain
enough Rank-1 directions to build non-degenerate T4.

2.2. Case 2: dim (V) = 3. For x, y ∈ IR3, let (x|y) ∈ M3×2 denote the matrix whose columns
are x and y. A crucial observation is that if for some matrix A ∈ M3×3 we can represent
Span{U0

K} in the form

Span{U0
K} =

{
(z|Az) : z ∈ IR3

}
, (13)

then M ∈ Span{U0
K} is Rank-1 if and only if M = (ζ|Aζ) where ζ ∈ IR3 is an eigenvector

of A. So if (13) holds, then the Rank-1 directions are contained in the eigenspaces of A,



ON THE RANK-1 CONVEX HULL OF A SET ARISING FROM A HYPERBOLIC SYSTEM 9

and thus, in the worst case, can form either a two-dimensional subspace and a line, or three
distinct lines. In either of these two cases, there are not enough Rank-1 directions to build
three-dimensional non-degenerate T4 (see Lemma 10 (b); the above discussions are ideas of
V. Šverák communicated to the first author [Šv 18]). So the issue becomes to what extent we
can write Span{U0

K} in the form of (13). We can clearly find matrices A1,A2 ∈ M3×3 such

that Span{U0
K} =

{
(A1z|A2z) : z ∈ IR3

}
. If either A1 or A2 is invertible then Span{U0

K}
can be represented in the form of (13) and we are done (see Lemma 16). Otherwise, letting
(A1|A2) ∈ M3×6 denote the matrix whose first three columns are the columns of A1 and
second three are the columns of A2, we have two further cases to consider.

2.2.1. The case Rank(A1) = Rank(A2) = 2 and Rank ((A1|A2)) = 3 (see Lemma 17). In this
case using the particular forms of A1 and A2 there exist λ1, λ2, µ1, µ2 with (λ1, λ2) 6= (µ1, µ2)
such that

Span{U0
K} =


 ~h ·~α ~r ·~α

~z ·~α ~h ·~α
λ1(~h ·~α) + λ2(~z ·~α) µ1(~r ·~α) + µ2(~h ·~α)

 :~α ∈ IR3

 .

Again the Rank-1 directions must satisfy Mij = 0 for all i 6= j. Similar to Case 1, a careful
but straightforward analysis using the special structure of the three minors and the fact that
(λ1, λ2) 6= (µ1, µ2) shows that there are not enough Rank-1 directions in Span{U0

K} to form
non-degenerate three-dimensional T4.

2.2.2. The case Rank ((A1|A2)) = 2. This turns out to be the hardest case. In this case using
the particular forms of A1 and A2 there exist λ1, λ2 such that

hia(ri) = λ1hi + λ2a(ri),
h2

i
2

+ F(ri) = λ1ri + λ2hi. (14)

Since the third rows of the matrices in U0
K are linear combinations of the first two rows with

the same multiplicity constants, it is not hard to show that it suffices to show the set

Ũ0
K :=

{(
0 0
0 0

)
,
(

h1 r1
a(r1) h1

)
,
(

h2 r2
a(r2) h2

)
,
(

h3 r3
a(r3) h3

)}
does not contain a non-degenerate T4. The set Ũ0

K is a subset of M2×2 and much more is
known about T4 configurations in M2×2. In particular a result in [Sz 05] implies that, labeling
the matrices in Ũ0

K by T̃i, if for some i,

the set {det(T̃i − T̃j)} does not change sign for j 6= i, (15)

then Ũ0
K does not contain a T4. So our goal is to establish (15) for the set Ũ0

K.
Now comes another important idea. The set U0

K is defined with respect to the point
(u0, v0). However, a closer look at the whole process, one observes that there is no unique
role played by (u0, v0) and all previous arguments also apply to the set Uk

K for k = 1, 2, 3,
where the set Uk

K is the analog of U0
K but defined with respect to the point (uk, vk), i.e.,

Uk
K :=


 hk

i rk
i

ak(rk
i ) hk

i

hk
i ak(rk

i )
(hk

i )
2

2 + Fk(rk
i )

 : i = 0, 1, 2, 3

 ,

where hk
i := ui − uk, rk

i := vi − vk and the functions ak and Fk are translations of the functions
a and F satisfying the normalization ak(0) = Fk(0) = 0. This observation allows us the extra
power to assume all (hk

i , rk
i ) satisfies the system (14) with constants λk

1, λk
2 and this turns out

to be crucial.
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To establish (15) we assume without loss of generality v0 < v1 < v2 < v3 (the case of
qualities easily leads to a degenerate case). Let Dk

i := (hk
i )

2 − rk
i ak(rk

i ) and it is not hard to
show Dk

i = Di
k. Now we form the symmetric matrix

S :=


0 D0

1 D0
2 D0

3
D1

0 0 D1
2 D1

3
D2

0 D2
1 0 D2

3
D3

0 D3
1 D3

2 0

 .

Now (15) reinterpreted for matrix S says that if U0
K contains a non-degenerate T4 then every

row and column of S must change sign. In Lemmas 21-23, we establish some elementary
properties about the structure of solutions to a system of the form (14). Using these properties
and the fact 0 < r0

1 < r0
2 < r0

3, any attempt to fill out the entries of matrix S leads to
a configuration in which one row or column of S does not change sign and hence (15) is
satisfied for some i (see Lemma 24).

3. Preliminaries

In what follows, we make the following convention. Given a set K := {Ti}N
i=1 ⊂ Mm×n,

we say that K does not contain a TN configuration if any ordering of the elements in K
cannot form a TN configuration. We first recall the following convenient result which is an
immediate consequence of Proposition 1 in [Sz 05] and characterizes TN configurations in
M2×2.

Proposition 5 ([Sz 05]). Given a set {Ti}N
i=1 ⊂ M2×2, a necessary condition for the set to contain a

TN configuration is that, for every i, the set {det(Ti − Tj) : j 6= i} changes sign.

Lemma 6. Given K := {T1, . . . , TN} ⊂ Mm×n, let

Vk := Tk − T1, k = 2, 3, . . . N, (16)

and denote V := Span {V2, V3, . . . , VN}. Then

Krc ⊂ T1 + V .

Proof. Since convex functions are Rank-1 convex, it follows thatKrc ⊂ Conv(K) ⊂ T1 +V . �

Lemma 7. Let V ⊂ Mm×n be a subspace and L : V → W ⊂ Mp×q be a linear isomorphism with the
property that

Rank(A) = 1 =⇒ Rank (L(A)) = 1. (17)
Then

{T1, . . . , TN} ⊂ V forms a TN =⇒ {L(T1), . . . , L(TN)} ⊂ W forms a TN .
Further if {T1, . . . , TN} is non-degenerate, then so is {L(T1), . . . , L(TN)}.

Proof. Assume K := {T1, . . . , TN} ⊂ V forms a TN , then there exist P ∈ Mm×n, Rank-1
matrices Ci ∈ Mm×n and scalars κi > 1 such that (7) and (8) hold true. Defining Vk’s as in
(16), it is clear that Vk ∈ V and thus it follows from Lemma 6 that

Krc ⊂ T1 + Span {V2, V3, . . . , VN} ⊂ V . (18)

Let the matrices {Pi} be defined by

Pi = P + C1 + · · ·+ Ci−1,

where P and Ci are as in Definition 1 and the index i is counted modulo N. Then as shown in
the paragraph after Definition 7 of [Ki-Mü-Šv 03], we have that each Pi ∈ Krc. In particular,
as

Ci = Pi+1 − Pi, (19)
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we have

Ci
(18),(19)
∈ V . (20)

Now by (17) we have that L(Ci) is Rank-1 and by linearity of L we have that {L(T1), . . . , L(TN)}
satisfies (7) for L(P), L(Ci), κi for i = 1, . . . , N.

If K is non-degenerate, then using the fact that L is an isomorphism for the second equality
we know

dim (Span {L(Ti)− L(T1) : i = 2, 3, . . . , N})
= dim (L (Span {Ti − T1 : i = 2, 3, . . . , N}))
= dim (Span {Ti − T1 : i = 2, 3, . . . , N}) ≥ 2.

Thus {L(T1), . . . , L(TN)} is non-degenerate. �

For the rest of this paper, we will focus on T4 configurations in the set K1 defined in
(4) under the assumption that the function a is monotonic increasing and strictly convex, i.e.,
a′ > 0 and a′′ > 0, unless otherwise specified. Given a set K of four points in K1, for technical
reasons, it is more convenient for most of the time to label the four points as Ti = P(ui, vi)

for i = 0, 1, 2, 3, where recall that the mapping P : IR2 → K1 is defined in (5), and thus

K = {P(u0, v0), P(u1, v1), P(u2, v2), P(u3, v3)}. (21)

We denote by
hi = ui − u0, ri = vi − v0, (22)

and~h = (h1, h2, h3),~r = (r1, r2, r3). It should be pointed out that all the results in the remain-
ing of this paper do not rely on any particular ordering of the four points. We first make
some simplifications.

Lemma 8. Given K as in (21), define Vi := P(ui, vi)− P(u0, v0). There exists an invertible matrix
B ∈ M3×3 such that

BVi =

 hi ri
a(v0 + ri)− a(v0) hi

hi(a(v0 + ri)− a(v0))
h2

i
2 + F(v0 + ri)− F(v0)− a(v0)ri

 . (23)

Proof. Using (5) we write

Vi =

 hi ri
a(v0 + ri)− a(v0) hi

(u0 + hi)a(v0 + ri)− u0a(v0) u0hi +
h2

i
2 + F(v0 + ri)− F(v0)

 .

Multiplying the second row by u0 and subtracting it from the third row we obtain

V̂i =

 hi ri
a(v0 + ri)− a(v0) hi

hia(v0 + ri)
h2

i
2 + F(v0 + ri)− F(v0)

 .

Multiplying the first row by a(v0) and subtracting it from the third row in V̂i we obtain

ˆ̂Vi =

 hi ri
a(v0 + ri)− a(v0) hi

hi(a(v0 + ri)− a(v0))
h2

i
2 + F(v0 + ri)− F(v0)− a(v0)ri

 .

This establishes (23). �
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To simplify notation, for a fixed v ∈ IR, define

av(t) := a(v + t)− a(v), Fv(t) := F(v + t)− F(v)− a(v)t. (24)

Since a′ > 0, a′′ > 0 and F′ = a, it is clear that

av(0) = 0, a′v(t) > 0, a′′v (t) > 0 (25)

and
F′v(t) = av(t), F′′v (t) = a′v(t) > 0, Fv(0) = F′v(0) = 0. (26)

Further, given h, r ∈ IR, define

Qv(h, r) :=

 h r
av(r) h

hav(r) h2

2 + Fv(r)

 . (27)

For K given in (21), we define the associated set U0
K with respect to the point P(u0, v0) by

U0
K := {Qv0(0, 0),Qv0(h1, r1),Qv0(h2, r2),Qv0(h3, r3)} , (28)

where hi, ri are defined in (22). We will need the following fundamental result.

Lemma 9. IfK (given in (21)) contains a non-degenerate T4, then U0
K also contains a non-degenerate

T4.

Proof. Without loss of generality, we may assume that the ordering {T0, T1, T2, T3} forms a
non-degenerate T4. Denoting Ti := P(ui, vi) and Vi = Ti − T0, it is clear that {0, V1, V2, V3} ⊂
M3×2 forms a non-degenerate T4. Now we define V := Span{V1, V2, V3} and the linear map-
ping L : V → M3×2 by L(X) = BX, where B ∈ M3×3 is the invertible matrix found in Lemma
8. Since the mapping L corresponds to row operations, it is clearly a linear isomorphism
satisfying (17). The lemma follows from Lemmas 7 and 8. �

4. Non-existence of T4 in some special cases

In this section, given K as in (21), we show that the four points cannot contain a non-
degenerate T4 if the vectors~h and~r defined in (22) satisfy certain special relations. By Lemma
9, it is sufficient to show that the set U0

K defined in (28) cannot contain a non-degenerate T4.
To simplify notation, when there is no risk of confusion, we omit the dependence of the
mapping Qv and the functions av, Fv on v. Let

ΛR :=
{

A ∈ M3×2 : Rank(A) = 1
}

,

i.e., the cone of all Rank-1 matrices in M3×2.

Lemma 10. Let U0
K be defined by (28).

(a) If dim
(
Span{U0

K}
)
= 2 and ΛR ∩ Span{U0

K} consists of a single line then U0
K cannot

contain a non-degenerate T4.
(b) If dim

(
Span{U0

K}
)
= 3 and ΛR ∩ Span{U0

K} either consists of at most three distinct lines
or a two-dimensional plane and a line, then U0

K cannot contain a non-degenerate T4.

Proof. The proof of (a) is trivial. We focus on (b) and assume dim
(
Span{U0

K}
)
= 3. Suppose

ΛR ∩ Span{U0
K} consists of three distinct lines and without loss of generality assume that U0

K
with the given ordering forms a non-degenerate T4, then there exist Ci ∈ ΛR, i = 0, 1, 2, 3, P ∈
M3×2, κi > 1 such that (7) and (8) hold true. By Lemma 6 and (20) we have Ci ∈ ΛR ∩
Span{U0

K}. Thus, for some i0 6= i1 ∈ {0, 1, 2, 3}, there exists λ 6= 0 such that Ci1 = λCi0 . Let
i2, i3 be such that {i2, i3} = {0, 1, 2, 3} \ {i0, i1}. Equation (8) then becomes

(1+λ)Ci0 + Ci2 + Ci3 = 0. (29)
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So the matrices Ci0 , Ci2 , Ci3 are linearly dependent and their span forms a subspace V of
dimension at most two. It follows from (7) that

U0
K ⊂ P + V . (30)

Now since Q(0, 0) = 0 ∈ P + V , it is clear that P + V is a subspace of dimension at most two,
and this contradicts our assumption that dim

(
Span{U0

K}
)
= 3.

Next suppose ΛR ∩ Span{U0
K} consists of a two-dimensional plane W and a single line

L * W and again assume U0
K with the given ordering forms a non-degenerate T4. Let

Ci, P, κi be as above. If Ci ∈ W for all i, then similar to (30) we have U0
K ⊂ P +W and thus

dim
(
Span{U0

K}
)
≤ 2, which is a contradiction. Let i0 ∈ {0, 1, 2, 3} be such that Ci0 ∈ L. If

Ci ∈ W for all i 6= i0, then (8) implies Ci0 = −∑i 6=i0 Ci ∈ W , which is a contradiction. So
there exists i1 ∈ {0, 1, 2, 3} \ {i0} such that Ci1 ∈ L and thus Ci1 = λCi0 for some λ 6= 0. Thus
equation (29) must be satisfied and arguing exactly as in the last paragraph this contradicts
the assumption that dim

(
Span{U0

K}
)
= 3. This completes the proof. �

For the rest of this paper, besides the notations ~h = (h1, h2, h3),~r = (r1, r2, r3), we will
further use

~z := (a(r1), a(r2), a(r3)) , ~y := (h1a(r1), h2a(r2), h3a(r3)) , (31)

and

~w :=

(
h2

1
2

+ F(r1),
h2

2
2

+ F(r2),
h2

3
2

+ F(r3)

)
. (32)

And we will use (·̂) to denote two-dimensional vectors.

Lemma 11. Let U0
K be defined by (28). If~h = 0 or~r = 0, then U0

K cannot contain a non-degenerate
T4.

Proof. Case 1. We start by considering the case~r = 0.
Proof of Case 1. First note that for i1 6= i2 ∈ {1, 2, 3} we have hi1 6= hi2 since other-

wise Card
(
U0
K
)
≤ 3. For the same reason we have hi 6= 0 for any i = 1, 2, 3. Now

det
(

h1 h2
h2

1 h2
2

)
= h1h2(h2− h1) 6= 0 and thus

(
h1

h2
1/2

)
and

(
h2

h2
2/2

)
are linearly indepen-

dent. Let ĥ := (h1, h2) and ŵ =

(
h2

1
2 , h2

2
2

)
. Since

(
h3

h2
3/2

)
∈ Span

{(
h1

h2
1/2

)
,
(

h2
h2

2/2

)}
,

we have

Span{U0
K}

(28),(27)
= Span


 h1 0

0 h1

0 h2
1

2

 ,

 h2 0
0 h2

0 h2
2

2




=


 ĥ · α̂ 0

0 ĥ · α̂
0 ŵ · α̂

 : α̂ ∈ IR2

 .

Note that Rank

 ĥ · α̂ 0
0 ĥ · α̂
0 ŵ · α̂

 = 1 if and only if ĥ · α̂ = 0. So there is only one Rank-1 line

inside Span{U0
K} and thus Lemma 10 (a) completes the proof in Case 1.

Case 2. We consider the case where~h = 0 and dim
(
Span{U0

K}
)
= 2.
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Proof of Case 2. Now we have

Q(0, ri)
(27)
=

 0 ri
a(ri) 0

0 F(ri)

 .

Without loss of generality, assume that

Span{U0
K} = Span


 0 r1

a(r1) 0
0 F(r1)

 ,

 0 r2
a(r2) 0

0 F(r2)


=


 0 r̂ · α̂

ẑ · α̂ 0
0 ŵ · α̂

 : α̂ ∈ IR2

 . (33)

We claim that
r̂ and ŵ are linearly independent. (34)

Suppose not, then there exists λ 6= 0 such that

F(ri) = λri for i = 1, 2,

and therefore ri is a root of g(t) := F(t)− λt. Note that g′(t) = a(t)− λ and g′′(t) = a′(t) > 0
by (25), and thus the function g is strictly convex and has at most two roots. It is clear that
g(0) = 0 using (26), and thus r1 = 0 or r2 = 0 which as in Case 1 implies Card

(
U0
K
)
≤ 3 and

is a contradiction. So (34) is established. Note that there are only two non-trivial minors in
Span{U0

K}, namely,

M1 = (r̂ · α̂)(ẑ · α̂) and M2 = (ẑ · α̂)(ŵ · α̂).
So the Rank-1 directions must satisfy M1 = M2 = 0. This requires either

ẑ · α̂ = 0 (35)

or
r̂ · α̂ = 0 and ŵ · α̂ = 0. (36)

In the latter case, because of (34), there is no Rank-1 direction. Clearly (recalling (31))
ẑ 6= 0 ∈ IR2, hence there is only one Rank-1 direction in Span{U0

K} from the equation
(35). We appeal to Lemma 10 (a) again to complete Case 2.

Case 3. We consider the case where~h = 0 and dim
(
Span{U0

K}
)
= 3.

Proof of Case 3. Following exactly the same lines as in Case 2, we have an analogous expres-
sion for Span{U0

K} as in (33) with two-dimensional vectors replaced by three-dimensional
vectors, and~r and ~w are linearly independent. As in (35) and (36), the Rank-1 directions in
Span{U0

K} must satisfy
~z ·~α = 0

or
~r ·~α = 0 and ~w ·~α = 0.

In the first case, the Rank-1 directions form a two-dimensional plane. In the second case, as
~r and ~w are linearly independent, there is only one Rank-1 line. So the entire set of Rank-1
directions in Span{U0

K} is the union of a two-dimensional plane and a line, and thus we
apply Lemma 10 (b) to finish the proof. �

Lemma 12. Let U0
K be defined by (28). Recalling (31), if~h×~r = 0 or~h×~z = 0, then

U0
K cannot contain a non-degenerate T4. (37)
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Proof. Step 1. We will show (37) under the assumption~h×~z = 0.

Proof of Step 1. We may assume that ~h 6= 0 and~r 6= 0 by Lemma 11 and hence ~z
(31)
6= 0. So

there exists some λ 6= 0 such that
~z = λ~h. (38)

Thus

Q(hi, ri)
(27)
=

 hi ri
λhi hi

λh2
i

h2
i

2 + F(ri)

 for i = 1, 2, 3. (39)

First assume that dim
(
Span{U0

K}
)
= 2. Without loss of generality assume that Q(h1, r1)

and Q(h2, r2) are linearly independent and thus (recalling (31) and (32))

Span{U0
K} =


 ĥ · α̂ r̂ · α̂

λĥ · α̂ ĥ · α̂
λ p̂ · α̂ ŵ · α̂

 : α̂ ∈ IR2

 , (40)

where p̂ = (h2
1, h2

2). If r̂ × ĥ = 0, then ĥ = µr̂ for some µ 6= 0 and r1, r2 are solutions of

a(t)
(38),(31)

= λµt. However, as we have seen before since a is strictly convex, the equation has
at most one non-trivial solution. If ri = 0 for some i, then hi = µri = 0; or if r1 = r2, we
have h1 = h2. In both cases from (39) we have Card

(
U0
K
)
≤ 3. Similar arguments using the

convexity of the square function show that Card
(
U0
K
)
≤ 3 if p̂× ĥ = 0. So we can assume

that
r̂× ĥ 6= 0, p̂× ĥ 6= 0. (41)

Note that the three minors in Span{U0
K} are

M1 = (ĥ · α̂)2 − λ(ĥ · α̂)(r̂ · α̂), (42)

M2 = (ĥ · α̂)(ŵ · α̂)− λ(r̂ · α̂)( p̂ · α̂), (43)
and

M3 = λ(ĥ · α̂)(ŵ · α̂)− λ(ĥ · α̂)( p̂ · α̂). (44)

The Rank-1 directions in Span{U0
K} must satisfy M1 = M2 = M3 = 0. From M1 = 0, we

need ĥ · α̂ = 0 or ĥ · α̂ = λr̂ · α̂. When ĥ · α̂ = 0, it follows from M2 = 0 that r̂ · α̂ = 0 or
p̂ · α̂ = 0. Recall that we have (41). Hence in this case we always have α̂ = 0 and thus there
is no Rank-1 direction. When ĥ · α̂ = λr̂ · α̂, we have (ĥ − λr̂) · α̂ = 0. By (41) we know
ĥ − λr̂ 6= 0, and hence there is at most one Rank-1 direction. Putting the above together,
when dim

(
Span{U0

K}
)
= 2, there is at most one Rank-1 direction in Span{U0

K} and thus
Lemma 10 (a) applies.

Now we assume that dim
(
Span{U0

K}
)
= 3. Then the expressions (40) and (42)-(44) still

hold with two-dimensional vectors replaced by three-dimensional vectors. Following exactly
the same lines of argument as above, we may assume

~r×~h 6= 0, ~p×~h 6= 0. (45)

The Rank-1 directions still satisfy M1 = M2 = M3 = 0. From M1 = 0, we need ~h ·~α = 0 or
~h ·~α = λ~r ·~α. When~h ·~α = 0, it follows from M2 = 0 that~r ·~α = 0 or ~p ·~α = 0. Because of (45),
there are at most two Rank-1 directions in this case. When ~h ·~α = λ~r ·~α, the set of Rank-1
directions satisfies (~h − λ~r) ·~α = 0, and forms at most a two-dimensional plane thanks to
(45). Note that the Rank-1 direction determined by~h ·~α = 0 and~r ·~α = 0 is contained in this
plane. Thus when dim

(
Span{U0

K}
)
= 3, the Rank-1 directions in Span{U0

K} are contained
in the union of a line and at most a two-dimensional plane. This allows us to use Lemma 10



16 A. LORENT, G. PENG

(b) to conclude the proof of Step 1.

Step 2. We will show (37) under the assumption~h×~r = 0.
Proof of Step 2. There exists some λ 6= 0 such that

~r = λ~h. (46)

Thus

Q(hi, ri)
(27)
=

 hi λhi
a(ri) hi

hia(ri)
h2

i
2 + F(ri)

 for i = 1, 2, 3. (47)

First assume that dim
(
Span{U0

K}
)
= 2. Again assume without loss of generality that

Q(h1, r1) and Q(h2, r2) are linearly independent and we obtain (recalling (31) and (32))

Span{U0
K} =


 ĥ · α̂ λĥ · α̂

ẑ · α̂ ĥ · α̂
ŷ · α̂ ŵ · α̂

 : α̂ ∈ IR2

 . (48)

Similar to the arguments in Step 1, we claim that

ẑ× ĥ = 0 =⇒ Card
(

U0
K

)
≤ 3. (49)

Indeed if ẑ× ĥ = 0 we have ẑ = µĥ for some µ 6= 0, so ẑ
(46)
= µ

λ r̂ and by convexity of a either
this implies ri = 0 for some i or ri0 = ri1 for some i0 6= i1. In either case by (46) and (47), we
have that (49) follows.

In a very similar way, we claim that

ŵ× ĥ = 0 =⇒ Card
(

U0
K

)
≤ 3. (50)

To start with, simple calculations show that the function

t2

2
+ F(λt)− µt is strictly convex for all µ ∈ IR (51)

and hence has at most two solutions, with t = 0 being trivial. If ŵ× ĥ = 0, then there exists
µ 6= 0 such that ŵ = µĥ and in the same way as before, by (51) and (46), we either have hi = 0
for some i or hi0 = hi1 and thus (50) follows.

So by (49), (50) we may assume

ẑ× ĥ 6= 0, ŵ× ĥ 6= 0. (52)

Now the three minors in Span{U0
K} are

M1 = (ĥ · α̂)2 − λ(ĥ · α̂)(ẑ · α̂), (53)

M2 = (ĥ · α̂)(ŵ · α̂)− λ(ĥ · α̂)(ŷ · α̂), (54)
and

M3 = (ẑ · α̂)(ŵ · α̂)− (ĥ · α̂)(ŷ · α̂). (55)

To solve for the Rank-1 directions, from M1 = 0, we need ĥ · α̂ = 0 or ĥ · α̂ = λẑ · α̂. When
ĥ · α̂ = 0, it follows from M3 = 0 that ẑ · α̂ = 0 or ŵ · α̂ = 0, and this produces no Rank-1
directions due to (52). When ĥ · α̂ = λẑ · α̂, we have (ĥ− λẑ) · α̂ = 0 and there is at most one

Rank-1 direction since ĥ− λẑ
(52)
6= 0. Thus we can apply Lemma 10 (a).

The case when dim
(
Span{U0

K}
)
= 3 can be argued in the same manner as in Step 1

following the above lines. We obtain an analogue of (48) where Span{U0
K} is a three-

dimensional subspace parameterized by ~α ∈ IR3. By exactly the same argument we used
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to establish (49) and (50), we have that ~z ×~h 6= 0 and ~w ×~h 6= 0. We obtain the same set
of minors given by (53), (54), (55). Now M1 = 0 implies ~h ·~α = 0 or ~h ·~α = λ~z ·~α. When
~h ·~α = 0, from M3 = 0 we have ~z ·~α = 0 or ~w ·~α = 0 and so the Rank-1 direction forms a
line. When

(
~h− λ~z

)
·~α = 0, since ~h − λ~z 6= 0, the Rank-1 directions form at most a two-

dimensional plane. So by Lemma 10 (b) we are done. This completes the proof of Step 2 and
the lemma. �

5. Non-existence of two-dimensional T4

In this section we show that if dim
(
Span{U0

K}
)
= 2 then U0

K cannot contain a non-
degenerate T4. We denote

S0
K :=

 h1 r1 a(r1) h1a(r1)
h2

1
2 + F(r1)

h2 r2 a(r2) h2a(r2)
h2

2
2 + F(r2)

h3 r3 a(r3) h3a(r3)
h2

3
2 + F(r3)

 . (56)

Lemma 13. Let U0
K be defined by (28) and S0

K be defined by (56), then

Rank(S0
K) = p⇐⇒ dim

(
Span{U0

K}
)
= p for p = 2, 3.

Proof. Writing out the entries of Q(hi, ri) as the rows of a matrix we have that

dim (Span {Q(hi, ri) : i = 1, 2, 3}) = p

is equivalent to

Rank

 h1 a(r1) h1a(r1) r1 h1
h2

1
2 + F(r1)

h2 a(r2) h2a(r2) r2 h2
h2

2
2 + F(r2)

h3 a(r3) h3a(r3) r3 h3
h2

3
2 + F(r3)

 = p.

It is immediate that this is equivalent to Rank(S0
K) = p for p = 2, 3. �

Theorem 14. Let U0
K be defined by (28). If dim

(
Span{U0

K}
)
= 2 then U0

K cannot contain a
non-degenerate T4.

Proof. By Lemma 13, we know that Rank(S0
K) = 2. Using Lemma 12, we may assume that

~h ×~r 6= 0 and ~h ×~z 6= 0. In particular, the first and second columns in S0
K are linearly

independent. So there exist γ1, γ2, λ1, λ2 and µ1, µ2 such that

ri = γ1hi + γ2a(ri), (57)

hia(ri) = λ1hi + λ2a(ri), (58)
and

h2
i

2
+ F(ri) = µ1hi + µ2a(ri). (59)

It follows that

Span{U0
K}

(27),(28)
=


 s γ1s + γ2t

t s
λ1s + λ2t µ1s + µ2t

 : s, t ∈ IR

 .

The three minors in Span{U0
K} are

M1 = s2 − γ1st− γ2t2, (60)
M2 = s (µ1s + µ2t)− (γ1s + γ2t) (λ1s + λ2t)

= (µ1 − γ1λ1) s2 + (µ2 − γ1λ2 − γ2λ1) st− γ2λ2t2,
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and
M3 = t (µ1s + µ2t)− s (λ1s + λ2t)

= −λ1s2 + (µ1 − λ2) st + µ2t2.

If γ2
1 + 4γ2 < 0, then (viewing the left hand side as a quadratic in s)

s2 − γ1st− γ2t2 > 0

for all (s, t) 6= (0, 0) and so we see from (60) that Span{U0
K} has no Rank-1 directions. If

γ2
1 + 4γ2 = 0, then M1 =

(
s− γ1t

2

)2
. So s = γ1t

2 produces the only possible Rank-1 direction

in Span{U0
K} and we can apply Lemma 10 (a). So for the rest of the proof we assume that

γ2
1 + 4γ2 > 0, which implies that the equation x2 − γ1x − γ2 = 0 has two distinct solutions

and thus one can write x2 − γ1x − γ2 = (x − k)(x − l) for some k 6= l. It follows that
s2

t2 − γ1
s
t − γ2 = ( s

t − k)( s
t − l) and therefore

s2 − γ1st− γ2t2 = (s− kt) (s− lt) . (61)

The Rank-1 directions in Span{U0
K} require M1 = M2 = M3 = 0. From (61), the only

possible Rank-1 directions in Span{U0
K} must satisfy s = kt or s = lt. Now we check these

two directions.
Note that from (61), we have

γ1 = k + l, γ2 = kl. (62)

When s = kt, plugging this into M2 and M3 and using (62) give

M2 = (µ1 − γ1λ1) k2t2 + (µ2 − γ1λ2 − γ2λ1) kt2 − γ2λ2t2

(62)
=
(

µ1k2 − (k + l)λ1k2 + µ2k− (k + l)λ2k− klλ1k− klλ2

)
t2

=
(
−λ1k2 + (µ1 − λ2) k− 2λ1kl − 2λ2l + µ2

)
kt2

(63)

and
M3 = −λ1k2t2 + (µ1 − λ2) kt2 + µ2t2

=
(
−λ1k2 + (µ1 − λ2)k + µ2

)
t2.

(64)

When s = lt, with k and l switched in (63) and (64) we obtain

M2 =
(
−λ1l2 + (µ1 − λ2) l − 2λ1kl − 2λ2k + µ2

)
lt2 (65)

and
M3 =

(
−λ1l2 + (µ1 − λ2)l + µ2

)
t2. (66)

Note that since~h ∦~r, it is clear from (57) that γ2 6= 0. It then follows from (62) that k 6= 0 and
l 6= 0. If s = kt is a Rank-1 direction in Span{U0

K}, then equations (63) and (64) both equal
zero. Comparing these two expressions, one observes that a necessary condition for s = kt to
be a Rank-1 direction is

2λ1kl + 2λ2l = 0⇐⇒ λ1k + λ2 = 0.
Similarly, comparing (65) with (66), a necessary condition for s = lt to be a Rank-1 direction
is

2λ1kl + 2λ2k = 0⇐⇒ λ1l + λ2 = 0.
Hence, if both s = kt and s = lt are Rank-1 directions in Span{U0

K}, then we would have
λ1k = λ1l. Therefore, if λ1 6= 0, then there is at most one Rank-1 direction in Span{U0

K} and
U0
K cannot contain a non-degenerate T4 by Lemma 10 (a).
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Finally, assume λ1 = 0 and (58) becomes

hia(ri) = λ2a(ri) for i = 1, 2, 3. (67)

We claim that
γ1 = 0 implies Card

(
U0
K

)
≤ 3. (68)

To see this, note that by (57) we have that ~r = (r1, r2, r3) and ~z = (a(r1), a(r2), a(r3)) are
linearly dependent. As the function a is strictly convex, the equation x = γ2a(x) has at most
two distinct solutions with x = 0 trivially one of them. Hence there exist i 6= j ∈ {1, 2, 3}
such that ri = rj. If ri = rj 6= 0, then (67) implies that hi = hj = λ2 and thus Card

(
U0
K
)
≤ 3.

If ri = rj = 0, from (59) we see that hi and hj both solve x2

2 = µ1x, which has at most two
distinct solutions with x = 0 one of them. If hi = 0 or hj = 0, then Q(hi, ri) or Q(hj, rj) is the
same as Q(0, 0); otherwise we have hi = hj and thus Q(hi, ri) = Q(hj, rj). In both cases we
have Card

(
U0
K
)
≤ 3 and thus (68) is established.

Now we assume γ1 6= 0 since otherwise by (68) there is nothing to argue. If a(ri) = 0 for
some i, then ri = 0 and it follows from (57) that γ1hi = 0 which implies that hi = 0. In this
case Q(hi, ri) = Q(0, 0). If a(ri) 6= 0 for all i, then (67) implies that

hi = λ2 for all i. (69)

Now back to (57), ri solves x = γ1λ2 + γ2a(x) for all i = 1, 2, 3. This equation again has at
most two distinct solutions because of the strict convexity of a, and thus we must have ri = rj
for some i 6= j ∈ {1, 2, 3} which together with (69) gives Q(hi, ri) = Q(hj, rj). So we always
have Card

(
U0
K
)
≤ 3 when γ1 6= 0.

In summary, when λ1 = 0, we always have Card
(
U0
K
)
≤ 3. This completes the proof of

the theorem. �

6. Non-existence of three-dimensional T4

In this section we prove non-existence of three-dimensional T4 in K1. Specifically, we will
show

Theorem 15. Let U0
K be defined by (28). If dim

(
Span{U0

K}
)
= 3 then U0

K cannot contain a
non-degenerate T4.

The proof is done in several steps. To this end we define

Al
K :=

 h1 h2 h3
a(r1) a(r2) a(r3)

h1a(r1) h2a(r2) h3a(r3)


and

Ar
K :=

 r1 r2 r3
h1 h2 h3

h2
1

2 + F(r1)
h2

2
2 + F(r2)

h2
3

2 + F(r3)

 .

Further we denote
A0
K :=

(
Al
K Ar

K
)
∈ M3×6.

Lemma 16. Assume dim
(
Span{U0

K}
)
= 3. If Rank(Al

K) = 3 or Rank(Ar
K) = 3, then U0

K
cannot contain a non-degenerate T4.

Proof. Without loss of generality, assume Rank(Al
K) = 3. The case when Rank(Ar

K) = 3 can
be dealt with in exactly the same manner. Note that the subspace

W := Span{Q(h1, r1),Q(h2, r2),Q(h3, r3)}
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can be parameterized by the mapping P : IR3 → M3×2 defined by

P(x) :=
(
Al
Kx Ar

Kx
)

. (70)

Denote by [A∗K]k the k-th row of the matrix A∗K. As Rank(Al
K) = 3, the three rows of Al

K are
linearly independent. Hence we can write

[Ar
K]j =

3

∑
k=1

λjk[Al
K]k

for some λjk ∈ IR. Denoting the matrix B ∈ M3×3 by [B]jk := λjk, we have

BAl
K = Ar

K
and it follows that

Ar
Kx = B

(
Al
Kx
)

(71)

for all x ∈ IR3. So letting y := Al
Kx, it follows that

P(x) = P
((
Al
K

)−1
y
)

(70),(71)
=

(
y By

)
. (72)

Now Rank(P((Al
K)
−1y)) = 1 if and only if y is an eigenvector of the matrix B. So there

are three possibilities to consider: B either has one, two or three distinct eigenvalues. If B
has three distinct eigenvalues, since the dimension of the eigenspace is bounded above by the
multiplicity of the corresponding eigenvalue, B has three linearly independent eigenvectors
and thus ΛR ∩ W consists of three distinct lines. If B has two distinct eigenvalues, the
dimensions of the eigenspaces are either two and one or one and one. Therefore ΛR ∩W
either consists of two distinct lines, or a two-dimensional plane and a line. So in the above
cases, it follows from Lemma 10 that U0

K cannot contain a non-degenerate T4.
Finally suppose B has just one eigenvalue. If the dimension of the eigenspace is less

than three then the situation reduces to the ones already discussed and the conclusion of the
lemma follows. So suppose the dimension of the eigenspace is three, then every vector y is
an eigenvector of B and from (72) we immediately have Rank(P(x)) = 1 for all x ∈ IR3. As
dim (W) = 3, it is clear that P : IR3 → W is a linear isomorphism and hence W ⊂ ΛR. In
particular, Q(hi, ri)−Q(0, 0) = Q(hi, ri) ∈ ΛR and thus U0

K contains Rank-1 connections. By
definition, U0

K is not a T4. �

Lemma 17. Assume dim
(
Span{U0

K}
)
= 3. If Rank(A∗K) = 2 for ∗ = l, r and Rank(A0

K) = 3,
then U0

K cannot contain a non-degenerate T4.

Proof. By Lemma 12 we can assume that ~h×~r 6= 0 and ~h×~z 6= 0 (recall that ~z is defined in
(31)). As Rank(Al

K) = Rank(Ar
K) = 2, there exist λ1, λ2, µ1, µ2 such that

hia(ri) = λ1hi + λ2a(ri) (73)

and
h2

i
2

+ F(ri) = µ1ri + µ2hi. (74)

Therefore we have

Span{U0
K} =


 ~h ·~α ~r ·~α

~z ·~α ~h ·~α
λ1(~h ·~α) + λ2(~z ·~α) µ1(~r ·~α) + µ2(~h ·~α)

 :~α ∈ IR3

 .

Since Rank(A0
K) = 3, we must have

(λ1, λ2) 6= (µ1, µ2), (75)



ON THE RANK-1 CONVEX HULL OF A SET ARISING FROM A HYPERBOLIC SYSTEM 21

as otherwise the third row of A0
K would be a linear combination of the first two rows of A0

K,
which contradicts our assumption.

Now we calculate the three minors in Span{U0
K} and get

M1 = (~h ·~α)2 − (~r ·~α)(~z ·~α),

M2 = (~h ·~α)
(

µ1(~r ·~α) + µ2(~h ·~α)
)
− (~r ·~α)

(
λ1(~h ·~α) + λ2(~z ·~α)

)
= µ1(~h ·~α)(~r ·~α) + µ2(~h ·~α)2 − λ1(~h ·~α)(~r ·~α)− λ2(~r ·~α)(~z ·~α)

= (µ1 − λ1)(~h ·~α)(~r ·~α) + (µ2 − λ2)(~h ·~α)2 + λ2

(
(~h ·~α)2 − (~r ·~α)(~z ·~α)

)
,

and

M3 = (~z ·~α)
(

µ1(~r ·~α) + µ2(~h ·~α)
)
− (~h ·~α)

(
λ1(~h ·~α) + λ2(~z ·~α)

)
= µ1(~z ·~α)(~r ·~α) + µ2(~z ·~α)(~h ·~α)− λ1(~h ·~α)2 − λ2(~h ·~α)(~z ·~α)

= (µ1 − λ1)(~h ·~α)2 + (µ2 − λ2)(~h ·~α)(~z ·~α) + µ1

(
(~r ·~α)(~z ·~α)− (~h ·~α)2

)
.

When~h ·~α = 0, the Rank-1 directions must satisfy M1 = 0 and so we need (~r ·~α)(~z ·~α) = 0.
Recall that~h and~r,~h and ~z are both linearly independent. When~h ·~α =~r ·~α = 0, we get one
Rank-1 direction. There is another Rank-1 direction when ~h ·~α = ~z ·~α = 0. When ~h ·~α 6= 0,
M1 = M2 = M3 = 0 is equivalent to (note that M1 is part of the expressions in the last lines
of M2 and M3)

(~h ·~α)2 − (~r ·~α)(~z ·~α) = 0,

(µ1 − λ1)(~r ·~α) + (µ2 − λ2)(~h ·~α) = 0 (76)

and
(µ1 − λ1)(~h ·~α) + (µ2 − λ2)(~z ·~α) = 0. (77)

Thus, rewriting (76) and (77), the Rank-1 directions must satisfy(
(µ1 − λ1)~r + (µ2 − λ2)~h

)
·~α = 0 and

(
(µ1 − λ1)~h + (µ2 − λ2)~z

)
·~α = 0. (78)

Since dim
(
Span{U0

K}
)
= 3, we know from Lemma 13 that Rank(S0

K) = 3. Equations (73)
and (74) imply that ~h,~r,~z expand all the columns in S0

K, and hence ~h,~r,~z must be linearly
independent. Because of (75), we must have λ1 6= µ1 or λ2 6= µ2, and it follows immediately
that (µ1 − λ1)~r + (µ2 − λ2)~h and (µ1 − λ1)~h + (µ2 − λ2)~z are linearly independent. Hence
(78) gives only one possible Rank-1 line in the case when~h ·~α 6= 0. Combining this with the
case~h ·~α = 0 we see that there are at most three distinct Rank-1 directions in Span{U0

K}. An
application of Lemma 10 (b) completes the proof. �

6.1. The case Rank(A0
K) = 2. It only remains to consider the case when Rank(A0

K) = 2. We
need a key lemma concerning the function F. We state the result in more general form for
later application in Proposition 4.

Lemma 18. Suppose I⊂ IR is an open interval containing 0. Let ã ∈ C2(I) be such that ã′ > 0 and
ã(0) = 0. Suppose F̃ is a primitive of ã with F̃(0) = 0. If ã is strictly convex in I then

2F̃(r)− rã(r) > 0 for r < 0 and 2F̃(r)− rã(r) < 0 for r > 0. (79)

And if ã is strictly concave in I then

2F̃(r)− rã(r) < 0 for r < 0 and 2F̃(r)− rã(r) > 0 for r > 0.
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Proof. We argue only in the case where ã is strictly convex; the case where ã is strictly concave
follows in the same way. Letting g(r) := 2F̃(r) − rã(r) and using F̃′(r) = ã(r), we have
g′(r) = ã(r) − rã′(r) and g′′(r) = −rã′′(r). Since ã is strictly convex, we know g′′ > 0 for
r < 0 and g′′ < 0 for r > 0. Further, as F̃(0) = ã(0) = 0, we know g(0) = 0 and g′(0) = 0.
Combining this with the sign for g′′, we know that g′(r) < 0 for r < 0 and g′(r) < 0 for r > 0.
It follows that g(r) > 0 for r < 0 and g(r) < 0 for r > 0 and this translates to exactly (79). �

As before, we may assume that~h×~r 6= 0 and~h×~z 6= 0 where~z = (a(r1), a(r2), a(r3)), and
thus the first two rows of A0

K are linearly independent. So there exist λ1 and λ2 such that

hia(ri) = λ1hi + λ2a(ri) (80)

and
h2

i
2

+ F(ri) = λ1ri + λ2hi. (81)

We define the set

Ũ0
K :=

{(
0 0
0 0

)
,
(

h1 r1
a(r1) h1

)
,
(

h2 r2
a(r2) h2

)
,
(

h3 r3
a(r3) h3

)}
.

Lemma 19. If (hi, ri) satisfies the system (80)-(81) for i = 1, 2, 3 and U0
K with the given ordering

forms a non-degenerate T4 with dim
(
Span{U0

K}
)
= 3, then Ũ0

K also forms a non-degenerate T4
with the given ordering.

Proof. We define the linear mapping L : Span{U0
K} → Span{Ũ0

K} by

L (Q(hi, ri)) =

(
hi ri

a(ri) hi

)
for i = 1, 2, 3.

Clearly L satisfies (17). Since dim
(
Span{U0

K}
)
= 3, we know Rank(S0

K) = 3 from Lemma
13, and thus~h,~r,~z are linearly independent because of (80)-(81). Thus dim

(
Span{Ũ0

K}
)
= 3

and therefore the mapping L is a linear isomorphism. Now Lemma 7 applies to finish the
proof. �

Lemma 20. Assume dim
(
Span{U0

K}
)
= 3. If (hi, ri) satisfies the system (80)-(81) with λ1 = 0 or

λ2 = 0 for i = 1, 2, 3, then U0
K cannot contain a non-degenerate T4.

Proof. By Lemma 19, it suffices to show the set Ũ0
K cannot contain a non-degenerate T4.

Our main tool is Proposition 5. Recall that from (26) the function F is strictly convex with
F(0) = F′(0) = 0, and thus F ≥ 0 for all r and F = 0 only at r = 0. If λ1 = λ2 = 0, from (81)
we must have hi = 0 and ri = 0 for all i = 1, 2, 3, in which case Card

(
Ũ0
K
)
< 4. So we only

have to consider the case when λ1 6= 0 or λ2 6= 0.

Step 1. We first consider the case when λ1 = 0, λ2 6= 0. So (80)-(81) become

hia(ri) = λ2a(ri), (82)

h2
i

2
+ F(ri) = λ2hi. (83)

From (82), we have
hi = λ2 for any i for which a(ri) 6= 0. (84)

Let Πr := {i∈ {1, 2, 3} : ri 6= 0}. So Card (Πr) ∈ {0, 1, 2, 3}. We consider each case in turn.
Case 1: Card (Πr) = 3. So by (25) we have a(ri) 6= 0 for i = 1, 2, 3. Thus hi = λ2 for all i.

Then from (83), ri solves

F(r) =
λ2

2
2

(85)
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for all i. But as F is strictly convex, this equation has at most two distinct roots and hence
Card

(
Ũ0
K
)
≤ 3.

Case 2: Card (Πr) ≤ 1. So there exist i 6= j such that ri = rj = 0, then from (83), hi and hj

both solve the equation h2

2 − λ2h = 0 which has the solutions 0 and 2λ2. If hi = 0 or hj = 0,
then (hi, ri) = (0, 0) or (hj, rj) = (0, 0). Otherwise, we have (hi, ri) = (hj, rj) = (2λ2, 0). In
both cases, Card

(
Ũ0
K
)
≤ 3.

Case 3: Card (Πr) = 2. So exactly one of the ri’s equals zero, without loss of generality,
assume r1 = 0. From (83), we know

h1 = 2λ2. (86)
(Otherwise (h1, r1) = (0, 0) and Card

(
Ũ0
K
)
≤ 3.) Also we have

h2 = h3
(84)
= λ2. (87)

Then r2 and r3 are solutions of (85), which has at most two distinct solutions. If (85) fails to
have two distinct solutions, then we are done. So assume that (85) has two distinct solutions,
then r2 and r3 must take these two distinct solutions in order for Card

(
Ũ0
K
)
= 4. Because of

(26), the two distinct solutions of (85) must have opposite signs. Without loss of generality,
assume r2 < 0 < r3. From Lemma 18 we have

λ2
2 − r3a(r3)

(85)
= 2F(r3)− r3a(r3) < 0. (88)

Now our set Ũ0
K becomes

Ũ0
K
(86),(87)

=

{(
0 0
0 0

)
,
(

2λ2 0
0 2λ2

)
,
(

λ2 r2
a(r2) λ2

)
,
(

λ2 r3
a(r3) λ2

)}
.

We call the above matrices T0, T1, T2, T3. Now we observe that

det(T0 − T3) = det(T1 − T3) = λ2
2 − r3a(r3)

(88)
< 0,

and
det(T2 − T3) = −(r3 − r2)(a(r3)− a(r2)) < 0,

where the last inequality holds because the function a is strictly increasing. Since det(Ti −
T3)<0 for all i 6= 3, it follows from Proposition 5 that Ũ0

K cannot contain a non-degenerate
T4. This completes the proof of Case 3 and the proof of Step 1.

Step 2. Next we consider the case when λ2 = 0 and λ1 6= 0. Now (80)-(81) become

hia(ri) = λ1hi, (89)

h2
i

2
+ F(ri) = λ1ri. (90)

From (89) we know a(ri) = λ1 unless hi = 0. Similarly to how we argued in Step 1 we let
Πh := {i∈ {1, 2, 3} : hi 6= 0}. So Card (Πh) ∈ {0, 1, 2, 3}. Again we consider each case in turn.

Case 1: Card (Πh) = 3. So hi 6= 0 for all i and we have a(ri) = λ1 for all i. As a is strictly
monotonic, this implies that all ri’s are equal, and hence from (90) all h2

i equals the same
constant. It is a simple argument to see that Card

(
Ũ0
K
)
< 4 in this case.

Case 2: Card (Πh) ≤ 1. So hi = hj = 0 for some i 6= j ∈ {1, 2, 3}, and it follows from (90)
that ri and rj both solve F(r) = λ1r, which has at most one non-trivial solution. As in Case 2
of Step 1 it is easy to see that Card

(
Ũ0
K
)
< 4 in this case.

Case 3: Card (Πh) = 2. So exactly one of the hi’s vanishes. Without loss of generality,
assume h1 = 0. It follows from (90) that r1 must be the non-trivial solution of F(r) = λ1r in
order for Card

(
Ũ0
K
)
= 4. As h2 6= 0 and h3 6= 0, from (89) we have a(r2) = a(r3) = λ1 and
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hence r2 = r3 =: σ. From (90), h2 and h3 solve h2 = 2λ1σ − 2F(σ). So this equation must
have two distinct solutions (if not then Card

(
Ũ0
K
)
< 4), and denote them by −β, β. Without

loss of generality, we let h2 = −β and h3 = β. Now we have

Ũ0
K =

{(
0 0
0 0

)
,
(

0 r1
a(r1) 0

)
,
(
−β σ
a(σ) −β

)
,
(

β σ
a(σ) β

)}
.

As in Step 1, we label the matrices in Ũ0
K by T0, T1, T2, T3 and calculate

det(T1 − T0) = −r1a(r1) < 0, det(T2 − T0) = β2 − σa(σ),

det(T3 − T0) = β2 − σa(σ), det(T2 − T1) = β2 − (σ− r1)(a(σ)− a(r1)),

det(T3 − T1) = β2 − (σ− r1)(a(σ)− a(r1)), det(T3 − T2) = 4β2 > 0.
We denote d1 := β2 − σa(σ) and d2 := β2 − (σ− r1)(a(σ)− a(r1)). If d1 < 0, then det(Ti −
T0) < 0 for all i 6= 0. If d2 < 0, then det(Ti − T1) < 0 for all i 6= 1. If d1 > 0 and
d2 > 0, then det(Ti − T3) > 0 for all i 6= 3. In conclusion, we can always find some Ti
such that {det(Tj − Ti)} does not change sign. Again by Proposition 5, Ũ0

K cannot contain a
non-degenerate T4 and this completes Step 2. �

It remains to consider the case when (hi, ri) satisfies (80)-(81) for i = 1, 2, 3 with λ1 6= 0
and λ2 6= 0. We collect some elementary facts about the system (80)-(81). First note that
if a(ri) = λ1 for some i, then equation (80) would imply λ2a(ri) = 0. This would yield
λ1 = a(ri) = 0 which is a contradiction. So we must have

a(ri) 6= λ1 for i = 1, 2, 3. (91)

Lemma 21. The system (80)-(81) has at most two distinct solutions satisfying a(r) < λ1.

Proof. Let (h, r) be a solution to the system (80)-(81). We can solve for h from (80) and get

h =
λ2a(r)

a(r)− λ1
. (92)

Plugging this into (81) we obtain that r solves

λ2
2a(r)2

2(a(r)− λ1)2 + F(r) = λ1r +
λ2

2a(r)
a(r)− λ1

.

Simplifying the above equation, we obtain

F(r)− λ1r−
λ2

2
2

= −
λ2

1λ2
2

2(a(r)− λ1)2 .

Let us denote

p(r) := F(r)− λ1r−
λ2

2
2

and

q(r) := −
λ2

1λ2
2

2(a(r)− λ1)2 .

Direct calculations using F′ = a show that

p′(r) = a(r)− λ1, p′′(r) = a′(r),

and

q′(r) =
λ2

1λ2
2a′(r)

(a(r)− λ1)3 , q′′(r) = λ2
1λ2

2
a′′(r) (a(r)− λ1)− 3a′(r)2

(a(r)− λ1)4 .

Since a′(r) > 0, the function p(r) is always strictly convex. For a(r) < λ1, we have a′′(r)(a(r)−
λ1) < 0 and thus q′′(r) < 0 for a(r) < λ1. So the functions p and q can intersect at most twice
for a(r) < λ1 as q is strictly concave here. This completes the proof of the lemma. �
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Lemma 22. Let (h, r) be a non-trivial solution of the system (80)-(81) with h2 − ra(r) 6= 0. If
λ1 > 0 and a(r) < λ1, then h2 − ra(r) > 0; on the other hand, if λ1 < 0 and a(r) > λ1, then
h2 − ra(r) < 0.

Proof. First note that r 6= 0, as otherwise it follows from (80) and (25) that h = 0 and hence
(h, r) is a trivial solution of (80)-(81). We start with λ1 > 0. Assume first

0 < a(r) < λ1. (93)

It follows from (92) that λ2h < 0. Solving for λ1, λ2 from (80) and (81) we obtain

λ1 =
a(r)

(
h2

2 − F(r)
)

h2 − ra(r)
, λ2 =

h
(

h2

2 + F(r)− ra(r)
)

h2 − ra(r)
. (94)

Since λ1 > 0 and a(r) > 0, we know from the expression for λ1 that(
h2

2
− F(r)

)(
h2 − ra(r)

)
> 0. (95)

On the other hand, since λ2h < 0, it follows from the expression for λ2 that(
h2

2
+ F(r)− ra(r)

)(
h2 − ra(r)

)
< 0. (96)

Combining (95) with (96) gives(
h2

2
− F(r)

)(
h2

2
+ F(r)− ra(r)

)
< 0. (97)

Note that from (25) we have

a(r) > 0⇐⇒ r > 0 and a(r) < 0⇐⇒ r < 0. (98)

Using (93), (98) and Lemma 18 we have

h2

2
− F(r) >

h2

2
+ F(r)− ra(r).

It follows from this and (97) that

h2

2
− F(r) > 0 and

h2

2
+ F(r)− ra(r) < 0.

This together with (95) or (96) yields h2 − ra(r) > 0.
If a(r) < 0, then from (92) we have λ2h > 0. Thus from (94), (95)-(96) become(

h2

2
− F(r)

)(
h2 − ra(r)

)
< 0 (99)

and (
h2

2
+ F(r)− ra(r)

)(
h2 − ra(r)

)
> 0,

which gives (97) as before. So using (98) and Lemma 18 we have

h2

2
− F(r) <

h2

2
+ F(r)− ra(r),

and hence we must have
h2

2
− F(r) < 0 and

h2

2
+ F(r)− ra(r) > 0.

It follows from (99) that h2 − ra(r) > 0. This completes the proof of the first half of the
lemma.
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Next we consider λ1 < 0 and repeat the above lines. If λ1 < a(r) < 0, then λ2h < 0 from
(92) and thus (95)-(96) become (

h2

2
− F(r)

)(
h2 − ra(r)

)
> 0

and (
h2

2
+ F(r)− ra(r)

)(
h2 − ra(r)

)
< 0.

Using Lemma 18 we have
h2

2
− F(r) <

h2

2
+ F(r)− ra(r),

and hence we must have

h2

2
− F(r) < 0 and

h2

2
+ F(r)− ra(r) > 0.

It follows that h2 − ra(r) < 0.
If a(r) > 0, then λ2h > 0 from (92) and thus from (94), (95)-(96) become(

h2

2
− F(r)

)(
h2 − ra(r)

)
< 0

and (
h2

2
+ F(r)− ra(r)

)(
h2 − ra(r)

)
> 0.

Using Lemma 18 we have
h2

2
− F(r) >

h2

2
+ F(r)− ra(r),

and hence we must have

h2

2
− F(r) > 0 and

h2

2
+ F(r)− ra(r) < 0.

Thus h2 − ra(r) < 0. This completes the proof of the lemma. �

Lemma 23. Let λ1 > 0. If (h1, r1) and (h2, r2) are two non-trivial solutions of the system (80)-(81)
with λ1 < a(r1) < a(r2), then h2

1 − r1a(r1) > h2
2 − r2a(r2).

Proof. Using (92), we have, for i = 1, 2,

h2
i − ria(ri) =

λ2
2a(ri)

2

(a(ri)− λ1)2 − ria(ri).

Let us define

l(r) :=
λ2

2a(r)2

(a(r)− λ1)2 − ra(r).

When λ1 > 0, it is clear that a(r)
a(r)−λ1

= 1 + λ1
a(r)−λ1

is decreasing for a(r) > λ1 and ra(r) is
increasing, and thus l(r) is a decreasing function for a(r) > λ1> 0. �

To finish the proof in the case when Rank(A0
K) = 2, we need some preparation. Recall

that we fix the set K ⊂ K1, where K given in (21) consists of four points parameterized by
(ui, vi) for i = 0, 1, 2, 3. Now for k = 0, 1, 2, 3, we extend the notations in (22) by defining

hk
i := ui − uk, rk

i := vi − vk, (100)
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and similar to (28) we define the set Uk
K associated to the set K with respect to the point

P(uk, vk) by

Uk
K :=

{
Qvk (h

k
0, rk

0),Qvk (h
k
1, rk

1),Qvk (h
k
2, rk

2),Qvk (h
k
3, rk

3)
}

. (101)

Note that when k = 0, the set Uk
K agrees with the set U0

K defined in (28). A crucial observa-
tion is that, for k ∈ {1, 2, 3}, we could have switched the labeling of k and 0 in the set K and
thus all the results proved so far also apply to the set Uk

K. Hence it only remains to show

Lemma 24. Let K ⊂ K1 be given in (28), and the sets Uk
K be defined in (101) for k = 0, 1, 2, 3.

Assume, for all k = 0, 1, 2, 3, we have dim(Span{Uk
K}) = 3 and (hk

i , rk
i ) satisfies the system

hk
i avk (r

k
i ) = λk

1hk
i + λk

2avk (r
k
i ) (102)

and
(hk

i )
2

2
+ Fvk (r

k
i ) = λk

1rk
i + λk

2hk
i (103)

for all i with λk
1 6= 0 and λk

2 6= 0, then K cannot contain a non-degenerate T4.

Proof. By Lemma 19, it suffices to show that Ũk
K :=

{(
hk

i rk
i

avk (r
k
i ) hk

i

)
: i = 0, 1, 2, 3

}
cannot

contain a non-degenerate T4 for some k ∈ {0, 1, 2, 3}. Without loss of generality, we assume
that v0 ≤ v1 ≤ v2 ≤ v3. Note that this ordering is only used in the proof of the current
lemma. If rk

i = 0 for some i 6= k, we have avk (r
k
i ) = 0 by (25). From (102), it follows that

λk
1hk

i = 0 and thus hk
i = 0. This means Card

(
Uk
K

)
< 4. So we may assume rk

i 6= 0 for all
i 6= k, and thus

v0 < v1 < v2 < v3. (104)
Now we enumerate all possibilities in the following. To simplify notations, we denote

Dk
i := (hk

i )
2 − rk

i avk (r
k
i ). (105)

We may assume that Dk
i 6= 0 for all i 6= k, as otherwise Ũk

K would contain Rank-1 connections
and thus cannot be a T4. This allows us to apply Lemma 22. From (100) it is clear that
hk

i = −hi
k and rk

i = −ri
k. By (24), we calculate

avk (r
k
i )

(24)
= a(vk + rk

i )− a(vk)

(100)
= a(vi)− a(vk)

= − (a(vk)− a(vi)) = −avi (r
i
k),

and thus
Dk

i = Di
k. (106)

Note that we have r3
0 < r3

1 < r3
2 < 0 by (104), and thus by (25) we have av3(r

3
0) < av3(r

3
1) <

av3(r
3
2) < 0. By Lemma 21, we must have av3(r

3
2) > λ3

1. In particular, we must have λ3
1 < 0,

and thus by Lemma 22 we have
D3

2 < 0. (107)
Case 1. Assume λ0

1 < 0. It follows from (104) and (100) that 0 < r0
1 < r0

2 < r0
3 and thus

λ0
1 < 0 < av0(r

0
1) < av0(r

0
2) < av0(r

0
3). By Lemma 22 and recalling (105), we have D0

i < 0 for
i = 1, 2, 3. By Proposition 5, we know that Ũ0

K cannot contain a T4.

Case 2. Assume λ0
1 > 0. By Lemma 21, we either have (noting that h = r = 0 is triv-

ially a solution of (102)-(103) and recalling (91)) 0 < av0(r
0
1) < λ0

1 < av0(r
0
2) < av0(r

0
3) or

0 < λ0
1 < av0(r

0
1) < av0(r

0
2) < av0(r

0
3). In the first subcase, by Lemma 22, we know D0

1 > 0. If
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D0
2 > 0 and D0

3 > 0, then Ũ0
K cannot contain a T4 by Proposition 5. So by Lemma 23, we only

have to consider the cases when D0
2 > 0, D0

3 < 0 or D0
2 < 0, D0

3 < 0. Together with D0
1 > 0,

we are led to two subcases: D0
1 > 0, D0

2 > 0, D0
3 < 0 or D0

1 > 0, D0
2 < 0, D0

3 < 0. On the other
hand, if 0 < λ0

1 < av0(r
0
1) < av0(r

0
2) < av0(r

0
3), then by Lemma 23 and Proposition 5 again,

we only have to consider the cases when D0
1 > 0, D0

2 > 0, D0
3 < 0 or D0

1 > 0, D0
2 < 0, D0

3 < 0.
Thus, in conclusion, we have two subcases to consider.

Subcase 2.1. Assume D0
1 > 0, D0

2 > 0, D0
3 < 0. By (106) we have D3

0 = D0
3 < 0. So if

D3
1 < 0, then by (107) we know D3

i < 0 for all i 6= 3 and thus we are done by Proposition 5.
If D3

1 > 0, now we have D1
3 = D3

1 > 0. We claim that λ1
1 > 0. Otherwise, we would have

λ1
1 < 0 < av1(r

1
3) and by Lemma 22 we would have D1

3 < 0, which is a contradiction. Now as
λ1

1 > 0, we know from Lemma 21 that r1
0 < 0 and 0 are the only two solutions of the system

with av1(r) < λ1
1, and thus 0 < λ1

1 < av1(r
1
2) < av1(r

1
3). Now it follows from Lemma 23 and

D1
3 > 0 that D1

2 > 0. As D1
0 = D0

1 > 0, we have D1
i > 0 for i = 0, 2, 3, and thus we are done

by Proposition 5.

Subcase 2.2. Assume D0
1 > 0, D0

2 < 0, D0
3 < 0. If D3

1 < 0, we also have D3
0 = D0

3 < 0 and
D3

2 < 0 by (107). So D3
i < 0 for i = 0, 1, 2 and we are done by Proposition 5. If D3

1 > 0, we
have either D2

1 = D1
2 > 0 or D2

1 = D1
2 < 0. In the former case, we have D1

i > 0 for i = 0, 2, 3,
and in the latter case (recalling (107)) we have D2

i < 0 for i = 0, 1, 3. Thus in both cases we
are done by Proposition 5. This completes the proof of Lemma 24. �

Proof of Theorem 15 and Theorem 2 completed. If dim
(
Span{U0

K}
)
= 3, we have two cases: ei-

ther Rank(A0
K) = 3 or Rank(A0

K) = 2 (if Rank(A0
K) = 1, we must have ~h×~r = 0 which is

done in Lemma 12). The latter case is treated in Lemmas 20 and 24 (together with explana-
tions immediately before Lemma 24), and the former case is treated in Lemmas 16 and 17.
Finally, putting Theorems 14 and 15 together, we complete the proof of Theorem 2. �

7. Proof of Proposition 4

We start by giving a more explicit equivalent condition for the set K1 to contain Rank-1
connections.

Lemma 25. Let I be an interval, and let the set KI
1 be defined in (12) with the function a ∈ C2(IR)

satisfying a′ > 0. Then the set KI
1 contains Rank-1 connections if and only if there exist v ∈ I and

r 6= 0 such that v + r ∈ I and
2Fv(r) = rav(r), (108)

where the functions av and Fv are defined in (24).

Proof. By definition, the set KI
1 contains Rank-1 connections if and only if there exist (u, v) 6=

(ũ, ṽ) such that v, ṽ ∈ I and Rank (P(ũ, ṽ)− P(u, v)) = 1, where the mapping P is given
in (5). Denoting by h = ũ − u, r = ṽ − v and recalling the notations in (24) and (27), it
follows from Lemma 8 that there exists an invertible matrix B such that B(P(ũ, ṽ)− P(u, v)) =
Qv(h, r), where Qv(h, r) is given in (27). Hence Rank (P(ũ, ṽ)− P(u, v)) = 1 if and only if
Rank (Qv(h, r)) = 1. Therefore the set KI

1 contains Rank-1 connections if and only if there
exist v ∈ I and (h, r) 6= (0, 0) ∈ IR2 such that v + r ∈ I and Rank (Qv(h, r)) = 1.

Given v ∈ IR and (h, r) 6= (0, 0), we claim that Rank (Qv(h, r)) = 1 if and only if

h2 = rav(r) and 2Fv(r) = rav(r). (109)
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To see this, we write out the three minors of Qv(h, r):

M1 = h2 − rav(r), M2 =
h3

2
+ hFv(r)− rhav(r),

and

M3 =
h2

2
av(r) + av(r)Fv(r)− h2av(r).

If Rank (Qv(h, r)) = 1, then M1 = M2 = M3 = 0. From M1 = 0 we obtain h2 = rav(r). Note
that from this, (25) and (h, r) 6= (0, 0), we must have h 6= 0, r 6= 0 and av(r) 6= 0. Now M2 = 0
and M3 = 0 reduce to

h2

2
+ Fv(r)− rav(r) = 0 and

h2

2
+ Fv(r)− h2 = 0. (110)

Comparing the equations in (110) and substituting h2 by rav(r), one readily sees that (110)
is equivalent to (109). Conversely, if (109) holds, then we have (110) and it is clear that
M1 = M2 = M3 = 0. Thus we have Rank (Qv(h, r)) = 1.

Now if KI
1 contains Rank-1 connections, then there exist v ∈ I and (h, r) 6= (0, 0) ∈ IR2 such

that v + r ∈ I and Rank (Qv(h, r)) = 1. Therefore (109) and thus (108) hold true. Conversely,
if (108) holds for some v and r 6= 0, then as av(0) = 0 and a′v > 0 (recalling (25)), it is clear
that rav(r) > 0 and thus one can choose h =

√
rav(r). With this choice of v, r, h, the equations

in (109) are satisfied. Hence Rank (Qv(h, r)) = 1 and KI
1 contains Rank-1 connections. �

Proof of Proposition 4. First we assume that a has an isolated inflection point at v0 ∈ I. Without
loss of generality, assume that

a′′(v) < 0 for v0 − δ < v < v0 (111)

and
a′′(v) > 0 for v0 < v < v0 + δ (112)

for some δ > 0 sufficiently small. Recall the definitions of the translation functions av and Fv
in (24) and the properties listed in (25)-(26). As in the proof of Lemma 18, we define

gv(r) := 2Fv(r)− rav(r) (113)

and obtain
gv(0) = g′v(0) = 0, g′′v (r) = −ra′′v (r). (114)

By Lemma 18, since F′v = av and a′v(t)
(24)
= a′(v + t) we have

if for some r0, r1 > 0 we have a′′ > 0 in (v− r0, v + r1), then

gv(r) > 0 for r ∈ (−r0, 0), gv(r) < 0 for r ∈ (0, r1),

and
if for some r0, r1 > 0 we have a′′ < 0 in (v− r0, v + r1), then

gv(r) < 0 for r ∈ (−r0, 0), gv(r) > 0 for r ∈ (0, r1).
(115)

Next we define the functions

p(v) := gv(v0 − v) = 2Fv(v0 − v)− (v0 − v)av(v0 − v)

and

q(v) := gv

(
v0 +

δ

2
− v
)
= 2Fv

(
v0 +

δ

2
− v
)
−
(

v0 +
δ

2
− v
)

av

(
v0 +

δ

2
− v
)

.

Using the definitions for av and Fv as in (24), we write out

p(v) = 2 (F(v0)− F(v)− a(v) (v0 − v))− (v0 − v) (a(v0)− a(v))
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and clearly p(v) is continuous. Similarly q(v) is also continuous. It follows from (111) and
(115) that

p(v) = gv(v0 − v) > 0 for all v ∈
(

v0 −
δ

2
, v0

)
. (116)

On the other hand, note that q(v0) = gv0(
δ
2 ). We deduce from (114) and (111)-(112) that

gv0(0) = g′v0
(0) = 0 and gv0 is concave locally around the origin, and thus q(v0) = gv0(

δ
2 ) < 0.

As q is continuous, it follows immediately that

q(v1) = gv1

(
v0 +

δ

2
− v1

)
< 0 for some v1 ∈

(
v0 −

δ

2
, v0

)
. (117)

Consider the continuous function

v(w) = gv1(v0 + w− v1) for w ∈
[

0,
δ

2

]
. (118)

Note that since v1 ∈
(

v0 − δ
2 , v0

)
we have that v(0)

(118),(116)
= p(v1) > 0 and v

(
δ
2

)
(118),(117)

=

q(v1) < 0. So there exists v2 ∈ (v0, v0 +
δ
2 ) such that v(v2 − v0)

(118)
= gv1(v2 − v1) = 0.

Denoting by r := v2− v1 > 0, this translates to 2Fv1(r)− rav1(r)
(113)
= 0, and thus gives Rank-1

connection in the set KI
1 by Lemma 25.

Now suppose a is either strictly convex or strictly concave on I, then by Lemma 18 and
Lemma 25, the set KI

1 contains no Rank-1 connections. �
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