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Abstract. We prove a Cm Lusin approximation theorem for horizontal curves

in the Heisenberg group. This states that every absolutely continuous hori-
zontal curve whose horizontal velocity is m− 1 times L1 differentiable almost

everywhere coincides with a Cm horizontal curve except on a set of small mea-

sure. Conversely, we show that the result no longer holds if L1 differentiability
is replaced by approximate differentiability. This shows our result is optimal

and highlights differences between the Heisenberg and Euclidean settings.

1. Introduction

In mathematical analysis it is often useful to understand when a rough map can
be approximated by a smoother one. For instance, Lusin’s theorem asserts that ev-
ery measurable function on Rn is continuous after removing a set of small measure
from the domain. Another useful result states that every absolutely continuous
curve in Rn has the 1-Lusin property, which means that it coincides with a C1

curve except for a set of small measure (Theorem 2.4). The position and velocity
of absolutely continuous curves are related according to the Fundamental Theorem
of Calculus, so these curves are important in analysis and geometry. Concerning
higher regularity, if a curve in Rn is approximately differentiable of order m almost
everywhere (Definition 2.6), then it has the m-Lusin property allowing approxima-
tion by Cm curves (Theorem 2.8) [20]. In the present article we study the m-Lusin
property for horizontal curves in the Heisenberg group, a non-Euclidean space with
much geometric structure. The key difference between the Heisenberg group and
Euclidean space is that in the Heisenberg group both the initial and the approxi-
mating curve must be horizontal, which means they are constrained to move in a
smaller but still rich, family of directions.

In recent years, it has become clear that a large part of geometric analysis,
geometric measure theory and real analysis in Euclidean spaces may be generalized
to more general settings, see for example [4, 6, 7, 13, 14, 16, 18, 22, 21, 23, 25,
26, 27]. Carnot groups are Lie groups whose Lie algebra admits a stratification.
This stratification gives rise to dilations and implies that points can be connected
by absolutely continuous curves with tangents in a distinguished subbundle of the
tangent bundle. These are the so called horizontal curves. Considering lengths
of horizontal curves gives rise to the Carnot-Carathéodory distance and endows
every Carnot group with a metric space structure. Moreover, every Carnot group
has a natural Haar measure which respects the group translations and dilations.
This plethora of structure makes the study of analysis and geometry in Carnot
groups highly interesting [4, 7, 22]. However, results in the Carnot setting can be
very different to Euclidean ones since all such results must respect the horizontal

1



2 MARCO CAPOLLI, ANDREA PINAMONTI, AND GARETH SPEIGHT

structure of the Carnot group. The Heisenberg group is the simplest non-Euclidean
Carnot group and admits an explicit representation in R2n+1 (Definition 2.1) with
2n horizontal directions and one vertical direction.

In the Heisenberg group, the 1-Lusin property is known to be true for all abso-
lutely continuous horizontal curves with the requirement that the approximating
curve can be chosen both C1 and horizontal. More precisely, every absolutely con-
tinuous horizontal curve can be approximated by a C1 horizontal curve (Theorem
2.5) [28]. A similar result holds in step two Carnot groups [19] and more general
pliable Carnot groups [17, 29]. However the natural analogue is not true in the
Engel group, a Carnot group of step three [28]. This highlights that the approxi-
mation depends on the space considered and Euclidean results do not always extend
to the Carnot group setting. Proving that smooth approximations exist is closely
connected to validity of a Whitney extension theorem. In Euclidean spaces, the
Whitney extension theorem (Theorem 2.14) [3, 31] characterizes when a collection
of continuous functions defined on a compact set can be extended to a Cm func-
tion on some larger set. To prove a Lusin approximation result from a Whitney
extension theorem, one typically restricts to a large compact set where the original
mapping satisfies the hypotheses of the Whitney extension theorem and then ob-
tains a Cm mapping which agrees with the starting map on a large set. To apply
this idea in the Heisenberg group it is important to have an analogue of the Whitney
extension theorem for curves in the Heisenberg group. Such a theorem is indeed
known for C1 horizontal curves in the Heisenberg group [32] and in more general
spaces [17, 29]. Very recently it was also understood for Cm horizontal curves in
the Heisenberg group [24].

In the present paper we focus on the m-Lusin property in the Heisenberg group
(Definition 2.9), investigating which horizontal curves can be approximated by Cm

horizontal curves. We now describe our main results.
Our first main result is Theorem 4.1. This asserts that if Γ = (f, g, h) is an

absolutely continuous horizontal curve in H1 with f ′, g′ almost everywhere m − 1
times L1 differentiable (Definition 2.10), then Γ has the m-Lusin property. This
should be compared with the previously known analogue in Euclidean space (The-
orem 2.8), which has the weaker hypothesis that f, g, h are m times approximately
differentiable almost everywhere (Definition 2.6). Our arguments adapt the proof
of Theorem 2.8 from [20] to the Heisenberg group using our stronger hypothesis to
restrict to a compact set on which we can apply the Cm Whitney extension theorem
for horizontal curves in the Heisenberg group (Theorem 2.15) recently proved [24].

Our second main result is Theorem 5.1, which illustrates the difference between
the Heisenberg setting and the Euclidean setting. It also justifies the hypotheses
of Theorem 4.1. In Theorem 5.1 we construct an absolutely continuous horizontal
curve Γ in H1 such that f, g, h are almost everywhere twice Lp differentiable for
all p ≥ 1, f ′, g′, h′ are almost everywhere once approximately differentiable, yet Γ
does not have the 2-Lusin approximation property. This shows that the Euclidean
hypothesis of twice approximate differentiability is not sufficient in H1 and that one
really needs to assume differentiability properties of the derivatives f ′, g′, h′ rather
than only on f, g, h. Our argument is an explicit construction of a horizontal curve.

In the main results of this paper we restrict our attention to the first Heisenberg
group H = H1. We expect the natural analogue of Theorem 4.1 is also true in
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higher dimensional Heisenberg groups Hn with similar proofs but more cumbersome
notation.

We now describe the structure of the paper. In Section 2 we recall key definitions
involving the Heisenberg group, approximate derivatives, Lp derivatives, m-Lusin
property and Whitney extension theorems. In Section 3 we prove preliminary
results describing how L1 differentiability behaves under integration or lifting to a
horizontal curve and how approximate differentiability almost everywhere can be
used to obtain a Whitney field. In Section 4 we prove our first main result (Theorem
4.1). Finally in Section 5 we prove our second main result (Theorem 5.1).
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2. Preliminaries

2.1. Heisenberg Group and Horizontal Curves.

Definition 2.1. The Heisenberg group Hn is the Lie group represented in coordi-
nates by R2n+1, whose points we denote by (x, y, t) with x, y ∈ Rn and t ∈ R. The
group law is given by:

(x, y, t)(x′, y′, t′) =

(
x+ x′, y + y′, t+ t′ + 2

n∑
i=1

(yix
′
i − xiy′i)

)
.

We equip Hn with left invariant vector fields

Xi = ∂xi
+ 2yi∂t, Yi = ∂yi − 2xi∂t, 1 ≤ i ≤ n, T = ∂t.

Here ∂xi , ∂yi and ∂t denote the coordinate vectors in R2n+1, which may be inter-
preted as operators on differentiable functions. If [·, ·] denotes the Lie bracket of
vector fields, then [Xi, Yi] = −4T . Thus Hn is a Carnot group with horizontal layer
Span{Xi, Yi : 1 ≤ i ≤ n} and second layer Span{T}. In this paper we will mostly
restrict ourselves to the first Heisenberg group H1 which we also denote by H.

Definition 2.2. A vector in R2n+1 is horizontal at p ∈ R2n+1 if it is a linear
combination of the vectors Xi(p), Yi(p), 1 ≤ i ≤ n.

An absolutely continuous curve γ in the Heisenberg group is horizontal if, at
almost every point t, the derivative γ′(t) is horizontal at γ(t).

Lemma 2.3. An absolutely continuous curve γ : [a, b] → R2n+1 is a horizontal
curve in the Heisenberg group if and only if, for t ∈ [a, b]:

γ2n+1(t) = γ2n+1(a) + 2

n∑
i=1

∫ t

a

(γ′iγn+i − γ′n+iγi).
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We will use Lemma 2.3 repeatedly throughout the paper. In the first Heisenberg
group H = H1, the relevant equations for an absolutely continuous curve to be
horizontal simplify to

(2.1) γ3(t) = γ3(a) + 2

∫ t

a

(γ′1γ2 − γ′2γ1).

Clearly Lemma 2.3 implies that for any horizontal curve γ we have

(2.2) γ′2n+1(t) = 2

n∑
i=1

(γ′i(t)γn+i(t)− γ′n+i(t)γi(t)) for a.e. t ∈ [a, b].

If we assume that γ is C1, this equality holds for every t ∈ [a, b]. If we further
assume that γ is Cm for some m > 1, then, for 1 ≤ k ≤ m, we may write

(2.3) Dkγ2n+1(t) =

n∑
i=1

Pk
(
γi(t), γn+i(t), γ

′
i(t), γ

′
n+i(t), . . . , D

kγi(t), D
kγn+i(t)

)
for all t ∈ [a, b] where Pk is a polynomial determined by the Leibniz rule. For a Cm

horizontal curve γ in the first Heisenberg group H = H1, the equations simplify to

(2.4) γk3 = 2

k−1∑
i=0

(
k − 1

i

)
(γk−i1 γi2 − γk−i2 γi1) for 1 ≤ k ≤ m.

A classical result about the 1-Lusin property in Euclidean spaces can be found
for example in [2, 8].

Theorem 2.4. Let γ : [a, b] → Rn be absolutely continuous. Then for every ε > 0
there exists a C1 map Γ: [a, b]→ Rn such that

L1({x ∈ [a, b] : Γ(t) 6= γ(t)}) < ε.

We also recall the the analogous result for the 1-Lusin property in Heisenberg
groups [28].

Theorem 2.5. Absolutely continuous horizontal curves in Hn have the 1-Lusin
property.

It is also known that absolutely continuous horizontal curves have the 1-Lusin
property in step two Carnot groups [19], in pliable Carnot groups [17] and in suitable
sub-Riemannian manifolds [29].

2.2. Approximate Differentiability and Integral Differentiability. Recall
that if f : Rd → R, x ∈ Rd and l ∈ R, then aplimy→x f(x) = l means that for every
ε > 0 the set

{y ∈ Rd : |f(y)− l| ≤ ε}
has density one at x, i.e.

lim
R→0

Ld(B(x,R) ∩ {y ∈ Rd : |f(y)− l| ≤ ε})
Ld(B(x,R))

= 1.

Definition 2.6. Given x ∈ Rd and k ∈ N, we say that a function u : Rd → R is m
times approximately differentiable at x if there exists a polynomial Pmu,x of degree
at most m such that

(2.5) aplim
y→x

|u(y)− Pmu,x(y)|
|y − x|m

= 0.
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Remark 2.7. The polynomial Pmu,x in Definition 2.6 is uniquely determined and can
be expressed in the form

(2.6) Pmu,x(y) =
∑
|α|≤m

uα(x)

|α|!
(y − x)α

for some uα(x) ∈ R [20].

As a special case of a recent result from [20] we get a Cm version of the Lusin
property.

Theorem 2.8. Suppose γ : [a, b] → Rn is measurable and approximately differen-
tiable of order m almost everywhere. Then for every ε > 0 there exists a Cm map
Γ: [a, b]→ Rn such that

L1({x ∈ [a, b] : Γ(t) 6= γ(t)}) < ε.

In the Heisenberg group we give the following definition of Lusin property for
horizontal curves.

Definition 2.9. An absolutely continuous horizontal curve Γ: [a, b] → Hn is said
to have the Lusin property of order m if for every ε > 0 there exists a Cm horizontal

curve Γ̃ : [a, b]→ Hn such that

L1({x ∈ [a, b] : Γ̃(x) 6= Γ(x)}) < ε.

We will also refer to the Lusin property of order m as the m-Lusin property.
Throughout this paper we use the usual notation for integral averages

−
∫
A

f =
1

Ld(A)

∫
A

f

for any A ⊂ Rd and f : A→ R for which the expression is well defined.

Definition 2.10. Let u : Rd → R, x ∈ Rd, p ∈ [1,∞), and m ∈ N.
We say that u is m times Lp differentiable at x if there exists a polynomial Pmu,x

on Rd of degree at most m such that

(2.7)

[
−
∫
B(x,ρ)

|u(y)− Pmu,x(y)|p dy

]1/p
= o(ρm).

Remark 2.11. As noted for instance in [1], if u is m times Lp differentiable at x
then u is also m times approximately differentiable at x with the same choice of
Pmu,x.

2.3. Jets and Whitney Extension.

Definition 2.12. A jet of order m ∈ N on a set K ⊂ R consists of a collection of
(m+ 1)−continuous functions F = (F k)mk=0 on K.

Given such a jet F and a ∈ K, the Taylor polynomial of order m of F at a is

Tma F (x) =

m∑
k=0

F k(a)

k!
(x− a)k for all x ∈ R.

If m or a are clear from the context, we may write TF for the Taylor polynomial.
We will also use the notation F (x) for F 0(x).
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Given a jet F of order m on K ⊂ R, for a ∈ K and 0 ≤ k ≤ m we define

(Rma F )k(x) = F k(x)−
m−k∑
`=0

F k+`(a)

`!
(x− a)` for all x ∈ R.

Definition 2.13. A jet F of order m on K is a Whitney field of class Cm on K
if, for every 0 ≤ k ≤ m, we have

(Rma F )k(b) = o(|a− b|m−k)

as |a− b| → 0 with a, b ∈ K.

We now recall the classical Whitney extension theorem in the special case that
the domain is a subset of R [31].

Theorem 2.14 (Classical Whitney extension theorem). Let K be a closed subset
of an open set U ⊂ R. Then there is a continuous linear mapping W from the space
of Whitney fields of class Cm on K to Cm(U) such that

Dk(WF )(x) = F k(x) for 0 ≤ k ≤ m and x ∈ K,

and WF is C∞ on U \K.

We now recall the Whitney extension theorem for Cm horizontal curves in H
from [24]. Suppose F,G,H are jets of order m on K ⊂ R. For a, b ∈ K, we define
the area discrepancy

A(a, b) := H(b)−H(a)− 2

∫ b

a

((Tma F )′(Tma G)− (Tma G)′(Tma F ))(2.8)

+ 2F (a)(G(b)− Tma G(b))− 2G(a)(F (b)− Tma F (b))

and the velocity

(2.9) V (a, b) := (b− a)2m + (b− a)m
∫ b

a

(|(Tma F )′|+ |(Tma G)′|) .

We say that jets (F,G,H) of order m on K extend to a Cm horizontal curve
(f, g, h) : R→ H if (f, g, h) : R→ H is a Cm horizontal curve such that f i|K = F i,
gi|K = Gi and hi|K = Hi for 0 ≤ i ≤ m.

Theorem 2.15. Let K ⊂ R be compact and F,G,H be jets of order m on K. Then
(F,G,H) extends to a Cm horizontal curve (f, g, h) : R→ H if and only if

(1) F,G,H are Whitney fields of class Cm on K,
(2) For 1 ≤ k ≤ m the following equation holds at all points of K

(2.10) Hk = 2

k−1∑
i=0

(
k − 1

i

)
(F k−iGi −Gk−iF i),

(3) A(a, b)/V (a, b)→ 0 uniformly as (b− a)→ 0 with a, b ∈ K.

Finally we state for future use the following fact about polynomials from [24].

Lemma 2.16. Let P be a polynomial of degree n, a < b, and ‖P‖∞ := max[a,b] |P |.
Then

1

8n2
‖P‖∞ ≤ −

∫ b

a

|P | ≤ ‖P‖∞.
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3. Facts about Approximate Derivatives and L1 Derivatives

In this section we prove several lemmas which will be useful later in the paper.

Lemma 3.1. Let f : [a, b]→ R be absolutely continuous and m ≥ 2.
Suppose f ′ is m−1 times L1 differentiable at a point x ∈ (a, b) with L1 derivative

given by the polynomial Pm−1f,x of degree at most m − 1. Then f is m times L1

differentiable at x with L1 derivative Qmf,x of degree at most m defined by Qmf,x(y) :=

f(x) +
∫ y
x
Pm−1f,x (t) dt.

Proof. Denote P = Pm−1f,x and define Q = Qmf,x by Qmf,x(y) := f(x) +
∫ y
x
P (t) dt.

Let ε > 0. From the definition of L1 differentiability we have for all sufficiently
small ρ > 0

−
∫
B(x,ρ)

|f ′(t)− P (t)| dt ≤ ερm−1/2.

Absolute continuity gives for all y ∈ B(x, ρ),

|f(y)−Q(y)| =
∣∣∣∣f(x) +

∫ y

x

f ′(t) dt−
(
f(x) +

∫ y

x

P (t) dt

)∣∣∣∣
=

∣∣∣∣∫ y

x

(f ′(t)− P (t)) dt

∣∣∣∣
≤
∫
B(x,ρ)

|f ′(t)− P (t)| dt

≤ ερm.

Hence given ε > 0, we have for all sufficiently small 0 < ρ < 1

−
∫
B(x,ρ)

|f(y)−Q(y)| dy ≤ −
∫
B(x,ρ)

ερm = ερm.

This proves the lemma. �

Lemma 3.2. Suppose (f, g, h) : [a, b] → H is an absolutely continuous horizontal
curve in H and f ′, g′ are m−1 times L1 differentiable at a point x ∈ [a, b] for some
m ≥ 2. Then h is m times L1 differentiable at x. More precisely, denote

R(y) := h(x) + 2

∫ y

x

(P ′Q−Q′P ),

where P,Q are the L1 derivatives of order m of f, g respectively which exist by

Lemma 3.1. Let R̃ be the polynomial of degree at most m such that R(y)− R̃(y) is

divisible by (y − x)m+1. Then R̃ is the L1 derivative of h of order m at x.

Proof. Let R be defined as in the statement of the lemma. Fix 0 < ε < 1. Then
there exists δ > 0 such that for all 0 < ρ < δ we have

−
∫
B(x,ρ)

|f − P | ≤ ερm, −
∫
B(x,ρ)

|f ′ − P ′| ≤ ερm−1,

and

−
∫
B(x,ρ)

|g −Q| ≤ ερm, −
∫
B(x,ρ)

|g′ −Q′| ≤ ερm−1.
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Let 0 < ρ < δ and y ∈ B(x, ρ). We estimate as follows, using the fact (f, g, h) is a
horizontal curve and (2.2),

h(y)−R(y) = h(x) +

∫ y

x

h′ − h(x)− 2

∫ y

x

(P ′Q−Q′P )

= 2

∫ y

x

((f ′g − P ′Q) + (Q′P − g′f)).

We estimate the first term as follows∣∣∣∣2 ∫ y

x

(f ′g − P ′Q)

∣∣∣∣ ≤ 2

∫
B(x,ρ)

|f ′g − P ′Q|

= 4ρ−
∫
B(x,ρ)

|f ′g − P ′Q|.

Since f ′g − P ′Q = (f ′ − P ′)g + P ′(g −Q) and g, P ′ are continuous hence bounded
on [a, b], we can continue our estimate as follows

4ρ−
∫
B(x,ρ)

|f ′g − P ′Q| ≤ 4ρ

(
‖g‖∞−

∫
B(x,ρ)

|f ′ − P ′|+ ‖P ′‖∞−
∫
B(x,ρ)

|g −Q|

)
≤ 4ρ

(
‖g‖∞ερm−1 + ‖P ′‖∞ερm

)
≤ Cερm

for a constant C independent of y and ρ. The estimate of 2
∫ y
x

(Q′P−g′f) is similar.
Hence we obtain |h(y)−R(y)| ≤ Cερm for all 0 < ρ < δ. Consequently

−
∫
B(x,ρ)

|h−R| ≤ Cερm.

To conclude we notice that if R̃ is the polynomial of degree at most m defined in
the statement of the lemma then for some constant C independent of ρ < 1 we have

−
∫
B(x,ρ)

|h− R̃| ≤ −
∫
B(x,ρ)

|h−R|+−
∫
B(x,ρ)

|R̃−R|

≤ −
∫
B(x,ρ)

|h−R|+ Cρm+1.

Hence

−
∫
B(x,ρ)

|h− R̃| = o(ρm)

so h is m times L1 differentiable at x with derivative R̃. �

We next prove Proposition 3.4 which shows that approximate differentiability
almost everywhere leads to Whitney fields on large compact sets. Our argument is
adapted from [20] where a similar result is proved under slightly different assump-
tions. As in [20] we need the following lemma by De Giorgi [5].

Lemma 3.3 (De Giorgi). Let E be a measurable subset of the ball B(x, r) in Rn
such that Ln(E) ≥ Arn for some constant A > 0. Then for each m ∈ N there is a
positive constant C, depending only on n,m and A, such that for each polynomial
p of degree at most m and for every multi-index α

|Dαp(x)| ≤ C

rn+|α|

∫
E

|p(y)|dy.
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Proposition 3.4. Let u : [a, b] → R be measurable and m times approximately
differentiable almost everywhere. Let the approximate derivative at almost every
point x be denoted by

Pmu,x(y) =

m∑
i=0

ui(x)

i!
(y − x)i.

Then for every ε > 0 there exists a compact set K ⊂ [a, b] with L1([a, b] \K) ≤ ε
such that Γ = (ui)

m
i=0 is a Cm Whitney field on K.

Proof. It is proven in [20] that all the functions ui are measurable under the given
hypotheses. Let 0 < δ < 1 and 0 < ε < 1 be fixed for the moment. For every
x ∈ [a, b] where u is approximately differentiable and r > 0, define

W (x, r) := {y ∈ [a, b] ∩ [x− r, x+ r] : |u(y)− Pmu,x(y)| > δ|x− y|m}.

Each set W (x, r) is measurable because all the ui are measurable. We can write
W (x, r) = {y ∈ [a, b] : (x, y) ∈ T (r)}, where

T (r) := {(x, y) ∈ [a, b]× [a, b] : |x− y| < r, |u(y)− Pmu,x(y)| > δ|x− y|m}.

Since T is measurable, it follows x 7→ L1(W (x, r)) is a measurable function of x.
For n ∈ N define the sets

(3.1) Bn := {x ∈ [a, b] : L1(W (x, r)) ≤ r/4 for all r ≤ 1/n}.

Since x 7→ L1(W (x, r)) is a measurable function of x and L1(W (x, r)) is monotonic
in r for each fixed x, it is easy to show that the sets Bn are measurable. Clearly
Bn ⊂ Bn+1 for every n. Since u is m times approximately differentiable almost
everywhere, it follows L1([a, b]\

⋃∞
n=1Bn) = 0. Consider two points x, y ∈ Bn with

x ≤ y and |x− y| ≤ 1/n. Let r = |y − x| and define the measurable sets

S(x, y) := [x, y] \ (W (x, r) ∪W (y, r)).

Then

L1(S(x, y)) ≥ |y − x| − L1(W (x, r))− L1(W (y, r)) ≥ r/2.
Define the polynomial q := Pmu,y−Pmu,x. For z ∈ S(x, y) we estimate |q(z)| as follows

|q(z)| ≤ |Pmu,y(z)− u(z)|+ |u(z)− Pmu,x(z)| ≤ δ(|z − y|m + |x− z|m) ≤ 2δrm.

We apply De Giorgi’s Lemma to the polynomial q with E = S(x, y) and A = 1/2
to obtain for every k

|Dkq(y)| = |uk(y)−DkPmu,x(y)| ≤ C

r1+k

∫
S(x,y)

|q(z)| dz ≤ 2Cδrm−k.

Recall ε > 0 was fixed earlier. Since L1([a, b] \
⋃∞
n=1Bn) = 0 and the sets Bn are

increasing, we may choose N ∈ N such that L1([a, b] \BN ) ≤ ε/2. We then choose
K a compact subset of BN with L1([a, b] \K) ≤ ε. Now we recall the dependence
of K on ε, δ and denote K = K(ε, δ) and N = N(ε, δ). The set K(ε, δ) has the
following two properties for a constant C depending only on m:

(1) L1([a, b] \K(ε, δ)) ≤ ε,
(2) For every 0 ≤ k ≤ m and x, y ∈ K(ε, δ) with |x− y| ≤ 1/N(ε, δ) we have

|uk(y)−DkPmu,x(y)| ≤ 4Cδ|x− y|m−k.
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We now put our compact sets together. Fix ε > 0 and define

K =

∞⋂
n=1

K(ε/2n, 1/n).

Using (1) for the sets K(ε/2n, 1/n), we estimate the measure of K as follows

L1([a, b] \K) ≤
∞∑
n=1

L1([a, b] \K(ε/2n, 1/n))

≤
∞∑
n=1

ε/2n

= ε.

Using (2) for the sets K(ε/2n, 1/n), we see that K has the following property.
Whenever 0 ≤ k ≤ m and x, y ∈ K satisfy |x− y| ≤ N(ε/2n, 1/n) for some n ∈ N,

|uk(y)−DkPmu,x(y)| ≤ 4C|x− y|m−k/n.

In other words, for every 0 ≤ k ≤ m we have

|uk(y)−DkPmu,x(y)| = o(|x− y|m−k)

as |x− y| → 0 with x, y ∈ K. Hence Γ = (ui)
m
i=0 is a Cm Whitney field on K. �

4. Cm Horizontal Lusin Approximation for Horizontal Curves with
L1 Differentiable Velocity

In this section we prove our first main theorem. Before giving the statement we
first recall that if f : [a, b] → R is m times L1 differentiable at a point x ∈ [a, b],
then we denote the L1 derivative at x by

Pmf,x(y) =

m∑
i=0

fi(x)

i!
(y − x)i,

where fi(x) ∈ R for 0 ≤ i ≤ m. Also, if a function f : [a, b] → R is absolutely
continuous and f ′ is m− 1 times L1 differentiable at a point x ∈ [a, b], then f is m
times L1 differentiable at x with derivative given by Lemma 3.1.

Theorem 4.1. Let I ⊂ R be an interval and Γ = (f, g, h) : I → H be an absolutely
continuous horizontal curve such that f ′ and g′ are m − 1 times L1 differentiable
at almost every point of I. Then Γ has the m-Lusin property. Further, for every

η > 0 there is a Cm horizontal curve Γ̃ = (f̃ , g̃, h̃) : I → H such that

L1

(
m⋃
k=0

{x ∈ I : f̃k(x) 6= fk(x) or g̃k(x) 6= gk(x) or h̃k(x) 6= hk(x)}

)
< η.

Proof. Using Lemma 3.1 it follows that f and g are m times L1 differentiable almost
everywhere. By Lemma 3.2 we also know that h is m times L1 differentiable almost
everywhere. At almost every x ∈ I denote the L1 derivative of f by

Pmf,x(y) =

m∑
k=0

fk(x)

k!
(y − x)k
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where the fk are measurable functions by [20]. Similarly define the L1 derivatives
Pmg,x and Pmh,x with coefficients gk(x) and hk(x) at almost every point x, which are
measurable functions of x.

Fix η > 0. Choose a compact set K ⊂ I satisfying L1(I \ K) < η with the
following properties:

(1) the jets F,G,H defined on K by

F k = fk|K , Gk = gk|K and Hk = hk|K for 0 ≤ k ≤ m

are Whitney fields of class Cm on K.
(2) For every ε > 0 there is δ > 0 such that if a, b ∈ K with |b− a| < δ then

(4.1) −
∫ b

a

|f ′ − (Tma F )′| ≤ ε(b− a)m−1 and −
∫ b

a

|g′ − (Tma G)′| ≤ ε(b− a)m−1.

The first property above is possible using Proposition 3.4. To obtain the second
property we use the almost everywhere (m− 1) times L1 differentiability of f ′ and
g′, Lemma 3.1, elementary measure theory, and the fact that Pmf,a = Tma F and
Pmg,a = Tma G. We now show that the hypotheses of Theorem 2.15 hold for the jets
F,G,H on the compact set K.

Verification of Theorem 2.15(1). This follows directly from the definition of K.

Verification of Theorem 2.15(2). We need to check (2.10), which we recall states

Hk = 2

k−1∑
i=0

(
k − 1

i

)
(F k−iGi −Gk−iF i) on K for 1 ≤ k ≤ m.

Fix a ∈ K and let TF = Tma F , TG = Tma G, TH = Tma H for simplicity. Using
Lemma 3.2, we know

(Pmh,a)′ = 2((Pmf,a)′(Pmg,a)− (Pmg,a)′(Pmf,a)) + S′a(y),

where Sa(y) is a polynomial divisible by (y − a)m+1. Hence

(TH)′ = 2((TF )′(TG)− (TG)′(TF )) + S′a(y).

Differentiating the Taylor polynomials as was done to derive (2.10) yields

(TH)k = 2

k−1∑
i=0

(
k − 1

i

)
((TF )k−i(TG)i−(TG)k−i(TF )i)+Ska on K for 1 ≤ k ≤ m,

where the polynomial Ska(y) is divisible by (y − a)m+1−k. In particular, Ska(a) = 0
for 1 ≤ k ≤ m. Since the Taylor polynomials are based at a, (TF )i(a) = F i(a) for
0 ≤ i ≤ m and similarly for G and H. Hence substituting in a we obtain

Hk(a) = 2

k−1∑
i=0

(
k − 1

i

)
(F k−i(a)Gi(a)−Gk−i(a)F i(a))

for all a ∈ K and 1 ≤ k ≤ m as required.

Verification of Theorem 2.15(3). Given 0 < ε < 1 fixed, let δ > 0 be chosen as
above. Fix a, b ∈ K with 0 < b− a < δ. For ease of notation we write TF = Tma F
and TG = Tma G. For simplicity we will consider only the case

F (a) = G(a) = H(a) = 0.
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Otherwise one can use the translation invariance of A(a, b) and V (a, b) as in [24].
Since F (a) = G(a) = H(a) = 0, A(a, b) is of the form

A(a, b) = H(b)−H(a)− 2

∫ b

a

((TF )′TG− TF (TG)′).

Since (f, g, h) is a horizontal curve, we have

H(b)−H(a) = h(b)− h(a) = 2

∫ b

a

(f ′g − fg′).

We estimate |A(a, b)| as follows∣∣∣∣∣H(b)−H(a)− 2

∫ b

a

((TF )′TG− TF (TG)′)

∣∣∣∣∣
≤ 2

(∫ b

a

|f ′g − (TF )′TG|+
∫ b

a

|fg′ − TF (TG)′|

)
.

We will show how to estimate the first term after the inequality, the second one
will follow by changing the roles of f and g. First we pass to the average∫ b

a

|f ′g − (TF )′TG| = (b− a)−
∫ b

a

|f ′g − (TF )′TG|

and then we decompose the argument as

f ′g − (TF )′TG = (f ′ − (TF )′)(g − TG) + (f ′ − (TF )′)TG+ (g − TG)(TF )′.

We then obtain

(b− a)−
∫ b

a

|f ′g − (TF )′TG| ≤ (b− a)

[(
−
∫ b

a

|f ′ − (TF )′|

)
||g − TG||∞

+

(
−
∫ b

a

|f ′ − (TF )′|

)
||TG||∞

+

(
−
∫ b

a

|g − TG|

)
||(TF )′||∞

]
.

From (4.1) we obtain (
−
∫ b

a

|f ′ − (TF )′|

)
≤ ε(b− a)m−1.

Absolute continuity of g, the Fundamental Theorem of Calculus, and (4.1) gives

||g − TG||∞ ≤ (b− a)

(
−
∫ b

a

|g′ − (TG)′|

)
≤ ε(b− a)m.

Using Lemma 2.16 we have

||(TF )′||∞ ≤ C−
∫ b

a

|(TF )′|
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for some constant C ≥ 1 depending only on m. Using TG(a) = G(a) = g(a) = 0
and again the Fundamental Theorem of Calculus, we have

||TG||∞ ≤
∫ b

a

|(TG)′|.

Combining all together we get∫ b

a

|f ′g − (TF )′TG| ≤ ε2(b− a)2m + ε(b− a)m
∫ b

a

|(TG)′|+ Cε(b− a)m
∫ b

a

|(TF )′|.

≤ CεV (a, b)

By doing the same computation with f and g switched we obtain

|A(a, b)| ≤ 4CεV (a, b)

whenever a, b ∈ K with 0 < b− a < δ. This yields Theorem 2.15(3).

Conclusion. We have shown that the jets F,G,H satisfy the hypotheses of
Theorem 2.15 on the compact set K. Hence Γ = (F,G,H) extends to a Cm

horizontal curve Γ̃ = (f̃ , g̃, h̃) : I → H1 satisfying

f̃k|K = F k, g̃k|K = Gk, h̃k|K = Hk for 0 ≤ k ≤ m.
From the definition of the compact set K and the jets F,G,H we have

L1

(
m⋃
k=0

{x ∈ I : f̃k(x) 6= fk(x) or g̃k(x) 6= gk(x) or h̃k(x) 6= hk(x)}

)
≤ L1(I \K)

< η.

This completes the proof of the theorem. �

5. A Horizontal Curve with no Lusin Approximation

In this section we prove our second main theorem, which justifies the hypotheses
of Theorem 4.1 and highlights the difference between the settings of Euclidean space
and the Heisenberg group.

Theorem 5.1. There exists Γ = (f, g, h) : [0, 1]→ H which is absolutely continuous
and horizontal with the following properties:

(1) Almost everywhere the maps f, g, h are twice Lp differentiable for all p ≥ 1,
(2) Almost everywhere the maps f ′, g′, h′ are once approximately differentiable,
(3) Γ does not admit a C2 horizontal Lusin approximation.

We use the remainder of this section to prove Theorem 5.1.

5.1. Construction of the Horizontal Curve.

5.1.1. Parameters for the Construction. Fix decreasing sequences hn, λn > 0 with

(5.1)

∞∑
n=1

2nλn <∞, hn/λn → 0, 4nhn →∞,
1

λ2n+1

∞∑
k=n+1

2k−nh2k → 0.

One possible choice is hn = 1/3n and λn = (2/5)n. A consequence of (5.1) is

(5.2)

∞∑
n=1

2nhn <∞.
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We next fix a decreasing sequence wn > 0 such that

(5.3) wn ≤ 1/26n,
1

λn+1

∞∑
k=n+1

2k−nwk → 0,

and

(5.4)
1

λ2p+1
n+1

∞∑
k=n+1

2k−nwkh
p
k → 0 for every p ≥ 1.

This is possible since wn can be chosen very small compared to hn and λn.

5.1.2. The Sets In and I. For each n ≥ 1 we inductively define sets In ⊂ [0, 1], each
a disjoint union of finitely many open intervals, as follows. Firstly, I1 is the open
interval with center 1/2 and radius w1. Once I1, I2, . . . , In are defined, we define
In+1 as the union of those open intervals J with the following properties:

• J has center k/2n+1 for some integer k with 0 < k < 2n+1,
• J has radius wn+1,
• J does not intersect I1 ∪ I2 ∪ · · · ∪ In.

Define I = ∪∞n=1In. The set In is a disjoint union of at most 2n−1 intervals of
length 2wn. Hence, since wn ≤ 1/26n,

(5.5) L1(I) ≤
∞∑
n=1

L1(In) ≤
∞∑
n=1

2nwn ≤ 1/31.

5.1.3. Definition of the Horizontal Components. We now define f, g : [0, 1] → R
which will be the first two components of the curve. In [0, 1] \ I we set f and g to
be identically 0. Otherwise we proceed as follows. Suppose J is one of the finitely
many disjoint open intervals chosen in the definition of In for some n ≥ 1. Divide
J into 4 adjacent disjoint equally sized intervals labelled from left to right

J1 = (p1, p2), J2 = [p2, p3], J3 = [p3, p4], J4 = (p4, p5).

The maps f, g are piecewise linear functions in J defined as follows:

(1) In J1, f is identically 0 and g is linear with g(p1) = 0, g(p2) = hn.
(2) In J2, f is linear with f(p2) = 0, f(p3) = hn and g is identically hn.
(3) In J3, f is identically hn and g is linear with g(p3) = hn, g(p4) = 0.
(4) In J4, f is linear with f(p4) = hn, f(p5) = 0 and g is identically 0.

5.1.4. Absolute Continuity of the Horizontal Components. Clearly f and g are dif-
ferentiable at all but finitely many points of In for each n, hence at all but countably
many points of I. Our first task is to prove that f and g are differentiable at almost
every point of [0, 1] \ I. Before doing so we prove a lemma which roughly states
that at almost every point of [0, 1] \ I the maps f and g do not see ‘big jumps’
unexpectedly close to x.

For x ∈ R and S ⊂ R we denote d(x, S) := inf{|x−y| : y ∈ S}. For n ≥ 1, define

An = {x ∈ [0, 1] \ I : d(x, I1 ∪ · · · ∪ In) < λn}

and let

A := lim supAn ⊂ [0, 1] \ I.
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By definition of the limit superior, for any x ∈ [0, 1]\ (I ∪A), there exists N(x) > 0
such that n > N(x) implies

d(x, I1 ∪ · · · ∪ In) ≥ λn.
Roughly speaking, this states that if x ∈ [0, 1] \ (I ∪ A) then on small scales near
to x one sees only relatively small intervals. We will use this fact repeatedly later.

Lemma 5.2. The set A has Lebesgue measure zero.

Proof. The set Ii consists of 2i−1 intervals and is contained in I. Hence

L1({x /∈ I : d(x, Ii) < λn}) ≤ 2i−12λn = 2iλn.

Hence
L1(An) = (2 + 22 + · · ·+ 2n)λn = 2λn(2n − 1).

Since
∑∞
n=1 2nλn < ∞ it follows

∑∞
n=1 L1(An) < ∞. The Borel Cantelli lemma

gives the conclusion. �

Lemma 5.3. For every x ∈ (0, 1) \ (I ∪ A), f and g are differentiable at x with
f ′(x) = g′(x) = 0.

Proof. Fix a point x as in the statement of the lemma and corresponding N(x) > 0
such that n > N(x) implies

d(x, I1 ∪ · · · ∪ In) ≥ λn.
For all t sufficiently small there is n > N(x) such that λn+1 ≤ |t| < λn. Then

d(x, I1 ∪ · · · ∪ In) ≥ λn > |t|.
This implies x + t /∈ I1 ∪ · · · ∪ In. By definition of f we see 0 ≤ f(x + t) ≤ hn+1.
Since x /∈ I we have f(x) = 0 and so∣∣∣∣f(x+ t)− f(x)

t

∣∣∣∣ ≤ hn+1

λn+1
.

Since hn/λn → 0, it follows that f is differentiable at x with f ′(x) = 0. The
argument is the same for g. �

We have now shown that f and g are differentiable almost everywhere on [0, 1].

Proposition 5.4. The maps f, g : [0, 1]→ R are absolutely continuous.

Proof. Suppose J is one of the intervals chosen in the construction of In for some
n ≥ 1. Then for any x ∈ J we have

|f ′(x)| ≤ hn/(wn/4) = 4hn/wn.

Since L1(J) ≤ 2wn it follows that
∫
J
|f ′| ≤ 8hn. Since there are at most 2n−1

disjoint intervals in the construction of In, we have
∫
In
|f ′| = 2n+2hn for every

n ≥ 1. Since f ′ = 0 almost everywhere outside I, we deduce,∫ 1

0

|f ′| ≤
∞∑
n=1

2n+2hn <∞.

Hence f ′ is integrable on [0, 1].
We now claim

(5.6) f(b)− f(a) =

∫ b

a

f ′ whenever a < b.
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Clearly (5.6) is satisfied if a and b belong to a common chosen interval J from
the definition of I. Indeed, f is piecewise linear and hence absolutely continuous
inside any such interval. Suppose this is not the case. By splitting the integral if
necessary, to prove (5.6) we may assume a, b /∈ I. If J = [c, d] is any interval chosen
in the construction of I which is contained in (a, b), then∫

J

f ′ = f(d)− f(c) = 0.

There are countably many such intervals and f ′ = 0 at almost every point outside

I. Hence
∫ b
a
f ′ = 0. Since a, b /∈ I we have f(b) = f(a) = 0. Hence (5.6) holds.

This proves that f is absolutely continuous. The argument for g is the same. �

5.1.5. Vertical Component of the Curve. Since f, g are bounded and f ′, g′ are inte-
grable, the products f ′g and g′f are integrable. We define h : [0, 1]→ R by

h(x) := 2

∫ x

0

(f ′g − g′f) for x ∈ [0, 1].

Clearly h is absolutely continuous on [0, 1]. By Lemma 2.3, Γ := (f, g, h) is an
absolutely continuous horizontal curve. It is easy to check that h is piecewise linear
since each interval chosen in the construction of I. We also record the following
fact for later.

Lemma 5.5. Suppose J = (a, b) is one of the connected components of In. Then

h(b)− h(a) = 4h2n.

Proof. Since f(a) = f(b) = 0 we know

h(b)− h(a) = 2

∫ b

a

(f ′g − g′f) = 4

∫ b

a

f ′g.

From the construction of f and g and the fact (b− a)/4 = wn/2 we obtain

h(b)− h(a) = 4(wn/2)(hn/(wn/2))hn = 4h2n.

�

5.2. Differentiability of the Horizontal Curve.

Proposition 5.6. At almost every point x ∈ [0, 1], the maps f, g, h : [0, 1]→ R are
twice Lp differentiable at x for all p ≥ 1. For every point x ∈ (0, 1) \ (I ∪ A), the
second order Lp derivatives of f, g, h at x are identically f(x) = 0, g(x) = 0, and
h(x) (possibly non-zero) respectively.

Proof. Recall that f, g, h are piecewise linear inside each of the countably many
intervals whose disjoint union is I. Hence f, g, h are twice Lp differentiable for all
p ≥ 1 at all but countably many points of I. Suppose x /∈ (I ∪ A). To show f is
twice Lp differentiable at x we will show that for every p ≥ 1

lim
t→0

1

t2p+1

∫
[x−t,x+t]

|f(y)|p dy = 0.

Using the definition of A, we may choose N(x) > 0 such that n > N(x) implies

d(x, I1 ∪ · · · ∪ In) ≥ λn.
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Recall that
∑∞
n=1 2nλn < ∞ which implies λn ≤ 1/2n for all sufficiently large n.

Given any t > 0 sufficiently small, we may choose n > N(x) with

λn+1 ≤ t < λn ≤ 1/2n.

This implies

[x− t, x+ t] ∩ (I1 ∪ · · · ∪ In) = ∅.
The interval [x − t, x + t] has length at most 2λn ≤ 1/2n−1. Since the intervals
in Ik have centers separated by at least distance 1/2k, it follows that [x− t, x+ t]
can intersect at most 2k−n+1 intervals from Ik for k > n. Recall that x /∈ I gives
f(x) = 0, |f(y)| ≤ hk for y in an interval from Ik, and that t > λn+1. We have

1

t2p+1

∫
[x−t,x+t]

|f(y)|p dy =
1

t2p+1

∫
[x−t,x+t]∩I

|f(y)|p dy

≤ 2

t2p+1

∞∑
k=n+1

2k−n+1wkh
p
k

≤ 2

λ2p+1
n+1

∞∑
k=n+1

2k−n+1wkh
p
k.

The previous line converges to 0 as n → ∞ for every p ≥ 1 by definition of the
sequences wk, hk, λk. The argument for g is exactly the same. Finally to show h is
twice Lp differentiable at x we will show that for every p ≥ 1

lim
t→0

1

t2p+1

∫
[x−t,x+t]

|h(y)− h(x)|p dy = 0.

Recall that [x− t, x+ t] can intersect at most 2k−n+1 intervals from Ik for k > n.
Hence, using Lemma 5.5, for any y ∈ [x− t, x+ t] we have

|h(y)− h(x)| ≤
∞∑

k=n+1

2k−n+3h2k.

Hence

1

t2p+1

∫
[x−t,x+t]

|h(y)− h(x)|p dy ≤ 2

t2p

( ∞∑
k=n+1

2k−n+3h2k

)p

≤ 2

(
8

λ2n+1

∞∑
k=n+1

2k−nh2k

)p
.

We conclude by noticing the last line converges to 0 as n→∞ for every p ≥ 1. �

Proposition 5.7. The maps f ′, g′, h′ are once approximately differentiable almost
everywhere. In particular, f ′ and g′ have approximate derivative 0 at every point
of (0, 1) \ (I ∪A).

Proof. Approximate differentiability of f ′, g′, h′ at all but countably many points
of I is clear since f, g, h are piecewise linear inside each interval chosen during the
construction of I. Recall that f ′(x) = g′(x) = 0 for every point x ∈ (0, 1) \ (I ∪A).
Fix such an x. Choose corresponding N(x) > 0 such that n > N(x) implies

d(x, I1 ∪ · · · ∪ In) ≥ λn.
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As in the proof of Proposition 5.6, given any t > 0 sufficiently small we may choose
n > N(x) such that

λn+1 ≤ t < λn ≤ 1/2n,

which implies

[x− t, x+ t] ∩ (I1 ∪ · · · ∪ In) = ∅.
Again it follows that [x − t, x + t] can intersect at most 2k−n+1 intervals from Ik
for k > n. Recalling that f ′(x) = 0 at every point of (0, 1) \ (I ∪A), we have

L1({y ∈ [x− t, x+ t] : f ′(y) > 0})
2t

≤ L
1([x− t, x+ t] ∩ I)

2t

≤ 1

2λn+1

∞∑
k=n+1

2k−n+2wk.

Since the previous line converges to 0 as n → ∞, it follows f ′ is approximately
differentiable at x with approximate derivative 0. The argument for g is the same.
For h we recall that h′ = 2(f ′g− g′f) almost everywhere. Combining this with the
fact f ′(x) = g′(x) = 0 for every point x ∈ (0, 1) \ (I ∪A) gives h′(x) = 0 for almost
every x ∈ (0, 1) \ (I ∪ A). For such x the same argument as above applies, giving
the desired conclusion. �

5.3. No C2 Horizontal Lusin Approximation.

Proposition 5.8. The curve Γ does not have the C2 horizontal Lusin approxima-
tion property.

We will prove Proposition 5.8 by contradiction. Suppose Γ does have the C2

horizontal Lusin approximation property. Fix θ > 4/5 + 1/31 and a C2 horizontal

curve Γ̃ = (F,G,H) : [0, 1]→ H such that the set

E := {t ∈ [0, 1] : Γ̃(t) = Γ(t)}
satisfies L1(E) > θ. Since L1(I) < 1/31 by (5.5), we have L1(E \ I) > 4/5.

Lemma 5.9. Suppose x ∈ E \ I is a Lebesgue density point of E \ I. Then

F (x) = F ′(x) = F ′′(x) = 0 and G(x) = G′(x) = G′′(x) = 0.

Proof. Let x be as in the statement of the lemma. Then F (x) = f(x) because
x ∈ E and f(x) = 0 because x /∈ I; hence F (x) = 0. Since x is a Lebesgue density
point of E \ I there exist xn ∈ E \ I with xn → x. By the same argument as before
we have F (xn) = 0 for every n. Hence xn → x and F (xn) = 0 = F (x) for every n.
Since F is C2 this implies F ′(x) = F ′′(x) = 0. The argument for G is the same. �

Since Γ̃ is C2, F ′′ and G′′ are uniformly continuous on [0, 1]. Fix δ > 0 such that

(5.7) |F ′′(x)− F ′′(y)| < 1 and |G′′(x)−G′′(y)| < 1 for |x− y| < δ.

Lemma 5.10. Suppose a, b ∈ E \ I are Lebesgue density points of E \ I and
|b− a| < δ. Then

|H(b)−H(a)| ≤ 4|b− a|4.

Proof. Since F (a) = F (b) = 0 by Lemma 5.9 and Γ̃ is horizontal, we have

H(b)−H(a) = 2

∫ b

a

(F ′G−G′F ) = 4

∫ b

a

F ′G.
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We have F (a) = F ′(a) = F ′′(a) = 0 by Lemma 5.9 and |F ′′(t) − F ′′(a)| < 1 for
t ∈ [a, b] by (5.7). Hence |F ′(t)| ≤ b − a and |F (t)| ≤ (b − a)2 for t ∈ [a, b]. The
same estimates hold for G. This gives

|H(b)−H(a)| ≤ 4(b− a)(b− a)(b− a)2 = 4(b− a)4.

�

Lemma 5.11. For all n ∈ N, there exists a pair x, y ∈ (0, 1) with the following
properties:

• x, y ∈ E \ I and are Lebesgue density points of E \ I,
• |x− y| ≤ 1/2n,
• x, y are on opposite sides of an interval chosen in the construction of In+1.

Proof. We argue by contradiction. Assume there exists n ∈ N for which there is no
pair x and y with the desired properties. Fix such an n. We consider intervals of
the form [L/2n, (L+ 1)/2n] for different integers 0 ≤ L < 2n.

Suppose the interval [L/2n, (L+ 1)/2n] has midpoint (2L+ 1)/2n+1 which is the
center of an interval J chosen in the construction of In+1. The interval J separates
[L/2n, (L+ 1)/2n] \J into two subintervals J1 and J2 each of measure greater than
(1/3)(1/2n). Since there is no pair x, y ∈ (0, 1) with the properties in the statement
of the lemma, in particular there is no such pair in the interval [L/2n, (L+ 1)/2n].
Hence either J1 or J2 does not contain any points of E \ I which are Lebesgue
density points of E \ I. Hence we have

L1((E \ I) ∩ [L/2n, (L+ 1)/2n]) ≤ (2/3)L1([L/2n, (L+ 1)/2n]).

We now estimate the total measure of those intervals [L/2n, (L + 1)/2n] whose
midpoint (2L + 1)/2n+1 is not chosen in the construction of In+1. Fix such an
interval [L/2n, (L+ 1)/2n]. Then

B((2L+ 1)/2n+1, wn+1) ∩ (I1 ∪ · · · ∪ In) 6= ∅.

Different intervals of the form B(k/2n+1, wn+1) are separated by a distance

1/2n+1 − 2wn+1 ≥ 1/2n+1 − 2/26n ≥ 1/2n+2.

If an interval of length T intersects K intervals of the form B(k/2n+1, wn+1) then
we must have T ≥ K/2n+2, so K ≤ 2n+2T . The set Ii is a union of 2i−1 intervals
of length 2wi. Hence the number of intervals B(k/2n+1, wn+1) which intersect
I1 ∪ · · · ∪ In can be estimated by

n∑
i=1

2i−12n+22wi = 2n+2
n∑
i=1

2iwi.

Hence the total measure of all those intervals [L/2n, (L+ 1)/2n] whose midpoint is
not chosen in the construction of In+1 can be estimated by

(1/2n)2n+2
n∑
i=1

2iwi = 4

n∑
i=1

2iwi ≤ 4

∞∑
i=1

2i/26i = 4/31.

Let G be the collection of those integers L such that the midpoint of [L/2n, (L+
1)/2n] is the center of an interval chosen in the construction of In+1. Let B be the
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collection of those integers L such that the midpoint of [L/2n, (L + 1)/2n] is not
chosen. We estimate as follows

L1(E \ I) =
∑
L∈G
L1((E \ I) ∩ [L/2n, (L+ 1)/2n])

+
∑
L∈B
L1((E \ I) ∩ [L/2n, (L+ 1)/2n])

≤
∑
L∈G

(2/3)L1([L/2n, (L+ 1)/2n]) +
∑
L∈B
L1([L/2n, (L+ 1)/2n])

≤ 2/3 + 4/31

≤ 4/5.

Since L1(E \ I) > 4/5 we obtain a contradiction which proves the lemma. �

We now derive a contradiction which proves Proposition 5.8. Recall δ > 0 from
(5.7) and the fact that 4nhn →∞. Using Lemma 5.11, we may fix n with 1/2n < δ
and 4nhn+1 ≥ 2 for which there exist points x, y ∈ (0, 1) with x < y such that

• x, y ∈ E \ I and are Lebesgue density points of E \ I,
• |x− y| ≤ 1/2n,
• x, y are on opposite sides of an interval chosen in the construction of In+1.

Since |x− y| ≤ 1/2n < δ and x, y ∈ E \ I are Lebesgue density points of E \ I, we
have by Lemma 5.10

(5.8) |H(y)−H(x)| ≤ 4|y − x|4 ≤ 4/16n.

Since x < y are on opposite sides of an interval chosen in the construction of In+1,
we have by Lemma 5.5

(5.9) h(y)− h(x) ≥ 4h2n+1.

Since x, y ∈ E we have H(y)−H(x) = h(y)− h(x). Combining this with (5.8) and
(5.9) gives h2n+1 ≤ 1/16n or equivalently 4nhn+1 ≤ 1. This contradicts the choice
of n with 4nhn+1 ≥ 2, proving Proposition 5.8 and hence proving Theorem 5.1.
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