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Abstract. Necessary and sufficient conditions for rigidity of the perimeter inequality
under spherical symmetrisation are given. That is, a characterisation for the uniqueness
(up to orthogonal transformations) of the extremals is provided. This is obtained through
a careful analysis of the equality cases, and studying fine properties of the circular sym-
metrisation, which was firstly introduced by Pólya in 1950.

1. Introduction

In this paper we study the perimeter inequality under spherical symmetrisation, giving
necessary and sufficient conditions for the uniqueness, up to orthogonal transformations,
of the extremals. Perimeter inequalities under symmetrisation have been studied by many
authors, see for instance [20, 21] and the references therein. In general, we say that
rigidity holds true for one of these inequalities if the set of extremals is trivial. The study
of rigidity can have important applications to show that minimisers of variational problems
(or solutions of PDEs) are symmetric.

For instance, a crucial step in the proof of the Isoperimetric Inequality given by Ennio
De Giorgi consists in showing rigidity of Steiner’s inequality (see, for instance, [22, Theo-
rem 14.4]) for convex sets (see the proof of Theorem I in Section 4 in [16, 17]). After De
Giorgi, an important contribution in the understanding of rigidity for Steiner’s inequality
was given by Chleb́ık, Cianchi, and Fusco. In the seminal paper [12], the authors give
sufficient conditions for rigidity which are much more general than convexity. After that,
this result was extended to the case of higher codimensions in [3], where a quantitative
version of Steiner’s inequality was also given.

Then, necessary and sufficient conditions for rigidity (in codimension 1) were given in [9],
in the case where the distribution function is a Special Function of Bounded Variation with
locally finite jump set [9, Theorem 1.29]. The anisotropic case has recently been considered
in [26], where rigidity for Steiner’s inequality in the isotropic and anisotropic setting are
shown to be equivalent, under suitable conditions. In the Gaussian setting, where the role
of Steiner’s inequality is played by Ehrhard’s inequality (see [15, Section 4.1]), necessary
and sufficient conditions for rigidity are given in [10], by making use of the notion of
essential connectedness [10, Theorem 1.3]. Finally, in the smooth case, sufficient conditions
for rigidity are given in [24, Proposition 5], for a general class of symmetrisations in warped
products.

The main motivation for the study of the spherical symmetrisation is that it can be used
to understand the symmetry properties of the solutions of PDEs and variational problems,
when the radial symmetry has been ruled out. Moreover, some well established methods
(as for instance the moving plane method, see [29, 19]) rely on convexity properties of the
domain which fail, for instance, when one deals with annuli.

In particular, in many applications minimisers of variational problems and solutions of
PDEs turn out to be foliated Schwarz symmetric. Roughly speaking, a function u : Rn → R
is foliated Schwarz symmetric if one can find a direction p ∈ Sn−1 such that u only depends
on |x| and on the polar angle α = arccos(x̂ · p), and u is non increasing with respect to

1



α (here x̂ := x/|x|, and | · | denotes the Euclidean norm in Rn). We direct the interested
reader to [4, 5, 6, 31] and the references therein for more information.

1.1. Spherical Symmetrisation. To the best of our knowledge, the spherical symmetri-
sation was first introduced by Pólya in [27], in the case n = 2 and in the smooth setting.
Let n ∈ N with n ≥ 2. For each r > 0 and x ∈ Rn, we denote by B(x, r) the open ball
of Rn of radius r centred at x, by ωn the (n-dimensional) volume of the unit ball, and we
write B(r) for B(0, r). Moreover, e1, . . . , en stand for the vectors of the canonical basis of
Rn. Given a set E ⊂ Rn and r > 0, we define the spherical slice Er of E with respect to
∂B(r) as

Er := E ∩ ∂B(r) = {x ∈ E : |x| = r}.
Let v : (0,∞)→ [0,∞) be a measurable function. We say that E is spherically v-distributed
if

v(r) = Hn−1(Er), for H1-a.e. r ∈ (0,∞), (1.1)

where Hk denotes the k-dimensional Hausdorff measure of Rn, 1 ≤ k ≤ n. Note that, in
order v to be an admissible distribution, one needs

v(r) ≤ Hn−1(∂B(r)) = nωnr
n−1 for H1-a.e. r ∈ (0,∞). (1.2)

In the following, as usual, we set Sn−1 = ∂B(1). For every x, y ∈ Sn−1, the geodesic
distance between x and y is given by

distSn−1(x, y) := arccos(x · y).

Let r > 0, p ∈ Sn−1, and β ∈ [0, π] be fixed. The open geodesic ball (or spherical cap) of
centre rp and radius β is the set

Bβ(rp) := {x ∈ ∂B(r) : distSn−1(x̂, p) < β}.

The (n− 1)-dimensional Hausdorff measure of Bβ(rp) can be explicitly calculated, and is
given by

Hn−1(Bβ(rp)) = (n− 1)ωn−1r
n−1

ˆ β

0
(sin τ)n−2 dτ.

The expression above shows that the function β 7→ Hn−1(Bβ(rp)) is strictly increasing
from [0, π] to [0, nωnr

n−1]. Therefore, if v : (0,∞) → [0,∞) is a measurable function
satisfying (1.2), and E ⊂ Rn is a spherically v-distributed set, there exists only one
(defined up to a subset of zero H1-measure) measurable function αv : (0,∞) → [0, π]
satisfying

v(r) = Hn−1(Bαv(r)(re1)) for H1-a.e. r ∈ (0,∞). (1.3)

Among all the spherically v-distributed sets of Rn, we denote by Fv the one whose spherical
slices are open geodesic balls centred at the positive e1 axis., i.e.

Fv := {x ∈ Rn \ {0} : distSn−1(x̂, e1) < αv(|x|)},

see Figure 1.1. Before stating our results, it will be convenient to recall some basic notions
about sets of finite perimeter.

1.2. Basic notions on sets of finite perimeter. Let E ⊂ Rn be a measurable set, and
let t ∈ [0, 1]. We denote by E(t) the set of points of density t of E, given by

E(t) :=

{
x ∈ Rn : lim

ρ→0+

Hn(E ∩B(x, ρ))

ωnρn
= t

}
.

The essential boundary of E is then defined as

∂eE := E \ (E(1) ∪ E(0)).
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Figure 1.1. A pictorial idea of the spherical symmetral Fv of a v-
distributed set E, in the case n = 3.

Moreover, if A ⊂ Rn is any Borel set, we define the perimeter of E relative to A as the
extended real number given by

P (E;A) := Hn−1(∂eE ∩A),

and we set P (E) := P (E;Rn). When E is a set with smooth boundary, it turns out that
∂eE = ∂E, and the perimeter of E agrees with the usual notion of (n − 1)-dimensional
surface measure of ∂E.

If P (E) < ∞, it is possible to define the reduced boundary ∂∗E of E. This has the
property that ∂∗E ⊂ ∂eE, Hn−1(∂eE \ ∂∗E) = 0, and is such that for every x ∈ ∂∗E
there exists the measure theoretic outer unit normal νE(x) of ∂∗E at x, see Section 2. If
x ∈ ∂∗E, it will be convenient to decompose νE(x) as

νE(x) = νE⊥(x) + νE‖ (x),

where νE⊥(x) := (νE(x) · x̂)x̂ and νE‖ (x) are the radial and tangential component of νE(x)

along ∂B(|x|), respectively. In the following, we will use the diffeomorphism Φ : (0,∞)×
Sn−1 → Rn \ {0} defined as

Φ(r, ω) := rω for every (r, ω) ∈ (0,∞)× Sn−1.
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1.3. Perimeter Inequality under spherical symmetrisation. Our first result shows
that the spherical symmetrisation does not increase the perimeter, and gives some neces-
sary conditions for equality cases. In our analysis we require the set Fv (or, equivalently,
any spherically v-distributed set) to have finite volume. This is not restrictive. Indeed, if
Fv has finite perimeter but infinite volume, we can consider the complement Rn\Fv which,
by the relative isoperimetric inequality, has finite volume. This change corresponds to con-
sidering the complementary distribution function r 7→ nωnr

n−1 − v(r), and the spherical
symmetrisation with respect to the axis −e1.

Theorem 1.1. Let v : (0,∞) → [0,∞) be a measurable function satisfying (1.2), and
let E ⊂ Rn be a spherically v-distributed set of finite perimeter and finite volume. Then,
v ∈ BV (0,∞). Moreover, Fv is a set of finite perimeter and

P (Fv; Φ(B × Sn−1)) ≤ P (E; Φ(B × Sn−1)), (1.4)

for every Borel set B ⊂ (0,∞).
Finally, if P (E) = P (Fv), then for H1-a.e. r ∈ {0 < αv < π}:
(a) Er is Hn−1-equivalent to a spherical cap and Hn−2(∂∗(Er)∆(∂∗E)r) = 0;

(b) the functions x 7→ νE(x) · x̂ and x 7→ |νE‖ |(x) are constant Hn−2-a.e. in (∂∗E)r.

The result above shows that the perimeter inequality holds on a local level, provided
one considers sets of the type Φ(B × Sn−1), with B ⊂ (0,∞) Borel. Inequality (1.4) is
very well known in the literature. In the special case n = 2, a short proof was given by
Pólya in [27]. In the general n-dimensional case with B = (0,∞) the result is stated in
[25, Theorem 6.2]), but the proof is only sketched (see also [23] and [24, Proposition 3 and
Remark 4]). As mentioned by Morgan and Pratelli in [25], certain parts of the proof of
(1.4) follow the general lines of analogous results in the context of Steiner symmetrisation
(see, for instance, [12, Lemma 3.4] and [3, Theorem 1.1]). There are, however, non trivial
technical difficulties that arise when one deals with the spherical symmetrisation. For this
reason, we give a detailed proof of Theorem 1.1.

We start by introducing radial and tangential components of a Radon measure, see
Section 3.1. These turn out to be useful tools which allow to prove several preliminary
results. Moreover, since we are dealing with a symmetrisation of codimension n − 1, we
need to pay attention to some delicate effects that are not usually observed when the
codimension is 1 (as, for instance, in [12]). Indeed, a crucial role is played by the measure
λE given by:

λE(B) :=

ˆ
∂∗E∩Φ(B×Sn−1)∩{νE‖ =0}

x̂ · νE(x) dHn−1(x), (1.5)

for every Borel set B ⊂ (0,∞). When n = 2, it turns out that λE is singular with respect
to the Lebesgue measure in (0,∞). However, for n > 2 it may happen that λE contains
a non trivial absolutely continuous part, see Remark 3.9. This requires some extra care
while proving inequality (1.4). A similar phenomenon has already been observed in [3], in
the study of the Steiner symmetrisation of codimension higher than 1. Higher codimension
effects play an important role also in the study of rigidity, as explained below.

1.4. Rigidity of the Perimeter Inequality. Given v : (0,∞) → [0,∞) measurable,
satisfying (1.2), and such that Fv is a set of finite perimeter and finite volume, we define
N (v) as the class of extremals of (1.4):

N (v) := {E ⊂ Rn : E is spherically v-distributed and P (E) = P (Fv)}.

Note that, by definition of Fv, and by the invariance of the perimeter under rigid trans-
formations, every time we apply an orthogonal transformation to Fv we obtain a set that
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belongs to N (v), i.e.:

N (v) ⊃ {E ⊂ Rn : Hn(E∆(RFv)) = 0 for some R ∈ O(n)},

where ∆ denotes the symmetric difference of sets and O(n) is the set of orthogonal trans-
formations in Rn. We would like to understand when also the opposite inclusion is satisfied,
that is, when the class of extremals of (1.4) is just given by rotated copies of Fv. We will
say that rigidity holds true for inequality (1.4) if

N (v) = {E ⊂ Rn : Hn(E∆(RFv)) = 0 for some R ∈ O(n)}. (R)

In order to explain which conditions we should expect in order (R) to be true, let us first
give some examples.

Figure 1.2 shows a set E ∈ N (v) that cannot be obtained by applying a single orthogonal
transformation to Fv. This is due to the fact that the set {0 < αv < π} is disconnected

r̃ x1

x2

E

x1

x2

r̃

Fv

Figure 1.2. Rigidity (R) fails, since the set {0 < αv < π} is disconnected
by a point r̃ ∈ (0,∞) such that αv(r̃) = 0.

by a point r̃ satisfying αv(r̃) = 0. A similar situation happens when {0 < αv < π} is
disconnected by points belonging to the set {αv = π}, see Figure 1.3.

r̂ x1

x2

E

r̂ x1

x2

Fv

Figure 1.3. The set E above cannot be obtained by applying an orthog-
onal transformation around the origin to the set Fv shown in the right,
therefore rigidity (R) fails. This happens because the set {0 < αv < π} is
disconnected by a point r̂ ∈ (0,∞) such that αv(r̂) = π.

One possibility to avoid such a situation could be to request the set {0 < αv < π} to
be an interval. However, this condition depends on the representative chosen for αv, while
the perimeters of the sets E and Fv don’t. Indeed, in Figure 1.2 one could modify αv
just at the point r̃, in such a way that {0 < αv < π} becomes an interval. Nevertheless,
rigidity still fails, see Figure 1.4.
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To formulate a condition which is independent on the chosen representative, we consider
the approximate liminf and the approximate limsup of αv, which we denote by α∧v and α∨v ,
respectively (see Section 2). These two functions are defined at every point r ∈ (0,∞) and
satisfy α∧v ≤ α∨v . In addition, they do not depend on the representative chosen for αv, and
α∧v = α∨v = αv H1-a.e. in (0,∞). The condition that we will impose is then the following:

{0 < α∧v ≤ α∨v < π} is a (possibly unbounded) interval. (1.6)

One can check that, in the example given in Figure 1.4 this condition fails, since α∧v (r̃) =
α∨v (r̃) = 0.

r̃ x1

x2

E

x1

x2

r̃

Fv

Figure 1.4. Modifying the function αv given in Figure 1.2 at the point
r̃, we can make sure that {0 < αv < π} is an open connected interval.
However, rigitidy still fails.

Let us show that, even imposing (1.6), rigidity can still be violated. In the example
given in Figure 1.5, there is some radius r ∈ {0 < α∧v ≤ α∨v < π} such that the boundary
of Fv contains a non trivial subset of ∂B(r). In this way, it is possible to rotate a proper
subset of Fv around the origin, without affecting the perimeter. Note that at each point
of the set ∂∗Fv ∩ ∂B(r) the exterior normal νFv is parallel to the radial direction. To rule
out the situation described in Figure 1.5, we will impose the following condition:

Hn−1({x ∈ ∂∗Fv : νFv‖ (x) = 0 and |x| ∈ {0 < α∧v ≤ α∨v < π}) = 0. (1.7)

Note that, from Theorem 1.1 and identity (1.3), it follows that in general we only have

αv ∈ BVloc(0,∞). However, it turns out that (1.7) is equivalent to ask that αv is W 1,1
loc in

the interior of {0 < α∧v ≤ α∨v < π}, see Proposition 5.3.

E

x1r

x2

x1

x2

Fv

r

Figure 1.5. An example in which rigidity fails. In this case, the tangential
part of ∂∗Fv gives a non trivial contribution to P (Fv). This allows to slide
a proper subset of Fv around the origin, without modifying the perimeter.
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Our main result shows that the two conditions above give a complete characterisation
of rigidity for inequality (1.4) (below, I̊ stands for the interior of the set I).

Theorem 1.2. Let v : (0,∞)→ [0,∞) be a measurable function satisfying (1.2) such that
Fv is a set of finite perimeter and finite volume, and let αv be defined by (1.3). Then, the
following two statements are equivalent:

(i) (R) holds true;

(ii) {0 < α∧v ≤ α∨v < π} is a (possibly unbounded) interval I, and αv ∈W 1,1
loc (I̊).

Let us point out that, although similar results in the context of Steiner and Ehrhard’s
inequalities already appeared in [9, 10], the proof of Theorem 1.2 cannot simply use previ-
ous ideas, especially in the implication (i) =⇒ (ii). We cannot rely, as in [9], on a general
formula for the perimeter of sets E satisfying equality in (1.4). Instead, we exhibit explicit
counterexamples to rigidity, whenever one of the assumptions in (ii) fails. This requires a
careful analysis of the transformations that one can apply to the set Fv, without modifying
its perimeter. This turns out to be non trivial, especially if one assumes αv to have a non
zero Cantor part (see Proposition 8.4).

Also the proof of the implication (ii) =⇒ (i) presents some difficulties. In the context of
Steiner symmetrisation, this has been proved in [12, Theorem 1.3] and [3, Theorem 1.2],
for codimension 1 and for every codimension, respectively. In the smooth case, a proof is
given in [24, Proposition 5], for the general class of symmetrisations in warped products.
For the spherical setting without any smoothness assumption, this implication has already
been stated in [25, Theorem 6.2], but the proof is only sketched. A rigorous proof of this
fact turns out to be more delicate than one would expect, and relies on the following result.

Lemma 1.3. Let v : (0,∞) → [0,∞) be a measurable function satisfying (1.2) such that
Fv is a set of finite perimeter and finite volume. Let E ⊂ Rn be a spherically v-distributed
set, and let I ⊂ (0,+∞) be a Borel set. Assume that

Hn−1
({
x ∈ ∂∗E ∩ Φ(I × Sn−1) : νE‖ (x) = 0

})
= 0. (1.8)

Then,

Hn−1
({
x ∈ ∂∗Fv ∩ Φ(I × Sn−1) : νFv‖ (x) = 0

})
= 0. (1.9)

Viceversa, let (1.9) be satisfied, and suppose that P (E; Φ(I×Sn−1)) = P (Fv; Φ(I×Sn−1)).
Then, (1.8) holds true.

A direct proof of Lemma 1.3 does not seem to be obvious, due to the fact that, as
pointed out above, the measure λE defined in (1.5) can have an absolutely continuous
part when n > 2. In the context of Steiner symmetrisation of higher codimension, a result
playing the role of Lemma 1.3 (see [3, Proposition 3.6]) is proved using the fact that the
statement holds true in codimension 1, see [12, Proposition 4.2]. For this reason, we are
led to consider the circular symmetrisation, which is the codimension 1 version of the
spherical symmetrisation, and was originally introduced by Pólya in the case n = 3 (see
[27]). Note that, when n = 2, spherical and circular symmetrisation coincide.

1.5. Circular Symmetrisation. In order to introduce the circular symmetrisation, let
us first observe how the spherical symmetrisation operates on a given set E, in the special
case n = 2. In this situation, for each r > 0 one intersects E with the circle ∂B(r) of
radius r centred at the origin. Then, the symmetric set Fv is obtained by centring, for
each r > 0, an open circumference arc of length H1(E ∩ ∂B(r)) at the point re1. When
n > 2 one can proceed in a similar way, by first slicing the set E with parallel planes, and
then by symmetrising it (in each plane) with the procedure just described. Note that, in
this case, one needs to specify both the direction along which the open arcs are centred,
and the direction along which the slicing through planes is performed.
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Let us then choose an ordered pair of orthogonal directions in Rn, which we will assume
to be (e1, e2) (we will be centring open circumference arcs along e1, while we will be
slicing the set E with parallel planes that are orthogonal to e2). In the following, for
each x = (x1, . . . , xn) ∈ Rn, we will write x = (x12, x

′), where x12 = (x1, x2) ∈ R2

and x′ = (x3, . . . , xn) ∈ Rn−2. When x12 6= 0, we set x̂12 := x12/|x12|. For each given
z′ ∈ Rn−2, we denote by Πz′ the two-dimensional plane defined by

Πz′ := {x = (x12, x
′) ∈ R2 × Rn−2 : x′ = z′}.

Given a set E ⊂ Rn and (r, z′) ∈ (0,∞) × Rn−2, we define the circular slice E(r,z′) of E
with respect to ∂B((0, z′), r) ∩Πz′ as

E(r,z′) := E ∩ ∂B((0, z′), r) ∩Πz′ = {x = (x12, x
′) ∈ E : x′ = z′ and |x12| = r}.

Let ` : (0,∞) × Rn−2 → [0,∞) be a measurable function. We say that E is circularly
`-distributed if

`(r, x′) = H1(E(r,x′)), for Hn−1-a.e. (r, x′) ∈ (0,∞)× Rn−2.

If ` is a circular distribution, then we have

`(r, x′) ≤ H1(∂B((0, x′), r)∩Πx′) = 2πr for Hn−1-a.e. (r, x′) ∈ (0,∞)×Rn−2. (1.10)

Among all the sets in Rn that are circularly `-distributed, we denote by F ` the one whose
circular slices are open circumference arcs centred at the positive e1 axis. That is, we set

F ` :=

{
(x12, x

′) ∈ Rn \ {x12 = 0} : distS1(x̂12, e1) <
1

2r
`(r, x′)

}
.

In the following, we introduce the diffeomorphism Φ12 : (0,∞)×Rn−2×S1 → Rn\{x̂12 = 0}
given by

Φ12(r, x′, ω) := (rω, x′) for every (r, x′, ω) ∈ (0,∞)× Rn−2 × S1.

Moreover, for every x ∈ ∂∗E we write νE(x) = (νE12(x), νEx′(x)), where νE12(x) = (νE1 (x), νE2 (x))

and νEx′(x) = (νE3 (x), . . . , νEn (x)). Then, we further decompose νE12(x) as

νE12(x) = νE12⊥(x) + νE12‖(x),

where νE12⊥(x) := (νE(x) · x̂12)x̂12 and νE12‖(x) := νE12(x) − νE12⊥(x). We can now state a

result that plays the role of Theorem 1.1 for the circular symmetrisation.

Theorem 1.4. Let ` : (0,∞)×Rn−2 → [0,∞) be a measurable function satisfying (1.10),
and let E ⊂ Rn be a circularly `-distributed set of finite perimeter and finite volume. Then,
` ∈ BVloc((0,∞)× Rn−2). Moreover, F ` is a set of finite perimeter and

P (F `; Φ12(B × S1)) ≤ P (E; Φ12(B × S1)), (1.11)

for every Borel set B ⊂ (0,∞)× Rn−2.
Finally, if P (E) = P (F `), then for Hn−1-a.e. (r, x′) ∈ (0,∞)× Rn−2:

(a) E(r,x′) is H1-equivalent to a circular arc and ∂∗(E(r,x′)) = (∂∗E)(r,x′);

(b) the three functions

x 7−→ νE(x) · x̂12, x 7−→ |νE12‖|(x), x 7−→ νEx′(x),

are constant in (∂∗E)(r,x′).

In the smooth setting and in the case n = 3, inequality (1.11) was proved by Pólya. The
following result is the counterpart of Lemma 1.3 in the context of circular symmetrisation.
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Lemma 1.5. Let ` : (0,∞) × Rn−2 → [0,∞) be a measurable function satisfying (1.10)
such that F ` is a set of finite perimeter and finite volume. Let E ⊂ Rn be a circularly
`-distributed set, and let I ⊂ (0,∞)× Rn−2 be a Borel set. Assume that

Hn−1
({
x ∈ ∂∗E ∩ Φ(I × S1) : νE12‖(x) = 0

})
= 0. (1.12)

Then,

Hn−1
({
x ∈ ∂∗F ` ∩ Φ(I × S1) : νF

`

12‖(x) = 0
})

= 0. (1.13)

Viceversa, let (1.13) be satisfied, and suppose that P (E; Φ(I × S1)) = P (F `; Φ(I × S1)).
Then, (1.12) holds true.

Once Lemma 1.5 is established, we can show Lemma 1.3 through a slicing argument.
Finally, the proof of (ii) =⇒ (i) is concluded by showing that, if E satisfies equality in

(1.4), the function associating to every r ∈ (0,∞) the center of Er (see (7.1)) is W 1,1
loc and,

ultimately, constant (see Section 7).
The paper is divided as follows. Section 2 contains basic results of Geometric Measure

Theory that are extensively used in the following. In Section 3 we give the setting of
the problem and introduce useful tools to deal with the spherical framework. Section 4
is devoted to the study of the properties of the functions v and ξv, while Theorem 1.1 is
proven in Section 5. Important properties of the circular symmetrisation are discussed in
Section 6, where we also give the proof of Lemma 1.3. The implications (ii) =⇒ (i) and
(i) =⇒ (ii) of Theorem 1.2 are proven in Section 7 and Section 8, respectively.

2. Basic notions of Geometric Measure Theory

In this section we introduce some tools from Geometric Measure Theory. The interested
reader can find more details in the monographs [2, 18, 22, 30]. For n ∈ N, we denote with
Sn−1 the unit sphere of Rn, i.e.

Sn−1 = {x ∈ Rn : |x| = 1},

where | · | stands for the Euclidean norm, and we set Rn0 := Rn \{0}. For every x ∈ Rn0 , we
write x̂ := x/|x| for the radial versor of x. We denote by e1, . . . , en the canonical basis in
Rn, and for every x, y ∈ Rn, x · y stands for the standard scalar product in Rn between x
and y. For every r > 0 and x ∈ Rn, we denote by B(x, r) the open ball of Rn with radius
r centred at x. In the special case x = 0, we set B(r) := B(0, r). In the following, we will
often make use of the diffeomorphism Φ : (0,∞)× Sn−1 → Rn0 defined as

Φ(r, ω) := rω for every (r, ω) ∈ (0,∞)× Sn−1.

For x ∈ Rn and ν ∈ Sn−1, we will denote by H+
x,ν and H−x,ν the closed half-spaces whose

boundaries are orthogonal to ν:

H+
x,ν :=

{
y ∈ Rn : (y − x) · ν ≥ 0

}
, (2.1)

H−x,ν :=
{
y ∈ Rn : (y − x) · ν ≤ 0

}
.

If 1 ≤ k ≤ n, we denote by Hk the k-dimensional Hausdorff measure in Rn. If {Eh}h∈N
is a sequence of Lebesgue measurable sets in Rn with finite volume, and E ⊂ Rn is also
measurable with finite volume, we say that {Eh}h∈N converges to E as h→∞, and write
Eh → E, if Hn(Eh∆E) → 0 as h → ∞. In the following, we will denote by χE the
characteristic function of a measurable set E ⊂ Rn.
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2.1. Density points. Let E ⊂ Rn be a Lebesgue measurable set and let x ∈ Rn. The
upper and lower n-dimensional densities of E at x are defined as

θ∗(E, x) := lim sup
r→0+

Hn(E ∩B(x, r))

ωn rn
, θ∗(E, x) := lim inf

r→0+

Hn(E ∩B(x, r))

ωn rn
,

respectively. It turns out that x 7→ θ∗(E, x) and x 7→ θ∗(E, x) are Borel functions that
agree Hn-a.e. on Rn. Therefore, the n-dimensional density of E at x

θ(E, x) := lim
r→0+

Hn(E ∩B(x, r))

ωn rn
,

is defined for Hn-a.e. x ∈ Rn, and x 7→ θ(E, x) is a Borel function on Rn. Given t ∈ [0, 1],
we set

E(t) := {x ∈ Rn : θ(E, x) = t}.

By the Lebesgue differentiation theorem, the pair {E(0), E(1)} is a partition of Rn, up to

a Hn-negligible set. The set ∂eE := Rn \ (E(0) ∪ E(1)) is called the essential boundary of
E.

2.2. Rectifiable sets. Let 1 ≤ k ≤ n, k ∈ N. If A,B ⊂ Rn are Borel sets we say that
A ⊂Hk B ifHk(B\A) = 0, and A =Hk B ifHk(A∆B) = 0, where ∆ denotes the symmetric
difference of sets. Let M ⊂ Rn be a Borel set. We say that M is countably Hk-rectifiable
if there exist Lipschitz functions fh : Rk → Rn (h ∈ N) such that M ⊂Hk

⋃
h∈N fh(Rk).

Moreover, we say that M is locally Hk-rectifiable if Hk(M ∩K) < ∞ for every compact
set K ⊂ Rn, or, equivalently, if HkxM is a Radon measure on Rn.

A Lebesgue measurable set E ⊂ Rn is said of locally finite perimeter in Rn if there exists
a Rn-valued Radon measure µE , called the Gauss–Green measure of E, such thatˆ

E
∇ϕ(x) dx =

ˆ
Rn
ϕ(x) dµE(x) , ∀ϕ ∈ C1

c (Rn) ,

where C1
c (Rn) denotes the class of C1 functions in Rn with compact support. The relative

perimeter of E in A ⊂ Rn is then defined by setting P (E;A) := |µE |(A) for any Borel
set A ⊂ Rn. The perimeter of E is then defined as P (E) := P (E;Rn). If P (E) < ∞, we
say that E is a set of finite perimeter in Rn. The reduced boundary of E is the set ∂∗E of
those x ∈ Rn such that

νE(x) = lim
r→0+

µE(B(x, r))

|µE |(B(x, r))
exists and belongs to Sn−1 .

The Borel function νE : ∂∗E → Sn−1 is called the measure-theoretic outer unit normal
to E. If E is a set of locally finite perimeter, it is possible to show that ∂∗E is a locally
Hn−1-rectifiable set in Rn [22, Corollary 16.1], with µE = νEHn−1 ∂∗E, andˆ

E
∇ϕ(x) dx =

ˆ
∂∗E

ϕ(x) νE(x) dHn−1(x) , ∀ϕ ∈ C1
c (Rn) .

Thus, P (E;A) = Hn−1(A∩ ∂∗E) for every Borel set A ⊂ Rn. If E is a set of locally finite
perimeter, it turns out that

∂∗E ⊂⊂ E(1/2) ⊂ ∂eE .

Moreover, Federer’s theorem holds true (see [2, Theorem 3.61] and [22, Theorem 16.2]):

Hn−1(∂eE \ ∂∗E) = 0 ,

thus implying that the essential boundary ∂eE of E is locally Hn−1-rectifiable in Rn.
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2.3. General facts about measurable functions. Let f : Rn → R be a Lebesgue
measurable function. We define the approximate upper limit f∨(x) and the approximate
lower limit f∧(x) of f at x ∈ Rn as

f∨(x) = inf
{
t ∈ R : x ∈ {f > t}(0)

}
, (2.2)

f∧(x) = sup
{
t ∈ R : x ∈ {f < t}(0)

}
. (2.3)

We observe that f∨ and f∧ are Borel functions that are defined at every point of Rn, with
values in R ∪ {±∞}. Moreover, if f1 : Rn → R and f2 : Rn → R are measurable functions
satisfying f1 = f2 Hn-a.e. on Rn, then f∨1 = f∨2 and f∧1 = f∧2 everywhere on Rn. We
define the approximate discontinuity set Sf of f as

Sf := {f∧ < f∨}.
Note that, by the above considerations, it follows that Hn(Sf ) = 0. Although f∧ and f∨

may take infinite values on Sf , the difference f∨(x)− f∧(x) is well defined in R ∪ {±∞}
for every x ∈ Sf . Then, we can define the approximate jump [f ] of f as the Borel function
[f ] : Rn → [0,∞] given by

[f ](x) :=

{
f∨(x)− f∧(x) , if x ∈ Sf ,
0 , if x ∈ Rn \ Sf .

Let A ⊂ Rn be a Lebesgue measurable set. We say that t ∈ R∪{±∞} is the approximate
limit of f at x with respect to A, and write t = ap lim(f,A, x), if

θ
(
{|f − t| > ε} ∩A;x

)
= 0 , ∀ε > 0 , (t ∈ R) ,

θ
(
{f < M} ∩A;x

)
= 0 , ∀M > 0 , (t = +∞) ,

θ
(
{f > −M} ∩A;x

)
= 0 , ∀M > 0 , (t = −∞) .

We say that x ∈ Sf is a jump point of f if there exists ν ∈ Sn−1 such that

f∨(x) = ap lim(f,H+
x,ν , x) , f∧(x) = ap lim(f,H−x,ν , x) .

If this is the case, we say that νf (x) := ν is the approximate jump direction of f at x.
If we denote by Jf the set of approximate jump points of f , we have that Jf ⊂ Sf and
νf : Jf → Sn−1 is a Borel function.

2.4. Functions of bounded variation. Let f : Rn → R be a Lebesgue measurable
function, and let Ω ⊂ Rn be open. We define the total variation of f in Ω as

|Df |(Ω) = sup
{ˆ

Ω
f(x) div T (x) dx : T ∈ C1

c (Ω;Rn) , |T | ≤ 1
}
,

where C1
c (Ω;Rn) is the set of C1 functions from Ω to Rn with compact support. We also

denote by Cc(Ω;Rn) the class of all continuous functions from Ω to Rn. Analogously, for
any k ∈ N, the class of k times continuously differentiable functions from Ω to Rn is denoted
by Ckc (Ω;Rn). We say that f belongs to the space of functions of bounded variations,
f ∈ BV (Ω), if |Df |(Ω) < ∞ and f ∈ L1(Ω). Moreover, we say that f ∈ BVloc(Ω) if
f ∈ BV (Ω′) for every open set Ω′ compactly contained in Ω. Therefore, if f ∈ BVloc(Rn)
the distributional derivative Df of f is an Rn-valued Radon measure. In particular, E is a
set of locally finite perimeter if and only if χE ∈ BVloc(Rn). If f ∈ BVloc(Rn), one can write
the Radon–Nykodim decomposition of Df with respect to Hn as Df = Daf +Dsf , where
Dsf and Hn are mutually singular, and where Daf � Hn. We denote the density of Daf
with respect to Hn by ∇f , so that ∇ f ∈ L1(Ω;Rn) with Daf = ∇f dHn. Moreover, for
Hn-a.e. x ∈ Rn, ∇f(x) is the approximate differential of f at x. If f ∈ BVloc(Rn), then Sf
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is countably Hn−1-rectifiable. Moreover, we have Hn−1(Sf \Jf ) = 0, [f ] ∈ L1
loc(Hn−1xJf ),

and the Rn-valued Radon measure Djf defined as

Djf = [f ] νf dHn−1xJf ,

is called the jump part of Df . If we set Dcf = Dsf − Djf , we have that Df = Daf +
Djf +Dcf . The Rn-valued Radon measure Dcf is called the Cantorian part of Df , and
it is such that |Dcf |(M) = 0 for every M ⊂ Rn which is σ-finite with respect to Hn−1.

In the special case n = 1, if (a, b) ⊂ R is an open (possibly unbounded) interval, every
f ∈ BV ((a, b)) can be written as

f = fa + f j + f c, (2.4)

where f ∈W 1,1((a, b)), f j is a jump function (i.e. Df = Djf) and f c is a Cantor function
(i.e. Df = Dcf), see [2, Corollary 3.33]. Moreover, if f j = 0 (or, more in general, if f is a
good representative, see [2, Theorem 3.28]), the total variation of Df can be obtained as

|Df |(a, b) = sup

{
N∑
i=1

|f(xi+1)− f(xi)| : a < x1 < x2 < . . . < xN < b

}
, (2.5)

where the supremum runs over all N ∈ N, and over all the possible partitions of (a, b) with
a < x1 < x2 < . . . < xN < b. When n = 1, we will often write f ′ instead of ∇f .

3. Setting of the problem and preliminary results

In this section we give the notation for the chapter, and we introduce some results that
will be extensively used later. For every x, y ∈ Sn−1, the geodesic distance between x and
y is given by

distSn−1(x, y) := arccos(x · y).

We recall that the geodesic distance satisfies the triangle inequality:

distSn−1(x, y) ≤ distSn−1(x, z) + distSn−1(z, y) for every x, y, z ∈ Sn−1.

Let r > 0, p ∈ Sn−1 and β ∈ [0, π] be fixed. The open geodesic ball (or spherical cap) of
centre rp and radius β is the set

Bβ(rp) := {x ∈ ∂B(r) : distSn−1(x̂, p) < β}.

Note in the extreme cases β = 0 and β = π we have B0(rp) = ∅ and Bπ(rp) = ∂B(r) \
{−rp}, respectively. Accordingly, the geodesic sphere of centre rp and radius β is the
boundary of Bβ(rp), which is given by

Sβ(rp) := {x ∈ ∂B(r) : distSn−1(x̂, p) = β}.

The (n− 1)-dimensional Hausdorff measure of a geodesic ball and the (n− 2)-dimensional
Hausdorff measure of a geodesic sphere are given by

Hn−1(Bβ(rp)) = (n− 1)ωn−1r
n−1

ˆ β

0
(sin τ)n−2 dτ, (3.1)

Hn−2(Sβ(rp)) = (n− 1)ωn−1r
n−2(sinβ)n−2. (3.2)

Let E ⊂ Rn be a measurable set. For every r > 0, we define the spherical slice of radius
r of E as the set

Er := E ∩ ∂B(r) = {x ∈ ∂B(r) : x ∈ E}.
Let v : (0,∞)→ [0,∞) be a Lebesgue measurable function, and let E ⊂ Rn be a measur-
able set in Rn. We say that E is spherically v-distributed if

v(r) = Hn−1(Er), for H1-a.e. r ∈ (0,∞).
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If E is spherically v-distributed, we can define the function

ξv(r) :=
v(r)

rn−1
=
Hn−1(Er)

rn−1
, for every r ∈ (0,∞). (3.3)

Note that Hn−1(Bπ) = Hn−1(Sn−1) = nωn, so that

0 ≤ ξv(r) ≤ nωn, for every r ∈ (0,∞). (3.4)

From (3.1), it follows that the function F : [0, π]→ [0, nωn] given by

F(β) := Hn−1(Bβ(e1)) is strictly increasing and smoothly invertible in (0, nωn). (3.5)

Therefore, if v : (0,∞) → [0,∞) is measurable, thanks to (3.4), there exists a unique
function αv : (0,∞)→ [0, π] such that

ξv(r) = Hn−1(Bαv(r)(e1)) for every r ∈ (0,∞). (3.6)

Among all the spherically v-distributed sets of Rn, we denote by Fv the one whose spherical
slices are open geodesic balls centred at the positive e1 axis., i.e.

Fv := {x ∈ Rn0 : distSn−1(x̂, e1) < αv(|x|)}, (3.7)

where αv is defined by (3.3) and (3.6). The next result (see [2, Lemma 2.35]) will be used
in the proof of Theorem 1.1.

Lemma 3.1. Let B ⊂ Rn be a Borel set and let ϕh, ϕ : B → R, h ∈ N be summable Borel
functions such that |ϕh| ≤ |ϕ| for every h. Then

ˆ
B

sup
h
ϕhdx = sup

H

{∑
h∈H

ˆ
Ah

ϕhdx

}
,

where the supremum ranges over all finite sets H ⊂ N and all finite partitions Ah, h ∈ H
of B in Borel sets.

3.1. Normal and tangential components of functions and measures. For every
ϕ ∈ Cc(Rn0 ;Rn), we decompose ϕ as ϕ = ϕ⊥ + ϕ‖, where

ϕ⊥(x) := (ϕ(x) · x̂) x̂ and ϕ‖(x) := ϕ(x)− ϕ⊥(x)

are the radial and tangential components of ϕ, respectively. If ϕ ∈ C1
c (Rn0 ;Rn), div‖ϕ(x)

stands for the tangential divergence of ϕ at x along the sphere ∂B(|x|):

div‖ϕ(x) := divϕ(x)− (∇ϕ(x)x̂) · x̂. (3.8)

The following lemma gives some useful identities that will be needed later.

Lemma 3.2. Let ϕ ∈ C1
c (Rn0 ;Rn). Then, for every x ∈ Rn0 one has

divϕ⊥(x) = (∇ϕ(x)x̂) · x̂+ (ϕ(x) · x̂)
n− 1

|x|
, (3.9)

divϕ‖(x) = div‖ϕ‖(x). (3.10)

Remark 3.3. Let ϕ ∈ C1
c (Rn0 ;Rn). Recalling that ϕ = ϕ⊥ + ϕ‖, combining (3.9) and

(3.10) it follows that

divϕ(x) = (∇ϕ(x)x̂) · x̂+ (ϕ(x) · x̂)
n− 1

|x|
+ div‖ϕ‖(x) ∀x ∈ Rn0 .
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Proof. First of all, note that

∇ (ϕ(x) · x̂) = (∇ϕ(x))T x̂+
1

|x|
ϕ‖(x). (3.11)

Indeed,

∇ (ϕ(x) · x̂) = (∇ϕ(x))T x̂+
I − x̂⊗ x̂
|x|

ϕ(x) = (∇ϕ(x))T x̂+
1

|x|
ϕ‖(x),

where I represents the identity map in Rn, and x̂⊗ x̂ is the usual tensor product of x̂ with
itself (so that I − x̂ ⊗ x̂ is the orthogonal projection on the tangent plane to Sn−1 at x̂).
Thanks to (3.11), we have

divϕ⊥(x) = div ((ϕ(x) · x̂)x̂) = ∇ (ϕ(x) · x̂) · x̂+ (ϕ(x) · x̂) divx̂

=

[
(∇ϕ(x))T x̂+

1

|x|
ϕ‖(x)

]
· x̂+ (ϕ(x) · x̂)

n− 1

|x|

= (∇ϕ(x)x̂) · x̂+ (ϕ(x) · x̂)
n− 1

|x|
,

which proves (3.9). Note now that, by definition (3.8), it follows that

divϕ(x) = div‖ϕ(x) + (∇ϕ(x)x̂) · x̂. (3.12)

On the other hand, from (3.9)

divϕ(x) = divϕ‖(x) + divϕ⊥(x)

= divϕ‖(x) + (∇ϕ(x)x̂) · x̂+ (ϕ(x) · x̂)
n− 1

|x|
.

Comparing last identity with (3.12) we obtain that for every ϕ ∈ C1
c (Rn0 ;Rn)

div‖ϕ(x) = divϕ‖(x) + (ϕ(x) · x̂)
n− 1

|x|
.

Applying the last identity to the function ϕ‖ we obtain (3.10). �

If µ is an Rn-valued Radon measure on Rn0 , we will write µ = µ⊥ + µ‖, where µ⊥ and
µ‖ are the Rn-valued Radon measures on Rn0 such thatˆ

Rn0
ϕ · dµ⊥ =

ˆ
Rn0
ϕ⊥ · dµ, and

ˆ
Rn0
ϕ · dµ‖ =

ˆ
Rn0
ϕ‖ · dµ,

for every ϕ ∈ Cc(Rn0 ;Rn). Note that µ⊥ and µ‖ are well defined by Riesz Theorem (see,
for instance, [2, Theorem 1.54]). In the special case µ = Df , with f ∈ BVloc(Rn0 ), we will
shorten the notation writing D‖f and D⊥f in place of (Df)‖ and (Df)⊥, respectively.
In particular, if f = χE and E ⊂ Rn is a set of finite perimeter, by De Giorgi structure
theorem we have

D⊥χE = νE⊥dHn−1 ∂∗E and D‖χE = νE‖ dH
n−1 ∂∗E. (3.13)

Next lemma gives some useful identities concerning the radial and tangential compo-
nents of the gradient of a BVloc function.

Lemma 3.4. Let f ∈ BVloc(Rn0 ). Then,ˆ
Rn0
ϕ(x) · dD‖f = −

ˆ
Rn0
f(x) div‖ϕ‖(x) dx, (3.14)

ˆ
Rn0
ϕ(x) · dD⊥f = −

ˆ
Rn0
f(x) (∇ϕ(x) x̂) · x̂ dx−

ˆ
Rn0
f(x)

n− 1

|x|
(ϕ(x) · x̂) dx, (3.15)

for every ϕ ∈ C1
c (Rn0 ;Rn).
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Proof. Let ϕ ∈ C1
c (Rn0 ;Rn). By definition of D‖f and thanks to (3.10) we haveˆ

Rn0
ϕ(x) · dD‖f =

ˆ
Rn0
ϕ‖(x) · dDf

= −
ˆ
Rn0

divϕ‖(x)f(x) dx = −
ˆ
Rn0

div‖ϕ‖(x)f(x) dx,

and this shows (3.14). Similarly, by definition of D⊥fˆ
Rn0
ϕ(x) · dD⊥f =

ˆ
Rn0
ϕ⊥(x) · dDf = −

ˆ
Rn0

divϕ⊥(x)f(x) dx.

Thanks to (3.9), identity (3.15) follows. �

An immediate consequence of identity (3.14) is the following.

Corollary 3.5. Let f ∈ BVloc(Rn0 ) and let Ω ⊂⊂ Rn0 be open and bounded. Then,∣∣D‖f ∣∣ (Ω) = sup

{ˆ
Rn
f(x) div‖ϕ‖(x)dx : ϕ ∈ C1

c (Ω;Rn), ‖ϕ‖L∞(Ω;Rn) ≤ 1

}
.

We conclude this subsection with an important proposition, that is a special case of the
Coarea Formula (see [2, Theorem 2.93]).

Proposition 3.6. Let E be a set of finite perimeter in Rn and let g : Rn → [0,∞] be a
Borel function. Then,ˆ

∂∗E
g(x)|νE‖ (x)|dHn−1(x) =

ˆ ∞
0

dr

ˆ
(∂∗E)r

g(x) dHn−2(x).

Proof. The result follows by applying [2, Remark 2.94] with N = n − 1, M = n, k = 1,
and f(x) = |x|. �

In the next subsection we show how the notion of set of finite perimeter can be given
in a natural way also for subsets of the sphere Sn−1 (and, more in general, of ∂B(r), for
any r > 0).

3.2. Sets of finite perimeter on Sn−1. We now give a very brief introduction to sets of
finite perimeter on Sn−1, by using the notion of integer multiplicity rectifiable currents, see
[30, Chapter 6] for more details (see also [7]). Let k ∈ N with 1 ≤ k ≤ n− 1. We denote
by Λk(Rn) and Λk(Rn) the linear spaces of k-vectors and k-covectors in Rn, respectively,
while Dk(Rn) stands for the set of smooth k-forms with compact support in Rn.

A k-dimensional current in Rn is a continuous linear functional on Dk(Rn). The family
of k-dimensional currents in Rn is denoted by Dk(Rn). We say that T ∈ Dk(Rn) is an
integer multiplicity rectifiable k-current if it can be represented as

T (ω) =

ˆ
M
〈ω(x), η(x)〉 θ(x) dHk(x) for every ω ∈ Dk(Rn),

where M is an Hk-measurable countably k-rectifiable subset of Rn, θ is an Hk-measurable
positive integer-valued function, and η : M → Λk(Rn) is an Hk-measurable function such
that for Hk-a.e. x ∈ M one has η(x) = τ1(x) ∧ . . . ∧ τk(x), with τ1(x), . . . , τk(x) an
orthonormal basis for the approximate tangent space of M at x, and 〈·, ·〉 denotes the
usual pairing between Λk(Rn) and Λk(Rn). In the special case when

T (ω) =

ˆ
M
〈ω(x), η(x)〉 dHk(x) for every ω ∈ Dk(Rn),

we write T = [[M ]]. The boundary ∂T of T is then defined as the element of Dk−1(Rn)
such that

∂T (ω) = T (dω) for every ω ∈ Dk(Rn),
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while the mass M(T ) of T is given by

M(T ) := sup
{
T (ω) : ω ∈ Dk(Rn), |ω| ≤ 1

}
.

More in general, for any open set U ⊂ Rn, we set

MU (T ) := sup
{
T (ω) : ω ∈ Dk(Rn), |ω| ≤ 1, suppω ∈ U

}
.

Let A ⊂ Sn−1 be an Hn−1-measurable set. We will say that A is a set of finite perimeter
on Sn−1 if there exists Q ∈ Dn−2(Rn) with suppQ ⊂ Sn−1 and

Q = ∂[[A]],

with the property that MU (Q) < ∞ for every U ⊂⊂ Rn. By the Riesz representation
theorem it follows that there exists a Radon measure µQ and a µQ-measurable function
ν : Sn−1 → TxSn−1 such that |ν(x)| = 1 for µT -a.e. x andˆ

A
div‖ϕ(x) dHn−1(x) =

ˆ
Sn−1

ϕ(x) · ν(x) dµQ(x),

for every smooth vector field with ϕ = ϕ‖. If A ⊂ Sn−1 is a set of finite perimeter on the

sphere, the reduced boundary ∂∗A is the set of points x ∈ Sn−1 such that the limit

νA(x) := lim
ρ→0

1

µQ(B(x, ρ))

ˆ
B(x,ρ)

ν(y) dµQ(y)

exists, νA(x) ∈ TxSn−1, and νA(x) = 1. The De Giorgi structure theorem holds true also
for sets of finite perimeter on the sphere. In particular, ∂∗A is countably (n−2)-rectifiable,
µQ = Hn−2 ∂∗A, andˆ

A
div‖ϕ(x) dHn−1(x) =

ˆ
∂∗A

ϕ(x) · νA(x) dHn−2(x), (3.16)

for every smooth vector field with ϕ = ϕ‖. The isoperimetric inequality on the sphere

states that, if β ∈ (0, π) and A ⊂ Sn−1 is a set of finite perimeter on Sn−1 with Hn−1(A) =
Hn−1(Bβ(e1)), then (see [28])

Hn−2(∂∗Bβ(e1)) ≤ Hn−2(∂∗A). (3.17)

The next theorem is a version of a result by Vol’pert (see [32]).

Theorem 3.7. Let v : (0,∞)→ [0,∞) be a measurable function satisfying (1.2), and let
E ⊂ Rn be a spherically v-distributed set of finite perimeter and finite volume. Then, there
exists a Borel set GE ⊂ {αv > 0} with H1({αv > 0} \GE) = 0, such that

(i) for every r ∈ GE:

(ia) Er is a set of finite perimeter in ∂B(r);

(ib) Hn−2(∂∗(Er)∆(∂∗E)r) = 0;

(ii) for every r ∈ GE ∩ {0 < αv < π}:
(iia) |νE‖ (rω)| > 0,

(iib) νE‖ (rω) = νEr(rω)|νE‖ (rω)|,

for Hn−2-a.e. ω ∈ Sn−1 such that rω ∈ ∂∗(Er) ∩ (∂∗E)r.

Proof. The result follows applying [30, Theorem 28.5] with f(x) = |x|, and recalling the
definition of slicing of a current (see [30, Definition 28.4]). �

We now make some important remarks about Theorem 3.7.
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Remark 3.8. Thanks to property (ib), we have

∂∗(Er) =Hn−2 (∂∗E)r for every r ∈ GE .

Therefore, whenever r ∈ GE we will often write ∂∗Er instead of ∂∗(Er) or (∂∗E)r, without
any risk of ambiguity. Moreover, for every r ∈ GE we will also use the notation

pE(r) := Hn−2(∂∗Er).

Remark 3.9. In dimension n = 2, the theorem above implies that, if r ∈ GE∩{0 < θ < π},
then ∂∗(Er) = (∂∗E)r and

|νE‖ (rω)| > 0 for every ω ∈ S1 such that rω ∈ (∂∗E)r. (3.18)

Let now λE be the measure defined in (1.5):

λE(B) =

ˆ
∂∗E∩Φ(B×S1)∩{νE‖ =0}

x̂ · νE(x) dH1(x) for every Borel set B ⊂ (0,∞).

If B ⊂ GE, then by (3.18)

|λE(B)| ≤ H1(∂∗E ∩ Φ(GE × S1) ∩ {νE‖ = 0}) = 0,

so that λE(B) = 0. As a consequence, λE is singular with respect to the Lebesgue measure
in (0,∞). If n > 2 this conclusion is in general false (unless one chooses E = Fv, see
Remark 3.10 below), and it may happen that λE has a non trivial absolutely continuous
part.

Remark 3.10. If n ≥ 2, but we consider the special case E = Fv, Theorem 3.7 gives much
more information than the one we can obtain for a generic set of finite perimeter. Indeed,
let R ∈ O(n) be any orthogonal transformation that keeps fixed the e1 axis. By definition
of Fv, and thanks to [22, Exercise 15.10], we have that if x ∈ ∂∗Fv, then Rx ∈ ∂∗Fv and

νFv‖ (Rx) = RνFv‖ (x) and νFv⊥ (Rx) = RνFv⊥ (x).

Therefore, applying Theorem 3.7 to Fv we infer that

(j) for every r ∈ GFv :

(ja) (Fv)r is a spherical cap;

(jb) ∂∗(Fv)r = (∂∗Fv)r;

(jj) for every r ∈ GFv ∩ {0 < αv < π}:
(jja) |νFv‖ (rω)| > 0,

(jjb) νFv‖ (rω) = ν(Fv)r(rω)|νFv‖ (rω)|,

for every ω ∈ Sn−1 such that rω ∈ (∂∗Fv)r ∩ ∂∗(Fv)r.

Therefore,

H1(B0) = 0, (3.19)

where

B0 :=
{
r ∈ (0,+∞) : ∃ω ∈ Sn−1 such that rω ∈ ∂∗Fv and νFv‖ (rω) = 0

}
.

Moreover, repeating the argument used in Remark 3.9 one obtains that

Hn−1(∂∗Fv ∩ Φ(GFv × Sn−1) ∩ {νFv‖ = 0}) = 0.

Thus, the measure λFv defined in (1.5) is purely singular with respect to the Lebesgue
measure in (0,∞).
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4. Properties of v and ξv

In this section we discuss several properties of the functions v and ξv. These are the
natural counterpart in the spherical setting of analogous results proven in [12] and [3]. We
start by showing that, if E ⊂ Rn is a set of finite perimeter and volume, then v ∈ BV (0,∞).

Lemma 4.1. Let v be as in Theorem 1.1, and let E ⊂ Rn be a spherically v-distributed set
of finite perimeter and finite volume. Then, v ∈ BV (0,∞). Moreover, ξv ∈ BVloc(0,∞)
and ˆ ∞

0
ψ(r)rn−1dDξv(r) =

ˆ
Rn0
ψ(|x|) x̂ · dD⊥χE(x), (4.1)

for every bounded Borel function ψ : (0,∞)→ R. As a consequence,

|rn−1Dξv|(B) ≤ |D⊥χE |(Φ(B × Sn−1)), (4.2)

for every Borel set B ⊂ (0,∞). In particular, rn−1Dξv is a bounded Radon measure on
(0,∞).

Proof. We divide the proof into steps.

Step 1: We show that v ∈ BV (0,∞). First of all, note that v ∈ L1(0,∞), since

‖v‖L1(0,∞) =

ˆ ∞
0

v(r) dr =

ˆ ∞
0

dr

ˆ
∂B(r)

χE(x) dHn−1(x) = Hn(E) <∞.

Let now ψ ∈ C1
c (0,∞) with |ψ| ≤ 1. Applying formula (3.9) to the radial function ψ(|x|)x̂,

we obtain that for every x ∈ Rn0

div (ψ(|x|)x̂) = [∇ (ψ(|x|)x̂) x̂] · x̂+ [ψ(|x|)x̂ · x̂]
n− 1

|x|

=

[(
ψ′(|x|)x̂⊗ x̂+ ψ(|x|)I − x̂⊗ x̂

|x|

)
x̂

]
· x̂+ ψ(|x|)n− 1

|x|

= ψ′(|x|) + ψ(|x|)n− 1

|x|
. (4.3)

Thus,

ˆ
Rn

[
ψ′(|x|) + ψ(|x|)n− 1

|x|

]
χE(x) dx =

ˆ
Rn

div (ψ(|x|) x̂)χE(x) dx

= −
ˆ
Rn
ψ(|x|) x̂ · dDχE(x) = −

ˆ
Rn
ψ(|x|) x̂ · dD⊥χE(x),

so that ˆ
Rn
ψ′(|x|)χE(x) dx (4.4)

= −
ˆ
Rn
ψ(|x|)n− 1

|x|
χE(x) dx−

ˆ
Rn
ψ(|x|) x̂ · dD⊥χE(x).

By Coarea formula, the integral in the left hand side can be written as

ˆ
Rn
ψ′(|x|)χE(x) dx =

ˆ ∞
0

dr ψ′(r)

ˆ
∂B(r)

χE(x) dHn−1(x) =

ˆ ∞
0

ψ′(r)v(r) dr. (4.5)
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Combining (4.4) and (4.5) we find that
ˆ ∞

0
ψ(r) dDv(r)

=

ˆ
Rn
ψ(|x|)n− 1

|x|
χE(x) dx+

ˆ
Rn
ψ(|x|) x̂ · dD⊥χE(x). (4.6)

≤
ˆ
B(1)

ψ(|x|)n− 1

|x|
χE(x) dx+

ˆ
Rn\B(1)

ψ(|x|)n− 1

|x|
χE(x) dx+ P (E)

≤ n(n− 1)ωn

ˆ 1

0
ρn−2 dρ+ (n− 1)|E|+ P (E)

= nωn + (n− 1)|E|+ P (E) <∞.

Taking the supremum over ψ we obtain that

|Dv|(0,∞) <∞,

so that v ∈ BV (0,∞).

Step 2: We conclude the proof. Since the function r 7→ 1/(rn−1) is smooth and locally
bounded in (0,∞), we also have that ξv(r) ∈ BVloc(0,∞). Moreover, recalling that v(r) =
rn−1ξv(r), by the chain rule in BV (see [2, Example 3.97])

Dv = (n− 1)rn−2ξv(r) dr + rn−1Dξv = (n− 1)
v(r)

r
dr + rn−1Dξv. (4.7)

Let now ψ ∈ C1
c (0,∞). From the previous identity it follows that

ˆ ∞
0

ψ(r) dDv(r) =

ˆ ∞
0

ψ(r)
n− 1

r
v(r) dr +

ˆ ∞
0

ψ(r)rn−1dDξv(r)

=

ˆ ∞
0

ψ(r)
n− 1

r
Hn−1(∂B(r) ∩ E) dr +

ˆ ∞
0

ψ(r)rn−1dDξv(r)

=

ˆ
Rn
ψ(|x|)n− 1

|x|
χE(x) dx+

ˆ ∞
0

ψ(r)rn−1dDξv(r).

Combining the previous identity and (4.6),
ˆ ∞

0
ψ(r)rn−1dDξv(r) =

ˆ
Rn
ψ(|x|) x̂ · dD⊥χE , for every ψ ∈ C1

c (0∞).

By approximation, the identity above is true also when ψ is a bounded Borel function,
and this gives (4.1).

If B ⊂ (0,∞) is open, thanks to (4.1) we have that for every ψ ∈ Cc(B) with |ψ| ≤ 1
ˆ
B
ψ(r)rn−1dDξv(r) =

ˆ
Φ(B×Sn−1)

ψ(|x|) x̂ · dD⊥χE ≤ |D⊥χE |(Φ(B × Sn−1)).

Taking the supremum over all such ψ gives

|rn−1Dξv|(B) ≤ |D⊥χE |(Φ(B × Sn−1)) for every open set B ⊂ (0,∞).

By approximation, the inequality above holds true for every Borel set, and this shows
inequality (4.2). �

The next lemma gives an important property of the measure rn−1Dξv.
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Lemma 4.2. Let v be as in Theorem 1.1, and let E ⊂ Rn be a spherically v-distributed
set of finite perimeter and finite volume. Then

(rn−1Dξv)(B) =

ˆ
∂∗E∩Φ(B×Sn−1)∩{νE‖ =0}

x̂ · νE(x) dHn−1(x) (4.8)

+

ˆ
B
dr

ˆ
(∂∗E)r∩{νE‖ 6=0}

x̂ · νE(x)

|νE‖ (x)|
dHn−2(x).

for every Borel set B ⊂ (0,+∞).
Moreover, rn−1Dξv GFv = rn−1ξ′vdr and for H1-a.e. r ∈ GFv ∩ {0 < αv < π}

rn−1ξ′v(r) = Hn−2(Sαv(r)(re1))
x̂ · νFv(x)

|νFv‖ (x)|
, for every x ∈ Sαv(r)(re1).

Proof. Let B ⊂ (0,+∞) be a Borel set. Then, choosing ψ = χB in (4.1), and recalling
(3.13),

(rn−1Dξv)(B) =

ˆ +∞

0
χB(r)rn−1dDξv(r)

=

ˆ
Φ(B×Sn−1)

x̂ · dD⊥χE(x) =

ˆ
∂∗E∩Φ(B×Sn−1)

x̂ · νE(x) dHn−1(x)

=

ˆ
∂∗E∩Φ(B×Sn−1)∩{νE‖ =0}

x̂ · νE(x) dHn−1(x) +

ˆ
∂∗E∩Φ(B×Sn−1)∩{νE‖ 6=0}

x̂ · νE(x) dHn−1(x)

=

ˆ
∂∗E∩Φ(B×Sn−1)∩{νE‖ =0}

x̂ · νE(x) dHn−1(x) +

ˆ
B
dr

ˆ
(∂∗E)r∩{νE‖ 6=0}

x̂ · νE(x)

|νE‖ (x)|
dHn−2(x),

where in the last equality we have used the Coarea formula.
Let us now prove the second part of the statement. If one chooses E = Fv, thanks to

Remark 3.10 we have

rn−1Dξv GFv =

(ˆ
(∂∗Fv)r∩{νFv‖ 6=0}

x̂ · νFv(x)

|νFv‖ (x)|
dHn−2(x)

)
dr GFv

= Hn−2(Sαv(r)(re1))
x̂ · νFv(x)

|νFv‖ (x)|
.

In particular,

rn−1Dξv GFv = rn−1ξ′v(r) dr GFv .

Moreover, since ξ′v(r) = 0 H1-a.e. in {α = 0} ∪ {α = π}, we obtain that for H1-a.e.
r ∈ (0,∞)

rn−1ξ′(r) = Hn−2(Sαv(r)(re1))
x̂ · νFv(x)

|νFv‖ (x)|
, for every x ∈ Sαv(r)(re1).

�

We now prove an auxiliary inequality that will be useful later.

Proposition 4.3. Let v be as in Theorem 1.1, and suppose that there exists a spherically
v-distributed set E ⊂ Rn of finite perimeter and finite volume. Then, Fv is a set of finite
perimeter in Rn. Moreover, for every Borel set B ⊂ (0,+∞)

P (Fv; Φ(B × Sn−1)) ≤
∣∣rn−1Dξv

∣∣ (B) +
∣∣D‖χFv ∣∣ (Φ(B × Sn−1)). (4.9)
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Proof. The proof is based on the arguments of [12, Lemma 3.5] and [3, Lemma 3.3].
Thanks to Lemma 4.1, v ∈ BV (0,∞). Let {vj}j∈N ⊂ C1

c (0,∞) be a sequence of non-

negative functions such that vj → v H1-a.e. in (0,∞) and |Dvj |
∗
⇀ |Dv|. For every j ∈ N,

we denote by Fvj ⊂ Rn the set defined by (3.7), with vj in place of v. Let now Ω ⊂ (0,∞)

be open, and let ϕ ∈ C1
c (Φ(Ω × Sn−1);Rn) with ‖ϕ‖L∞(Φ(Ω×Sn−1);Rn) ≤ 1. Thanks to

Remark 3.3, we have

ˆ
Φ(Ω×Sn−1)

χFvj (x) divϕ(x)dx =

ˆ
Φ(Ω×Sn−1)

χFvj (x) div‖ϕ‖(x)dx (4.10)

+

ˆ
Φ(Ω×Sn−1)

χFvj (x) (∇ϕ(x) x̂) · x̂ dx+

ˆ
Φ(Ω×Sn−1)

χFvj (x)
n− 1

|x|
(ϕ(x) · x̂) dx.

In the following, it will be convenient to introduce the function Vj : (0,∞)→ R given by

Vj(r) :=

ˆ
Bαvj (r)

(re1)
ϕ(x) · x̂ dHn−1(x) = rn−1

ˆ
Bαvj (r)

(e1)
ϕ(rω) · ω dHn−1(ω),

where αvj : (0, r) → [0, π] is defined by (3.6), with vj in place of v. We divide the proof
into several steps.

Step 1: We show that Vj is Lipschitz continuous with compact support. Indeed,

suppVj ⊂ Λ(suppϕ) := {r ∈ (0,+∞) : (suppϕ) ∩ ∂B(r) 6= ∅} .

Moreover, for every r1, r2 ∈ (0,∞),

|Vj(r1)− Vj(r2)| ≤
ˆ
Bαvj (r1)

(e1)
|rn−1

1 ϕ(r1ω) · ω − rn−1
2 ϕ(r2ω) · ω| dHn−1(ω)

+ rn−1
2

∣∣∣∣∣∣
ˆ
Bαvj (r1)

(e1)
ϕ(r2ω) · ω dHn−1(ω)−

ˆ
Bαvj (r2)

(e1)
ϕ(r2ω) · ω dHn−1(ω)

∣∣∣∣∣∣
≤ c|r1 − r2|+ rn−1

2

ˆ
Bαvj (r̃1)

(e1)\Bαvj (r̃2)(e1)
|ϕ(r2ω) · ω| dHn−1(ω)

≤ c|r1 − r2|+ rn−1
2 |ξvj (r1)− ξvj (r2)| ≤ c|r1 − r2|,

where we used the fact that ξvj is compactly supported in (0,∞) (since vj is), and r̃1 and
r̃2 are such that αvj (r̃1) = max{αvj (r1), αvj (r2)} and αvj (r̃2) := min{αvj (r1), αvj (r2)}.

Step 2: We show that αvj is H1-a.e. differentiable and that

V ′j (r) = (n− 1)rn−2

ˆ
Bαvj (r)

(e1)
ϕ(rω) · ω dHn−1(ω)

+ rn−1

(
α′vj (r)

ˆ
Sαvj (r)

(e1)
ϕ(rω) · ω dHn−2(ω)

)
(4.11)

+ rn−1

ˆ
Bαvj (r)

(e1)
(∇ϕ(rω)ω) · ω dHn−1(ω),
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for H1-a.e. r > 0. Let us set Aj := {0 < αvj < π}. Since vj ∈ C1
c (0,∞), from (3.5) it

follows that αvj ∈ C1(Aj). Moreover, for every r ∈ Aj

V ′j (r) =
d

dr

(
rn−1

ˆ αvj (r)

0
dβ

ˆ
Sβ(e1)

ϕ(rω) · ω dHn−2(ω)

)
= (n− 1)rn−2

ˆ
Bαvj (r)

(e1)
ϕ(rω) · ω dHn−1(ω) + rn−1

(
α′vj (r)

ˆ
Sαvj (r)

(e1)
ϕ(rω) · ω dHn−2(ω)

)

+ rn−1

ˆ αvj (r)

0
dβ

ˆ
Sβ(e1)

(∇ϕ(rω)ω) · ω dHn−2(ω)

= (n− 1)rn−2

ˆ
Bαvj (r)

(e1)
ϕ(rω) · ω dHn−1(ω) + rn−1

(
α′vj (r)

ˆ
Sαvj (r)

(e1)
ϕ(rω) · ω dHn−2(ω)

)
+ rn−1

ˆ
Bαvj (r)

(e1)
(∇ϕ(rω)ω) · ω dHn−1(ω).

This shows (4.11) whenever r ∈ Aj . Note now that

Vj(r) = 0 for every r ∈ Int({αvj = 0}),

Vj(r) = rn−1

ˆ
Sn−1

ϕ(rω) · ω dHn−1(ω) for every r ∈ Int({αvj = π}),

where Int(·) stands for the interior of a set. Since α′vj (r) = 0 for every r ∈ Int({αvj =

0}) ∪ Int({αvj = π}), using the identities above one can see that (4.11) holds true for

H1-a.e. r > 0.

Step 3: We show thatˆ
Φ(Ω×Sn−1)

χFvj (x) (∇ϕ(x) x̂) · x̂ dx+

ˆ
Φ(Ω×Sn−1)

χFvj (x)
n− 1

|x|
(ϕ(x) · x̂) dx

= −
ˆ

Ω
dr rn−1

(
α′vj (r)

ˆ
Sαvj (r)

(e1)
ϕ(rω) · ω dHn−2(ω)

)
.

Integrating (4.11), thanks to the classical divergence theorem applied in Ω, and recalling
that Vj has compact support, we obtain

0 = (n− 1)

ˆ
Ω
dr rn−2

ˆ
Bαvj (r)

(e1)
ϕ(rω) · ω dHn−1(ω)

+

ˆ
Ω
dr rn−1

(
α′vj (r)

ˆ
Sαvj (r)

(e1)
ϕ(rω) · ω dHn−2(ω)

)
+

ˆ
Ω
dr rn−1

ˆ
Bαvj (r)

(e1)
(∇ϕ(rω)ω) · ω dHn−1(ω)

=

ˆ
Φ(Ω×Sn−1)

χFvj (x)
n− 1

|x|
(ϕ(x) · x̂) dx

+

ˆ
Ω
dr rn−1

(
α′vj (r)

ˆ
Sαvj (r)

(e1)
ϕ(rω) · ω dHn−2(ω)

)
+

ˆ
Φ(Ω×Sn−1)

χFvj (x) (∇ϕ(x) x̂) · x̂ dx,

which gives the claim.
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Step 4: we prove thatˆ
Φ(Ω×Sn−1)

χFvj (x) divϕ(x)dx ≤
∣∣rn−1Dξvj

∣∣ (Λ(suppϕ)) +

ˆ
Ω
Hn−2(Sαvj (r))dr, (4.12)

where Λ(suppϕ) ⊂ (0,∞) is the compact set defined in Step 1. Thanks to (4.10) and
Step 3 ˆ

Φ(Ω×Sn−1)
χFvj (x) divϕ(x) dx =

ˆ
Φ(Ω×Sn−1)

χFvj (x) div‖ϕ‖(x) dx

−
ˆ

Ω
dr rn−1

(
α′vj (r)

ˆ
Sαvj (r)

(e1)
ϕ(rω) · ω dHn−2(ω)

)
. (4.13)

We now estimate the right hand side of the expression above. Thanks to (3.6) and arguing
as in Step 2 we have that

ξ′vj (r) = α′vj (r)H
n−2(Sαvj(r)(e1)) for H1-a.e. r ∈ (0,∞).

Therefore,

−
ˆ

Ω
dr rn−1

(
α′vj (r)

ˆ
Sαvj (r)

(e1)
ϕ(rω) · ω dHn−2(ω)

)
≤
ˆ

Λ(suppϕ)
rn−1

∣∣∣α′vj (r)∣∣∣Hn−2(Sαvj (r)(e1))dr (4.14)

=

ˆ
Λ(suppϕ)

rn−1
∣∣∣ξ′vj (r)∣∣∣ dr =

∣∣rn−1Dξvj
∣∣ (Λ(suppϕ)).

Let us now focus on the second integral in the right hand side of (4.13). Applying the
divergence theorem (3.16) with A = Bαvj (r)(re1), and denoting by ν∗(x) the exterior unit

normal to Sαvj (r)(re1), we have
ˆ

Φ(Ω×Sn−1)
χFvj (x) div‖ϕ‖(x) dx =

ˆ
Ω
dr

ˆ
Bαvj (r)

(re1)
div‖ϕ‖(x) dHn−1(x)

=

ˆ
Ω
dr

ˆ
Sαvj (r)

(re1)
ϕ‖(x) · ν∗(x)dHn−2(x) ≤

ˆ
Ω
drHn−2(Sαvj (r)(re1)). (4.15)

Combining (4.13), (4.14), and (4.15), we obtain (4.12).

Step 5: We show that Fv is a set of finite perimeter. Note that χFvj → χFv Hn-a.e.

in Rn, and αvj → α H1-a.e. in (0,∞). Note also that, from our choice of the sequence
{vj}j∈N and thanks to (4.7), it follows that

|rn−1Dξvj |
∗
⇀ |rn−1Dξv| as j →∞.

Therefore, taking the limsup as j → ∞ in (4.12), and using the fact that Λ(suppϕ) is
compact,ˆ

Φ(Ω×Sn−1)
χFv(x) divϕ(x)dx = lim sup

j→∞

ˆ
Φ(Ω×Sn−1)

χFvj (x) divϕ(x)dx

≤ lim sup
j→∞

∣∣rn−1Dξvj
∣∣ (Λ(suppϕ)) + lim sup

j→∞

ˆ
Ω
Hn−2(Sαvj (r)(re1)) dr

≤
∣∣rn−1Dξv

∣∣ (Λ(suppϕ)) +

ˆ
Ω
Hn−2(Sαv(r)(re1)) dr ≤

∣∣rn−1Dξv
∣∣ (Ω) +

ˆ
Ω
Hn−2(∂∗Er) dr

≤
∣∣rn−1Dξv

∣∣ (Ω) + P (E; Φ(Ω× Sn−1)),
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where we also used the isoperimetric inequality in the sphere (see (3.17)) and the Coarea
formula. Taking the supremum of the above inequality over all functions ϕ ∈ C1

c (Φ(Ω ×
Sn−1);Rn) with ‖ϕ‖L∞(Φ(Ω×Sn−1);Rn) ≤ 1, we obtain

P (Fv; Φ(Ω× Sn−1)) ≤
∣∣rn−1Dξv

∣∣ (Ω) + P (E; Φ(Ω× Sn−1)).

Thanks to (4.2) we have

P (Fv; Φ(Ω× Sn−1)) ≤ 2P (E;P (Fv; Φ(Ω× Sn−1))) <∞,

since E is a set of finite perimeter by assummption. Since Ω was arbitrary, this shows that
Fv is a set of locally finite perimeter.

Step 6: We conclude. Let Ω ⊂ (0,∞) be open, and let ϕ ∈ C1
c (Φ(Ω × Sn−1);Rn) with

‖ϕ‖L∞(Φ(Ω×Sn−1);Rn) ≤ 1. Combining (4.10), Step 3, and (4.14), we have that for every
j ∈ Nˆ

Φ(Ω×Sn−1)
χFvj (x) divϕ(x)dx ≤

∣∣rn−1Dξvj
∣∣ (Λ(suppϕ))+

ˆ
Φ(Ω×Sn−1)

χFvj (x) div‖ϕ‖(x) dx.

Taking the limsup as j →∞ and thanks to Corollary 3.5,ˆ
Φ(Ω×Sn−1)

χFv(x) divϕ(x)dx ≤
∣∣rn−1Dξv

∣∣ (Λ(suppϕ)) +

ˆ
Φ(Ω×Sn−1)

χFv(x) div‖ϕ‖(x) dx

≤
∣∣rn−1Dξv

∣∣ (Λ(suppϕ)) + |D‖χFv |(Φ(Ω× Sn−1)),

where we also used the fact that Λ(suppϕ) is compact.
Taking the supremum over all ϕ ∈ C1

c (Φ(Ω× Sn−1);Rn) with ‖ϕ‖L∞(Φ(Ω×Sn−1);Rn) ≤ 1,

P (Fv; Φ(Ω× Sn−1)) ≤
∣∣rn−1Dξv

∣∣ (Ω) + |D‖χFv |(Φ(Ω× Sn−1)), (4.16)

which shows (4.9) when B is an open set. Let now B ⊂ (0,∞) be a Borel set. From (4.16)
it follows that

P (Fv; Φ(B × Sn−1)) ≤
∣∣rn−1Dξv

∣∣ (Ω) + P (E; Φ(Ω× Sn−1)),

for any open set Ω ⊂ (0,∞) with B ⊂ Ω. Taking the infimum of the above inequality over
all open sets Ω ⊂ (0,∞) with B ⊂ Ω, we obtain inequality (4.9) when B is a Borel set. �

5. Proof of Theorem 1.1

In this section we prove Theorem 1.1, and state some important auxiliary results. The
proof of Lemma 1.3 is postponed to Section 6, since it requires some results related to the
circular symmetrisation. We start by proving Theorem 1.1.

Proof of Theorem 1.1. We will adapt the arguments of the proof of [3, Theorem 1.1]. Let
GFv be the set associated with Fv given by Theorem 3.7. We start by proving (1.4). We will
first prove the inequality when B ⊂ (0,∞)\GFv , and then in the case B ⊂ GFv . The case of
a general Borel set B ⊂ (0,∞) then follows by decomposing B as B = (B\GFv)∪(B∩GFv).
Step 1: We prove inequality (1.4) when B ⊂ (0,∞) \GFv . First observe that, thanks to
Proposition 3.6 and (3.13),∣∣D‖χFv ∣∣ (Φ(B × Sn−1)) =

ˆ
∂∗Fv∩Φ(B×Sn−1)

|νFv‖ (x)|dHn−1(x) =

ˆ
B
Hn−2((∂∗Fv)r)dr

=

ˆ
B∩{0<αv}

Hn−2((∂∗Fv)r)dr =

ˆ
B∩({0<αv}\GFv )

Hn−2((∂∗Fv)r)dr = 0, (5.1)
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where we used the fact that B ⊂ (0,∞) \ GFv and H1({0 < αv} \ GFv) = 0. Therefore,
thanks to Proposition 4.3

P (Fv; Φ(B × Sn−1)) ≤ rn−1 |Dξv| (B) +
∣∣D‖χFv ∣∣ (Φ(B × Sn−1))

= rn−1 |Dξv| (B) ≤ P (E; Φ(B × Sn−1)), (5.2)

where in the last inequality we used (4.2).

Step 2: We prove inequality (1.4) when B ⊂ GFv . We divide this part of the proof into
further substeps.

Step 2a: we prove that

P (E; Φ(B × Sn−1)) ≥ P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) +

ˆ
B

√
p2
E(r) + g2(r)dr, (5.3)

where g : (0,∞)→ R and pE : (0,∞)→ [0,∞) are defined as

g(r) :=

ˆ
∂∗E∩∂B(r)

x̂ · νE(x)

|νE‖ (x)|
dHn−2(x) and pE(r) := Hn−2(∂∗E ∩ ∂B(r)),

for H1-a.e. r ∈ (0,∞), respectively. We have

P (E; Φ(B × Sn−1))

= P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) + P (E; Φ(B × Sn−1) ∩ {νE‖ 6= 0})

= P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) +

ˆ
∂∗E∩Φ(B×Sn−1)∩{νE‖ 6=0}

dHn−1(x)

= P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) +

ˆ
B
dr

ˆ
∂∗E∩∂B(r)

1

|νE‖ (x)|
dHn−2(x)

= P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) +

ˆ
B
dr

ˆ
∂∗E∩∂B(r)

√√√√1 +

(
x̂ · νE(x)

|νE‖ (x)|

)2

dHn−2(x),

where in the last equality we used the fact that

1 = |νE⊥ |2 + |νE‖ |
2 = (x̂ · νE)2 + |νE‖ |

2.

Defining the function f : R→ [0,∞) as

f(t) :=
√

1 + t2,

we obtain

P (E; Φ(B × Sn−1))

= P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) +

ˆ
B
dr

ˆ
∂∗E∩∂B(r)

f

(
x̂ · νE(x)

|νE‖ (x)|

)
dHn−2(x).

Observing that f is strictly convex, (5.3) follows applying Jensen’s inequality.

Step 2b: We show thatˆ
B

√
p2
E(r) + (rn−1ξ′v(r))

2 dr

≤ P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) +

ˆ
B

√
p2
E(r) + g2(r) dr. (5.4)
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Let H ⊂ N be a finite set, and let {Ah}h∈H be a finite partition of Borel sets of B. Note
that, for each h ∈ H, we have Ah ⊂ B ⊂ GFv . Therefore, thanks to Lemma 4.2, for every
h ∈ H we have rn−1Dξv Ah = rn−1ξ′vdr Ah and

ˆ
Ah

whr
n−1ξ′v(r) dr =

ˆ
Ah

whr
n−1dDξv(r)

=

ˆ
∂∗E∩Φ(Ah×Sn−1)∩{νE‖ =0}

wh x̂ · νE(x) dHn−1(x)

+

ˆ
Ah

dr

ˆ
(∂∗E)r∩{νE‖ 6=0}

wh
x̂ · νE(x)

|νE‖ (x)|
dHn−2(x)

=

ˆ
∂∗E∩Φ(Ah×Sn−1)∩{νE‖ =0}

wh x̂ · νE(x) dHn−1(x) +

ˆ
Ah

wh g(r) dr. (5.5)

We will now use the fact that, by duality, we can write

√
1 + t2 = sup

h∈N

{
wht+

√
1− w2

h

}
for every t ∈ R, (5.6)

where {wh}h∈N is a countable dense set in (−1, 1). Then, thanks to (5.5)

∑
h∈H

ˆ
Ah

(
whr

n−1ξ′v(r) + pE(r)
√

1− w2
h

)
dr

=
∑
h∈H

ˆ
∂∗E∩Φ(Ah×Sn−1)∩{νE‖ =0}

wh x̂ · νE(x)dHn−1(x)

+
∑
h∈H

ˆ
Ah

(
wh g(r) + pE(r)

√
1− w2

h

)
dr

≤
∑
h∈H

ˆ
∂∗E∩Φ(Ah×Sn−1)∩{νE‖ =0}

|x̂ · νE(x)|dHn−1(x)

+
∑
h∈H

ˆ
Ah

pE(r)

(
wh

g(r)

pE(r)
+
√

1− w2
h

)
dr

≤
∑
h∈H

(
P (E; Φ(Ah × Sn−1) ∩ {νE‖ = 0})

)
+

ˆ
Ah

pE(r)

√
1 +

g2(r)

p2
E(r)

dr

= P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) +

ˆ
B

√
p2
E(r) + g2(r)dr,

where we applied identity (5.6) with t = g(r)/pE(r), and we also used the fact that
pE(r) = 0 for H1-a.e. r /∈ {0 < αv < π}, thanks to Volper’t theorem. Applying Lemma 3.1
to the functions

ϕh(r) = pE(r)

(
wh

rn−1ξ′v(r)

pE(r)
+
√

1− w2
h

)
,

we obtain (5.4).
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Step 2c: We conclude the proof of Step 2. In the special case E = Fv, thanks to Vol’pert
Theorem and Lemma 4.2 we have

P (Fv; Φ(B × Sn−1)) = Hn−1(∂∗Fv ∩ Φ(B × Sn−1))

=

ˆ
B∩{0<αv<π}

ˆ
∂∗(Fv)r

1

|νFv‖ (x)|
dHn−2(x)dr

=

ˆ
B∩{0<αv<π}

ˆ
∂∗(Fv)r

√√√√1 +

(
νFv(x)

|νFv‖ (x)|

)2

dHn−2(x)dr

=

ˆ
B∩{0<αv<π}

√
p2
Fv

(r) + (rn−1ξ′v(r))
2dr. (5.7)

Using the isoperimetric inequality (3.17) together with (5.4) and (5.3) we then have,

P (Fv; Φ(B × Sn−1)) ≤
ˆ
B∩{0<αv<π}

√
p2
E(r) + (rn−1ξ′v(r))

2dr

≤ P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) +

ˆ
B

√
p2
E(r) + g2(r)dr

≤ P (E; Φ(B × Sn−1)),

from which we conclude.

Step 3: We conclude the proof of the theorem. Suppose P (E) = P (Fv). Then, in
particular, all the inequalities in Step 2 hold true as equalities. At the end of Step 2c we
used the fact that, by the isoperimetric inequality (3.17), we have

pFv(r) ≤ pE(r) for H1-a.e. r ∈ {0 < αv < π}.
If the above becomes an equality, this means that for H1-a.e. r ∈ {0 < αv < π} the slice
Er is a spherical cap. Finally, the fact that for H1-a.e. r ∈ {0 < αv < π} we have

Hn−2(∂∗(Er)∆(∂∗E)r) = 0

follows from Vol’pert Theorem 3.7, and this shows (a).
Let us now prove (b). If P (E) = P (Fv), the Jensen’s inequality at the end of Step 2b,

for the strictly convex function

f(t) :=
√

1 + t2,

becomes an equality. This implies that for H1-a.e. r ∈ {0 < αv < π} the function

x 7−→ x̂ · νE(x)

|νE‖ (x)|

is Hn−2-a.e. constant in ∂∗Er. Since, for Hn−2-a.e. x ∈ ∂∗Er, we have

1 = |νE‖ (x)|2 + (x̂ · νE(x))2,

this implies that

x 7−→ (x̂ · νE(x))2

|νE‖ (x)|2
= 1− 1

|νE‖ (x)|2

is Hn−2-a.e. constant in ∂∗Er. Therefore, the two functions

x 7−→ νE(x) · x̂ and x 7−→ |νE‖ |(x)

are constant Hn−2-a.e. in (∂∗E)r.
�

The previous result allows us to prove a useful proposition (see also [3, Proposition 3.4]).
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Proposition 5.1. Let v : (0,∞) → [0,∞) be a measurable function satisfying (1.2) such
that Fv is a set of finite perimeter and finite volume, let E be a spherically v-distributed
set of finite perimeter, and let f : (0,∞)→ [0,∞] be a Borel function. Then,ˆ

∂∗E
f(|x|) dHn−1(x)

≥
ˆ ∞

0
f(r)

√
p2
E(r) + (rn−1ξ′v(r))

2 dr +

ˆ ∞
0

f(r)rn−1d|Dsξv|(r). (5.8)

Moreover, in the special case E = Fv, equality holds true.

Proof. To prove the proposition it is enough to consider the case in which f = χB, with
B ⊂ (0,∞) Borel set.

First, suppose B ⊂ (0,∞) \GFv . Thanks to Lemma 4.2, in this case we have ξ′v = 0 in
B and |rn−1Dξv|(B) = |rn−1Dsξv|(B). Then, from (4.2) it follows thatˆ

∂∗E
χB(|x|) dHn−1(x) = P (E; Φ(B × Sn−1)) ≥ |D⊥χE |(Φ(B × Sn−1))

≥ |rn−1Dξv|(B) = |rn−1Dsξv|(B) =

ˆ ∞
0

χB(r)rn−1d|Dsξv|(r)

=

ˆ ∞
0

χB(r)
√
p2
E(r) + (rn−1ξ′v(r))

2 dr +

ˆ ∞
0

χB(r)rn−1d|Dsξv|(r),

where we also used the fact that pE = 0 H1-a.e. in B, since

Hn(E ∩ Φ(B × Sn−1)) ≤
ˆ
{v=0}

dr

ˆ
Er

dHn−1(x) =

ˆ
{v=0}

v(r) dr = 0.

Let us now assume B ⊂ GFv . In this case, by Lemma 4.2 we have |rn−1Dsξv|(B) = 0.
Then, thanks to (5.3) and (5.4) we obtainˆ

∂∗E
χB(|x|) dHn−1(x) = P (E; Φ(B × Sn−1))

≥ P (E; Φ(B × Sn−1) ∩ {νE‖ = 0}) +

ˆ
B

√
p2
E(r) + g2(r)dr

≥
ˆ
B

√
p2
E(r) + (rn−1ξ′v(r))

2 dr

=

ˆ ∞
0

χB(r)
√
p2
E(r) + (rn−1ξ′v(r))

2 dr +

ˆ ∞
0

χB(r)rn−1d|Dsξv|(r),

so that (5.8) follows.
Consider now the case E = Fv. If B ⊂ GFv , recalling again that by Lemma 4.2 we have

|rn−1Dsξv|(B) = 0, thanks to (5.7) we obtainˆ
∂∗Fv

χB(|x|) dHn−1(x) = P (Fv; Φ(B × Sn−1)) =

ˆ
B

√
p2
Fv

(r) + (rn−1ξ′v(r))
2 dr

=

ˆ ∞
0

χB(r)
√
p2
Fv

(r) + (rn−1ξ′v(r))
2 dr +

ˆ ∞
0

χB(r)rn−1d|Dsξv|(r).

If, instead, B ⊂ (0,∞) \ GFv , then ξ′v = 0 in B and |rn−1Dξv|(B) = |rn−1Dsξv|(B).
Therefore, thanks to (5.2),ˆ

∂∗Fv

χB(|x|) dHn−1(x) = P (Fv; Φ(B × Sn−1)) ≤ rn−1 |Dξv| (B) = |rn−1Dsξv|(B)

=

ˆ ∞
0

χB(r)
√
p2
Fv

(r) + (rn−1ξ′v(r))
2 dr +

ˆ ∞
0

χB(r)rn−1d|Dsξv|(r).

�
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An important consequence of the above proposition is a formula for the perimeter of Fv.

Corollary 5.2. Let v : (0,∞) → [0,∞) be a measurable function satisfying (1.2) such
that Fv is a set of finite perimeter and finite volume. Then

P (Fv; Φ(B × Sn−1)) =

ˆ
B

√
p2
Fv

(r) + (rn−1ξ′v(r))
2 dr +

ˆ
B
rn−1d|Dsξv|(r). (5.9)

We conclude this section with an important result, that will be used later.

Proposition 5.3. Let v : (0,∞) → [0,∞) be a measurable function satisfying (1.2) such
that Fv is a set of finite perimeter and finite volume, and let I ⊂ (0,+∞) be an open set.
Then the following three statements are equivalent:

(i) Hn−1
({
x ∈ ∂∗Fv ∩ Φ(I × Sn−1) : νFv‖ (x) = 0

})
= 0;

(ii) ξv ∈W 1,1
loc (I);

(iii) P (Fv; Φ(B × Sn−1)) = 0 for every Borel set B ⊂ I, such that H1(B) = 0.

Remark 5.4. Note that the equivalence (iii) ⇐⇒ (i) holds true also if I is a Borel set. To
show this, we only need to prove that (i) =⇒ (iii), since the opposite implication is given
by repeating Step 3 of the proof of Proposition 5.3. Suppose (i) is satisfied. Then from
(4.8) we have rn−1Dξv I = rn−1ξ′v I. Therefore, thanks to (5.9)

P (Fv; Φ(B × Sn−1)) =

ˆ
B

√
p2
Fv

(r) + (rn−1ξ′v(r))
2 dr for every Borel set B ⊂ I,

which implies (iii).

Proof. We divide the proof into three steps.

Step 1: (i) =⇒ (ii). Recall that, by Lemma 4.1, ξv ∈ BVloc(I). If (i) is satisfied, from
(4.8) we have rn−1Dξv I = rn−1ξ′v I, which implies (ii).

Step 2: (ii) =⇒ (iii). This implication follows from formula (5.9).

Step 3: (iii) =⇒ (i) (note that we will not use the fact that I is open). Assume (iii) holds
true. Then,

Hn−1
({
x ∈ ∂∗Fv ∩ Φ(I × Sn−1) : ν∂

∗Fv
‖ (x) = 0

})
≤ P (∂∗Fv; Φ((B0 ∩ I)× Sn−1)) = 0,

where we used the fact that H1(B0) = 0, thanks to (3.19). �

6. Circular symmetrisation and proof of Lemma 1.3

In this section we show Theorem 1.4, Lemma 1.5, and finally Lemma 1.3. We will
only sketch the proofs, since in most cases the arguments follow the lines of the proofs in
Section 3, Section 4, and Section 5.

We start with some notation which, together with that one already given in the Intro-
duction, will be extensively used in this section. Let (r, x′) ∈ (0,∞) × Rn−2, β ∈ [0, π],
and let p ∈ S1. The circular arc of centre (rp, x′) and radius β is the set

Bβ(rp, x′) := {x ∈ ∂B((0, x′), r) ∩Πx′ : distS1(x̂12, rp) < β},

If ` : (0,∞) × Rn−2 → [0,∞) is a measurable function satisfying (1.10), we define α` :
(0,∞)× Rn−2 → [0, π] and ξ` : (0,∞)× Rn−2 → [0, 2π] as

α` :=
1

2r
`(r, x′) and ξ`(r, x′) =

1

r
`(r, x′) = 2α`(r, x′).
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Note that in this case the relation between α` and ξ` is linear. If µ is an Rn-valued Radon
measure on Rn \ {x12 = 0}, we will write µ = µ12⊥ + µ12‖, where µ12⊥ and µ12‖ are the
Rn-valued Radon measures on Rn \ {x12 = 0} such thatˆ

Rn\{x12=0}
ϕ · dµ12⊥ =

ˆ
Rn\{x12=0}

ϕ12⊥ · dµ,

and ˆ
Rn\{x12=0}

ϕ · dµ12‖ =

ˆ
Rn\{x12=0}

ϕ12‖ · dµ,

for every ϕ ∈ Cc(Rn \{x12 = 0};Rn). The next two results play the role of Proposition 3.6
and Vol’pert Theorem 3.7, in the context of circular symmetrisation.

Proposition 6.1. Let E be a set of finite perimeter in Rn and let g : Rn → [0,∞] be a
Borel function. Then,ˆ

∂∗E
g(x)|νE12‖(x)|dHn−1(x) =

ˆ
(0,∞)×Rn−2

dr dx′
ˆ

(∂∗E)(r,x′)

g(x) dH0(x).

Proof. In this case, the result follows applying [2, Remark 2.94] with N = n− 1, M = n,
k = n− 1, and f(x) = (|x12|, x′). �

Theorem 6.2. Let ` : (0,∞)×Rn−2 → [0,∞) be a measurable function satisfying (1.10),
and let E ⊂ Rn be an circularly `-distributed set of finite perimeter and finite volume.
Then, there exists a Borel set G`E ⊂ {α` > 0} with Hn−1({α` > 0} \G`E) = 0, such that

(i) for every (r, x′) ∈ G`E:

(ia) E(r,x′) is a set of finite perimeter in ∂Br(0, x
′) ∩Πx′;

(ib) ∂∗(E(r,x′)) = (∂∗E)(r,x′);

(ii) for every (r, x′) ∈ G`E ∩ {0 < α` < π}:
(iia) |νE12‖(rω, x

′)| > 0;

(iib) νE12‖(rω, x
′) = νE(r,x′)(rω, x′)|νE12‖(rω, x

′)|,

for every ω ∈ S1 such that (rω, x′) ∈ ∂∗(E(r,x′)) = (∂∗E)(r,x′).

Proof. The statement follows applying the results of [18, Section 2.5], where the slicing of
codimension higher than 1 for currents is defined. �

Remark 6.3. Note that, if (r, x′) ∈ G`E, conditions (iia) and (iib) are satisfied for every
ω ∈ S1 such that (rω, x′) ∈ ∂∗(E(r,x′)) = (∂∗E)(r,x′). This is due to the fact that the cir-
cular symmetrisation has codimension 1. Such property fails, in general, for the spherical
symmetrisation (see Remark 3.9).

Remark 6.4. An argument similar to that one used in Remark 3.9 shows that

Hn−1(∂∗E ∩ Φ12(G`E × S1) ∩ {νE12‖ = 0}) = 0.

As a consequence, the measure λ`E defined as:

λ`E(B) :=

ˆ
∂∗E∩Φ12(B×S1)∩{νE

12‖=0}
x̂12 · νE(x) dH1(x),

for every Borel set B ⊂ (0,∞)×Rn−2, is singular with respect to the Lebesgue measure in
(0,∞)× Rn−2.

The following result plays the role of Lemma 4.1 in the context of circular symmetrisa-
tion.
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Lemma 6.5. Let ` : (0,∞) × Rn−2 → [0,∞) be a measurable function satisfying (1.10),
and let E ⊂ Rn be an circularly `-distributed set of finite perimeter and finite volume.
Then, ` ∈ BVloc((0,∞)× Rn−2). Moreover, ξ` ∈ BVloc((0,∞)× Rn−2) andˆ

(0,∞)×Rn−2

ψ(r, x′) r dDrξ
`(r, x′) =

ˆ
Rn\{x12=0}

ψ(|x12|, x′) x̂12 · dD12⊥χE(x),

for every bounded Borel function ψ : (0,∞) × Rn−2 → R, where Drξ
` denotes the r-

component of the Rn−1-valued Radon measure Dξ`. As a consequence,

|rDrξ
`|(B) ≤ |D12⊥χE |(Φ12(B × S1)),

for every Borel set B ⊂ (0,∞)× Rn−2. In particular, rDrξ
` is a bounded Radon measure

on (0,∞)× Rn−2. Finally,

Dx′`(B) =

ˆ
∂∗E∩Φ12(B×S1)

νEx′(x) dHn−1(x),

for every Borel set B ⊂ (0,∞)× Rn−2.

Remark 6.6. Unlike what happened when we were considering the spherical symmetrisa-
tion, now the function ` might fail to be in BV ((0,∞) × Rn−2). Indeed, in Step 1 of the
proof of Lemma 4.1 we used the fact that for r bounded we are in a bounded set. This is
not true in the context of circular symmetrisation.

The next lemma, which is related to Lemma 4.2, will show the advantage of considering
a symmetrisation of codimension 1.

Lemma 6.7. Let ` : (0,∞) × Rn−2 → [0,∞) be a measurable function satisfying (1.10),
and let E ⊂ Rn be an circularly `-distributed set of finite perimeter and finite volume.
Then

(r dDrξ
`)(B) =

ˆ
∂∗E∩Φ12(B×S1)∩{νE

12‖=0}
x̂12 · νE(x) dHn−1(x)

+

ˆ
B
dr dx′

ˆ
(∂∗E)(r,x′)∩{νE12‖ 6=0}

x̂12 · νE(x)

|νE12‖(x)|
dH0(x).

for every Borel set B ⊂ (0,∞)× Rn−2. Moreover,

r(ξ`)′(r, x′) =

ˆ
(∂∗E)(r,x′)∩{νE12‖ 6=0}

x̂12 · νE(x)

|νE12‖(x)|
dH0(x),

for Hn−1-a.e. (r, x′) ∈ (0,∞) × Rn−2, where (ξ`)′ denotes the approximate differential of
ξ` with respect to r. Similarly,

Dx′`(B) =

ˆ
∂∗E∩Φ12(B×S1)∩{νE

12‖=0}
νEx′(x) dHn−1(x)

+

ˆ
B
dr dx′

ˆ
(∂∗E)(r,x′)∩{νE12‖ 6=0}

νEx′(x)

|νE12‖(x)|
dH0(x).

for every Borel set B ⊂ (0,∞)× Rn−2, and

∇x′`(r, x′) =

ˆ
(∂∗E)(r,x′)∩{νE12‖ 6=0}

νEx′(x)

|νE12‖(x)|
dH0(x),

for Hn−1-a.e. (r, x′) ∈ (0,∞) × Rn−2, where ∇x′` denotes the approximate gradient of `
with respect to x′.

The next result should be compared to Proposition 4.3.
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Proposition 6.8. Let ` : (0,∞) × Rn−2 → [0,∞) be a measurable function satisfying
(1.10), and suppose that there exists an circularly `-distributed set E ⊂ Rn be of finite
perimeter and finite volume. Then, F ` is a set of finite perimeter in Rn. Moreover, for
every Borel set B ⊂ (0,+∞)× Rn−2

P (F `; Φ12(B × S1)) ≤ |Dx′`|(B) + |rDrξ
`|(B) +

∣∣D12‖χFv
∣∣ (Φ12(B × S1)).

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Using the results shown above, Theorem 1.4 can be proved by fol-
lowing the lines of the proof of Theorem 1.1. �

We will now state the results that are need to prove Lemma 1.5. The next proposition
should be compared to Proposition 5.1.

Proposition 6.9. Let ` : (0,∞)×Rn−2 → [0,∞) be a measurable function satisfying (1.10)
such that F ` is a set of finite perimeter and finite volume, let E ⊂ Rn be an circularly
`-distributed set of finite perimeter, and let f : (0,∞)×Rn−2 → [0,∞] be a Borel function.
Then, ˆ

∂∗E
f(|x12|, x′) dHn−1(x)

≥
ˆ

(0,∞)×Rn−2

f(r, x′)
√
p2
E(r, x′) + (r(ξ`)′(r, x′))2 + |∇x′`(r, x′)|2 dr dx′

+

ˆ
(0,∞)×Rn−2

f(r, x′) r d|Ds
rξ
`|(r, x′) +

ˆ
(0,∞)×Rn−2

f(r, x′)d|Ds
x′`|(r, x′).

Moreover, in the special case E = F `, equality holds true.

A straightforward consequence of the previous result is the following formula for the
perimeter of F `.

Corollary 6.10. Let ` : (0,∞)×Rn−2 → [0,∞) be a measurable function satisfying (1.10)
such that F ` is a set of finite perimeter and finite volume. Then

P (F `; Φ12(B × S1))

=

ˆ
B

√
p2
E(r, x′) + (r(ξ`)′(r, x′))2 + |∇x′`(r, x′)|2 dr dx′ + |rDs

rξ
`|(B) + |Ds

x′`|(B).

Next lemma relies on the fact that the circular symmetrisation has codimension 1. The
proof can be obtained by repeating the arguments used in the proof of [12, Lemma 4.1].

Lemma 6.11. Let ` : (0,∞)×Rn−2 → [0,∞) be a measurable function satisfying (1.10),
let E ⊂ Rn be an circularly `-distributed set of finite perimeter and finite volume, and let
A ⊂ (0,+∞)× Rn−2 be a Borel set. Then,

Hn−1
(
{x ∈ ∂∗E : νE12‖(x) = 0} ∩ Φ12(A× S1)

)
= 0.

if and only if

P (E; Φ12(B × S1)) = 0 for every Borel set B ⊂ A with Hn−1(B) = 0.

The next proposition can be proved with the same arguments used to show Proposi-
tion 5.3.

Proposition 6.12. Let ` : (0,∞) × Rn−2 → [0,∞) be a measurable function satisfying
(1.10) such that F ` is a set of finite perimeter and finite volume, and let Ω ⊂ (0,+∞) ×
Rn−2 be an open set. Then the following three statements are equivalent:
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(i) Hn−1
({
x ∈ ∂∗F ` ∩ Φ12(Ω× S1) : νF

`

12‖(x) = 0
})

= 0;

(ii) ξ` ∈W 1,1
loc (Ω) and ` ∈W 1,1

loc (Ω);

(iii) P (F `; Φ12(B × S1)) = 0 for every Borel set B ⊂ Ω, such that Hn−1(B) = 0.

Proof of Lemma 1.5. Once all the results above are established, Lemma 1.5 can be shown
by adapting the arguments used in the proof of [12, Proposition 4.2]. �

We can now prove Lemma 1.3. As already mentioned in the Introduction, the proof
relies on Theorem 1.4 and Lemma 1.5.

Proof of Lemma 1.3. We divide the proof into steps.

Step 1: We show that (1.8) =⇒ (1.9). Suppose (1.8) is satisfied. Then, from (4.8) we
have rn−1Dξv I = rn−1ξ′v I. Thanks to (5.9), this implies that

P (Fv; Φ(B × Sn−1)) =

ˆ
B

√
p2
Fv

(r) + (rn−1ξ′v(r))
2 dr. for every Borel set B ⊂ I.

In particular, condition (iii) of Proposition 5.3 is satisfied. Then, (1.9) follows from Re-
mark 5.4.

Step 2: We show that if P (E; Φ(I×Sn−1)) = P (Fv; Φ(I×Sn−1)), then (1.9) implies (1.8).
To this aim, we first prove an auxiliary result.

Step 2a: We show that if F ⊂ Rn is a set of finite perimeter such that (F )r is a spherical
cap for H1-a.e. r > 0, and

Hn−1
({
x ∈ ∂∗F ∩ Φ(I × Sn−1) : νF‖ (x) = 0

})
= 0, (6.1)

then Hn−1(Bj) = 0 for every j = 2, . . . , n, where

Bj :=
{
x ∈ ∂∗F ∩ Φ(I × Sn−1) : νF1j‖(x) = 0

}
.

Here, the vector νF1j‖ is defined in the following way. Let j ∈ {2, . . . , n}, and let νF1j be the

orthogonal projection of νF on the bi-dimensional plane generated by e1 and ej . In this
plane, we consider the following orthonormal basis {x̂1j , x̃1j}:

x̂1j =
1√

x2
1 + x2

j

(x1,

j−2 times︷ ︸︸ ︷
0, . . . , 0 , xj ,

n−j times︷ ︸︸ ︷
0, . . . , 0 ),

and

x̃1j =
1√

x2
1 + x2

j

(−xj ,
j−2 times︷ ︸︸ ︷
0, . . . , 0 , x1,

n−j times︷ ︸︸ ︷
0, . . . , 0 ),

where x̂1j is directed along the radial direction, and x̃1j is parallel to the tangential direc-
tion. To show the claim, first of all note that, by Vol’pert Theorem 3.7, for H1-a.e. r > 0
we have

(Bj)r =
{
x ∈ ∂∗F r ∩ Φ(I × Sn−1) : νF r‖ (x) · x̃1j = 0

}
.

up to an Hn−2-negligible set. Since (Bj)r is a spherical cap, we have Hn−2((Bj)r) = 0.
Then, thanks to (6.1),

Hn−1(Bj) = Hn−1
(
Bj ∩

{
x ∈ ∂∗F ∩ Φ(I × Sn−1) : νF‖ (x) 6= 0

})
=

ˆ
I
dr

ˆ
∂∗F r∩(Bj)r

χ{νF‖ 6=0}(x)
1

|νF‖ (x)|
dHn−2(x) = 0.
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Step 2b: We conclude. Let E1 := E, and let E2 be set obtained by applying to E
the circular symmetrisation with respect to (e1, e2). Then, for j = 3, . . . , n, we define
iteratively the set Ej as the circular symmetral of Ej−1 with respect to (e1, ej). Note
that, since H1-a.e. spherical section of E is a spherical cap, we have En = Fv. Therefore,
thanks to the perimeter inequality (1.11) under circular symmetrisation (see Theorem 1.4),
we have

P (Fv; Φ(I × Sn−1)) = P (En−1; Φ(I × Sn−1)) = . . . = P (E; Φ(I × Sn−1)).

Moreover, for j = 3, . . . , n, we define Ij := Φ(I × Sn−1) ∩ {xj = 0} ∩ {x1 > 0}. It is not
difficult to check that

Φ(I × Sn−1) = Φ1j(Ij × S1) for j = 3, . . . , n.

Then, applying Lemma 1.5 to Fv and En−1, we obtain that

Hn−1
({
x ∈ ∂∗En−1 ∩ Φ1n−1(In−1 × S1) : νE

n−1

1(n−1)‖(x) = 0
})

= 0,

which, in turns, implies

Hn−1
({
x ∈ ∂∗En−1 ∩ Φ1n−1(In−1 × S1) : νE

n−1

‖ (x) = 0
})

= 0.

Applying iteratively this argument to En−2, . . . , E, we conclude. �

7. Proof of Theorem 1.2: (ii) =⇒ (i)

Before giving the proof of the implication (ii) =⇒ (i) of Theorem 1.2, it will be convenient
to introduce some useful notation. Let v and I = {0 < α∧v ≤ α∨v < π} be as in the

statement of Theorem 1.2. By assumption, I is an interval and αv ∈ W 1,1
loc (I) where, to

ease the notation, we set I := I̊. Let now E be a spherically v-distributed set of finite
perimeter. We define the average direction of E as the map dE : I → Sn−1 given by

dE(r) :=


1

ωn−1(sinαv(r))n−1rn−1

ˆ
Er

x̂ dHn−1(x), if r ∈ I ∩GE ,

e1 otherwise in I,
(7.1)

where GE ⊂ (0,∞) is the set given by Theorem 3.7. To ease our calculations, it will also
be convenient to introduce the barycentre function bE : I → Rn of E as

bE(r) :=


1

rn−1

ˆ
Er

x̂ dHn−1(x), if r ∈ I ∩GE ,

e1 otherwise in I.

The importance of the functions dE and bE is given by the following lemma.

Lemma 7.1. Let v be as in Theorem 1.2, let I ⊂ (0,∞) be an open interval, and let E
be a spherically v-distributed set of finite perimeter such that Er is Hn−1-equivalent to a
spherical cap for H1-a.e. r ∈ I. Then,

E ∩ Φ(I × Sn−1) =Hn {x ∈ Φ(I × Sn−1) : distSn−1(x̂, dE(|x|)) < αv(|x|)}.

Moreover,

bE(r) = ωn−1(sinαv(r))
n−1dE(r) for H1-a.e. r ∈ I. (7.2)

Proof. Let us immediately observe that (7.2) follows by the definitions of dE and bE . By
assumption, for H1-a.e. r ∈ I, there exists ω(r) ∈ Sn−1 such that Er = Bαv(r)(rω(r)). We
are left to show that

ω(r) = dE(r) for H1-a.e. r ∈ I. (7.3)
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Note that for H1-a.e. r ∈ I we have Er = Bαv(r)(rω(r)) and ∂∗Er = Sαv(r)(rω(r)).

Therefore, for H1-a.e. r ∈ I
ˆ
Er

x̂ dHn−1(x) =

ˆ αv(r)

0
dβ

ˆ
Sβ(rω(r))

x dHn−2(x). (7.4)

Observe now that, thanks to the symmetry of the geodesic sphere and recalling (3.2), for
every β ∈ (0, αv(r)) we have

ˆ
Sβ(rω(r))

x dHn−2(x) =

(ˆ
Sβ(rω(r))

(x · ω(r)) dHn−2(x)

)
ω(r) (7.5)

= r cosβHn−2(Sβ(rω(r)))ω(r) = (n− 1)ωn−1r
n−1 cosβ (sinβ)n−2 ω(r).

Combining (7.4) and (7.5) we obtain that for H1-a.e. r ∈ I
ˆ
Er

x̂ dHn−1(x) = (n− 1)ωn−1r
n−1

(ˆ αv(r)

0
cosβ (sinβ)n−2 dβ

)
ω(r)

= ωn−1r
n−1(sinαv(r))

n−1ω(r).

Recalling the definition of dE , identity (7.3) follows.
�

Remark 7.2. Let us point out that here we are using the term barycentre in a slightly
imprecise way. Indeed, for a given r ∈ I ∩GE, the geometric barycentre of Er is given by

1

Hn−1(Er)

ˆ
Er

x dHn−1(x) =
1

ξv(r)rn−1

ˆ
Er

x dHn−1(x)

=
r

ξv(r)

1

rn−1

ˆ
Er

x̂ dHn−1(x) =
r

ξv(r)
bE(r).

Nevertheless, we will still keep this terminology, since bE turns out to be very useful for
our analysis.

We are now ready to prove the implication (ii) =⇒ (i) of Theorem 1.2.

Proof of Theorem 1.2: (ii) =⇒ (i). Suppose (ii) is satisfied, and let E ∈ N (v). We are
going to show that there exists an orthogonal transformation R ∈ SO(n) such that
Hn(E∆(RFv)) = 0. We now divide the proof into steps.

Step 1: First of all, we observe that

Hn−1
({
x ∈ ∂∗E ∩ Φ(I × Sn−1) : νE‖ (x) = 0

})
= 0.

Indeed, since αv ∈W 1,1
loc (I), thanks to Proposition 5.3 we have

Hn−1
({
x ∈ ∂∗Fv ∩ Φ(I × Sn−1) : νFv‖ (x) = 0

})
= 0.

Since E ∈ N (v), applying Lemma 1.3 the claim follows.

Step 2: We show that bE ∈W 1,1
loc (I;Rn) and

b′E(r) =
1

rn

ˆ
(∂∗E)r∩{νE‖ 6=0}

x
x̂ · νE(x)

|νE‖ (x)|
dHn−2(x). (7.6)
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Indeed, let ψ ∈ C1
c (I) be arbitrary, and let i ∈ {1, . . . , n}. By definition of bE

ˆ
I
(bE)i(r)ψ

′(r)dr =

ˆ
I

ˆ
E∩∂B(r)

1

rn−1

xi
|x|
dHn−1(x)ψ′(r)dr

=

ˆ
Φ(I×Sn−1)

xi
|x|n

ψ′(|x|)χE(x) dx.

Note now that

div

(
xi
|x|n

ψ(|x|)x̂
)

=
xi
|x|n

ψ′(|x|).

Indeed, recalling (4.3),

div

(
xi
|x|n

ψ(|x|)x̂
)

= ψ(|x|)∇
(
xi
|x|n

)
· x̂+

xi
|x|n

div(ψ(|x|)x̂)

= ψ(|x|)
(
ei
|x|n
− nxi
|x|n+1

x̂

)
· x̂+

xi
|x|n

(
ψ′(|x|) + ψ(|x|)n− 1

|x|

)
=

xi
|x|n

ψ′(|x|).

Therefore,

ˆ
I
(bE)i(r)ψ

′(r)dr =

ˆ
Φ(I×Sn−1)

div

(
xi
|x|n

ψ(|x|)x̂
)
χE(x) dx

= −
ˆ

Φ(I×Sn−1)

xi
|x|n

ψ(|x|)x̂ · dDχE(x)

=

ˆ
∂∗E∩Φ(I×Sn−1)

xi
|x|n

ψ(|x|) x̂ · νE(x)dHn−1(x).

Thanks to Step 1 we then obtain

ˆ
I
(bE)i(r)ψ

′(r)dr =

ˆ
∂∗E∩{νE‖ 6=0}∩Φ(I×Sn−1)

xi
|x|n

ψ(|x|) x̂ · νE(x)dHn−1(x)

=

ˆ
I
ψ(r)

1

rn

[ˆ
(∂∗E)r∩{νE‖ 6=0}

xi
x̂ · νE(x)

|νE‖ (x)|
dHn−2(x)

]
dr,

so that (7.6) follows.

Step 3: We show that

b′E(r) = (n− 1)α′v(r)
cosαv(r)

sinαv(r)
bE(r) for H1-a.e. r ∈ I. (7.7)

Since E ∈ N (v), from Theorem 1.1 we know that for H1-a.e. r ∈ I the spherical slice Er
is a spherical cap. Then, thanks to Lemma 7.1

Er = Bαv(r)(rdE(r)) and (∂∗E)r = Sαv(r)(rdE(r)) for H1-a.e. r ∈ I.

Still thanks to Theorem 1.1, we know that for H1-a.e. r ∈ I the functions x 7→ νE(x) · x̂
and x 7→ |νE‖ |(x) are constant Hn−2-a.e. in (∂∗E)r, say

νE(x) · x̂ = a(r) and |νE‖ |(x) = c(r), for H1-a.e. r ∈ I,
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for some measurable functions a : I → (−1, 1) and c : I → (0, 1]. Therefore, recalling the
definition of dE together with (7.4)-(7.5) we obtain

b′E(r) =
1

rn

ˆ
(∂∗E)r∩{νE‖ 6=0}

x
x̂ · νE(x)

|νE‖ (x)|
dHn−2(x)

=
1

rn
a(r)

c(r)

ˆ
Sαv(r)(rdE(r))

x dHn−2(x)

=
1

rn
a(r)

c(r)
r cos(αv(r))Hn−2(Sαv(r)(rdE(r)))dE(r)

=
1

rn−1

a(r)

c(r)
Hn−2(Sαv(r)(rdE(r))) cos(αv(r))dE(r). (7.8)

Note now that from Step 1 and (4.8) it follows that for H1-a.e. r ∈ I

rn−1ξ′v(r) =

ˆ
(∂∗E)r∩{νE‖ 6=0}

x̂ · νE(x)

|νE‖ (x)|
dHn−2(x)

=
a(r)

c(r)
Hn−2(Sαv(r)(rdE(r))).

Plugging last identity into (7.8) and using (7.2), we obtain

b′E(r) = ξ′v(r) cos(αv(r))dE(r) = ξ′v(r) cos(αv(r))
bE(r)

ωn−1(sinαv(r))n−1

= (n− 1)α′v(r)
cosαv(r)

sinαv(r)
bE(r),

where we used the fact that, thanks to (3.1) and (3.3),

ξ′v(r) = (n− 1)ωn−1(sinαv(r))
n−2α′v(r) for H1-a.e. r ∈ I.

Step 4: We conclude. First of all, note that from (7.2) and Step 2 it follows that dE ∈
W 1,1

loc (I;Sn−1). Then, thanks to Step 3, for H1-a.e. r ∈ I

ωn−1d
′
E(r) =

d

dr

[
bE(r)

(sinαv(r))n−1

]
=

b′E(r)

(sinαv(r))n−1
+ bE(r)

d

dr

[
1

(sinαv(r))n−1

]
= (n− 1)α′v(r)

cosαv(r)

(sinαv(r))n
bE(r) + bE(r)

[
− n− 1

(sinαv(r))n
(cosαv(r))α

′
v(r)

]
= 0,

for H1-a.e. r ∈ I. This shows that dE is H1-a.e. constant in I. Therefore, E∩Φ(I×Sn−1)
can be obtained by applying an orthogonal transformation to Fv ∩ Φ(I × Sn−1). �

8. Proof of Theorem 1.2: (i) =⇒ (ii)

We start by showing that the fact that {0 < α∧ ≤ α∨ < π} is an interval is a necessary
condition for rigidity.

Proposition 8.1. Let v : (0,∞) → [0,∞) be a measurable function satisfying (1.2),
such that Fv is a set of finite perimeter and finite volume, and let αv be defined by (1.3).
Suppose that the set {0 < α∧ ≤ α∨ < π} is not an interval. That is, suppose that there
exists r ∈ {α∧ = 0} ∪ {α∨ = π} such that

(0, r) ∩ {0 < α∧ ≤ α∨ < π} 6= ∅ and (r,∞) ∩ {0 < α∧ ≤ α∨ < π} 6= ∅.
Then, rigidity fails. More precisely, setting E1 := Fv ∩B(r) and E2 := Fv \B(r), we have

E1 ∪ (RE2) ∈ N (v) for every R ∈ O(n).

Before giving the proof of Proposition 8.1 we need the following lemma.
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Lemma 8.2. Let v : (0,∞)→ [0,∞) be a measurable function satisfying (1.2), such that
Fv is a set of finite perimeter and finite volume. Let αv be defined by (1.3), and let r > 0.
Then,

(∂∗Fv)r =Hn−1 Bα∨v (r)(re1) \Bα∧v (r)(re1).

Proof. We divide the proof in two steps.

Step 1: We show that

(∂∗Fv)r ⊂ Bα∨v (r)(re1) \Bα∧v (r)(re1).

To this aim, it will be enough to show that

α∧v (r) ≤ distSn−1(x̂, e1) ≤ α∨v (r) for every x ∈ (∂∗Fv)r. (8.1)

Let us first prove that

distSn−1(x̂, e1) ≤ α∨v (r) for every x ∈ (∂∗Fv)r (8.2)

Note that (8.2) is trivial if α∨v (r) = π. For this reason, we will assume α∨v (r) < π. Note
now that (8.2) follows if we prove that

x ∈ ∂B(r) and distSn−1(x̂, e1) > α∨v (r) =⇒ x ∈ F (0)
v . (8.3)

Let now x ∈ ∂B(r), and suppose that there exists δ > 0 such that

distSn−1(x̂, e1) = α∨v (r) + δ.

Let now ρ > 0 be so small that

distSn−1(ŷ, x̂) <
δ

2
for every y ∈ B(x, ρ).

By triangle inequality for the geodesic distance we have, in particular, that

α∨v (r) + δ = distSn−1(x̂, e1) ≤ distSn−1(x̂, ŷ) + distSn−1(ŷ, e1) <
δ

2
+ distSn−1(ŷ, e1),

so that

distSn−1(ŷ, e1) > α∨v (r) +
δ

2
for every y ∈ B(x, ρ). (8.4)

Thanks to the inequality above, by definition of Fv we have

Fv ∩B(x, ρ) ⊂
{
y ∈ Rn : α∨v (r) +

δ

2
< distSn−1(ŷ, e1) < αv(|y|)

}
∩B(x, ρ).

Therefore, for every ρ ∈ (0, ρ)

Hn(Fv ∩B(x, ρ)) =

ˆ r+ρ

r−ρ
Hn−1(Fv ∩B(x, ρ) ∩ ∂B(r)) dr

≤
ˆ r+ρ

r−ρ
χ{αv>α∨v (r)+δ/2}(r)Hn−1(Fv ∩B(x, ρ) ∩ ∂B(r)) dr

=

ˆ
(r−ρ,r+ρ)∩{αv>α∨v (r)+δ/2}

Hn−1(Fv ∩B(x, ρ) ∩ ∂B(r)) dr.

Note now that, for ρ small enough, there exists C = C(r) > 0 such that

B(x, ρ) ∩ ∂B(r) ⊂ BCρ(rx̂) for every r ∈ (r − ρ, r + ρ).
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Therefore,

Hn(Fv ∩B(x, ρ)) ≤
ˆ

(r−ρ,r+ρ)∩{αv>α∨v (r)+δ/2}
Hn−1(BCρ(rx̂)) dr

= (n− 1)ωn−1

ˆ
(r−ρ,r+ρ)∩{αv>α∨v (r)+δ/2}

rn−1

ˆ Cρ

0
(sin τ)n−2 dτ dr

≤ (n− 1)ωn−1

ˆ
(r−ρ,r+ρ)∩{αv>α∨v (r)+δ/2}

rn−1

ˆ Cρ

0
τn−2 dτ dr

= ωn−1C
n−1(r + ρ)n−1ρn−1H1((r − ρ, r + ρ) ∩ {αv > α∨v (r) + δ/2}).

Thus, recalling the definition of α∨v (r),

lim
ρ→0+

Hn(Fv ∩B(x, ρ))

ωnρn

≤ ωn−1C
n−1

ωn
(r + ρ)n−1 lim

ρ→0+

H1((r − ρ, r + ρ) ∩ {αv > α∨v (r) + δ/2})
ρ

= 0,

which gives (8.3) and, in turn, (8.2). By similar arguments, one can prove that

x ∈ ∂B(r) and distSn−1(x̂, e1) < α∧v (r) =⇒ x ∈ F (1)
v ,

which implies that

α∧v (r) ≤ distSn−1(x̂, e1) for every x ∈ (∂∗Fv)r.

The above inequality, together with (8.2), shows (8.1).

Step 2: We conclude. Thanks to Corollary 5.2,

Hn−1((∂∗Fv)r) = Hn−1(∂∗Fv ∩ ∂B(r)) = P (Fv; ∂B(r)) = rn−1(ξ∨v (r)− ξ∧v (r))

= v∨(r)− v∧(r) = Hn−1(Bα∨v (r)(re1))−Hn−1(Bα∧v (r)(re1))

= Hn−1
(
Bα∨v (r)(re1) \Bα∧v (r)(re1)

)
Since, by Step 1,

(∂∗Fv)r ⊂ Bα∨v (r)(re1) \Bα∧v (r)(re1),

we have

(∂∗Fv)r =Hn−1 Bα∨v (r)(re1) \Bα∧v (r)(re1) =Hn−1 Bα∨v (r)(re1) \Bα∧v (r)(re1).

�

We can now give the proof of Proposition 8.1.

Proof of Proposition 8.1. Note that, since B(r) is open and E∩B(r) = Fv∩B(r), we have

E(t) ∩B(r) = (E ∩B(r))(t) = (Fv ∩B(r))(t) = F (t)
v ∩B(r) for every t ∈ [0, 1].

From this, it follows that
∂∗E ∩B(r) = ∂∗Fv ∩B(r). (8.5)

Similarly, we obtain

∂∗E \B(r) = ∂∗(RFv) \B(r) = (R∂∗Fv) \ (RB(r)) = R(∂∗Fv \B(r)). (8.6)

Thus, thanks to (8.5) and (8.6)

P (E) = Hn−1(∂∗E ∩B(r)) +Hn−1(∂∗E ∩ ∂B(r)) +Hn−1(∂∗E \B(r))

= Hn−1(∂∗Fv ∩B(r)) +Hn−1(∂∗E ∩ ∂B(r)) +Hn−1
(
R(∂∗Fv \B(r))

)
= Hn−1(∂∗Fv ∩B(r)) +Hn−1(∂∗E ∩ ∂B(r)) +Hn−1(∂∗Fv \B(r)).
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Therefore, in order to conclude the proof we only need to show that

Hn−1(∂∗E ∩B(r)) = Hn−1(∂∗Fv ∩B(r)). (8.7)

Without any loss of generality, we will assume that

α∨v (r) = ap lim(f, (0, r), r) , 0 = α∧v (r) = ap lim(f, (r,∞), r) . (8.8)

Let now E1, E2, and R be as in the statement. We divide the proof of (8.7) into steps.

Step 1: We show that

(∂∗E)r ⊂ Bα∨v (r)(re1) ∪ {R(re1)}.
To this aim, it will be enough to prove that

distSn−1(x̂, e1) ≤ α∨v (r) for every x ∈ (∂∗E)r. (8.9)

If α∨v (r) = π inequality (8.9) is obvious, so we will assume that α∨v (r) < π.

Step 1a: We show that

x ∈ ∂B(r) and distSn−1(x̂, e1) > α∨v (r) =⇒ x ∈ E(0)
1 .

Indeed, let x ∈ ∂B(r), and suppose that there exists δ > 0 such that

distSn−1(x̂, e1) = α∨v (r) + δ.

By repeating the argument used to show (8.4), we can choose ρ > 0 so small that

distSn−1(ŷ, e1) > α∨v (r) +
δ

2
for every y ∈ B(x, ρ).

By definition of E1, we then have

E1 ∩B(x, ρ) = Fv ∩B(r) ∩B(x, ρ)

⊂
{
y ∈ Rn : |y| < r and α∨v (r) +

δ

2
< distSn−1(ŷ, e1) < αv(|y|)

}
∩B(x, ρ).

Therefore, for every ρ ∈ (0, ρ), by repeating the calculations done in Step 1 of Lemma 8.2,
we obtain

lim
ρ→0+

1

ωnρn
Hn(E1 ∩B(x, ρ))

= lim
ρ→0+

1

ωnρn

ˆ r

r−ρ
Hn−1(Fv ∩B(x, ρ) ∩ ∂B(r)) dr

≤ ωn−1C
n−1

ωn
(r + ρ)n−1 lim

ρ→0+

H1((r − ρ, r) ∩ {αv > α∨v (r) + δ/2})
ρ

= 0,

where we used (8.8).

Step 1b: We show that

∂B(r) \ {R(re1)} ⊂ (RE2)(0).

Indeed, let x ∈ ∂B(r), and suppose that η := distSn−1(x̂, Re1) > 0. We are going to prove

that x ∈ (RE2)(0). By repeating the argument used to show (8.4), we can choose ρ > 0 so
small that

distSn−1(ŷ, Re1) >
η

2
for every y ∈ B(x, ρ).

Then,

(RE2) ∩B(x, ρ) =
(
R(Fv \B(r))

)
∩B(x, ρ)

⊂Hn
{
y ∈ Rn : |y| > r and

η

2
< distSn−1(ŷ, Re1) < αv(|y|)

}
∩B(x, ρ).
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For ρ small enough, there exists C = C(r) > 0 such that

B(x, ρ) ∩ ∂B(r) ⊂ BCρ(rx̂) for every r ∈ (r − ρ, r + ρ).

Therefore, for every ρ ∈ (0, ρ),

Hn((RE2) ∩B(x, ρ)) ≤
ˆ

(r,r+ρ)∩{αv>η/2}
Hn−1(BCρ(rx̂)) dr

= (n− 1)ωn−1

ˆ
(r,r+ρ)∩{αv>η/2}

rn−1

ˆ Cρ

0
(sin τ)n−2 dτ dr

= ωn−1C
n−1(r + ρ)n−1ρn−1H1((r, r + ρ) ∩ {αv > η/2}).

From this, thanks to (8.8), we obtain

lim
ρ→0+

Hn((RE2) ∩B(x, ρ))

ωnρn

≤ ωn−1C
n−1

ωn
(r + ρ)n−1 lim

ρ→0+

H1((r, r + ρ) ∩ {αv > η/2})
ρ

= 0.

Step 1c: We conclude the proof of Step 1. By definition of E, from Step 1a and Step 1b
it follows that

{x ∈ ∂B(r) : distSn−1(x̂, e1) > α∨v (r)} \ {Re1} ⊂ E(0)
1 ∩ (RE2)(0) = E(0).

Therefore,

(∂∗E)r ⊂ ∂B(r) \
(
{x ∈ ∂B(r) : distSn−1(x̂, e1) > α∨v (r)} \ {Re1}

)
= Bα∨v (r)(re1) ∪ {Re1}.

Step 2: We show (8.7), concluding the proof. Thanks to Step 1 and Lemma 8.2 we have

P (E; ∂B(r)) = Hn−1(∂∗E ∩ ∂B(r)) = Hn−1((∂∗E)r) ≤ Hn−1
(
Bα∨v (r)(re1)

)
= Hn−1(∂∗Fv ∩ ∂B(r)) = P (Fv; ∂B(r)) ≤ P (E; ∂B(r)),

where we also used (1.4) with B = {r}. �

We now show that, if the jump part Djαv of Dαv is non zero, rigidity fails.

Proposition 8.3. Let v : (0,∞) → [0,∞) be a measurable function satisfying (1.2) such
that Fv is a set of finite perimeter and finite volume, and let αv be defined by (1.3).
Suppose that αv has a jump at some point r > 0. Then, rigidity fails. More precisely,
setting E1 := Fv ∩B(r) and E2 := Fv \B(r), we have

E1 ∪ (RE2) ∈ N (v),

for every R ∈ O(n) such that

0 < distSn−1(Re1, e1) < λ(α∨v (r)− α∧v (r)) for some λ ∈ (0, 1). (8.10)

Proof. Let R ∈ O(n), λ ∈ (0, 1), and E ∈ Rn be as in the statement, and set ω := Re1.
Arguing as in the proof of Proposition 8.1 we have:

P (E) = Hn−1(∂∗Fv ∩B(r)) +Hn−1(∂∗E ∩ ∂B(r)) +Hn−1(∂∗Fv \B(r)).

Therefore, in order to conclude the proof we only need to show that

Hn−1(∂∗E ∩ ∂B(r)) = Hn−1(∂∗Fv ∩ ∂B(r)). (8.11)

Without any loss of generality, we will assume that

α∨v (r) = ap lim(f, (0, r), r) , α∧v (r) = ap lim(f, (r,∞), r) . (8.12)

We now proceed by steps.
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Step 1: We show that

(∂∗E)r ⊂ Bα∨v (r)(re1) \Bα∧v (r)(rω). (8.13)

To show (8.13), it is enough to prove that for every x ∈ (∂∗E)r we have

distSn−1(x̂, e1) ≤ α∨v (r) for every x ∈ (∂∗E)r, (8.14)

and

distSn−1(x̂, ω) ≥ α∧v (r) for every x ∈ (∂∗E)r. (8.15)

We will only show (8.14), since (8.15) can be obtained in a similar way. Note that (8.14)
is automatically satisfied if α∨v (r) = π, so we will assume α∨v (r) < π.

By arguing as in Step 1a of the proof of Proposition 8.1 we obtain

x ∈ ∂B(r) and distSn−1(x̂, e1) > α∨v (r) =⇒ x ∈ E(0)
1 . (8.16)

Let us now prove that

x ∈ ∂B(r) and distSn−1(x̂, e1) > α∨v (r) =⇒ x ∈ (RE2)(0). (8.17)

Let x ∈ ∂B(r), and suppose that there exists δ > 0 such that

distSn−1(x̂, e1) = α∨v (r) + δ.

Thanks to the argument we used to show (8.4), we can choose ρ > 0 so small that

distSn−1(ŷ, e1) > α∨v (r) +
δ

2
for every y ∈ B(x, ρ).

Therefore, for every y ∈ B(x, ρ) we have

α∨v (r) +
δ

2
< distSn−1(ŷ, e1) ≤ distSn−1(ŷ, ω) + distSn−1(ω, e1)

< distSn−1(ŷ, ω) + λ(α∨v (r)− α∧v (r)).

Since r is a jump point for αv, we have α∨v (r) > α∧v (r), and the above inequality implies
that

distSn−1(ŷ, ω) > (1− λ)α∨v (r) + λα∧v (r) +
δ

2
> (1− λ)α∧v (r) + λα∧v (r) +

δ

2
= α∧v (r) +

δ

2
,

for every y ∈ B(x, ρ). Then, by definition of E2,

(RE2) ∩B(x, ρ) =
(
R(Fv \B(r))

)
∩B(x, ρ)

⊂Hn
{
y ∈ Rn : |y| > r and α∧v (r) +

δ

2
< distSn−1(ŷ, ω) < αv(|y|)

}
∩B(x, ρ).

As already observed in the previous proofs, for ρ small enough there exists C = C(r) > 0
such that

B(x, ρ) ∩ ∂B(r) ⊂ BCρ(rx̂) for every r ∈ (r − ρ, r + ρ).

Therefore, for every ρ ∈ (0, ρ) sufficiently small

Hn((RE2) ∩B(x, ρ)) ≤
ˆ

(r,r+ρ)∩{αv>α∧v (r)+δ/2}
Hn−1(BCρ(rx̂)) dr

= (n− 1)ωn−1

ˆ
(r,r+ρ)∩{αv>α∧v (r)+δ/2}

rn−1

ˆ Cρ

0
(sin τ)n−2 dτ dr

= ωn−1C
n−1(r + ρ)n−1ρn−1H1((r, r + ρ) ∩ {αv > α∧v (r) + δ/2}).
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From this, thanks to (8.12), we obtain

lim
ρ→0+

Hn((RE2) ∩B(x, ρ))

ωnρn

≤ ωn−1C
n−1

ωn
(r + ρ)n−1 lim

ρ→0+

H1((r, r + ρ) ∩ {αv > α∧v (r) + δ/2})
ρ

= 0,

which shows (8.17). This, together with (8.16), implies (8.14). As already mentioned,
(8.15) can be proved in a similar way, and therefore (8.13) follows.

Step 2: We conclude. From (8.10) it follows that

Bα∧v (r)(rω) ⊂ Bα∨v (r)(re1).

Therefore, thanks to (8.13) and Lemma 8.2

P (E; ∂B(r)) = Hn−1(∂∗E ∩ ∂B(r)) = Hn−1((∂∗E)r) ≤ Hn−1
(
Bα∨v (r)(re1) \Bα∧v (r)(rω)

)
= v∨(r)− v∧(r) = P (Fv; ∂B(r)) ≤ P (E; ∂B(r)),

where we also used (1.4) with B = {r}. Then, (8.11) follows from the last chain of
inequalities. �

We conclude this section showing that, if Dcαv 6= 0, rigidity fails.

Proposition 8.4. Let v : (0,∞) → [0,∞) be a measurable function satisfying (1.2) such
that Fv is a set of finite perimeter and finite volume, and let αv be defined by (1.3). Suppose
that Dcαv 6= 0. Then, rigidity fails.

Proof. We are going to construct a spherically v-distributed set E ∈ N (v) that cannot be
obtained by applying a single orthogonal transformation to Fv (see (8.20) below).

First of all, let us note that it is not restrictive to assume that αv is purely Cantorian.
Indeed, by (2.4) one can decompose αv into

αv = αav + αjv + αcv, (8.18)

where αav ∈W
1,1
loc (0,∞), αjv is a purely jump function, and αcv is purely Cantorian. Thanks

to (8.18), in the general case when αv 6= αcv, the proof can be repeated by applying our
argument just to the Cantorian part αcv of αv. Therefore, from now on we will assume
that

Dαv = Dcαv.

Thanks to Proposition 8.1, we can also assume that {0 < α∧v ≤ α∨v < π} is an interval
(otherwise there is nothing to prove, since rigidity fails). Moreover, since αv is continuous,
there exist a, b > 0, with a < b, such that I := (a, b) ⊂⊂ {0 < α∧v ≤ α∨v < π} and

0 < αv(r) < π for every r ∈ I. (8.19)

Since Dcαv 6= 0, it is not restrictive to assume |Dcαv|(I) > 0. For each γ ∈ (−π, π), we
define Rγ ∈ O(n) in the following way:

Rγ


x1

x2

x3
...
xn

 =


x1 cos γ − x2 sin γ
x1 sin γ + x2 cos γ

x3
...
xn

 .
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That is, Rγ is a counterclockwise rotation of the angle γ in the plane (x1, x2). Let now fix
λ ∈ (0, 1), and define β : (0,∞)→ (−π, π) as

β(r) :=


0 if r ∈ (0, a),

λ(αv(r)− αv(a)) if r ∈ [a, b],

λ(αv(b)− αv(a)) if r ∈ (b,∞).

We set

E := {x ∈ Rn : distSn−1(x̂, Rβ(|x|)e1) < α∨v (|x|)}. (8.20)

Clearly, E cannot be obtained by applying a single orthogonal transformation to Fv. Let
us show that E ∈ N (v), so that rigidity fails. We proceed by steps.

Step 1: We construct a sequence of functions vk : I → [0,∞) satisfying the following
properties:

(a) lim
k→∞

αvk(r) = αv(r) for H1-a.e. r ∈ I;

(b) Dξvk = Djξvk for every k ∈ N;

(c) lim
k→∞

P (Fvk ; Φ(I × Sn−1)) = P (Fv; Φ(I × Sn−1)).

First of all note that, by (3.5) and by the chain rule in BV (see, [2, Theorem 3.96]), it
follows that ξv is purely Cantorian, where ξv is given by (3.3). Moreover, from (2.5) and
from the fact that ξv is continuous, we have

|Dξv|(I) = sup

{
N−1∑
i=1

|ξv(ri+1)− ξv(ri)| : a < r1 < r2 < . . . < rN < b

}
,

where the supremum runs over N ∈ N and over all r1, . . . , rN with a < r1 < r2 <
. . . < rN < b. Therefore, for every k ∈ N there exist Nk ∈ N and rk1 , . . . , r

k
N with

a < rk1 < rk2 < . . . < rkN < b such that

|Dξv|(I) ≤
Nk−1∑
i=1

|ξv(rki+1)− ξv(rki )|+ 1

k

and

|rki+1 − rki | <
1

k
for every i = 1, . . . , Nk − 1.

Without any loss of generality, we can assume that the partitions are increasing in k. That
is, we will assume that

{rk1 , . . . , rkNk} ⊂ {r
k+1
1 , . . . , rk+1

Nk+1
} for every k ∈ N.

Define now, for every k ∈ N,

ξkv (r) :=

Nk∑
i=0

ξv(r
k
i )χ[rki ,r

k
i+1)(r), (8.21)

where we set rk0 := a and rkNk+1 := b. Let us now set

vk(r) := ξkv (r)/rn−1 for every r ∈ I and for every k ∈ N,

and note that, by definition, ξkv = ξvk . Since ξv is continuous, we have that

lim
k→∞

ξkv (r) = ξv(r) for H1-a.e. r ∈ I. (8.22)

Recalling (3.5) and (3.6), last relation implies property (a). Moreover, from (8.21) we have
(b).
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Let us now show (c). Thanks to (8.19) and (8.22), we have

lim
k→∞

pFkv (r) = pFv(r) for H1-a.e. r ∈ I. (8.23)

Moreover,

|Dξkv |(I) =

Nk∑
i=0

|ξv(rki+1)− ξv(rki )| (8.24)

= |ξv(rk1)− ξv(a)|+ |ξv(b)− ξv(rkNk)|+
Nk−1∑
i=1

|ξv(rki+1)− ξv(rki )|.

Since

|Dξv|(I)− 1

k
≤

Nk−1∑
i=1

|ξv(rki+1)− ξv(rki )| ≤ |Dξv|(I),

using (8.24) and the fact that ξv is continuous we obtain

|Dξv|(I) = lim
k→∞

Nk−1∑
i=1

|ξv(rki+1)− ξv(rki )| = lim
k→∞

|Dξkv |(I). (8.25)

Thanks to [2, Theorem 3.23], up to subsequences ξkv weakly* converges in BV (I) to ξv.
Since, in addition, (8.25) holds true, we can apply [2, Proposition 1.80] to the sequence of
measures {|Dξkv |}k∈N. Therefore, recalling that Dξkv = Dsξkv and Dξv = Dsξv, we have

lim
k→∞

ˆ
I
rnd|Dsξkv |(r) = lim

k→∞

ˆ
I
rnd|Dξkv |(r) =

ˆ
I
rnd|Dξv|(r) =

ˆ
I
rnd|Dsξv|(r).

Then, from Corollary 5.2

lim
k→∞

P (Fvk ; Φ(I × Sn−1)) = lim
k→∞

(ˆ
I
pF

vk
(r) dr +

ˆ
I
rn−1d|Dsξkv |(r)

)
=

(ˆ
I
pFv(r) dr +

ˆ
I
rn−1d|Dsξv|(r)

)
= P (Fv; Φ(I × Sn−1)),

where we also used (8.23).

Step 2: For each k ∈ N, we construct a spherically vk-distributed set Ek such that

P (Ek; Φ(I × Sn−1)) = P (Fvk ; Φ(I × Sn−1)).

From (3.5) and (3.6) it follows that αvk = F−1(ξkv ) ∈ BV (I), and

αvk(r) =

Nk∑
i=0

αv(r
k
i )χ[rki ,r

k
i+1)(r). (8.26)

Therefore, for each k ∈ N we have that Dαvk = Djαvk , and the jump set of αvk is a finite
set. More precisely,

Dαvk =

Nk∑
i=1

(αv(r
k
i )− αv(rki−1))δrki

,

where δr denotes the Dirac delta measure concentrated at r. Let λ ∈ (0, 1) be fixed, and
define the set Ek1 ⊂ Φ(I × Sn−1) as

Ek1 :=
[
Fvk ∩ (B(rk1) \B(a))

]
∪
[
Rλ(αv(rk1 )−αv(a))(Fvk ∩ (B(b) \B(rk1)))

]
.

Thanks to Proposition 8.3, we have that

P (Ek1 ; Φ(I × Sn−1)) = P (Fvk ; Φ(I × Sn−1)).
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Define now Ek2 ⊂ Φ(I × Sn−1) as

Ek2 := (Ek1 ∩B(rk2)) ∪
[
Rλ(αv(rk2 )−αv(rk1 ))(E

k
1 \B(rk2))

]
.

Applying again Proposition 8.3, we have

P (Ek2 ; Φ(I × Sn−1)) = P (Ek1 ; Φ(I × Sn−1)) = P (Fvk ; Φ(I × Sn−1)).

Note that, since Rγ is associative with respect to γ (that is, we have Rγ1Rγ2 = Rγ1+γ1),

we can write Ek2 as

Ek2 =
[
Fvk ∩ (B(rk1) \B(a))

]
∪
[
Rλ(αv(rk1 )−αv(a))(Fvk ∩ (B(rk2) \B(rk1)))

]
∪
[
Rλ(αv(rk2 )−αv(a))(Fvk ∩ (B(b) \B(rk2)))

]
.

Iterating this procedure Nk times, we obtain that

P (Ek; Φ(I × Sn−1)) = P (Fvk ; Φ(I × Sn−1)),

where

Ek := EkNk = {x ∈ Φ(I × Sn−1) : distSn−1(x̂, Rλ(α
vk

(|x|)−α
vk

(a))e1) < αvk(|x|)}. (8.27)

Step 3: We show that Ek −→ Ê in Φ(I × Sn−1), for some spherically v-distributed set Ê
such that

P (Ê; Φ(I × Sn−1)) = P (Fv; Φ(I × Sn−1)).

From (8.26) and (8.22) it follows that

lim
k→∞

αvk(r) = αv(r) for H1-a.e. r ∈ I.

Therefore, from (8.27) we have Ek −→ Ê ( in (Φ(I × Sn−1))), where Ê is the spherically
v-distributed set in Φ(I × Sn−1) given by

Ê := {x ∈ Φ(I × Sn−1) : distSn−1(x̂, Rλ(αv(|x|)−αv(a))e1) < αv(|x|)}. (8.28)

Then, by the lower semicontinuity of the perimeter with respect to the L1 convergence
(see, for instance, [22, Proposition 12.15]):

P (Ê; Φ(I × Sn−1)) ≤ lim
k→∞

P (Ek; Φ(I × Sn−1))

lim
k→∞

P (Fvk ; Φ(I × Sn−1)) = P (Fv; Φ(I × Sn−1))

≤ P (Ê; Φ(I × Sn−1)),

where we also used (1.4).

Step 4: We conclude. Let E be given by (8.20). Then, E is spherically v-distributed and
satisfies

E =Hn (Fv ∩ (B(a))) ∪
[
Ê ∩ (B(b) \B(a))

]
∪
[
Rλ(αv(b)−αv(a))(Fv \ (B(b)))

]
,

46



where Ê is defined in (8.28). By repeating the arguments used in the proof of Proposi-

tion 8.1, and using the fact that Φ(I × Sn−1) = B(b) \B(a), one can see that

P (E) = P (E;B(a)) + P (E; ∂B(a)) + P (E;B(b) \B(a))

+ P (E; ∂B(b)) + P (E;Rn \B(b))

= P (Fv;B(a)) + P (E; ∂B(a)) + P (Ê;B(b) \B(a))

+ P (E; ∂B(b)) + P (Fv;Rn \B(b))

= P (Fv;B(a)) + P (E; ∂B(a)) + P (Fv;B(b) \B(a))

+ P (E; ∂B(b)) + P (Fv;Rn \B(b)),

where we also used Step 3 and the invariance of the perimeter under orthogonal trans-
formations. Since αv is continuous, an argument similar to the one used to prove (8.13)
shows that

P (E; ∂B(a)) = P (E; ∂B(b)) = 0.

Therefore,

P (E) = P (Fv;B(a)) + P (Fv;B(b) \B(a)) + P (Fv;Rn \B(b)) = P (Fv).

�

We can now give the proof of the implication (i) =⇒ (ii) of Theorem 1.2.

Proof of Theorem 1.2: (i) =⇒ (ii). To show the implication, it suffices to combine Propo-
sition 8.1, Proposition 8.3, and Proposition 8.4. �
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