
Uniqueness of critical points of the anisotropic isoperimetric

problem for finite perimeter sets

Antonio De Rosa S lawomir Kolasiński Mario Santilli
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Abstract

Given an elliptic integrand of class C 3, we prove that finite unions of disjoint open Wulff
shapes with equal radii are the only volume-constrained critical points of the anisotropic surface
energy among all sets with finite perimeter and reduced boundary almost equal to its closure.

1 Introduction

The classical anisotropic isoperimetric problem (or Wulff problem) consists in minimizing the anisotropic
boundary energy among all sets of finite perimeter with prescribed volume. For all positive (con-
tinuous) integrands the solution is uniquely characterized, up to translation, by the Wulff shape, as
proved by Taylor in [36]. Alternative proofs can be found in [18, 27, 6]. This isoperimetric shape was
constructed by Wulff in [37] and plays a central role in crystallography.

Instead of considering minima, a more subtle question is to characterize critical points of the
anisotropic isoperimetric problem. For integrands of class C 1, this is equivalent to characterize sets
of finite perimeter whose anisotropic mean curvature in the sense of varifolds is constant. For all
convex integrands in R2, Morgan proved in [29] that Wulff shapes are the only critical points among
all planar regions with boundary given by a closed and connected rectifiable curve. To the best of our
knowledge, the characterization in every dimension for smooth boundaries has been conjectured for
the first time by Giga in [19] and Morgan in [29]. This has been positively answered for smooth elliptic
integrands in [20] for dimension 3, and in [21] for every dimension. These works are the anisotropic
counterpart of the celebrated Alexandrov’s result [1]. Moreover, quantitative stability versions of this
rigidity theorem have been showed in [7, 15, 14].

In the non-smooth setting, Maggi has conjectured in [25, Conjecture] the characterization of the
Wulff shapes among sets of finite perimeter :

Conjecture ([25]). F-Wulff shapes are the unique sets of finite perimeter and finite volume that are
critical points of F at fixed volume.

Since F is assumed to be convex, but may fail to be C 1, the notion of first variation and critical
points are suitably defined in [25, p. 35-36], using the convexity in time of the functional along any
prescribed variational flow. Maggi specifies in [25] the significant interest from the physical viewpoint
for crystalline integrands. Moreover he points out that this question is open even for smooth elliptic
anisotropic energies and among sets with Lipschitz boundary.

Delgadino and Maggi have settled the conjecture [25, Conjecture] for the special case of the area
functional in [9], proving that among sets of finite perimeter, finite unions of balls with equal radii
are the unique volume-constrained critical points of the isotropic surface area. Their beautiful proof
provides a measure-theoretic revisiting of the Montiel-Ros argument [28] by means of the Heintze-
Karcher inequality. Recently the third author has obtained with different techniques in [33] a similar
Heintze-Karcher inequality for sets of finite perimeter and bounded isotropic mean curvature and has
proved that the equality case is uniquely characterized by finite unions of disjoint open balls, thus
recovering the characterization of isotropic critical points.

To deal with the lack of regularity of finite perimeter sets, Delgadino and Maggi need to use in
[9] the strong maximum principle for integral varifolds of Schätzle [35]. Unfortunately, as they point
out, this result is only available in the isotropic setting, preventing the extension of the method of
[9] to anisotropic integrands. They can threat in [8] the special case of local minimizers, since this
allows to apply an anisotropic strong maximum principle proved in [12] and provides the required
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regularity through the use of suitable competitors. Nevertheless these competition arguments are not
applicable to study the general case of anisotropic critical points.

In the present paper we address this problem, providing a positive answer to [25, Conjecture]
for elliptic integrands of class C 3 among finite perimeter sets with reduced boundary almost equal
to its closure, see Corollary 6.8. Our main result, see Theorem 6.4, is actually more general and it
consists in the following anisotropic Heintze-Karcher inequality for sets of finite perimeter (we refer
to Section 2 for the notation) and in the characterization of finite unions of disjoint open Wulff shapes
(of possibly different radii) as the unique configurations realizing the equality case.

Theorem. Suppose F is an elliptic integrand of class C 3 (see 2.16), α ∈ (0, 1), c ∈ (0,∞), E ⊆ Rn+1

is a set of finite perimeter such that H n(Clos(∂∗E)∼ ∂∗E) = 0 and the distributional anisotropic
mean curvature H of ∂∗E with respect to F in the direction of the interior normal satisfies 0 < H ≤ c
and it is locally of class C 0,α on the C 1,α regular part of spt ‖V ‖. Then

L n+1(E) ≤ n

n+ 1

∫
∂E

F (n(E, x))

H(x)
dH n(x) .

Equality holds if and only if E coincides up to a set of L n+1 measure zero with a finite union of
disjoint open Wulff shapes with radii not smaller than n/c.

As mentioned before, for any elliptic integrand of class C 3, we obtain the following characterization
of finite unions of Wulff shapes as the only volume-constrained anisotropic critical points among finite
perimeter sets with reduced boundary almost equal to its closure, see Corollary 6.8. We denote by
PF the F -perimeter functional, i.e.

PF (E) =

∫
∂∗E

F (n(E, x)) dH n(x)

for every E ⊆ Rn+1 with finite perimeter.

Corollary. Suppose E ⊆ Rn+1 is a finite perimeter set with finite volume such that

H n(Clos(∂∗E)∼ ∂∗E) = 0.

If E is a volume-constrained critical point of PF , then E is equivalent to a finite union of disjoint
open Wulff shapes.

We describe now the structure of the paper. In Section 2, after having recalled some background
material, we provide some classical facts on Wulff shapes and we study some basic properties of the
anisotropic nearest point projection onto an arbitrary closed set. In Section 3 we prove that the only
totally umbilical closed and connected hypersurface of class C 1,1 is the Wulff shape. In Section 4
we recall the notion of anisotropic (n, h)-sets introduced in [11] and we prove that their generalized
normal bundle satisfies a Lusin (N) condition with respect to the n dimensional Hausdorff measure
H n, thus extending an analogous result for isotropic (n, h) sets obtained in [34, 3.7]. This is the
key to obtain the main result of the paper. In Section 5 we introduce the anisotropic normal bundle
and we study its relation with the isotropic one and with the anisotropic nearest point projection;
moreover we consider the anisotropic Steiner formula for closed sets and we prove that every closed
set satisfying such a formula has positive reach. To conclude, in Section 6 we combine all these tools
to prove Theorem 6.4 and Corollary 6.8.

2 Preliminaries

Notation

The natural number n ≥ 1 shall be fixed for the whole paper.
In principle, but with some exceptions explained below, we shall follow the notation of Federer

(see [17, pp. 669 – 671]). Whenever A ⊆ Rn+1 we denote by ClosA the closure of A in Rn+1.
Following Almgren (e.g. [4]) if T ∈ G(n + 1, k), then we write T\ for the linear orthogonal projec-
tion of Rn+1 onto T . The symbol N stands for the set of non-negative integers. We use standard
abbreviations for intervals (a, b) = R ∩ {t : a < t < b} and [a, b] = R ∩ {t : a ≤ t ≤ b}. We also
employ the terminology introduced in [17, 3.2.14] when dealing with rectifiable sets. Moreover, given
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a measure φ and a positive integer m the notions of (φ,m) approximate tangent cone Tanm(φ, ·),
(φ,m) approximate differentiability and (φ,m) approximate differential are used in agreement with
[17, 3.2.16]. We also introduce the symbol Sn for the unit n-dimensional sphere in Rn+1.

Concerning varifolds and submanifolds of Rn+1 we use the notation introduced in [3]. If M is
a submanifold of Rn+1 of class C 1, we write X (M) for compactly supported tangent vectorfields
on M of class C 1; cf. [3, 2.5]. We say that M is a closed submanifold of Rn+1 if it is a submanifold
of Rn+1 and a closed (but not necessarily compact) subset of Rn+1; in particular, ∂M ∼M = ∅.

We also use the following convention. Whenever X, Y are vectorspaces, A ⊆ X, and f : A → Y
we write Df for the derivative of f that is a Hom(X,Y ) valued function whose domain is the set of
points of differentiability of f . If Y = R and X is equipped with a scalar product, then we write
grad f for the X valued function characterised by〈

u, Df(x)
〉

= grad f(x) • u for x ∈ dmn Df and u ∈ X .

Pointwise differentiability

2.1 Definition (cf. [26, §2.7]). Let k ∈ N, X, Y be normed vectorspaces, A ⊆ X, f : A → Y , and
a ∈ X. Then f is called pointwise differentiable of order k at a if there exists an open set U ⊆ X and
a function g : U → Y of class k such that

a ∈ U ⊆ A , f(a) = g(a) , and lim
x→a

|f(x)− g(x)|
|x− a|k

= 0 .

Whenever this is satisfied one defines also the pointwise differential of order i of f at a by

pt Dif(a) = Dig(a) for i ∈ {0, 1, . . . , k} .

2.2 Definition (cf. [26, §3.3]). Suppose k, n ∈ N and A ⊆ Rn+1. Then A is called pointwise
differentiable of order k at a if there exists a submanifold B of Rn+1 of class k such that a ∈ B,

lim
r↓0

r−1 sup |distance (·, A)− distance (·, B) |[B(a, r)] = 0 ,(1)

and lim
r↓0

r−k sup distance (·, B) [A ∩B(a, r)] = 0 .(2)

2.3 Definition (cf. [26, §3.12]). Suppose n, k ∈ N and A ⊆ Rn+1. Then pt DkA is the function
whose domain consists of pairs (a, S) such that a ∈ ClosA, A is pointwise differentiable of order k
at a, S ∈ G(n + 1,dim Tan(A, a)), and S⊥ ∩ Tan(A, a) = {0} and whose value at (a, S) equals the

unique φ ∈
⊙k

(Rn+1,Rn+1) such that whenever f : S → S⊥ is of class k and satisfies

lim
r↓0

r−1 sup |distance (·, A)− distance (·, B) |[B(a, r)] = 0 ,(3)

and lim
r↓0

r−k sup distance (·, B) [A ∩B(a, r)] = 0 ,(4)

where B = {x+ f(x) : x ∈ S}, then φ = Dk(f ◦ S\)(a).

2.4 Remark (cf. [26, §§3.14, 3.15]). Assume n, d, k ∈ N, S ∈ G(n+ 1, d), U ⊆ S is open, f : U → S⊥

is continuous, x ∈ U , A = {χ + f(χ) : χ ∈ S}. Then A is pointwise differentiable of order k
at a = x+ f(x) if and only if f is pointwise differentiable of order k at x. Moreover, pt DiA(a, S) =
pt Di(f ◦ S\)(x) for i ∈ {0, 1, . . . , k}.

The unit normal bundle of a closed set

Let A ⊆ Rn+1 be a closed set.

2.5 Definition. Given A ⊆ Rn+1 we define the distance function to A as

δA(x) = inf{|x− a| : a ∈ A} for every x ∈ Rn+1.

Moreover,
S(A, r) = {x : δA(x) = r} for r > 0.
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2.6 Remark (cf. [31, 2.13]). If r > 0 then H n(S(A, r) ∩K) <∞ whenever K ⊆ Rn is compact and
S(A, r) is countably (H n, n) rectifiable of class 2.

2.7 Definition (cf. [31, 3.1]). If U is the set of all x ∈ Rn+1 such that there exists a unique a ∈ A
with |x − a| = δA(x), we define the nearest point projection onto A as the map ξA characterised by
the requirement

|x− ξA(x)| = δA(x) for x ∈ U.

We set U(A) = dmn ξA∼A. The functions νA and ψA are defined by

νA(z) = δA(z)−1(z − ξA(z)) and ψA(z) = (ξA(z),νA(z)),

whenever z ∈ U(A).

2.8 Definition (cf. [31, 3.6, 3.8, 3.13]). We define the function ρ(A, ·) setting

ρ(A, x) = sup
{
t : δA(ξA(x) + t(x− ξA(x))) = tδA(x)

}
for x ∈ U(A) ,

and we say that x ∈ U(A) is a regular point of ξA if and only if ξA is approximately differentiable at
x with symmetric approximate differential and ap limy→x ρ(A, y) ≥ ρ(A, x) > 1. The set of regular
points of ξA is denoted by R(A).

For τ ≥ 1 we define
Aτ = U(A) ∩ {x : ρ(A, x) ≥ τ} .

2.9 Remark (cf. [31, 3.7]). The function ρ(A, ·) is upper semicontinuous and its image is contained
[1,∞].

2.10 Definition (cf. [31, 4.9]). Suppose x ∈ R(A). Then χA,1(x) ≤ . . . ≤ χA,n(x) denote the
eigenvalues of the symmetric linear map ap DνA(x)|{v : v • νA(x) = 0}.

2.11 Remark. Notice that H n(S(A, r) ∼ R(A)) = 0 for L 1 a.e. r > 0 (cf. [31, 3.16]) and

Tann(H n S(A, r), x) = {v : v • νA(x) = 0}

for H n a.e. x ∈ S(A, r) and for L 1 a.e. r > 0, cf. [31, 3.12].
The functions χA,i are the approximate principal curvatures of S(A, r) in the direction of νA(x). In

fact, as proved in [31, 3.12], they coincide with the eigenvalues the approximate second-order differen-
tial ap D2S(A, r) of S(A, r); cf. [32] for the general theory of higher order approximate differentiability
for sets.

2.12 Definition (cf. [31, 4.1], [23, §2.1]). The generalized unit normal bundle of A is defined as

N(A) = (A× Sn) ∩ {(a, u) : δA(a+ su) = s for some s > 0}

and N(A, a) = {v : (a, v) ∈ N(A)} for a ∈ A.

2.13 Remark (cf. [31, 4.3]). The set N(A) is a countably n rectifiable subsets of Rn+1 × Sn.

Anisotropic integrands and mean curvature

2.14 Definition. Let k ∈ N, α ∈ [0, 1]. By an integrand of class C k,α we mean a non-negative
function F : Rn+1 → R such that F |Rn+1∼{0} is of class C k,α and

(5) F (λν) = |λ|F (ν) for ν ∈ Rn+1 and λ ∈ R

By an integrand we mean an integrand of class C 0.

2.15 Remark. If F is convex, then it is a norm on Rn+1. We say that F is a strictly convex norm if
it is an integrand satisfying

F (x+ y) < F (x) + F (y) for all linearly independent x, y ∈ Rn+1 .

2.16 Definition (cf. [17, 5.1.2] and [2, 3.1(4)]). We say that an integrand F is elliptic if there exists
a number γ > 0 such that the map Rn+1 3 u 7→ F (u) − γ|u| is convex. We call γ the ellipticity
constant of F .
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2.17 Remark (cf. [17, 5.1.3]). Assume F is an integrand of class C 1,1. Then ellipticity of F with
ellipticity constant γ > 0 is equivalent to the condition

(6)
〈
(v, v), D2F (u)

〉
≥ γ |u ∧ v|

2

|u|3
= γ
|v|2 − (v • u/|u|)2

|u|
for u ∈ dmn D2F , u 6= 0, v ∈ Rn+1 .

In particular, if F is elliptic, u ∈ dmn D2F , |u| = 1, and v ∈ span{u}⊥, then〈
(v, v), D2F (u)

〉
≥ γ|v|2 ,

which shows that F is uniformly elliptic in the sense of [11, §2].

2.18 Definition. Assume F is an elliptic integrand with ellipticity constant γ > 0. We define

C(F ) = sup
({
γ−1, supF [Sn]/ inf F [Sn]

}
∪
{
‖D2F (ν)‖ : ν ∈ Sn ∩ dmn D2F

})
.

2.19 Remark. Let U ⊆ Rn+1 be open. For any T ∈ G(n + 1, n) we choose arbitrarily ν(T ) ∈ T⊥
such that |ν(T )| = 1. In the sequel we shall tacitly identify any V ∈ Vn(U) with a Radon measure V̄
over U ×Rn+1 such that

V̄ (α) =
1

2

∫
α(x, ν(T )) + α(x,−ν(T )) dV (x, T ) for α ∈ C0

c (U,R) .

Clearly, this definition does not depend on the choice of ν(T ).

2.20 Definition. Let U ⊆ Rn+1 be open, F be an integrand of class C 1, V ∈ Vn(U). We define
the first variation of V with respect to F by the formula

δFV (g) =

∫
Dg(x) •BF (ν) dV (x, ν) for g ∈X (U) ,

where BF (ν) ∈ Hom(Rn+1,Rn+1) is given by

BF (ν)u = F (ν)u− ν · 〈u, DF (ν)〉 for ν, u ∈ Rn+1, ν 6= 0 .

2.21 Remark (cf. [2],[10, Appendix A],[13]). If ϕ : R × Rn+1 → Rn+1 is smooth, ϕ(0, x) = x for
x ∈ Rn+1, and g = d

dt |t=0ϕ(t, ·) ∈X (Rn+1), then

d

dt

∣∣∣∣
t=0

ΦF (ϕt#V ) = δFV (g) ,

where the functional ΦF : Vn(U)→ [0,∞] is defined as

ΦF (V ) =

∫
F (ν) dV (x, ν) .

2.22 Definition (cf. [11, §2]). Let Ω ⊆ Rn+1 be open, V ∈ Vn(Ω), F : Rn+1 → R be an integrand
of class C 1. Assume that ‖δFV ‖ is a Radon measure. Then

δFV (g) = −
∫

hF (V, x) • g(x) d‖V ‖(x) +

∫
ηF (V, x) • g(x) d‖δFV ‖sing(x) for g ∈X (Ω) ,

where ‖δFV ‖sing is the singular part of ‖δFV ‖ with respect to ‖V ‖, hF (V, ·) is an Rn+1 valued
‖V ‖-integrable function, and ηF (V, ·) is an Sn valued ‖δFV ‖-integrable function.

For ‖V ‖-a.e. x we define the F -mean curvature vector of V at x, denoted hF (V, x), by the formula

hF (V, x) =
hF (V, x)∫

F (ν) dV (x)(ν)
,

where V (x) is the probability measure on Sn coming from disintegration of V ; see [3, §3.3].

2.23 Definition. Define Ξ :
⊙2

Rn+1 → Hom(Rn+1,Rn+1) to be the linear map characterised by

〈u, Ξ(A)〉 • v = A(u, v) for A ∈
⊙2

Rn+1 and u, v ∈ Rn+1 .
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2.24 Remark. In particular, if f : Rn+1 → R is twice differentiable at x ∈ Rn+1, then

Ξ(D2f(x)) = D(grad f)(x) ∈ Hom(Rn+1,Rn+1) .

2.25 Remark. Let G ⊆ Rn+1 be open, v1, . . . , vn+1 be an orthonormal basis of Rn+1, M be a
submanifold of G of dimension n of class C 2, V = vn(M) ∈ Vn(G), x ∈ M , ν : G → Rn+1 be of
class C 1 and satisfy

(7) |ν(y)| = 1 , ν(y) ∈ Nor(M,y) , and 〈ν(y), Dν(y)〉 = 0 for y ∈M .

In [11, Proposition 2.1] the authors show that if F is an elliptic integrand of class C 2 then

−F (ν(x))hF (V, x) = ν(x) tr
(
D(gradF ◦ ν)(x)

)
= ν(x)

n+1∑
j=1

〈
(Dν(x)vj , vj), D2F (ν(x))

〉
.

2.26 Definition (cf. [17, 4.5.5]). Let A ⊆ Rn+1 and b ∈ Rn+1. We say that u is an exterior normal
of A at b if u ∈ Rn+1, |u| = 1,

Θn+1(L n+1 {x : (x− b) • u > 0} ∩A, b) = 0 ,(8)

and Θn+1(L n+1 {x : (x− b) • u < 0}∼A, b) = 0 .(9)

We also set n(A, b) = u if u is the exterior normal of A at b and n(A, b) = 0 if there exists no exterior
normal of A at b.

2.27 Definition. Let E ⊆ Rn+1 and x ∈ Rn+1. We define

nF (E, x) = gradF (n(E, x)) if n(E, x) 6= 0 and nF (E, x) = 0 if n(E, x) = 0 .

2.28 Remark. Assume X is a Hilbert space, dimX = k ∈ N, A,B ∈ Hom(X,X) are self-adjoint
automorphisms of X, and A is positive definite. With the help of the (tiny) spectral theorem [24,
Chap. VIII, Thm. 4.3] we find a self-adjoint and positive definite map C ∈ Hom(X,X) such that
A = C ◦C. Next, we observe that E = C−1 ◦A ◦B ◦C = C ◦B ◦C is self-adjoint. Employing again
the (tiny) spectral theorem we find an orthonormal basis v1, . . . , vk ∈ X and real numbers λ1, . . . , λk
such that Evi = λivi for i ∈ {1, 2, . . . , k}. We obtain

A ◦B(Cvi) = C ◦ Evi = λiCvi for i ∈ {1, 2, . . . , k}

and we see that Cv1, . . . , Cvk is a basis of eigenvectors of A ◦B with eigenvalues λ1, . . . , λk.
In particular, if G, M , x, and ν are as in 2.25, F is an elliptic integrand, u = ν(x) ∈ dmn D2F ,

and X = Tan(M,x), then the maps A = Ξ(D2F (ν(x))|X ×X) and B = Dν(x)|X ∈ Hom(X,X) are
self-adjoint and A is positive definite; hence, A ◦B has exactly n real eigenvalues.

Observe also that since F is positively 1-homogeneous, gradF is positively 0-homogeneous, i.e.,
gradF (λv) = gradF (v) for λ ∈ (0,∞) and v ∈ dmn gradF ; hence,

(10) v ∈ ker D(gradF )(v) for v ∈ dmn D2F .

Since D2F (ν(x)) ∈
⊙2

Rn+1 is symmetric it follows that D(gradF )(ν(x)) ∈ Hom(Rn+1,Rn+1) is
self-adjoint and we have

im D(gradF )(ν(x)) =
(
ker D(gradF )(ν(x))

)⊥
so that D(gradF )(ν(x))|X ∈ Hom(X,X) by (10). Seeing that also Dν(x)|X ∈ Hom(X,X) we
conclude

D(gradF ◦ ν)(x)|X ∈ Hom(X,X) .

2.29 Definition. Let F be an elliptic integrand of class C 1,1, G ⊆ Rn+1 be open, M be a submanifold
of G of dimension n of class C 1,1, ν : G → Rn+1 be Lipschitz continuous and such that |ν(z)| = 1
and ν(z) ∈ Nor(M, z) for z ∈ M , x ∈ dmn Dν, and u = gradF (ν(x)). We define the F -principal
curvatures of M at (x, u)

κFM,1(x, u) ≤ . . . ≤ κFM,n(x, u)

to be the eigenvalues of the map D(gradF ◦ν)(x)|Tan(M,x) ∈ Hom(Tan(M,x),Tan(M,x)); cf. 2.28.
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2.30 Remark. Clearly if V = vn(M) ∈ Vn(G), then

hF (V, x) = −ν(x)
∑n
i=1κ

F
M,i(x, u) .

2.31 Definition. Assume M ⊆ Rn+1 is pointwise differentiable of order 2 at a ∈ ClosM , T ∈
G(n + 1, n), f : T → T⊥ is pointwise differentiable of order 2 at 0, f(0) = 0, pt Df(0) = 0,
B = Rn+1 ∩ {a+ x+ f(x) : x ∈ T}, ν ∈ T⊥, |ν| = 1, and

lim
r↓0

r−1 sup |distance (·,M)− distance (·, B) |[B(a, r)] = 0 ,(11)

and lim
r↓0

r−2 sup distance (·, B) [M ∩B(a, r)] = 0 .(12)

We define the pointwise F -mean curvature vector of M at a, denoted pt hF (M,a), by the formula

−F (ν) pt hF (M,a) = tr
(
Ξ(D2F (ν)) ◦Ξ(pt D2(f ◦ T\)(0) • ν)

)
.

2.32 Remark. Note that the above definition does not depend on the choice of ν and f . In particular,
if ν̄ = −ν, then recalling (5) we obtain

F (ν) = 〈ν, DF (ν)〉 = 〈ν̄, DF (ν̄)〉 = F (ν̄) ;(13)

hence, ν
〈
(ν, ν), D2F (ν)

〉
= ν

〈
(ν, ν̄), D2F (ν̄)

〉
= ν̄

〈
(ν̄, ν̄), D2F (ν̄)

〉
.(14)

Anisotropic nearest point projection and related objects

2.33 Definition. Let F : Rn+1 → R be a norm, x ∈ Rn+1 and r > 0. We define

UF (x, r) = {y : F (y − x) < r} and BF (x, r) = {y : F (y − x) ≤ r} .

2.34 Definition. Let F : Rn+1 → R be a norm. Define the conjugate norm F ∗ on Rn+1 by setting

F ∗(w) = sup{w • u : u ∈ Rn+1, F (u) ≤ 1} .

By a Wulff shape (of F ) we mean any open ball with respect to the F ∗ norm.

2.35 Definition. Given A ⊆ Rn+1, we define the anisotropic distance function to A as

δFA(x) = inf{F ∗(a− x) : a ∈ A} for every x ∈ Rn+1.

Moreover,
SF (A, r) = {x : δFA(x) = r} for r > 0.

2.36 Definition. Suppose A ⊆ Rn is closed and W is the set of all x ∈ Rn such that there exists
a unique a ∈ A with F ∗(x− a) = δFA(x). The anisotropic nearest point projection onto A is the map
ξFA : W → A characterised by the requirement

F ∗(x− ξFA(x)) = δFA(x) for x ∈W.

We also define νFA : W ∼A→ ∂BF∗
(0, 1) and ψFA : W ∼A→ A× ∂BF∗

(0, 1) by the formulas

νFA (z) = δFA(z)−1(z − ξFA(z)) and ψFA(z) = (ξFA(z),νFA (z)) for z ∈W ∼A .

2.37 Definition (cf. [5, Def. 3.54]). Let A ⊆ Rn+1 be a set of finite perimeter and V = vn+1(A) ∈
Vn+1(Rn+1). Then ‖δV ‖ is a Radon measure (cf. [3, 4.7]) and there exists ‖δV ‖ measurable function
η(V, ·) with values in Sn as in [3, 4.3]. We define the reduced boundary of A, denoted ∂∗A, as the set
of points x ∈ dmnη(V, ·) for which

‖δV ‖B(x, r) > 0 for r > 0 and lim
r↓0

1

‖δV ‖B(x, r)

∫
B(x,r)

η(V, ·) d‖δV ‖ = η(V, x) .

In the next lemma we summarize a few facts about relations between F and F ∗.

2.38 Lemma. Let F be a strictly convex norm of class C 1,1, F ∗ its conjugate, W = UF (0, 1),
W ∗ = UF∗

(0, 1), G,G∗ : Rn+1 → Rn+1 be given by G = gradF and G∗ = gradF ∗.
The following hold.
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(a) F ∗(G(x)) = 1 and F (G∗(x)) = 1 for any x ∈ Rn+1∼{0}.

(b) G|∂W : ∂W → ∂W ∗ is a Lipschitz homeomorphism.

(c) F ∗(x) = x •G∗(x) and F (x) = x •G(x) for x ∈ Rn+1∼{0}.

(d) F ∗∗ = F .

(e) F ∗ is a strictly convex norm.

(f) G∗|∂W ∗ = (G|∂W )−1.

(g) F ∗ is of class C 1.

(h) If F satisfies (6), then F ∗ is of class C 1,1 and G|∂W : ∂W → ∂W ∗ is bilipschitz.

(i) n(W,x) = G(x)F (n(W,x)) and n(W ∗, y) = G∗(y)F (n(W ∗, y)) for x ∈ ∂W and y ∈ ∂W ∗.
In particular, G(n(W ∗, y)) = y for y ∈ ∂W ∗ and G∗(n(W,x)) = x for x ∈ ∂W .

Proof. It is clear from the definition that F ∗ is a norm; hence, it is Lipschitz and convex. Employ [30,
Theorem 25.5] or the Rademacher theorem [17, 3.1.6] to see that F ∗ is differentiable L n+1 almost
everywhere. Observe that G(x) • x = F (x) > 0 and G∗(y) • y = F ∗(y) > 0 for all x ∈ Rn+1∼{0}
and y ∈ dmnG∗ due to positive 1-homogeneity of F and F ∗.

Assume now that G|∂W is not injective, i.e., that there exist a, b ∈ ∂W such that a 6= b and
G(a) = G(b). Since F (u) = F (−u) we see that G(u) = −G(−u) so a 6= −b and the line segment
joining a and b does not pass through the origin. Set u = b − a and define the strictly convex map
f : [0, 1] → Rn+1 by the formula f(t) = F (a + tu). Then f ′(0) = G(a) • u and f ′(1) = G(b) • u so
f ′(0) = f ′(1) which contradicts strict convexity of f . Therefore G|∂W is injective; hence, since ∂W
is compact, (G|∂W )−1 : G[∂W ]→ ∂W is continuous.

For any w ∈ Rn+1 define gw : Rn+1 → R by the formula gw(u) = u • w for u ∈ Rn+1.
Let w ∈ ∂W ∗ so that F ∗(w) = 1. Since the smooth map gw attains its maximal value on the

compact manifold ∂W = F−1{1} of class C 1,1, using the method of Lagrange multipliers, we deduce
that there exists at least one u ∈ ∂W such that 1 = F ∗(w) = w • u and w = λG(u) for some λ ∈ R.
Then

1 = u • w = u • λG(u) = λ〈u, DF (u)〉 = λF (u) = λ .

Therefore,
F ∗(G(u)) = λF ∗(w) = λ = 1 .

Since w ∈ ∂W was arbitrary, it follows that ∂W ∗ ⊆ G[∂W ]. Noting that ∂W and ∂W ∗ are compact
connected submanifolds of Rn+1 without boundary of class at least C 0,1 and that G|∂W is a home-
omorphism onto its image, employing the invariance of domain theorem, we get G[∂W ] = ∂W ∗.

For u ∈ ∂W we have F ∗∗(u) = sup{u • w : F ∗(w) = 1} ≤ 1, u • G(u) = F (u) = 1, and
F ∗(G(u)) = 1, so F ∗∗ = F . If F (u) = 1 and F (u) = F ∗∗(u) = u • w for some w ∈ ∂W ∗ ∩ dmnG∗,
then u = λG∗(w) for some λ ∈ R because the function gu attains its maximum at w. Hence, the
same argument as before shows that F (G∗(w)) = 1 for all w ∈ ∂W ∗ ∩ dmnG∗.

If F ∗(y) = 1, then there exists exactly one w = (G|∂W )−1(y) ∈ ∂W for which F ∗(y) = w •
y. If y ∈ ∂W ∗ ∩ dmnG∗, then we know also that F ∗(y) = G∗(y) • y and G∗(y) ∈ ∂W ; hence,
G∗(y) = (G|∂W )−1(y). Employing [16, 4.7] we see that G∗|∂W ∗ = (G|∂W )−1 and, since (G|∂W )−1

is continuous, F ∗|Rn+1∼{0} is of class C 1.
For u, v ∈ Rn+1∼{0} we have

(15) F ∗(u+ v) = (u+ v) •G∗(u+ v) = u •G∗(u+ v) + v •G∗(u+ v)

< u •G∗(u) + v •G∗(v) = F ∗(u) + F ∗(v) ;

because G∗(u) 6= G∗(v), G∗(u) is the unique element of ∂W which realises sup{u • w : F (w) = 1},
and G∗(v) is the unique element of ∂W which realises sup{v • w : F (w) = 1}; hence, F ∗ is a strictly
convex norm.

Observe that if x ∈ ∂W , y = G(x), DG(x) exists, and v, w ∈ Tan(∂W ∗, x), then

〈(v, w), D2F ∗(y)〉 = DG∗(y)v • w = (DG(x)|Tan(∂W, x))−1v • w .

If F satisfies (6), then the right-hand side is bounded and F ∗ is of class C 1,1.
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Finally, note that for x ∈ ∂W we have G(x) = gradF (x) ⊥ Tan(∂W, x), G(x) • x = F (x) = 1,
and F ∗(G(x)) = 1; hence, G(x) = n(W,x)/F ∗(n(W,x)). Similarly, G∗(y) = n(W ∗, y)/F (n(W ∗, y))
whenever F ∗(y) = 1.

2.39 Corollary. Assume F is an elliptic integrand of class C 1,1, r ∈ R is positive, W = UF∗
(0, r),

η : ∂W → Rn+1 is given by η(z) = gradF (n(W, z)) for z ∈ ∂W . We have η(z) = z/r for z ∈ ∂W so
Dη(y)v = v/r for v ∈ Tan(∂W, y) and y ∈ dmn Dη; hence, recalling 2.29 and 2.30 we see that

κF∂W,1(y, η(y)) = . . . = κF∂W,n(y, η(y)) = 1/r for y ∈ dmn Dη .

2.40 Lemma. Let F : Rn+1 → R be a strictly convex norm of class C 1,1, G = gradF , A ⊆ Rn+1

be closed. Then

(a) |δFA(y)− δFA(z)| ≤ F ∗(y − z) for y, z ∈ Rn+1.

(b) ξFA is continuous.

(c) Suppose x ∈ Rn+1∼A and a ∈ A are such that δFA(x) = F ∗(x− a). Then

δFA(a+ t(x− a)) = tF ∗(x− a) = tδFA(x) for 0 < t ≤ 1 .

(d) Suppose x ∈ Rn+1∼A and a ∈ A are such that δFA(x) = F ∗(x − a) and DδFA(x) exists. Then
x ∈ U and G(grad δFA(x))δFA(x) = x− a; hence,

ξFA(x) = x−G(grad δFA(x))δFA(x) = a .

(e) The maps δFA | Int
(
dmn ξFA ∼A

)
and (δFA)2| Int

(
dmn ξFA

)
are continuously differentiable and〈

u, D(δFA)2(y)
〉

=
〈
u, D(F ∗)2(y − ξFA(y))

〉
for y ∈ Int

(
dmn ξFA

)
and u ∈ Rn+1 .

(f) L n+1(Rn+1∼dmn ξFA) = 0.

(g) Assume a ∈ A, u ∈ ∂BF∗
(0, 1), t > 0, and δFA(a + tu) = t. Then a + su ∈ dmn ξFA and

ξFA(a+ su) = a for all 0 < s < t. In particular,

{s : ξFA(a+ su) = a} ⊆ {s : δFA(a+ su) = s} = Clos {s : ξFA(a+ su) = a} .

(h) Assume a ∈ A, x ∈ Rn+1, and δFA(x) = F ∗(x− a). Then

x− a ∈ G(Nor(A, a)) .

In particular, if n(A, a) 6= 0, then

nF (A, a) = νFA (x) =
x− a

F ∗(x− a)
.

Proof. We mimic parts of the proof of [16, 4.8]. We set G∗ = gradF ∗.
Let y, z ∈ Rn+1, then

δFA(y) ≤ δFA(z) + F ∗(y − z) and δFA(z) ≤ δFA(y) + F ∗(y − z) ;

hence, claim (a) follows.
Assume that (b) does not hold. Then there are yi ∈ dmn ξFA for i ∈ N and ε > 0 such that

limi→∞ yi = y ∈ dmn ξFA but F ∗(ξFA(yi)− ξFA(y)) > ε. Using (a) we get

F ∗(ξFA(yi)− y) ≤ δFA(y) + 2F ∗(yi − y) for i ∈ N ;

hence, the set {ξFA(yi) : i ∈ N} is a bounded subset of the closed set A and we may assume that
limi→∞ ξ

F
A(yi) = z ∈ A. Then

δFA(y) = lim
i→∞

δFA(yi) = lim
i→∞

F ∗(ξFA(yi)− yi) = F ∗(z − y) ;
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hence, ξFA(y) = z which is incompatible with

F ∗(z − ξFA(y)) = lim
i→∞

F ∗(ξFA(yi)− ξFA(y)) ≥ ε .

Assume (c) does not hold. Then there are 0 < t < 1 and b ∈ A such that setting y = a+ t(x− a)
we get F ∗(y − b) < F ∗(y − a) and

F ∗(x− a) ≤ F ∗(x− b) ≤ F ∗(x− y) + F ∗(y − b) < F ∗(x− y) + F ∗(y − a) = F ∗(x− a)

a contradiction.
Now we prove (d). We have

δFA(x+ t(a− x)) = δFA(x)− tδFA(x) for 0 < t < 1 ,

which implies

(16) grad δFA(x) • x− a
δFA(x)

=
DδFA(x)(a− x)

−δFA(x)
= 1 .

From (16) and (a) we conclude using 2.38(d)(c)

(17) 1 = sup{DδFA(x)u : u ∈ Rn+1, F ∗(u) ≤ 1}
= sup{grad δFA(x) • u : u ∈ Rn+1, F ∗(u) ≤ 1}

= F ∗∗(grad δFA(x)) = F (grad δFA(x)) = grad δFA(x) •G(grad δFA(x)) .

However, due to 2.38(b) there is exactly one w ∈ Rn+1 with F ∗(w) = 1 such that grad δFA(x) • w =
F (grad δFA(x)) = 1; thus,

G(grad δFA(x)) =
x− a
δFA(x)

.

The formula for D(δFA)2 postulated in (e) is proven exactly as in [16, 4.8(5)] noting

F ∗( x−a
δFA(x)

) = 1 , grad δFA(x) = G∗( x−a
δFA(x)

) , 〈u, D(F ∗)2(y)〉 = 2F ∗(y)G∗(y) • u .

Continuity of the derivatives of δFA |Rn+1∼A and (δFA)2 follows from the formulas and a reasoning
completely analogous to the proof of [16, 4.8(5)].

Item (f) is now a consequence of the Rademacher theorem [17, 3.1.6].
For the proof of (g) recall (c) and assume to the contrary, that there exist 0 < s < t and b ∈ A,

b 6= a such that s = F ∗(a+ su− a) = F ∗(a+ su− b) = δFA(a+ su). Set p = a+ su and q = a+ tu.
Clearly b 6= p + su since otherwise t = δFA(q) ≤ F ∗(q − b) = F ∗(a + tu − (a + 2su)) = t − 2s < t
which is impossible. Therefore, q−a and q− b are linearly independent and, using 2.38(e), we obtain
the contradictory estimate

t ≤ F ∗(q − b) < F ∗ (q − p) + F ∗(p− b) = t− s+ s = t .

To prove (h) we observe that

UF∗
(x, F ∗(x− a)) ∩A = ∅ ; hence, − n(BF∗

(x, F ∗(x− a)), a) ∈ Nor(A, a) .

Indeed, otherwise there would exist v ∈ Tan(A, a) such that v • n(BF∗
(x, F ∗(x− a)), a) < 0 so there

would be points yi ∈ A such that |yi − a| → 0 and (yi − a)/|yi − a| → v as i → ∞ and then, since
F ∗ is of class C 1, we could find i ∈ N for which yi ∈ UF∗

(x, F ∗(x− a)) ∩A and this cannot happen.
Employing 2.38(i) we see that

G(−n(BF∗
(x, F ∗(x− a)), a)) =

x− a
F ∗(x− a)

∈ G(Nor(A, a)) .
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3 Totally umbilical hypersurfaces

In 2.39 we proved that ∂BF∗
(0, r) has all F -principal curvatures equal to 1/r. In this section we

show that this condition actually characterises the manifold ∂BF∗
(0, r).

3.1 Lemma. Suppose M is a connected submanifold of Rn+1 of class C 1,1 of dimensions n, η : M →
Rn+1 is Lipschitz, and κ : M → R is such that

Dη(z)(u) = κ(z)u for H n almost all z ∈M and all u ∈ Tan(M, z) .

Then κ is a constant function.

Proof. Since M is connected it suffices to show the claim only locally. Let a ∈ M . We represent M
near a as the graph of some C 1,1 function f , i.e., we find p ∈ O∗(n+ 1, n), q ∈ O∗(n+ 1, 1), U ⊆ Rn

an open ball centred at p(a), and f : U → R of class C 1,1 such that, setting L = p∗ + q∗ ◦ f , there
holds

a ∈ L[U ] ⊆M and q ◦ p∗ = 0 .

For each v ∈ Rn we define

γv : U → R by γv(x) = η(L(x)) • v .

Then

(18) Dγv(x)u = Dη(L(x))(DL(x)u) • v = κ(L(x))(DL(x)u) • v
= κ(L(x))(p∗(u) + q∗(Df(x)u)) • v = κ(L(x))(u • p(v) + Df(x)u • q(v))

for L n almost all x ∈ U , u ∈ Rn, v ∈ Rn+1 .

Now, choose an orthonormal basis e1, . . . , en of Rn and set γi = γp∗(ei) for i = 1, 2, . . . , n. Since
q ◦ p∗ = 0 and p ◦ p∗ = 1Rn , we obtain

(19) Dγi(x)ej = κ(F (x))(ei • ej) = 0 and Dγi(x)ei = κ(F (x))

for L n almost all x ∈ U , i, j ∈ {1, 2, . . . , n}, and i 6= j .

Recall that U is an open ball centred at p(a). Define J = {(x − p(a)) • e1 : x ∈ U}. Since η
is Lipschitz we see that γ1, . . . , γn are absolutely continuous and deduce from (19) that there exist
Lipschitz functions a1, . . . , an : J → R such that

(20) γi(x) = ai((x− p(a)) • ei)
and a′i((x− p(a)) • ei) = a′j((x− p(a)) • ej) = κ(F (x))

for L n almost all x ∈ U , i, j ∈ {1, 2, . . . , n} .

It follows that a′i is a constant function for i = 1, 2, . . . , n; hence, κ is also constant.

3.2 Lemma. Suppose F is an elliptic integrand of class C 1,1, M is a connected n-dimensional
submanifold of Rn+1 of class C 1,1 satisfying ClosM ∼M = ∅, ν : M → Rn+1 is Lipschitz and such
that ν(z) ∈ Nor(M, z) and |ν(z)| = 1, η : M → Rn+1 is defined by η(y) = gradF (ν(y)), and there
exists a scalar function κ : M → R such that

Dη(y)u = κ(y)u for H n almost all y ∈M and all u ∈ Tan(M,y) .

Then there exists λ ∈ R such that κ(y) = λ for y ∈ M and either λ = 0 and M is a hyperplane
in Rn+1 or λ 6= 0 and M = ∂BF (a, |λ|−1) for some a ∈ Rn+1.

Proof. In view of 3.1 we obtain λ ∈ R such that

Dη(z)u = λu for all H n almost all z ∈M and u ∈ Tan(M, z) .

Therefore, D(η − λidRn) = 0 and we obtain c ∈ Rn such that

η(z)− λz = c for all z ∈M .

If λ = 0, then η is constant and M must be a hyperplane because ClosM ∼M = ∅. In case λ 6= 0
we set a = −cλ−1 and ρ = |λ|−1. Then

F ∗(z − a) = ρF ∗(η(z)) = ρF ∗(gradF (ν(z))) = ρ for all z ∈M ,

by 2.38(a). Hence, M = ∂BF (a, ρ) because ClosM ∼M = ∅.
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4 The Lusin property for anisotropic (n,h)-sets

In this section F is an elliptic integrand of class C 2 and Ω ⊆ Rn+1 is open.

4.1 Definition (cf. [11, Definition 3.1]). We say that Z ⊆ Ω is an (n,h)-set with respect to F if Z is
relatively closed in Ω and for any open set N ⊆ Ω such that ∂N ∩Ω is smooth and Z ⊆ ClosN there
holds

F (n(N, p))hF (vn(∂N), p) • n(N, p) ≥ −h for p ∈ Z ∩ ∂N ∩ Ω .

4.2 Lemma. Suppose T ∈ G(n + 1, n), η ∈ T⊥, |η| = 1, f : T → T⊥ is pointwise differentiable
of order 2 at 0 and satisfies f(0) = 0 and pt Df(0) = 0, Σ = {x + f(x) : x ∈ T}, h ≥ 0, and Γ is
an (n, h) subset of Ω with respect to F such that 0 ∈ Γ and

Γ ∩ V ⊆
{
z : z • η ≤ f ◦ T\(z) • η

}
for some open neighbourhood V of 0. Then

F (η) pt hF (Σ, 0) • η ≥ −h.

Proof. We mimic the proof of [34, 3.4]. Fix ε > 0, define P,ψ : T → T⊥ by

P (x) = 1
2 〈(x, x), pt D2f(0)〉 for x ∈ T ,(21)

ψ(x) =
(
P (x) • η + ε|x|2

)
η for x ∈ T ,(22)

and set M = Rn ∩
{
x+ ψ(x) : x ∈ T

}
.(23)

Note that since f is pointwise differentiable of order 2 at 0, it follows that

lim
x→0

|f(x)− P (x)|
|x|2

= 0 .

Hence, we choose r > 0 such that f(x) • η ≤ ψ(x) • η for x ∈ U(0, r) ∩ T . Since Γ is an (n, h) subset
of Ω, M is smooth and touches Γ at 0, and Γ∩U(0, r) ⊆ Rn+1{x : x • η ≤ ψ(x) • η}, we may use the
barrier principle [11, Proposition 3.1(iii)] to derive the estimate

F (η)hF (M, 0) • η ≥ −h .

Recall 2.31 to see that

−F (η) pt hF (M, 0) = η tr
(
Ξ(D2F (η)) ◦Ξ(D2(ψ ◦ T\)(0) • η)

)
.

Since
D2(ψ ◦ T\)(0)(u, v) • η = pt D2(f ◦ T\)(0)(u, v) • η + 2εu • T\v for u, v ∈ Rn

we see that
−F (0, η) pt hF (Σ, 0) = −F (η) pt hF (M, 0)− 2εη tr

(
Ξ(D2F (η))

)
.

Passing to the limit ε ↓ 0 we obtain the claim.

4.3 Definition. Suppose A ⊆ Rn+1 is a closed set. We say that N(A) satisfies the n dimensional
Lusin (N) condition in Ω if and only if

S ⊆ A ∩ Ω and H n(S) = 0 implies that H n(N(A)|S) = 0 .

4.4 Theorem. Suppose 0 ≤ h <∞, A is an (n, h) subset of Ω with respect to F that is a countable
union of sets with finite H n measure.

Then N(A) satisfies the n dimensional Lusin (N) condition in Ω.

Proof. We modify the proof of [34, 3.7]. Let τ > λ = 2C(F )2(n− 1) + 1, where C(F ) > 0 is defined
in (2.18).

Claim 1: Assume r ∈ R satisfies 0 ≤ h < 1
2C(F )r , and x ∈ S(A, r) ∩ R(A) ∩ Aτ ∩ ξ−1

A (A)

(see 2.8) is such that Θn(H n S(A, r)∼Aτ , x) = 0, and the conclusions of [34, Lemma 2.8] are
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satisfied. Consider an orthonormal basis v1, . . . , vn+1 in which the matrix of ap DνA(x) is diagonal
and vn+1 = νA(x). We introduce abbreviations

∂ijF (ν) = 〈(vi, vj), D2F (ν)〉 for i, j ∈ {1, 2, . . . , n+ 1} .

Then we have

n∑
i=1

∂iiF (νA(x))χA,i(x) ≤ h and ‖
∧
n

(
(H n S(A, r), n) ap DξA(x)

)
‖ > 0 .

Noting that ξA|Aλ is approximately differentiable at x (since x ∈ R(A)), we employ [31, 3.8,
3.10(3)(6)] and [17, 3.2.16] to conclude that

χA,j(x) ≥ −(λ− 1)−1r−1 for j = 1, . . . , n ,(24)

ap DξA(x)|Tan(H n S(A, r), x) = (H n S(A, r), n) ap DξA(x).(25)

We choose f , V and T as in [34, Lemma 2.8] and 0 < s < r/2 such that U(x, s) ⊆ V . We assume
ξA(x) = 0 ∈ Γ and we notice that T\(x) = 0 and νA(x) = r−1x. Then we define g(ζ) = f(ζ)− x for
ζ ∈ T ,

U = T\
(
U(x, s) ∩ {χ+ f(χ) : χ ∈ T}

)
, W = {y − x : y ∈ T−1

\ (U) ∩U(x, s)} .

It follows that W is an open neighbourhood of 0 and

(26) W ∩A ⊆ {z : z • νA(x) ≤ g(T\(z)) • νA(x)} .

Indeed, if (26) did not hold, then there would be y ∈ U(x, s) ∩ T−1
\ [U ] such that y − x ∈ A and

y • νA(x) > f(T\(y)) • νA(x); noting that

T\(y) + f(T\(y)) ∈ U(x, s) ∩ S(A, r) and |T\(y) + f(T\(y))− y| < r ,

we would conclude

|T\(y) + f(T\(y))− (y − x)| = r − (y − f(T\(y))) • νA(x) < r = δA(T\(y) + f(T\(y)))

which is a contradiction.
Since −χA,1(x), . . . ,−χA,n(x) are the eigenvalues of pt D2g(0)•νA(x) and 0 ∈ A, we may apply 4.2

to infer that

(27) ∂11F (νA(x))χA,1(x) + . . .+ ∂nnF (νA(x))χA,n(x) ≤ h

and combining (6), 2.18, (24), and (27) we get that for every j = 1, . . . , n

(28) χA,j(x) ≤ C(F )∂jjF (νA(x))χA,j(x) ≤ C(F )h− C(F )

n∑
k 6=j,k=1

∂kkF (νA(x))χA,k(x)

≤ C(F )h− C(F )2(n− 1)

(λ− 1)r
<

1

r
.

From (25) and [31, 3.5] follows that 1 − rχA,j(x) are the eigenvalues of (H n S(A, r), n) ap DξA(x)
for j = 1, . . . , n; hence, we obtain

∥∥∧
n

(
(H n S(A, r), n) ap DξA(x)

)∥∥ ≥ n∏
i=1

(
1− χA,i(x)r

)
> 0 .

Claim 2: For H n a.e. x ∈ S(A, r)∩Aτ ∩ ξ−1
A (A) and for L 1 a.e. 0 < r < 1

2C(F )h the conclusion

of Claim 1 holds.

This is immediate since
Θn(H n S(A, r)∼Aτ , x) = 0

for H n a.e. x ∈ S(A, r) ∩ Aτ and for every r > 0 by [31, 2.13(1)] and [17, 2.10.19(4)], and
H n(S(A, r)∼R(A)) = 0 for L 1 a.e. r > 0 by [31, 3.16].
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Claim 3: N(A) satisfies the n dimensional Lusin (N) condition in Ω.

Let R ⊆ A be such that H n(R) = 0. For r > 0 it follows from [31, 3.17, 3.18(1), 4.3] that
ψA|Aτ ∩ S(A, r) is a bilipschitz homeomorphism and

ψA(ξ−1
A {x} ∩Aτ ∩ S(A, r)) ⊆ N(A, x) for x ∈ A .

Noting Claim 2 and [31, 3.10(1)], we can apply [34, Lemma 3.5] with W and f replaced by S(A, r)∩
Aτ ∩ ξ−1

A (A) and ξA|S(A, r) ∩Aτ ∩ ξ−1
A (A) to infer that

H n(ξ−1
A (R) ∩ S(A, r) ∩Aτ ) = 0 for L 1 a.e. 0 < r <

1

2C(F )
h−1.

We notice that N(A)|R =
⋃
r>0ψA(S(A, r) ∩ Aτ ∩ ξ−1

A (R)) by [31, 4.3] and ψA(S(A, r) ∩ Aτ ) ⊆
ψA(S(A, s) ∩Aτ ) if s < r by [31, 3.18(2)]. Henceforth, it follows that

H n(N(A)|R) = 0 .

The following weak maximum principle is a simple consequence of [11, Theorem 3.4].

4.5 Lemma. Assume

V ∈ Vn(Ω) , F (hF (V, x)) ≤ h for ‖V ‖ almost all x , ‖δFV ‖sing = 0 .

Then spt ‖V ‖ is an (n, h) subset of Ω with respect to F .

Proof. For every k ∈ N let Vk = k · V . Note that

u • v =
u

F (u)
• v

F ∗(v)
F (u)F ∗(v) ≤ F (u)F ∗(v) whenever u, v ∈ Rn+1 ;

thus,

δFVk(g) = −
∫

hF (V, x) • g(x) d‖Vk‖(x) ≤ h
∫
F ∗(g(x)) d‖Vk‖(x) for k ∈ N and g ∈X (Ω) .

Moreover, the area blowup set

Z =
{
x ∈ Clos Ω : lim sup

k→∞
‖Vk‖(B(x, r)) = +∞ for every r > 0

}
coincides with spt ‖V ‖; hence, [11, Theorem 3.4] yields that spt ‖V ‖ = Z is an (n, h) set.

5 The anisotropic unit normal bundle

In this section we will need to work with a suitable anisotropic variant of the normal bundle for closed
sets. Let us introduce some definitions.

5.1 Definition. Suppose F is an elliptic integrand and A ⊆ Rn+1 is closed. The generalized
anisotropic unit normal bundle of A is defined as

NF (A) = (A× ∂BF∗
(0, 1)) ∩ {(a, u) : δFA(a+ su) = s for some s > 0} .

5.2 Lemma. Suppose F is an elliptic integrand of class C 1,1 and A ⊆ Rn+1 is closed. Then

NF (A) = (idRn+1 × gradF )[N(A)] =
{

(a, gradF (u)) : (a, u) ∈ N(A)
}
.

In particular, NF (A) is a countably n rectifiable Borel subset of Rn+1 × ∂BF∗
(0, 1).

Proof. Given (a, u) ∈ NF (A), there exists s > 0 such that

a ∈ A ∩ ∂UF∗
(a+ su, s) and UF∗

(a+ su, s) ∩A = ∅ .

Since ∂UF∗
(a + su, s) is submanifold of Rn+1 of class C 1,1 (see 2.38(h)), there exists r > 0 and

x ∈ Rn+1 such that U(x, r) ⊆ UF∗
(a+ su, s) and a ∈ ∂U(x, r). It follows that

n(U(x, r), a) = n(UF∗
(a+ su, s), a) and (a,−n(UF∗

(a+ su, s), a)) ∈ N(A) .
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Since gradF (n(UF∗
(0, 1), z)) = z for every z ∈ ∂UF∗

(0, 1) (see 2.38(i)), it follows that

gradF
(
−n(UF∗

(a+ su, s), a)
)

= − gradF
(
n(UF∗

(a+ su, s), a)
)

= −a− (a+ su)

s
= u ,

i.e. (a, u) ∈ (idRn+1 × gradF )(N(A)).
The proof of the reverse inclusion (idRn+1×gradF )(N(A)) ⊆ NF (A) is completely analogous and

the postscript follows from [31, 4.3].

5.3 Definition. Suppose Ω ⊆ Rn+1 is open, F is an elliptic integrand, and A ⊆ Rn+1 is closed.
We say that NF (A) satisfies the n dimensional Lusin (N) condition in Ω if and only if the following
implication holds,

S ⊆ A ∩ Ω, H n(S) = 0 =⇒ H n(NF (A)|S) = 0 .

5.4 Lemma. Assume F is an elliptic integrand of class C 1,1, Ω ⊆ Rn+1 is open, and A ⊆ Rn+1

is closed. Then N(A) satisfies the n dimensional Lusin (N) condition in Ω if and only if NF (A)
satisfies the n dimensional Lusin (N) condition in Ω.

Proof. Let S ⊆ A ∩ Ω be such that H n(S) = 0. Assume that either H n(NF (A)|S) = 0 or
H n(N(A)|S) = 0. Since the map idRn+1 × gradF is a bilipschitz homeomorphism (see 2.38(h)), we
deduce that H n(NF (A)|S) = H n((idRn+1 × gradF )(N(A)|S)) = H n(N(A)|S) = 0 as desired.

5.5 Definition. Let F be an elliptic integrand and A ⊆ Rn+1 be closed. The anisotropic reach
function rFA : NF (A)→ [0,∞] is defined by

rFA(a, u) = sup{s : δFA(a+ su) = s} for (a, u) ∈ NF (A) .

The anisotropic reach of A is defined by

reachF (A) = inf
{

sup{r : UF∗
(a, r) ⊆ dmn ξFA} : a ∈ A

}
= sup

{
r : {x : δFA(x) < r} ⊆ dmn ξFA

}
.

5.6 Remark. Since δFA is Lipschitz continuous (see 2.38(a)), the function fs : NF (A) → R given by
fs(a, u) = δFA(a + su) − s is also Lipschitz for any s ∈ R. Therefore rFA is lower-semicontinuous.
In particular, rFA is a Borel function.

5.7 Lemma. Suppose F is an elliptic integrand of class C 1,1 and A is a closed submanifold of Rn+1

of class C 1 such that reachF A > 0. Then reachA > 0 and A is a submanifold of Rn+1 of class C 1,1.

Proof. Set W = BF∗
(0, 1). First observe that ∂W is a submanifold of Rn+1 of class C 1,1 by 2.38(h).

Therefore, there exists ρ ∈ (0, 1) such that for each x ∈ ∂W we have

B(x+ ρn(W,x), ρ) ⊆W .

Assume reachF A = s > 0. Let z ∈ Rn+1 be such that δA(z) = r < ρs and find x ∈ A with
|z−x| = δA(z). SetB = B(z, r), u = −n(B, x), and w = x+r gradF (u)/ρ. Note that u ∈ Tan(A, x)⊥.
We have δFA(w) = r/ρ < s so w ∈ dmn ξFA and BF∗

(w, r/ρ) ∩ A = {x} and B(z, r) ⊆ BF∗
(w, r/ρ);

hence, z ∈ dmn ξA.
Since z was arbitrary we see that {x : δA(x) < ρs} ⊆ dmn ξA which shows that reachA ≥ ρs.

The second part of the conclusion readily follows from [16, 4.20].

5.8 Corollary. Suppose A ⊆ Rn+1 is closed and reachF A > 0. Then SF (A, r) is a submanifold
of Rn+1 of class C 1,1 of dimension n for every 0 < r < reachF A.

Proof. Since R = reachF A > 0, we have that Rn+1 ∩ {y : δFA(y) < R} ⊆ dmn ξFA . Therefore,
from 2.40(e)(d) and 2.38(f) it follows that δFA |Rn+1 ∩ {y : 0 < δFA(y) < R} is of class C 1 and

grad δFA(y) = gradF ∗
(x− ξFA(y)

δFA(y)

)
6= 0 for y ∈ Rn+1 with 0 < δFA(y) < R .

Consequently, for every 0 < r < R we see that SF (A, r) = (δFA)−1{r} is a closed submanifold of Ω of

class C 1 of dimension n. Moreover, we have reachF SF (A, r) ≥ min{R − r, r} > 0 so the conclusion
follows from 5.7.
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We prove now the anisotropic version of [22, Theorem 3], whose proof is essentially along the same
lines.

5.9 Theorem. Assume F is an elliptic integrand of class C 1,1 and A ⊆ Rn+1 is closed. Let r > 0 and
suppose that for every H n measurable bounded function f : Rn+1 × ∂UF∗

(0, 1) → R with compact
support there are numbers c1(f), . . . , cn+1(f) ∈ R such that

(29)

∫
Rn+1∼A

f ◦ψFA · 1{x:δFA(x)≤t} dL n+1 =

n+1∑
j=1

cj(f)tj for 0 < t < r .

Then reachF (A) ≥ r.

Proof. Let S = {(x, u, t) : (x, u) ∈ NF (A), rFA(x, u) > t} and define φ : NF (A)× (0,∞)→ Rn+1

φ(x, u, t) = x+ tu for (x, u, t) ∈ NF (A)× (0,∞).

Claim 1: L n+1(dmn ξFA ∼(A ∪ φ(S))) = 0; hence,

L n+1(Rn+1∼(A ∪ φ(S))) = 0 .

Recalling 2.38(g) we see that

dmn ξFA ∼(A ∪ φ(S)) = φ({(x, u, t) : (x, u) ∈ NF (A), t = rFA(x, u) > 0}) .

Since φ is a locally Lipschitz map, it suffices to prove that

(30) H n+1({(x, u, t) : (x, u) ∈ K, M > t = rFA(x, u) > 0}) = 0

for all M ∈ N and K ⊆ NF (A) bounded. By 5.2 and [17, 3.2.29] we know that NF (A) is countably
n rectifiable. Hence, it suffices to prove (30) for all M ∈ N and K ⊆ A being n rectifiable. Assume
K and M are such. Employing [17, 3.2.23] we get

(31) H n+1(K × (0,M + 1)) = (M + 1)H n(K) <∞ .

Recall 5.6. For q ∈ R define the Borel set

Vq = {(x, u, t+ q) : (x, u) ∈ K, M > t = rFA(x, u) > 0}

and observe that

Vq ∩ Vp = ∅ whenever p 6= q , Vq ⊆ K × (0,M + 1) for 0 < q < 1 ,(32)

and H n+1(Vq) = H n+1(V0) for any q ∈ R .(33)

Therefore, if H n+1(V0) > 0, then H n+1(
⋃
{Vq : 0 < q < 1, q rational}) =∞ which contradicts (31).

Claim 2:

(34) L n+1
(
{z : 0 < δFA(z) ≤ r, rFA(ψFA(z)) < r}

)
= 0 .

In the following sequence of estimates we have to deal with the problem that NF (A) might not
have locally finite measure so µ = H n NF (A) might not be Radon and (µ, n) approximate derivative
of φ might not be well defined.

Recalling 2.38(g) one readily infers that φ|S is injective. Since NF (A) is Borel and countably
n rectifiable (see 5.2) we may find a partition

NF (A) =
⋃∞
i=1Ni

such that each Ni is a Borel n rectifiable set (in particular, H n(Ni) <∞) and the family {Ni : i ∈ N}
is disjointed; cf. [17, 2.1.6]. For i ∈ N w define

µi = H n Ni , Si = S ∩
(
Ni × (0,∞)

)
, and J =

∞∑
i=1

∥∥∧
n[(µi, n) ap Dφ]

∥∥1Si .
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We apply Claim 1 and the coarea formula [17, 3.2.22] to find that

(35)

∫
Rn+1∼A

g dL n+1 =

∫
φ(S)

g dL n+1 =

∞∑
i=1

∫
φ(Si)

g dL n+1

=

∫ ∞
0

∞∑
i=1

∫
Ni

∥∥∧
n[(µi, n) ap Dφ(x, u, t)]

∥∥g(x+ tu)1{(w,v):rFA(w,v)>t}(x, u) dH n(x, u) dt

=

∫ ∞
0

J(x, u, t)g(x+ tu)1{(w,v):rFA(w,v)>t}(x, u) dH n(x, u) dt

whenever g : Rn+1 → R is a non-negative Borel function with compact support.
Let B ⊆ Rn+1 be compact, 0 < τ < r and τ < t < r. We define

Nτ,B = NF (A) ∩ {(x, u) : rFA(x, u) ≤ τ, x ∈ B} ,

and we apply (29) to the function 1Nτ,B and (35) to the function g = (1Nτ,B ◦ ψFA) · 1{w:δFA(w)≤t} to
compute

(36)

n+1∑
j=1

cj(f)tj
(29)
=

∫
Rn+1∼A

1Nτ,B (ψFA(z))1{w:δFA(w)≤t}(z) dL n+1z

(35)
=

∫ ∞
0

∫
NF (A)

J(x, u, s)1{w:δFA(w)≤t}(x+su)1{(w,v):rFA(w,v)>s}(x, u)1Nτ,B (ψFA(x+su)) dH n(x, u) ds

=

∫ ∞
0

∫
NF (A)

J(x, u, s)1{w:δFA(w)≤t}(x+ su)1{(w,v):rFA(w,v)>s}(x, u)1Nτ,B (x, u) dH n(x, u) ds

=

∫ ∞
0

∫
NF (A)

J(x, u, s)1{w:δFA(w)≤t}(x+ su)1{(w,v):s<rFA(w,v)≤τ}(x, u)1B(x) dH n(x, u) ds

=

∫ ∞
0

∫
NF (A)

J(x, u, s)1{(w,v):s<rFA(w,v)≤τ}(x, u)1B(x) dH n(x, u) ds ,

where the last equality follows because δFA(x + su) = s < rFA(x, u) ≤ τ < t, for every τ < t < r.

Whence, we deduce that
∑n+1
j=1 cj(f)tj is independent of t, for every τ < t < r. Therefore, this

polynomial is identically zero, a condition that implies, by the first equality in (36),

L n+1
(
{z : 0 < δFA(z) ≤ r, ψFA(z) ∈ Nτ,B}

)
= 0 .

Since the last equation holds for every 0 < τ < r and for every compact set B ⊆ Rn+1, we conclude
that (34) holds.

Claim 3: reachF (A) ≥ r.

Let z ∈ Rn+1∼A satisfy 0 < δFA(z) < r. Then there exists a sequence {zi : i ∈ N} ⊆ dmn ξFA
which converges to z and such that

0 < δFA(zi) ≤ r and rFA(ψFA(zi)) ≥ r .

Noting that (ξFA(zi)) is a bounded sequence, and passing to a subsequence if necessary, we find p ∈ A
and u ∈ ∂UF∗

(0, 1) such that
ξFA(zi)→ p, νFA (zi)→ u .

In particular, z = p+ δFA(z)u. We find t ∈ R such that δFA(z) < t < r, and notice that

(37) UF∗
(ξFA(zi) + tνFA (zi), t) ∩A = ∅ for i ≥ 1 ; hence, UF∗

(p+ tu, t) ∩A = ∅ .

This shows that δFA(p+ tu) = t > δFA(z); hence, 2.38(g) yields z ∈ dmn ξFA and ξFA(z) = p.
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6 Heintze Karcher inequality

Here we prove our main theorem 6.4.

6.1 Remark. Let F be an elliptic integrand. Recalling [17, 5.1.1] we define Φ : Rn+1×
∧
nRn+1 → R,

a parametric integrand of degree n on Rn+1, by setting

Φ(z, ξ) = F (∗ξ) for z ∈ Rn+1 and ξ ∈
∧
nRn+1 ,

where ∗ denotes the Hodge star operator associated with the standard scalar product and orientation
on Rn+1; see [17, 1.7.8]. By 2.16 and [17, 5.1.2] we see that Φ is elliptic in the sense of [17, 5.1.2].
Moreover, if Φ§ is the nonparametric integrand associated with Φ (see [17, 5.1.9]) and Φ§z(ξ) = Φ§(z, ξ)
for (z, ξ) ∈ Rn+1 ×

∧
nRn+1, then D2Φ§z(ξ) is strongly elliptic in the sense of [17, 5.2.3] for all

(z, ξ) ∈ Rn+1 ×
∧
nRn+1 by [17, 5.2.17].

Let W ⊆ Rn be open and bounded, V ∈ Vn(W × R), p : Rn+1 → Rn and q : Rn+1 → R
be given by p(z1, . . . , zn+1) = (z1, . . . , zn) and q(z1, . . . , zn+1) = zn+1 for (z1, . . . , zn+1) ∈ Rn+1.
Assume f : Rn → R is of class C 1, and V is the unit density varifold associated to the graph of f ,
i.e., V = vn(im(p∗ + q∗ ◦ f)). Recalling [17, 5.1.9] we see that for any θ : W → R of class C 1 with
compact support there holds

δFV (q∗ ◦ θ ◦ p) =

∫ 〈
(0, θ(x),Dθ(x)), DΦ§(x, f(x),Df(x))

〉
dL n+1(x) .

Suppose F is of class C 3, α ∈ (0, 1), f is of class C 1,α, ‖δFV ‖ is a Radon measure, ‖δFV ‖sing = 0,
and hF (V, ·) : spt ‖V ‖ → Rn+1 is of class C 0,α. Define η : W → Rn+1 and H : W → R by the
formulas

η(x) = (q∗(1)− p∗(grad f(x))) · (1 + | grad f(x)|2)−1/2(38)

and H(x) = −F (η(x)) · q ◦ hF (V, (p∗ + q∗ ◦ f)(x)) ·
√

1 + | grad f |2(39)

for x ∈W . Note that η(x) is the unit normal vector to the graph of f at (p∗ + q∗ ◦ f)(x) for x ∈W .
Employing the area formula [17, 3.2.3] we get

δFV (q∗ ◦ θ ◦ p) = −
∫

spt ‖V ‖
θ(p(z)) · q(h(V, z)) · F (η(p(z)) dH n(z) =

∫
W

θ(x) ·H(x) dL n(x)

so that

(40)

∫
W

〈
(0, θ(x),Dθ(x)), DΦ§(x, f(x),Df(x))

〉
dL n+1(x) =

∫
W

θ(x) ·H(x) dL n(x)

for any θ ∈ D(W,R) .

Since H is of class C 0,α a slight modification of the proof of [17, 5.2.15] shows that f is actually of
class C 2,α.

To support the last claim recall the proof of [17, 5.2.15] with 2, n + 1, n, α, W , Φ§ in place of
q, n, m, δ, U , G. Using all the symbols defined therein, for any integer ν such that ν > 1/d, define
Rν : B(b, ρ− d)→ Hom(Rn,R) so that

σ •Rν(x) =

∫ 1

0

σ(ei) ·H(x+ tei/ν) dL 1(t) for σ ∈ Hom(Rn,R) and x ∈ B(b, ρ− d) .

Since, in our case, f satisfies (40) rather than [17, 5.2.15(4)] the displayed equation in the middle of
page 556 of [17], i.e.,∫

U(b,ρ−d)

〈
Dfν(x)�Dθ(x), Aν(x)

〉
dL n(x) = (Pν −Qν , Dθ)b,ρ−d

turns into ∫
U(b,ρ−d)

〈
Dfν(x)�Dθ(x), Aν(x)

〉
dL n(x) = (Pν −Qν −Rν , Dθ)b,ρ−d .

Clearly Rν is α-Hölder continuous with Hölder constant independent of ν so all the estimates from
the upper half of page 557 of [17] hold in the modified case with an additional term coming from Rν .
Thus, one can still use [17, 5.2.2] to conclude that Dif is of class C 1,α; hence, f is of class C 2,α.
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6.2 Remark. Suppose E ⊆ Rn+1 is of finite perimeter. We recall that the reduced boundary (see 2.37)
and the essential boundary (cf. [17, 4.5.12] and [5, Def. 3.60]) of E are H n almost the same (see [5,
Thm. 3.61]). Recalling [3, 4.7] we deduce that n(E, ·)|∂∗E : ∂∗E → Rn+1 equals the negative of the
generalised inner normal to E defined in [5, Def. 3.54].

6.3 Definition. Let A ⊆ Rn+1, k ∈ N, α ∈ [0, 1]. We say that x ∈ A is a C k,α-regular point of A if
there exists an open set W ⊆ Rn+1 such that x ∈W and A ∩W is an n-dimensional submanifold of
class C k,α of Rn+1. The set of all C k,α regular points of A shall be called the C k,α regular part of A.

The strategy for the proof of our main theorem can be summarised in the following way. First we
replace the set E with an open set Ω with the same essential boundary using [33, 2.2]. Using standard
regularity theory for codimension one varifolds with bounded anisotropic mean curvature [2] and 6.1
we deduce that H n almost all of ∂∗Ω is C 2,α regular. On the C 2,α regular part we can express the,
variationally defined, anisotropic mean curvature vector hF (V, ·) as the trace of the anisotropic second
fundamental form as in 2.25. However, this does not reduce the problem to the smooth case because
we have no control of the singular set and we do not know how different parts of the regular set
are arranged in space. Therefore, we look at level-sets SF (C, r) of the anisotropic distance function
from C = Rn+1∼Ω. These sets are easily seen to be C 1,1 submanifolds of Ω of dimension n so we
gain a priori regularity. Nonetheless, we need to transfer the information we have from H n almost
all of ∂∗Ω onto SF (C, r) and then back to ∂∗Ω. To this end we need the Lusin (N) condition for
∂∗Ω which follows from the weak maximum principle 4.5 and 4.4. The Lusin (N) property of ∂Ω
allows to represent L n+1 almost all of Ω as the image of the map ζ(x, t) = x + tnF (C, x), where
x belongs to the regular part of ∂C and t > 0 is bounded by the first eigenvalue of the anisotropic
second fundamental form of ∂Ω at x. At this point we apply the Montiel-Ros argument to estimate
the measure of Ω and derive the Heintze-Karcher inequality.

Next, we deal with the equality case. First we note that the principal curvatures of ∂Ω must
all equal −n/H(z) for z in the regular part of ∂Ω. We use the Steiner formula 5.9 to deduce that
reachF C > n/c. Then we let 0 < r < n/c and we compute the principal curvatures of the level-set
SF (C, r) using the information we have on the regular part of ∂Ω. This and the Lusin (N) property
show that SF (C, r) is totally umbilical at H n almost all points. Since we know that SF (C, r) is
of class C 1,1, the H n almost everywhere information is enough to apply 3.2 to see that SF (C, r) is
a finite union of boundaries of Wulff shapes of radii n/c− r. After that, it is rather easy to see that
each connected component of Ω must be a Wulff shape of radius at least n/c. Since the perimeter
of Ω is finite we see also that there may be at most finitely many connected components of Ω.

6.4 Theorem. Suppose

F is an elliptic integrand of class C 3 , n ≥ 2 , c ∈ (0,∞) ,(41)

E ⊆ Rn+1 is a set of finite perimeter , H n
(
Clos(∂∗E)∼ ∂∗E

)
= 0 ,(42)

V = vn(∂∗E) ∈ RVn(Rn+1) , ‖δFV ‖sing = 0 ,(43)

hF (V, ·)|K is of class C 0,α for each compact subset K of the C 1,α regular part of spt ‖V ‖ ,(44)

0 < −hF (V, x) • n(E, x) ≤ c for ‖V ‖ almost all x .(45)

Then

(46) L n+1(E) ≤ n

n+ 1

∫
∂E

1

|hF (V, x)|
dH n(x)

and equality holds if and only if here there exists a finite union Ω of disjoint open Wulff shapes with
radii not smaller than n/c such that L n+1

(
(Ω∼E) ∪ (E∼Ω)

)
= 0.

Proof. First we employ [33, 2.2] to obtain an open set Ω ⊆ Rn+1 such that

L n+1
(
(Ω∼E) ∪ (E∼Ω)

)
= 0 and H n(∂Ω∼ ∂∗Ω) = 0 .

Directly from the definition (see [17, 4.5.12, 4.5.11]) it follows that the essential boundaries of Ω
and E coincide; hence, recalling 6.2, we obtain V = vn(∂∗Ω). We shall consider Ω instead of E in
the sequel. Let us define

H : spt ‖V ‖ → [0, c] so that H(x) = −hF (V, x) • n(E, x) for ‖V ‖ almost all x ,(47)

C = Rn+1∼Ω , Q = ∂C ∩
{
x : x is a C 2,α-regular point of ∂C

}
.(48)
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Note that ∂∗C = ∂∗Ω, nF (C, ·) = −nF (Ω, ·), and H(x) = F (n(E, x))|hF (V, x)| for ‖V ‖ almost all x.

Claim 1: If x ∈ Q, y ∈ Ω, and ξFC (y) = x (in other words: y ∈ Ω ∩ (ξFC )−1(Q)), then

0 ≤ 1

n
H(x) ≤ −κFQ,1(ψFC (y)) ≤ δFC (y)−1 .

We clearly have

UF∗
(y, δFC (y)) ∩ C = ∅ and ∂UF∗

(y, δFC (y)) ∩ C = {x} ;

hence, recalling 2.39, 2.30, and that x is a C 2,α-regular point of ∂C, wee see that

1

n
H(x) ≤ −κFQ,1(ψFC (y)) ≤ −κF∂UF∗ (y,δFC (y)),1(ψFC (y)) = δFC (y)−1

and the claim is proven.

Claim 2: L n+1(Ω∼(ξFC )−1(Q)) = 0.

Note that F (hF (V, x)) = H(x)F (n(Ω, x)) for ‖V ‖ almost all x so applying Lemma 4.5 we conclude
that ∂Ω is an (n, cC(F )) subset of Rn+1. It follows by Theorem 4.4 that H n(N(∂Ω)|S) = 0 whenever
S ⊆ Rn+1 satisfies H n(S) = 0. Combining this with Lemma 5.4, we deduce that H n(NF (∂Ω)|S) =
0 whenever S ⊆ Rn+1 satisfies H n(S) = 0. Since NF (C) ⊆ NF (∂Ω), one readily infers that
H n(NF (C)|S) = 0 whenever S ⊆ Rn+1 satisfies H n(S) = 0. We also observe that for ‖V ‖ almost
all z there exists a radius r > 0 such that V satisfies all the assumption of [2, The Regularity Theorem,
pp. 27-28] inside U(z, r). This implies that there exists α ∈ (0, 1) such that for H n almost all z ∈ ∂C
there exists an open set G ⊂ Rn+1 with z ∈ G and such that ∂C ∩G coincides with a rotated graph
of some function f : Rn → R of class C 1,α. However, employing 6.1, we see that f is actually of
class C 2,α. Therefore,

(49) H n(∂C ∼Q) = 0 and H n(NF (C)|(∂C ∼Q)) = 0 .

Since ψFC
(
SF (C, r) ∩ (dmn ξFC )∼(ξFC )−1(Q)

)
⊆ N(C)|(∂C ∼Q) for every r > 0, we get

H n
(
ψFC
(
SF (C, r) ∩ (dmn ξFC )∼(ξFC )−1(Q)

))
= 0 for every r > 0 .

Moreover, we have
(
ψFC |(SF (C, r) ∩ dmn ξFC ∼C)

)−1 ∈ C 1 and we deduce that

H n
(
SF (C, r) ∩ (dmn ξFC )∼(ξFC )−1(Q)

)
= 0 for every r > 0.

Combining 2.40(f)(a)(d) with the coarea formula [17, 3.2.22], we get

H n(SF (C, r)∼dmn ξFC ) = 0 for L 1 almost all r > 0 .

From 2.40(d) it follows that F (grad δFC (x)) = 1; hence, recalling 2.18, we obtain | grad δFC (x)| ≥ 1
C(F ) .

Using the coarea formula, we compute

(50)
1

C(F )
L n+1(Ω∼(ξFC )−1(Q))

≤
∫

Ω∼(ξFC)−1(Q)

| grad δFC (x)|dx =

∫ ∞
0

H n(SF (C, r)∼(ξFC )−1(Q)) dr = 0 .

In particular we get that L n+1(Ω∼(ξFC )−1(Q)) = 0, which settles Claim 2.
We define

Z = (Q×R) ∩
{

(x, t) : 0 < t ≤ −κFQ,1(x,nF (C, x))−1
}
,(51)

ζ : Z → Rn+1 , ζ(x, t) = x+ tnF (C, x) .(52)

For brevity of the notation we also set

Jn+1ζ(x, t) = ‖
∧
n+1(H n+1 Z, n+ 1) ap Dζ(x, t)‖ whenever (x, t) ∈ Z .
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Claim 3: There holds

(53) Jn+1ζ(x, t) = F (n(C, x))

n∏
i=1

(
1 + t κFQ,i(x,n

F (C, x))
)

for (x, t) ∈ Z .

Let (x, t) ∈ Z and u = nF (C, x). Recalling 2.28 we find a basis τ1(x), . . . , τn(x) of Tan(Q, x)
consisting of eigenvectors of D(nF (C, ·))(x) and such that〈

τi(x), DnF (C, ·)(x)
〉

= κFQ,i(x, u) τi(x) for i ∈ {1, 2, . . . , n} ,(54)

|τ1(x) ∧ · · · ∧ τn(x)| = 1 .(55)

Noting that Tan(Z, (x, t)) = Tan(Q, x)×R,〈
(0, 1), Dζ(x, t)

〉
= nF (C, x) = gradF (n(C, x)) ,(56) 〈

(τi(x), 0), Dζ(x, t)
〉

= (1 + tκFQ,i(x, u)) τi(x) for i ∈ {1, . . . , n} ,(57)

we compute

(58) Jn+1ζ(x, t) =

n∏
i=1

(1 + tκFQ,i(x, u)) |nF (C, x) ∧ τ1(x) ∧ · · · ∧ τn(x)|

= gradF (n(C, x)) • n(C, x)

n∏
i=1

(1 + tκFQ,i(x, u)) |n(C, x) ∧ τ1(x) ∧ · · · ∧ τn(x)|

and Claim 3 follows from 2.38(c) and [17, 1.7.5].

Claim 4: Inequality (46) holds.

Employing Claim 1 and Claim 2 we see that L n+1(Ω∼ ζ(Z)) = 0. Hence, using the area formula
and then Claim 3, we get

(59) L n+1(Ω) ≤ L n+1(ζ(Z)) ≤
∫
ζ(Z)

H 0(ζ−1(y)) dL n+1(y) =

∫
Z

Jn+1ζ dH n+1

=

∫
Q

F (n(C, x))

∫ −1/κFQ,1(x,nF (C,x))

0

n∏
i=1

(
1 + tκFQ,i(x,n

F (C, x))
)

dtdH n(x) .

Using again Claim 1, then the standard inequality between the arithmetic and the geometric mean,
and finally 2.30, we obtain

(60) L n+1(Ω) ≤
∫
Q

F (n(C, x))

∫ −1/κFQ,1(x,nF (C,x))

0

( 1

n

n∑
i=1

(
1 + tκFQ,i(x,n

F (C, x))
))n

dtdH n(x)

≤
∫
Q

F (n(C, x))

∫ n/H(x)

0

(
1− tH(x)

n

)n
dtdH n(x)

=
n

n+ 1

∫
∂Ω

F (n(C, x))

H(x)
dH n(x) ,

which implies (46) by 2.22.
We assume now that equality holds in (46). Since the chains of inequalities (59) and (60) become

chains of equalities, we deduce that

L n+1(ζ(Z)∼Ω) = 0 ,(61)

H 0(ζ−1(y)) = 1 for L n+1 almost all y ∈ ζ(Z) ,(62)

−κFQ,j(z,nF (C, z))−1 =
n

H(z)
for H n almost all z ∈ Q and all j = 1, . . . , n .(63)

Our goal is to prove that Ω is a finite union of disjoint open Wulff shapes. We need two preliminary
claims, whence the conclusion will be easily deduced.
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Claim 5: reachF C ≥ n/c.
Recall that H(z) ≤ c for H n almost all z ∈ ∂C. Let 0 < ρ < n/c and

Qρ = Q ∩ {z : ρ < −κFQ,1(z,nF (C, z))−1}.

It follows from (49), (63), and the fact that ∂C is an (n, cC(F )) subset of Rn+1, that

H n(∂C ∼Qρ) = 0 and H n(N(C)|∂C ∼Qρ) = 0 ;

hence, we argue as in Claim 2 to conclude that L n+1(Ω∼ ξ−1
C (Qρ)) = 0. We define

CFρ = {z : δFC (z) ≤ ρ} and Zρ = Qρ × {t : 0 < t ≤ ρ}

and we notice that

ξ−1
C (Qρ) ∩ Ω ∩ CFρ ⊆ ζ(Zρ) ⊆ CFρ , L n+1(Ω ∩ CFρ ∼ ζ(Zρ)) = 0 .

Let f : Rn+1×Sn → R be a Borel measurable function with compact support. Then we use Claim 1,
(61), (62), (63), and [31, 5.4] to compute∫

Ω∩CFρ
f(ψFC (y)) dL n+1(y) =

∫
Ω∩ζ(Zρ)

f(ψFC (y)) dL n+1(y)(64)

=

∫
Ω∩ζ(Zρ)

∫
ζ−1(y)

f(z,nF (C, z)) dH 0(z) dL n+1(y)(65)

=

∫
ζ(Zρ)

∫
ζ−1(y)

f(z,nF (C, z)) dH 0(z) dL n+1(y)(66)

=

∫
Zρ

Jn+1ζ(z, t) f(z,nF (C, z)) dH n+1(z, t)(67)

=

∫
Qρ

f(z,nF (C, z))F (n(C, z))

∫ ρ

0

(
1− t H(z)

n

)n
dtdH n(z)(68)

=

∫
∂C

f(z,nF (C, z))F (n(C, z))

∫ ρ

0

(
1− t H(z)

n

)n
dtdH n(z)(69)

=

n+1∑
i=1

ci(f)ρi,(70)

where, for i = 1, . . . , n+ 1,

ci(f) =
(
− 1

n

)i−1 n!

i!(n− i+ 1)!

∫
∂C

f(z,nF (C, z))F (n(C, z))H(z)i−1 dH n(z) .

Therefore, reachF C ≥ n/c by Theorem 5.9.

Claim 6: Let 0 < r < n/c ≤ reachF C. Then SF (C, r) is a finite union of Wulff shapes of radii
not smaller than c−1(n− rc).

Since reachF C ≥ n/c we employ 5.8 to find that SF (C, r) is a submanifold of Rn+1 of dimension n
of class C 1,1. We define

Cr = Rn+1 ∩ {z : δFC (z) < r} .

Noting that nF (Cr, ·)|SF (C, r) = gradF ◦ n(Cr, ·)|SF (C, r) and gradF is a C 1 function, we deduce
that nF (Cr, ·)|SF (C, r) is a Lipschitzian vector field. We define

T = Q ∩
{
z : κFQ,j(z) = −H(z)/n for j = 1, . . . , n

}
,

and we notice that H n(∂C ∼T ) = 0 by (49) and (63); then the Lusin (N) condition implies

(71) H n(SF (C, r)∼(ξFC )−1(T )) = 0 .

Recalling 2.40(h) we see that

nF (Cr, z) =
z − ξFC (z)

r
= gradF

(
n(C, ξ(z))

)
= nF (C, ·) ◦ ξFC (z) whenever z ∈ SF (C, r) .(72)
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Let us set
σ = ξFC |SF (C, r) ∩ (ξFC )−1(T ) and ϕ = ζ|T × {r} .

Observe that if x ∈ T , then z = x + rnF (C, x) ∈ SF (C, r), ξFC (z) = x, and Tan(SF (C, r), z) =
Tan(T, x); hence, σ = ϕ−1 and we get〈

u, Dϕ(x)
〉

= (1− rH(x)/n)u for x ∈ T and u ∈ Tan(T, x) ,(73) 〈
u, Dσ(z)

〉
= (1− rH(ξFC (z))/n)−1u for z ∈ dmnσ and u ∈ Tan(T, ξFC (z)) ,(74)

DnF (Cr, ·)(z)u =
−H(ξFC (z))

n− rH(ξFC (z))
u for H n a.a. z ∈ SF (C, r) and u ∈ Tan(T, ξFC (z)) .(75)

Employing 3.2 we conclude that SF (C, r) is a union of at most countably many boundaries of Wulff
shapes with radii not smaller than c−1(n− rc). Since E has finite perimeter we have H n(∂Ω) <∞
so using (73) and (71) we conclude that H n(SF (C, r)) < H n(∂∗Ω) <∞ and Claim 6 follows.

We are now ready to conclude the proof. We notice from [16, 4.20] that

∂C = {x : dim Nor(C, x) ≥ 1}

and by Lemma 5.2, we also get that

∂C = {x : dim NorF (C, x) ≥ 1} .

We claim that

(76) ξFC (SF (C, r)) = ∂C for 0 < r < n/c .

Indeed, since 0 < r < reachF C, for every x ∈ ∂C there exists ν ∈ NorF (C, x) such that x + rν ∈
SF (C, r)∩dmn ξFC and consequently ξFC (x+rν) = x. We deduce that ∂C ⊆ ξFC (SF (C, r)). The reverse
inclusion is trivial.

Consider a connected component S1 of SF (C, r). By Claim 6 we obtain s ≥ n/c−r and z ∈ Rn+1

such that S1 = ∂BF∗
(z, s). Observe that

SF (Rn+1∼BF∗
(z, s+ r), r) = S1 ;

hence,
∂BF∗

(z, s+ r) = ξFC (S1) ⊆ ∂C
and, using, e.g., the constancy theorem [17, 4.1.7], we deduce that UF∗

(z, s + r) is a connected
component of Ω. Since S1 was chosen arbitrarily we see that Ω must be a finite union of open disjoint
Wulff shapes of radii at least n/c.

6.5 Remark. This theorem extends to sets of finite perimeter the analogous result for smooth bound-
aries in [21, Theorem 4].

We use now Theorem 6.4 to study the critical points of the anisotropic surface area for a given
volume.

6.6 Definition (cf. [3, 4.1]). A smooth function h : (−ε, ε)×Rn+1 → Rn+1 is called local variation
if and only if

(a) h(0, x) = x for every x ∈ Rn+1,

(b) h(t, ·) : Rn+1 → Rn+1 is a diffeomorphism for every t ∈ (−ε, ε),

(c) the set {x : h(t, x) 6= x for some t ∈ (−ε, ε)} has compact closure in Rn+1.

We set ht = h(t, ·) and
.

ht(x) = limu→0 u
−1(ht+u(x)− ht(x)) for every (t, x) ∈ (−ε, ε)×Rn+1.

Given an integrand F we define the F -perimeter functional as

(77) PF (E) =

∫
∂∗E

F (n(E, x)) dH nx

for every E ⊆ Rn+1 with finite perimeter, and the F -isoperimetric functional as

IF (E) =
PF (E)n+1

L n+1(E)n

for every E ⊆ Rn+1 with finite perimeter and finite volume.
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6.7 Corollary. Let E ⊆ Rn+1 be a set of finite perimeter and finite volume such that

H n(Clos(∂∗E)∼ ∂∗E) = 0.

If F is an elliptic integrand of class C 3 and for every local variation h it holds that

(78)
d

dt
IF (ht(E))

∣∣∣
t=0

= 0,

then there exists a finite union Ω of disjoint open Wulff shapes with equal radii such that

L n+1((Ω ∼ E) ∪ (E ∼ Ω)) = 0.

Proof. Let h be a local variation and V = v(∂∗E). Define p(t) = PF (ht(E)) and v(t) = L n+1(ht(E))
for −ε < t < ε. We observe that

a′(0) = δFV (
.

h0)

v′(0) =

∫
E

div
.

h0 dL
n+1 =

∫
∂∗E

.

h0(x) • n(E, x) dH n(x)

Noting that the derivative in t the function an+1

vn equals(p(t)
v(t)

)n[
(n+ 1)p′(t)− np(t)

v(t)
v′(t)

]
,

it follows that

(n+ 1)p′(0)− np(0)

v(0)
v′(0) = 0

and the arbitrariness of h implies that

‖δFV ‖sing = 0 and hF (V, x) = − n

n+ 1

PF (E)

L n+1(E)
n(E, x).

It follows that the hypothesis of Theorem 6.4 and the equality is realized in (46). Henceforth, the
conclusion follows from Theorem 6.4.

6.8 Corollary. Let E ⊆ Rn+1 be a set of finite perimeter and finite volume such that

H n(Clos(∂∗E)∼ ∂∗E) = 0.

If for every local variation h such that L n+1(ht(E)) = L n+1(E) for every t ∈ (−ε, ε) it holds that

(79)
d

dt
PF (ht(E))

∣∣∣
t=0

= 0,

then there exists a finite union Ω of disjoint open Wulff shapes with equal radii such that

L n+1((Ω ∼ E) ∪ (E ∼ Ω)) = 0.

Proof. Thanks to Corollary 6.7, we just need to prove that such a set E satisfies (78) for every local
variation h. To this aim we define the variation

ft(x) =

(
L n+1(E)

L n+1(ht(E))

) 1
n+1

ht(x)

and we observe that for every t ∈ (−ε, ε) it holds

L n+1(ft(E)) =

(
L n+1(E)

L n+1(ht(E))

)n+1
n+1

L n+1(ht(E)) = L n+1(E).

We deduce from (79) that

0 =
d

dt
PF (ft(E))

∣∣∣
t=0

= L n+1(E)
n
n+1

d

dt

PF (ht(E))

L n+1(ht(E))
n
n+1

∣∣∣
t=0

,

which implies (78), as desired.
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