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Abstract. We consider a class of nonlocal viscous Cahn-Hilliard equations with Neumann
boundary conditions for the chemical potential. The double-well potential is allowed to
be singular (e.g. of logarithmic type), while the singularity of the convolution kernel does
not fall in any available existence theory under Neumann boundary conditions. We prove
well-posedness for the nonlocal equation in a suitable variational sense. Secondly, we show
that the solutions to the nonlocal equation converge to the corresponding solutions to the
local equation, as the convolution kernels approximate a Dirac delta. The asymptotic
behaviour is analyzed by means of monotone analysis and Gamma convergence results,
both when the limiting local Cahn-Hilliard equation is of viscous type and of pure type.
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1. Introduction

The aim of the present paper is to study the well-posedness and the asymptotic behaviour
as ε↘ 0 of a family of nonlocal viscous Cahn-Hilliard equations with Neumann boundary
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conditions in the following form:

∂tuε −∆µε = 0 in (0, T )× Ω , (1.1)

µε = τε∂tuε + (Kε ∗ 1)uε −Kε ∗ uε + Ψ′(uε)− gε in (0, T )× Ω , (1.2)

∂nµε = 0 on (0, T )× ∂Ω , (1.3)

uε(0) = u0,ε in Ω , (1.4)

where Ω is a smooth bounded domain in Rd (d = 2, 3), T > 0 is a fixed final time, and
Ψ′ represents the derivative a double-well potential. Moreover, ε > 0 is a fixed parameter,
τε > 0 is a positive viscosity coefficient, Kε : Ω×Ω→ R is a suitable symmetric convolution
kernel, and gε represents a distributed forcing term. The variables uε and µε are referred
to as “order parameter” and “chemical potential”, respectively.
The evolution problem (1.1)–(1.4) is related to the gradient flow (in the H−1-metric) asso-
ciated to a nonlocal free energy functional of the form

Eε(ϕ) =
1

4

ˆ
Ω

ˆ
Ω
Kε(x, y)|ϕ(x)− ϕ(y)|2 dx dy +

ˆ
Ω

Ψ(ϕ(x)) dx . (1.5)

Indeed, the contributions (Kε ∗ 1)uε − Kε ∗ uε + Ψ′(uε) in the definition of the chemical
potential are obtained exactly from the (sub)differentiation of the functional (1.5). The
extra term τε∂tuε represents on the other side a viscosity regularization, acting on the
dissipation of the system.
The analysis of nonlocal models dates back to the early 90’s, when G. Giacomin and
J. Lebowitz investigated, in their seminal paper [37], a hydrodynamic limit of a microscopic
model for a d-dimensional lattice gas evolving via a Poisson nearest-neighbor process. In
that work, the authors derived a free energy functional in nonlocal form (1.5), and proposed
the corresponding gradient flow to model phase-change in binary alloys. The viscous regu-
larization in the definition of the chemical potential was originally introduced in the context
of the local Cahn-Hilliard equation by Novick-Cohen in [51]. The mathematical literature
on the nonlocal Cahn-Hilliard equation is widely developed: we can mention, among many
others, the contributions [2, 5, 28, 29, 40] and the references therein.

The rapidly growing attention to the nonlocal Cahn-Hilliard equation is due on the one
hand to its microscopic justification, and on the other hand to its connection with the
corresponding local model. Indeed, at least in a formal way, the nonlocal dynamics approach
the local ones when the family of interaction kernels (Kε)ε concentrates around the origin.
The main issue we assess in this paper is the asymptotic convergence of solutions to the
nonlocal system (1.1)–(1.4) to the corresponding local one, as the data (gε)ε approximate a
new source g and the coefficients τε converge to a certain new viscosity parameter τ . The
local form of the limiting Cahn-Hilliard equation reads

∂tu−∆µ = 0 in (0, T )× Ω , (1.6)

µ = τ∂tu−∆u+ Ψ′(u)− g in (0, T )× Ω , (1.7)

∂nu = 0 and ∂nµ = 0 on (0, T )× ∂Ω , (1.8)

u(0) = u0 in Ω , (1.9)

where τ ≥ 0 is the limiting viscosity parameter, which is allowed to vanish. The choices
τ > 0 and τ = 0 correspond to the viscous case and pure case, respectively.
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As its nonlocal counterpart, the local Cahn-Hilliard equation is related to the gradient flow
in the H−1 metric of the Ginzburg-Landau free energy functional

E(ϕ) =
1

2

ˆ
Ω
|∇ϕ(x)|2 dx+

ˆ
Ω

Ψ(ϕ(x)) dx , (1.10)

in the sense that the contribution −∆u + Ψ′(u) results from the subdifferentiation of E .
Again, the viscosity term τ∂tu acts on the dissipation of the system: if τ = 0, one recovers
the so-called pure Cahn-Hilliard equation, while if τ > 0 one obtains the viscous Cahn-
Hilliard equation. In our analysis, the nonlocal viscosity coefficients (τε)ε are assumed to
be strictly positive, while the local coefficient τ is allowed to vanish.
The local Cahn-Hilliard equation was first proposed in [9] in relation to phase-change in
metallic alloys and to spinodal decomposition (see [45]). Nowadays, the model is a widely
used in various contexts such as diffuse interface modelling in physics and biology, with sev-
eral applications to tumor growth dynamics, image processing, and population dynamics.
From the mathematical point of view, the local Cahn-Hilliard equation has been studied
thoroughly in the last decades, also in much more complex settings. We mention, among
many others, the works [11, 12, 13, 15, 16, 18, 38, 44] on well-posedness also under more gen-
eral dynamic boundary conditions. Some studies on nonlinear viscosity contributions have
been proposed in [6, 50, 56]. We also recall the contributions [14, 19, 20, 23, 41] dealing with
optimal control problems, as well as [17, 22, 39] on asymptotics. The local Cahn-Hilliard
equation has also been widely studied recently in connection to diffuse-interface models for
fluid-dynamics: we refer to [1, 3, 10, 30, 31] and the references therein.

As already mentioned, the behaviour of the nonlocal Cahn-Hilliard equation “approaches”
the one of the local equation when the family of convolution kernels is sufficiently peaked
around 0. The study of nonlocal-to-local convergence of energy functionals in relation
to Sobolev spaces theory had been carried out originally by by J. Bourgain, H. Brezis,
P. Mironescu in [7, 8], and by V. Mazy’a and T. Shaposhnikova in [46, 47]. This asymptotic
analysis was also extended by A. C. Ponce in [52, 53], with studies on Gamma convergence
and nonlocal Poincaré-type inequalities. A first criterion for the convergence of gradient
flows from the Gamma-convergence of the respective energies was given by E. Sandier
and S. Serfaty in [55] in a abstract setting and for smooth energies, with applications to
Ginzburg-Landau functionals (see also [43, 54, 57] for further details in this direction).

In particular, the above-mentioned results [52, 53] provide the pointwise convergence

lim
ε↘0
Eε(ϕ) = E(ϕ) ∀ϕ ∈ H1(Ω)

as soon as the convolution kernels (Kε)ε are chosen as

Kε : Ω× Ω→ [0,+∞) , Kε(x, y) :=
ρε(|x− y|)
|x− y|2

, x, y ∈ Ω , (1.11)

where (ρε)ε is a suitable family of mollifiers converging to a Dirac delta.
Building upon these variational convergences, in a previous contribution of ours [24] we rig-
orously derived some nonlocal-to-local asymptotics of solutions to Cahn-Hilliard equations
in the setting of periodic boundary conditions and with no viscosity effects. The periodic
setting adopted in [24] was fundamental to overcome the singular behaviour of the convo-
lution kernel (1.11). Indeed, kernels in the form (1.11) do not possess any W 1,1 regularity
(see for example [21, Remark 1]), which is the usual minimum requirement in the whole
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literature on nonlocal Cahn-Hilliard systems. This resulted in the impossibility of framing
the nonlocal problem in any available existence theory, and required an ad-hoc analysis.
In this direction, the arguments strongly relied on the assumption of periodic boundary
conditions.
The results in [24] (see also [48] for a simpler case) are very satisfactory since they provide a
novel contribution in the direction of local asymptotics of Cahn-Hilliard equations. Never-
theless, the most natural choice of boundary conditions in phase-field modelling if of no-flux
type. Consequently, it is crucial in this direction to generalize the periodic framework to
other settings more suited for applications. The nonlocal-to-local convergence of pure Cahn-
Hilliard equations with Neumann boundary conditions was, to the authors’ knowledge, still
an open problem. The main novelty of the present paper is to finally extend some rigorous
nonlocal-to-local convergence results for Cahn-Hilliard equations to the case of homoge-
neous Neumann boundary conditions.

Let us briefly describe now the main difficulties arising in the case of Neumann boundary
conditions.
The first hurdle has been already anticipated and concerns the regularity of the convolution
kernel. Indeed, in the form (1.11) the kernel Kε is not W 1,1, and not even L1 in dimension
d = 2. This results in the necessity of rigorously formulate the nonlocal problem without
relying on any available existence theory. The main idea here is that even if the convolution
operator ϕ 7→ Kε ∗ ϕ may be ill-defined under (1.11), the nonlocal operator Bε : ϕ 7→
(Kε ∗ 1)ϕ− (Kε ∗ ϕ) appearing in the equation (1.2) can be rigorously defined instead.
The second main problem consists in the (im)possibility of proving space regularity for the
solutions to the nonlocal equation (i.e. when ε > 0 is fixed). If the convolution kernel
is W 1,1 this follows directly from the properties of the convolution, i.e. formally shifting
the gradient operator on the kernel as ∇(Kε ∗ uε) = (∇Kε) ∗ uε. However, for singular
kernels as in (1.11) this procedure fails. Under periodic boundary conditions (i.e. working
on the d-dimensional flat torus) the main idea to overcome this problem was to use a
certain integration-by-parts formula, which hinges in turn on some compatibility conditions
between the convolution operator and the Laplace operator. More specifically, in [24] the
periodic setting allowed to prove a (formal) relation in the form ∇(Kε ∗ uε) = Kε ∗ ∇uε,
from which one could deduce H1-regularity of the nonlocal solutions. Nevertheless, under
Neumann boundary conditions (i.e. working on a bounded domain Ω ⊂ Rd), in order to
prove an analogous compatibility relation one is forced to extend the nonlocal solution uε
to 0 outside Ω. Clearly, H1-regularity in Ω does not imply H1-regularity on the whole Rd
for such extension. This gives rise to several extra boundary contribution terms which blow
up as the approximating parameter vanishes.
The main consequence is that in the case of Neumann boundary conditions one loses
any H1-estimate on the nonlocal solutions. It follows that the natural variational set-
ting to frame the nonlocal problem (1.1)–(1.4) is not the usual one given by the triple
(H1(Ω), L2(Ω), H1(Ω)∗), but instead an abstract one (Vε, L

2(Ω), V ∗ε ), depending on ε, where
Vε represents, roughly speaking, the domain of the nonlocal energy contribution in (1.5). As
the inclusion Vε ↪→ L2(Ω) is not compact, one loses any reasonable compactness property
on the approximated solutions in order to pass to the limit in the nonlinearity. This issue is
overcome by the introduction of the viscosity term τε∂tuε. Indeed, if τε is strictly positive
one can show “by hand” a strong convergence in L2(Ω) for some regularized solutions, even
without relying on any H1 estimates.
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The third main problem concerns the boundary conditions of Neumann type for u in the
limiting local problem. Indeed, while the nonlocal system is of order 2 in space, hence it only
needs one boundary condition (for the chemical potential), the limiting local equation is of
order 4 in space and requires two boundary conditions instead: one for µ and one for u. One
of the major point is to understand which is the natural extra boundary condition for u, and
how this one emerges when ε↘ 0. It is clear that the Neumann boundary condition for the
chemical potential is preserved by the local asymptotics. On the other hand, the scenario
for u is more subtle: the answer is implicitly given by studying the Gamma convergence
of the nonlocal energies. Indeed, in [53] Ponce proved a Gamma convergence result in the
form

lim
ε↘0

1

4

ˆ
Ω

ˆ
Ω
Kε(x, y)|ϕε(x)− ϕε(y)|2 dx dy =

{
1
2

´
Ω |∇ϕ(x)|2 dx if ∇ϕ ∈ L2(Ω) ,

+∞ otherwise ,

whenever ϕε → ϕ in L2(Ω). Note that the limiting energy contribution on the right-
hand side is the potential associated to the negative Laplacian with homogeneous Neumann
boundary conditions. Hence, this implicitly reveals that the “correct” choice of boundary
condition arising for u in the local limit is of Neumann type. Such idea is indeed proved
rigorously performing the local asymptotics on the variational formulation for the nonlocal
problem (1.1)–(1.4). The advantage of working using a variational approach is that the
boundary conditions are implicitly contained in the variational formulation itself, and they
have not to be tracked explicitly performing a pointwise analysis on the boundary.

We are now in a position to present the two main theorems that we prove in this paper.
The first main result is the well-posedness for the nonlocal system (1.1)–(1.4) with Neumann
boundary conditions when ε > 0 is fixed. Here, the viscosity coefficient τε is assumed to be
strictly positive, the convolution kernel is of the form (1.11), and the double-well potential
may be singular. In particular, we include in our analysis all the typical examples of
polynomial, logarithmic, and double-obstacle potentials:

Ψpol(r) :=
1

4
(r2 − 1)2 , r ∈ R ,

Ψlog(r) :=
ϑ

2
[(1 + r) ln(1 + r) + (1− r) ln(1− r)]− ϑ0

2
, r ∈ (−1, 1) , 0 < ϑ < ϑ0 ,

Ψdoub(r) :=

{
c(1− r2) if r ∈ [−1, 1] ,

+∞ otherwise ,
c > 0 .

In view of this, the derivative of Ψ is interpreted as a subdifferential in the sense of convex
analysis, and equation (1.2) becomes a differential inclusion. The proof of well-posedness
is based on a suitable approximation of the problem, given by a Yosida-type regularization
on the nonlinearity and an additional elliptic local regularization in the chemical potential.
A novel abstract variational setting (Vε, L

2(Ω), V ∗ε ) is introduced and uniform estimates on
the approximated solutions are obtained. Using the viscous contribution in the chemical
potential, strong compactness in L2 is recovered even with no H1-estimates on the solutions.
Strong convergences are then proved and a passage to the limit provides solutions to the
original nonlocal problem.
The second main result of this paper is the asymptotic analysis of the nonlocal system as
ε ↘ 0. Here, we assume that the forcing terms (gε)ε converge to a certain source g, and
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that the viscosity coefficients satisfy

lim
ε↘0

τε = τ .

Here, the coefficient τ is allowed to be nonnegative: when τ > 0 we obtain then nonlocal-
to-local convergence of viscous Cahn-Hilliard equations, while if τ = 0 we obtain the local
asymptotics of nonlocal viscous Cahn-Hilliard equations with vanishing viscosities. The
proof is based on uniform estimates in ε on the nonlocal solutions. Here, the strong com-
pactness in L2 is obtained by proving an ad-hoc compactness inequality involving the family
on functional spaces (Vε)ε>0. The identification of the local limit −∆u is obtained through
the combination of monotone analysis techniques and Gamma-convergence results for the
nonlocal energy functional (1.5).

We conclude by highlighting some possible applications of our results to phase-field mod-
elling.
The relevance of nonlocal-to-local convergence of Cahn-Hilliard equations with Neumann
boundary conditions is significant: among many others, we can mention here possible con-
nections with optimal control of tumor growth models. In the recent years, phase-field
models have been widely used in tumor growth dynamics, both in the local case (see
[26, 32, 33, 34, 35, 36] and the references therein) and in the nonlocal case (see [27] and
[25, 49] for nonlocal Cahn-Hilliard equations with reaction terms). One of the main ad-
vantages of the nonlocal setting is that regularity results on the solutions are usually easier
to obtain, not needing to rely on elliptic regularity properties. As a consequence, the
availability of rigorous nonlocal-to-local convergence results would give the opportunity to
approximate solutions to local phase-field systems with the solutions to the corresponding
nonlocal ones, which are indeed simpler to handle on the mathematical side. For exam-
ple, refined regularity on the solutions are fundamental when dealing with optimal control
problems, in order to write first-order conditions for optimality. Hence, possible outcomes
of nonlocal-to-local asymptotics concern refined analysis of optimal control of phase-field
systems, in terms of passing to the (local) limit within first-order conditions for optimality
for the nonlocal system.

The paper is structured in the following way. In Section 2 we state the assumptions, and
we introduce the abstract variational settings. Section 3 is devoted to present the two main
results. Section 4 contains the proof of well-posedness of the nonlocal system (1.1)–(1.4),
while Section 5 focuses on the proof of nonlocal-to-local asymptotics.

2. Mathematical setting

2.1. Assumptions. Throughout the paper, Ω is a smooth bounded domain in Rd, with
d = 2, 3, and T > 0 is a fixed final time. We will use the notation Qt := (0, t) × Ω for
every t ∈ (0, T ], and set Q := QT , and Σ := (0, T ) × ∂Ω. Moreover, (ρε)ε>0 is a family of
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mollifiers with the following properties (see [52, 53]):

ρε : R→ [0,+∞) , ρε ∈ L1
loc(R) , ρε(r) = ρε(−r) ∀ r ∈ R , ∀ ε > 0 ;ˆ +∞

0
ρε(r)r

d−1 dr =
2

Cd
∀ ε > 0 ;

lim
ε↘0

ˆ +∞

δ
ρε(r)r

d−1 dr = 0 ∀ δ > 0 ,

where Cd :=
´
Sd−1 |e1 · σ|2 dHd−1(σ). We define the family of convolution kernels as

Kε : Ω× Ω→ [0,+∞) , Kε(x, y) :=
ρε(|x− y|)
|x− y|2

, for a.e. x, y ∈ Ω , ε > 0 . (2.1)

Throughout the paper, γ : R → 2R is a maximal monotone graph with 0 ∈ γ(0) and
Π : R → R is CΠ-Lipschitz-continuous with Π(0) = 0. It follows in particular that there
exists a proper, convex, lower semicontinuous function γ̂ : R → [0,+∞] with γ̂(0) = 0 and

∂γ̂ = γ in the sense of convex analysis. Similarly, we set Π̂(s) :=
´ s

0 Π(r) dr for every s ∈ R.
With these notations, the double-well potential Ψ entering the system is represented by the
sum γ̂ + Π̂.

2.2. Variational setting and preliminaries. We introduce the functional spaces

H := L2(Ω) , V := H1(Ω) , W :=
{
ϕ ∈ H2(Ω) : ∂nϕ = 0 a.e. on ∂Ω

}
,

endowed with their natural norms, and we identify H with its dual space in the usual way,
so that

W ↪→ V ↪→ H ↪→ V ∗ ↪→W ∗

where all the inclusions are continuous, dense, and compact. The Laplace operator with
homogeneous Neumann conditions will be intended both as a bounded linear operator

−∆ : V → V ∗ , 〈−∆ϕ, ζ〉V :=

ˆ
Ω
∇ϕ(x) · ∇ζ(x) dx , ϕ, ζ ∈ V ,

and as unbounded linear operator on H with domain W . For every ϕ ∈ V ∗, we use the
notation ϕΩ := 1

|Ω|〈ϕ, 1〉V for the mean value on Ω. As a direct consequence of the Poincaré-

Wirtinger inequality it holds that

−∆ : {ϕ ∈ V : ϕΩ = 0} → {ϕ ∈ V ∗ : ϕΩ = 0}

is a linear isomorphism. We will denote its inverse by

N : {ϕ ∈ V ∗ : ϕΩ = 0} → {ϕ ∈ V : ϕΩ = 0} .

For every ε > 0, we set

Vε :=

{
ϕ ∈ L2(Ω) :

ˆ
Ω

ˆ
Ω
Kε(x, y)|ϕ(x)− ϕ(y)|2 dx dy < +∞

}
,

Eε(ϕ) :=
1

4

ˆ
Ω

ˆ
Ω
Kε(x, y)|ϕ(x)− ϕ(y)|2 dx dy , ϕ ∈ Vε ,



8 ELISA DAVOLI, LUCA SCARPA, AND LARA TRUSSARDI

and

Wε :=

{
ϕ ∈ L2(Ω) : x 7→

ˆ
Ω
Kε(x, y)(ϕ(x)− ϕ(y)) dy ∈ L2(Ω)

}
,

Bε(ϕ)(x) :=

ˆ
Ω
Kε(x, y)(ϕ(x)− ϕ(y)) dy , for a.e. x ∈ Ω , ϕ ∈Wε .

We point out that Eε : Vε → [0,+∞) is convex and Bε : H → H is a linear unbounded
operator with domain Wε. Additionally, we define the maps

‖ · ‖Vε : Vε → [0,+∞) , ‖ · ‖Wε : Wε → [0,+∞)

as

‖ϕ‖Vε :=
√
‖ϕ‖2H + 2Eε(ϕ) , ‖ϕ‖Wε :=

√
‖ϕ‖2H + ‖Bε(ϕ)‖2H ,

and the bilinear forms

(·, ·)Vε : Vε × Vε → [0,+∞) , (·, ·)Wε : Wε ×Wε → [0,+∞)

as

(ϕ1, ϕ2)Vε := (ϕ1, ϕ2)H +
1

2

ˆ
Ω

ˆ
Ω
Kε(x, y)(ϕ1(x)− ϕ1(y))(ϕ2(x)− ϕ2(y)) dx dy ,

(ϕ1, ϕ2)Wε := (ϕ1, ϕ2)H + (Bε(ϕ1), Bε(ϕ2))H .

We collect some properties in the next lemma.

Lemma 1. The following properties hold for every ε > 0.

(1) The maps ‖ · ‖Vε and ‖ · ‖Wε are complete norms on Vε and Wε, respectively.
(2) The bilinear forms (·, ·)Vε and (·, ·)Wε are scalar products on Vε and Wε inducing the

norms ‖ · ‖Vε and ‖ · ‖Wε, respectively. In particular, Vε and Wε are Hilbert spaces.
(3) For every σ ∈ (0, 1] we have C0,σ(Ω) ↪→Wε continuously, and there exists Cε,σ > 0

such that

Bε(ϕ) ∈ L∞(Ω) , ‖Bε(ϕ)‖L∞(Ω) ≤ Cε,σ‖ϕ‖C0,σ(Ω) ∀ϕ ∈ C0,σ(Ω) .

(4) The following inclusions are continuous and dense:

Wε ↪→ Vε ↪→ H .

Moreover, (Bε,Wε) is maximal monotone on H.
(5) The unbounded linear operator Bε : H → H extends to a bounded linear operator

Bε : Vε → V ∗ε , and it holds that

‖Bε(ϕ)‖V ∗ε ≤ ‖ϕ‖Vε ∀ϕ ∈ Vε .

(6) The map Eε : Vε → [0,+∞) is of class C1 and DEε = Bε : Vε → V ∗ε .

Proof. Step 1: properties (1)–(2). It is clear that ‖·‖Vε and ‖·‖Wε are norms on Vε and Wε,
respectively. Let now (yn)n be a Cauchy sequence in Vε: then in particular it is a Cauchy
sequence in H, so there exists y ∈ H such that yn → y in H. By lower semicontinuity it
follows that y ∈ Vε as well, and that yn → y in Vε. A similar argument shows that Wε is
complete as well. A direct computation shows that (·, ·)Vε and (·, ·)Wε are scalar products
inducing the norms above.
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Step 2: property (3). For every ϕ ∈ C0,σ(Ω), we have

|Bε(ϕ(x))| ≤
ˆ

Ω
ρε(|x− y|)

|ϕ(x)− ϕ(y)|
|x− y|2

dy ≤ ‖ϕ‖C0,σ(Ω)

ˆ
Ω

ρε(|x− y|)
|x− y|2−σ

dy,

whereˆ
Ω

ρε(|x− y|)
|x− y|2−σ

dy =

ˆ
Ω−x

ρε(|z|)
|z|2−σ

dz ≤
ˆ
Rd

ρε(|z|)
|z|2−σ

dz =

ˆ
{|z|≤1}

ρε(|z|)
|z|2−σ

dz +

ˆ
{|z|>1}

ρε(|z|)
|z|2−σ

dz

≤ max
|r|≤1

ρε(r)

ˆ
{|z|≤1}

1

|z|2−σ
dz +

ˆ
{|z|>1}

ρε(|z|) dz .

The first term on the right-hand side is finite since 2 − σ < d, while the second term can
be written as

|Sd−1|
ˆ +∞

1
ρε(r)r

d−1 dr < +∞

by the assumptions on (ρε)ε. The thesis follows by the arbitrariness of x ∈ Ω.

Step 3: property (4). First of all the fact that the inclusion Vε ↪→ H is continuous is trivial
by the definition of ‖ · ‖Vε . Second, for ϕ ∈Wε, a direct computation shows that

Eε(ϕ) =
1

4

ˆ
Ω

ˆ
Ω
Kε(x, y)|ϕ(x)−ϕ(y)|2 dx dy =

1

2

ˆ
Ω
Bε(ϕ(x))ϕ(x) dx ≤ 1

2
‖Bε(ϕ)‖H‖ϕ‖H ,

so that Wε ↪→ Vε continuously. The density of Vε in H follows from the density of C0,σ(Ω)
in H and the fact that C0,σ(Ω) ⊂Wε ⊂ Vε.
The monotonicity of Bε is a direct consequence of its definition. We proceed by showing
that it is maximal monotone. Let ϕ ∈ H. For every λ, δ > 0 the elliptic problem

ϕδλ + λ∆2ϕδλ + δBε(ϕδλ) = ϕ (2.2)

admits a unique solution ϕδλ ∈ W ↪→ C0,1/4(Ω) ↪→ Wε. Fix δ > 0. Testing (2.2) by ϕδλ
and using the monotonicity of Bε and the Young inequality, it follows that

‖ϕδλ‖2H + λ‖∆ϕδλ‖2H ≤
1

2
‖ϕ‖2H +

1

2
‖ϕδλ‖2H ∀λ > 0 .

Thus, by comparison there exists a positive constant M such that

‖ϕδλ‖2H + λ‖∆ϕδλ‖2H + ‖Bε(ϕδλ)‖W ∗ ≤M ∀λ > 0 .

We infer that there exist ϕδ ∈ H and ηδ ∈ W ∗ such that, as λ ↘ 0, λϕδλ → 0 in W ,
ϕδλ ⇀ ϕδ in H, and Bε(ϕδλ) ⇀ ηδ in W ∗, from which ϕδ + δηδ = ϕ. It follows by
comparison that ηδ ∈ H. For all ζ ∈W , by the symmetry of Bε there holds

(ηδ, ζ)H = lim
λ→0

(Bε(ϕδλ), ζ)H = lim
λ→0

(ϕδλ, Bε(ζ))H = (ϕδ, Bε(ζ))H = (Bε(ϕδ), ζ)H ,

so we conclude that ϕδ ∈Wε and ηδ = Bε(ϕδ). Hence,

ϕδ + δBε(ϕδ) = ϕ ∀ δ > 0 . (2.3)

This proves that Bε is a maximal monotone operator on H (see [4, Thm. 2.2]). Testing now
(2.3) by ϕδ and using Young inequality it is immediate to see that

1

2
‖ϕδ‖2H + δ(Bεϕδ, ϕδ)H ≤

1

2
‖ϕ‖2H . (2.4)
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If additionally ϕ ∈ Vε, testing (2.3) by Bε(ϕδ) and using Hölder and Young inequalities
yields

2Eε(ϕδ) + δ‖Bε(ϕδ)‖2H = (Bε(ϕδ), ϕδ)H + δ‖Bε(ϕδ)‖2H = (Bε(ϕδ), ϕ)H (2.5)

=
1

2

ˆ
Ω

ˆ
Ω
Kε(x, y)(ϕδ(x)− ϕδ(y))(ϕ(x)− ϕ(y)) dx dy

≤ 2
√
Eε(ϕ)

√
Eε(ϕδ) ≤ Eε(ϕδ) + Eε(ϕ) .

We deduce that, as δ ↘ 0, δBε(ϕδ)→ 0 in H. Hence, by (2.3), ϕδ → ϕ in H. By combining
(2.4) and (2.5), we obtain that ‖ϕδ‖Vε ≤ ‖ϕ‖Vε for every δ > 0. As Vε is uniformly convex,
this implies that ϕδ → ϕ in Vε, so that Wε ↪→ Vε densely.

Step 4: property (5). For every ϕ ∈Wε and ζ ∈ Vε, by the Hölder inequality we have

(Bε(ϕ), ζ)H =
1

2

ˆ
Ω

ˆ
Ω
Kε(x, y)(ϕ(x)− ϕ(y))(ζ(x)− ζ(y)) dx dy ≤ 2

√
Eε(ϕ)

√
Eε(ζ) .

This implies that for every ϕ ∈Wε, the operator

ζ 7→ (Bε(ϕ), ζ)H , ζ ∈ Vε ,

is linear and continuous on Vε, and such that

‖ζ 7→ (Bε(ϕ), ζ)H‖V ∗ε ≤ ‖ϕ‖Vε ∀ϕ ∈Wε .

Since Wε ↪→ Vε is dense, we deduce that Bε extends to a bounded linear operator from Vε
to V ∗ε , and the thesis follows.

Step 5: property (6). We observe that Eε : Vε → [0,+∞) is convex and lower semicon-
tinuous. A direct computation also shows that DEε = Bε in the sense of Gâteaux: since
Bε : Vε → V ∗ε is linear and continuous, the thesis follows. �

The next lemma shows some boundedness properties of the family (Bε)ε, uniformly in ε.

Lemma 2. The following inclusion is continuous

V ↪→ Vε ,

and there exists a constant C, independent of ε, such that

‖ϕ‖Vε ≤ C‖ϕ‖V ∀ϕ ∈ V .

For every ϕ, ζ ∈ V , there holds

lim
ε↘0

Eε(ϕ) =
1

2

ˆ
Ω
|∇ϕ(x)|2dx , lim

ε↘0
〈Bε(ϕ1), ϕ2〉Vε =

ˆ
Ω
∇ϕ1(x) · ∇ϕ2(x) dx . (2.6)

Finally, for every ϕ ∈ H and for every sequence (ϕε)ε>0 ⊂ H with ϕε → ϕ in H, we have

lim inf
ε↘0

Eε(ϕε) ≥ E(ϕ) :=

{
1
2

´
Ω |∇ϕ(x)|2 dx if ϕ ∈ V ,

+∞ if ϕ ∈ H \ V .

In other words, (Eε)ε>0 Γ-converges to E with respect to the norm-topology of H.
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Proof. By [53], there is a constant C > 0 independent of ε such that

Eε(ϕ) ≤ C‖∇ϕ‖2H ∀ϕ ∈ V ,
from which the first part of the thesis follows directly. The first limit in (2.6) is also a direct
consequence of [53], the second limit in (2.6) can be proved exactly in the same way as [24,
§ 1]. Finally, by the Γ-convergence result in [52, Thm. 8], we know that

lim inf
ε↘0

Eε(ϕε) ≥ sc– Ẽ(ϕ) ,

where sc– Ẽ is the lower semicontinuous envelope of

Ẽ : H → [0,+∞] , Ẽ(ϕ) :=

{
1
2

´
Ω |∇ϕ(x)|2 dx if ϕ ∈ C1(Ω) ,

+∞ otherwise ,

i.e.
sc– Ẽ(ϕ) = inf

{
lim inf
n→∞

Ẽ(ζn) : ζn → ϕ in H
}
.

It is a standard matter to check that sc– Ẽ = E, so that the thesis follows. �

The last result of this section is a compactness criterion involving the family of operators
(Eε)ε. The following lemma is fundamental as we do not have any compactness properties
for the inclusions of the spaces Vε and Wε. For the proof we refer to [24, Lemma. 4].

Lemma 3. For every δ > 0 there exist two constants Cδ > 0 and εδ > 0 such that, for
every sequence (ϕε)ε∈(0,εδ) ⊂ Vε there holds

‖ϕε1 − ϕε2‖2H ≤ δ (Eε1(ϕε1) + Eε2(ϕε2)) + Cδ‖ϕε1 − ϕε2‖2V ∗ ∀ ε1, ε2 ∈ (0, εδ) .

3. Main results

Before stating our main results, we recall that the local Cahn-Hilliard equation is well-posed
in the following sense.

Theorem 3.1. Let τ ≥ 0 and

u0 ∈ V , γ̂(u0) ∈ L1(Ω) , (u0)Ω ∈ IntD(γ) , (3.1)

g ∈ L2(0, T ;H) , g ∈ H1(0, T ;H) if τ = 0 . (3.2)

Then, there exists a triple (u, µ, ξ) such that

u ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) , τu ∈ H1(0, T ;H) , (3.3)

µ ∈ L2(0, T ;V ) , τµ ∈ L2(0, T ;W ) , (3.4)

ξ ∈ L2(0, T ;H) , ξ ∈ γ(u) a.e. in Q , (3.5)

∂tu−∆µ = 0 in V ∗ , a.e. in (0, T ) , (3.6)

µ = τ∂tu−∆u+ ξ + Π(u)− g a.e. in Q , (3.7)

u(0) = u0 a.e. in Ω . (3.8)

Moreover, the solution component u is unique, and the solution components µ and ξ are
unique if γ is single-valued.

Proof. We refer to [18] for a proof in a more general setting. �

The first result of this paper is the well-posedness of the nonlocal viscous Cahn-Hilliard
equation complemented by Neumann boundary conditions for the chemical potential.
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Theorem 3.2. Let ε > 0 and τε > 0 be fixed. Then for every (u0,ε, gε) with

u0,ε ∈ Vε , γ̂(u0,ε) ∈ L1(Ω) , (u0,ε)Ω ∈ IntD(γ) , (3.9)

gε ∈ L2(0, T ;H) , (3.10)

there exists a triple (uε, µε, ξε) such that

uε ∈ H1(0, T ;H) ∩ L∞(0, T ;Vε) ∩ L2(0, T ;Wε) , (3.11)

µε ∈ L2(0, T ;W ) , (3.12)

ξε ∈ L2(0, T ;H) , ξε ∈ γ(uε) a.e. in Q , (3.13)

∂tuε −∆µε = 0 a.e. in Q , (3.14)

µε = τε∂tuε +Bε(uε) + ξε + Π(uε)− gε a.e. in Q , (3.15)

uε(0) = u0,ε a.e. in Ω . (3.16)

Furthermore, there exists a positive constant Mε such that, for every sets of data (u1
0,ε, g

1
ε)

and (u2
0,ε, g

2
ε) satisfying (3.9)–(3.10), with (u1

0,ε)Ω = (u2
0,ε)Ω, and for every respective solu-

tions (u1
ε, µ

1
ε, ξ

1
ε ) and (u2

ε, µ
2
ε, ξ

2
ε ) satisfying (3.11)–(3.16), it holds

‖u1
ε − u2

ε‖2C0([0,T ];V ∗) + τε‖u1
ε − u2

ε‖2C0([0,T ];H) + ‖Eε(u1
ε − u2

ε)‖L1(0,T )

≤Mε

(
‖u1

0,ε − u2
0,ε‖2V ∗ + τε‖u1

0,ε − u2
0,ε‖2H + ‖g1

ε − g2
ε‖2L2(0,T ;V ∗)

)
.

In particular, the solution component uε is unique, and the solution components µε and ξε
are unique if γ is single-valued.

Our second contribution concerns the nonlocal-to-local convergence. In particular, we show
that, under suitable assumptions on the initial data (u0,ε)ε and on the forcing terms (gε)ε,
if the viscosities (τε)ε converge to a coefficient τ ≥ 0, then the solutions to the respective
viscous nonlocal Cahn-Hilliard equations converge, in suitable topologies, to the solutions
to the limiting local Cahn-Hilliard equation with viscosity parameter τ ≥ 0. Note that
the viscosities (τε)ε are required to be strictly positive for all ε > 0, whereas the limiting
viscosity parameter τ is also allowed to vanish. Hence, such result has a duplex formulation.
Indeed, if τ > 0 this shows the asymptotic convergence of the nonlocal viscous equation
to the corresponding local viscous equation, while if τ = 0 this proves the approximability
of solutions to the local pure equation by solutions to nonlocal equations with vanishing
viscosities.

Theorem 3.3. Assume that

τ ≥ 0 , (τε)ε>0 ⊂ (0,+∞) , lim
ε↘0

τε = τ .

Let the data (u0, g) satisfy (3.1)–(3.2), and let the family (u0,ε, gε)ε>0 satisfy (3.9)–(3.10)
for all ε > 0. Assume also that there exists ε0 > 0 such that

sup
ε∈(0,ε0)

(
‖u0,ε‖2Vε + ‖γ̂(u0,ε)‖L1(Ω)

)
< +∞ , (3.17)

(gε)ε∈(0,ε0) ⊂ H1(0, T ;H) and sup
ε∈(0,ε0)

‖gε‖2H1(0,T ;H) < +∞ if τ = 0 , (3.18)

∃ [a0, b0] ⊂ IntD(γ) : a0 ≤ (u0,ε)Ω ≤ b0 ∀ ε ∈ (0, ε0) , (3.19)

u0,ε ⇀ u0 in H as ε↘ 0 , gε ⇀ g in L2(0, T ;H) as ε↘ 0 . (3.20)
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Let (uε, µε, ξε)ε∈(0,ε0) be a family of solutions to (3.11)–(3.16) corresponding to the data
(u0,ε, gε) and viscosity τε, where uε is uniquely determined. Then, there exists a solution
(u, µ, ξ) to (3.3)–(3.8) corresponding to the data (u0, g) and viscosity τ , where u is uniquely
determined, such that, as ε↘ 0,

uε → u in C0([0, T ];H) ,

∂tuε ⇀ ∂tu in L2(0, T ;V ∗) ,

∂tuε ⇀ ∂tu in L2(0, T ;H) if τ > 0 ,

τε∂tuε → 0 in L2(0, T ;H) if τ = 0 ,

µε ⇀ µ in L2(0, T ;V ) ,

µε ⇀ µ in L2(0, T ;W ) if τ > 0 ,

ξε ⇀ ξ in L2(0, T ;H) .

4. Proof of Theorem 3.2

This section is devoted to the proof of well-posedness of the nonlocal viscous Cahn-Hilliard
equation. Throughout the section, ε > 0 and τε > 0 are fixed.

4.1. Approximation. For every λ > 0, let γλ : R→ R be the Yosida approximation of γ,
having Lipschitz constant 1/λ, and set γ̂λ(s) :=

´ s
0 γλ(r) dr for every s ∈ R. We consider

the approximated problem

∂tu
λ
ε −∆µλε = 0 in Q , (4.1)

µλε = τε∂tu
λ
ε − λ∆uλε +Bε(u

λ
ε ) + γλ(uλε ) + Π(uλε )− gε in Q , (4.2)

∂nu
λ
ε = ∂nµ

λ
ε = 0 in Σ , (4.3)

uλε (0) = uλ0,ε in Ω , (4.4)

where the initial datum uλ0,ε satisfies

uλ0,ε ∈ V , uλ0,ε → u0,ε in H as ε↘ 0 , (4.5)

sup
λ∈(0,λ0)

(
λ‖uλ0,ε‖2V + ‖γ̂(uλ0,ε)‖L1(Ω)

)
< +∞ (4.6)

for a certain λ0 > 0 (possibly depending on ε). The existence of an approximating sequence
(uλ0,ε)λ satisfying (4.5)–(4.6) is guaranteed by assumption (3.1): for example, one can check
that the classical elliptic regularization given by the unique solution to the problem{

uλ0,ε − λ∆uλ0,ε = u0,ε in Ω ,

∂nu
λ
0,ε = 0 in ∂Ω ,

is a possible choice. The existence of a unique approximated solution (uλε , µ
λ
ε ) for every

λ > 0 relies on a fixed-point argument, as in [24, Section 3.1]. For every v ∈ L2(0, T ;W ),

since W ↪→ C0, 1
4 (Ω) by the Sobolev embeddings, thanks to the properties of Bε proved in

Lemma 1 we have that Bε(v) ∈ L2(0, T ;H). Hence, by the classical literature on the local
viscous Cahn-Hilliard equation (see again [18]), the map

Γλε : C0([0, T ];H)∩L2(0, T ;W )→ H1(0, T ;H)∩L∞(0, T ;V )∩L2(0, T ;W ) , Γλε : v 7→ vλε ,
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is well-defined, where (vλε , w
λ
ε ) is the unique solution to the local viscous Cahn-Hilliard

equation

∂tv
λ
ε −∆wλε = 0 in Q ,

wλε = τε∂tv
λ
ε − λ∆vλε + γλ(vλε ) + Π(vλε )− (gε −Bε(v)) in Q ,

∂nu
λ
ε = ∂nµ

λ
ε = 0 in Σ ,

vλε (0) = uλ0,ε in Ω .

Now, arguing as in [24, Section 3.1], exploiting the Lipschitz-continuity of γλ, the Sobolev
embeddings, and the properties of Bε contained in Lemma 1, we deduce that there exist
constants Lλε > 0 and σ > 0 such that, for every v1, v2 ∈ C0([0, T ];H) ∩ L2(0, T ;W ), we
have

‖Γλε (v1)− Γλε (v2)‖C0([0,T ];H)∩L2(0,T ;W ) ≤ LλεT σ‖v1 − v2‖L2(0,T ;W ) .

It follows that one can choose T0 ∈ (0, T ] sufficiently small so that Γλε is a contraction
on the respective functional spaces defined in (0, T0). Performing then a classical patching
argument (we refer again to [24, Section 3.1] for details), we infer that Γλε has a unique fixed
point on the whole interval [0, T ]. This proves that the approximated system (4.1)–(4.4)
has a unique solution

uλε ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) , µλε ∈ L2(0, T ;W ) .

4.2. Uniform estimates. We prove here some uniform estimates independently of λ and
ε. In what follows we will always assume that λ ∈ [0, 1]. Moreover, ε > 0 and τε > 0 are
still fixed.

We start by fixing t ∈ [0, T ], testing (4.1) with µλε , (4.2) with ∂tu
λ
ε , taking the difference,

and integrating the resulting equation on (0, t). We obtainˆ
Qt

|∇µλε (s, x)|2 dx ds+ τε

ˆ
Qt

|∂tuλε (s, x)|2 dx ds

+
λ

2

ˆ
Ω
|∇uλε (t, x)|2 dx+ Eε(u

λ
ε (t, ·)) +

ˆ
Ω

(γ̂λ + Π̂)(uλε (t, x)) dx

≤ λ

2

ˆ
Ω
|∇uλ0,ε(x)|2 dx+ Eε(u

λ
0,ε) +

ˆ
Ω

(γ̂λ + Π̂)(uλ0,ε(x)) dx+

ˆ
Qt

|gε(s, x)||∂tu(s, x)|dx ds.

From the fact thatˆ
Ω
γ̂λ(uλ0,ε(x)) dx ≤

ˆ
Ω
γ̂(uλ0,ε(x)) dx for everyλ > 0,

using the uniform bound (4.6) as well as the Young inequality, we getˆ
Qt

|∇µλε (s, x)|2 dx ds+
τε
2

ˆ
Qt

|∂tuλε (s, x)|2 dx ds+ Eε(u
λ
ε (t, ·)) +

λ

2

ˆ
Ω
|∇uλε (t, x)|2 dx

≤ Cε +
τε
4

ˆ
Qt

|∂tuλε (t, x)|2 dx dt+
1

τε

ˆ T

0

ˆ
Ω
|gε(t, x)|2 dx dt (4.7)

for every t ∈ [0, T ], where Cε > 0 is a constant independent of λ and depending only on the
initial datum u0,ε.
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From the arbitrariness of t ∈ [0, T ] we deduce that, for every λ ∈ (0, 1),

‖∇µλε‖L2(0,T ;H) ≤ Cε , (4.8)

‖uλε‖L∞(0,T ;Vε) + ‖uλε‖H1(0,T ;H) + λ1/2‖∇uλε‖L∞(0,T ;H) ≤ Cε , (4.9)

hence also, by comparison in (4.1),

‖∆µλε‖L2(0,T ;H) ≤ Cε . (4.10)

Furthermore, noting that (uλε )Ω = (uλ0,ε)Ω = (u0,ε)Ω, we test (4.1) by N (uλε − (u0,ε)Ω), (4.2)

by uλε − (u0,ε)Ω, and sum: we obtain, for almost every t ∈ (0, T ),

〈∂tuλε (t),N (uλε (t)− (u0,ε)Ω)〉V + τε〈∂tuλε (t), uλε (t)− (u0,ε)Ω〉V + λ

ˆ
Ω
|∇uλε (t, x)|2dx

+

ˆ
Ω
Bε(u

λ
ε )(t, x)uλε (t, x) dx+

ˆ
Ω
γλ(uλ(t, x))(uλε (t, x)− (u0,ε)Ω) dx

=

ˆ
Ω

(
gε(t, x)−Π(uλε )(t, x)

)
(uλε (t, x)− (u0,ε)Ω) dx ,

where we have used that
´

ΩBε(u
λ
ε (t, x)) dx = 0 by the symmetry of the kernel Kε. A

classical argument shows that since (u0,ε)Ω ∈ IntD(γ), then there are two constants cε, c
′
ε,

only depending on the position of (u0,ε)Ω, such that

‖γλ(uλε (t, ·))‖L1(Ω) ≤ cε
ˆ

Ω
γλ(uλε (t, x))(uλε (t, x)− (u0,ε)Ω) dx+ c′ε , for a.e. t ∈ (0, T ) .

Arguing as in [24, Subsection 3.2], the estimates above and (4.8)–(4.9) yield then a control
on ‖γλ(uλ)‖L2(0,T ;L1(Ω)). In particular, by comparison in (4.2) we get an estimate on (µλε )Ω

in L2(0, T ). Taking (4.8) and (4.10) into account, we deduce then that

‖µλε‖L2(0,T ;W ) ≤ Cε . (4.11)

By comparison in (4.2) we infer that

‖ − λ∆uλε +Bε(u
λ
ε ) + γλ(uλε )‖L2(0,T ;H) ≤ Cε .

Testing −λ∆uλε +Bε(u
λ
ε ) + γλ(uλε ) by γλ(uλε ) and noting that, by monotonicity of γλ,

ˆ
Ω

(−λ∆uλε (t, x) +Bε(u
λ
ε )(t, x))γλ(uλε )(t, x) dx

= λ

ˆ
Ω
γ′λ(uλε )|∇uλε (t, x)|2 dx

+
1

2

ˆ
Ω

ˆ
Ω
Kε(x, y)

(
γλ(uλε (t, x))− γλ(uλε (t, y))

)(
uλε (t, x)− uλε (t, y)

)
dx dy ≥ 0 ,

by the estimate above and the Young inequality we also deduce that

‖ − λ∆uλε +Bε(u
λ
ε )‖L2(0,T ;H) + ‖γλ(uλε )‖L2(0,T ;H) ≤ Cε . (4.12)
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4.3. Passage to the limit as λ ↘ 0. In this section we analyze the passage to the limit
as λ↘ 0, with ε > 0 and τε > 0 still fixed. In view of the uniform bounds (4.8)–(4.12) and
the Aubin-Lions lemma, up to the extraction of (not relabeled) subsequences we have the
following convergences:

uλε → uε in C0([0, T ];V ∗) , (4.13)

uλε
∗
⇀ uε in L∞(0, T ;Vε) ∩H1(0, T ;H) , (4.14)

λuλε → 0 in L∞(0, T ;V ) , (4.15)

µλε ⇀ µε in L2(0, T ;W ) , (4.16)

γλ(uλε ) ⇀ ξε in L2(0, T ;H) , (4.17)

Π(uλε ) ⇀ Ξε in L2(0, T ;H) , (4.18)

−λ∆uλε +Bε(u
λ
ε ) ⇀ ηε in L2(0, T ;H) , (4.19)

for some

uε ∈ H1(0, T ;H) ∩ L∞(0, T ;Vε) , µε ∈ L2(0, T ;W ) ,

ξε ∈ L2(0, T ;H) , Ξε ∈ L2(0, T ;H) , ηε ∈ L2(0, T ;H) .

From (4.14) and the fact that Bε ∈ L (Vε, V
∗
ε ), it is readily seen that

Bε(u
λ
ε )
∗
⇀ Bε(uε) in L∞(0, T ;V ∗ε ) .

Moreover, from (4.15) and (4.19), it follows by comparison that

Bε(u
λ
ε ) ⇀ ηε in L2(0, T ;V ∗) .

We deduce in particular that Bε(uε) = ηε ∈ L2(0, T ;H), so that also uε ∈ L2(0, T ;Wε).
The strong convergence (4.13) implies also that uε(0) = u0,ε.
Passing to the limit in (4.1)-(4.4) in the weak topology of L2(0, T ;H), we obtain

∂tuε −∆µε = 0 in L2(0, T ;H) , (4.20)

µε = τε∂tuε +Bε(uε) + ξε + Ξε − gε in L2(0, T ;H) , (4.21)

∂nµε = 0 in L2(Σ) , (4.22)

uε(0) = u0,ε in H . (4.23)

We proceed now providing an identification of the nonlinear terms ξε and Ξε: we adapt an
argument performed in [22, Subsection 3.6]. To this end, since Π is Lipschitz-continuous,
there exists α > 0 such that the operator

γ + Π + ατε Id : R→ 2R

is maximal monotone. For example, one can choose α := 2
τε
‖Π′‖L∞(R) (recall that τε > 0 is

fixed). Multiplying (4.2) by e−αt, we obtain

e−αtµλε = τε∂t(e
−αtuλε )− λ∆(e−αtuλε ) +Bε(e

−αtuλε ) + e−αt(γλ(uλε ) + Π(uλε ) + ατεu
λ
ε − gε).
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Thus, testing the previous equation by e−αtuλε and integrating in time yields

lim sup
λ→0

ˆ
Q
e−2αs(γλ(uλε (s, x)) + Π(uλε (s, x)) + ατεu

λ
ε (s, x))uλε (s, x) dx ds

≤ lim sup
λ→0

[ˆ
Q
e−2αsµλε (s, x)uλε (s, x) dx ds− λ

ˆ
Q
e−2αs|∇uλε (s, x)|2 dx ds

−τε
2

ˆ
Ω
e−2αT |uλε (T, x)|2 dx+

τε
2

ˆ
Ω
|uλ0,ε(x)|2 dx− 2

ˆ T

0
e−2αsEε(u

λ
ε (s, ·)) ds

+

ˆ
Q
e−2αsgε(s, x)uλε (s, x) dx ds

]
.

On the one hand, owing to (4.13) and (4.16),

lim
λ→0

ˆ
Q
e−2αs(µλε (s, x) + gε(s, x))uλε (s, x) dx ds =

ˆ
Q
e−2αs(µε(s, x) + gε(s, x))uε(s, x) dx ds .

On the other hand, by the weak lower semicontinuity of the norms, the convergence (4.14),
and the assumption (4.5), we have

lim sup
λ→0

[
−λ
ˆ
Q
e−2αs|∇uλε (s, x)|2 dx ds

−τε
2

ˆ
Ω
e−2αT |uλε (T, x)|2 dx+

τε
2

ˆ
Ω
|uλ0,ε(x)|2 dx− 2

ˆ T

0
e−2αsEε(u

λ
ε (s, ·)) ds

]
≤ −τε

2
lim inf
λ→0

ˆ
Ω
e−2αT |uλε (t, x)|2 dx+

τε
2

lim sup
λ→0

ˆ
Ω
|uλ0,ε(x)|2 dx

− 2 lim inf
λ→0

ˆ T

0
e−2αsEε(u

λ
ε (s, ·)) ds

≤ −τε
2

ˆ
Ω
e−2αT |uε(T, x)|2 dx+

τε
2

ˆ
Ω
|u0,ε(x)|2 dx− 2

ˆ T

0
e−2αsEε(uε(s, ·)) ds .

Hence, we deduce that

lim sup
λ→0

ˆ
Q
e−2αs(γλ(uλε (s, x)) + Π(uλε (s, x)) + ατεu

λ
ε (s, x))uλε (s, x) dx ds

≤
ˆ
Q
e−2αs(µε(s, x) + gε(s, x))uε(s, x) dx ds

− τε
2

ˆ
Ω
e−2αT |uε(T, x)|2 dx+

τε
2

ˆ
Ω
|u0,ε(x)|2 dx− 2

ˆ T

0
e−2αsEε(uε(s, ·)) ds . (4.24)

Testing (4.21) by e−2αtuε and integrating in time, the right-hand side of (4.24) rewrites as

lim sup
λ→0

ˆ
Q
e−2αs(γλ(uλε (s, x)) + Π(uλε (s, x)) + ατεu

λ
ε (s, x))uλε (s, x)dx ds

≤
ˆ t

0

ˆ
Ω
e−2αs(ξε(s, x) + Ξε(s, x) + ατεuε(s, x))uε(s, x) dx ds .

Since the bilinear form

(v1, v2) 7→
ˆ
Q
e−2αxv1(s, x)v2(s, x) dx ds , v1, v2 ∈ L2(Q) ,
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is an equivalent scalar product on L2(Q), by the maximal monotonicity of γ + Π + ατε Id
we conclude that

ξε + Ξε + ατεuε ∈ (γ + Π + ατε Id)(uε) a.e. in Q . (4.25)

This allows us to show the further strong convergences:

uλε (t)→ uε(t) in H ∀ t ∈ [0, T ] , uλε → uε in L2(0, T ;Vε) . (4.26)

Indeed, taking the difference between (4.2) and (4.21), multiplying again by e−αt, and
testing by e−αt(uλε − uε), we get

τε
2

ˆ
Ω
e−2αt|(uλε − uε)(t, x)|2 dx+ λ

ˆ
Qt

e−2αs|∇uλε (s, x)|2 dx ds

+ 2

ˆ T

0
e−2αsEε((u

λ
ε − uε)(s, x)) ds

+

ˆ
Qt

e−2αs
(
γλ(uλε ) + Π(uλε ) + ατεu

λ
ε − (ξε + Ξε + ατεuε)

)
(s, x)(uλε − uε)(s, x) dx ds

=
τε
2

ˆ
Ω
|uλ0,ε(x)− u0,ε(x)|2 dx+

ˆ
Qt

e−2αs(µλ − µ)(s, x)(uλε − uε)(s, x) dx ds

− λ
ˆ
Qt

e−2αs∆uλε (s, x)uε(s, x) dx ds .

We use now the notation Jγλ := (Id + λγ)−1 : R → R for the resolvent of γ. Summing

and subtracting Jγλ (uλε ) in the last term on the left-hand side, rearranging the terms, and

recalling that uλε − J
γ
λ (uλε ) = λγλ(uλε ), we infer that, for every t ∈ [0, T ],

τε
2

ˆ
Ω
e−2αt|(uλε − uε)(t, x)|2 dx+ 2

ˆ T

0
e−2αsEε((u

λ
ε − uε)(s, x)) ds

+

ˆ
Qt

e−2αs
(
γλ(uλε )+Π(Jγλ (uλε ))+ατεJ

γ
λ (uλε )−(ξε+Ξε+ατεuε)

)
(s, x)(Jλ(uλε )−uε)(s, x) dx ds

≤ τε
2

ˆ
Ω
|uλ0,ε(x)− u0,ε(x)|2 dx+

ˆ
Qt

e−2αs(µλ − µ)(s, x)(uλε − uε)(s, x) dx ds

−
ˆ
Qt

e−2αsBε(u
λ
ε (s, x)))uε(s, x) dx ds

+

ˆ
Qt

e−2αs(−λ∆uλε (s, x) +Bε(u
λ
ε (s, x)))uε(s, x) dx ds

+

ˆ
Qt

e−2αs
(

Π(Jγλ (uλε (s, x)))−Π(uλε (s, x))+ατε(J
γ
λ (uλε )−uλε )(s, x)

)
(Jλ(uλε )−uε)(s, x) dx ds

− λ
ˆ
Qt

e−2αs
(
γλ(uλε ) + Π(uλε ) + ατεu

λ
ε − (ξε + Ξε + ατεuε)

)
(s, x)γλ(uλε (s, x)) dx ds .

Recalling that γλ(r) ∈ γ(Jγλ (r)) for every r ∈ R, by (4.25) and the monotonicity of the
operator γ + Π + ατεId, the third term on the left-hand side is nonnegative. Let us show
that the right-hand side converges to 0, analyzing each term separately. The first two terms
on the right-hand side converge to 0 thanks to (4.5), (4.13) and (4.16). Moreover, thanks
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to (4.14), (4.19), and the fact that uε ∈ L2(0, T ;Wε), we have

−
ˆ
Qt

e−2αsBε(u
λ
ε (s, x))uε(s, x) dx ds→ −

ˆ
Qt

e−2αsBε(uε(s, x))uε(s, x) dx ds

andˆ
Qt

e−2αs(−λ∆uλε (s, x) +Bε(u
λ
ε (s, x)))uε(s, x) dx ds→

ˆ
Qt

e−2αsBε(uε(s, x))uε(s, x) dx ds .

Finally, since (γλ(uλε ))λ is bounded in L2(0, T ;H) by (4.12), using the Lipschitz-continuity
of Pi, the last two terms on the right-hand side can be handled by

λ‖γλ(uλε )‖L2(0,T ;H)

(
‖Jγλ (uλε )‖L2(0,T ;H) + ‖uε‖L2(0,T ;H)‖

+‖γλ(uλε ) + Π(uλε ) + ατεu
λ
ε − (ξε + Ξε + ατεuε)‖L2(0,T ;H)

)
≤ Cελ→ 0 .

Since t ∈ [0, T ] is arbitrary, the strong convergences (4.26) follows. In particular, this readily
implies that Ξε = Π(uε) and ξε ∈ γ(uε) almost everywhere in Q by the Lipschitz-continuity
of Π and by the maximal monotonicity of γ, respectively.
It is then clear that (uε, µε, ξε) is a solution to the nonlocal viscous Cahn-Hilliard equation
in the sense of (3.11)–(3.16). This completes the proof of the first assertion of Theorem 3.2.

4.4. Continuous dependence. Let (u1
0,ε, g

1
ε) and (u2

0,ε, g
2
ε) satisfy the assumptions (3.9)–

(3.10) with (u1
0,ε)Ω = (u2

0,ε)Ω, and let (u1
ε, µ

1
ε, ξ

1
ε ) and (u2

ε, µ
2
ε, ξ

2
ε ) be any corresponding

solutions to (3.11)–(3.16).
We observe that their difference solves

∂t(u
1
ε − u2

ε)−∆(µ1
ε − µ2

ε) = 0 in Q ,

µ1
ε − µ2

ε = τε∂t(u
1
ε − u2

ε) +Bε(u
1
ε − u2

ε) + ξ1
ε − ξ2

ε + Π(u1
ε)−Π(u2

ε)− (g1
ε − g2

ε) in Q ,

∂n(µ1
ε − µ2

ε) = 0 in Σ ,

(u1
ε − u2

ε)(0) = 0 in Ω .

By the assumption on the initial data, we have that (u1
ε − u2

ε)Ω = 0. Therefore, we can
test the first equation by N (u1

ε − u2
ε), the second by u1

ε − u2
ε, and take the difference: by

performing classical computations we get

1

2
‖(u1

ε − u2
ε)(t)‖2V ∗ +

τε
2
‖(u1

ε − u2
ε)(t)‖2H + 2

ˆ t

0
Eε(u

1
ε − u2

ε)(s) ds

+

ˆ
Qt

(ξ1
ε − ξ2

ε )(s, x)(u1
ε − u2

ε)(s, x) dx ds

=
1

2
‖(u1

0,ε − u2
0,ε)‖2V ∗ +

τε
2
‖(u1

0,ε − u2
0,ε)‖2H

+

ˆ
Qt

(
g1
ε − g2

ε −Π(u1
ε) + Π(u2

ε)
)

(s, x)(u1
ε − u2

ε)(s, x) .

The last term on the left-hand side is nonnegative by the monotonicity of γ. Hence, the
continuous-dependence property stated in Theorem 3.2 follows from the Lipschitz-continuity
of Π and the Gronwall lemma.
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5. Proof of Theorem 3.3

This section is devoted to study the asymptotic behavior of solutions to the nonlocal viscous
Cahn-Hilliard equation as ε↘ 0.
Let us recall that the family of data (u0,ε, gε)ε>0 are assumed to satisfy (3.17)–(3.20), while
(uε, µε, ξε) is a corresponding solution to (3.11)–(3.16).

5.1. The case τ > 0. We consider here the case τ > 0, so that τε → τ > 0. As a major
consequence, this implies that it is not restrictive to assume that

∃ τ∗ > 0 : τε ≥ τ∗ ∀ ε ∈ (0, ε0) . (5.1)

We test (3.14) by µε, (3.15) by ∂tuε, take the difference, and integrate on Qt: recalling
(3.18) and using the Young inequality, we deduce thatˆ

Qt

|∇µε(s, x)|2 dx ds+ τε

ˆ
Qt

|∂tuε(s, x)|2 dx ds+ Eε(uε(t, ·)) +

ˆ
Ω

(γ̂ + Π̂)(uε(t, x)) dx

≤ Eε(u0,ε) +

ˆ
Ω

(γ̂ + Π̂)(u0,ε(x)) dx+
τε
2

ˆ
Qt

|∂tuε(s, x)|2 dx ds+
1

τε

ˆ
Qt

|gε(s, x)|2 dx ds .

Note that 1
τε
≤ 1

τ∗
by (5.1). Hence, rearranging the terms and using (3.17) we infer that

there exists a constant C > 0, independent of ε, such that

‖∇µε‖L2(0,T ;H) + ‖uε‖H1(0,T ;H)∩L∞(0,T ;Vε) ≤ C
hence also, by comparison in (3.14),

‖∆µε‖L2(0,T ;H) ≤ C .
Now, we can proceed as in the previous Section 4.2. Since (uε)Ω = (u0,ε)Ω, we can test
(3.14) by N (uε − (u0,ε)Ω), (3.15) by uε − (u0,ε)Ω, and sum: we obtain, for almost every
t ∈ (0, T ),

〈∂tuε(t),N (uε(t)− (u0,ε)Ω)〉V + τε〈∂tuε(t), uε(t)− (u0,ε)Ω〉V + 2Eε(uε(t, x))

+

ˆ
Ω
ξε(t, x)(uε(t, x)− (u0,ε)Ω) dx

=

ˆ
Ω

(gε(t, x)−Π(uε)(t, x)) (uε(t, x)− (u0,ε)Ω) dx.

Again, by the estimates already performed, all the terms are bounded in L2(0, T ) exceptˆ
Ω
ξε(t, x)(uε(t, x)− (u0,ε)Ω) dx .

Thanks to assumption (3.19), there are two constants c, c′ > 0, independent of ε, such that

‖ξε(t, ·)‖L1(Ω) ≤ c
ˆ

Ω
ξε(t, ·)(uε(t, x)− (u0,ε)Ω) dx+ c′ .

Hence, we deduce that
‖ξε‖L2(0,T ;L1(Ω)) ≤ C ,

which implies, by comparison in (3.15), that

‖(µε)Ω‖L2(0,T ) ≤ C .
We deduce that

‖µε‖L2(0,T ;W ) ≤ C .
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Thus, by comparison in (3.15) and by monotonicity of γ, we obtain that

‖Bε(uε)‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ C .

By the Aubin-Lions compactness theorem we infer that, up to the extraction of (not rela-
beled) subsequences, as ε↘ 0,

uε → u in C0([0, T ];V ∗) , (5.2)

uε ⇀ u in H1(0, T ;H) , (5.3)

Bε(uε) ⇀ η in L2(0, T ;H) , (5.4)

µε ⇀ µ in L2(0, T ;W ) , (5.5)

ξε ⇀ ξ in L2(0, T ;H) (5.6)

for some

u ∈ H1(0, T ;H) , µ ∈ L2(0, T ;W ) , ξ, η ∈ L2(0, T ;H) .

We proceed by showing the strong convergence

uε → u in C0([0, T ];H) . (5.7)

To this end, we show that the sequence (uε)ε is Cauchy in C0([0, T ];H). For any arbitrary
σ > 0, we apply Lemma 3 with the choice δ := σ

4C , where C > 0 is the constant obtained
in the estimates above. We deduce that there exists ε̄ = ε̄σ and Cσ > 0 such that

‖(uε1 − uε2)(t)‖2H ≤
σ

4C
(Eε1(uε1(t)) + Eε2(uε2(t))) + Cσ‖(uε1 − uε2)(t)‖2V ∗

for every ε1, ε2 ∈ (0, ε̄σ), for every t ∈ [0, T ]. Thanks to (5.2), there exists ε̃σ ∈ (0, ε̄σ) such
that

‖uε1 − uε2‖2C0([0,T ];V ∗) ≤
σ

2Cσ
∀ ε1, ε2 ∈ (0, ε̃σ) .

Hence, taking the supremum in time and using the estimates above we infer that

‖uε1 − uε2‖2C0([0,T ];H)

≤ σ

4C

(
‖Eε1(uε1)‖L∞(0,T ) + ‖Eε2(uε2)‖L∞(0,T )

)
+ Cσ‖uε1 − uε2‖2C0([0,T ];V ∗)

≤ σ

4C
(C + C) + Cσ

σ

2Cσ
= σ

for every ε1, ε2 ∈ (0, ε̃σ). Since σ > 0 is arbitrary, we obtain the strong convergence (5.7).
Now, from (5.7) and the Lipschitz continuity of Π, it follows that

Π(uε)→ Π(u) in C0([0, T ];H) ,

while the strong-weak closure of γ readily ensures that ξε ∈ γ(uε) almost everywhere in Q.
To conclude the proof of the theorem, it remains to prove additional spatial regularity for
u and to provide an identification of η. First of all, note that since (uε)ε is bounded in
L∞(0, T ;Vε), by the Ponce criterion [52, Theorem 1.2] we have that u ∈ L∞(0, T ;V ).
Let us identify now the term η. We first observe that by Lemma 1 there holds DEε = Bε
as operators on Vε. Thus, by Lemma 2, and by the continuous inclusion of V into Vε, we
deduce

Eε(z1) + 〈Bε(z1), z2 − z1〉V ∗ε ,Vε ≤ Eε(z2) ∀ z1, z2 ∈ V .
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Hence, for all z ∈ L2(0, T ;V ) we deduce that

ˆ T

0
Eε(uε(t, ·)) dt+

ˆ T

0

ˆ
Ω
Bε(uε(t, x))(z(t, x)− uε(t, x)) dx dt ≤

ˆ T

0
Eε(z(t, ·)) dt. (5.8)

Owing to Lemma 2, and to the dominated convergence theorem, we have
ˆ T

0
Eε(z(t, ·)) dt→ 1

2

ˆ T

0

ˆ
Ω
|∇z(x, t)|2dx dt .

On the one hand, (5.4) and (5.7) yield

ˆ T

0

ˆ
Ω
Bε(uε(t, x))(z(t, x)− uε(t, x)) dx dt→

ˆ T

0

ˆ
Ω
η(t, x)(z(t, x)− u(t, x)) dx dt.

On the other hand, by the Gamma-convergence result in Lemma 2 and by Fatou’s Lemma,

lim inf
ε→0

ˆ T

0
Eε(uε(t, ·)) dt ≥ 1

2

ˆ
Q
|∇u(t, x)|2 dx dt.

Letting ε→ 0 in (5.8) and recalling that u ∈ L∞(0, T ;V ), we obtain the inequality

1

2

ˆ
Q
|∇u(t, x)|2 dx dt+

ˆ
Q
η(t, x)(z(t, x)− u(t, x)) dx dt ≤ 1

2

ˆ
Q
|∇z(t, x)|2 dx dt (5.9)

for every z ∈ L2(0, T ;V ), which in turn implies that −∆u = η ∈ L2(0, T ;H). Since
u ∈ L∞(0, T ;V ) and ∆u ∈ L2(0, T ;H) in the sense of distributions for example, by [42,

Thm. 2.27] the normal derivative ∂nu ∈ L2(0, T ;H−1/2(∂Ω)) is well defined. We infer that,
for almost every t ∈ (0, T ) and for every ϕ ∈ V ,ˆ

Ω
∇u(t, x) · ∇ϕ(x) dx =

ˆ
Ω
η(t, x)ϕ(x) dx ,

from which it follows that

−
ˆ

Ω
∆u(t, x)ϕ(x) dx+ 〈∂nu(t, ·), ϕ|∂Ω〉H−1/2(∂Ω),H1/2(∂Ω) =

ˆ
Ω
η(t, x)ϕ(x) .

As −∆u = η in L2(0, T ;H), we infer that

〈∂nu(t, ·), ϕ0〉H−1/2(∂Ω),H1/2(∂Ω) = 0 ∀ϕ0 ∈ H1/2(Ω) ,

hence ∂nu = 0 almost everywhere in Σ. Now, since we have that ∆u ∈ L2(0, T ;H) and

∂nu = 0 ∈ L2(0, T ;H1/2(∂Ω)), by the elliptic regularity result [42, Thm. 3.2] we infer that
u ∈ L2(0, T ;W ). Eventually, letting ε↘ 0 in the equations (3.14)–(3.15) we obtain

∂tu−∆µ = 0 in L2(0, T ;H)

and

µ = τ∂tu−∆u+ ξ + Π(u)− g in L2(0, T ;H) .

This implies that u is a solution to the local Cahn-Hilliard equation according to conditions
(3.3)–(3.8), in the viscous case τ > 0. This concludes the proof of Theorem 3.3 in the case
τ > 0.
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5.2. The case τ = 0. We consider here the case τ = 0, so that τε → 0.
We perform the first estimate as in the previous section: we test (3.14) by µε, (3.15) by
∂tuε, take the difference, and integrate on Qt: we obtainˆ

Qt

|∇µε(s, x)|2 dx ds+ τε

ˆ
Qt

|∂tuε(s, x)|2 dx ds+ Eε(uε(t, ·)) +

ˆ
Ω

(γ̂ + Π̂)(uε(t, x)) dx

= Eε(u0,ε) +

ˆ
Ω

(γ̂ + Π̂)(u0,ε(x)) dx+

ˆ
Qt

gε(s, x)∂tuε(s, x) dx ds .

Using now the additional assumption (3.18) in the case τ = 0, we can integrate by parts
with respect to time in the last term on the right-hand side and use the Young inequality
as ˆ

Qt

gε(s, x)∂tuε(s, x) dx ds

= −
ˆ
Qt

∂tgε(s, x)uε(s, x) dx ds+

ˆ
Ω
gε(t, x)uε(t, x) dx−

ˆ
Ω
gε(0, x)u0,ε(x) dx

≤ 1

2
‖gε‖2H1(0,T ;H) +

1

2

ˆ
Qt

|uε(s, x)|2 dx ds+ σ

ˆ
Ω
|uε(t, x)|2 dx+

1

4σ
‖gε(t, ·)‖2H

+
1

2
‖u0,ε‖2H +

1

2
‖gε(0, ·)‖2H

for every σ > 0. Moreover, note that by the generalized Poincaré inequality contained in
[52, Theorem 1.1], there exist constants C > 0 and ε̄ ∈ (0, ε0), independent of ε and of t,
such that ˆ

Ω
|uε(t, x)− (uε(t, ·))Ω|2 dx ≤ CEε(uε(t, ·)) ∀ ε ∈ (0, ε̄) .

Since (uε)Ω = (u0,ε)Ω, rearranging the terms and choosing σ > 0 sufficiently small (inde-
pendently of ε), we infer thatˆ
Qt

|∇µε(s, x)|2 dx ds+ τε

ˆ
Qt

|∂tuε(s, x)|2 dx ds+ Eε(uε(t, ·)) + ‖uε(t, ·)‖2H

≤ C
(
Eε(u0,ε) + ‖u0,ε‖2H +

ˆ
Ω

(γ̂ + Π̂)(u0,ε(x)) dx+ ‖gε‖2H1(0,T ;H)

)
+

ˆ
Qt

|uε(s, x)|2 dx ds

for a certain C > 0 independent of ε. Recalling then the assumptions (3.17)–(3.18), the
Gronwall lemma yields

‖∇µε‖L2(0,T ;H) + ‖uε‖L∞(0,T ;Vε) + τ1/2
ε ‖∂tuε‖L2(0,T ;H) ≤ C ,

hence also, by comparison in (3.14),

‖∂tuε‖L2(0,T ;V ∗) ≤ C .
At this point, we proceed exactly as in the previous Section 5.1, and infer that

‖ξε‖L2(0,T ;L1(Ω)) ≤ C ,

which implies, by comparison in (3.15), that

‖(µε)Ω‖L2(0,T ) ≤ C .
We deduce then

‖µε‖L2(0,T ;V ) ≤ C ,
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and again, by comparison in (3.15) and by monotonicity of γ, that

‖Bε(uε)‖L2(0,T ;H) + ‖ξε‖L2(0,T ;H) ≤ C .
The Aubin-Lions theorems ensure then that, up to not relabeled subsequence, as ε↘ 0,

uε → u in C0([0, T ];V ∗) , (5.10)

uε
∗
⇀ u in H1(0, T ;V ∗) ∩ L∞(0, T ;H) , (5.11)

τεuε → 0 in H1(0, T ;H) , (5.12)

Bε(uε) ⇀ η in L2(0, T ;H) , (5.13)

µε ⇀ µ in L2(0, T ;V ) , (5.14)

ξε ⇀ ξ in L2(0, T ;H) (5.15)

for some

u ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H) , µ ∈ L2(0, T ;V ) , ξ, η ∈ L2(0, T ;H) .

Arguing as in the previous Section 5.1 thanks to the Lemma 3, the convergence (5.10) and
the boundedness of (Eε(uε))ε in L∞(0, T ) imply the strong convergence

uε → u in C0([0, T ];H) .

Hence, by the Lipschitz continuity of Π we have

Π(uε)→ Π(u) in C0([0, T ];H) ,

while the strong-weak closure of γ yields ξε ∈ γ(uε) almost everywhere in Q. Moreover,
still arguing as in the previous section we obtain that u ∈ L∞(0, T ;V ), η = −∆u, and
u ∈ L2(0, T ;W ) by elliptic regularity.
Passing to the weak limit in (3.14)–(3.15) we obtain then

∂tu−∆µ = 0 in L2(0, T ;V ∗)

and
µ = −∆u+ ξ + Π(u)− g in L2(0, T ;H) .

This concludes the proof of Theorem 3.3 also in the case τ = 0.
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